
ΣΤΡΑΤΙΩΤΙΚΗ ΣΧΟΛΗ ΕΥΕΛΠΙΔΩΝ
Τμήμα Στρατιωτικών Επιστημών

Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α
ΔΙΙΔΡΥΜΑΤΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17

ΣΧΕΔΙΑΣΗ & ΕΠΕΞΕΡΓΑΣΙΑ ΣΥΣΤΗΜΑΤΩΝ
(SYSTEMS ENGINEERING)

(ΠΔ 96 /2015/ΦΕΚ 163Α'/20.08.2014)

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Σχολή Μηχανικών Παραγωγής & Διοίκησης

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ

Design and Implementation of the
Functional Architecture and ROS-based

Control/Logic Software for the "Brasidas"
UGS

Διατριβή που υπεβλήθη για την μερική ικανοποίηση των απαιτήσεων για την

απόκτηση Μεταπτυχιακού Διπλώματος Ειδίκευσης

Υπό:
ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Α.Μ.: 2014018009

ΦΕΒΡΟΥΑΡΙΟΣ 2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-

BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Η Μεταπτυχιακή Διατριβή του / της … Μακρῆ Δημητρίου ………….. εγκρίνεται:

ΤΡΙΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

(Επιβλέπων)

Επικ. Καθηγητής Παπαδάκης Νικόλαος (ΣΣΕ) ,………………………………..

Καθηγητής Δάρας Νικόλαος (ΣΣΕ) ,………………………………..

Δρ. Σπανουδάκης Νικόλαος (ΠΚ) ,………………………………..

Η Διατριβή εκπονήθηκε στο ΚΕΤΕΣ υπό την εποπτεία του Διοικητή του ΚΕΤΕΣ,
Σχη (ΕΠ) Εμμανουήλ Φραγκουλόπουλου.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

i

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED
CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

ΣΕΛΙΔΑ ΣΚΟΠΙΜΑ ΚΕΝΗ

© Copyright υπό …Δημήτριος Μακρῆς……

Έτος 2017

ii MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-

BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Αφιερώσεις - Dedication

Σ λους σους πίστεψαν τι κατασκευ το "Βρασίδα" μπορο σε ν ὲ ὅ ὅ ὅ ἡ ὴ ῦ ῦ ὰ
πραγματοποιηθε , κα κυρίως στο ς συνεργάτες μου, Λγο (ΑΣ) Κο Κατσέλη ῖ ὶ ὺ
Παναγιώτη, κα τ ν Κο Παράσχο Δημήτριο, γι τ ν περιόριστη πομον πο ὶ ὸ ὰ ὴ ἀ ὑ ὴ ὺ
πέδειξαν συνεργαζόμενοι μαζί μου...ἐ

Ε δικώτερα, φιερώνεται στ ν Κοσμήτορα της ΣΣΕ, Καθηγητ Κο Δάρα Νικόλαο,ἰ ἀ ὸ ὴ
γι τ ν ξιοθαύμαστη πιμον κα πομονή πο κατέβαλλε γι τ ν πιτυχία τοὰ ὴ ἀ ἐ ὴ ὶ ὑ ὺ ὰ ὴ ἐ ῦ
ΠΜΣ.

To all who believed that "Brasidas" could be realised, above them all to my design
team partners, Cpt (AA) Katselis Panagiotis and Mr. Paraschos Dimitrios, for their
admirable patience in working with me...

Especially dedicated to the Dean of the Military Academy of Athens, Prof. Daras
Nikolaos, for his remarkable tenacity and effort towards the success of the
Graduate Courses Program.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

iii

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED
CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

ΣΕΛΙΔΑ ΣΚΟΠΙΜΑ ΚΕΝΗ

iv MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-

BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΕΥΧΑΡΙΣΤΙΕΣ - ACKNOWLEDGMENTS

Ὁ γράφων ἐκφράζει τὶς εὐχαριστίες του πρὸς τὰ μέλη ΔΕΠ καὶ τὸ προσωπικὸ τῆς
Στρατιωτικῆς Σχολῆς Εὐελπίδων καὶ τοῦ Κέντρου Ἔρευνας καὶ Τεχνολογίας Στρατοῦ,
γιὰ τὴν πολύτιμη συνεισφορά τους στὴ δημιουργία τοῦ "Βρασίδα".

Ἐξαιρέτως ἐκφράζονται θερμὲς εὐχαριστίες πρὸς τὸν Δκτη τοῦ ΚΕΤΕΣ, Σχη (ΕΠ)
Ἐμμανουὴλ Φραγκουλόπουλο, ἡ παροχὴ ἐκ τοῦ ὁποίου ὁδηγιῶν, συμβουλῶν, καὶ
ὑλικοῦ, ἀλλὰ καὶ προσβάσεως στὶς ἐγκαταστάσεις τοῦ ΚΕΤΕΣ, ἀποτελεῖ τὴν πλέον
οὐσιώδη συνεισφορὰ στὴν κατασκευὴ τοῦ "Βρασίδα".

Εὐχαριστίες ἀποδίδονται καὶ στὸν Καθηγητὴ Κο Μαυρίδη Νικόλαο, χωρὶς τὴν
καθοδήγηση καὶ προσπάθειες τοῦ ὁποίου, ἡ σχεδίαση δὲν θὰ εἶχε ποτὲ προχωρήσει
πέρα ἀπὸ τὴν θεωρία.

The author wishes to thank the Professors and personnel of the Military Academy of
Athens and the Army Research and Technology Center, for their invaluable assistance
in the making of "Brasidas".

Above all, the author acknowledges and thanks the CO of the ARTC, Col. Emmanuel
Fragoulopoulos, whose provision of instructions, advice, materiel, and access to the
ARTC facilities constitutes the most significant contribution to the "Brasidas" project.

The author also wishes to thank Professor Mavridis Nikolaos, without whose guidance
and restless efforts, the project would have never left the drawing board.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

v

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED
CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

ΣΕΛΙΔΑ ΣΚΟΠΙΜΑ ΚΕΝΗ

vi MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-

BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

TABLE OF CONTENTS

ABSTRACT.. 1

INTRODUCTION... 3

Part I... 7

CHAPTER 1 .
Preliminary Mission Analysis.. 9

§1. The Current Situation... 9
§2. Overview of the Proposed System... 10

2.1. The Mission Needs Statement... 11
§3. Mission Needs Analysis.. 11
§4. Constraints... 12
§5. The Physical Architecture.. 16

CHAPTER 2 .
System Modeling.. 19

§1. Scenarios... 20
1.1. Scenario #1: Remote Patrol.. 20
1.2. Scenario #2: Supervised Autonomous Reconnaissance...21

§2. Use Case Model... 23
2.1. Use Case #1: Connect to Platform...24
2.2. Use Case #2: Engage/Disengage Teleop Mode...25

§3. Preliminary Software Architecture.. 26

CHAPTER 3 .
Requirements Analysis... 27

§1. Requirements Determination.. 27
1.1. Analysis of Scenario #1.. 28
1.2. Analysis of Scenario #2.. 29
1.3. Analysis of Use Case #1.. 30
1.4. Analysis of Use Case #2.. 32

§2. Functional Decomposition.. 33
§3. The Network Architecture... 47

3.1. The Initial Version... 47
3.2. Specifying the Desired Architecture.. 48
3.3. The Current Situation... 49
3.4. A Glimpse of the Future.. 51

§4. Requirements Overview... 53

CHAPTER 4 .
Requirements Allocation... 55

CHAPTER 5 .

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

vii

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED
CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

The Functional Architecture... 59
§1. The Network Architecture... 59
§2. The Platform Architecture... 60
§3. The Control Station Architecture... 65

CHAPTER 6 .
Product Development Phases.. 69

§1. Phase 1: Remotely Operated Vehicle.. 70
§2. Phase 2: Recon R.O.V... 70
§3. Phase 3: Autonomous Navigating Robot... 71
§4. Phase 4: Autonomous Target Tracking..72

CHAPTER 7 .
Interlude I.. 73

Part II... 77

CHAPTER 8 .
Architecture Implementation... 79

§1. Common Architecture Elements.. 79
1.1. Operating System... 79
1.2. The IPC Module.. 80

§2. Hardware Specifications... 82

CHAPTER 9 .
The Network Infrastructure... 87

CHAPTER 10 .
The Platform Configuration... 91

§1. Signaling and the Common Protocol...91
1.1. The Virtual Functional Remote Interface (VFRI)..94
1.2. Commands and Command Codes..96

§2. The Transmission Interface Module... 99
2.1. The Motor Controller RS-232 Command Protocol..99
2.2. The Virtual Motor Controller Interface...101

§3. The NavCam Streaming Interface.. 102
3.1. The motion-based Implementation..103
3.2. The Gstreamer Era.. 103

§4. The Advertisement Module... 108
§5. The SLAM Module... 109
§6. The Autonomous Operation Module..110

CHAPTER 11 .
The Control Station Configuration... 113

§1. The Connection Management Module..113
1.1. The Control Station Signaling.. 115

viii MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-

BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

§2. The Node Discovery Module.. 116
§3. The Teleop Console Interface Module..117

3.1. Sending Velocity Commands...117
§4. The Display Modules.. 118

4.1. The Stream Display Module... 120
4.2. The Status Display Module.. 121
4.3. The Control Interface Module... 122

CHAPTER 12 .
Testing and Verification... 123

§1. Network Tests.. 123
§2. Platform Software Tests... 124
§3. Control Station Software Tests.. 125

CHAPTER 13 .
Interlude II.. 127

EPILOGUE... 131
§1. Future Work... 131
§2. Survivor's Guide to Robot Software Design...133
§3. In Closing... 138

ANNEX A: Installing Gstreamer 1.0 OpenMAX Extensions on Raspberry Pi..............139

ANNEX B: Forwarding Broadcast Packets through an OpenWRT Router with socat. .143

REFERENCES.. 145

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ix

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ABSTRACT
This thesis presents work done as part of the "Brasidas" Unmanned Ground System

(UGS) project. The project aims to design and manufacture a prototype unmanned au-

tonomous ground vehicle (codenamed "Brasidas") for outdoors operations, capable of

both autonomous and remote operation. The platform will be configurable over a wide

range of missions and with varying operational payloads selectable by the user. The initial

design concept intended for a patrol and observation robot, with capabilities similar to

those of the TALON SWORDS1 vehicle, being in addition able to operate autonomously.

Herein will be described the initial analysis and design of the "Brasidas" functional

architecture, as well as its evolution over time during the project's development, to the

current state it stands at today. The initial design concept will be explained, we will at -

tempt to justify the objectives we were aiming for, and the problems we encountered on

the way. The solutions we selected and implemented will also be analyzed and described

in detail.

1 https://en.wikipedia.org/wiki/Foster-Miller_TALON

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

1

https://en.wikipedia.org/wiki/Foster-Miller_TALON

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

2 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

INTRODUCTION
Brasidas (Greek: Βρασίδας) (died 422 BC) was a

Spartan officer during the first decade of the Pelopon-

nesian War. Thucydides' characterization of Brasidas sug-

gests that Brasidas united in himself the stereotypical

Spartan courage with those virtues in which regular Spar-

tans were most signally lacking. Brasidas was apparently

quick in forming his plans and carried them out without

delay or hesitation. Furthermore, Brasidas was also an ac-

complished orator, as recorded by Thucydides.

Brasidas' operations as part of his campaign in

Macedonia and Thrace were characterized by the rapidity

and boldness of his military movements, as well as by his personal charm and the moder-

ation of his demands towards his opponents. During the course of the winter, Brasidas

succeeded in winning over the important cities of Acanthus, Stagirus, Amphipolis and

Toroni as well as a number of minor towns.

The Brasidas UGS, not unlike the an-

cient Spartan general, is an innovative ro-

botic system, designed to operate either au-

tonomously or via remote control, ahead

of, behind of, or alongside the main force,

in a variety of roles. Its operational capabil-

ities are partly determined by a modular payload system that enables it to efficiently oper-

ate day and night, in all forms of military operations, be they surveillance, reconnaissance

and target acquisition, minefield clearing and Explosive Ordnance Disposal (EOD), or

even simply as asset protection, functioning as a robotic sentinel. This last role is in fact

what Brasidas was initially conceived and designed for.

The UGS that was to be named "Brasidas" was conceived as part of a semester-long

homework, for the first-semester Robotics class, taught as part of the Systems

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

3

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Engineering graduate course. Initially, the whole idea revolved around a simple robotic

vehicle that could autonomously navigate an area, patroling for intruders and monitoring

the area's security. This initial, theoretical concept, eventually grew out of the boundaries

of a semester paper, and became the "Brasidas" project. This thesis presents part of the

work done within the project, specifically the architecture development and implementa-

tion of the robot software.

The assembly, programming, and testing lasted almost two years, but the general

concensus is that it was really worth the effort. "Brasidas" may not rival Data from Star

Trek™: The Next Generation, but it can certainly be used to fill many operational needs

of today. Its most distinctive feature is that it has been constructed using only commercial

off-the-shelf (COTS) components, and thus it is a system characterized by a highly com-

petitive price, and ease of component repair or replacement.

The booklet is organized as follows:

Part I: Requirements Analysis and Specification.
Wherein will be analyzed:

– The project objectives we envisioned to achieve,

– The functional requirements established as a result of research (market

needs/technology availability/etc.) and scenario-based modeling,

– The non-functional requirements (perfomance, cost, scalability and extensibility,

interfaces, etc.) we accepted, and

– The allocation of functional and performance requirements in Phases (consecu-

tive operational versions, "Marks" [Mk]), based on the adoption of a spiral development

model.

The final products at the end of Part I are the Requirements Specification and

Functional Architecture, as well as the project's expected development Phases.

Part II: Design and Implementation.
Wherein will be described:

4 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

– The allocation of the system Blocks to the various project Phases,

– The choice of programming languages (python, C++ if and when deemed neces-

sary) and third-party software libraries and toolkits used,

– The implementation of each functional Block for Phase I, referring to the Physical

Architecture (Cpt. P. Katselis' thesis) where necessary for the sake of clarity and com-

pleteness, with analysis of the fundamental problems encountered, the potential solutions

studied and tested for each problem, and of course the one finally adopted and applied.

The final products at the end of Part II are the final specifications and software re-

quirements (in terms of hardware characteristics) of the prototype. This work will de-

scribe the implementation of functions only up to Phase I (Brasidas Mk-I).

Epilogue:
We offer some basic conclusions and observations stemming from the design and

implementation process thus far undertaken, regarding the degree to which the initial

system requirements were satisfied, and how the divergence affects the viability of the

initial design concept. We also discuss on the know-how acquired as part of the endeavor.

Finally, we offer insight on the future steps we intend to take to continue the

development of "Brasidas" into the next planned Phase, and discuss the project's

potential for further evolution, extensibility, and scalability, on a vision of a fully

operational robotic weapons system.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

5

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

6 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Part I

Requirements Analysis and Specification

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

7

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 1 .
Preliminary Mission Analysis

§1. The Current Situation
Several robotic systems have been tested over the past decade, mostly by the U.S.

Army, and other western militaries. Some have been deployed operationally, with mixed

results. The most promising such systems, representing the vast majority of those systems

in operational use today, are UAVs, more commonly known as "drones" (though the two

terms have a different exact meaning), like the Predator, the Heron, etc.

All these systems are remotely operated. Aside from very basic functions, like cam-

era stabilization, closed-loop speed control, flight stability control, etc., which are applica-

tions of automatic control systems, with very little interest from the perspective of robot-

ics and artificial intelligence, these drones are entirely remotely operated.

Ground systems are far less featured in operations; indeed when most people hear

about a ground robot, they think of the robotic drones operated by EOD units. The

older TALON SWORDS system (mentioned in the abstract) was one of the few UGSs

deployed by the U.S. Army, in limited field role [1]. The limitation came from reluctance

on the commanding officers' part to use a remotely-operated weapons system to seek out

and kill enemies.

This is not a thesis about ethics. However, it is this author's opinion that a remotely-

operated weapon is no different than a weapon one holds in their hands. Once you decide

to use lethal force and take lives, the "how" is irrelevant. Clearly, before we can use ro-

botic weapon systems, the world still has a few non-technical issues to solve…

The lessons learned during the SWORDS's use are summarized in the fact that a re-

motely-operated weapons system can easily substitute soldiers in guard and base patrol

duty. They also permit generally more accurate fire than the average soldier can provide.

No robotic system, no matter with what sensors it has been fit, can substitute for in-per-

son reconnaissance, although it is possible for a field commander to get a sufficiently ac-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

9

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

curate picture of the tactical situation via remote sensing. Thus, a remotely-operated

weapons and sensors system provides for worse overall performance than boots on the

ground, but exposes friendly troops to far less danger.

An autonomous system (or at least one that would not require constant supervision)

is also capable of operating 24/7 with constant perfomance. It is thus well-suited to secu-

rity and monitoring applications, where round-the-clock security otherwise requires care-

ful administration of shifts, different skillsets, and personnel fatigue, to achieve as close to

constant a performance as possible.

In the technical aspect, there have now been developed several specialized sensors to

allow robots to survey their environment. Planar and 3D scanning lasers, ultrasonic range

finders, stereoscopic cameras, IR-based depth sensors (e.g. Kinect), autofocus lenses for

cameras, etc. Of course, all of these have existed for decades, however lately the main-

streaming of robotics have allowed the development of cheap, readily available versions

of technology that once used to be the purview of the military. Along with the wide-

spread use of technology have come standards that such technologies now conform to,

making new designs easier and more robust than before.

§2. Overview of the Proposed System
The initial idea, on which the whole design is based, is that of an autonomous (or at

least semi-autonomous) robotic sentinel. It is based on the assumption that it could be

used to efficiently augment the security protocols and personnel of a Military Base or

otherwise similar facility. In fact, the initial concept vehicle could as well be employed by

any organization that requires monitoring of a location or establishment for security

purposes or otherwise, especially during non-office hours (i.e. during the night or

weekends). This initial idea forms the Mission Needs Statement, which was then ex-

panded and analyzed in detail, to produce the conceived system's requirements at first,

and to make design choices later on during the more advanced project stages.

The vehicle will be of a size comparable to that of a human, so that it can access the

10 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

same locations and navigate through the same terrain as the human personnel it is in-

tended to replace or augment. Naturally, it is expected that the vehicle will not have the

same movement capabilities as a human, but it is not intend to navigate areas that human

personnel would not have to go through anyway.

The system should also be able to function in areas wholly or partially unknown, in

a reconnaissance role. In this function it should also be able to operate ahead of or along-

side human personnel. In fact, being able to send the vehicle ahead of the human person-

nel in unknown territory (e.g. to determine if the area is mined or contains other hazards)

might be of a higher priority that being able to use it to patrol familiar territory.

2.1. The Mission Needs Statement
The Mission Needs Statement can be summarized as follows: "A robotic sentinel that

can function in non-fully-mapped outdoors environments without constant supervision."

§3. Mission Needs Analysis
To generate a set of preliminary requirements, the Mission Needs Statement forms

the basis, which is then expanded further, adding more details in the process [2]. Simulta-

neously, research was undertaken on whether similar systems are or have ever been

fielded in similar roles, on the means by which such a need is currently fulfilled, and an

effort was made to determine whether certain technologies that appear to be required, are

available and mature [3]. As it turns out, the Israeli Defense Forces (IDF) are preparing to

employ in the field a system of similar principles, filling approximately the same opera-

tional niche [4]. Of course the IDF have been using UGSs for years, and they have a im-

plemented a solution that is a bit more practical, if even more costly. A more advanced

system, related to [4], is presented in [5].

After several brainstorming sessions, the Mission Needs Statement was expanded,

some new ideas were incorporated, and certain perfomance measures were quantified.

Additional inspiration was taken from study of already existing similar systems, particu-

larly in terms of performance. The initial conceived vehicle design then, as encapsulated

by the Mission Needs Statement, can roughly be seen as possessing the following basic

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

11

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

requirements:

(1) It would operate over any (reasonably flat) terrain,

(2) It would travel at speeds comparable to those of a human on foot (walking-jog -

ging),

(3) It could be fully operated remotely if the need arose. Indeed, some functions

should only be usable by a (remote) human operator.

(4) It would possess optical sensors (i.e. cameras) registering in both the visible and

thermal infrared parts of the spectrum,

(5) It would be able to go to and from its target operational area on its own, without

any operator remote control, other than provision of a basic list of waypoints,

(6) It would be able to operate at least 1 Km away from its control station,

(7) It would operate at full capacity under its own power (i.e. without the need to re-

fuel and/or recharge) for at least 4 hours, and

The above set of initial requirements (mixed functional and non-functional) permits

assembly of a (coarse) functional architecture, and in turn production of an initial physi-

cal architecture. Analyzing these even further will refine on the initial design and lead to a

complete requirements specification [6] [7]. These requirements are quite broad, and rep-

resent the intended system through a high-level approach. Decomposing each into pro-

gressively simpler, more detailed, lower-level requirements presents not only an analytical

challenge, but requires research into the potential technical implementation of each

lower-level requirement, to make sure it can actually be implemented with the means and

knowledge at the project's disposal.

§4. Constraints
Even at this early stage, attention was brought to several constraints and restrictions

that would apply in the project. Some were accepted and imposed by the design team, to

keep the design within the ability to realize the implementation. Others was known would

simply be imposed upon the project due to foreseeable circumstances. In addition, as the

12 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

project progressed into the implementation stage, more constraints were revealed, which

were hardly obvious in the first place.

The major constraints will be presented and analyzed here for completeness, since

they are immutable and one can only accept them, not modify, refine, or ignore them as

needed. As a convention, constraints are numbered with a primary ID of 0.

(0.1) "Brasidas" is a Research Prototype

Manufacturing an operational prototype, that would pass all quality certifications

and military standards is not the project's intent. It is understandable that these crite-

ria must all be satisfied if a "Brasidas"-like robotic weapon system is to enter service,

but the main focus is in solving the basic engineering problems first, in figuring out

what can and cannot be done, what knowledge and know-how will be discovered

along the way, and to define a broad roadmap for actually designing and construct-

ing a fully operational robotic weapon system.

For example, it is clear that an operational version would require armor; There is at

this stage, no interest in researching armor technologies or their applications in a ro-

botic vehicle. Materials and mechanical engineers have already solved those issues to

the degree demanded by the intended use of the system, and their application is

straightforward. Therefore, no time needs to be wasted on detailing armor require-

ments.

A similar reasoning applies to other aspects of manufacturing. The research is nar-

rowed down to solving problems that provide know-how in fields where no off-the-

shelf solution yet exists, and where the design team is lacking, such as finding an op-

timal system architecture (both software and hardware), determining computational

and power requirements of such a system, required sensors, and so on. Nonetheless,

an effort is being made to satisfy as many standards as possible, from among those

typically used in those areas where custom solutions had to be implemented.

This constraint implies that the overall development should follow the prototyping

paradigm, but that the prototype should be a throwaway prototype [8]. Attempting

to push this into manufacturing an evolutionary prototype is a huge risk, due to the

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

13

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

design team's minimal knowledge of and familiarity with production and manufac-

turing methodology.

In fact, even this choice about creating a prototype was not finalized until after the

project had moved well into implementation; when the methodology that would be

applied was decided upon, the project's design had to undergone a major revision,

and still until the time that this document is written (May 2017), this revision is not

complete. The development process will be discussed later.

The summed version of this constraint can be contained in the following statement:

"If a subsystem, component, or part can be integrated into the system through a process clearly de -

fined, already known, and with no customization required, said subsystem, component, or part will

not be investigated further, and will be included in the research prototype only if it is required for

implementation of the requirements of the Mission Needs Analysis, and permitted by the other

constraints."

(0.2) Adopt the Use of COTS Components to the Greatest Extend Possible

"Brasidas" should use Commercial Off-The-Shelf (COTS) hardware as much as

possible. Such material is by definition easy to acquire and almost always available. It

is also manufactured in bulk, which reduces the manufacturing and repair costs and

delivery times compared to custom, on-request solutions.

Further, "Brasidas" should use open source software, and conform to open stan-

dards to the highest extend possible. This enables easy maintenance of code, inclu-

sion of code updates and upgrades at no cost, and complete transference of knowl-

edge, so we depend less on third parties for manufacturing and customizations. In-

deed, one can take an open-source piece of software, use it, and afterwards maintain

or expand it on one's own, writing and testing own code on top of the initial one, at

no cost or need to get any license.

This is a 'soft' restriction, in the sense that it is treated more as a strong guideline,

than a hard limitation. Open-source software is, after all, as good as someone made

it, without any warranty about its perfomance. It is very convenient to use, but ulti-

14 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

mately, if some other proprietary solution is acquireable and satisfies the project

needs better than any open-source option, the proprietary solution will indeed be se-

lected.

The summed version of this constraint can be contained in the following statement:

"If a functional requirement can be implemented sufficiently well by open-source software or hard -

ware, or by the adoption of an open standard, then these should be selected in preference to any

other proprietary options."

(0.3) Funding and Support is Very Specific

There is basically no cash funding available to support this project. Limited support

is in the form of materials made available to us from the Army Research and Tech-

nology Center (A.R.T.C - Κ.Ε.ΤΕ.Σ.). Such material, however, is not obtained by

ARTC per the project's demands, then passed on to the design team. Rather, ARTC

searches through its current inventory of parts not used by any other project, and

the design team gets to choose which of the available parts might be of use. Obvi-

ously, this complicates matters, since one must sometimes adapt the designed solu-

tion to the available hardware, or even scrap certain options altogether, since no

hardware is available.

Small expenses (simple, cheap parts) can be covered through personal contribution,

and indeed this was done so, but this option is obviously out of the question for ex-

pensive parts, like scanning lasers or FLIR cameras. This constraint also affects ac-

cess to weapons and ammunition, preventing the design team from ever running the

necessary tests to integrate such options on "Brasidas". This is a constraint that

mostly applies to the project's hardware, not software.

The summed version of this constraint can be contained in the following statement:

"If a required hardware or software part has a cost that we cannot cover on our own, or requires

any kind of license, it should be considered not available, and discarded as a potential solution op -

tion."

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

15

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

§5. The Physical Architecture
The physical architecture of "Brasidas", and its design and assembly are described in

detail in the graduate thesis of Cpt (AA) Panagiotis Katselis. The relevant details will be

listed here briefly, for completeness.

"Brasidas" is decomposed into subsystems, each in turn consisting of components.

The basis from which this architecture was derived, are the Work Breakdown Structures

described in [9] for the Surface Vehicle Systems (in particular the Remote Controlled Sur-

face System) and the Unmanned Aerial Vehicles. The first two levels of the WBS ele-

ments for "Brasidas" are listed in the following tree overview of the system.

