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Abstract

In this diploma thesis, we address the problem of noncoherent synchronization, channel estimation,
and detection for offset quadrature phase-shift keying (OQPSK) and binary frequency-shift keying
(BFSK) modulations. We develop a gradient-descent algorithm which exploits some characteristics of
the concentrated likelihood function (CLF) of the time delay as well as some observations about the
transmitted sequences and performs noncoherent synchronization, channel estimation, and detection
for the aforementioned types of modulation. The proposed algorithm is based on the efficient nonco-
herent detection of the transmitted symbols, under channel and timing uncertainty. The development
of our algorithm is based on the maximum-likelihood (ML) criterion and utilizes state-of-the-art
noncoherent detection techniques from the literature. After we reproduce the results of a recent work
on joint noncoherent synchronization, channel estimation, and detection for OQPSK, we design an
algorithm that concentrates on the data detection problem and is applicable for both OQPSK and
BFSK. We are mainly interested in the transmitted sequence but a clock estimate is obtained as
byproduct. The latter is achieved by converting the likelihood function to a form that depends only on
the estimates of the transmitted sequences and the actual channel delay. The method used involves the
first-order derivative of the likelihood with respect to the delay as well as some useful properties of
the estimated sequences.
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Chapter 1

Introduction

In this diploma thesis, we have addressed the problem of noncoherent detection in OQPSK and BFSK

modulations. When implemented exhaustively, by searching among all possible sequences, detection

demonstrates exponential complexity (in the sequence length). In the following text, we propose a gradient

descent algorithm which exploits some characteristics of the CLF of the time delay as well as some

observations about the sequences and performs detection for the aforementioned types of modulation.

The following work follows the novel work that our group has done in non-coherent FSK detection [1].

The difference between this paper and my thesis is that in the former the clock parameter is considered as

known at the receiver while I have considered it as unknown.

Phase-shift keying (PSK) is a digital modulation scheme that conveys data by changing (modulating)

the phase of a reference signal (the carrier wave). The modulation is impressed by varying the sine

and cosine inputs at a precise time. It is widely used for wireless Local area networks (LANs) and

Radio-frequency identification (RFID) communication. Any digital modulation scheme uses a finite

number of distinct signals to represent digital data. PSK uses a finite number of phases, each assigned a

unique pattern of binary digits. Usually, each phase encodes an equal number of bits. Each pattern of bits

forms the symbol that is represented by the particular phase.

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is

transmitted through discrete frequency changes of a carrier signal. The technology is used for low-rate

communication systems in small Signal-to-noise ratio (SNR) environments (power-limited regime) such

as amateur radio, caller ID and emergency broadcasts. The simplest FSK is binary FSK (BFSK). BFSK

uses a pair of discrete frequencies to transmit binary (±1s) information. With this scheme, the "+1" is

called the mark frequency and the "-1" is called the space frequency.

In this study, we propose an efficient algorithm in order to obtain estimates of the transmitted symbols.

The derivation is based on the ML criterion, and utilizes a very efficient algorithm for the detection of

differentially encoded symbols already described in literature. I initially examined a paper which proposes

an algorithm for joint carrier phase and timing estimation for OQPSK[2], reproduced its basic results

and designed an algorithm for blind synchronization and detection for OQPSK and BFSK modulations.

The latter is achieved by bringing the likelihood function to a form that depends only on the estimates of

the transmitted sequences (â (in-phase) and b̂ (quadrature) for OQPSK and x̂ for BFSK) and the actual

channel delay (τ̃ ). We are mainly interested in the transmitted sequence but a clock estimate is obtained

as byproduct. The method used involves the first-order derivative of the likelihood with respect to the
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delay as well as some useful properties of the estimated sequences.

Notation conventions: Bold upper-case and lower-case symbols will denote matrices and vectors,

respectively, while lower-case non bold letters will be used for scalars and other variables. The symbol

(·)∗ will stand for the complex conjugation operation and the (·)T for the transpose operator whereas the

complex Gaussian distribution with mean µ and variance σ2 is denoted by CN (µ, σ2). The real part of

a complex number will be represented by <{·} and the imaginary part by ={·}. The notation A.x will

denote the x-th section of the appendix at the end of the document. Finally, the symbol (·)H will be used

for the Hermitian of a matrix.
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Chapter 2

Detection in OQPSK

2.1 Signal model

The constellation of the modulation represents the complex information symbols that correspond to the

complex envelopes of the four possible signals to be transmitted. The signalling pulse has unary energy

(Eg = 1) adhering to the orthonormality criterion. This quantity gives us the energy required to transmit

the in-phase or quadrature component of the signal in passband. The OQPSK constellation is a special

case of the QPSK modulation where neighboring symbols differ by ±π/2 and consecutively transmitted

symbols can only differ by ±π/2 in terms of phase and changes of phase by ±π are not feasible. In

general, we can start by an arbitrary phase θ0 and then the rest of the M -PSK symbols are defined

according to this phase

xi ∈
{
e+jθ0 , e+j 2π

M
+jθ0 , e+j2 2π

M
+jθ0 , ..., e+j(M−1) 2π

M
+jθ0

}
(2.1)

All of the points are placed on the circumference of a circle in the complex plane around the point

(0, 0). The constellation that we used is represented in Fig. 2.1, where the dotted lines represent the

feasible shift changes across consecutive symbols.

ai

bi

xi = 1 + jxi = −1 + j

xi = −1− j xi = 1− j

Figure 2.1: OQPSK constellation.
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The signal in complex form is

s(t) =
∑
i

aig(t− iT ) + j
∑
i

big(t− T/2− iT ) (2.2)

The signalling pulse is a real-valued function and more precisely a square-root-raised-cosine (SRRC)

pulse that is widely used in digital communications since its shifts by multiples of its parameter T

constitute an orthonormal set. It is defined as

g(t) =


4α
π
√
T

cos((1+α)πt
T

)+
sin((1−α)πt

T
)

4αt
T

1−( 4αt
T

)2
, t ∈ [0, DgT )

0, otherwise

(2.3)

where T > 0, a > 0, Dg ∈ N are a parameter, the roll-off factor and the duration in number of periods,

respectively.

Returning back to equation (2.2), T > 0 symbolizes the symbol period while the vectors a = {ai} and

b = {bi} are the in-phase and quadrature symbols, accordingly. The symbols are independent, identically

distributed and are equiprobably matched to the values {±1}. We should also note that the receiver has

memory on the grounds that the modulated signal depends on a finite number of previous information

symbols, at any given time.

The channel adds complex Gaussian white noise w(t) with independent real and imaginary parts and

the model considers a flat-fading channel leading to a received waveform of

r(t) = h̃ejθ̃s(t− τ̃) + n(t) (2.4)

after downconversion where h̃ > 0, θ̃ ∈ R and τ̃ ∈ R denote the attenuation, the phase change and the

actual time delay that the use of the channel entails. These parameters can be considered constant in the

course of time by making the assumption that the time in which the impulse response of the channel can

change is much longer than the observation interval across which the transmission occurs.

The need to estimate both the carrier phase θ̃ and the propagation delay τ̃ emerges from the fact

that the oscillator which produces the carrier signal for demodulation at the receiver is generally not

synchronous in phase with that at the transmitter. Furthermore, the two oscillators may be drifting slowly

with time, perhaps in different directions. Consequently, the received carrier phase is not only dependent

on the time delay τ̃ . Furthermore, the precision to which one must synchronize in time for the purpose of

demodulating the received signal depends on the symbol interval T .

2.2 The likelihood function

All of the parameters introduced in (2.4) are unknown to the receiver and must be estimated. In this work,

we primarily focus on the synchronization of the channel and the sequence detection by adopting the ML

criterion. We observe the received signal r(t) in the interval [0, T0), where T0 = L0T and L0 ∈ N.

The equivalent expression for the signal s(t) can be obtained by its baseband complex envelope, say

sl(t) as

s(t) = <
{
sl(t)e

j2πfct
}

(2.5)

where fc is the carrier frequency.
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Equivalently, the received signal is

r(t) = <
{[
h̃sl(t− τ̃)ejθ̃ + z(t)

]
ej2πfct

}
(2.6)

where z(t) is the low-pass equivalent signal of the noise. All of the parameters need to be estimated for

demodulation and coherent detection. Consequently, the received signal is a function of these parameters

r(t) = h̃ejθ̃s(t− τ̃) + n(t) = s(t; h̃, θ̃, τ̃) + n(t) = s(t;θ) + n(t) (2.7)

where all of the parameters have been incorporated in the parameter vector θ. In the ML criterion, the

signal parameter vector θ is treated as deterministic but unknown. From the Gram-Schmidt procedure, we

derive an orthonormal basis for s(t) with N orthonormal functions {φn(t)} and the received vector can

be approximated by a vector of coefficients r =
[
r1 r2 ... rN

]
. The ML estimate of θ maximizes

the PDF p(r|θ) and this criterion demands an observation interval T0 ≥ T . Because of the Gaussian

zero-mean noise and the fact that the elements of r are iid, the PDF can be written as

p(r|θ) =
N∏
n=1

p(rn|θ) =
N∏
n=1

1√
2πσ

exp

−
[
rn − sn(θ)

]2
2σ2

 (2.8)

=

(
1√
2πσ

)N
exp

−
N∑
n=1

[
rn − sn(θ)

]2
2σ2

 (2.9)

where

rn =

∫
T0

r(t)φn(t)dt (2.10)

sn(θ) =

∫
T0

s(t;θ)φn(t)dt (2.11)

By the expansion we have that

r(t) =

N∑
n=1

rnφn(t) (2.12)

and

s(t;θ) =
N∑
n=1

sn(θ)φn(t) (2.13)

So
1

N0

∫
T0

[
r(t)− s(t;θ)

]2
dt =

1

2σ2

∫
T0

N∑
n=1

[rn − sn(θ)]2dt (2.14)

and the proof is in A.1.