 1. The Carrier Vehicle.

 1.1. Propulsion

 1.2. Transmission

 1.3. System Core (System Processor)

 1.4. Power Grid

 1.5. Communications Grid

 2. The Payload

The structure of the payload is highly dependent on each payload's mission statement. A

payload module only has to obey the following restrictions:

 2.α It must receive power from the Power Grid.

 2.β It must connect only to the Communications Grid, and not directly to any

other carrier vehicle component. Communication with other vehicle subsys-

tems must be carried exclusively over the Communications Grid.

 3. The Control Station.

 3.1. Telemetry and Video Processor

 3.2. Human-Computer Interface

 3.3. Remote Control Console

 3.4. RF Digital Communications Link

The physical architecture will be called upon when allocating requirements and de-

16 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ciding on any software implementation issues.

The specific physical architecture used on "Brasidas" is displayed in a block diagram

at the end of Chapter 8.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

17

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

18 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 2 .
System Modeling

Before delving into the detailed analysis of the system requirements, and given the

rather generalized statements listed in the previous chapter, an effort will be made to pro-

duce various models of the system and its use, by employing principles from the sce-

nario-based design methodology [10]. This approach is well-suited to the case of "Brasi-

das", since it allows the most relaxed approach to designing a system.

There is little to no material on projects of a similar nature undertaken within the

context of the Greek Armed Forces, and therefore few directives to be followed, which

would help steer design through known and tested procedures and methods. Thus, those

procedures need to be determined first, to a certain extend, and that cannot be achieved

by adopting a strict, structured desing approach such as the Joint Capabilities Integration

and Development System (JCIDS) used by the U.S. DoD for designing, acquring, and

fielding a new weapon system. While the JCIDS and similar methodology (see for exam-

ple [11]) aims to both produce a design conforming to the requirements and minimizing

development risks and costs, it still requires clear, concise requirements to begin with,

something not available in the case of "Brasidas". "Brasidas" is a research prototype, an

experiment if you will, which is intended to help produce not only a testbed platform to

develop various subsystems, payloads, and allow generic robotic research, but also a

guide, a roadmap as to how to proceed with designing an operational robotic weapon sys-

tem. It is hoped that the whole process will help identify the problems related with,

among others, integrating multiple scientific and engineering disciplines, determining an

overall abstract system architecture that can be used as a generic template for future de-

signs, hardware acquisition procedures (including a list of potential hardware suppliers

and manufacturers) that reduce acquisition delays and hardware cost, standards to which

said hardware should conform, and a host of other aspects.

Thus, since "Brasidas" is more free-form than one might expect, the system design

approach must also be free-form, flexible, and able to adapt to requirements and de-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

19

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

mands as these are uncovered along the way. The approach selected is to adopt a spiral

development model [12], where consecutive versions of the system will be produced

(called Phases), each one adding more and more functionality over the previous one,

functionality that has in the meantime been well-tested and designed based on the new,

more concise requirements that (hopefully) have been refined as one of the products of

the previous Phase [13]. This also offers the advantage of defining material needs as

clearly as possible, thus reducing unnecessary spending of the extremely limited (own)

funding.

§1. Scenarios
The earlier development Phases, which start from rather vague and generic require-

ments, will use techniques from the scenario-based design paradigm described in [10],

such as scenarios and use cases, an approach well-suited to uncovering and producing

technical requirements through a narrative of the designers' (and the clients') vision of

use of the system. In layman's terms, one creates short stories describing how the system

would be used, and then sifts through these stories, trying to identify functions and re-

quirements which may not be obvious in the first place.

1.1. Scenario #1: Remote Patrol
"Brasidas" is deployed to patrol a pre-designated, pre-mapped area. The operator

loads the area map (which can be a simple geographical map) into the system before

the mission starts. The Control Station is positioned in a known location (usually a

monitoring or operations center); it may remain stationary throughout the mission,

or relocate if needed.

As soon as "Brasidas" boots, it attempts to connect to the "Brasidas" network. Once

connected, the platform advertises itself on the network, so other platforms and

Control Stations can know it is online.

The operator uses the Control Station to connect to the "Brasidas" network, then

retrieves a list of all "Brasidas" platforms online (if any others are operating), selects

20 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

the platform and connects to it, then switches it to Teleoperation Mode. The opera-

tor proceeds to guide the robot around the area of interest, using the feeds from its

onboard sensors and cameras to monitor the area. The robot software uses GPS

readings to locate the robot on the map.

If the robot comes across other human individuals (either personnel or clients/visi-

tors/etc., the operator can use the bi-directional voice communication channel to

speak to the individuals and receive replies, either to pass warnings, give directions

or orders, or for any other purpose. The operator can also disable Teleoperation

Mode, leaving the robot stationary at a location, and unresponsive to operator com-

mands. The operator can still view the video feeds while Teleop Mode is disengaged.

At any moment the operator can decide to disconnect from the platform, and do as

he wishes (e.g. take a break, or pack up the Control Center and move it to a different

location). At a later time, the operator can reconnect and reassert control of the ro-

bot.

1.2. Scenario #2: Supervised Autonomous Reconnaissance
"Brasidas" is deployed to patrol a pre-designated, pre-mapped area. The operator

loads the area map (which can be a simple geographical map) and list of pre-as-

signed wayponts of the patrol route onto the platform storage before the mission

starts. The Control Station is positioned in a known location (usually a monitoring

or operations center); it may remain stationary throughout the mission, or relocate if

needed.

In this scenario, "Brasidas" acts as a mobile version of the U.S. Army's upcoming

Unattended Ground Sensor program [14] [15]. A "Brasidas" element (one robot

plus its operator and control station) or squad (two elements) would typically be at-

tached to a mechanized infantry platoon or similar-sized echelon.

As soon as it is powered up and its System Core boots, "Brasidas" enters Autono-

mous Mode. It loads the map and pre-assigned waypoints of the patrol route, then

proceeds to move along the route autonomously. It uses SLAM and path planning

algorithms to navigate through the map, continuously updating its pose and calcu-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

21

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

lated path, as well as details of the area, such as landmarks and obstacles, which are

not included in the preloaded map. When "Brasidas" reaches the last waypoint, if

the route is closed (i.e. the last waypoint is the same as the first waypoint), "Brasi-

das" restarts the patrol. If the route is open, "Brasidas" moves backwards, following

the waypoints in reverse order.

"Brasidas" also attempts to connect to the "Brasidas" network, if the network is

available. Once connected, the platform advertises itself over the network, periodi-

cally broadcasting its identity and basic status information.

At any point in time, the operator can power on the Control Center and have it con-

nect to the "Brasidas" network, then retrieve and maintain a list of all "Brasidas"

platforms online. The operator can connect to the platform from the Control Cen-

ter at his discretion. The Control Center then receives the video feeds and telemetry

of the platform. While connected, the operator may, if he so chooses, engage Tele-

operation Mode. In this case, most of the Autonomous Mode's actions are sus-

pended (preempted), and "Brasidas" acts only under the operator's control. SLAM

continues to function (in order to update pose and map), but path planning is sus-

pended.

If at any point during the operation, a suitable target appears on the feeds, the oper-

ator or echelon's CO can decide to engage, using whatever payload is installed. Po-

tential options would include direct-fire weapons (Recoilless Rifles, GPMGs, LAWs,

etc.) as well as target designation systems for standoff weapons (e.g. a laser designa-

tor for Hellfires launched from an AH-64 taking cover behind a nearby hill). En-

gagement happens only in Teleop Mode, to keep a human in the loop and avoid

friendly fire incidents.

While connected (regardless of whether Teleop Mode is engaged or not), the opera-

tor can also modify the patrol route waypoints or the map. Modifying the list of

waypoints is done on the fly, but modifying the map causes Autonomous Mode to

restart, wiping all previous landmark and path history. When the operator disen-

22 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

gages Teleop Mode, Autonomous Mode resumes control and the robot continues

on its patrol.

When the CO decides reconnaissance is adequate, the operator directs "Brasidas"

back to the Control Station, either by entering it as a waypoint and relying on Au-

tonomous Mode, or by switching the platform to Teleop Mode and bringing it back

via remote guidance.

§2. Use Case Model
Use cases [16] are abstractions of system use that describe a class of scenarions.

Each use case describes one aspect (application) of a system, and typically includes sev-

eral functions, grouped together in a logical role. Use cases help tremendously in identify-

ing functions and requirements during system design [7], especially when the client-pro-

vided requirements or Mission Needs Statement are not very specific.

A use case has actors, which are entities external to the system (human

operators/other processes or system interfaces/etc.), that interact with it. Use case names

use active voice verbs from the system's point of view (not its operator's). Obviouly, each use

case may engage different subsystems of a system; each time, the use case is described

from said subsystem's point of view.

While scenarios help immensely to reveal requirements that are not otherwise obvi-

ous, use cases are particularly suited to categorizing and grouping functionality when

there are multiple actors [7]. Only a few use cases are listed here. For the most part,

"Brasidas" interacts only with its Control Center (and both are subsystems of the same

system), and the Control Center interacts with its operator, so there can only be so many

use cases describing interactions between one external actor (mainly, the operator) and

the system. The two most important ones, which represent finalized functionality and are

the least likely to need review at a later design Phase, are listed here. A few additional use

cases, considering interactions between multiple "Brasidas" platforms, pertain to a Phase

of the system very far in the future, and will not be discussed here. The results of these

studies are contained in this additional constraint:

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

23

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

(0.4) All Autonomous Mode functions of the "Brasidas" carrier vehicle and

payload must not depend on any other subsystem and functionality except

those already installed on the platform and/or payload.

2.1. Use Case #1: Connect to Platform
This is a very basic use case, that nonetheless brings out several useful functional re-

quirements, as will be analyzed later. The network architecture (about which thus far

no mention has been made) will in part be based on this use case.

Subystem: This use case involves the whole system.

Actors: The operator sitting at the control station console ("Operator").

Initiating Actor: The Operator.

Preconditions: The control station is acivated and its RF Digital Communications Link

has established a connection to the "Brasidas" network. The VC2S has retrieved a list

of all "Brasidas" platforms that are online and ready.

Postconditions: The VC2S is connected to the selected "Brasidas" platform.

Flow of Events:

Actor Steps System Steps
1. The Operator selects one platform from
the list.

2. The VC2S establishes an initial connection
to the selected "Brasidas". If a connection
cannot be established, the VC2S informs the
Operator and ends this use case.
3. The VC2S uses the initial connection to re-
trieve platform-specific parameters, such as
data stream availability (number and resolu-
tion/framerate of each video feed available,
telemetry, etc.) and ports to connect on
"Brasidas" to receive those streams.
4. The VC2S signals "Brasidas" to begin
streaming data. If the signal is acknowledged
unsuccessfully, or no acknowledge is received,
the VC2S displays an error message and termi-
nates the use case.
5. The VC2S connects to any data stream dis-
covered in the previous step. The display
changes to a new window, that can accommo-

24 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

date display of streamed data.
6. The VC2S begins to stream data from
"Brasidas", updating the display in real time.

2.2. Use Case #2: Engage/Disengage Teleop Mode
As far as the operator is concerned, switching mode requires a simple flip of a

switch (and it should always appear as simple as possible). However, the system han-

dles this change of state in a bit more complicated manner.

This use case describes what often is called "Manual Override" (MOVRD). This is

the deliberate intervention by the system's supervisor in a predefined matter, when

the system itself begins to diverge from its predefined or expected operation. In

Teleop Mode, "Brasidas" becomes a simple, remotely-operated platform. All other

functions are suspended.

This use case actually describes two use cases, one for engaging the MOVRD, and

one for disengaging it. However, with the exception of the result, the steps in each

case are exactly the same, so they are given as a single use case. When differentiation

is required, the individual actions in the flow of events are separated by a slash ('/'),

giving the action for 'Engage' before the slash, and the action for 'Disengage' after.

Subystem: This use case is initiated from the control station.

Actors: The operator sitting at the control station console ("Operator").

Initiating Actor: The Operator.

Preconditions: The control station is already connected to the platform.

Postconditions: "Brasidas" is in Teleop Mode.

Flow of Events:

Actor Steps System Steps
1. The Operator toggles the MOVRD switch.

2. The Control Station signals "Brasidas" of
the state change. If the signal is acknowledged
unsucessfully, or if no acknowledge is re-
ceived, the Control Station displays an error
message and terminates this use case.
3. The Control Station notifies the Operator
and enables/disables use of the remote con-
trol console.
4. The Control Station initiates/terminates a
data stream link with "Brasidas", to send ve-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

25

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

locity commands over it.

§3. Preliminary Software Architecture
Before even beginning to analyze the requirements in detail, and based on the hard-

ware architecture and the scenarios presented in this chapter, one can present a top-level

model of the software architecture, shown in Figure 2.1: Preliminary System Architecture.

The obvious pieces of information included in Figure 2.1: Preliminary System Ar-

chitecture are that each software stack (vehicle, station) operates independently of the

other, and that all communication uses the IP protocol stack.

Two questions immediately arise:

a. Should multiple platforms and their control stations be able to connect to the

same network, and be visible to one another, as also implied in Use Case #1, or should

each robot and its control station communicate over a dedicated link?

b. What technology and communications protocols should the network infrastruc-

ture use?

These questions will be tranformed to requirements and constraints during require-

ments analysis. The answers will come from attempting to select solutions that satisfy

those requirements and constraints.

26 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Figure 2.1: Preliminary System Architecture

"Brasidas" Network Infrastructure

Carrier Vehicle
& Payload

Software stack

Control Station
software stack

IP IP

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 3 .
Requirements Analysis

Given the abbreviated requirements, the scenarios and use cases, as well as the re-

strictions listed in the previous chapter, the proposed functional architecture will be ana-

lyzed here. First, the initial requirements should be further elaboreated on, always keeping

in mind the constraints imposed. It should be emphasized that from this chapter on-

wards, the primary focus is on the software design and implementation (software compo-

nents). Any reference to hardware components is made mostly for the sake of clarity, and

will be kept brief as needed.

§1. Requirements Determination
Besides the initial list of requirements produced as a result of the Mission Needs

Analysis, many more requirements can be extracted from the scenarios and use cases pre-

sented in the previous chapter. This task is detailed in this paragraph, separated into sub-

paragraphs related to each item analyzed. The extracted requirements will be simply

listed. The next paragraph will analyze each in detail.

We repeat the initial list of requirements here, for completeness. As per the formal

standard, each is also assigned a unique serial ID, for easy reference later. From now on, a

reference to a numbered requirement will be in the form R-XX, where "XX" is the re-

quirement's numeric ID.

1. Move over Flat Terrain

2. Move at Speeds Comparable to a Human

3. Be Fully Teleoperable

4. Possess Optical and IR Sensors

5. Navigate Autonomously

6. Be Operable at a Minimum Range of 1 Km

7. Operate for at least 4 hours at Maximum Load

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

27

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

1.1. Analysis of Scenario #1
Even before the first paragraph of the scenario description is finished, an obvious

requirement is discovered: Store an Area Map. This is clearly a functional requirement.

A second, related functional requirement appears at the end of the second paragraph:

Track Location via GPS. This also splits off a hardware requirement – the platform must

have a GPS installed.

The next discovered function relates to the network infrastructure: Discover On-

line Platforms. Alongside this is also a non-functional (interface) requirement: Connect

to the "Brasidas" Network. This last one is required before the system can perform the

Discover function, but it is not in itself a system function; rather it is a statement that the

Control Station must connect to a network infrastructure first (that will be defined later),

before conencting to the platform, and not in an arbitrary manner. Thus, this in effect

specifies in an abstract way a form of interface, to which the system should comply. The

Control Station must also be able to Connect to the Platform, and Disconnect from it,

without affecting the platform's functionality.

Of course, the platform must also be able to Connect to the "Brasidas" Net-

work, and in addition, it must be able to Advertise itself (the Platform) on the Net-

work. Since advertisement happens automatically, regardless of whether other nodes are

there to receive, it must happen periodically (not on request). Periodic updating must bal-

ance the need to keep the advertised status from going too stale, with the need to mini-

mize bandwidth usage. More on this later.

One more function is the ability for the operator to view the feeds of the onboard

sensors and cameras. One of the initial requirements was for the platform to possess op-

tical and IR cameras, but nowhere was it specified that the data from those sensors would

need to be available to the Control Station. Though this may appear self-evident, in fact it

is not. The sensors could very well be used to feed some onboard algorithm related to the

internal operation of the system. Now, reading through the scenario, it is obvious that the

system must be able to Stream Data Feeds, and also Stream a Bi-Directional Audio

Feed. In fact, if this is to be used for guiding the robot, then at least one camera (the

28 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Navigational Camera, or NavCam) should be dedicated to this task (at least in Teleop

Mode), and its feed should have minimal latency. Thus, an additional, separate require-

ment is extracted, Stream NavCam Video with Minimal Latency. The "minimal" as-

pect of its latency will be quantified later, during the functional decomposition.

1.2. Analysis of Scenario #2
Since this scenario extends Scenario #1, several functions are common. These will

not be listed again, except if additional functionality is discovered.

The first requirement identified is that Autonomous Mode Must Be the Default

Operating Mode, which makes sense. "Brasidas" is intended to be able to function with-

out a network connection or control station guidance, so when the system starts it stands

to reason to enter Autonomous Mode.

The second requirement pertains to how "Brasidas" should follow a defined patrol

path. The "again-from-start-if-closed, backwards-order-if-open" approach is in fact noth-

ing more than a simple Move to Next Closest Waypoint function. Obviously, since

waypoints represent a directed sequence (similar to a single-linked list), the waypoint clos-

est to the current waypoint, besides the previous one from whence we came, is the next

in the sequence, unless there is no next waypoint in the sequence, in which case the previ-

ous waypoint becomes the next destination.

Autonomous Mode is Suspended in Teleop Mode. This is the next new require-

ment discovered in Scenario #2, and although it is stated explicitly here, it was until now

implied from the manner operator control was portrayed in Teleop Mode – as absolute

control. The reason is obvious – having path planning generate motion commands in one

way, while simultaneously the operator is trying to steer the robot in a different direction,

is a good recipe for disaster. And why does the platform (or payload) need to evaluate po-

tential targets when the operator, who is clearly monitoring the feeds since the system is

in Teleop Mode, can identify and classify threats much more reliably? Nontheless, it

might be beneficial to have some functionality required for Autonomous Mode operation

available even in Teleop Mode (SLAM certainly is). The extend to which Autonomous

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

29

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Mode functionality is suspended, will be determined during implementation, and in sub-

sequent project Phases.

Target Engagement Happens only in Teleop Mode, at the direct control of the

operator. Let's keep the brass happy of moral dilemmas, shall we?

The last two paragraphs also uncover some additional, useful functionality. The op-

erator can modify the waypoint list or the map (Modify Waypoint List, Update Map),

even while Autonomous Mode is active. Of course, if the map is reloaded anew (not sim-

ply updated with additional information), which is a different function (Reload Map), at

the very least path planning must be reset, and the easiest way to do that is to simply wipe

the waypoints list (Wipe Waypoints List on Map Reload). It's like finding yourself sud-

denly teleported to a different location; it doesn't matter where you were going, you now

need to re-evaluate the situation. Letting the system run unchecked when the map or way-

points are updated is a major breach of reliability, and makes the system behavior totally

inconsistent.

1.3. Analysis of Use Case #1
Use cases tend to produce requirements much faster and with less analysis than sce-

narios, mainly because a use case is already much more structured than a scenario. In ad-

dition, the requirements resulting from a use case tend to be more concrete as well. In a

sense, the analysis of a scenario done to produce a use case, has stripped away much of

the inconsistency, and the results are much clearer.

The main functionality featured in Use Case #1 is the need to standardize the inter-

face of the initial connection. Afterwards, this protocol can be used to retrieve additional

functionality specific to each platform. This means the connection process hides the indi-

vidual platform's complexity and variations, and presents the available functionality in a

consistent manner. This is similar to the process one finds in many large frameworks and

SDKs (like e.g. DirectX), where a predetermined, always available method provides a

common interface that acts as a single point of entry into the functionality of the SDK.

30 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

From that interface, the user can call functions to retrieve any additional functionality that

may be available on the current platform, but is not guaranteed to be available on other

platforms running the same SDK (e.g. framebuffer object access, FSAA, support for

DMA transfers, or the like). As an analogy to the architecture elements described in [17],

a structurally similar design pattern is the Facade pattern, while the behavior best fits the

Mediator pattern.

Thus, so far Use Case #1 results in the following requirements:

Connect to the Platform,

Disconnect from the Platform,

The Initial Connection Must Follow a Common Protocol,

The Functionality Available In the Initial Connection Protocol Must Be Im-

plemented on All Platforms Regardless of Payload, and

The Procedure to Expose Additional Payload-Specific Functionality Must Be

Part of the Initial Connection Protocol.

The ability to Signal the Platform is another system requirement stemming from

Use Case #1. The same requirement mechanism (signaling) appears in Use Case #2, but

for a different function (MOVRD, see next section). From Use Case #1, the important

aspect of signaling is that it must be acknowledged – it must be a form of two-way ex-

change. The requirement of acknowledgement also implies need for verification. Signal-

ing (at least within the context of Use Case #1) is used to communicate a request whose

complete and correct reception must be communicated back. Depending on the request,

its result of execution may also need to be communicated back; Signaling Must Be Re-

liable. Within Use Case #1, signaling is used only to request start of data streaming, but

it might have to support additional requests as the implementation progresses, so its im-

plementation should be generalized to be as extensible as possible – Signaling Must Be

Extensible to Support Future Functionality.

Since signaling will involve acknowledgement, and perhaps will need to support tre-

transmission in case the initial communication was not received correctly, it will impose

additional overhead in the communication. Overhead means signaling will consume more

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

31

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

bandwidth than its data payload, and will require longer network time to complete, thus a

signal is generally expected to have the greatest latency among the various communica-

tion protocols that may be involved. The requirement to have minimal latency on the

NavCam stream indicates that signaling may not be appropriate for data streaming, but

should be used for one-off requests, where completeness and correctness of the commu-

nication is preferrable to minimal latency of it.

Finally, the streamed data must somehow be displayed at the Control Station. To the

design team this seems self-evident, however what is obvious to one, may be impossible

to fathom to another, so the function to Display Streamed Data is explicitly mentioned.

Note that All Data Transmitted on a Continuous Basis Should Be Streamed; plat-

form responses to one-time requests, or propagated events need not be displayed (but

should be logged in a logfile or console window). If such cases need to produce dis-

playable data, they should do so by altering the contents of an existing data stream (e.g.

telemetry).

1.4. Analysis of Use Case #2
Given what has been said so far, few additional requirements can be extracted from

Use Case #2. Most of the functionality described therein has already been encountered

and specified in the previous scenarios and Use Case #1. The new functionality uncov-

ered is that the change between Autonomous and Teleop Mode uses signaling, although

this seems like an implementation-oriented requirement, and the inclusion of such con-

straints in the requirements specification should be avoided. Likewise, the use of a sepa-

rate console, with dedicated controls, during Teleop Mode, is implementation-oriented.

Thus, Use Case #2 proves a very implementation-specific use case, and reveals little new

functionality. It will not be considered further during requirements analysis, but since it

specifies the MOVRD transition, it can be used as a guide during system implementation.

32 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

§2. Functional Decomposition
 Now that there is a list of requirements sufficiently long and detailed to proceed

with designing the system, the next step is to analyze each in detail, and determine how it

can be decomposed further.

1.0 Move over Flat Terrain
This is rather obvious. The platform should be mobile, and able to traverse at least

the least challenging terrain types, such as flat, rolling terrain. Road mobility is a no-

brainer, but ideally the vehicle should possess at least minimal off-road capabilities, mak-

ing suspension a required feature (suspension is generally not included on robots in-

tended for indoors or on-road movement only).

Still, the intent is not to construct a robotic tank that scales mountains and stairs.

Besides not being the vehicle's primary intended operating terrain, a design for such

presents significant challenges, best postponed for resolving at a future development

Phase, if the need to operate in such terrains becomes more prominent.

2.0 Move at Speeds Comparable to a Human's
A human walking across flat, horizontal terrain, travels at about 3-5 Km/hr, de-

pending on pace. A human jogging moves at between 6 and 10 Km/hr. This is a perfo-

mance requirement. The actual speed chosen in the first version of the hardware specifi-

cation, which applies to the current development Phase, is 6 Km/hr.

In terms of software implementation, we need not concern ourselves much with

how the robot achieves its speed. Motion and velocity commands should be platform-ag-

nostic, and should be translated to signals (voltage and current, absolute values, number

of parameters, etc.) specific to the platform used, as late in the command delegation as

possible. This enables use of the same software core on multiple, varied platforms, with

differing speeds, and only a few scaling parameters need to be changed.

The speed requirement mostly applies to the hardware (physical) architecture. The

requirement to have platform-agnostic motion commands, on the other hand, applies

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

33

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

strictly to the software architecture.

2.1 Minimum Platform Top Speed Should Be 6 Km/hr (performance).

2.2 Motion and Velocity Commands Should Be Platform-agnostic (extensibility).

3.0 Be Fully Teleoperable
The Control Station should have the capability, if the need arises, to manage and

regulate all of the robot's functions. Onboard automation should exist to the greatest ex-

tend possible, to enhance and augment operator actions, but any and all such automation

should feature a "disable" option (dynamic, if possible, without needing to restart or re-

connect to the robot). Thus, if the operator wishes to disable a specific function for any

reason, they can do so. Obviously, core functionality should be excempt from satisfying

this requirement.

4.0 Possess Optical and IR Sensors
To implement this requirement we essentially need cameras, which is a hardware re-

quirement. In software, we need to manage the camera streams, including the NavCam.

As a primarily hardware requirement, this will not concern us further in this work.

5.0 Operate Autonomously
When the system starts, the operator will not have connected yet, but it is possible

that at least a waypoint list is pre-stored in the system's storage, thus "Brasidas" can and

should begin autonomous functions when it boots. If no waypoints are entered, "Brasi-

das" should not move, at least from a navigational point of view (a future version might

feature higher-logic structures that would impose a task to seek cover or explore ran-

domly, mapping the immediate vicinity to a minimum radius, if no navigation path is

specified).

The Control Station can connect to the platform and the operator assume control at

any point during autonomous operation. Likewise, the operator might relinquish control

at any moment, in which case Autonomous Mode must be able to reassert control imme-

34 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

diately, with as little overhead as possible. Thus, suspended actions should be preempt-

able, not requiring a full restart to function again.

Any functionality that is not needed for a quick transition back to Autonomous

Mode, but which the operator might occasionally find useful in Teleop Mode, should be

made suspendable and preemptable at the operator's control, without its actual state or

transition thereof having any effect on subsequent Autonomous Mode or overall vehicle

functionality.

When applied to Autonomous Mode functions, this requirement will translate into

each function characterized as required to be suspendable or not. For now, this remains a

top-level Autonomous Mode constraint. It will be analyzed, evaluated, and defined more

specifically during the development Phase of Autonomous Mode.

Autonomous navigation, although just a subset of autonomous operation, is still a

major functional requirement, so much so that an entire development Phase is devoted to

implementing autonomous navigation. This is a very complex requirement, and spawns

an extended tree of lower-level requirements. The current system implementation de-

scribed herein is of a Phase without this functionality, thus to avoid filling pages with un-

necessary details, this requirement will be described here only briefly. Some additional in-

formation about the concept of autonomous navigation will be provided in the Epilogue.

Typically, autonomous navigation is broken down into three separate problems:

How to generate a map of the environment, how to localize the robot within the

environment, and how to plan a path between two points within the environment.

The first two tasks (mapping and localization) are typically solved by a series of al-

gorithms known as SLAM (Simultaneous Localization And Mapping) – at least that's the

trend nowadays. SLAM solves the "chicken-and-egg" reasoning that you need to know

your location in order to place objects on the map, and you need to know the position of

obejcts on the map in order to determine your location.

Planning a path likewise has another set of algorithms available that can get the job

done. These algorithms are typically compute-bound, so whether they can function in real

time or not depends entirely on the CPU of the host system.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

35

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Sensor readings of the environment are related to the SLAM problem, but not to

path planning. All kinds of positional sensor readings, like GPS, IMU, planar laser scans,

odometry (wheel encoders), landmark recognition via visual camera snapshots, etc., can

be fused together at various levels [18], in order to support a complete SLAM solution. In

case the map is preloaded, SLAM must also support the capability to function when the

map is reloaded dynamically, even if it is just a restart of the SLAM algorithm.

This requirement can be decomposed into the following two requirements:

5.1 Autonomous Mode Must be the Default Operating Mode (usability).

5.2 Autonomous Mode Must be Suspended in Teleoperation Mode (performance).

5.3 Navigate Autonomously (functional).

5.3.1 Perform SLAM and Pose Estimation (functional).

5.3.2 SLAM Must Support Dynamic Map Updates (usability).

5.3.3 Follow Path Between Two Points on the Map (functional).

This function can further be decomposed into the following, including the addi-

tional related functionality uncovered through the analysis of Scenario #2:

5.3.3.1 Plan Path to Target (fuctional).

5.3.3.2 Generate Motion (velocity) Commands (functional).

5.3.3.3 Path Planning Must Accept Dynamic Waypoint List Updates (us-

ability).

5.3.3.4 Path Planning Must Accept Dynamic Map Updates (usability).

5.3.3.5 The Waypoint List Must Be Wiped Upon a Map Reload (reliabil-

ity).

One additional parameter, that cannot yet be specified, is how often to generate

motion commands (a performance requirement). Needless spamming should be

avoided, since it will tax the motor controller, and also flood the serial port and

increase CPU utilization. We do know from the motor controller's specification

that the watchdog kicks in and stops the motors if no command is received over

the serial for 1 sec. Thus, motion commands should be generated at least once

36 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

per second. In fact, to account for possible processing delays or otherwise, a safer

choice is to generate motion commands at least twice per second.

6.0 Be Operable at a Minimum Range of 1 Km
If a robotic sentinel is to have meaningful applications, it should be able to venture a

fair distance away from the Control Station. This is a performance requirement actually

(non-functional).

The token distance of 1 Km was selected based on the assumed mission. A sentinel

robot should patrol and guard an area of the same approximate size as an Army Base.

For most cases, that translates to a range of quite less than 1 Km, but if that same robot

is to be used in other, less localized roles, then 1 Km is a decent choice. In a hilly or

forested terrain, 1 Km approximately represents the maximum meaningful visual range.

7.0 Operate for at least 4 hours at Maximum Power Load
Assuming "Brasidas" operates in its initially specified role (sentry), it should incor-

porate seamlessly with a Hellenic Army Base's guard duty rotations. This translates to a

patrol duration of 2-3 hrs of near-constant motion. When the shift change occurs,

"Brasidas" should also be eligible to be 'relieved' and its shift taken over, either by the

next "Brasidas", or by the typical two-man patrol element.

The highest power drain is when the robot is moving (the motors are contributing

to the majority of the load). When stationary, the power drain is reduced, as only the ele-

crtonics are drawing power. To cover the worst-case scenario, where "Brasidas" must con-

stantly be on the move, the Powerplant, which will typically be a battery, should provide

at least 3 hrs of functionality at the maximum system load.

"Brasidas" can't simply be switched on and sent on patrol. The robot will likely re-

quire a minute or so to boot, the "Brasidas" network will need to be set up, and then the

Control Station must connect to the robot and upload an area map and patrol route way-

points, a process that typically takes 10-15 min. Likewise, when the patrol ends, "Brasi-

das" will need to stay online for a time (typically a few minutes), to allow proper shut-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

37

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

down. Thus the required minimum operational time must be greater than 3h20m. A safety

margin of 25% is added to this figure, to account for partial battery charging, battery ca-

pacity degradation over the system's lifetime, and other random events, and the minimum

operational time ends up at 4 hrs. In fact, the calculations leading to this figure are rather

conservative, and the limit should be higher, but for starters it will suffice. This is oviously

a performance requirement.

8.0 Connect to the "Brasidas" Network
As shown on Figure 2.1: Preliminary System Architecture, the network infrastruc-

ture is a separate functional block. This infrastructure aggregates all the network-specific

functionality. Of course, since the network hardware is integrated in part on the platform

and in part on the Control Station, the network infrastructure implementation will end up

being split likewise. One should also keep in mind that the actual network functionality

does not exist as standalone code; while it appears as a single separate functional block, its

functions all have the single purpose of allowing the Control Station and platform soft-

ware stacks to communicate with each other. Thus, some part of the network functional-

ity will be implemented as part of each software stack, each part ending up required to

communicate in a specific manner with the part implemented in the other stack.

Therefore, the requirement to connect to the network in the end is not a function

that the system must implement, but an interface to which the system must conform.

This interface will be defined as part of the network architecture. What is required is con-

formance to this interface, which makes this an interface requirement.

9.0 Discover Platforms Online
After a Control Station connects to the "Brasidas" network, it must somehow figure

out the existence of "Brasidas" platforms that are also connected to this network. Like-

wise, a "Brasidas" robot that joins a network may also need to build a list of other plat -

forms online. Furthermore, this discovery must be ongoing; as long as a node remains

connected to the network, it should be able to update its list of other nodes.

38 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

As explained in R-16.0 (Advertise Platform Over the Network), discovery should be

passive, not active. A note (platform) is responsible for announcing itself over the net-

work. Other nodes should only listen for such announcements, and need not actively

send requests to receive node updates. Passive discovery is much more conservative on

network resources.

Since discovery is passive, a way must be defined for discarding nodes that were on-

line earlier, but are offline now, and thus no updates are received from them. A node en-

try in the list should be timestamped with the time of last update received (using the time

of the node that maintains the list, not that of the remote node), to facilitate a measure

of confidence in whether this node is stale or not. According to R-16.0, a node advertises

itself at least once every 3 sec, so to account for clock discrepancies, a list entry whose

timestamp differs from the system time by more than 4 sec (stale node), should be con-

sidered offline and removed from the list.

This function then decomposes thus:

9.1 Add a Node to the List When Its Status is Received (functional).

9.2 Timestamp Discovered Nodes With Time of Last Discovery (functional).

9.3 Remove Nodes Whose Timestamp is 4 sec or More Older Than System Time

(performance).

10.0 Connect to Platform
Assuming a platform has been discovered according to R-9.0 (Discover Platforms

Online), an initial connection should be straightforward. This initial connection needs to

implement several additional requirements, as explained above in the analysis of Use Case

#1. Following that analysis, this requirement can be decomposed as follows:

10.1 Establish Initial Connection (functional).

10.1.1 Initialize Network Link (functional).

10.1.2 Retrieve Platform-Specific Parameters (functional).

10.1.3 Retrieve Additional Platform-Specific and Payload Capabilities (functional).

10.2 The Initial Connection Must Follow a Common Protocol (interface).

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

39

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

10.3 The Functionality of the Initial Connection Common Protocol Must Be Imple-

mented on All Platforms Regardless of Payload (interface).

11.0 Stream Data Feeds
Data streams are continuous feeds of logically grouped information sets. Examples

include the NavCam's video stream, another installed camera's video stream, audio stream

from the onboard microphone (if one is installed), a stream of telemetry and status re-

ports, etc. A stream may contain raw data (e.g. a video or audio feed), or processed and

structured information (e.g. telemetry); thus, this opens the possibility to perform sensor

fusion onboard the platform, then stream the resulting information instead of raw data.

Depending on the case, this can reduce bandwidth requirements significantly, albeit prob-

ably at the cost of additional – and sometimes substantial – CPU utilization.

To stream the sensor feeds over the network produces traffic. Sometimes, this traffic

is pointless, such as when no station is trying to receive the feeds. While capturing the

sensor feeds onboard might have applications besides streaming them to the Control Sta-

tion or some other interested node in the network, and therefore can happen regardless

of the network state, streaming should only be done when a network request for the

feeds has been submitted. Every data stream should be pausable and resumable indepen-

dently of any other data streams.

Since, as mentioned, streaming increases network traffic, the data stream should be

compressed before transmitted, if possible; such a stream obviously needs to be decom-

pressed upon reception before its data content can be utilized. Video feeds can take ad-

vantage of any available video compression codec, and the same goes for audio feeds;

data feeds are a different matter, but data feeds, even when uncompressed, generally take

up a much smaller portion of network bandwidth compared to media streams. No func-

tionality that depends on properly transmitted data should rely on data streams, and

should instead use the signaling function.

Thus, this requirement evolves into the following ones:

40 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

11.1 Capture Data Feeds from Onboard Sensors (functional).

11.2 Determine If a Network Request to Stream a Feed has been Submitted (func-

tional).

11.3 Stream the Data Feeds Over the Link (functional).

11.4 Each Stream Should be Manageable Independently from Any Other Stream (us-

ability).

The NavCam stream follows the guidelines of R-11.0 (Stream Data Feeds), so it is

not a separate functional requirement (and receives no separate ID). Its feed however,

when the robot is teleoperated, must be transmitted in real-time, or at least near-real-time,

since any latency directly affects the smoothness or the robot's responses to guidance,

and the operator's response time to obstacles and other events of interest appearing in

the camera feed. Ideally, the IR camera stream should have a similar latency limitation,

but the IR camera is part of the payload, and its exact performance requirements will be

determined along with the other payload requirements.

To quantify the "minimal" amount of acceptable latency, a base calculation can start

from R-2.0 (Move at Speeds Comparable to a Human), and take into account the typical

reaction time of a human operator, which is around 250 msec. Assume further that the

maximum permitted distance the vehicle may move, before the combination of latency

and reaction time allow the operator to apply course corrections, is 1 m (positional error).

That is, the vehicle's maximum stopping distance should not exceed 1 m. This is also the

typical positional error of most modern budget GPS modules. According to the hardware

specification, once a stop command is issued, the motors are powerful enough to stop the

robot instantly, so there is no distance overhead involved, and the only source of stop-

ping distance comes from the operator's reflexes and network latency.

 Then, given R-2.0's speed limitation, the maximum time differential is

tD=
1 m

6 Km /h
=600 msec

Since a human operator's reflex response time is approximately 0.25 sec, the tolera-

ble latency of the NavCam video feed must not exceed 0.35 sec. We will settle on a value

of 0.15 sec, so we can account for the additional latency for a stop command to reach the

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

41

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

robot (round-trip delay), and still have some overhead allowance. This means that this re-

quirement is replaced by the following:

11.5 The NavCam stream must have a latency of 150 msec or less (performance).

The bi-directional audio also follows the guidelines of R-11.0 (Stream Data Feeds),

so it will be implemented as part of the latter. Latency limitations apply to the bi-direc-

tional audio feed as well, although they are far less strict than R-11.5.

12.0 Store Area Map
This requirement pertains primarily to autonomous navigation. The robot should

have the capability to store a map of the operational area. At the initial development

stage, there is not enough information to specify the exact contents of the map, and the

scales (local, global, etc.) it should support. These will need to be defined during another

pass along the spiral, when autonomous navigation is being developed.

The Control Station should be able to store a map regardles of the operating mode.

At first glance, the map should store the landmarks used for SLAM. What features

constitute a landmark is determined by the specific SLAM algorithm used. Also, the spe-

cific path planning algorithm will in turn determine what other information needs to be

stored on the map. In addition, the hardware implementation will impose limits on the

possible maximum size of the map that can be stored and processed. Finally, the rate at

which the map is updated, should be high enough to contain all needed information, but

not so high that it imposes unnecessary computational load on the system. For now, this

rate limitation cannot be specified further, but even incomplete, it should be included in

the specification, if for no other reason than as a reminder to the development team that

such a restriction exists and should be determined in a future development Phase.

At this time, this requirement can be decomposed into the following reaquirements

only in an abstract approach:

12.1 Load or Reload a Map (functional).

12.2 Retrieve Map-Related Sensor Data (functional)

42 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

12.3 Process Sensor Data to Produce Map-Specific Information Structures (functional).

12.4 Update Map (functional).

12.5 The Map should be Updated as Often as Needed, and not More (performance).

13.0 Track Location via GPS
A GPS module allows each node to determine its approximate location without re-

sorting to more complex algorithms. SLAM generally provides much better positional ac-

curacy than a GPS alone, as it fuses multiple positional sensor data, but SLAM is much

more complex and computationaly-intensive, and SLAM will be implemented as part of

Phase 2 as per R-5.3.1(Perform SLAM and Pose Estimation). A GPS module can, how-

ever, be included since Phase 1, at minimal cost and integration effort, to provide basic

localization functionality. Plus, GPS can be used for more than localization, as it includes

time information as well (can allow time synchronization).

It should be emphasized that the GPS signal is neither secure nor jam-resistant. The

C/A signal available to civilian modules is especially vulnerable. SLAM, which combines

multiple sources, is less prone to spoofing.

14.0 Signal the Platform
Signaling is used to send a single request, and get a response. It can be used to im-

plement multiple functions, by properly specifying the signal mechanism. A signal's recep-

tion must be acknowledged by the platform, and this acknowledgement is separate from

the platform's response to the Control Station's request. A signal is not obligated to know

how to handle a response – only to send the request, verify (via the received acknowl-

edgement) that it was received correctly, then take a response and pass it back to the

client that generated the request in the first place. This approach ensures that a request

and its response are communicated in a reliable manner.

It should be emphasized that at this stage of the design, signaling is unidirectional –

from the Control Station to the platform, and not the other way round. However, in a fu-

ture development Phase a case can be made for signaling to be possible between plat -

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

43

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

forms as well. Whether it would be meaningful in that case to also have signaling from a

platform to a Control Station, is a matter that has not yet been studied.

In addition to the possibility of targeting multiple types of receivers in a future revi -

sion, a signal mechanism must also be able to communicate any additional signal-depen-

dent functionality that may be introduced in a future Phase. This extendability can be en-

sured by making the signaling protocol request-agnostic, i.e. not having to know the

specifics of individual requests and responses communicated. As long as any additional

future functionality can maintain that agnosticism, the signaling protocol should be able

to accommodate it without problems.

Signaling should only be possible after an initial connection to the platform has

been established, as per R-10.0 (Connect to Platform). As such, the base signaling func-

tionality should be part of R-10.0's Common Protocol specification. Thus, given these

guidelines and restrictions, this function can be decomposed like so:

14.1 Send Signal Request (functional).

14.2 Receive Acknowledgement (functional).

14.3 Receive Response and Return It to Request Initiator (functional).

14.4 The Signaling Mechanism Must Be Part of the Initial Connection's Common

Protocol (interface).

14.5 The Signaling Mechanism Must Be Request- and Response-Agnostic (interface).

15.0 Display Streamed Data
The Control Station should be able to display any stream it chooses to request and

receive from the platform. "Display" in this case extends beyond the visual aspect. Play-

ing an audio stream over speakers falls under the "display" aspect, as does updating the

text of a simple text label component. Each stream will carry its own, additional require-

ments regarding latency handling.

There is no need to specify in a generic manner how to handle the different stream

capabilities of different payloads. While the initial connection to the platform from the

44 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Control Station must follow the same common protocol regardless of the actual options

available, the Control Station can have different display implementations, and use the one

corresponding to the installed payload, information that the Control Station retrieves after

it is connected to the platform, as per R-10.1.3 (Retrieve Platform-Specific and Payload

Capabilities).

16.0 Advertise Platform Over the Network
As soon as a platform connects to the "Brasidas" network, it must begin to advertise

itself. Advertising over a network without prior knowledge of possible receivers means

that a platform must broadcast its state, typically by including in the broadcast basic in-

formation, such as its ID (which obviously must be unique among all the platforms par -

ticipating in the same network), location, and perhaps basic status information, most

prominently its current playload. Combined with R-0.6 (The Network Must be Based on

the IP Protocol), broadcasting under the IP protocol uses the appropriate network ad-

dress (based on netmask). However, to allow for the possibility to later allow the network

to be partitioned into group, multicasting should be allowed alongside broadcasting. Mul-

ticasting is not inherently supported in the IP protocol, and instead requires IGMP [19].

This will become a constraint below R-0.6:

0.6.1 The network must support IGMP.

Advertising must be periodic, since it cannot, and should not depend on a request-

reply model. A platform or Control Station only knows about other platforms online by

receiving their broadcasts. If each node connected to the network were to request a

broadcast from every other node every let's say 1 sec, then each network update would re-

sult in n2 advertisement broadcasts and n request broadcasts every 1 sec (because each re-

quest would receive n replies). By comparison, a periodic advertisement at the same rate

would require only n broadcasts every 1 sec. The bandwidth saved in the second case is

obvious.

On the other hand, if the periodic rate is too slow, platform states may end up not

being updated fast enough. It makes sense to further limit advertisement broadcasts by

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

45

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

adopting a few criteria about when a platform should broadcast an update. To maintain a

reasonably updated tactical picture, this update should happen once every few seconds. A

good choice is about 3 sec, so this is the interval at which updated information about a

node's state should circulate over the network.

A logical assumption is to require that a platform should broadcast an update if its

location changes by at least 1 m (the typical dimension of the current "Brasidas" platform

and also the typical accuracy of GPS), or its payload status changes. The same distance-

based criterion is used to determine the NavCam's acceptable latency. Based on the re-

sults of the latter, the minimum period between broadcasts is no less than 600 msec. The

assumed maximum period of 3 sec seems acceptable at the moment; it shouldn't need to

be revised until implementation. Thus, we get the following additional requirements:

16.1 Broadcast Platform ID and Status over the Network (functional).

16.2 A Platform Must Advertise At Least Once Every 3 sec (performance).

16.3 A Platform Must Not Advertise More Often Than Once Every 0.6 sec (perfo-

mance).

16.4 A Platform Must Advertise When Its Location Since Its Last Advertisement Has

Changed By At Least 1 m (perfomance).

17.0 Disconnect from Platform
This one is pretty straightforward. Besides signaling the platform to terminate feed

streaming, the platform should switch to Autonomous Mode when the Control Station

disconnects, if Manual Override had been engaged. Signaling is described as a separate

functional entry, since it is used by multiple other functions, and a requirement that Au-

tonomous Mode be the default mode is specified already under R-5.0 (Operate Au-

tonomously), so there is really nothing more to this function, other than defining a viable

transition between modes.

0.5 Target Engagement Happens Only in Teleop Mode
While target identification algorithms might have evolved to be sufficiently accurate

46 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

today, the same does not apply to threat assessment and target classification algorithms;

these aspects of machine learning and artificial intelligence are still being actively re-

searched, and not mature enough to rely upon them in the field, especially in circum-

stances as chaotic as a potential battlefield. Thus, any sort of target engagement must be

actively supervised and monitored, lest it leads to friendly fire incidents and unnecessary

loss of life. This is an overall system operational constraint, and is not limited to the func-

tionality offered by Autonomous Mode.

§3. The Network Architecture
Back in Chapter 2: System Modeling, where an early, rough version of the software

architecture was presented (see Figure 2.1: Preliminary System Architecture), two ques-

tions were raised with regard to the mentioned network architecture, namely whether

multiple "Brasidas" and Control Stations should be part of the same network, and what

the network's specifications should be. Now, after discussing in detail the system design

and its architecture, it is time to answer these questions. Before doing so, the reader is re-

minded of the adopted development model: spiral development. This is a case where the

network has been implemented at a very basic level, with additional design, development,

and testing intended in the future.

3.1. The Initial Version
There is only a single vehicle and a single Control Station, and that leaves very little

room to experiment with different network topologies and options. In the beginning, we

used a basic case of a point-to-point link, as illustrated on Figure 3.1: The Initial Network

Configuration, below.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

47

Figure 3.1: The Initial Network Configuration

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

The only advantage to this limited case, is that one cannot bother with network de-

sign along the rest of the system design, even if they wanted to; it lightens the workload,

in a sense, and in all honesty, it is not as if there are no other issues to solve during the

design process, plus even this trivial solution has proven more than sufficient in the case

where only a single "Brasidas" needs to be deployed. Needless to say, however, if "Brasi-

das" is to ever have a potential for use, this simple network architecture could not stand.

3.2. Specifying the Desired Architecture
Any network specification should basically follow the OSI 7-layer architecture [20].

As a well-studied architecture and open standard, it makes little sense not to adhere to it,

especially since virtually every other network systems designer out there does.

The first question posed in Chapter 2: System Modeling, was concerned with

whether multiple "Brasidas" platforms should be allowed to interconnect. In the absence

thus far of any indications to the contrary, multiple platform interconnection should be

allowed. The functionality can always be revoked later if studies show that this is neither

required nor convenient. But as a rule, it is generally better to take away a capability that

you have available in the first place, that to make available a capability that was absent to

begin with.

With respect to the second question, regarding the type of technologies and proto-

cols to use, the given range of R-6.0 (Be Operable at a Minimum Range of 1 Km) hints

at the general technology to use: it is obvious that communication should be wireless (un-

less somehow one finds the prospect of a 1-Km-long cable practical). Since the current

solution uses multi-Mbps WiFi and at no point has this link been utilized to over 50%,

throughput cannot be quantified in detail at this stage. The greatest amount of link uti-

lization comes from video streaming. Assuming streams are H.264-encoded, an 720p@30

stream consumes around 4 Mbps (average picture quality), and a 1080p@25 consumes

around 7 Mbps. Any future solution should provide at least this much throughput at the

range required by R-6.0, per camera feed required. However, additional overhead may be im-

48 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

posed. Network organization structures, and other aspects of communications, touched

briefly below, can easily push this single-digits Mbps throughput to a much higher value.

All else being equal, it makes sense that the option with the highest throughout should be

selected.

For the greatest convenience in system design, the network should follow the IP

protocol stack from Layer-3 upwards. The requirements for the Physical and Data-Link

Layers will be the subject of this section, but since the whole point of the "Brasidas" net-

work will be essentially to interconnect computers, it is only natural to use the most

proven protocol available – the IP protocol. This is the first and most fundamental re-

quirement (constraint, actually) of a desired network architecture:

0.6 The Network Must be Based on the IP Protocol.

As mentioned earlier, there is also a need for nodes to advertise their state over the

network, without prior knowledge of other nodes. In general, this requires support of a

broadcasting or multicasting protocol on the network's behalf, but since the network

must be based on the IP protocol, a multicast protocol (IGMP) is already defined as part

of the IP protocol suite (broadcasting is supported by IP itself), so this must be sup-

ported as well.

3.3. The Current Situation
The current network architecture is based on the mesh topology described later in

this paragraph. Of course, a two-node mesh is rather trivial, but it is enough to test the

basic aspects of networking and decide on proper policies (addressing scheme, etc.).

A military-grade, operational network of "Brasi-

das" platforms and Control Stations would require net-

work management and disruption tolerance. The two

prevalent topologies for more than two participants are

point-to-multipoint (PtMP) and mesh.

PtMP, or star topology, shown on Figure 3.2:

Point-to-MultiPoint Configuration, has a single net-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

49

Figure 3.2: Point-to-MultiPoint
Configuration

Access
Point

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

work controller node (think of WiFi's Access Points), which represents a single point of

failure, hardly a disruption-tolerant network. Imagine if, during an operation, enemy fire

were to take out this network controller node; the entire network would collapse and all

"Brasidas" platforms would be useless. In addition, as the platforms move around, they

must all remain within range of the Access Point at all times, or else they lose connectiv -

ity. In addition, the AP must simultaneously service all the clients, so unless it employs an

advanced MU-MIMO scheme, the effective bandwith drops and latency skyrockets. The

only benefit, if the AP is stationary and its location is known, is that Control Stations can

then use directional antennas for increased range. Clearly however, PtMP is not appro-

priate as it provides virtually no disruption tolerance or adaptability to changing field cir-

cumstances.

A mesh topology on the other

hand, in particular that of a Mobile Ad-

hoc NETwork (MANET), serves the

concept almost too well. Such a possible

configuration is depicted on Figure 3.3:

MANET Mesh Configuration. Under

such an architecture, every "Brasidas"

platform or Control Station is treated

equally as a node. Nodes can join or

leave a mesh network dynamically, and

modern mesh routing protocols like OLSR and BATMAN can route packets via the

shortest hop path and compensate for nodes leaving the network with great efficiency,

making such networks self-healing. As long as each node in a mesh network can "see" at

least two others, the network is disruption-tolerant. Such a dynamic network configura-

tion may occasionally present large traffic latencies, however; this is a topic that requires

further research. Nonetheless, this culminates in the second and third requirements

(again, both constraints) for the desired "Brasidas" network:

50 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Figure 3.3: MANET Mesh Configuration

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

0.7 The Network Must be Structured According to the Mesh Topology, and

0.8 The Network Must Implement a Routing Protocol for Multi-Hop Ad-hoc

Networks.

Well, in short, the network should just look like that of Figure 3.3: MANET Mesh

Configuration. Care should be taken in the case of a MANET that throughput is affected

by the number of hops as little as possible; it is well known, for example, that single-radio

WiFi repeaters reduce throughput by half, since their radio must switch between receiving

and transmitting. Likewise, when a station has to serve multiple client links (the WiFi

term is 'spatial stream'), it has to transmit or receive only a specific client's data each time,

and ignore the others. In a mesh network, where links are dynamic and change as the

nodes move around, such problems can become insurmountable if the circumstances

happen to be 'just right', such as when the network ends up being partitioned in two clus-

ters, and only a single node can connect to both. This single node acts as a bridge and a

bottleneck at the same time, if it suffers from the shortcomings mentioned in this para-

graph.