Plugging (2.14) into (2.9) yields

p(r|θ) =

(
1√
2πσ

)N
exp

{
− 1

N0

∫
T0

[
r(t)− s(t;θ)

]2
dt

}
(2.15)

The objective now transforms into maximizing p(r|θ) but since the first term is independent of the

parameters the likelihood becomes

Λ(θ) = exp

{
− 1

N0

∫
T0

[
r(t)− s(t;θ)

]2
dt

}
(2.16)
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The maximization leads to the following derivation

argmax
θ

Λ(θ) = argmax
θ

− 1

N0

∫
T0

∣∣r(t)− s(t;θ)
∣∣2 dt = argmin

θ

∫
T0

∣∣r(t)− s(t;θ)
∣∣2 dt (2.17)

= argmin
θ

∫
T0

∣∣r(t)∣∣2 +
∣∣s(t;θ)

∣∣2 − 2<
{
r(t)s∗(t;θ)

}
dt (2.18)

= argmax
θ

∫
T0

2<
{
r(t)s∗(t;θ)

}
−
∣∣s(t;θ)

∣∣2 dt (2.19)

where in the last equality we have ignored the term which is independent of the parameter. By the

expressions in (2.7) and (2.19) we can conclude that the likelihood function in our case is

Λ(a,b, h, θ, τ) = 2h

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣ cos (−(θ − ϑ(a,b, τ)))− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (2.20)

where

ϑ(a,b, τ) = arg


T0∫

0

r(t)s∗(t− τ)dt

 (2.21)

and the proof is shown in A.2.

The fact that a,b, h, θ and τ are all independent allows to maximize this expression consecutively

with respect to each of its variables. From (2.20), it is apparent that the second term is irrelevant to the

maximization with respect to θ and that the optimal estimate is achieved for

θ̂ = ϑ(a,b, τ) (2.22)

Plugging (2.22) to (2.20) brings the likelihood to the form

Λ(a,b, h, τ) = 2h

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (2.23)

Setting the first partial derivative of the above function, with respect to h, to zero yields

ϑΛ(a,b, h, τ)

ϑh
= 2

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣− 2h

T0∫
0

∣∣s(t− τ)
∣∣2 dt = 0 (2.24)

⇒ ĥ =

∣∣∣∣∣T0∫0 r(t)s∗(t− τ)dt

∣∣∣∣∣
T0∫
0

∣∣s(t− τ)
∣∣2 dt (2.25)

and substituting this form into the expression of (2.23) we get

Λ(a,b, τ) =

∣∣∣∣∣T0∫0 r(t)s∗(t− τ)dt

∣∣∣∣∣
2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (2.26)
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At this point we need to eliminate the denominator for the maximization. Its value depends on all of

the parameters but it can be proven that this dependence becomes smaller as the observation interval T0

increases and simulations have exhibited that the absolute value of this integral decreases when the excess

bandwidth of the SRRC pulse increases[2]. For that the roll-off factor of the pulse can be adjusted because

its bandwidth equals exactly (1 + a)/(2T ). Dropping the integral, the function reads:

Λ(a,b, τ) =

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣
2

(2.27)

Using (2.2) in (2.27) yields

Λ(a,b, τ) =

∣∣∣∣∣∣∣
T0∫

0

r(t)

[∑
i

aig(t− τ − iT )− j
∑
i

big(t− τ − T/2− iT )

]
dt

∣∣∣∣∣∣∣
2

(2.28)

=

∣∣∣∣∣∣∣
∑
i

ai

T0∫
0

r(t)g(t− τ − iT )dt− j
∑
i

bi

T0∫
0

r(t)g(t− τ − T/2− iT )dt

∣∣∣∣∣∣∣
2

(2.29)

=

∣∣∣∣∣∣
L0−1∑
i=−Dg

aiXi(τ)− j
L0−1∑
i=−Dg

biXi+1/2(τ)

∣∣∣∣∣∣
2

(2.30)

where

Xi(τ) =

T0∫
0

r(t)g(t− τ − iT )dt (2.31)

and

Xi+1/2(τ) =

T0∫
0

r(t)g(t− τ − T/2− iT )dt (2.32)

The fact that the summations in the likelihood function can be restricted to L0 +Dg terms as can be seen

in (2.30) is proved in A.3. The maximization of (2.30) has exponential complexity to the sequence length

when executed exhaustively, but the Mackenthun’s algorithm in [5] deals with this task in polynomial

time. The algorithm as well as the proof that it corresponds to our problem are given in the next section.

Therefore the objective is to find the M-PSK symbols defined in (2.1) that maximize the quantity∣∣∣∣∣∣
2(L0+Dg)−1∑

k=0

c∗kyk

∣∣∣∣∣∣
2

(2.33)

with yk ∈ C, ∀k ∈ {0, 1, ..., 2(L0 +Dg)− 1}. The variables in (2.33) are defined as

ck = ejφk , φk ∈ {0, 2π/M, ..., 2π(M − 1)/M} (2.34)

c2i = a−Dg+i

c2i+1 = b−Dg+i

(2.35)

and
y2i = X−Dg+i(τ)

y2i+1 = −jX−Dg+i+1/2(τ)
(2.36)
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for i ∈ {0, 1, ..., L0 + Dg − 1} and the symbols and M = 2. The optimal sequences returned by the

algorithm are substituted in (2.30) yielding the final form of the likelihood as a function of only the clock

which is

Λ(τ) =

∣∣∣∣∣∣
L0−1∑
i=−Dg

âi(τ)Xi(τ)− j
L0−1∑
i=−Dg

b̂i(τ)Xi+1/2(τ)

∣∣∣∣∣∣
2

(2.37)

so that both sequences are function of τ .

2.3 Likelihood maximization

The objective of the algorithm is to find the binary sequence d ∈ {±1}N+1 that for a given complex

vector y ∈ CN+1 maximizes the quantity
∣∣∣dTy∣∣∣ so that

max
d∈{±1}N+1

∣∣∣dTy∣∣∣ = max
d∈{±1}N+1

|d0y0 + d1y1 + ...+ dNyN | (2.38)

= max
φ∈[0,2π)

max
d∈{±1}N+1

{
d0<

{
e−jφy0

}
+ d1<

{
e−jφy1

}
+ ...

...+ dN<
{
e−jφyN

}}
(2.39)

For a proof you can see A.4. At this point, we can perform independent maximizations for each term of

the inner maximization in (2.39) for all dn, n ∈ {0, 1, ..., N} as

d̂n = argmax
dn∈{±1}

dn<
{
e−jφyn

}
⇔ <

{
e−jφyn

} d̂n=+1
≷

d̂n=−1

0 (2.40)

⇔ |yn| <
{
e−j(φ−ϑn)

} d̂n=+1
≷

d̂n=−1

0 (2.41)

⇔ |yn| cos(φ− ϑn)
d̂n=+1
≷

d̂n=−1

0 (2.42)

⇔ cos(φ− ϑn)
d̂n=+1
≷

d̂n=−1

0 (2.43)

where ϑn = arg {yn}. The decision for d̂n according to (2.43) changes at the following set of points

φ = ±π
2

+ ϑn (mod 2π) (2.44)

for φ ∈ [0, 2π). The relation (2.44) provides 2(N + 1) points but we can observe that for any value of

n the two angles of (2.44) differ by π so that for any φ ∈ [0, π) the sequences obtained at φ and φ+ π

are the opposite leading to the same metric in (2.38) and the search can be restricted to any semicircle so

without loss of generality φ ∈ [0, π). The angle at which the n-th decision changes is

φn =
π

2
+ ϑn (mod π), n ∈ {0, 1, ..., N} (2.45)

Subsequently we sort the N + 1 points through

(θ0, θ1, ..., θN ) = sort(φ0, φ1, ..., φN ) (2.46)

which is necessary in order to define the intervals across which the decision d̂ remains constant are

C0 = (θ∗, θ0), C1 = (θ0, θ1), ..., CN = (θN−1, θN ) (2.47)
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The interval (θN , π) can be ignored due to the fact that all of d̂ns would have changed compared to those

of C0 producing the opposite sequence1. Equivalently, we could have ignored C0. Our goal is to detect the

vectors d̂0, d̂1, ..., d̂N associated with the above intervals. The key is that the sequences of the adjacent

intervals d̂n and d̂n+1 differ only at the n-th element and specifically at the k-th multiplier for θn = φk

so that

d̂n =


d̂n, φ ∈ Ck, k ≤ n

−d̂n, φ ∈ Ck, k > n

(2.48)

The algorithm exploits this property by visiting the angles θ0, θ1, ..., θN consecutively, producing the

sequences and returning that with the maximum metric.

At each point θi, the new sequence is produced with constant complexity by inverting d̂i and its metric

is also calculated at a constant computational cost. The pseudocode is illustrated in Fig. 2.2 and the upper

limit of its complexity is that of the sorting operation which is O((N + 1) log2(N + 1)) ≈ O(N logN).

We need to prove that the problem introduced in (2.33) is eqivalent to the maximization of (2.30). From

(2.33) we have that ∣∣∣∣∣∣
2(L0+Dg)−1∑

k=0

c∗kyk

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
L0−1∑
i=−Dg

aiXi(τ)− j
L0−1∑
i=−Dg

biXi+1/2(τ)

∣∣∣∣∣∣
2

(2.49)

Resort to A.5 for a proof. The channel uses M -PSK modulation for M = 2 and from (2.34)

ck = ejφk , φk ∈ {0, π} (2.50)

= cosφk + j sinφk, φk ∈ {0, π} (2.51)

=


1, φk = 0

−1, φk = π

(2.52)

that renders cks binary taking on the values {±1} just like the sequences of the OQPSK modulation a and

b.

2.4 Likelihood and sequence properties

Typical shapes of the CLF in (2.37) are provided in Fig. 2.3 and were normalized to their maximum

values. This figure corresponds to one realization of the experiment. The value of τ̃ clearly affects the

matched filter responses of (2.31) and (2.32) leading to different shapes. The roll-off factor of the SRRC

used is α = 0.1. Also an observation length of L0 = 100 symbols, signalling pulse duration of Dg = 16

periods, and a signal-to-noise ratio of 30dB have been utilized. As expected, the maximum value of Λ(τ)

is achieved at the actual channel delay τ̃ . The difference between the values of the likelihood for values of

τ that are T/2 away is observed to be negligible as the observation interval increases. The value of the

phase change θ used is arbitrary.