A typical solution to the problems discussed in the previous paragraph is to use mul-

tiple radios per node, typically two radios, one to transmit and one to receive. This solves

the throughput issue, but still is unable to handle the one-client-at-a-time issue. In addi-

tion, using multiple radios in close proximity produces cross-talk, and causes significant

interference. A new technology that greatly alleviates both problems is MU-MIMO,

which essentially can handle multiple simultaneous spatial streams, each directed at a dif-

ferent client. At the moment, only a few commercial routers support this option, and only

in the 5 GHz band, which is extremely short-ranged.

3.4. A Glimpse of the Future
Range and throughput may be the primary requirements from a functional and de-

sign point of view, but they are not the only ones. One should not forget that "Brasidas"

is intended to (some day) be a military system, and the only two attributes of military

wireless communications that matter are security and jam resistance. Needless to say,

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

51

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

WiFi may be fast and cheap, but it is lacking in security. AES128 found in most commer-

cial WiFi transceivers, is NSA-approved and practically unbreakable, but is nonetheless

not recommended by NSA for encrypting information classified above TOP SECRET

(AES128 is Type 3 and part of NSA's Suite B, but not Suite A), so acceptability of its use

depends on the circumstances.

The "official", NSA-sanctioned policy is recommended in [21], under the "Mobile

Access Capability Package" heading. However, NSA is preparing an upcoming cryptogra-

phy suite, to replace the elliptic-curve-based algorithms of Suite B with quantum resistant

algorithms.

Security means data should be transmitted over the network encrypted with a "suffi-

ciently secure" encryption scheme. How secure should "sufficiently secure" be, and which

algorithms are adequate, is a requirement (constraint) that will be specified by the end

user. Even if the end user does not specify the parameters of COMSEC, some form of

access control to the network must be implemented. That is the fourth network require-

ment (constraint):

0.9 The Network Must Implement At Least an Access Control Protocol.

The WiFi modulation scheme is also the joke of jam resistance, since a second Ac-

cess Point transmitting on the same channel can effectively disrupt communications. Jam

resistance mostly means using either FHSS or DSSS modulation schemes, although other

techniques, such as CCSS (a coded modulation scheme, see [22] and [23]) are beginning to

emerge. Unfortunately, including military-grade communications hardware in "Brasidas"

is impossible given constraint 0.3, and besides constraint 0.1 says that as a problem al -

ready solved, it can be ignored. Since most communications solutions today are designed

based on the OSI 7-layer architecture, security and jam resistance are capabilities that are

implemented transparently over the other attributes (security is usually implemented at

the session or transport layers), and in the majority of commercial solutions examined

briefly do not affect range or throughout. Jam resistance depends entirely on the end

user's needs; there is no requirement to provide the "Brasidas" network with any kind of

52 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

jam resistance, unless the end user specifies otherwise.

§4. Requirements Overview
Table 3.1: Requirements Overview lists all requirements produced so far, in tree

form. It includes the initial requirements, maintaining of course the numbers allocated to

each, and is augmented with all the requirements discovered during Requirements Elicita-

tion and Decomposition, each now formally numbered. The requirements are also cate-

gorized according to their type, to make allocation easier.

Table 3.1: Requirements Overview
Numeric ID Description Type

0.1 "Brasidas" is a research prototype Constraint

0.2 Adopt the use of COTS components and open standards Constraint

0.3 Funding and Support is very specific Constraint

0.4 All Autonomous Mode functions must depend only on installed
capabilities

Constraint

0.5 Target engagement happens only in Teleop Mode Constraint

0.6 The network must be based on the IP protocol Constraint

0.6.1 The network must support IGMP Constraint

0.7 The network must be structured according to the mesh topology Constraint

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

Constraint

0.9 The network must implement at least an access control protocol Constraint

1.0 Move over flat terrain Hardware

2.0 Move at speeds comparable to a Human's Performance

2.1 Minimum platform top speed should be 6 Km/hr Performance

2.2 Motion and velocity commands should be platform-agnostic Extensibility

3.0 Be fully teleoperable Functional

4.0 Possess optical and IR sensors Hardware

5.0 Operate autonomously Functional

5.1 Autonomous Mode must be the default operating mode Usability

5.2 Autonomous Mode must be suspended in Teleop Mode Performance

5.3 Navigate autonomously Functional

5.3.1 Perform SLAM and pose estimation Functional

5.3.2 SLAM must support dynamic map updates Usability

5.3.3 Follow path between two points on the map Functional

5.3.3.1 Plan path to target Functional

5.3.3.2 Generate motion commands Functional

5.3.3.3 Path planning must accept dynamic waypoint list updates Usability

5.3.3.4 Path planning must accept dynamic map updates Usability

5.3.3.5 The waypoint list must be wiped upon a map reload Reliability

6.0 Be operable at a minimum range of 1 Km Performance

7.0 Operate for at least 4 hrs at max power load Performance

8.0 Connect to the "Brasidas" network Interface

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

53

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Table 3.1: Requirements Overview
Numeric ID Description Type

9.0 Discover platforms online Functional

9.1 Add a node to the list when its status is received Functional

9.2 Timestamp discovered nodes with time of reception Functional

9.3 Remove nodes whose timestamp is 4 sec or more older than
system time

Performance

10.0 Connect to platform Functional

10.1 Establish initial connection Functional

10.1.1 Initialize network link Functional

10.1.2 Retrieve platform-specific parameters Functional

10.1.3 Retrieve additional platform-specific and payload capabilities Functional

10.2 The initial connection must follow a common protocol Interface

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

Interface

11.0 Stream data feeds Functional

11.1 Capture data feeds of onboard sensors Functional

11.2 Determine if there is a network request to stream data feeds Functional

11.3 Stream data feeds over the network Functional

11.4 Each stream should be manageable independently from others Usability

11.5 The NavCam stream must have a latency of 150 msec or less Performance

12.0 Store area map Functional

12.1 Load or reload a map Functional

12.2 Retrieve map-related sensor data Functional

12.3 Process sensor data to produce map-specific information structures Functional

12.4 Update the map Functional

12.5 Map update rate must be optimal (TBD) Performance

13.0 Track Location via GPS Functional

14.0 Signal the platform Functional

14.1 Send signal request Functional

14.2 Receive acknowledgement Functional

14.3 Receive response and return it to request initiator Functional

14.4 The signaling mechanism must be part of the initial connection's
Common Protocol

Interface

14.5 The signaling mechanism must be request- and response-agnostic Interface

15.0 Display streamed data Functional

16.0 Advertise platform over the network Functional

16.1 Broadcast platform ID and status over the network Functional

16.2 A platform must advertise at least once every 3 sec Performance

16.3 A platform must not advertise more often than once every 0.6 sec Performance

16.4 A platform must advertise when its location since its last
advertisement has changed by at least 1 m

Performance

17.0 Disconnect from platform Functional

54 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 4 .
Requirements Allocation

The basic architecture to begin with is that of Figure 2.1: Preliminary System Archi-

tecture. Initially, the requirements of Table 3.1: Requirements Overview will be allocated

to the basic blocks of the initial architecture, then each block will be segmented further as

deemed practical given the functional requirements allocated to it.

The allocation of some requirements is pretty obvious; others require some insight,

that occurred after the design team traversed the requirements loop multiple times. This

multiple-traversal journey will not be described here, only its end results, namely how re-

quirements ended up being allocated to each architecture block. This allocation is pre-

sented in brief on Table 4.1: Requirements Allocation. The further development of the

architecture, that results from this allocation, is analyzed in the next chapter.

Table 4.1: Requirements Allocation

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.4 All Autonomous Mode functions must depend only on installed
capabilities

X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.7 The network must be structured according to the mesh topology X

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

X

0.9 The network must implement at least an access control protocol X X X

1.0 Move over flat terrain X

2.0 Move at speeds comparable to a human X

2.1 Minimum platform top speed should be 6 Km/hr X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

4.0 Possess optical and IR sensors X

5.0 Operate autonomously X

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

55

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Table 4.1: Requirements Allocation

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

5.1 Autonomous Mode must be the default operating mode X

5.2 Autonomous Mode must be suspended in Teleop Mode X

5.3 Navigate autonomously X

5.3.1 Perform SLAM and pose estimation X

5.3.2 SLAM must support dynamic map updates X

5.3.3 Follow path between two points on the map X

5.3.3.1 Plan path to target X

5.3.3.2 Generate motion commands X

5.3.3.3 Path planning must accept dynamic waypoint list updates X

5.3.3.4 Path planning must accept dynamic map updates X

5.3.3.5 The waypoint list must be wiped upon a map reload X

6.0 Be operable at a minimum range of 1 Km X

7.0 Operate for at least 4 hrs at max power load X

8.0 Connect to the "Brasidas" network X

9.0 Discover platforms online X

9.1 Add a node to the list when its status is received X

9.2 Timestamp discovered nodes with time of reception X

9.3 Remove nodes whose timestamp is 4 sec or more older than
system time

X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

X

11.0 Stream data feeds X

11.1 Capture data feeds of onboard sensors X

11.2 Determine if there is a network request to stream data feeds X

11.3 Stream data feeds over the network X

11.4 Each stream should be manageable independently from others X X

11.5 The NavCam stream must have a latency of 150 msec or less X

12.0 Store area map X

12.1 Load or reload a map X

12.2 Retrieve map-related sensor data X

12.3 Process sensor data to produce map-specific information structures X

12.4 Update the map X

12.5 Map update rate must be optimal (TBD) X

13.0 Track Location via GPS X

14.0 Signal the platform X X

14.1 Send signal request X

56 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Table 4.1: Requirements Allocation

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

14.2 Receive acknowledgement X

14.3 Receive response and return it to request initiator X

14.4 The signaling mechanism must be part of the initial connection's
Common Protocol

X

14.5 The signaling mechanism must be request- and response-agnostic X

15.0 Display streamed data X

16.0 Advertise platform over the network X

16.1 Broadcast platform ID and status over the network X

16.2 A platform must advertise at least once every 3 sec X

16.3 A platform must not advertise more often than once every 0.6 sec X

16.4 A platform must advertise when its location since its last
advertisement has changed by at least 1 m

X

17.0 Disconnect from platform X X

Some requirements (particularly constraints) apply to more than one subsystem. In

this case, the functionality contained in the requirement can be split among the subsys-

tems it is assigned to, or it can apply equally to all; the distinction depends on the require-

ment. Each subsystem's architecture must be designed to accommodate the assigned

common functionality or restriction.

Usually, a decomposition of such a requirement will yield functional elements that

can clearly be assigned only to one of the subsystems. However, it was deemed acceptable

that requirements not be decomposed to such a depth. This work refers to a product not

yet complete, and even though the initial requirements have been revised many times, it is

almost certain that as development continues, they will be revised even more. To the au-

thor's opinion, it would be a waste of time and effort to attempt to specify exactly some-

thing that might be entirely different after a while.

For example, in the case of R-10.0 (Connect to Platform), both the Control Station

and platform must implement some functionality in order for a connection to occur. The

decomposition of R-10.0 does not seem to lift the ambiguousness, so a deeper decompo-

sition should be attempted. However, up until a few months before this writing, the con-

cept of data streams had not even been introduced in the design. Its introduction

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

57

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

changed the connection process, which up until then included no prospect of dynami-

cally differentiated payload options. The possible further development of the network ar-

chitecture is bound to change the connection process again, since the network used now

has no access control method implemented, and likewise connection to a platform imple-

ments no authentication scheme. The requirements specified herein are those of the

complete version, to the extend that they are considered final, but are nowhere near im-

plemented completely in the current version. They are not decomposed as extensively as

perhaps one would expect, nor are they likewise implemented with finality in mind, to al-

low revisions, additions, and modifications during the entire development process.

58 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 5 .
The Functional Architecture

Now that a rough initial architecture has beed derived and the requirements have

been allocated over its elements, it is time to develop it further.

The elements of the initial architecture will be examined one by one, and each will

be further structured accordingly. The requirements allocated to ach element are listed at

the beginning of the respective section, for completeness and ease of reference.

§1. The Network Architecture
According to the requirements allocation scheme of the previous chapter, the net-

work must satisfy the following requirements:

Table 5.1: Network Requirements

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.7 The network must be structured according to the mesh topology X

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

X

0.9 The network must implement at least an access control protocol X X X

6.0 Be operable at a minimum range of 1 Km X

These are mostly constraints, stemming from the fact that, as mentioned earlier, the

network architecture and development has been deliberately postponed, until other robot

functionality more pertaining to the Mission Needs Statement could be developed.

Given the requirements of Table 5.1: Network Requirements, an OSI-based archi-

tecture for the network can be derived. Extending R-0.6, there should never be a need to

examine network protocols above Layer 3; that is in fact why R-0.6 is there, to allow the

use of the many readily available such implementations. Typically, only R-0.9's access con-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

59

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

trol protocol (EAP on 802.11) will operate at Layer 3 (most likely) or above (unlikely),

and there are even options to push it down to Layer 2 (MAC). EAP (implemented as

WPA2 over AES) is a good choice here. A mesh routing protocol (R-0.8) such as OLSR

also operates typically between Layer 2 and Layer 3. Likewise, a possible future inclusion

of a jam resistance protocol would most likely involve only the physical layer (Layer 1),

and perhaps Layer 2. All this means that whatever the network architecture may be, appli-

cations can treat is as a standard IP-based, packet-switched network supporting all the

usual protocols such as TCP, UDP, and ARP through the usual interfaces such as Berke-

ley's sockets.

Table 5.2: Network Architecture
Layer Protocols
Layer 3 IP protocol suite access control protocol

Mesh routing protocol

Layer 2 IEEE 802.11 (any variant that suffices) or IEEE 802.22;
(optionally, any accepting IP frames and supporting jam resistance)Layer 1

The color-coded Table 5.2: Network Architecture demonstrates the proposed archi-

tecture from the Layer 3 downwards. It is obviously an early version, containing simpli-

fied protocol references; the network has not been a research priority.

§2. The Platform Architecture
Of all the requirements specified, the platform has been allocated the bulk of them.

Table 5.4: Platform Requirements

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.4 All Autonomous Mode functions must depend only on installed
capabilities

X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.9 The network must implement at least an access control protocol X X X

60 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Table 5.4: Platform Requirements

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

1.0 Move over Flat Terrain X

2.0 Move at Speeds Comparable to a Human X

2.1 Minimum platform top speed should be 6 Km/hr X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

4.0 Possess optical and IR sensors X

5.0 Operate autonomously X

5.1 Autonomous Mode must be the default operating mode X

5.2 Autonomous Mode must be suspended in Teleop Mode X

5.3 Navigate autonomously X

5.3.1 Perform SLAM and pose estimation X

5.3.2 SLAM must support dynamic map updates X

5.3.3 Follow path between two points on the map X

5.3.3.1 Plan path to target X

5.3.3.2 Generate motion commands X

5.3.3.3 Path planning must accept dynamic waypoint list updates X

5.3.3.4 Path planning must accept dynamic map updates X

5.3.3.5 The waypoint list must be wiped upon a map reload X

7.0 Operate for at least 4 hrs at max power load X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

X

11.0 Stream data feeds X

11.1 Capture data feeds of onboard sensors X

11.2 Determine if there is a network request to stream data feeds X

11.3 Stream data feeds over the network X

11.4 Each stream should be manageable independently from others X X

11.5 The NavCam stream must have a latency of 150 msec or less X

12.0 Store area map X

12.1 Load or reload a map X

12.2 Retrieve map-related sensor data X

12.3 Process sensor data to produce map-specific information structures X

12.4 Update the map X

12.5 Map update rate must be optimal (TBD) X

13.0 Track Location via GPS X

14.0 Signal the platform X X

14.4 The signaling mechanism must be part of the initial connection's
Common Protocol

X

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

61

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Table 5.4: Platform Requirements

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

14.5 The signaling mechanism must be request- and response-agnostic X

16.0 Advertise platform over the network X

16.1 Broadcast platform ID and status over the network X

16.2 A platform must advertise at least once every 3 sec X

16.3 A platform must not advertise more often than once every 0.6 sec X

16.4 A platform must advertise when its location since its last advertise-
ment has changed by at least 1 m

X

17.0 Disconnect from platform X X

Requirements R-1.0, R-2.0, R-4.0, and R-7.0 apply to the hardware, and can be ig-

nored when designing the software architecture. Beyond that, it makes sense to separate

functions that need to directly interact with the hardware, with those that don't. The aim

is to abstract and parameterize the functionality as much as possible, so the same func-

tionality can be used for another platform. One shouldn't forget that "Brasidas" is a re-

search prototype, thus any product coming out of the project must be adaptable to any

platform it may end up being used. Functions that do not need to directly interact with

the hardware (such as SLAM or the common protocol), are prime candidates for this kind

of abstraction. Functions that interface with the hardware must be rewritten for each

platform they will be used on.

Naturally, the operating system will help abstract away much of the hardware inter-

action, but some demand for specialized code will remain.

Because the platform is allocated functions that perform tasks independent of one

another (such as SLAM and platform advertising), it makes sense to consider multi-

threaded or multi-process options. In this case, it is necessary to have some method of

inter-thread or inter-process communication (IPC).

Communication among threads is usually trivial, as they run within the context of

the same process, and thus have access to global variables and the stack, and, with proper

argument passing to methods running within threads, the entirety of process variables

62 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

can be exchanged between threads. In the case of threads it is imperative that a thread

synchronization primitive be applied where needed, to avoid variable value inconsisten-

cies, as well as resource deadlocks. However, a single multi-threaded application is really

just a bloated beast waiting to burst on some poor user's (or worse, developer's) face.

A multi-process solution is far more elegant, as each process's code can be kept

small and lean, with little overhead. The downside is that this imposes a multitasking re-

quirement on the hardware used, and context switching between processes is far more

costly (in terms of CPU time and resources) than context switching between threads.

Also, most processes are unable to directly communicate with one another due to process

isolation (present on all modern multitasking OSes), and therefore the use of some IPC

protocol is necessitated. Still, even given these shortcomings, the code simplicity comes

on top, and multi-processing is the solution of choice when performance is not an issue.

The architecture depicted on Figure 5.1: Carrier Vehicle Architecture is designed

with multi-processing in mind. It is color-coded; solid blue represents external software

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

63

Figure 5.1: Carrier Vehicle Architecture

Network Interface

"B
ra

si
da

s"
 N

e
tw

or
k

Network Access Control

Common Protocol
Module

Signaling

NavCam

Transmission
Interface
Module

SLAM Module

GPS
Tracking

Autonomous Operation
Module

Path Planning

Shared Data Access/IPC Bus

Advertisement
Module

Map Management

Payload

NavCam
Streaming

Module

Motor ControllerGPSSensors

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

components, bright blue represents visualization components, while brown represents

background components, that interact only with other processes. Hardware interfaces are

shown in gray, and light brown represents the IPC component. The Common Protocol,

SLAM, and Autonomous Operation modules, whose internal components are shown, use

a brown-based coloring variant.

The NavCam Streaming Module is also used as the basis of implementation of all

other data streaming modules.

The reasoning of Figure 5.1: Carrier Vehicle Architecture is pretty straightforward.

The Common Protocol Module is the only receiver of incoming communication; all re-

quests and commands to the platform go through this module, using elements of the

Common Protocol. This module also handles signaling, since its specification is part of

the Common Protocol. All other vehicle operations are implemented as independent

process modules. Certain modules, like Autonomous Operation and SLAM, also integrate

already defined functionality in a convenient manner.

All onboard process modules communicate via an IPC bus, using some messaging

protocol. This IPC protocol is implementation-specific; it does not form part of the sys-

tem's requirements, since it is required only as part of the architecture proposed in Figure

5.1: Carrier Vehicle Architecture. Another architecture proposal could very well do away

with IPC altogether, in which case there would be no point in imposing an implementa-

tion-specific requirement.

Figure 5.1: Carrier Vehicle Architecture does not present the whole platform archi-

tecture. The architecture of the payload must also be specified. Since there can be multi-

ple payload types, there is no single fully-detailed architecture that describes them all, but

it is possible, given the constraints and requirements specified for the payload, to present

an abstract architecture to which all payload types should conform. This architecture is

presented in Figure 5.2: The Payload Generic Architecture. Module names in italic indi-

cate a generic type module, that may or may not be present in all payloads, as indicated by

the respective multiplicity indicators ("0..n", "1..n").

64 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

What is evident from Figure 5.2: The Payload Generic Architecture is that the com-

mon IPC bus is present, and is the only route of communication between the payload

and the carrier vehicle. Also, the payload is afforded direct network access for streaming

modules, in order to eliminate a potential mediator module that would otherwise have to

be running on the carrier vehicle. Eliminating the mediator affords the data stream the

minimum possible latency.

It is assumed that the payload includes at least a sensor and some hardware that the

software needs to interface with. Otherwise, there's not much sense in needing to install

an entire separate computer board, and not simply treating it as part of the carrier vehi-

cle's System Core component. Given the distributed nature of the architecture, either the

payload's processing component, or the carrier vehicle's System Core, need not be limited

to a single processor board, and can instead easily be composed of multiple boards, in a

form of mini-cluster. It's the IPC part that binds everything together seamlessly.

§3. The Control Station Architecture
The Control Station has been allocated the following requirements:

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

65

Figure 5.2: The Payload Generic Architecture

Network Interface

"B
ra

si
d

as
"

N
et

w
o

rk

Network Access Control

Camera

Hardware
Interface
Module

Actuator
Control
Module

Functional
Module

Shared Data Access/IPC Bus

Sensor
Input
Module

Platform

Data
Streaming
Module

DeviceActuatorSensors

0..n

0..n0..n 1..n 1..n

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Table 5.3: Control Station Requirements

Numeric ID N
et

w
o

rk

C
tr

l
S

ta
ti

o
n

P
la

tf
o

rm

0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.9 The network must implement at least an access control protocol X X X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

8.0 Connect to the "Brasidas" network X

9.0 Discover platforms online X

9.1 Add a node to the list when its status is received X

9.2 Timestamp discovered nodes with time of reception X

9.3 Remove nodes whose timestamp is 4 sec or more older than
system time

X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

11.4 Each stream should be manageable independently from others X X

14.0 Signal the platform X X

14.1 Send signal request X

14.2 Receive acknowledgement X

14.3 Receive response and return it to request initiator X

15.0 Display streamed data X

16.0 Disconnect from platform X X

To implement R-8.0 requires the proper hardware to begin with. From the software

perspective, an appropriate device driver is needed. Usually, devices implement Layers 1

and 2 in firmware, and rely on the driver functionality to act as a bridge between the

higher-Layer protocols, implemented in software, and the Layer 1 and 2 protocols imple-

mented on the device.

Since the network is based on the IP protocol, the protocol stack specification is

known (and is also an open standard). Any commercial product has all of this functional-

66 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ity implemented in full, and the complementary higher-Layer protocols are also imple-

mented for every operating system available.

R-8.0 and R-0.6 thus are grouped in the Network Interface component, as shown on

Figure 5.3: The Control Station Architecture, which is closely coupled with the Network

Access Control (R-0.9) component. The two modules are independent, to facilitate re-

placing one solution with another (e.g. changing access control protocols) while the rest

of the system remains the same. However, network access uses both components in par-

allel, as indicated by the thick black lines delimiting the parallel combination of the two

components.

Figure 5.3: The Control Station Architecture is color-coded like Figure 5.1: Carrier

Vehicle Architecture.

The proposed Control Station architecture also makes use of an IPC protocol, for

the same reasons explained in the platform architecture section, above.

The Node Discovery Module is responsible for receiving all platform advertise-

ments that come over the network. It encapsulates R-9.0 (Discover Platforms Online)

and its descendant requirements.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

67

Figure 5.3: The Control Station Architecture

Network Interface

Network Access Control

"B
ra

si
d

as
"

N
et

w
o

rk

Node
Discovery

Module

Connection Management
Module

Stream
Display
Module

Status
Display
Module

Control
Interface
Module

Teleop Console
Interface Module

Console
USB Port

Signaling

Connection Control

Shared Data Access/IPC Bus

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

The Connection Management Module is responsible for all communication with the

robot. It handles connection and disconnection, sets up and tears down stream reception

for the Stream Display Module, handles input received from the Teleoperation Console,

and also implements signaling. It encapsulates R-8.0, R-10.0, R-14.0, and R-16.0 (with all

lower-tier requirements of each).

The three visualization modules are responsible for letting the operator see and in-

teract with the robot. R-15.0 is split between the Stream and Status Display modules,

where the Stream Display Module renders on screen mostly the media streams (camera

feeds, etc.), including "displaying" the incoming audio stream over the speakers, and the

Status Display Module allows the operator to view non-media streams, such as telemetry

and diagnostics updates. The Control Interface Module does not so much display incom-

ing data, as providing a set of on-screen controls for sending commands to the robot, in-

cluding manipulating the data streams (i.e. it encapsulates R-11.4).

The Teleop Console Interface Module is used to read in motion commands from a

hardware control console, translating them to platform-agnostic motion commands, as

per R-2.2 which it encapsulates. The console has special control hardware (joystick, but-

tons, MOVRD toggle) for optimal teleoperation of the robot. It is the hardware imple-

mentation of R-3.0, and is detailed in P. Katselis' thesis. As indicated on Figure 5.3: The

Control Station Architecture, the Teleop Console module sends read in data to the Con-

nection Management Module, which are then transmitted (in platform-agnostic format)

to the platform via either the common protocol, signaling, or a specially set-up data

stream.

68 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 6 .
Product Development Phases

Though it may not be the effort to construct Star Trek™'s NCC-1701 "U.S.S. Enter-

prise" starship, "Brasidas" is still a rather ambitious project. To make matters worse, its

design and development is undertaken by an inexperienced team of dabblers. Thus, to

mitigate the enormous risks in time, effort, and monetary costs involved, the develop-

ment must be meticulous.

The spiral development model is a good choice for developing a complex system

with multiple risks present. However, behind it hides a rather insidious development

threat: the model assumes those who adopt it do know from beforehand what they want

to accomplish, but haven't figured yet out all the details.

In the case of "Brasidas", those who adopt the model do not know a priori what

they want to accomplish, and that is a source of risk that even the spiral model does

not cover. Thus, developing "Brasidas" is more than a matter of figuring out details; it en-

tails building a knowledge base as well.

Consider also that the design is not only theoretical, but is accompanied by a proto-

type. To adopt Nielsen's terms [24], "Brasidas" is basically a horizontal prototype, as it at-

tempts to encompass an entire system, not just some aspects of it (i.e. subsystems). Thus,

the basic spiral model can only take development so far.

The above reasoning is what led the development team to built "Brasidas" as a re-

search prototype (and hence imposed R-0.1). A research prototype can be a throwaway

one [8], and therefore more mistakes are allowed. When the problem's scientific and engi-

neering aspects have been studied sufficiently in depth, it might be deemed viable to then

construct a second prototype, closer to a production model.

While "Brasidas" will not be the successor to the M1A1 Abrams tank, it is conve-

nient to follow a similar approach; ToS incorporates that convenience as well. The para-

graphs that follow attempt a description of the various development Phases, list the func-

tionality that is intended to be integrated into each Phase, and give an estimate of the ex -

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

69

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

pected time required for a complete prototype, asuming full-time research from the same

development team.

§1. Phase 1: Remotely Operated Vehicle
This Phase is expected to produce a prototype that can be remotely operated. The

Mk-1 would implement all requirements and follow all constraints, except for those per-

taining to autonomous operation and map management, namely R-0.4 (All Autonomous

Mode Functions Must Depend Only on Installed Capabilities), R-5.0 (Operate Au-

tonomously), and R-12.0 (Store Area Map). R-0.5 (Target Engagement Happens Only in

Teleop Mode) is included here, since even though it may not be directly applicable to this

Phase's functionality, the software design must consider it for when future Phases include

autonomous options that call upon the software produced in this Phase.

The Mk-1 would be a R.O.V that can simply retrieve its location via GPS (since R-

13.0 will be integrated). It could be teleoperated within known (pre-mapped) environ-

ments using the NavCam feed and perhaps a few additional simple sensors (such as

sonars). It would feature a variety of remotely-operated payload options, such as a sensor

cluster, small arm or an Infantry support weapon with IR targeting camera, an EOD tur -

ret with manipulator arm, perhaps a mine detector payload, etc.

Development of at least a token payload option is part of Phase 1. As a long-range,

possibly armed R.O.V., "Brasidas" Mk-1 would be a solution ready for adoption and use

by potential clients now, demanding minimal to no changes in the organizational structure

and operational MOs of clients.

It is estimated that this Phase will require 1.5 – 2 years to produce a working proto-

type. As of May 2017, this Phase is complete, though a few software bugs may still re-

main to be solved.

§2. Phase 2: Recon R.O.V.
This Phase also concerns a R.O.V., except this time with additional functionality that

70 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

enable its use in unknown (unmapped) environments. Phase 2 includes all Phase 1 func-

tionality, and also incorporates the following additional requirements: R-5.3.1 (Perform

SLAM and Pose Estimation) and R-12.0 (Store Area Map).

The "Brasidas" Mk-2 will be fieldable in a reconnaissance role, to move into un-

known areas and gather intelligence for advancing units. It could go into areas where a

natural disaster (such as a flood, earthquake, or fire) makes the environment hazardous to

human operators. Viewed from a more military perspective, it makes an excellent "first

man in", luring out ambushes and triggering or detecting traps and minefields (exact ca-

pabilities will depend on installed payload options). If armed (and armored!), it can even

engage enemy positions, providing heavy weapons support fire or simply forcing the en-

emy to reveal their precise positions (and thus be safely neutralized by accurate artillery or

mortar fire).

SLAM and map management require additional sensors and processing capabilities,

not demanded of Phase 1, so implementation of this Phase has impact on hardware de-

sign and integration as well. The full extend of this Phase's potential capabilities is still

being researched, considered, and decided upon. A fully functional Phase 2 prototype is

estimated to require an extra 0.5-1 years after Phase 1 is complete.

§3. Phase 3: Autonomous Navigating Robot
This Phase is where some autonomy finally begins to be integrated in the prototype

functionality. This Phase includes all functionality of Phase 2 (and by extension, Phase 1),

plus R-0.4 (All Autonomous Mode Functions Must Depend Only on Installed Capabili-

ties) and the rest of R-5.0 (Operate Autonomously).

The major challenge of this Phase is path planning, since it must provide realistic,

traversable paths in an outdoors environment. While the author is aware of several algo-

rithms and methodologies out there that can solve the problem, only an attempted imple-

mentation will reveal what obstacles must really be overcome to make autonomous navi-

gation feasible.

Payload options may or may not receive additional autonomous functionality during

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

71

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

this Phase; R-0.5 (Target Engagement Happens Only in Teleop Mode) still applies, but

this Phase intends for all payload operations to still be controlled remotely (so, for exam-

ple, the operator can traverse and elevate the gun turret, searching for potential targets,

while at the same time the robot moves towards its next waypoint on its own).

A fully functional Phase 3 prototype is estimated to require an extra 2-3 years once

Phase 2 is complete.

§4. Phase 4: Autonomous Target Tracking
This Phase is still considered far in the future. In concept, this Phase introduces

mostly new payload functionality, enabling the platform to autonomously identify targets,

and then track them, but not engage them.

"Identify" and "track" in this case refer to the specific payload used, and the same

goes for "target". A mine detection payload would have mines as "targets", and would

equate "identify" with spotting a mine, and "track" with putting its location on the map

for others to avoid. An S.A.R. (Search And Rescue) payload would have survivors or hu-

mans in danger as "targets", and would equate "identify" with spotting such and individ-

ual and deciding whether he does indeed need help, and "track" with passing the location

and status of the individual to the rescue teams. An armament payload would have ene-

mies as "targets", and the terms "identify" and "track" here are pretty straightforward.

Development of this Phase primarily consists of evaluation and development or in-

tegration of suitable pattern recognition and DSP algorithms. Since all such algorithms

are computationally intensive, development of this Phase may necessitate replacement or

upgrade of the currently installed computational infrastructure. The choice of algorithms

will obviously be tailored to the sensors installed on each payload variant. A potential so-

lution is to improve the payload components, and leave the carrier vehicle as is.

Assuming Phase 3 is complete, development of a Phase 4 prototype is estimated to

require an extra 2-4 years.

72 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 7 .
Interlude I

At this point, the most important steps of defining a system's specifications are

complete. The designers now know in great detail what the system needs to accomplish,

and how well. However, a few more words must be said, lest one continues reading fur -

ther under the impression that this has been a simple and straightforward process. De-

spite appearances, the readers should be assured that the case has, in fact, been quite the

opposite.

As was stated earlier, the design team has adopted a modified spiral development

model, and deviated from the strict DoD process by relying on scenarios and use cases to

determine requirements that were not at first apparent. This revisiting of concepts,

though not stated explicitly, has indeed happened many times during both the design

phases and the implementation phases. In fact, several of the scenarios and use cases you

read are the final versions of the system vision; for some, like the supervised autonomous

patrol scenario, the original idea was vastly different. A different idea sends the design

process down a different path, and produces different requirements. Sometimes, retracing

the design steps and changing direction is easy, but when the process has moved too far,

going back is hard, messy, and frustrating, and one is left with the feeling that this whole

process was nothing more than a waste of time and effort. In such a case, typically one

just scraps the whole process and starts over, as retracing is too costly in terms of the

time required. In addition, the whole process gets too error-prone when the revision must

be very extensive.

Other scenarios, pertaining to versions of the system vision far in the future of the

development process, that have not been presented here for the sake of brevity, have

been revisited and revised time and again to such an extend that noone in the design team

remembers anymore what the original idea was. Revisions of a concept mean that re-

quirements must be revised as well, thus many requirements also are presented in their fi-

nal versions. Some were revised as a result of a change in the system vision, as mentioned

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

73

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

in the previous paragraph. However, others were dropped or introduced because the

hardware required to implement a desired functionality was never acquired, or what was

acquired had different specifications than expected, either better or worse. If the case was

for the worse, it necessitated adapting to the reduced perfomance; if it were for the bet-

ter, the temptation to take advantage of the new functionality was, naturally, irresistible

(to what engineer is it not?).

Nevertheless, an effort has been attempted in this Part I, to present the require-

ments and proposed architectures of the envisioned system, to the extend these were

shaped by the design team's experience acquired both during first designing the system,

and subsequently trying to implement the various designs. The system proposed at the

end of Part I differs from the system that currently sits in one of the ARTC's labs, which

may represent the product of Phase 1, but is still not a finalized version of that product.

What is also not obvious is that not every requirement presented in this Part was

conceived and specified at the beginning. Requirements were not just revised as the con-

cept evolved and the design progressed; they were also introduced when the design

progress reached a point where the next stage of the system vision became clear and con-

cise, and the design team could actually get down and design this next advancement of

the system, because concrete results could finally be produced. The main reason of this

"in-medias-res" design and evaluation was the lack of experience and knowledge on the

part of the design team. Knowing that a planar scanning laser can allow SLAM and path

planning is one thing; knowing exactly what limitations and processing demands this solu-

tion has, is quite another. As the design team became more involved and acquainted our-

selves with the minutiae of each prospective solution, it often became apparent that the

solution was, after all, not as suitable as it had appeared at first. When that happened, it

was time to go back to the drawing board and, well, rethink matters.

One last source of requirement revisions was the simple fact that as the implemen-

tation progressed, it became apparent that they didn't represent the system functionality

in a realistic manner – in short, they represented design errors. Naturally, an error meant

74 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

that it was time to go back to the drawing board yet again.

One such example is the use of the motion application for video streaming. While

initially seeming suitable, and allowed a functional streaming solution to be developed in

but a day, motion proved to stream using TCP, and thus the video stream had very high

latency. The troublesome behavior worsened when the connection quality was dropping,

due to the increased number of packet retransmission requests, magnifying the problem

of controlling the platform to a level that was simply unacceptable.

Several such examples will be listed in Part II, when the actual implementation will

have been presented and the reader will have a more complete picture of the whole

process.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

75

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

76 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Part II

Design and Implementation

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

77

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 8 .
Architecture Implementation

To save on development time, and produce results quickly, the development team

decided on using Python as the primary programming language. If for some parts of the

implementation Python proved inadequate, it is always possible to fall back to C++,

which interoperates very easily with Python and natively with Cython. Cython has not yet

been considered on a serious basis, mostly because there is a Python package out there

for virtually every need.

Python has proven very popular with robotics researchers and hobbyists [25], partic-

ularly since it is the de facto programming language for the Raspberry Pi single-board

computer [26]. Its abundance of utility libraries, adequate execution speed, and low time

required to write something that runs have practically displaced all other languages, ex-

cept perhaps the ever-powerful C++. The fact that Python is written in C, and can inter-

face with routines written in C very easily and very efficiently only means that Python will

continue to rise in popularity. It therefore makes sense to base development of "Brasidas"

on a language that will not become obsolete anytime soon.

§1. Common Architecture Elements

1.1. Operating System
On this matter, Linux was the only practical choice, since it is the only open-source

OS with sufficient support and development to actually be usable. Of all Linux distribu-

tions, Debian and its derivatives (mainly Ubuntu) are the most popular and afford the

greatest software availability. This choice was also restrained somewhat by the hardware

specifications, as it had to be an OS that was supported by the Raspberry Pi computer

boards that would be used for the platform and Control Station, as shown on Figure 8.1:

Physical (Hardware) Architecture (taken from P. Katselis' thesis, and used with permis-

sion). The RPi Foundation provides Raspbian, a Debian-variant that suits the project's

needs just fine. Raspbian has up-to-date repositories that include full driver support for

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

79

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

the hardware, including several – very convenient – packages that take advantage of the

RPi's specific hardware capabilities. "Brasidas" initially ran the earlier Raspbian Wheezy

distribution, it now runs the latest Raspbian Jessie.

1.2. The IPC Module
With the programming language and OS choices figured out, the most important

piece of software to determine was the IPC module. Both the platform and Control Sta-

tion software require it, so it made sense to use the same toolkit for both. In fact, this not

only streamlined the code between the two, it also greatly simplified signaling. According

to Figure 5.1: Carrier Vehicle Architecture and Figure 5.3: The Control Station Architec-

ture, signaling is handled right after the network stack, and dumps most of its output into

the IPC bus, so essentially one signaling module is talking directly to another. In addition

to making the tranfer of signals easy, this permits direct transfer of data blocks, both

structured and otherwise, by simply implementing a serialization/deserialization protocol

alongside signaling. The transferred data would simply be grabbed off one IPC bus, be

serialized, transported over the network, be deserialized, and injected directly into the IPC

on the other side, available for process by any node that is interested.

As it turns out, there is just one such toolkit, and it's tailored for robotic applica -

tions; it is called R.O.S. (Robot Operating System - [27]). Which is a good thing, because

having to write an IPC framework would constitute a thesis of its own. And ROS of

course comes with full C++ and Python bindings. ROS is extremely popular among ro-

botics researchers, and several books outlining its use have been published [28], [29]+[30].

The core philosophy of ROS is an IPC architecture relying on the concept of topics

and messages. A topic is a channel through which data are transported in the form of

messages. Each topic handles a specific message format, and messages can be user-de-

fined. Each message is basically a data structure (similar to C's struct). A central server

process (roscore) manages the topics. Multiple processes can register with roscore and

gain access to one or more topics as either subscribers (receiving messages posted on the

80 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

topic), or publishers (putting messages in a topic). The important feature is that when a

message is posted in a topic, all subscribers registered into it will receive a copy of the

message, as soon as it is posted. This is achieved via callback functions. Each process that

registers to receive messages on a topic specifies a function (part of the process code) to

be called when a message arrives; the message is then passed to this function as an argu-

ment. A process registered with ROS is called a 'node'. A fully-detailed tutorial on pub-

lishing and subscribing to ROS topics using Python is available on the ROS site1.

Messages can be all sizes and formats (the developer can define their own message

format to suit their needs), and the whole message transfering process is done in memory,

so it is as fast as it gets. The shared access nature of topics makes ROS an ideal choice for

the IPC Bus module of both the platform and Control Station proposed architectures. It

can even be used to transport continuous data (i.e. for streaming), however it should be

pointed out that the topic transport mechanism uses TCP, and TCP can introduce delays

in the transport even on localhost configurations (see e.g. [31]).

ROS features an entire ecology of robotics software packages, most of them by

third parties. These packages are implementations of various robotics-related algorithms

and architectures, interfaces to hardware devices, visualization tools, etc. For example,

there are packages that act as interfaces to GPS devices, reading in the data from the GPS

and posting it in appropriate topics, packages that implement SLAM or even a full-fea-

tured navigation stack (intended for the developer's sensor suite, though), robotic arm

manipulation, etc.

In fact, ROS even works in a distributed configuration, where individual nodes can

run on different machines connected to the same network, however there is a little catch:

there can be only a single roscore instance running on the network. The distributed

nodes feature would solve the signaling implementation across the entire network in an

ideal manner, since signaling would reduce to a pre-defined set of topics shared among all

nodes. However the network architecture rejects any form of centralized control on the

basis of it being a "single point of failure", so this ROS functionality cannot be used over

the entire network. But it can be of use locally on each node (platform or Control Sta-

1 http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

81

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

tion), as will be explained in the respective implementation chapters. A different way for

nodes to communicate over the network must then be employed.

Using ROS for interprocess communication, and implementing distinct functionality

sets as separate Python modules also has the advantage of effectively bypassing Python's

Global Interpreter Lock (GIL), which would otherwise render even a single-process,

multi-threaded approach unattainable (the subprocess-based multiprocessing module

does not permit easy access to shared resources like the threading module does).

§2. Hardware Specifications
Figure 8.1: Physical (Hardware) Architecture shows the system's hardware architec-

ture; it is taken from Cpt. (AA) Katselis' thesis and used with permission. The system's

modularity is obvious.

Here, a short set of hardware specifications will be provided, only to the extend that

it relates to the developed software. These are as follows:

Table 8.1: System Specifications
Carrier Vehicle

System Core: Raspberry Pi 3 Model B

CPU: 1.2 GHz Quad-core ARMv8 Cortex A-53 (32/64 bits)

RAM: 1 GB LPDDR2 at 900 MHz

GPU: 300 MHz (3D part)/400 MHz (video part) Videocore-IV
Supports GLES 2.0.
MPEG-2 and VC-1 (with license), 1080p60 H.264/MPEG-4 AVC high-profile decoder
and encoder.

Network: RJ-45 port (10/100 Mbps 100BASE-TX auto-negotiation)
802.11n wireless
Bluetooth 4.1

USB: 4×USB 2.0

GPIO: 40-pin header with I2C, I2S, UART, SPI, and GPIO interfaces.

NavCam: Creative Livecam VFO470 (webcam)

Interface: USB 2.0

Video Format: 640×480@30 fps, video encoded as either MJPEG or I420

GPS: UBlox NEO-6M

Interface: TTL UART

Sentence Format: NMEA-0183

IMU: MPU-6050

Interface: I2C

82 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Table 8.1: System Specifications
Accelerometer Range: ±2/4/8/16 g

Gyro Range: ±250/500/1,000/2,000 degrees per second

Wireless Link: Ubiquiti Bullet M2

RF Power: 28 dBm TX

LAN ports: 1×RJ-45 10/100 Mbps LAN port

Motor Controller: Roboteq AX-3500

Interface: RS-232 (9600 bps, 7E1)

Ethernet Switch: 3Com 8-port 10/100 Mbps

Control Station
Telemetry &

Video Processor:
Raspberry Pi 2 Model B

CPU: 800 MHz Quad-core ARMv7 Cortex A-7 (32 bits)

RAM: 1 GB LPDDR2 at 900 MHz

GPU: 250 MHz Videocore-IV
Supports GLES2.0.
MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-profile decoder
and encoder.

Network: RJ-45 port (10/100 Mbps 100BASE-TX full-duplex, auto-negotiation)

USB: 4×USB 2.0

GPIO: 40-pin header with I2C, I2S, UART, SPI, and GPIO interfaces.

Human-Computer
Interface:

Touch-screen Display

Diagonal: 10.1"

Resolution: 1366×768

Interface: HDMI (video) + USB (touch sensor)

Input: Capacitive touch sensor

Teleop Console: Logitech Gamepad F310

Interface: USB

Wireless Link: Ubiquiti Bullet M2

RF Power: 28 dBm TX

LAN ports: 1×RJ-45 10/100 Mbps LAN port

As has been mentioned repeatedly, the payload does not have a fixed hardware con-

figuration.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

83

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

84 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Figure 8.1: Physical (Hardware) Architecture

Payload Section

Main Computer
(R.O.S. Core)

IR
Camera

Legend

 : Ethernet

 : Sensor/Output

ubnt M2

 : Switch/AP

Ethernet Switch

Motor
Ctrlr

Mo
tor

 #1

Mo
tor

 #2 Lighting

INS

GPS

Nav
Camera

ubnt M2

Monitor

 : Data Flow

CSI or USB
USB

UART

NIC #2
(static IP)

NIC #1 NIC

HDMI
Control Station

Computer
(R.O.S. Core)

Ro
bo

t

Control Sta tion
I2C

Raspberry Pi 3B

Autonav
Computer

NIC

PCDuino8

 : Processing node

Network

Mesh node
Raspberry Pi 2B

Xbox Controller

USB

Payload
Computer

NIC

Mesh node

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 9 .
The Network Infrastructure

As was stated in Chapter 5.1: The Network Architecture, the network is very basic;

there are two nodes in a trivial mesh configuration.

Following constraint R-0.3, the only enterprise-grade link hardware that was made

available are a pair of Ubiquiti Bullet M2s. These are civilian, enterprise-grade WiFi trans-

ceivers, so again there is little choice on the matter. They are currently configured in mesh

mode, and both routers have been flashed with the AREDN™ mesh-enabled OpenWRT

distribution [32].

The network in this configuration uses static addresses in the 10.x.x.x range for the

mesh nodes (i.e. the mesh wireless interfaces of the routers), and relies on dynamic ad-

dressing (DHCP server is enabled) over a predetermined, different subnet, for the devices

connected locally to each node. The way the onboard systems are currently linked, every

subsystem connected to the Communications Grid (i.e. the onboard Ethernet) is directly

visible to the Control Station or any other computer joining the network. This is not what

is intended, but for the time being, it permits the system to also access the Internet (using

a gateway that connects to the network's AP), allowing system updates of the RPi and

software package downloads to be implemented as and when needed. Obviously, when

the system will be assembled as a production prototype, this arrangement will most likely

have to change, although this may depend on the exact network configuration used.

To generalize the discussion a bit and refer to other solutions examined, the real deal

about 802.11 is that unless one adopts a sub-GHz implementation, it really is basically an

obstacle-free LOS communications option. Ubiquiti's NanoStation M9 is one rather pop-

ular option for the 900 MHz band. But the 900 MHz band is not so ideal either, despite

such signals seemingly having a longer range than the 2.4 GHz band. The problem is the

900 MHz band (902-928 MHz) is ham radio territory, and as such, the RF interference is

worse than even in the 2.4 GHz WiFi band.

Promising upcoming options are 802.22 [33] and 802.11af [34], which take advan-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

87

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

tage of "white spaces" in the TV channel frequencies (54-790 MHz), using the bandwidth

leftover after the transition from analog TV to digital broadcasting. Both standards prom-

ise data rates of the order of tens of Mbps, over distances of more than 1 Km, and in

the case of 802.22 several tens of Km (LOS) – naturally, these advertised ranges imply di-

rectional antennas. However, given the transmission properties of these frequencies, even

NLOS links would function well over the 1-Km limit of "Brasidas"'s R-6.0. No commer-

cial products implementing these protocols have been released as of yet (April 2017), and

in addition, according to the initial draft standard specifications, mesh (ad-hoc) mode is

not to be supported.

Even sub-GHz solutions remain LOS-dependent, although as the ferquencies get

lower, obstacle tolerance increases. However, without delving into specifics, a NLOS

communications link typically requires rather low frequencies to efficiently bypass obsta-

cles (a typical limit is less than 160 MHz, depending on range and nature of obstacles),

and the data rates that can be achieved at such low-frequency bands are also low. A cus-

tom, from-scratch design might be able to squeeze a couple Mbps at a 50-MHz band, but

that's about as good as it could get, and it violates R-0.2 (use COTS components). In ad-

dition, to achieve such a data rate at this band would require higher-order modulations,

which are typically less resistance to interference and jamming.

Note that at frequencies above approximately 30 MHz, the link cannot extend over

the horizon (as there is no ionospheric refraction or ground wave propagation), but can

still go through many kinds of obstacles. The downside to using lower frequencies is that

the antenna gets progressively bigger.

Any WiFi-based (IEEE 802.11) solution can be made to satisfy all the requirements

of Table 5.1: Network Requirements, as long as there is no inclusion of a requirement for

jam resistance. Consumer-grade 802.11 solutions do not satisfy the range requirement,

however there are enterprise-grade products with more powerful transmitters that can

easily reach the distance of R-6.0 (e.g. Ubiquiti's line of AirMAX stations and TP-Link's

line of MAXtream-based stations). In fact, there are some very nice 802.11 solutions out

88 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

there that far exceed the specifications of Table 5.1: Network Requirements.

The typical problem encountered with enterprise-grade equipment is that it is de-

signed for infrastructure installations, and thus most such models do not support mesh

topologies. Furthermore, the consumer need that spurred development of these devices

is for long-range static point-to-point links (to provide Internet to hard-to-reach loca-

tions), thus the range they advertise is often measured using directional antennas. "Brasi-

das" is a mobile system, so omnidirectional antennas are required, and one can quickly

understand how max range diminishes when comparing a good 9-dBi omni antenna to a

directional 24-dBi one; 15 dBi of difference translates into an approximate 1/6th of ad-

vertised maximum range, and that's still under a LOS assumption. Of course, when cer-

tain products have an advertised maximum range of 15 Km+, they can satisfy R-0.6 suffi-

ciently even at 1/6th of that range.

One solution to the mesh mode availability, applying to most Ubiquiti and certain

TP-Link products, is to flash them with custom firmware. Specifically, a mesh-enabled

version of OpenWRT [35]. This is one option that the development team intends to ex-

plore further in the future, as each of the candidate products has a steep cost of the or-

der of 60+ €, not including additional peripherals, such as antennas, cables, etc. Mesh-en-

abled OpenWRT distributions include HSMM-MESH™1 ([36]) and AREDN™1 ([32]),

both products of ARRL member groups. Right now the AREDN™ distribution is used,

however due to FCC regulations, no access control is enabled in the distribution (i.e. no

WPA), so further research is needed to determine how to implement mesh using either

the base OpenWRT image for the routers, or alternatively another distribution (like the

related DD-WRT [37]).

Perhaps the most suitable, easier-to-acquire fully military-standards-complying solu-

tion in this matter, given the company's proximity (to Hellas in general, not just to the

Military Academy of Athens), is Intracom Defense Electronics' WiWAN system. But this

assessment is based only on the limited information provided on the company website's

product page2, which simply mentions "high data rate" without giving any numerical de-

1 Why on earth would someone trademark an open-source product anyway?
2 https://www.intracomdefense.com/post/410

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

89

https://www.intracomdefense.com/post/410

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

tails; however it does mention that it is intended to interconnect brigade command eche-

lons with battalion and company ones, so given the expected distance between these ech-

elons during typical operations, it is safe to assume its effective range is over 1 Km. Oth-

erwise, similar military-grade solutions are available from a multitude of defense indus-

tries (e.g. MeshDynamics1). Such solutions come at the expected price of course, each ap-

proaching a typical household's yearly revenue.

Back to the current implementation, WiFi is a thoroughly-tested, well-understood

technology, and works fine for the time being. The RF power of the M2s (28 dBm) satis -

fies R-6.0 more than sufficiently; in fact, over open ground, the link theoretically has a

range of several Km (LOS), even when using omnis. Since this configuration serves the

project for the time being, no additional options have been tested. Thus, while the issue

of Control Station – platform communication is settled for now, several issues still re-

main unresolved.

According to the specifications (R-16.0), the platform needs to broadcast its adver-

tisement packets, and the Control Station needs to be able to receive those advertisement

packets. However, both computers sit behind their corresponding routers, and routers

break broadcast domains. After several (failed) efforts to configure the firewalls to allow

broadcast packets through, in the end the design team settled for using socat on the

OpenWRT routers. Specifically, a socat instance is run at startup (via an entry in

/etc/rc.local). For the Control Station router, socat forwards broadcast packets re-

ceived on port 21000 at the external network interface to the LAN, while for the platform

router, socat forwards broadcast packets originating on port 21000 of the internal LAN

to the external network. The details are provided in ANNEX B at the end of this work.

1 http://meshdynamics.com

90 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

http://meshdynamics.com/

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 10 .
The Platform Configuration

The chassis was provided by the ARTC (remember constraint R-0.3), and included a

motor controller. An RS-232 interface permits communication with the controller. Thus,

from a functional and software point of view, the system needs to adhere to the con-

troller's RS-232 command protocol.