1θ∗ is the initial point of search equal to θ∗ = θN−π
2

< 0 that is used if θ0 = 0 to resolve the ambiguity that would arise if
we estimate the sequence exactly at a point of change as shown by (2.43).
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Algorithm 1 Optimal Noncoherent Antipodal Decoding in Time O(N logN)

Input: y0, y1, ..., yN

1: for n = 0 : N do
2: φn := π

2 + ϑn (mod π)
3: end for
4: (θ0, θ1, ..., θN ) = sort(φ0, φ1, ..., φN )
5: if θ0 > 0 then
6: θ∗ := 0
7: else
8: θ∗ = θN−π

2
9: end if

10: for n = 0 : N do
11: d̂n = sign

(
<
{
e−jθ

∗
yn
})

12: end for
13: d̂ML := d̂
14: value_d̂ := d̂0y0 + d̂1y1 + ...+ d̂NyN

15: ML_value :=
∣∣∣value_d̂∣∣∣

16: for i = 0 : N − 1 do
17: let n be the index for which θi = φn at line 4
18: value_d̂ := value_d̂− 2d̂nyn
19: d̂n = −d̂n
20: if

∣∣∣value_d̂∣∣∣ > ML_value then

21: ML_value :=
∣∣∣value_d̂∣∣∣

22: d̂ML := d̂
23: end if
24: end for

Figure 2.2: Optimal noncoherent sequence detection algorithm in time O(N logN).

An SNR value of x is obtained by setting

h =

√
Es
N0

=
√

10SNRdB/10 (2.53)

whereEs andN0 are the power of the signal and the noise respectively. At each point the optimal sequence

is estimated by the proposed algorithm in Chapter 2.3 and its metric is evaluated. We observe that this

function is periodic with a period of T/2. Indeed, the OQPSK model demands that âi(τ +T/2) = −b̂i(τ)

and b̂i(τ +T/2) = −âi+1(τ) because the in-phase and quadrature parts change independently and cannot

change concurrently. By (2.37) and setting

Y (τ) =

L0−1∑
i=−Dg

âi(τ)Xi(τ)− j
L0−1∑
i=−Dg

b̂i(τ)Xi+1/2(τ) (2.54)

it follows that

Λ(τ + T/2) ≈
∣∣Y (τ)

∣∣2 = Λ(τ) (2.55)

The proof can be found at A.6. Another notice that attests to the periodicity of the CLF is the fact that

simulations show that if the winning sequence changes at τ = τ1, then there is also a sequence change in
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Figure 2.3: Typical shapes of the OQPSK CLF of the clock, Λ(τ).

τ1 = τ1 + T/2 and vice versa, as shown in Fig. 2.4. Changes refer to points that even a single bit of the

sequence is different than that of the immediate previous point. Nevertheless, this doesn’t lead to the same

sequences between values of τ that are T/2 apart. In order to resolve this ambiguity of τ̃ by multiples of

T/2 our study was restricted to [0, T/2) as practical reasons explained in Chapter 2.5 demand.

The first thing under our consideration is if the candidate set of the sequences at each step as well

as the winning sequence remained constant for a number of adjacent points. The results made clear that

the number of candidate set remains unchanged throughout a finite number of intervals and typically

there are no winning sequences that reappear in [0, T ). This will prove to be very useful as a convergence

criterion for the algorithm proposed in this study. However, the candidate set changes more frequently but

this doesn’t affect the detection. In addition, for an oversampling factor large enough, we have seen that

only 1 bit changes from a winning sequence to the next one except from the extreme points of the shape.

We have also experimented with different values of Dg to understand how Intersymbol interference (ISI)

affects the detection.

Next, we focus in the angles of each bit of the sequence as defined in (2.45) and (2.46). As explained,

in Chapter 2.3 the angle φi represents the angle for which the decision for the i-th bit changes. All of those

angles are functions of τ in our equivalent problem of maximization and correspond to the arguments of

the complex integrals as defined in (2.36) which leads us to test the assumption that when two of these

angles intersect, exactly two members of the candidate set change. To illustrate, if φi < φj for a given

value of τ , say τ1, and for another value of τ , say τ2 > τ1, the only change in the angles sorted order is

that now φi > φj while the relative order of the rest of the angles didn’t change then the two candidate

sets should differ only at the sequence of the interval Ci at bit d̂i and the rest of the sequences are exactly

the same. This was verified through simulations and an indicative shape of two angles that intersect at a
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Figure 2.4: Points of candidate set changes.

point is shown in Fig. 2.5. This is exploited in the next section for the correlation of the angles.

Another statistical test we employed is to check whether for a lot of realizations the number the

intervals created between the points that the pairs of angles intersect are less than or equal to
(

2(L0+Dg)
2

)
which would indicate that any pair of angles intersects at most one time during an interval of length T/2

and the solution of the equation would have unique solution. We remind at this point that 2(L0 +Dg) is

the total number of angles. The test didn’t attest to this assumption.

2.5 Detection of sequence changes

Our goal at this point is to find the values of τ at which the estimated sequence changes. If we are able to

do this efficiently we can visit only these points and obtain the optimal estimates for every τ ∈ [0, T ).

Actually, we have to correlate the angles of any pair of complex numbers defined in (2.36) in our effort to

find all of the desired points. For any two complex numbers yi, yk and i 6= k we have

∠yi = ∠yk ⇔ tan−1
(={yi}
< {yi}

)
= tan−1

(={yk}
< {yk}

)
(2.56)

⇔ ={yi}
< {yi}

=
={yk}
< {yk}

(2.57)

⇔ ={yi}<{yk} = ={yk}<{yi} (2.58)

⇔ =
{
y∗i yk

}
= 0 (2.59)
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Figure 2.5: Typical shape of pair of decision change angles.

with (2.57) derived from the injectivity of tan−1(·) function on its domain. The set of complex numbers

of (2.36) calculated for each value of τ is

yi =


X−Dg+i/2(τ), i = 0, 2, ..., 2(L0 +Dg)− 2

−jX−Dg+(i−1)/2+1/2(τ), i = 1, 3, ..., 2(L0 +Dg)− 1

(2.60)

=


∫
r(t)g(t− τ − (−Dg + i/2)T )dt, i even

−j
∫
r(t)g(t− τ − T/2− (−Dg + (i− 1)/2)T )dt, i odd

(2.61)

=


∫
r(t)g(t− τ − (−Dg + i/2)T )dt, i even

−j
∫
r(t)g(t− τ − (−Dg + i/2)T )dt, i odd

(2.62)

for i ∈ {0, 1, ..., 2(L0 +Dg)− 1}. From (2.59) and (2.62) the correlation of the pairs of angles can be

divided in four cases, as demonstrated below.

• Case 1: i, k even

(2.59)
(2.62)⇔ =

{(∫
r∗(t)g(t− τ − (−Dg + i/2)T )dt

)
·

(∫
r(t)g(t− τ − (−Dg + k/2)T )dt

)}
= 0 (2.63)

19



⇔
∫ (∫ (

R(F1, F2)G∗T0(F1, F2) ·

e−j2π(F1(τ+(−Dg+i/2)T+F2(τ+(−Dg+k/2)T ))
)
dt1

)
dt2 = 0 (2.64)

For the analytical procedure, the reader can see A.7. The rest of the cases will be presented briefly

since they follow the same derivation.

• Case 2: i even, k odd

(2.59)
(2.62)⇔ =

{(∫
r∗(t)g(t− τ − (−Dg + i/2)T )dt

)
·

(
− j

∫
r(t)g(t− τ − T/2− (−Dg + (k − 1)/2)T )dt

)}
= 0 (2.65)

⇔ −<

{(∫
r∗(t)g(t− τ − (−Dg + i/2)T )dt

)
·

(∫
r(t)g(t− τ − T/2− (−Dg + (k − 1)/2)T )dt

)}
= 0 (2.66)

⇔ −
∫ (∫ (

R(F1, F2)G∗T0(F1, F2) ·

e−j2π(F1(τ+(−Dg+i/2)T+F2(τ+T/2+(−Dg+(k−1)/2)T ))
)
dt1

)
dt2 = 0 (2.67)

• Case 3: i odd, k even

(2.59)
(2.62)⇔ =

{(
− j

∫
r(t)g(t− τ − T/2− (−Dg + (i− 1)/2)T )dt

)∗
·

(∫
r(t)g(t− τ − (−Dg + k/2)T )dt

)}
= 0 (2.68)

⇔ <

{(∫
r(t)g(t− τ − T/2− (−Dg + (i− 1)/2)T )dt

)
·

(∫
r(t)g(t− τ − (−Dg + k/2)T )dt

)}
= 0 (2.69)

⇔ −
∫ (∫ (

R(F1, F2)G∗T0(F1, F2) ·

e−j2π(F1(τ+T/2(−Dg+(i−1)/2)T+F2(τ+(−Dg+k/2)T ))
)
dt1

)
dt2 = 0 (2.70)

• Case 4: i, k odd

(2.59)
(2.62)⇔ =

{(
− j

∫
r(t)g(t− τ − T/2− (−Dg + (i− 1)/2)T )dt

)∗
·

(
− j

∫
r(t)g(t− τ − T/2− (−Dg + (k − 1)/2)T )dt

)}
= 0 (2.71)

⇔ −
∫ (∫ (

R(F1, F2)G∗T0(F1, F2) ·

e−j2π(F1(τ+T/2(−Dg+(i−1)/2)T+F2(τ+T/2+(−Dg+(k−1)/2)T ))
)
dt1

)
dt2 = 0 (2.72)
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In cases 1 and 4

r(t1, t2) = =
{
r∗(t1)r(t2)

}
(2.73)

while in cases 2 and 3

r(t1, t2) = <
{
r∗(t1)r(t2)

}
(2.74)

As stated earlier our study is focused on τ ∈ [0, T/2). The reason for our choice of this interval over

any other interval of length T/2 is that the correlation between any angle and the angle of yi with the

greatest index, i.e. i = 2(L0 +Dg)− 1, is not possible because the latter goes to zero as proven below

yi

∣∣∣
i=2(L0+Dg)−1

= −jX−Dg+L0+Dg−1+1/2(τ) (2.75)

= −jXL0−1+1/2(τ) (2.76)

=

T0∫
0

r(t)g(t− τ − T/2− (L0 − 1)T )dt (2.77)

=

L0T∫
0

r(t)g(t− L0T − τ + T/2)dt (2.78)

This expression is zero for τ ≥ T/2. We can elucidate in the four cases even further which leads to

convolution domain.

• Case 1: i, k even

(A.43) ⇔
∫ ∫

H(F1, F2)e−j2π(F1(τ+(−Dg+i/2)T )+F2(τ+(−Dg+k/2)T ))dF1dF2 = 0 (2.79)

⇔ h(−τ − (−Dg + i/2)T,−τ − (−Dg + k/2)T ) = 0 (2.80)

⇔
[
r(t1, t2) ∗ ∗g∗(t1, t2)

]
t1=−τ−(−Dg+i/2)T,t2=−τ−(−Dg+k/2)T

= 0 (2.81)

⇔
[
r(t1, t2) ∗ ∗g(t1, t2)

]
t1=−τ−(−Dg+i/2)T,t2=−τ−(−Dg+k/2)T

= 0 (2.82)

• Case 2: i even, k odd

(2.67) ⇔ −
∫ ∫

H(F1, F2)e−j2π(F1(τ+(−Dg+i/2)T )+F2(τ+(−Dg+T/2+(k−1)/2)T ))dF1dF2 = 0 (2.83)

⇔
[
r(t1, t2) ∗ ∗g(t1, t2)

]
t1=−τ−(−Dg+i/2)T,t2=−τ−T/2−(−Dg+(k−1)/2)T

= 0 (2.84)

• Case 3: i odd, k even

(2.70) ⇔
∫ ∫

H(F1, F2)e−j2π(F1(τ+T/2+(−Dg+(i−1)/2)T )+F2(τ+(−Dg+k/2)T ))dF1dF2 = 0 (2.85)

⇔
[
r(t1, t2) ∗ ∗g(t1, t2)

]
t1=−τ−T/2−(−Dg+(i−1)/2)T,t2=−τ−(−Dg+k/2)T

= 0 (2.86)

• Case 4: i, k odd

(2.72) ⇔
∫ ∫

H(F1, F2)e−j2π(F1(τ+T/2+(−Dg+(i−1)/2)T )+F2(τ+T/2+(−Dg+(k−1)/2)T ))

dF1dF2 = 0 (2.87)

⇔
[
r(t1, t2) ∗ ∗g(t1, t2)

]
t1=−τ−T/2−(−Dg+(i−1)/2)T,t2=−τ−T/2−(−Dg+(k−1)/2)T

= 0 (2.88)
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where

h(t1, t2) = r(t1, t2) ∗ ∗g∗T0(t1, t2) (2.89)

H(F1, F2) = F
{
h(t1, t2)

}
(2.90)

and (2.82) is because g(t) is a real-valued function. From (2.82), (2.84), (2.86) and (2.88) it is evident

that we do not need to calculate the whole two-dimension grid of the convolution but we should limit our

search to a diagonal of the grid thereby maximizing a one-dimensional function. Despite that, we still

have to go through all of the values of τ in order to find the points at which the estimation changes.

2.6 Noncoherent detection algorithm and results

Using the properties noted in Chapter 2.4, we can resort to a gradient descent algorithm and we should

start by taking the first-order derivative of the likelihood of (2.37) with respect to τ

Λ(τ) =

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)Xi(τ)âk(τ)X∗k(τ)

}
+ j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)Xi(τ)b̂k(τ)X∗k+1/2(τ)

}
− j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)Xi+1/2(τ)âk(τ)X∗k(τ)

}
+

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)Xi+1/2(τ)b̂k(τ)X∗k+1/2(τ)

} (2.91)

after some simple calculations given in B.7. The derivative of this quantity is

ϑΛ(τ)

ϑτ
=

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)âk(τ)

[
ϑXi(τ)

ϑτ
X∗k(τ) +Xi(τ)

ϑX∗k(τ)

ϑτ

]}
+ j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)b̂k(τ)

[
ϑXi(τ)

ϑτ
X∗k+1/2(τ) +Xi(τ)

ϑX∗k+1/2(τ)

ϑτ

]}
− j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)âk(τ)

[
ϑXi+1/2(τ)

ϑτ
(τ)X∗k(τ) +Xi+1/2(τ)

ϑX∗k(τ)

ϑτ

]}
+

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)b̂k(τ)

[
ϑXi+1/2(τ)

ϑτ
(τ)X∗k+1/2(τ) +Xi+1/2(τ)

ϑX∗k+1/2(τ)

ϑτ

]}
(2.92)
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where the first-order derivatives are calculated based on the Leibnitz’s rule and the derivative of the SRRC

wave of (2.3) which is

ϑg(t)

ϑt
=

4α

π
√
T

(
− sin((1 + α)πt/T )(1 + α)π/T (1− (4αT/t)2) + 32α2t/T 2 cos((1 + α)πt/T )

(1− (4αt/T )2)2

+

cos((1−α)πt/T )(1−α)π/T4αt/T−4α/T sin((1−α)πt/T )
(4αt/T )2

(1− (4αt/T )2) + 32α2t/T 2 sin((1−α)πt/T )
4αt/T

(1− (4αt/T )2)2


(2.93)

The algorithm we propose for the detection is given in Fig. 2.6. We start by randomly selecting

an initial value of τ and at each step the derivative of the CLF at the current point is obtained. If the

derivative is positive, the direction we move is towards larger values of τ at each iteration by a predefined

step, represented by τ_step, and towards the opposite direction for negative values of the derivative. If

the next point lies outside of the boundaries, already discussed to be τ ∈ [0, T/2), we can bring it to

the utilized range. If at some point the derivative has changed from a negative sign to a positive one,

then the likelihood is maximized at a value of τ residing between those two points. After this iteration, a

sufficient terminating criterion would be a sign change of the derivative combined with the demand that the

estimated sequence between consecutive steps to remain unchanged. Indeed, since no sequence reappears

in disjoint intervals, as noted previously, that would be exactly the ML sequence that the procedure returns.

The complexity of this algorithm is dominated by the calculation of the integrals of the derivative, for

which we didn’t find an efficient way to compute faster, while the cost of the detection at each point is

O((N + 1) log2(N + 1)) ≈ O(N logN), as stated earlier. N represents the sequence length.

In Fig. 2.7 we have illustrated the trajectory for one realization of the gradient descent method and for

fixed values of the channel parameters h̃, θ̃ and τ̃ . The solid red line represents the point of maximum

while the corresponding trajectory is shown green on the figure and the last point’s estimate didn’t change

compared to the previous one whereas the sign of the derivative was inverted denoting the termination of

the procedure.
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Algorithm 2 Noncoherent OQPSK Sequence Detection

Input: â(τ), b̂(τ)

1: τ∗ := a random real in [0, T/2)
2: τc := τ∗
3: i := 0
4: while 1 do
5: D = ϑΛ(τc)

ϑτ
6: if i ≥ 1 then
7: if sign(D) = −sign(Dp) then
8: τ_step := d τ_step

2 e
9: if â(τc) = âp and b̂(τc) = b̂p then

10: â_ML := âp
11: b̂_ML := b̂p
12: break
13: end if
14: end if
15: end if
16: âp := â(τ)

17: b̂p := b̂(τ)
18: if D > 0 then
19: τc := τc + τ_step
20: else if D < 0 then
21: τc := τc − τ_step
22: else
23: break
24: end if
25: if τc ≥ T

2 then
26: τc := mod(τc,

T
2 )

27: else if τc < 0 then
28: τc := τc + T

2
29: end if
30: Dp := D
31: i := i+ 1
32: end while

Figure 2.6: Proposed noncoherent OQPSK sequence detection algorithm.
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Figure 2.7: Gradient descent trajectory of noncoherent detection in OQPSK.
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Chapter 3

Detection in FSK

3.1 Signal model

The BFSK channel utilizes two frequencies, namely F−1 and F1, each of which is matched to a specific

symbol. The symbols are binary and xi ∈ {±1}without loss of generality. The transmitted FSK waveform

is

s(t) =
∑
i

gxi(t− iT )uT (t− iT ) (3.1)

with

gxi(t) =

√
P

T
ej2πFxi t (3.2)

where P is the signal strength and T is the nominal duration of each symbol while uT (t− x) stands for a

square pulse of duration T starting at t = x like

uT (t− x) =


1, x ≤ t < x+ T

0, otherwise

(3.3)

The orthogonality condition that non-coherent BFSK should respect is

|F−1 − F1| = kT (3.4)

for k ∈ Z and k ≥ 1. The channel is assumed flat-fading and thus the received signal is

r(t) = h̃s(t− τ̃) + n(t) (3.5)

Here h̃ ∈ C is generated randomly, the attenuation is set to its absolute value and the channel phase

change is set to its argument and n(t) is a zero-mean complex Gaussian process with unary variance.

3.2 The likelihood function

The same derivation as the one used in Chapter 2.2 leads to the following CLF

Λ(x, τ) =

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣
2

(3.6)
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=

∣∣∣∣∣
L0−1∑
i=−1

{
xi

[ T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...

...−
T0∫

0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt

]}
+ ...

...+

L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(3.7)

The proof for this likelihood is in B.1.

3.3 Likelihood maximization

Calculations similar to those of Chapter 2.3 show that the problem of maximizing the quantity in (3.7) is

actually to find the binary sequence d ∈ {±1}N+2,1 which for a given complex vector y′ ∈ CN+1,1 and

z ∈ C maximizes the quantity
∣∣dT [y′ z

] ∣∣ since the initial problem is

max
d′∈{±1}N+1

∣∣∣d′Ty′ + z
∣∣∣ = max

d′∈{±1}N+1,dN+1∈{±1}
|d0y0 + d1y1 + ...+ dNyN + dN+1z| (3.8)

= max
d∈{±1}N+2

∣∣∣dTy∣∣∣ (3.9)

where

d =

 d′

dN+1

 (3.10)

and

y =

y′
z

 (3.11)

and for (3.7) we set

yi =

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt−

T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt

(3.12)

Also

z =

L0−1∑
i=−1


T0∫

0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt


(3.13)

having d =
[
x 1

]T
. In other words, the only extra requirement we need to impose is that the last bit is

+1. This is straightforward for the implementation by keeping the sequence of length N + 2 = L0 + 2

that the algorithm returns if it ends with a +1, otherwise inverting it. Both sequences will give the same
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metric, as explained earlier. Thus, if we were merely interested in synchronization this change wouldn’t

matter. As a result, the complex numbers that the algorithm takes as input in (A.22) are (as proved in B.2)

yi+1 =



1
2

√
P
T

T0∫
0

r(t)
[
e−j2πF1(t−τ−iT ) − e−j2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt, i = −1, 0, ..., L0 − 1

L0−1∑
a=−1

{
1
2

√
P
T

T0∫
0

r(t)
[
e−j2πF−1(t−τ−aT ) + e−j2πF1(t−τ−aT )

]
uT (t− τ − aT )dt

}
, i = L0

(3.14)

3.4 Detection of sequence changes

At this point we have made the same observations as those explained in Chapters 2.4 and 2.5 and we can

now correlate the angles of the complex numbers in (3.14) resorting to two cases. For yi+1, yk+1 ∈ C and

i 6= k we have

∠yi+1 = ∠yk+1 ⇔ =
{
y∗i+1yk+1

}
= 0 (3.15)

The derivation follows along the same principles with that of Chapter 2.5 and is presented here briefly.