A demonstration payload was developed, consisting of a turret with a paintgun and

an AXIS Q1910-E thermal IP camera. The camera was again provided by the ARTC. The

turret is rotated by servos controlled via an Arduino, and communicates over Bluetooth,

in direct violation of the current payload proposed architecture, but this demonstration

payload is still under development.

Each module box shown on Figure 5.1: Carrier Vehicle Architecture is implemented

in code as a separate Python module. Virtually all of the modules are registered as ROS

nodes as well, and use ROS to communicate among themselves. The software stack on

the platform is started by a single command, using ROS's roslaunch process, which

reads in an XML-formatted file and launches one by one all applications listed therein (be

they ROS nodes or not!). As part of the same procedure, a configuration file is also

loaded automatically. This configuration file contains platform-specific parameters, such

as the node name of the UART port to which the motor controller is connected, or the

network port used to stream the NavCam video feed. This permits the code to be porta-

ble to other platforms, simply by changing the appropriate parameters. The process stack

launch procedure at the moment requires the operator to login manually via ssh and is-

sue the roslaunch command, but efforts are underway to implement it as a linux ser-

vice, enabling the software to start automatically at system boot.

§1. Signaling and the Common Protocol
Signaling has until now been specified completely abstractly, and has been presented

as functionality that is separate from the Common Protocol. In general, this assumption

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

91

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

holds; however, in the current Phase's implementation the two functional sets are inter-

twined, although this is not cast in stone, and could be revised in a future Phase (highly

unlikely though).

From a network developer's point of view, the Common Protocol is nothing more

than an application receiving requests and sending responses over the network. The first

request received is usually from a remote Control Station attempting to establish a con-

nection, and subsequent requests involve exchange of the platform's specific parameters.

Thus, the Common Protocol module is nothing more than a network server, listening for

incoming (request) connections on a specific port, then servicing each request over a sep-

arate connection (and port). All that remains is to define the request and response for -

mats.

However, the issue can be viewed from a different perspective. The Common Proto-

col can be considered as two objects of the same application that exchange information

by each calling (some of) the other's methods. Extending this view to include the network

element results in the RPC (Remote Procedure Call) paradigm. Implementing the Com-

mon Protocol as a set of RPC interfaces will greatly speed development, as there will be

no need to write tedious transport-layer code, and instead approach the solution from a

high-level point of view, encapsulating functionality parts in self-contained function calls.

Python has Pyro4 (see [38]), a pure-Python package that can wrap a Python object

and expose its interface to the network. Although Pyro4 follows the RPC paradigm, its

overall approach is in fact more similar to Java's object-oriented RMI, and is perfectly

92 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

import Pyro4

@Pyro4.expose
class Exposable(object):
 def method1(self, param1):
 return "Received {0}.".format(param1)

daemon = Pyro4.Daemon() # make a Pyro daemon
uri = daemon.register(Exposable) # register the Exposable class as a Pyro object

print("Ready. Object uri =", uri) # print the uri assigned to the daemon
daemon.requestLoop()

Listing 1: Pyro4 sample daemon code

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

suitable for use in modern, object-oriented applications.

The only downside to Pyro4, which is really only a minor inconvenience, is that ob-

jects exposed to the network need to be registered with the Pyro nameserver, in order for

another computer to be able to discover them and call upon their methods. However, if

the remote process has somehow acquired the uri of an exposed object, it can refer to it

and call its methods without the need for a nameserver. Thus, the Pyro4 uri of a plat-

form's Common Protocol class is transmitted as part of the advertisement packet.

Listing 1: Pyro4 sample daemon code (taken from Pyro4's online documentation)

shows how quick and simple it is to expose the interface of a class to the network.

Pyro4's Daemon class wraps the exposable class and does all the work. Note that it is pos-

sible to expose a class, or an already instantiated object; in the first case, Pyro will create

an instance of the class when a remote request arrives. Each approach (expose class or

object instance) has its merits and flaws.

Listing 2: Pyro4 sample proxy code shows how simply and elegantly a remote client

can use the exposed object of Listing 1. The approach and implementation follows the

Proxy design pattern. The client does not even need to include the file specifying the ex-

posable object's method signature.

Pyro also includes additional options that determine, among others, how multiple re-

mote requests are handled. Possible options include delegating all requests to a single in-

stance of the exposed class or creating multiple instances, and processing one request at a

time or using a thread pool to concurrently access the exposed methods.

Since Pyro uses a very convenient URI string, the advertisement module needs to do

nothing more but broadcast the platform's URI (and a few extra pieces of information)

to the network using UDP, while a Control Station can just receive these broadcasts and

built its own list of platforms online. This will also permit keeping the platform list up-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

93

import Pyro4

expo = Pyro4.Proxy(uri) # get a Pyro proxy to the Exposable object
expo.method1("test") # call method normally

Listing 2: Pyro4 sample proxy code

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

dated.

This rather mundane initial setup might seem somewhat complicated, and was ini-

tially intended to permit sending just the MOVRD signal coming from the Command

Station, via ROS to the other onboard modules. However, after some deliberation, it in-

spired the design team to use it to good advantage in implementing signaling, which until

that point was considered under a different context. The signaling process will be ex-

plained below.

1.1. The Virtual Functional Remote Interface (VFRI)
The Pyro4 library handles all the server/connection/data (de)serialization issues,

leaving the developer free to focus on the problem at hand: in this case, the Common

Protocol implementation itself, which consists of a ROS node that exposes a Virtual

Functional Remote Interface (VFRI) Python object to the network. This object is detailed

below.

The vfri includes all those methods needed to pass or receive platform-specific pa-

rameters with a connected Control Station. In addition, the vfri is subscribed to the

onboard ROS IPC Bus, and thus can relay information received over it to the rest of the

onboard modules.

Listing 3: The "Brasidas" VFRI Docstring shows the Python docstring for the vfri.

In it can be seen the various methods currently implemented as part of the Common

Protocol. Of these, the most important method is issue_system_command. This

method alone implements the signaling mechanism. Its parameters and usage are ex-

plained below, in the section titled Commands and Command Codes.

The other vfri methods are pretty self-explanatory. set_manual_override is

used to toggle the MOVRD of the robot; this method returns a boolean, indicating

whether MOVRD was changed successfully (True) or not (False). This sort of feedback is

required on the Control Station to enable or disable certain status panel indicators and

control options. The three get_* methods are used to retrieve platform-specific parame-

94 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ters, as is demanded in the Common Protocol requirements; the dictionary returned by

get_nav_camera_parameters, for example, contains four entries, with keys 'width',

'height', 'cam_ip', and 'cam_port'. 'width' and 'height' specify the dimensions (resolution)

of the camera feed, and are needed by the Control Station to properly resize the window

of the Stream Display Module (cf. Figure 5.3: The Control Station Architecture), while

'cam_ip' and 'cam_port' contain the IP and port respectively of the NavCam video

stream sent over the network, so the Control Station knows where to expect to receive

the video of the platform it has connected to.

The implementation is still in a transitional state, and several of the methods shown

in Listing 3, will be removed eventually, in particular get_telemetry_report,

set_lights, and set_pos_lights, as they violate the new Common Protocol specifi-

cation. These methods where part of earlier code versions, when signaling was still con-

sidered only theoretically and in a piecemeal fashion. Another method, set_velocity

(now removed and replaced) was called by the Control Station several times per second to

transmit velocity commands, and was very inefficient and laggy, since Pyro4's proxy

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

95

@pyro.expose
class VFRI(object):
 """ Vrasidas Function Remote Interface

 Sole class that acts as a 'public' interface to Vrasidas
 (follows the 'Facade' design pattern).
 The class features methods which expose certain functions
 of the Vrasidas ROS-based software architecture so they can
 be accessed remotely.
 Pyro4 (PYthon Remote Objects v.4.0) serves as the remote
 access bridge (follows the 'Proxy' design pattern).
 Supports the following methods:

 issue_system_command(cmd_group, cmd_id, cmd_params) : sends a generic system command
 (signaling)

 set_manual_override(engaged) : engages or disengages Manual Override
(MOVRD)

 get_nav_camera_parameters() : returns a dictionary with the navCamera's
parameters

 get_telemetry_report() : returns a dictionary containing current
telemetry values.

 get_velocity_connection_info() : returns a tuple (host, port), indicating
where to send velocity commands

 set_lights(state) : turns the main lights on (state=True) or off
(state=False)

 set_pos_lights(state) : turns the positional lights on (state=True)
or off (state=False)

 """

Listing 3: The "Brasidas" VFRI Docstring

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

mechanism relies on TCP. get_telemetry_report is also called a few times per second

(fewer than set_velocity) to retrieve the current telemetry values. This 'pull' approach

will be replaced by a stream-based 'push' one on the platform's side.

Currently, as per the data stream specification, all continuous data transfers must be

implemented as data streams. Thus, an attempt is underway to re-implement the function-

ality of get_telemetry_report using data stream mechanics, which will be as simple

as sending UDP datagrams to predetermined address/port pairs. set_velocity is

rather easy, as the data required to be sent every time is small and already determined, and

has already been implemented as a UDP stream. get_telemetry_report is more diffi-

cult, as the size of the telemetry dictionary is as of yet not finalized, and likely to eventu-

ally grow rather large. The tasks performed by set_lights and set_pos_lights have

already been included in signaling, as are listed below, and the methods are obsolete and

not really called anymore. They will be removed along with the others when the data

streams for velocity and telemetry are complete.

1.2. Commands and Command Codes
The single issue_system_command method of the vfri object, in combination

with a ROS topic, can handle all the signaling required. This method will simply accept a

signal structure, and inject it into a specific ROS topic, to which every onboard module

subscribes and monitors. Each module can then examine the injected signal, and decide if

it wants to act on it. This approach closely mimics the MPI concept (see [39]), but imple-

ments only the functionality desired in a lean, simple fashion, and avoids having to import

an additional dependency which would include a lot more code that would be used.

Signaling thus is implemented in two layers. The top layer, which is the Signal Specifi-

cation Layer, defines the signals that can be sent to the platform. Signals are called com-

mands, and are organized in groups. Each group has a (numeric) Group ID, and each

command within the group has a Command ID; Command IDs are unique within the

same group, but not necessarily so across groups. Each command can possibly have pa-

96 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

rameters or arguments (its 'payload'), and all payload options are passed along as a single

string of comma-separated '<key>=<value>' pairs. This is basically a trivial implementa-

tion of the Command design pattern. Part of the current (not yet complete) list of sup-

ported system commands is shown on Table 10.1: "Brasidas" Command Codes.

With respect to the entries on the table, Group 10 contains the primary system con-

trol and configuration commands, while Group 20 contains telemetry control commands.

An additional 11 groups (100-110) are reserved for payload-specific commands, and will

be defined as part of each payload's specification.

Table 10.1: "Brasidas" Command Codes
Group ID Command ID Description Payload Options

10 0 Manual Override (MOVRD) "True" or "False"

10 1 Enable (start) all PiGstPLBase streams Host address

10 2 Disable (stop) all PiGstPLBase streams Ignored

10 3 Pause all PiGstPLBase streams, resume with 'start'
command(10.1)

Ignored

10 5 Change framerate of specified PiGstPLBase video
stream.

"<stream_name (string)> =
<new_framerate (int)>"

10 6 Turn main lights on or off. "ON" or "OFF"

10 7 Turn positional lights on or off. "ON" or "OFF"

20 0 Enable diagnostics report generation "True" or "False"

20 4 Enable monitor of Primary (motor) battery voltage "True" or "False"

100-110 ALL Payload-specific commands
(11 groups are provided to allow to group
together in distinct sets, payload commands
corresponding to different components of the
payload).

Varies

PiGstPLBase is a base class that manages a Gstreamer pipeline; more on the use of

Gstreamer below. As is obvious from the table, commands 10.6 and 10.7 implement the

functionality of vfri's set_lights and set_pos_lights methods. Internally, both

these methods, as well as set_manual_override, just call issue_system_command

with appropriately formatted arguments.

The important feature is that the signaling mechanism does not need to know the

innerworkings of each command; as long as the payload is delivered, a recipient module

that knows how to handle the command will know how to parse the payload string.

The lower signaling layer, the Signal Transport Layer, takes advantage of the

Pyro4/ROS combination. It consists of the aforementioned vfri method and a prede-

termined ROS topic. The vfri.issue_system_command method receives the three

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

97

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

command parameters (Group ID, Command ID, Payload) from the remote Command

Station, then formats them into a custom ROS message called SysCmd, written by the de-

sign team for this purpose, and publishes the message into a (platform-local) ROS topic.

The topic is named '/System_Com-

mands', and all modules running on the

platform are subscribed to it. Thus, the

signal gets propagated quickly and seam-

lessly across all platform modules, and the

module responsible for handling it can do

so. Under this approach, even the

MOVRD is implemented as a signal com-

mand. This process is depicted on Figure

10.1: The Signaling Procedure.

Despite the signaling specification

requiring that a response be possible to be

returned to the signal originator, the current implementation adopts a middle ground.

Those commands for which a response is necessary (such as whether the MOVRD was

successfully engaged or not), are implemented as separate methods of the vfri (e.g. the

set_manual_override method). The rest of the command options, are handled

through the single, generic issue_system_command method. The effect of these com-

mands can be determined by examining the appropriate fields in the telemetry informa-

tion that is periodically streamed back to the Control Station. This current signaling im-

plementation is considered very elegant and handy, and is unlikely to be revised in future

Phases; effort will be made instead to keep the number of commands that demand an

immediate response – hence requiring a separate vfri method to be implemented for

each – to a minimum.

In effect, each module running on the platform follows in a limited fashion the Fi-

nite State Machine pattern; when a command is received via the '/System_Commands'

98 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Figure 10.1: The Signaling Procedure

ROS Topic

issue_system_command (cmd_group,
cmd_id,

cmd_params)

VFRI

SysCmd

Module #1 Module #2 Module #3

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

topic, the module may change its behavior to match that imposed by the command. How-

ever, for many modules, this state change is rather trivial, and usually is implemented in a

straightforward manner, without complicated State class implementations and the like.

For example, when the Control Station sends a 10.6."ON" command (turn on the main

lights), the module responsible simply sends an appropriate request over the RS-232 to

the motor controller (in hardware, the lights are controlled by the controller as well)

An identical structure is implemented on the Control Station, but there it is used to

disseminate notifications, as well as commands. This will be explained in the Control Sta-

tion chapter that follows.

§2. The Transmission Interface Module
In order to move the robot, the motor controller needs to receive velocity com-

mands. Since the motor controller is connected to the RPi over a serial connection, care

must be taken to control access to the connection, since it cannot by definition handle

multiple simultaneous requests. The module that handles all this is the Virtual Motor

Controller Interface, or vmci. The use of the term 'motor controller' instead of 'trans-

mission' dates back to the early development phases, when the more abstract hardware ar-

chitecture was not yet established. Back then (early fall of 2015), the major focus of de-

velopment was how to communicate motor commands to the controller, since the thing

has a rather archaic serial protocol.

2.1. The Motor Controller RS-232 Command Protocol
The motor controller accepts motor velocity commands in different modes, depend-

ing on whether wheel encoders (or any other form of wheel speed measurement) are

connected to it or not. For teleoperation, encoder information is superfluous (the opera-

tor can adequately judge the velocity from the navigational camera's feed and the rest of

the telemetry), so we adopt the mixed-mode, open-loop speed control mode. In this

mode, velocity commands are given as a linear component along the x-axis (forward/re-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

99

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

verse) and an angular component around z-axis (turn left/right)1, with the magnitude in-

dicated by integer values ranging from 0x00 to 0x7F (in hex). For the same velocity value,

a different command prefix denotes the forward or reverse direction. The controller can

also accept velocity commands in non-differential (absolute) format, with one linear ve-

locity component for the wheels on each vehicle side.

The motor controller's RS-232 protocol supports additional functionality in the

form of various kinds of telemetry queries and control commands, including but not lim-

ited to, battery voltage monitoring, motor current monitoring, control of up to eight RC-

signal-conformant servos, and an auxiliary power output. Some of these functions can

and will be integrated into the system as implementation proceeds from one Phase to the

next.

All commands (except a few specific exceptions) are prefixed with either a com-

bined '!' and alphanumeric one-letter symbol that identifies the command, or a or a '^',

followed immediately by the command parameters. Any numeric values (such as e.g. a

speed value) must be given in hex, and all numeric values are limited to one-byte range (0-

255), which is always given as a two-character hex value (e.g. 5 = 05, 111 = 6F, etc.). the

responses are likewise scaled to the same range. Of the two kinds of commands, the '!X'

ones are run-time commands, while the '^' commands are used to change the controller's

configuration parameters stored in its flash memory, such as the motor control mode or

ampere limit to the motors. All commands must be followed by a carriage return

character (\r) in order to be accepted by the controller.

In mixed-mode speed control, speed commands in particular use the '!A' prefix for

the x-axis forward component and '!a' for the reverse. Likewise, the z-axis command uses

the '!B' prefix to steer left, and the '!b' to steer right. The x-axis sign was specified in the

controller's manual, but the relation between the z-axis prefix and the direction of rota-

tion was not specified in the manual, and the design team had to figure it out using estab-

lished scientific methodology – that is, through trial and (mostly) through error.

The controller's RS-232 interface is factory-configured at 9600 bps, 7 data bits, even

1 For coordinate conventions in ROS see http://www.ros.org/reps/rep-0103.html

100 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

http://www.ros.org/reps/rep-0103.html

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

parity, 1 stop bit (9600 7E1 for short). These are fixed settings that cannot be changed.

When the motor controller receives a command from the serial port, it echoes back the

command string, then sends back a response, indicating whether the command was re-

ceived and executed successfully or not.

2.2. The Virtual Motor Controller Interface
To establish effective communication with the motor controller, in an abstract man-

ner according to the architecture's hardware abstraction requirements, the vmci is written

as a ROS node that manages the serial port and performs no other task. In true object-

oriented form, the vmci's main code is contained in a Python class, with module-level

code handling the initialization tasks.

To communicate with the serial port, the vmci makes use of the pyserial library

(python-serial package), which simplifies serial access in Python to a single line of

code, as opposed to the 50+ lines (and termio structures) required in C/C++. Since on

linux the serial port is line-buffered, each command must be followed by a newline char-

acter (\n) in order to be immediately transmitted. This is in addition to the carriage

return required by the controller's protocol.

The vmci's main class is also subscribed to several ROS topics. Of these, '/Sys-

tem_Commands' is used to receive signaling; the vmci currently responds only to the 10.0

(MOVRD) and 20.4 (enable/disable primary battery voltage monitor) commands.

ROS conventions demand that motor commands be published in a topic named

'cmd_vel'. Note that this need not be a top-level topic (no '/' prefix). Thus, and since R-

5.1 (Autonomous Mode Must be the Default Operating Mode) applies, the vmci sub-

scribes initially to this topic, so it can receive speed commands from the Autonomous

Navigation module. However, when a MOVRD engage is received via signaling, the vmci

switches its subscription over to the 'Teleop_Vel_Cmds' topic, which contains speed

commands received from the Control Station in Teleop Mode. Likewise, when MOVRD

is disengaged, the vmci switches back to the 'cmd_vel' topic.

Since speed commands can arrive on the topic at any rate, and the callback used to

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

101

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

handle each topic message runs on a separate thread, it is possible that the vmci might

end up trying to write to the serial port before a previous write operation is finished.

Thus, a lock (via the threading library) is used to prevent simultaneous writes. This syn-

chronization primitive is well-known and will not be detailed here further.

The vmci also has the capability to query the controller for certain telemetry values.

The controller can report on the battery voltage, the temperature of its MOSFET-based

dual H-bridges, and the state of several analog and digital inputs available on the con-

troller board. When these values are retrieved by the vmci, they can be injected into an

appropriate ROS topic, so along with others they can be compiled by another node into a

telemetry report that can be streamed back to the Control Station. This functionality has

not yet been implemented, but it is part of Phase I development, so it will be worked

upon in the immediate future.

As a module that directly interfaces with the hardware, the vmci would be one of

the modules that would have to be re-written or replaced if "Brasidas" would ever be in-

stalled on a different platform with a different motor controller (or Transmission subsys-

tem technology in general).

§3. The NavCam Streaming Interface
The Virtual NavCam Streaming Interface (VNCSI) module is one of the modules

that implement the new data streaming architecture. The streaming of the NavCam video

feed in particular, is a common element on all platforms regardless of payload. Video

streaming, due to its high bandwidth and CPU requirements (for encoding/decoding), as

well as analog information nature, is the most complex form of data streaming. Other

data streams, such as the telemetry report stream or the velocity commands stream (the

latter is incoming to the platform from the Control Station) may require exact bit delivery

to be meaningful, but have much lower bandwidth and processing requirements.

102 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

3.1. The motion-based Implementation
The previous version of this module was implemented on top of motion, a free

open-source streaming server program intended for surveillance applications [40]. mo-

tion is an excellent application, and can be configured for all kinds of environments and

client needs, but its use was a quick and dirty solution, for while it was implemented in

but a day, it had significant shortcomings.

For one, the motion process ran separate from its controlling node, and has no no-

tion of ROS, so this essentially meant that a process integral to "Brasidas" ran without

being directly connected to the IPC Bus. The way to control motion was through a

RESTful HTTP api, so the controlling node basically used the requests python package

[41] to communicate commands to motion, while itself being connected to ROS.

The worst problem with motion was that it streamed video using software encoding

as MJPEG. This method takes up significant bandwidth and CPU, and with unacceptable

latency. As an example, during the system testing with motion, a 640×480@30fps video

required almost 5 Mbps of bandwidth, a 65%+ utilization of one of the RPi 2B's cores

(before it was uprgaded to a RPi 3B), and the video latency never managed to get below 1

sec. To achieve even these results, the video quality had to be reduced to the bare mini-

mum. The high latency was because motion assumes a static, wired camera setup, and

thus streams video using TCP. As time passed and errors required packet retransmission,

the stream lagged more and more behind reality, and when bandwidth improved, one

would get a sudden quick burst of frames – similar to the rubber-banding effect one ex-

periences when playing an MMORPG with bad latency. Clearly, if that was the price to

pay for a single stream, transmitting more than one stream by using for example an addi-

tional camera on the payload, was prohibitive.

3.2. The Gstreamer Era
The current video streaming solution is based on Gstreamer 1.0, a free, open-source

toolkit for media streaming [42], and takes advantage of its Python bindings, available via

the GObject Introspection repository. A set of stream handling Python classes is written

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

103

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

(all based on the PiGstPLBase abstract class mentioned on Table 10.1: "Brasidas" Com-

mand Codes), that each provides a native Python interface to the respective GStreamer

pipeline. These classes are shown in Listing 4: The PiGst* Class Descriptions, which is

taken from the header comments of the source Python module that defines them.

The base class, PiGstPLBase, defines the common functionality. It basically holds

the Gst.Pipeline object used to implement the streaming pipeline, and defines the follow-

ing methods:

• start(),

• pause(),

• stop(),

• get_state().

These methods provide all the needed functionality for now. In a future Phase, it is

unlikely the structure will be modified, but it may be expanded to include additional com-

mon functionality. Note that none of these classes is ROS-aware; they are simply conve-

nience interfaces (wrappers) to Gstreamer pipelines. But they are used by ROS-aware

nodes, such as the vncsi, to implement video streaming in a structured, elegant fashion.

104 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Classes included herein are:
#
- PiGstPLBase : Base class for all the rest gstreamer pipelines defined in here.
Implements common behavior.
- PiGstUDPThru : Implements a UDP "pass-through" pipeline, i.e. one described
by 'udpsrc ! udpsink'. This is used to forward internal video
feeds outside Brasidas, or to forward incoming feeds to internal
processors.
- PiGstVideoOut : implements an RTP-over-UDP video stream FROM onboard Brasidas
to an external client (i.e. Control Station). The video is
encoded in H.264, utilizing the available openMAX extensions
to take advantage of the hardware-accelerated H.264 encoder
available in the Raspberry's VideoCore-IV GPU. Obviously this
class only really works on boards that can support the specific
openMAX extensions (i.e. omxh264enc).
- PiGstAudioOut : implements an RTP-over-UDP audio stream FROM onboard Brasidas
to an external client (i.e. Control Station). The audio uses
the Opus codec (free, open-source).
- PiGstAudioIn : implements an RTP-over-UDP video stream TO Brasidas (will be
played back through the onboard audio out interface) FROM an
external client (i.e. voice feedback from the Control Station).
The audio uses the Opus codec (free, open-source).
#
This file is used by the Video Server Node to control each registered camera.
It is not meant to be run directly as an executable.

Listing 4: The PiGst* Class Descriptions

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

As can be seen in Listing 4: The PiGst* Class Descriptions, the PiGstVideoOut

class encodes video in H.264 format, using hardware acceleration that is available on the

RPi. In fact, the capabilities of the RPi's VideoCore-IV GPU are quire amazing, as it is

rated at an astonishing 24 Gflops, more than half the processing capability of a Core-i7!

Using the OpenMAX extensions is easy for Raspbian Jessie and the latest Wheezy, as they

are thankfully available on the repository (package gstreamer1.0-omx) – Older Wheezy

requires building from source, which is a hassle1. Of course, one needs to install all

Gstreamer required packages, as well as the gir1.2-gstreamer-1.0 package, which

contains the Gstreamer Python bindings (introspection data).

The vncsi node uses the PiGstVideoOut class to transmit the NavCam's video

feed. It is also intended to use PiGstAudioIn and PiGstAudioOut to implement the bidi-

rectional audio link alongside the NavCam stream; this latter functionality is still in devel-

opment. The NavCam stream is sent to the connected Control Station's address, which it

1 See ANNEX A for some instructions on where to start doing it.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

105

Figure 10.2: The PiGst* Class Hierarchy

PiGstPLBase

-pipeline : Gst.Pipeline

+__init__(stream_name : string,
 initial_state : Gst.State = Gst.State.PAUSED)

+start()
+stop()
+pause()
+get_state()

PiGstVideoOut

+__init__(tgt_ip : string,
 tgt_port : int
 video_src : string,
 img_width : int,
 img_height : int,
 img_frate : int)

+set_framerate(framerate : int)

PiGstAudioOut

+__init__(tgt_ip : string,
 tgt_port : int
 audio_src : string = None)

PiGstAudioIn

+__init__(src_port : int
 out_device : string = None)

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

receives via signaling (payload of command 10.1).