• Case 1: i, k ∈ {−1, 0, ..., L0 − 1}

(3.15)
(3.14)⇔ =

{[
1

2

√
P

T

T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·

[
1

2

√
P

T

T0∫
0

r(t)

[
e−j2πF1(t−τ−kT ) − e−j2πF−1(t−τ−kT )

]
uT (t− τ − kT )dt

]}
= 0

(3.16)

⇔
T0∫

0

( T0∫
0

(
R(Fa, Fb)G

∗(Fa, Fb)e
−j4π(Fa(τ+iT )+Fb(τ+kT ))

)
dFa

)
dFb = 0

(3.17)

as shown in B.3.

• Case 2: i ∈ {−1, 0, ..., L0 − 1} and k = L0

(3.15)
(3.14)⇔ =

{[
1

2

√
P

T

T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·

[
L0−1∑
a=−1

{
1

2

√
P

T

T0∫
0

r(t)

[
e−j2πF−1(t−τ−aT ) + e−j2πF1(t−τ−aT )

]
uT (t− τ − aT )dt

}]}
= 0

(3.18)

⇔
L0−1∑
m=−1


T0∫

0

( T0∫
0

(
R(Fa, Fb)G

∗(Fa, Fb)e
−j4π(Fa(τ+iT )+Fb(τ+mT ))

)
dFa

)
dFb

 = 0

(3.19)
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Figure 3.1: Shape of the BFSK CLF of the clock Λ(τ) for λ = 2 with two local maxima.

as shown in B.4 where

r(t1, t2) = =
{
r∗(t1)

[
ej2πF1t1 − ej2πF−1t1

]
r(t2)

[
e−j2πF1t2 − e−j2πF−1t2

]}
(3.20)

R(Fa, Fb) = F
{
r(t1, t2)

}
(3.21)

G∗(Fa, Fb) = F
{

(uT (t1)uT (t2))∗
}

= F
{
uT (t1)uT (t2)

}
(3.22)

3.5 Likelihood properties, noncoherent detection algorithm and
results

For the simulations the frequencies used for the binary symbols were 1/T and 2/T . This is because in

our tests, we have seen that the number of maximums of the BFSK’s likelihood shape is the same as the

ratio of the smallest of the absolute values of the frequencies to the symbol frequency 1/T i.e.

λ =
min

{
|F−1| ,|F1|

}
1/T

(3.23)

and that the local maxima appear at equidistant points and more precisely at the points

τi = τ̃ + (i− 1)
T

λ
(mod T ), i ∈ {1, ..., λ} (3.24)

This is shown in Fig. 3.1 for τ = 0.5. Consequently, we wanted to focus in those cases with only one

maximum (λ = 1) which are for (F−1, F1) = (1/T, 2/T ) and (F−1, F1) = (−1/T,−2/T ) sticking

to the former without loss of generality. Another reason for that is that in contrast to other options
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Figure 3.2: Typical shapes of the BFSK CLF of the clock Λ(τ).

there are no sequences that reappear in disjoint intervals of τ . The SNR is set to 30dB and the symbols

transmitted are L0 = 100 in total. Typical shapes of the CLF for two values of τ are in Fig. 3.2. We

can see that they are maximized at the actual delays, as expected. Also their value is constant across

some intervals. In this case, the winning sequences happen to be either dT =
[
x 1

]
=
[
−1L0+1 1

]
or

dT =
[
x 1

]
=
[
1L0+1 1

]
and at Chapter B.5 a proof of this property is attached. The existence of

only one maximum leads us to employ a gradient descent method in our algorithm for detection as we

did in OQPSK. The first step is to calculate the first-order derivative of the CLF with respect to τ . The

problem that arises here is that the flat regions of the shape would render gradient descent susceptible to

approximation issues. To overcome this obstacle, we calculated and plotted the following function, say

Λ2(τ) by eliminating the first summation from Λ(x, τ) which is independent of the sequence estimates.

Through simulations, we have verified that Λ(x, τ) and Λ2(τ) are maximized at the same values of τ

(without proof).

Λ2(τ) =

∣∣∣∣∣
L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(3.25)

=
1

4

P

T

L0−1∑
i=−1

{ L0−1∑
k=−1

{
I(τ ;F−1, i)Ic(τ ;F−1, k) + I(τ ;F−1, i)Ic(τ ;F1, k) + ...

...+ I(τ ;F1, i)Ic(τ ;F−1, k) + I(τ ;F1, i)Ic(τ ;F1, k)

}}
(3.26)
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and a proof can be found at B.6 where we defined the integrals

I(τ ;F, i) =

T0∫
0

r(t)e−j2πF (t−τ−iT )uT (t− τ − iT )dt (3.27)

and

Ic(τ ;F, i) =

T0∫
0

r∗(t)ej2πF (t−τ−iT )uT (t− τ − iT )dt (3.28)

Then (for a proof see B.7)

ϑI(τ ;F, i)

ϑτ
=

T0∫
0

r(t)j2πFe−j2πF (t−τ−iT ))uT (t− τ − iT )dt+ rδ(τ + iT ) + rδ(τ + iT + T )e−j2πFT

(3.29)

for

rδ(t) =


r(t), t ∈ [0, T0]

0, otherwise

(3.30)

Similarly

ϑIc(τ ;F, i)

ϑτ
= −

T0∫
0

r∗(t)j2πFej2πF (t−τ−iT ))uT (t− τ − iT )dt+ r∗δ (τ + iT ) + r∗δ (τ + iT +T )ej2πFT

(3.31)

The first-order derivative of Λ2(τ) with respect to τ is

ϑΛ2(τ)

ϑτ
=

1

4

P

T

L0−1∑
i=−1

{ L0−1∑
k=−1

{
ϑI(τ ;F−1, i)

ϑτ
Ic(τ ;F−1, k) + I(τ ;F−1, i)

ϑIc(τ ;F−1, k)

ϑτ
+ ... (3.32)

...+
ϑI(τ ;F1, k)

ϑτ
Ic(τ ;F−1, k) + I(τ ;F−1, i)

ϑIc(τ ;F1, k)

ϑτ
+ ...

(3.33)

...+
ϑI(τ ;F1, i)

ϑτ
Ic(τ ;F−1, k) + I(τ ;F1, i)

ϑIc(τ ;F−1, k)

ϑτ
+ ...

(3.34)

...+
ϑI(τ ;F1, i)

ϑτ
Ic(τ ;F1, k) + I(τ ;F1, i)

ϑIc(τ ;F1, k)

ϑτ

}}
(3.35)

and all of the required partial derivatives will be calculated according to (3.29) and (3.31). The proposed

algorithm is essentially the same as the one implemented for the BFSK in Chapter 2.6 and is therefore

omitted. The complexity of this algorithm is dominated by the calculation of the integrals of the derivative,

for which we didn’t find an efficient way to compute faster, while the cost of the detection at each point is

O((N + 1) log2(N + 1)) ≈ O(N logN), as in the case of OQPSK. N represents the sequence length.

At the Fig.3.4 we can see the Bit-error-rate (BER) (for various values of L0) versus a range of possible

SNR values. The performance is improved for larger values of the observation interval and as SNR

increases.
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Figure 3.3: Gradient descent trajectory of noncoherent detection in BFSK.

The BER of the corresponding coherent channel utilizing the ML detector and with known parameters

τ̃ , h̃ and θ̃ has also been included in the figure as a reference and is explained in Chapter 3.6. We observe

that, as the sequence length increases, the noncoherent detector approaches the coherent one in terms of

BER.

The trajectory that the gradient descent method traverses (for one realization) can be seen in Fig. 3.3

for a single realization and for fixed values of the channel parameters h̃, θ̃ and τ̃ , similarly to the case of

OQPSK modulation.

3.6 Coherent detection

The optimal receiver correlates r(t) with both signalling waveforms to produce samples

rm =
1√
P

T∫
0

r(t)g∗xi(t)dt, m = −1, 1. (3.36)

=
1√
P

T∫
0

(h̃gxi(t) + n(t))g∗xi(t)dt (3.37)

=
h̃√
P

T∫
0

∣∣gxi(t)∣∣2 dt+
1√
P

T∫
0

n(t)g∗xi(t)dt (3.38)

= h̃
√
P + nm (3.39)
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Under hypothesis xi = −1

r =

r−1

r+1

 =

√Ph̃
0

+

n−1

n+1

 ∼ CN

√Ph̃

0


︸ ︷︷ ︸

µ−1

, I2︸︷︷︸
C

 (3.40)

and for the noise component n−1

n+1

 ∼ CN (02×1, I2) (3.41)

The Probability density function (PDF) for complex normal distribution in this case can be computed as

fr|xi=−1(r) =
1

π2
exp

(
−
(
|r−1|2 − r∗−1

√
Ph̃− r−1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P +|r+1|2
))

(3.42)

The proof can be found at B.8. Similarly, under hypothesis xi = +1

r =

r−1

r+1

 =

 0√
Ph̃

+

n−1

n+1

 ∼ CN

 0√

Ph̃


︸ ︷︷ ︸

µ+1

, I2︸︷︷︸
C

 (3.43)

for n−1

n+1

 ∼ CN (02×1, I2) (3.44)

and

fr|xi=+1(r) =
1

π2
exp

(
−
(
|r−1|2 +|r+1|2 − r∗+1

√
Ph̃− r+1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P)) (3.45)

Due to the fact that the transmitted symbols are equiprobable, the optimal coherent detector utilizes

the ML criterion which compares the values of the conditional probability density functions fr|xi=−1(r)

and fr|xi=+1(r) calculated on the received sample.

fr|xi=−1(r)
x̂i=−1
≷

x̂i=+1
fr|xi=+1(r)⇒ sign

(
<{(r∗−1h̃} − <{(r∗+1h̃}

) x̂i=−1
≷

x̂i=+1
0 (3.46)

For a proof check B.9.
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OQPSK Appendix

A.1 Likelihood derivation

1

N0

∫
T0

[
r(t)− s(t;θ)

]2
dt =

1

N0

∫
T0

[ N∑
n=1

(rn − sn(θ))φn(t)

]2

dt (A.1)

=
1

N0

∫
T0

N∑
n=1

N∑
m=1

(rn − sn(θ))(rm − sm(θ))φn(t)φm(t)dt (A.2)

=
1

N0

∫
T0

N∑
n=1

N∑
m=1

(rn − sn(θ))(rm − sm(θ))δmndt (A.3)

=
1

N0

∫
T0

N∑
n=1

(rn − sn(θ))(rn − sn(θ))dt (A.4)

=
1

2σ2

∫
T0

N∑
n=1

[rn − sn(θ)]2dt (A.5)

where in (A.3) the orthonormality condition of the basis functions demands that:
∫
T0
φn(t)φm(t)dt = δmn

and σ2 = N0/2.

A.2 CLF general form

Λ(a,b, h, θ, τ) = 2h<

e−jθ
T0∫

0

r(t)s∗(t− τ)dt

− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (A.6)

= 2h<

e−jθ
∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣ ejθ(a,b,τ)

− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (A.7)

= 2h

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣<
{
e−j(θ−ϑ(a,b,τ))

}
− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (A.8)

= 2h

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣ cos (−(θ − ϑ(a,b, τ)))− h2

T0∫
0

∣∣s(t− τ)
∣∣2 dt (A.9)
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A.3 Limits of the likelihood

First of all we need to make clear that the SRRC pulse, as defined in (2.3), is nonzero only in the interval

[0, DgT ). For the proof we can take the summation terms that correspond to values of the index that are

one unit less or more than the defined limits. Thus, for i = −Dg − 1 the integral of (2.31) becomes

Xi(τ)
∣∣∣
i=−Dg−1

=

T0∫
0

r(t)g(t− τ − (−Dg − 1)T )dt (A.10)

=

T0−τ−(−Dg−1)T∫
−τ−(−Dg−1)T

r(t′ + τ + (−Dg − 1)T )g(t′)dt′ (A.11)

by setting t′ = t− τ − (−Dg − 1)T . We can see that the range of integration in (A.11) and the domain

of g(t) do not overlap if the following condition is met

−τ − (−Dg − 1)T > DgT ⇔ τ < T (A.12)

Similarly the integral in (2.32) is

Xi+1/2(τ)
∣∣∣
i=−Dg−1

=

T0∫
0

r(t)g(t− τ − T/2− (−Dg − 1)T )dt (A.13)

=

T0−τ−T/2−(−Dg−1)T∫
−τ−T/2−(−Dg−1)T

r(t′ + τ + T/2 + (−Dg − 1)T )g(t′)dt′ (A.14)

by setting t′ = t− τ − T/2− (−Dg − 1)T . The integral’s range in (A.14) and the domain of g(t) do not

overlap if

−τ − T/2− (−Dg − 1)T > DgT ⇔ τ < T/2 (A.15)

From (A.12) and (A.15) we demand that τ < T/2. This is a reasonable assumption that emerges from the

fact that the order of transmission of the in-phase and the quadrature components can be interchanged.

We also have that

Xi(τ)
∣∣∣
i=L0

=

T0∫
0

r(t)g(t− τ − L0T )dt (A.16)

=

T0−τ−L0T∫
−τ−L0T

r(t′ + τ + L0T )g(t′)dt′ (A.17)

=

−τ∫
−τ−L0T

r(t′ + τ + L0T )g(t′)dt′ (A.18)

by setting t′ = t− τ − L0T . This expression is zero for τ > 0. Also

Xi+1/2(τ)
∣∣∣
i=L0

=

T0∫
0

r(t)g(t− τ − T/2− L0T )dt (A.19)
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=

T0−τ−T/2−L0T∫
−τ−T/2−L0T

r(t′ + τ + T/2 + L0T )g(t′)dt′ (A.20)

=

−τ−T/2∫
−τ−T/2−L0T

r(t′ + τ + T/2 + L0T )g(t′)dt′ (A.21)

by setting t′ = t− τ −T/2−L0T . This expression is zero for τ > −T/2. Both of these are assumptions

of the signal model. The above derivation leads us to the conclusion that the summations in the likelihood

of (2.30) are zero ∀i < −Dg and ∀i > L0 − 1.

A.4 Mackenthun’s maximization with respect to angle

max
d∈{±1}N+1

∣∣∣dTy∣∣∣ = max
d∈{±1}N+1

|d0y0 + d1y1 + ...+ dNyN | (A.22)

= max
d∈{±1}N+1

|z| (A.23)

= max
d∈{±1}N+1

|z| max
φ∈[0,2π)

cos(−(φ− ϑz)) (A.24)

= max
d∈{±1}N+1

|z| max
φ∈[0,2π)

<
{
e−j(φ−ϑz)

}
(A.25)

= max
d∈{±1}N+1

max
φ∈[0,2π)

<
{
e−jφ|z| ejϑz

}
(A.26)

= max
d∈{±1}N+1

max
φ∈[0,2π)

<
{
e−jφ(d0y0 + d1y1 + ...+ dNyN )

}
(A.27)

= max
φ∈[0,2π)

max
d∈{±1}N+1

{
d0<

{
e−jφy0

}
+ d1<

{
e−jφy1

}
+ ...

...+ dN<
{
e−jφyN

}}
(A.28)

for z = d0y0 + d1y1 + ...+ dNyN and ϑz = arg {z}.

A.5 CLF maximization equivalent problem

∣∣∣∣∣∣
2(L0+Dg)−1∑

k=0

c∗kyk

∣∣∣∣∣∣
2

=
∣∣∣c∗0y0 + c∗1y1 + ...+ c∗2(L0+Dg)−1y2(L0+Dg)−1

∣∣∣2 (A.29)

=
∣∣∣a−DgX−Dg(τ) + b−Dg(−jX−Dg+1/2(τ)) + ...

...+ aL0−1XL0−1(τ) + bL0−1(−jXL0−1+1/2(τ))
∣∣∣2 (A.30)

=
∣∣∣a−DgX−Dg(τ) + ...+ aL0−1XL0−1(τ)− ...

...− j
[
b−Dg(X−Dg+1/2(τ)) + bL0−1(XL0−1+1/2(τ))

]∣∣∣2 (A.31)

=

∣∣∣∣∣∣
L0−1∑
i=−Dg

aiXi(τ)− j
L0−1∑
i=−Dg

biXi+1/2(τ)

∣∣∣∣∣∣
2

(A.32)
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A.6 CLF periodicity proof

Λ(τ + T/2) =

∣∣∣∣∣∣
L0−1∑
i=−Dg

âi(τ +
T

2
)Xi(τ +

T

2
)− j

L0−1∑
i=−Dg

b̂i(τ +
T

2
)Xi+1/2(τ +

T

2
)

∣∣∣∣∣∣
2

(A.33)

=

∣∣∣∣∣∣
L0−1∑
i=−Dg

−b̂i(τ)Xi(τ +
T

2
)− j

L0−1∑
i=−Dg

−âi+1(τ)Xi+1/2(τ +
T

2
)

∣∣∣∣∣∣
2

(A.34)

=

∣∣∣∣∣∣
L0−1∑
i=−Dg

−b̂i(τ)Xi+1/2(τ) + j

L0−1∑
i=−Dg

âi+1(τ)Xi+1(τ)

∣∣∣∣∣∣
2

(A.35)

=
∣∣∣jY (τ)− â−Dg(τ)X−Dg(τ)

∣∣∣2 (A.36)

≈
∣∣Y (τ)

∣∣2 (A.37)

= Λ(τ) (A.38)

where for (A.35) we take the absolute value of the complex conjugate and in (A.37) it is reasonable to

assume that for large observation intervals the contribution of a term to the metric is negligible.

A.7 Equivalent correlation of angles in the frequency domain

(2.59)
(2.62)⇔ =

{(∫
r∗(t)g(t− τ − (−Dg + i/2)T )dt

)
·

(∫
r(t)g(t− τ − (−Dg + k/2)T )dt

)}
= 0 (A.39)

⇔ =

{∫ (∫ (
r∗(t1)g(t1 − τ − (−Dg + i/2)T ) ·

r(t2)g(t2 − τ − (−Dg + k/2)T )
)
dt1

)
dt2

}
= 0 (A.40)

⇔
∫ (∫ (

={r∗(t1)r(t2)}g(t1 − τ − (−Dg + i/2)T ) ·

g(t2 − τ − (−Dg + k/2)T )
)
dt1

)
dt2 = 0 (A.41)

⇔
∫ (∫ (

r(t1, t2)g∗(t1 − τ − (−Dg + i/2)T,

t2 − τ − (−Dg + k/2)T )
)
dt1

)
dt2 = 0 (A.42)

⇔
∫ (∫ (

R(F1, F2)G∗T0(F1, F2) ·

e−j2π(F1(τ+(−Dg+i/2)T+F2(τ+(−Dg+k/2)T ))
)
dt1

)
dt2 = 0 (A.43)

where we have defined the following quantities

g(t1 − x)g(t2 − y) = g(t1 − x, t2 − y), x, y ∈ R (A.44)

R(F1, F2) = F
{
r(t1, t2)

}
(A.45)
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GT0(F1, F2) = F
{
gT0(t1, t2)

}
= F

{
gT0(t1)gT0(t2)

}
(A.46)

gT0(ti) =


g(ti), 0 ≤ ti ≤ T0

−1, otherwise

(A.47)

and (A.42) is because the signalling pulse g(t) is real while 2D Parseval’s theorem proven in A.9 and 2D

shifting property proved in A.10 leads to (A.43).