Figure 10.2: The PiGst* Class Hierarchy shows the relation between the streaming

classes. PiGstPLBase is the base class, that includes an empty pipeline and defines the ba-

sic functionality. The __init__ method is Python's class constructor. All classes' con-

structors also call the class's parent constructor before performing any other initialization

(in other words, PiGstVideoOut's __init__, for example, also calls PiGstPLBase's

__init__). It should be noted that for all classes of Figure 10.2: The PiGst* Class Hier-

archy, the constructor arguments are also saved into additional "private" member vari-

ables, not shown explicitly on the diagram. The term is in quotes here, since Python does

not implement any kind of strict access control, and all members of a class are publically

accessible. The use of the term (and the '-' symbol in the class diagrams) indicates the ar-

chitecture-derived intention, not its implementation.

Some constructor arguments also have default values. For the PiGstAudio* classes,

the recording (src) and playback (out) system devices have a default value of None, and if

this is not changed, Gstreamer will use the default system device for each operation.

The PiGstVideoOut class is configurable, so the network port, as well as other feed

parameters, such as the camera source device, and video resolution, are passed to it as

constructor parameters, making the class usable in other projects as well. The only restric-

tion is that the video source must be from a Video for Linux-compatible device (the class

uses the v4l2src pipeline element internally). The rest of the PiGst* classes are also

configurable to a similar degree.

The fun part of using Gstreamer+OpenMAX is the performance. The streaming

pipeline uses RTP over UDP to deliver the resulting H.264-encoded video, which at the

same 640×480@30fps setup results in a 1.6-Mbps bandwith utilization, a less than 20%

CPU utilization (on one core only), and a received video latency at the Control Station of

less than 150 msec – as demanded by R-11.5. In fact, the CPU utilization is probably

mostly due to memory copying of the camera frames to and from the GPU memory area

during encoding. One catch is that the memory allocated to the GPU must be increased

106 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

to at least 128 MB, otherwise the H.264 encoder crashes. The RPi shares its memory be -

tween the CPU and GPU, and the setting that controls the memory allocated to the GPU

is the gpu_mem parameter found in /boot/config.txt. Alternatively, one can use

'sudo raspi-config' (without the quotes!) from an ssh console to change the setting.

Both methods accomplish the same thing.

It should be noted that the H.264 encoder available on the RPi's GPU is a separate

SIP (Semiconductor Intellectual Property i.e. chip section) from the main graphics pipe-

line. Thus, while the Videocore-IV GPU is encoding video, it can also service any graph-

ics operations, or as intended in our case, generic GPU computations.

The only downside to using a Gstreamer pipeline, is that unless one sets it up to be

receivable by vlc or a browser, the bare RTP-over-UDP stream can be opened only by

another Gstreamer pipeline. This is not a problem in the case of "Brasidas", since the

Control Station does indeed use Gstreamer as well, but it limits somewhat accessibility to

the streamed video. Configuring the pipeline to make the stream viewable in vlc or a

browser will also significantly increase the video latency.

To conserve bandwidth when not needed, in both the motion and Gstreamer cases

the NavCam's framerate is reduced to 5 fps when MOVRD is not engaged. Simply moni-

toring the robot feed works fine at 5 fps. When the operator engages MOVRD, however,

the framerate is switched to 30 fps, to permit smooth control.

Additional feeds can be streamed by using separate ROS-aware modules and making

use of the appropriate classes from Listing 4: The PiGst* Class Descriptions. The

Gstreamer solution is a recent one, so there was not yet the opportunity to expand upon

it. Data streams will probably be implented by wrapping direct use of sockets and UDP

into a higher-level, PiGst*-type class to facilitate code uniformity, although there is a pos-

sibility that one can take advantage of Gstreamer to stream custom data as well. The fea-

sibility of this is still under investigation, however using a UDP socket in Python gener-

ally is much simpler than setting up even the simplest Gstreamer pipeline, so a custom so-

lution is more likely in this case.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

107

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

§4. The Advertisement Module
This functionality is currently implemented to transmit UDP packets at a network

broadcast address (X.X.X.255). According to R-16.0 (Advertise Platform Over the Net-

work), the minimum information that needs to be transmitted is the platform's ID and

status. R-16.0 likewise specifies exactly the rate it needs to be transmitted at. The adver-

tisement uses UDP port 20000 (rather arbitrary choice, but who's gonna object anyway?).

The platform's status is a 32-bit integer, accessed as a set of flags. A flag can be the

typical 1-bit toggle (such as whether MOVRD is engaged or not, or whether the posi-

tional lights are on or off), or it might need to be a set of bits enough to differentiate be -

tween a set of options. For example, 2 bits could be used to specify a coarse battery con-

dition, with possible values of "FULL" (11), "3/4" (10), "1/4" (01) or "DANGER -

LOW" (00). If in the future these 32 bits of flags are exhausted, an additional 32-bit inte-

ger can be added to the status, or the status extended to a 64-bit integer, with minimal

work. Efficiency hints at matching the integer size to the CPU's word, and the RPi 3's is

64bit. The current Raspbian Jessie comes only with a 32-bit kernel, however, so until that

changes, a 32-bit CPU and OS will be assumed.

Of course, given that the typical ID will be a string of around 15-20 characters,

sending 24 or so bytes using a UDP packet is a waste of bandwidth, as a UDP packet has

an 8-byte header, increased by the at least 20 bytes of the IP header, for a total of 28

bytes of header and 24 bytes of payload, not including the link layer's framing bits.

After Phase I is complete and the development moves into Phase II, the advertised

information will also include the robot's SLAM-derived coordinates. The coordinate sys-

tem that will be used is yet to be determined. Given that the scale of applications for

"Brasidas" is of the order of 1 Km or so, and that coordinates need no better accuracy

than 1 m, this should not become much of an issue. Right now, the coordinates provided

by the GPS are transmitted instead.

In any event, two coordinates need to be specified, perhaps a third if elevation is to

be considered. It is assumed that in whatever form these are given, a 32-bit word for each

108 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

will be more than sufficient, so a Phase II advertisement packet would have about 36

bytes of payload (and 28 bytes of header).

All numeric values (status, coordinates) are transmitted as Base64-encoded strings.

This adds a bit to the overhead, but allows transmissions to treat the data as a big string

with fields separated by commas, rather than having to assume fixed-width byte fields.

Even adding 36 more bytes of status data, yields an IP packet that is 100 bytes long.

Transmitting this at the maximum rate of R-16.3 (1 packet every 0.6 sec) requires only

~1400 bps bandwidth. This is still a very minimal network load, so much that if the

knowledge of robot ID, status, and coordinates alone is enough, a separate, low-band-

width, long-range network can be used to transmit those, such as the Xbee-based solution

proposed by Cpt (Inf) Botonis Dimitrios and Cpt (Sig) Lefteris Takis in their semester

project for the Robotic Systems course (spring 2015, under Prof. Mavridis Nikolaos), the

same course which gave birth to "Brasidas". Since the advertisement module will run as

an independent ROS node, it will be capable of using any hardware interface available

and not restrict itself to network interfaces. In all likelihood, however, the implementa-

tion will not diverge from using a single radio (digital link), and advertisement packets will

be routed over the IP-based network.

A more accurate bandwidth estimate should take into consideration the link layer

overhead induced (error correction and coding), but even a ratio of 1:5 (transfer speed :

link rate) as is typical in 802.11 (see [43]), is acceptable.

§5. The SLAM Module
This module is as of the time of this writing (Apr 2017) still in its infancy. Granted,

its functionality is part of Phase II, while "Brasidas" still struggles to finish Phase I, but

some notes can be provided.

SLAM is a CPU-intensive task, and every solution (i.e. algorithm design and imple-

mentation) must be tailored to the sensor data available; the observations matrix in partic-

ular must be structured differently when using a planar laser scanner than when using a

stereoscopic camera and point cloud data. Now most implementations out there rely on

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

109

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

planar laser scanners, and it should be obvious that such mapping hardware may be ap-

propriate for indoors applications, but it is whoefully inadequate for outdoors environ-

ments, with sloped ground, uneven surfaces, and random-circumference obstacles such as

rocks and tree trunks. Thus, the design team is still in the process of attempting to deter -

mine what sort of sensor is appropriate and adequate. Of course, R-0.3 (Funding and

Support is Very Specific) still applies. Once this is determined, then the proper SLAM im-

plementation can be selected, or coded if desired. OpenSLAM.org [44] contains several

algorithms to choose from before delving into state updates and filtering, and some of

those are also ported to ROS.

One part of the SLAM module that is implemented is the GPS tracking component.

The module is actually taken ready from the ROS repository of packages, and all it does

is read in the NMEA-0183-formatted sentences from the GPS sensor, extract coordinate

data, and post these in a ROS topic. No sweat.

Another functionality taken in part from the ROS package ecology is the IMU mod-

ule. The IMU module is actually two separate ROS nodes. One is an in-house (i.e. written

by the design team) IMU data acquisition node, which uses the class MPU6050 given in

[45], and along with a few ROS parameters and Python goodness, publishes the raw IMU

data (accelerations and angular velocities) into the ROS topic '/imu/data_raw'. The data

are in turn consumed by the IMU filter node, which integrates the instantaneous readings

and publishing the robot's orientation (pose) into topic 'imu/data'. The filter node is

available as an official ROS package1, and uses a sensor fusion filter based on the algo-

rithm described in [46].

§6. The Autonomous Operation Module
Much like the SLAM module, the Autonomous Operation (AutoOp) module has

not been implemented. It is expected that this will contain CPU-intensive code as well, so

it is planned that it will be run on a separate system Core computer, an additional one to

1 http://wiki.ros.org/imu_filter_madgwick

110 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

http://wiki.ros.org/imu_filter_madgwick

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

the RPi currently installed in the System Core. A tentative initial research has uncovered a

ready-made ROS package for autonomous navigation. This will be examined and tested,

in the hope that perhaps the AutoOp module can be based on that solution and save

some code writing time.

Autonomous robot operation is still in its infancy, and most progress and ideas are

purely theoretic. The DARPA Challenge to produce a driverless vehicle may have resulted

in several viable prototypes and solutions [47], but these are mostly autonomously navigat-

ing robots, not autonomously operating in general.

There is still no standard among protocols and theories regarding autonomous oper-

ation. ROS includes a task-executive based package called actionlib1, and other action-

based approaches do exist, such as the military-compliant, NIST-sanctioned 4D/RCS

[48]. When Phase IV development begins, the then-current status and options will have

to be re-examined before a proper implementation can be chosen.

Autonomous operation is still debated among the design team as to whether such a

capability is really desired of a robot like "Brasidas". An independent capability to track

targets is definitely desired, and is intended to be included, but more complicated pro-

cesses may be superfluous and never actually be used.

The design team's intent is to have Autonomous Operation permit the robot to pri-

oritize a list of operator-provided tasks, and identify certain operator-defined targets

(such as cars, doorways and windows, pedestrians, and so on). This will still demand sig-

nificant onboard processing power, but will provide specific needed services, with as little

possibility of error as possible.

1 http://wiki.ros.org/actionlib

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

111

http://wiki.ros.org/actionlib

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

112 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 11 .
The Control Station Configuration

Currently, the Control Station exists only in software; its hardware is not yet com-

plete. The software stack runs fine on a Core-i3-based laptop, and is expected to run just

as well on a Raspberry Pi 2B or later, that is intended to be used as the Control Station

processor.

The software stack is initialized in the same manner as the platform's software stack,

using roslaunch to load configuration files and start nodes with a single command. The

big difference between the platform code and the Control Station code, is that the Con-

trol Station features a GUI for human-computer interaction. The GUI layout is not final-

ized and is still under development; more on the matter in the Display Modules section

later in this chapter.

§1. The Connection Management Module
This is the most important module of the Control Station, as it essentially routes

network connectivity. Currently, it implements a set of services offered to the other

nodes of the Control Station, that manage aspects of the connection to a remote plat-

form.

The module functions in one of two states: Connected (to a remote platform) or

Disconnected, with the module being by default in the Disconnected state at startup.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

113

Figure 11.1: Connection Management module (Disconnected state)

ConnectToPlatform

Connection Management

DisconnectFromPlatform

GetNavcamProps

VFRI
Proxy

"B
ra

si
d

as
"

N
et

w
o

rk

GetVelocityStreamInfo

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Figure 11.1: Connection Management module (Disconnected state) displays the ser-

vices in the Disconnected state. Here, there is no VFRI Proxy instantiated, since no re-

mote platform is specified to connect to. Only the ConnectToPlatfrom ROS service is

enabled. When the operator selects a platform from the displayed list of discovered plat-

forms, the generated UI event calls this ConnectToPlatform service, which if successful,

causes the module to change state to the Connected one shown on Figure 11.2: Connec-

tion Management module (Connected state).

When a connection to a remote platform's VFRI has been established, all the ser -

vices offered by the module become enabled. The other modules of the Control Station

use these services to receive information about specific platform parameters, for example,

the GetNavcamProps service is called by the Stream Display module when a connection

is establish, to retrieve the parameters (video dimensions, network port of incoming

stream), so it can properly receive and render the NavCam stream from the platform.

The Connection Management module uses information supplied as argument to the

ConnectToPlatform service call, to create a Pyro4 Proxy to the vfri of the platform se-

lected by the operator. It also monitors the '/CtrlStation_Commands' ROS topic for

any system commands (non-notifications) posted by other Control Station modules, that

necessitate a call to the vfri.issue_system_command method, to forward the com-

mand to the platform.

Finally, the DisconnectFromPlatform service tears down the connection, releases

the reference to the remote VFRI proxy, and disables all other services except Connect-

114 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

Figure 11.2: Connection Management module (Connected state)

ConnectToPlatform

Connection Management

DisconnectFromPlatform

GetNavcamProps

VFRI
Proxy

"B
ra

si
d

as
"

N
et

w
o

rk

GetVelocityStreamInfo

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ToPlatform. Right now, it is required to disconnect from a platform before connecting to

another, however when the current code revision is complete, the system will be able to

switch connections on the fly, without having to disconnect first. This will permit faster

control of multiple platforms by a single Control Station, e.g. to quickly issue a new way-

point to another robot operating autonomously, then go back to the one currently being

teleoperated.

Currently, the Connection Management module also pulls periodically telemetry data

from the platform, and posts back the returned result into the '/CtrlStation_Com-

mands' topic, using appropriate Group 90 commands (notifications, see below). However,

this is a temporary solution, as it goes against R-11.0 (Stream Data Feeds); a revision is al-

ready underway to implement telemetry as a data stream (i.e. data will be "pushed" by the

platform), that will be handled by a separate code module.

1.1. The Control Station Signaling
Signaling is handled a bit differently on the Control Station. While the overall soft-

ware architecture mirrors that of the platform's, the mission of the Control Station soft -

ware is fundamentally different from that of the platform's software stack.

The platform software works in an active manner, taking in sensor readings, execut-

ing Control Station requests, streaming media, etc. Inter-module signaling on the plat-

form aims to propagate commands and effect status changes. The Control Station soft-

ware, on the other hand, works reactively to respond to operator commands. Inter-mod-

ule signaling on the Control Station intends to propagate notifications about data received

by one module that necessitate a change in the visual interface presented, or data dis-

played by another module.

Thus, signaling on the Control Station consists mostly of notifications. The various

modules of the Control Station keep tabs about the currently connected platform in the

form of a set of various state variables, such as the platform's ID, the port where the

platform's NavCam stream is received, whether the platform's MOVRD is engaged or

not, whether the lights have been turned on or not, etc. All these variables remain valid in

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

115

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

the current state (their values may change, but their raison d'être does not). They are the

equivalent of state variables in a thermodynamic system (the set of state variables and

their relations is the equivalent of the state function of a thermodynamic system).

A notification informs all modules of a change in the collection of state variables.

This may be a change in the value of a variable, or the addition or removal of a variable

from the set of state variables. Thus, notifications are analogous to process functions in

thermodynamics.

Notifications are propagated through the '/CtrlStation_Commands' ROS topic,

and have command Group ID and Command IDs, like other signaling commands. Noti-

fications are assigned the command Group ID 90, and are published only on the Control

Station. Note that other commands can also be used on the Control Station, and indeed

are, notifications (i.e. Group ID 90 commands) are simply restricted to the Control Sta-

tion only. Most of the additional non-notification commands are forwarded to the plat-

form, although Command Group 91 is reserved for (the future possibility) of Control-

Station-only commands.

§2. The Node Discovery Module
This module is a simple UDP server at its core, listening on the network for plat-

form advertisement packets. It is build on top of python's SocketServer module (specifi -

cally, it uses the ThreadedUDPServer class as base).

When running, the node maintains a dictionary of all robots currently discovered. If

a new packet from an already discovered robot arrives, the node simply updates the dic-

tionary entry with the new values. If a new robot appears, it is added to the dictionary.

Along with the data included in the advertisement packet (robot VFRI uri, IP ad-

dress, coordinates, and status word), the module stores in each dictionary entry the (Con-

trol Station local) time of the last advertisement packet received from that robot. A sepa-

rate thread runs every few seconds (10 in the current implementation), and cleans up the

list of stale entries, removing robots for which the last advertisement packet is more than

116 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

10 sec old. The requirements (R-9.3) specify 4 sec, but 10 sec are used at the moment un-

til the code is refined and stable.

Whenever a new packet is received, or the cleanup thread completes, the updated

platform list is published in the '/node_list' topic.

§3. The Teleop Console Interface Module
Much like a reverse version of the vmci running on the platform, this module mon-

itors the teleoperation console and forwards any button presses or joystick moves to the

currently teleoperated robot. The teleoperation console is connected to the Control Sta-

tion over USB, but it's really just a wired (USB) XBox game controller. A third-party ROS

node, joy_node (from the joy package) is used to read in the controller's state. The

Teleop Console Interface module simply picks up the messages published by joy_node

and converts them to velocity commands for the remote platform.

3.1. Sending Velocity Commands
Upon receiving a notification in the '/CtrlStation_Commands' topic that the

Control Station has been connected to a platform, the module calls the GetVelocityS-

treamInfo service (part of the Connection Manaement module) to retrieve the details

needed to create the velocity commands stream (in particular, the platform's IP address

and port where it receives velocity command packets). Velovity values are converted from

the 16-bit signed integer values read in from the controller, to platform-agnostic 0.0-1.0

range floats.

In particular, the MOVRD enable/disable is routed over signaling, since it is impera-

tive that its reception (and execution) be acknowledged. At the same time, the velocity

commands are sent over a separate data stream. Such a stream (i.e. basically UDP destina-

tion host/port pair…) is initialized upon connection, and utilized only when MOVRD is

engaged. In fact, since a UDP-based solution is actually connectionless, "connecting" and

"disconnecting" is really a software flag toggle. By simply changing the stream's parame-

ters (host and port), the velocity commands stream can be directed at a different platform

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

117

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

on the fly.

Right now, velocity command packets are sent at a rate of 20/sec, and each velocity

command is sent only once. In this UDP-based approach, where packets can get lost or

discarded on reception due to corruption, an error correction and order detection scheme

is employed, to avoid having to send each command packet multiple times for redun-

dancy.

Each velocity command packet essentially contains an NMEA-0183-compliant1 sen-

tence as follows:

$PVEL,<time_count>,<x-axis value>,<z-axis value>*<checksum>

The <time_count> field is an auto-incrementing unsigned integer, used as an index,

to allow the platform to determine if a packet is received in-order (hence, valid) or out-

of-order (in which case it should be discarded).

The two float velocity values, each in [0,1], are transmitted in their string representa-

tion, using 5 decimal digits, which is sufficient accuracy for our needs. The checksum is

calculated per the NMEA-0183 specification, and is two characters (hex representation of

a byte). Thus, each UDP velocity command packet is 26-36 bytes long (depends on the

size of the <time_count> field), and has a 28 bytes header, for a total max size of 64

bytes. At 20 such commands per second, the required bandwidth would be of the order

of ~10 Kbps. As in the case of the platform's Advertisement module, this does not in-

clude link layer overhead, but again the amount of data rate required does not pose a

problem when using a multi-Mbps link like 802.11.

§4. The Display Modules
Each of the display modules is a GUI application that implements specific function-

ality. The current implementation represents updated code, conforming to the architec-

ture of Figure 5.3: The Control Station Architecture. it has superceded the previous GUI

code, which combined all display functions into a single code module, making its mainte-

1 https://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp. See also the (more informative) wikipedia
entry at https://en.wikipedia.org/wiki/NMEA_0183.

118 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

https://en.wikipedia.org/wiki/NMEA_0183
https://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

nance and further development rather arduous.

The Control Station currently uses kivy as its GUI framework. Kivy is an open-

source Python library for native user interface development, that runs, among others,

even on Android. The framework takes advantage of GPU acceleration where available,

and is maintained to be up to date – the latest version as of this writing is 1.10.0, released

concurrently with this work (May 2017). Kivy uses a script-based notation to define the

layour of GUI components, then applies pure Python goodiness to manage the compo-

nent interactions. It is well documented, and [49] has all the details and tutorials one

needs.

Using Kivy, the design team has defined three GUI modules, as shown on Figure

5.3: The Control Station Architecture. Each module is also a ROS node.

The screen layout of the Display modules is shown on Figure 11.3: The Control Sta-

tion's Display Modules Layout.

The top area is the Status Display module, which is basically nothing more than a

passive panel filled with indicators and value displays. This panel does not respond to any

user input, and only updates the values and indicators it displays when a connected plat-

form transmits its telemetry.

The middle area is the Stream Display module. When the Control Station connects

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

119

Figure 11.3: The Control Station's Display Modules Layout

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

to a platform, this window displays the feed from the platform's NavCam, and also the

list of all platforms found online, with each platform shown as a clickable button – click-

ing the button connects to that platform.

On the Figure, the Control Station is connected to the network, so it has found the

robot, and it is also connected to it, with the NavCam stream being displayed.

The bottom area is the Control Interface module. Currently it contains very few

control buttons (only "Disconnect" and two toggles for the platform's lights). As the to-

bot's functionality becomes consolidated, this panel is bound to have additional control

options integrated. It is assumed a touch display will be used, eliminating the need for a

mouse, and relying on the keyboard and XBox controller for all control options.

4.1. The Stream Display Module
The Stream Display Module displays the NavCam feed from a connected "Brasi-

das". Internally it uses Gstreamer to receive the transmitted stream, decode it, and render

it on the window. Again, a custom Python class is used here, called PiGstVideoInXID (a

concrete descendant of the PiGstPLBase class). The implementation takes advantage of

the ability of Gstreamer to render the video into a custom window. The xvimagesink

element accepts a parameter (aptly) named 'xid', which is the XWindow ID of the target

window. As can be expected, this method only works on the X window manager. By re-

trieving the X-ID of the target window, and setting it as the value of xvimagesink's 'xid'

parameter during pipeline initialization, the Gstreamer pipeline renders the resulting

video directly onto that window.

120 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

From suboprocess import check_output
.
.
.
get the xid of the video feed window
#get the xwininfo output
xwininfo_output = check_output(['xwininfo', '-name', 'VC2S Video Feed Panel'])
xid_startidx = xwininfo_output.index('Window id:') + len('Window id:')
xid_endidx = xwininfo_output.index('\"VC2S Video Feed Panel\"')
self.win_xid = int(xwininfo_output[xid_startidx:xid_endidx].strip(),16)

Listing 5: Retrieving a Window's XID on Linux

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

Listing 5: Retrieving a Window's XID on Linux displays the Python code snippet

from the Control Station code that retrieves the XID of the Stream Display window. The

code takes the output from the xwininfo system application and parses it to extract the

XID, which is displayed as a hexadecimal value (hence the '16' parameter to the int cast-

ing of the extracted string at the last line).

The only drawback to this is that Gstreamer cannot be limited to a specific part of

the window; it renders over the entire window and any graphical controls it may contain.

Thus, a window receiving a Gstreamer video cannot be used for anything more. Of

course, if a video is not rendered, the window can function normally.

This drawback can be mitigated somewhat by processing (resizing/scaling/etc) the

video in the pipeline, using additional Gstreamer elements such as videoscale and

videobox. [50] has a lot of similar examples. It uses the now obsolete Gstreamer 0.10,

however the examples can be adapted to Gstreamer 1.0 with minimal work.

The Stream Display module is actually two separate windows; one that receives the

list of discovered platforms, and presents it as a set of clickable buttons, one for each

platform (to facilitate choice of platform for connection), and the main window that dis-

plays the streamed video. The stream is of course displayed only when the Control Sta-

tion is connected to a platform; at other times, this window is blank.

In Phase II, the platform selection screen could display the pre-loaded or current

area map, then draw the discovered platforms as pins or icons over each corresponding

platform's location, updated in real time as platform advertisements are received. The

icons can be clickable to allow selection – and perhaps right-clickable to present a context

menu with appropriate options. The exact UI layout is still not finalized, as it also needs

to be made flexible enough to accommodate possible different options of the various

possible payloads.

4.2. The Status Display Module
The Status Display Module is used only to display information and indicators re-

garding the status of several plarform options, such as whether the lights are on on off,

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

121

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

the charge state of the battery, etc. It serves as the primary visual feedback source for the

operator regarding the platform's status. Otherwise, this module does not accept any user

input. It is the equivalent of the Annunciator Panel (Master Caution) found on aircraft

cockpits, albeit much simpler and less cluttered with readings (for the time being, at least).

Depending on the notifications received, the module's panel can flash warning mes-

sages to draw the operator's attention when a critical situation occurs, such a state of low

battery charge. The use of audio warnings is also being considered if their use proves jus-

tified.

This module also displays all received telemetry values, such as the System Core's

temperature (measured via the onboard IMU's temperature sensor), or the amount of

available RAM.

4.3. The Control Interface Module
This module provides a series of GUI controls beyond the teleoperation-specific

physical controls of the teleop console. The 'Disconnect' button is found here, among

others, enabling disconnection from a platform. Other button controls currently include

the light switches (both main and positional), and a few placeholder buttons, whose use is

yet to be determined. Much like the Status Display module, this module is the result of

code reorganization and is not yet complete. The design team is considering the option

of transferring to this module some amount of functionality that were implemented as

physical controls on the (old) Arduino-based teleop console.

122 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 12 .
Testing and Verification

Testing was subsumed into the development process since the early stages of the

project. Every subsystem and code module was tested individually for errors and perfor -

mance. However, testing the prototype as a whole proved a bit more difficult; multiple

hardware and software components had to be completed and integrated before the entire

prototype could be put to the test.

§1. Network Tests
Given that the network infrastructure is taken ready with no modifications or addi-

tions, little dedicated testing was implemented. The network performance was tested as

part of various general system tests, where the platform was teleoperated in increasingly

larger distances from the Control Station, until the connection was lost.

As has been mentioned earlier, tests on software versions using motion for video

streaming, recorded network utilization in excess of 5 Mbps, while Gstreamer-based ver-

sions ran at 1.6-2 Mbps. These were taken off the OpenWRT router's bandwidth moni-

toring page, and are tranfer rates, i.e. including the Layer-3 and higher protocol overheads,

but not the physical and data link framing overheads. The fact that 802.11 has a rather

high framing overhead is an open topic of discussion among the design team members,

but replacing that with a wireless implementation of more efficient protocols is not being

considered at the moment.