A.8 CLF simplified form

Λ(τ) =

∣∣∣∣∣∣
L0−1∑
i=−Dg

âi(τ)Xi(τ)− j
L0−1∑
i=−Dg

b̂i(τ)Xi+1/2(τ)

∣∣∣∣∣∣
2

(A.48)

=

[
L0−1∑
i=−Dg

âi(τ)Xi(τ)− j
L0−1∑
i=−Dg

b̂i(τ)Xi+1/2(τ)

]
·

[
L0−1∑
i=−Dg

âi(τ)Xi(τ)− j
L0−1∑
i=−Dg

b̂i(τ)Xi+1/2(τ)

]∗
(A.49)

=

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)Xi(τ)âk(τ)X∗k(τ)

}
+ j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
âi(τ)Xi(τ)b̂k(τ)X∗k+1/2(τ)

}
− j

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)Xi+1/2(τ)âk(τ)X∗k(τ)

}
+

L0−1∑
i=−Dg


L0−1∑
k=−Dg

{
b̂i(τ)Xi+1/2(τ)b̂k(τ)X∗k+1/2(τ)

} (A.50)

A.9 2D Parseval’s theorem

Suppose we have two two-dimensional 2D signals, then their time representation with respect to their

equivalents in the frequency domain would be

x(t1, t2) =

∫ ∫
X(F1, F2)ej2π(F1t1+F2t2)dF1dF2 (A.51)

y(t1, t2) =

∫ ∫
Y (F1, F2)ej2π(F1t1+F2t2)dF1dF2 (A.52)

Subsequently∫ ∫
x(t1, t2)y∗(t1, t2)dt1dt2 (A.53)

=

∫ ∫ [( ∫ ∫
X(F1, F2)ej2π(F1t1+F2t2)dF1dF2

)(∫ ∫
Y (F1, F2)ej2π(F1t1+F2t2)dF1dF2

)∗]
dt1dt2

(A.54)

41



=

∫ ∫ [ ∫ ∫ (∫ ∫
X(F1, F2)ej2π(F1t1+F2t2)Y ∗(F3, F4)e−j2π(F3t1+F4t2)dF1dF2

)
dF3dF4

]
dt1dt2

(A.55)

=

∫ ∫ [ ∫ ∫ (∫ ∫
X(F1, F2)Y ∗(F3, F4)ej2π((F1−F3)t1+(F2−F4)t2)dF1dF2

)
dF3dF4

]
dt1dt2

(A.56)

=

∫ ∫ [ ∫ ∫ (∫ ∫
X(F1, F2)Y ∗(F3, F4)ej2π((F1−F3)t1+(F2−F4)t2)dt1dt2

)
dF1dF2

]
dF3dF4

(A.57)

=

∫ ∫ [ ∫ ∫ (
X(F1, F2)Y ∗(F3, F4)

∫ ∫
1 · ej2π((F1−F3)t1+(F2−F4)t2)dt1dt2

)
dF1dF2

]
dF3dF4

(A.58)

=

∫ ∫ [ ∫ ∫ (
X(F1, F2)Y ∗(F3, F4)δ(F1 − F3, F2 − F4)

)
dF1dF2

]
dF3dF4 (A.59)

=

∫ ∫
X(F3, F4)Y ∗(F3, F4)dF3dF4 (A.60)

=

∫ ∫
X(F1, F2)Y ∗(F1, F2)dF1dF2 (A.61)

where for (A.59) the 2D delta function is defined as

F
{
δ(t1, t2)

}
=

∫ ∫
δ(t1, t2)e−j2π(F1t1+F2t2)dt1dt2 = e−j2π(F1·0+F2·0) = 1 (A.62)

and

F−1
{
δ(F1, F2)

}
=

∫ ∫
δ(F1, F2)ej2π(F1t1+F2t2)dF1dF2 = e−j2π(0·t1+0·t2) = 1 (A.63)

and for (A.60) we resort to the 2D sampling property.

A.10 2D frequency shifting property

F
{
x(t1 − a, t2 − b)

}
=

∫ ∫
x(t1 − a, t2 − b)e−j2π(F1t1+F2t2)dt1dt2 (A.64)

t′1←t1−a=
t′2←t2−b

∫ ∫
x(t′1, t

′
2)e−j2π(F1(t′1+a)+F2(t′2+b))dt′1dt

′
2 (A.65)

=

∫ ∫
x(t′1, t

′
2)e−j2π(F1t′1+F2t′2)e−j2π(F1a+F2b)dt′1dt

′
2 (A.66)

t1←t′1=
t2←t′2

e−j2π(F1a+F2b)

∫ ∫
x(t1, t2)e−j2π(F1t1+F2t2)dt1dt2 (A.67)

= e−j2π(F1a+F2b)X(F1, F2) (A.68)
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FSK Appendix

B.1 Likelihood form

Λ(x, τ) =

∣∣∣∣∣∣∣
T0∫

0

r(t)s∗(t− τ)dt

∣∣∣∣∣∣∣
2

(B.1)

=

∣∣∣∣∣∣∣
T0∫

0

r(t)

[ L0−1∑
i=−1

√
P

T
e−j2πFxi (t−τ−iT )uT (t− τ − iT )

]
dt

∣∣∣∣∣∣∣
2

(B.2)

=

∣∣∣∣∣∣∣∣
L0−1∑
i=−1


T0∫

0

r(t)

√
P

T
e−j2πFxi (t−τ−iT )uT (t− τ − iT )dt


∣∣∣∣∣∣∣∣
2

(B.3)

=

∣∣∣∣∣
L0−1∑
i=−1

{
xi − 1

2

T0∫
0

−r(t)
√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+
xi + 1

2

T0∫
0

r(t)

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.4)

=

∣∣∣∣∣
L0−1∑
i=−1

{
xi

T0∫
0

−r(t)
2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

−r(t)
2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+ xi

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.5)

=

∣∣∣∣∣
L0−1∑
i=−1

{
xi

[ T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...
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...−
T0∫

0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt

]}
+ ...

...+

L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.6)

The proof for the limits of the CLF’s summation is in B.10.

B.2 Maximization algorithm’s input

yi+1 =



T0∫
0

r(t)
2

√
P
T e
−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...

...−
T0∫
0

r(t)
2

√
P
T e
−j2πF−1(t−τ−iT )uT (t− τ − iT )dt, i = −1, 0, ..., L0 − 1

L0−1∑
a=−1

{
T0∫
0

r(t)
2

√
P
T e
−j2πF−1(t−τ−aT )uT (t− τ − aT )dt+ ...

...+
T0∫
0

r(t)
2

√
P
T e
−j2πF1(t−τ−aT )uT (t− τ − aT )dt

}
, i = L0

(B.7)

=



1
2

√
P
T

[ T0∫
0

r(t)e−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...

...−
T0∫
0

r(t)e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt
]
, i = −1, 0, ..., L0 − 1

L0−1∑
a=−1

{
1
2

√
P
T

[ T0∫
0

r(t)e−j2πF−1(t−τ−aT )uT (t− τ − aT )dt+ ...

...+
T0∫
0

r(t)e−j2πF1(t−τ−aT )uT (t− τ − aT )dt
]}
, i = L0

(B.8)

=



1
2

√
P
T

T0∫
0

r(t)
[
e−j2πF1(t−τ−iT ) − e−j2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt, i = −1, 0, ..., L0 − 1

L0−1∑
a=−1

{
1
2

√
P
T

T0∫
0

r(t)
[
e−j2πF−1(t−τ−aT ) + e−j2πF1(t−τ−aT )

]
uT (t− τ − aT )dt

}
, i = L0

(B.9)

B.3 Angles’ correlation case 1

(3.15)
(3.14)⇔ =

{[
1

2

√
P

T

T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·
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[
1

2

√
P

T

T0∫
0

r(t)

[
e−j2πF1(t−τ−kT ) − e−j2πF−1(t−τ−kT )

]
uT (t− τ − kT )dt

]}
= 0

(B.10)

⇔ =

{[ T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·

[ T0∫
0

r(t)

[
e−j2πF1(t−τ−kT ) − e−j2πF−1(t−τ−kT )

]
uT (t− τ − kT )dt

]}
= 0

(B.11)

⇔
T0∫

0

( T0∫
0

(
=
{
r∗(t1)r(t2)

[
ej2πF1(t1−τ−iT ) − ej2πF−1(t1−τ−iT )

]
·

[
e−j2πF1(t2−τ−kT ) − e−j2πF−1(t2−τ−kT )

]}
·

uT (t1 − τ − iT )uT (t2 − τ − kT )

)
dt1

)
dt2 = 0 (B.12)

⇔
T0∫

0

( T0∫
0

(
R(Fa, Fb)e

−j2π(Fa(τ+iT )+Fb(τ+kT ))·

G∗(Fa, Fb)e
−j2π(Fa(τ+iT )+Fb(τ+kT ))

)
dFa

)
dFb = 0 (B.13)

⇔
T0∫

0

( T0∫
0

(
R(Fa, Fb)G

∗(Fa, Fb)e
−j4π(Fa(τ+iT )+Fb(τ+kT ))

)
dFa

)
dFb = 0 (B.14)

B.4 Angles’ correlation case 2

(3.15)
(3.14)⇔ =

{[
1

2

√
P

T

T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·

[
L0−1∑
a=−1

{
1

2

√
P

T

T0∫
0

r(t)

[
e−j2πF−1(t−τ−aT ) + e−j2πF1(t−τ−aT )

]
uT (t− τ − aT )dt

}]}
= 0

(B.15)

⇔ =

{[ T0∫
0

r∗(t)

[
ej2πF1(t−τ−iT ) − ej2πF−1(t−τ−iT )

]
uT (t− τ − iT )dt

]
·

[
L0−1∑
a=−1

{ T0∫
0

r(t)

[
e−j2πF−1(t−τ−aT ) + e−j2πF1(t−τ−aT )

]
uT (t− τ − aT )dt

}]}
= 0

(B.16)

⇔
L0−1∑
a=−1

{ T0∫
0

( T0∫
0

(
=
{
r∗(t1)r(t2)

[
ej2πF1(t1−τ−iT ) − ej2πF−1(t1−τ−iT )

]
·
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[
e−j2πF1(t2−τ−aT ) + e−j2πF−1(t2−τ−aT )

]}
·

uT (t1 − τ − iT )uT (t2 − τ − aT )

)
dt1

)
dt2

}
= 0 (B.17)

⇔
L0−1∑
m=−1

{ T0∫
0

( T0∫
0

(
R(Fa, Fb)e

−j2π(Fa(τ+iT )+Fb(τ+mT ))·

G∗(Fa, Fb)e
−j2π(Fa(τ+iT )+Fb(τ+mT ))

)
dFa

)
dFb = 0 (B.18)

⇔
L0−1∑
m=−1


T0∫

0

( T0∫
0

(
R(Fa, Fb)G

∗(Fa, Fb)e
−j4π(Fa(τ+iT )+Fb(τ+mT ))

)
dFa

)
dFb

 = 0

(B.19)

B.5 Constant likelihood

Without loss of generality, we consider the case of d =
[
x 1

]
=
[
1L0+1 1

]
. The other case follows

along the same derivation. Since constants don’t affect this calculation we can omit them in (B.20) and

(B.22) getting

(3.7)⇔ Λ(x, τ) ≈

∣∣∣∣∣
L0−1∑
i=−1

{
xi

[ T0∫
0

r(t)e−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...

...−
T0∫

0

r(t)e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt

]}
+ ...

...+

L0−1∑
i=−1

{ T0∫
0

r(t)e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.20)

=

∣∣∣∣∣
L0−1∑
i=−1

{
(xi + 1)

T0∫
0

r(t)e−j2πF1(t−τ−iT )uT (t− τ − iT )dt− ...

...− (xi − 1)

T0∫
0

r(t)e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.21)

x=1
≈

∣∣∣∣∣
L0−1∑
i=−1


T0∫

0

r(t)e−j2πF1(t−τ−iT )uT (t− τ − iT )dt


∣∣∣∣∣
2

(B.22)

=

∣∣∣∣∣ej2πτ
∣∣∣∣∣︸ ︷︷ ︸

1

2

·

∣∣∣∣∣
L0−1∑
i=−1


T0∫

0

r(t)e−j2πF1(t−iT )uT (t− τ − iT )dt


∣∣∣∣∣
2

(B.23)
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=

∣∣∣∣∣
T0∫

0

r(t)

L0−1∑
i=−1

{
e−j2πF1(t−iT )uT (t− τ − iT )

}
dt

∣∣∣∣∣
2

(B.24)

in which the summation is a sum over non-overlapping parts of a signal integrated on the same interval

each time for any value of τ and thus remains unchanged given that τ � T0.

B.6 Alternative likelihood

Λ2(τ) =

∣∣∣∣∣
L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}∣∣∣∣∣
2

(B.25)

=

[
L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}]
·

[
L0−1∑
i=−1

{ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

}]∗
(B.26)

=

L0−1∑
i=−1

{ L0−1∑
k=−1

{[ T0∫
0

r(t)

2

√
P

T
e−j2πF−1(t−τ−iT )uT (t− τ − iT )dt+ ...

...+

T0∫
0

r(t)

2

√
P

T
e−j2πF1(t−τ−iT )uT (t− τ − iT )dt

]
·

[ T0∫
0

r∗(t)

2

√
P

T
ej2πF−1(t−τ−kT )uT (t− τ − kT )dt+ ...

...+

T0∫
0

r∗(t)

2

√
P

T
ej2πF1(t−τ−kT )uT (t− τ − kT )dt

]}}
(B.27)

B.7 Alternative likelihood derivative

ϑI(τ ;F, i)

ϑτ
=

T0∫
0

r(t)
ϑ(e−j2πF (t−τ−iT )uT (t− τ − iT ))

ϑτ
dt (B.28)
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=

T0∫
0

r(t)

[
ϑ(e−j2πF (t−τ−iT ))

ϑτ
uT (t− τ − iT ) + e−j2πF (t−τ−iT )ϑ(uT (t− τ − iT ))

ϑτ

]
dt

(B.29)

=

T0∫
0

r(t)

[
j2πFe−j2πF (t−τ−iT ))uT (t− τ − iT ) + e−j2πF (t−τ−iT )ϑ(uT (t− τ − iT ))

ϑτ

]
dt

(B.30)

=

T0∫
0

r(t)

[
j2πFe−j2πF (t−τ−iT ))uT (t− τ − iT ) + e−j2πF (t−τ−iT )·

(
δ(t− τ − iT )− δ(t− τ − iT − T )

)]
dt (B.31)

=

T0∫
0

r(t)j2πFe−j2πF (t−τ−iT ))uT (t− τ − iT )dt+ rδ(τ + iT ) + rδ(τ + iT + T )e−j2πFT

(B.32)

for

rδ(τ) =


r(t), t ∈ [0, T0]

0, otherwise

(B.33)

The equality (B.28) is due to the Leibniz’s rule

ϑ

ϑx

( b(x)∫
a(x)

f(x, t)dt

)
= f(x, b(x))

ϑ

ϑx
b(x)− f(x, a(x))

ϑ

ϑx
a(x) +

b(x)∫
a(x)

ϑ

ϑx
f(x, t)dt (B.34)

The derivative of the complex exponential function for (B.30) is

ϑ

ϑx
ejf(x) = jejf(x) ϑ

ϑx
f(x) (B.35)

and for (B.31) the differentiation of a square pulse of duration T starting at t = f(x) is

ϑ

ϑx
uT (t− f(x)) =

ϑ

ϑx

(
u(t− f(x))− t− f(x)− T )

)
(B.36)

= −δ(t− f(x))
ϑ

ϑx
f(x) + δ(t− f(x)− T )

ϑ

ϑx
f(x) (B.37)

=
ϑ

ϑx
f(x)

[
δ(t− f(x)− T )− δ(t− f(x))

]
(B.38)

B.8 Conditional PDF of received sample (hypothesis testing)

fr|xi=−1(r) =
1

π2detC
exp

(
−
[
r− µ−1

]H
C−1

[
r− µ−1

])
(B.39)

=
1

π2
exp

− [r−1 −
√
Ph̃ r1

]∗ r−1 −
√
Ph̃

r1


 (B.40)
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=
1

π2
exp

(
−
(
r∗−1r−1 − r∗−1

√
Ph̃− r−1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P + r∗1r1

))
(B.41)

=
1

π2
exp

(
−
(
|r−1|2 − r∗−1

√
Ph̃− r−1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P +|r1|2
))

(B.42)

B.9 Maximum likelihood decision rule

fr|xi=−1(r)
x̂i=−1
≷

x̂i=+1
fr|xi=+1(r) (B.43)

⇒ exp

(
−
(
|r−1|2 − r∗−1

√
Ph̃− r−1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P +|r1|2
))

x̂i=−1
≷

x̂i=+1
...

... exp

(
−
(
|r−1|2 +|r1|2 − r∗1

√
Ph̃− r1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P)) (B.44)

⇒ −
(
|r−1|2 − r∗−1

√
Ph̃− r−1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P +|r1|2
)
x̂i=−1
≷

x̂i=+1
...

... −
(
|r−1|2 +|r1|2 − r∗1

√
Ph̃− r1

√
Ph̃∗ +

∣∣∣h̃∣∣∣2 P) (B.45)

⇒
√
P
(
r∗−1h̃+ r−1h̃

∗
) x̂i=−1

≷
x̂i=+1

√
P
(
r∗+1h̃+ r+1h̃

∗
)

(B.46)

⇒ 2<{(r∗−1h̃}
x̂i=−1
≷

x̂i=+1
2<{(r∗+1h̃} (B.47)

⇒ sign
(
<{(r∗−1h̃} − <{(r∗+1h̃}

) x̂i=−1
≷

x̂i=+1
0 (B.48)

B.10 Limits of the likelihood

Ignoring
√

P
T multiplier we get

(3.1)
(3.2)⇔ s(t) =

∑
i

ej2πFxi (t−iT )uT (t− iT ) (B.49)

=
∑
i

{
cos(2πFxi(t− iT )) + j sin(2πFxi(t− iT ))

}
uT (t− iT ) (B.50)

=
∑
i

{
cos(2πFxi(t− iT ))uT (t− iT )

}
+ j

∑
i

{
sin(2πFxi(t− iT ))uT (t− iT )

}
(B.51)

(3.6)
(B.51)⇔ Λ(x, τ) =

∣∣∣∣∣
T0∫

0

r(t)

[∑
i

{
cos(2πFxi(t− τ − iT ))uT (t− τ − iT )

}
− ...

...− j
∑
i

{
sin(2πFxi(t− τ − iT ))uT (t− τ − iT )

}]∣∣∣∣∣
2

(B.52)

=

∣∣∣∣∣∑
i


T0∫

0

r(t) cos(2πFxi(t− τ − iT ))uT (t− τ − iT )dt

− ...
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...− j
∑
i


T0∫

0

r(t) sin(2πFxi(t− τ − iT ))uT (t− τ − iT )
)
dt


∣∣∣∣∣
2

(B.53)

=

∣∣∣∣∣∑
i

Yi(τ)− j
∑
i

Zi(τ)

∣∣∣∣∣
2

(B.54)

where

Yi(τ) =

T0∫
0

r(t) cos(2πFxi(t− τ − iT ))uT (t− τ − iT )dt (B.55)

and

Zi(τ) =

T0∫
0

r(t) sin(2πFxi(t− τ − iT ))uT (t− τ − iT )dt (B.56)

We have calculated the values of Yi(τ) and Zi(τ) at the following indexes to verify that they are equal to

zero.

For i = −2

Yi(τ)
∣∣∣
i=−2

=

T0∫
0

r(t) cos(2πFx−2(t− τ + 2T ))uT (t− τ + 2T )dt (B.57)

=

T0∫
0

r(t) cos(2πFx−2(t− τ + 2T ))uT (t− (τ − 2T ))dt (B.58)

with the square pulse defined as

uT (t− (τ − 2T )) =

 1, τ − 2T ≤ t < τ − T
0, otherwise

(B.59)

Then the following hold true

(B.55)
(B.59)⇒ Yi(τ)

∣∣∣
i=−2

= 0, ∀τ ∈ [0, T ) (B.60)

(B.56)
(B.59)⇒ Zi(τ)

∣∣∣
i=−2

= 0, ∀τ ∈ [0, T ) (B.61)

In that sense, (B.55) and (B.56) are nonzero for i ≥ −1.

Similarly for i = L0

Yi(τ)
∣∣∣
i=L0

=

T0∫
0

r(t) cos(2πFxL0
(t− τ − L0T ))uT (t− (τ + L0T ))dt (B.62)

with the square pulse defined as

uT (t− (τ + L0T )) =

 1, τ + T0 ≤ t < τ + T0 + T

0, otherwise
(B.63)

Then the following hold true

(B.55)
(B.63)⇒ Yi(τ)

∣∣∣
i=−2

= 0, ∀τ ∈ [0, T ) (B.64)

(B.56)
(B.63)⇒ Zi(τ)

∣∣∣
i=−2

= 0, ∀τ ∈ [0, T ) (B.65)

In that sense, (B.55) and (B.56) are nonzero for i ≤ L0 − 1.
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