All such tests took place in the ARTC. The place is filled with buildings, vehicles

(metal obstacles), and multiple WiFi access points (interference) operating right outside

the area. During those tests, the network permitted effective teleoperation (using motion)

to a maximum recorded distance a little over 250 m, with a large building interposed be-

tween the platform and the Control Station. The network utilization was also monitored

closely to determine the amount of bandwidth that the platform-Control Station link re-

quires. This experimentally recorded range limit demonstrates why motion is inadequate,

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

123

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

as with a lower bandwidth usage the robot would most likely have ventured a bit further.

However, no test has yet taken place using the newer, Gstreamer-based implementation.

It is expected that the effective teleop range will be significantly longer, though.

A second, limited test was performed as part of a presentation held at the Military

Academy of Athens. The Control Station and Access Point were positioned inside the

Academy's main amphitheater, and the platform was teleoperated to a course leading it

outside the amphitheater and the building. The software during this test did use

Gstreamer, but the test was terminated while the robot was approximately 50 m from the

Access Point (straight-line distance), and until then the connection was active and the

video feed and teleoperation were smooth. No attempt was made to move the platform

further away to determine the range limit under such conditions. However, attenuation

was quite severe, as there were several attendees (and thus active smartphones) in the in-

termediate area, not to mention that the signal had to pass through a concrete wall.

§2. Platform Software Tests
Most of the platform software tests were run on the RPi. A few simple pieces of

code were tested first on a development laptop, then deployed to the RPi, but the major -

ity of the code was debugged and tested on the platform itself. Especially those modules

that facilitated hardware access could be tested on no other machine.

Apart from correctness of code, the tests sought to measure primarily the amount

of RAM and CPU utilized by each module, as well as whether each started and shut

down appropriately and without exceptions or possible memory leaks.

These tests showed that the current implementation runs with no problems on the

RPi 3B. Memory suffices with no swapping involved. During video streaming no CPU

core went above 40% utilization for an appreciable amount of time. By comparison, tests

run on the older, motion-based versions, recorded CPU utilizations of the order of 40-

60% on two cores, a result of motion's software MJPEG encoding. RAM utilization was

also greater in the motion-based versions, reaching a peak of almost 550 MB of RAM,

124 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

versus 350 or so MB in the newer version.

The most significant difference was observed in overall video quality. Despite the

lower bandwidth, the H.264-encoded video has better quality than motion's MJPEG,

since to reduce bandwidth the design team had set the MJPEG quality to a rather low set-

ting. The hardware H.264 encoder available on the Videocore-IV GPU has a default en-

coding setting of 'H.264 high-profile'.

§3. Control Station Software Tests
As currently the Control Station software runs on the laptop on which it is also de-

veloped, only a few dedicated test runs were made; every functionality not requiring plat-

form connectivity could be tested at any time – and indeed was – by simply running the

code.

The visualization modules, and in particular the GUI component layout, were tested

separately. A mock Kivy module was written, which rendered the windows and controls

according to how it was intended each time, but the controls had no user responsiveness

or functionality. This way, the Kivy script additions and modifications could be tested for

correctness without mixing them with already existing, complex code. It made error trac-

ing far easier. Whenever the layouting code and script tested through the mock module

was deemed satisfactory, it was copied over and integrated with the rest of the Control

Station code base.

The focus of testing for the Control Station code was on responsiveness. Perfor -

mance was not considered until recently, since it was assumed that a desktop-based sys-

tem would be used for the Control Station. After the decision to use a single-board com-

puter in that subsystem as well, future tests have been scheduled to test the Control Sta-

tion software's performance as well, since the GUI puts a heavy strain on embedded sys-

tem resources, especially RAM – and RAM on the Pi is limited.

These tests will heavily influence the further Control Station development. If the

tests show that, with the current single-board computer capabilities, this solution is not

viable, this approach will be re-evaluated, and other solutions will be examined. There al-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

125

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

ready exists a proposal to use a mini-itx-based computer board, such as those typically

used in hi-end car PCs. Such a system could easily have a mobile, lower-power version of

a Core-i5 and several GB of RAM, allowing extended capabilities for the Control Station.

A final aspect of the Control Station that needs to be tested is operability. As thus

far the controls have been operated by the members of the design team, who have inti-

mate knowledge of the system, no feedback exists on what sort of window layout and

physical controls is easier and more intuitive to operate, as far as a person who has not

participated in the project development is concerned, and who most likely will not have

an engineering background (i.e. any one of the expected future operators, but not a de-

signer).

At this stage in development, the most prominent control layout concept involves a

set of physical and software controls akin to the interface of a first-person shooter game

(at least for control a single platform), where the main view comes from the NavCam,

and an XBox-compatible game controller is used to steer the vehicle and handle control

of the payload (turret azimuth/elevation, fire button, etc.). An additional custom key-

board panel will most likely be assembled, to permit extra function-specific buttons, in-

stead of mapping all functions to controller keypresses.

126 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 13 .
Interlude II

Programming a robot is no easy task, even a simple teleoperated one like the "Brasi-

das" Mk-I. Again, the reader is reminded that the streamlined form of process appearing

in the chapters of Part II is convenient, but not representing reality. In truth, things did

no go so easy and the path was never very clear.

Of course, it must be emphasized that the design team had next to zero experience

in the matter. This whole process has been an entire 'learn through trial-and-error' travel

down failure road. In fact, it was mostly 'learn through error'.

Just sorting out what OS distribution and version to use took over three months.

Initially, the design team settled on ROS Indigo, which was available on Ubuntu ARM,

but not on Raspbian Wheezy. An attempt to compile it took a few days of effort and re-

sulted in a not-so-fully-functional ROS install. So for a while, Ubuntu 14.40 (armhf) was

used on the Raspberry Pi. When Gstreamer was found to be applicable, things went

south again. Now Gstreamer may be available on both Ubuntu and Raspbian, but – most

importantly – the OpenMAX-based pipeline elements were available only for Raspbian

Jessie, and not Ubuntu ARM. Thus, after a lot of deliberation, the OS went back to being

Raspbian, this time the more recent Jessie distribution. Thankfully, in the second iteration

the desing team were wiser, and attempted to compile a leaner ROS setup, which suc-

ceded – the release was even upgraded to use ROS Kinetic!

The previous software versions, which relied too heavily on Pyro4 and motion, are

also good examples of bad development; the latency of motion's feed and the jerking

and rubber-banding of teleop control through Pyro4 should have resulted in the immedi-

ate drop of that implementation. However, due to time constraints and focus on attempt-

ing to close Phase I and move into Phases II and III, in trying to implement autonomous

navigation, caused the problem to be sidelined and tolerated, until it became apparent af-

ter some tests that that implementation was going to no serious town. It was a good

waste of time and a good lesson learned.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

127

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Even Kivy, the GUI framework, was not the project's first choice. PyQT was initially

used, but proved cumbersome and resource-demanding. A different framework, VisPy1,

was then adopted. This framework was still under development, and suffered from a mul-

titude of bugs. Eventually, it was abandoned in favor of Kivy.

Another issue was that of the Control Station control layout. Initially, a custom con-

troller console was constructed, using an Arduino board and compatible joystick, which

was programmed accordingly and used alongside a standard keyboard. The console sent

sentences formatted following the NMEA-0183 HS (High-Speed) protocol, except the

sentence headers used custom symbols, and not two-letter vendor or sentence codes. A

sample sentence is shown below (the '0' and '1' entries are button states, the other four

numbers are axis positions, the last value is the sentence checksum):

$TCSTA,1,0,1,1,412,887,515,512*57

Although this approach was very flexible and extensible (we could add as many but-

tons, extra joysticks, and additional controls are we liked), it used a custom board instead

of a COTS solution, and consumed a non-trivial amount of development time. Most of

it was spent in designing the Arduino communications protocol. The teleop console was

designed to initially accommodate an old analog 4-axis, 4-button joystick (the author had

one lying around from his early Wing Commander 2 and 3 days, and contributed it to the

project), although eventually a different analog joystick, a 2-axis Arduino-compatible one,

was used.

Another idea considered the use of a gamepad (XBox-compatible game controller).

This can in theory aggregate more controls in a smaller package, and make the Control

Station more portable (perhaps even man-portable), but no such controller was available

initially, and there were concerns that it may be less convenient than the keyboard+joy-

stick approach.

Eventually, both options were tested. Our concerns about the XBox controller

proved to be inaccurate, and thus the XBox option was adopted. It is by far the most

convenient option, as it allows us to use a COTS component in place of a custom-made

1 http://vispy.org/

128 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

http://vispy.org/

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

one. Plus, the keyboard still remains in use, and is a viable option for providing additional

controls.

The combination of multiple architecture revisions and lack of knowledge on the

design team's part have resulted in slow development progress, and a Phase I that has

taken more than it should, and thus far delivered less than expected. Finally however,

things are beginning to coalesce into something that will resemble a robot… eventually…

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

129

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

EPILOGUE
There is still much work to be done. Phase I may be practically complete, but "Brasi-

das" is not – plus, you know what they say about "almost": it only works when throwing

horseshoes and hand grenades.

The software has been designed to be modular and plarform-agnostic, opening up

the possibility of using it on other ground vehicles. Thus, it can form the core software

of a family of vehicles that may perform totally different functions, but be able to inter-

connect and communicate, all the better to execute their assigned mission.

The development speed is likely to pick up from now on, as a valuable knowledge

base of know-how and practical skills has been developed.

While the intent is to eventually have "Brasidas" operate autonomously, a robust

R.O.V. implementation is required first. A R.O.V. includes all low-level functionality and

basic concepts that will be required by the higher-level protocols employed in autono-

mous operation. In addition, many aspects of autonomous operation are at the moment

still being researched actively, and lack a robust implementation. Not many aspects of

such implementations are standardized, which means any autonomous operation architec-

ture we might implement is likely to run into standardization issues (non-conformance to

standards) in the future. Thus, it is advantageous to the project's development to first im-

plement a R.O.V. version that is pretty standardized, then build upon this and relevant

standards when developing autonomous operation elements. This approach will reduce

development and cost risks substantially.

§1. Future Work
"Brasidas" is a project as simple as a remotely operated vehicle. It can also be as

complex as a fully operational military-grade autonomoung ground robot. The work out-

lined in this dissertation has layed the foundation for turning this project into serious

business. As Phase 1 is all but completed, and Phase 2 begins, a multitude of tasks be-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

131

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

come available.

A robust SLAM implementation for day/night outdoors environment is required,

which can be a research project on its own.Visual SLAM seems promising, but it requires

night vision cameras at the least, to satisfy the nocturnal operation requirement. Other

spatial sensor configurations, like IR/ultrasonic arrays and 3D laser scanners might be

able to fill the void if a night vision camera is not available, but these are active sensors

that can potentially give out the robot's position. A fair amount of research and experi-

mentation is required on the SLAM matter, and then the specific requirements for this

component must be drawn up so design and analysis of the component's implementation

can finally begin.

Autonomous operation will require a specification for the mission logic and task ex-

ecution algorithms, as well as autonomous navigation. A robust implementation for each

of these is also needed. There are several tried and proven solutions for autonav, but au-

tonomous operation is a field of robotics and AI where few mature choices exist at the

moment (May 2017), so an effort must be made to test and evaluate the possible options,

and perhaps combine and improve them until the result is satisfactory. Once a suitable

solution is identified, system requirements for the autonomous operation and navigation

must then be specified before design and implementation of this component must begin.

All the above work has been outlined roughly when the project workload was di-

vided into Phases, but this is not just a problem of how and when to implement a solu-

tion, but what solution to implement, making the matter more a subject of scientific re-

search than evaluation of available options.

As if all the above are not enough, "Brasidas" also needs to produce alternate pay-

load packages, to fulfil the operational needs of potential users. Each payload requires in-

vestigation and study into potentially different fields, and each can be a separate project

on its own.

All these of course assume that at some point, "Brasidas" becomes a 'proper' re-

search project, backed by access to required restricted equipment and facilities, and basic

132 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

funding. But that is another story...

§2. Survivor's Guide to Robot Software Design
This short text presents the design team's lessons learned thus far. It is a compila-

tion of 'words of wisdom'. Though it is not yet complete, like the project itself, it is

hoped that it will help others not make the same mistakes. The guidelines apply to any

well-written software, so it is likely that they will be encountered elsewhere as well.

This part only contains software-related guidelines. Cpt (AA) Katselis' thesis

presents the part containing the hardware-related guidelines.

1.0. Get a Rounded-Out Design Team
You need a software expert (programmer), an electronics expert (electrical engineer),

and a mechanic (mechanical engineer) at the very least, before embarking on a quest to

design and build a robot. The more relevant an experience they have, the better. Do not

even start until you have those.

Ideally, your robotics "adventuring party" should also include an end-user liaison (to

provide problem-domain feedback from the end user's perspective), a physicist (good all-

round helper boy, ocassionally pops a weird but useful theory or two, do not assign him

very specialized tasks), and a marketing expert (to monitor expenses and funding usage,

and also to organize the product presentations and marketing campaign, and perhaps

conduct market research on potential business opportunities).

1.1. Know What You Are Making
Figure out your vision as early as possible, before even determining whether it is vi -

able technologically or not. A clear objective allows you to easily determine what needs

and need not be done, to evaluate requirements and proposed solutions with greater cer -

tainty, and to more easily avoid being distracted down a path that will not deliver. Write a

scenario, create a CGI video, draw a cartoon, or anything that will allow you to form a

clear picture of what you want to make.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

133

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Sun Tzu's advice applies here in its entirety: "If you know yourself and your enemy,

you need not fear the result of a hundred battles."

1.2. Before You Do It, Find Out If Someone Else Has Already Done It
This point applies generally to all kinds of software projects. Robotics in particular

is a hot subject, and many research teams are working on solving the problems in the

field. Much code is produced and disseminated as part of that research. It may not be in-

dustrial-quality code, but is is ready code. Before attempting to re-invent a wheel, spend

some time searching if someone else has already invented the wheel you are after. If they

are, and you can use their code, do so.

Even if you find ready code, ALWAYS make sure it fulfils the requirement YOU

were trying to satisfy precisely. Also, make sure it is optimized, and not low-grade re-

search code. This cannot be emphasized enough. Robotics covers a vast spectrum of ap-

plications, and each one imposes different requirements. It may look similar, but make

sure it is similar enough, and will not cause you headaches in the long run.

Robotic applications are often demanding in terms of RAM and CPU. You don't

want to adopt code into your project that wastes these two very valuable computer re-

sources, or that you will have to later optimize yourself. Optimizing code is one of the

hardest missions a programmer can take, and optimizing code that is not your own incurs

a forbidding time cost.

If there are differences but are small, evaluate whether modifying the foreign code is

worth the time, or an in-house implementation is a better option. Also, sometimes you

can get away with murder and use bad quality code if it is working – see the next guide-

line.

1.3. Be Flexible and Keep an Open Mind
Never reject an idea or possible solution until you have evaluated it against your

project's requirements, regardless of whether it seems fitting in concept or not. In any

bleeding-edge research field like robotics, there are no "correct" answers; each re-

134 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

searcher's perspective is unique and can provide useful insight to the problem at hand, as-

suming of course someone else has not already figured the answer (see the previous para-

graph). Abstract the specific problem to generic requirements, and only evaluate every-

thing against the requirements, not the problem itself.

As an example, consider what is the best propulsion solution for a ground vehicle

that has to move over thin, soft mud: wheels or tracks? Does it have to do with overall

vehicle weight? Speed?

What do you mean it didn't occur to you that in the Everglades they use airboats?

Remember Polyvios Dimitrakopoulos's words in 'The Iron Will': "Man rarely com-

prehends what he sees; often he sees what he comprehends." Avoid comprehending first

and seeing after.

1.4. Use a Results-First Approach to Coding
Adopt a choice of programming language and development process that delivers us-

able results as soon as possible. Avoid pondering code optimization until after you have a

complete program or application component. That way you can reject bad choices early

on and with little cost in time and effort.

Unless you have a short deadline to meet (a circumstance you generally should try to

avoid getting into) test every bit of code whenever it is complete enough to permit test-

ing. It is easier to spot an error in 100 lines of code, than it is in 1,000. Then, after you

write the next 100 lines of code, do test the previous code again, on occasion. You never

know.

This is general software engineering advice, but it cannot be emphasized enough.

Really.

1.5. Watch Out for the Dreaded Comms
Unless aiming for a totally autonomous or wired-connections system, communica-

tions is the real deal-maker or deal-breaker during the design and manufacture of a ro-

botic system. The communications scheme that is to be adopted should satisfy the fol-

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

135

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

lowing obvious (and not-so-obvious) requirements:

– Its absolute minimum required data rate should be estimated as late in the project

development as possible. Only employ a comms component when really needed, and

then use an option that fully covers the need. By delaying selection and adoption of a

comms component, the designer allows as many details and needs to become apparent, as

possible.

– It should afford a data rate at least TWICE the estimated one, including future

expansion plans, to account for the worst case of overhead and link degradation due to

range.

– ALWAYS test the candidate comms scheme out to the specified maximum range,

in as realistic conditions as possible. If it fails to deliverer as advertised, determine if it's

worth considering a revision, and if not, discard it.

– IP-based communications schemes afford the biggest flexibility in system integra-

tion, but also have significant data overhead. However, almost all the IP/OSI-7 protocol

implementations can be found as industrial-quality, fully-certified, open-source code,

making the engineer's job much easier. DO NOT adopt a non-IP-based scheme, unless

absolutely necessary.

– Adjust all range and data rate requirements according to the MAXIMUM expected

number of concurrent users/connections during an actual field operation of the system.

Then, further increase the resulting values by 20% (designer's sanity margin).

– Constantly investigate the latency-vs-network load relationship, and determine

whether the communications scheme can fulfil timing requirements along the entire range

of its expected data rate utilization.

1.6. Your Electrical Engineer is Your Best Friend
Robotics needs both software and hardware. And the software often runs close to

the hardware. As hard as it seems for you to write code that runs on certain hardware, it

is equally hard (pun intended) for the electrical engineer to devise hardware that will run

136 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

your code.

Make sure you communicate with your team's electrical engineer often, to early on

clarify on any issues regarding low-level protocols and capabilities of the hardware used.

Top performance requires both hardware and software optimizations, and often your

(software) requirements will become constraints on the electrical engineer's hardware

choices, and vice versa (for instance, if you want H.264 encoding, the electrical engineer

must choose a computer board that features hardware H.264 acceleration). Gaming con-

soles use hardware that is often much worse than the best desktop PC configuration, yet

they deliver far greater performance. They achieve this because they optimize at both the

hardware and software layers. For example, they avoid if-based error checking at certain

points in code when they know that due to the hardware choices that error or disparity

will never occur.

1.7. Your Mechanical Engineer is Your Second Best Friend
Your software controls a mechanical vehicle, and the electrical engineer's hardware is

also mounted on that vehicle. Coordinate with the team's mechanical engineer on matters

of component placement and dimensions. You need to be aware of the propulsion (drive

and steering) method chosen, to properly structure your Transmission Interface software.

You also need to know where on the platform the various sensors are placed (coordinate

transformations).

Software is less tightly coupled to mechanical parts than it is to electronics hardware,

but you and the mechanical engineer still need to see eye to eye on project decisions and

implementation details.

1.8. Never Believe Other Robots' Specifications
Most designers will publish results that are slightly… exaggerated, either (rarely) to

satisfy their ego, or (mostly) to fool competitors into wasting time and effort surpassing a

benchmark that is usually unattainable without exorbitant cost. If the specification of a

RPi-based robot with a HD webcam says it can do real-time pedestrian recognition and

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

137

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

point cloud-based mapping, grab your popcorn and read the rest of the specs in a kid-

ding mood, because it most likely is kidding. Unless you have discovered Alan Turing's

reincarnation.

The same guideline should apply to your selection and adoption of third-party soft-

ware libraries, especially when they are non-commercial and their license states they are

provided 'AS IS'. Actually, the development of "Brasidas" thus far has been rife with such

examples of gullibility on the design team's behalf.

§3. In Closing
"Brasidas" is an ambitious project, especially given the restrictions regarding funding

and access to equipment. It represents but a minuscule part of a vision; in particular the

part of the place of robotic software and systems in the ground battlefields of the 21st

century.

Many more visions have come before this, and much grander. This is not a better or

worse vision, it is just another one, perhaps different, perhaps not. It will not be the vi-

sion to rule them all, but it could possibly contribute something to what is to come.

Maybe soon some scientist will discover how to create true AI, or something equally

ground-breaking. Even if that does not happen in our lifetimes, the proliferation of auto-

mated, robotic, and autonomous systems will happen.

Make no mistake, robotic systems are here to fight, and are here to stay. Soldiers and

defense designers alike must adapt to this reality, or become extinct – the former literally,

the latter professionally.

It sure has been fun, though…

138 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ANNEX A:
Installing Gstreamer 1.0 OpenMAX
Extensions on Raspberry Pi

All versions of Raspberry Pi feature the VideoCore-IV GPU, which among others

includes a set of multimedia codecs in hardware. These modules can be accessed by using

the OpenMAX extensions1. Gstreamer includes pipeline elements which can take advan-

tage of these extensions, to do hardware-accelerated encoding or decoding of media.

On the Raspberry Pi, these pipeline elements are packaged in gstreamer1.0-omx, but

this package is available only for Raspbian Jessie, and the latest Raspbian Wheezy distri-

butions. If you have an older RPi that still runs Wheezy and the distribution is out of

date, you need to either upgrade the distribution, or attempt to build gstreamer1.0-omx

from source.

Note that this Appendix is only concerned with the new Gstreamer release 1.0. The

older 0.10 release that was used for a long time, can support omx as well, but it is no

longer supported, so if you are setting up a Gstreamer system now, it is recommended

that you use version 1.0. Before installing anything, always do a

pi@raspberrypi ~ $ sudo apt-get update
pi@raspberrypi ~ $ sudo apt-get upgrade

to make sure all repositories and dependencies are up to date.

If you run Wheezy, also upgrade the distribution to the latest version

pi@raspberrypi ~ $ sudo apt-get dist-upgrade

Then, all you have to simply do to get gstreamer installed along with the OpenMAX

extensions, is to issue

pi@raspberrypi ~ $ sudo apt-get install libgstreamer1.0-0 \
gstreamer1.0-{omx,alsa} gstreamer1.0-tools \
gstreamer1.0-plugins-{bad,base,good,ugly}

This should also automatically pull in all additional package dependencies, and all

should be installed after a while. To verify that the omx pipeline elements are indeed in-

1 Official site: https://www.khronos.org/openmax/

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

139

https://www.khronos.org/openmax/

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

stalled, do a

pi@raspberrypi ~ $ gst-inspect-1.0 | grep omx

and you should get a result that includes all or part of the following lines:

omx: omxhdmiaudiosink: OpenMAX HDMI Audio Sink
omx: omxanalogaudiosink: OpenMAX Analog Audio Sink
omx: omxh264enc: OpenMAX H.264 Video Encoder
omx: omxvc1dec: OpenMAX WMV Video Decoder
omx: omxmjpegdec: OpenMAX MJPEG Video Decoder
omx: omxvp8dec: OpenMAX VP8 Video Decoder
omx: omxtheoradec: OpenMAX Theora Video Decoder
omx: omxh264dec: OpenMAX H.264 Video Decoder
omx: omxh263dec: OpenMAX H.263 Video Decoder
omx: omxmpeg4videodec: OpenMAX MPEG4 Video Decoder
omx: omxmpeg2videodec: OpenMAX MPEG2 Video Decoder

You might get less packages than the above listing; this is usually because in latest re-

leases some (notably the audio sinks) are disabled, since they are available directly at the

kernel level via ALSA (so you can use them just as well by using the Gstreamer alsa-re-

lated plugins).

All the extensions but one are decoders, but there is an H.264 encoder, and that is

what most folks are after. Note that despite H.264 requiring a licence1, the purchase of a

RPi includes this licence, so anyone purchasing a Pi can use the H.264 encoder with no

legal worries.

You can test a successful installation by connecting a USB webcam on the Pi (will be

assigned node /dev/video0) and running in bash the following pipeline (change the

'width', 'height', and 'framerate' parameters to a resolution supported by your camera):

pi@raspberrypi ~ $ gst-launch-1.0 -ve v4l2src device=/dev/video0 \
! video/x-raw,width=320,height=232, framerate=15/1 \
! omxh264enc ! rtph264pay config-interval=3 \
! udpsink host=<IP_of_target_PC> port=15575

Then, on the computer having the IP specified in the 'host' parameter above, run

the following pipeline to receive the stream:

pi@raspberrypi ~ $ gst-launch-1.0 -ve udpsrc port=15575 \
caps="application/x-rtp" ! rtph264depay ! avdec_h264 \
! xvimagesink sync=false

You can of course use any port you wish. If all works as intended, a window should

1 Also check Cisco's OpenH264 (http://www.openh264.org/) for an open-source version of H.264.

140 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

http://www.openh264.org/

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

pop up, showing the camera video, and with minimal latency. Beyond this, all pipeline ele-

ments have additional parameters that you can tweak to tune the streaming to your liking.

As a side note, the author has successfully installed and used these elements to

stream H.264-hardware-encoded video, at 640×480@30 fps from an old RPi Model A+

(only used ~60% of the single-core CPU). This was possible because of a third-party

repository that offered precompiled gstreamer1.0-omx binaries for the older Wheezy re-

leases. However, with the inclusion of gstreamer1.0-omx into the latest Wheezy and

Jessie releases, this repository has not been updated since late 2014, and its key has ex-

pired. This process is detailed in this (outdated) RPi forum topic:

https://www.raspberrypi.org/forums/viewtopic.php?p=293634

Finally, if all else fails, you can attempt to build from source as a last resort. The fol-

lowing post in a Stack Exchange topic explains the process:

https://raspberrypi.stackexchange.com/a/4628

Note: The author assumes NO responsibility for bad source building attempts. Be

warned that attempting to build Linux packages from source can result, among others, in

a deep knowledge of C++ and linux kernel programming, fascination with compilers, ob-

session with instruction optimizations, lack of social contact, decrease in vocabulary, pos-

sibly slight overall increase in intellect, a fondness for pizza, burgers, and all kinds of junk

food, and a massive collection of single-board computers and electronic boards of all

kinds that takes up space and serves no purpose.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

141

https://raspberrypi.stackexchange.com/a/4628
https://www.raspberrypi.org/forums/viewtopic.php?p=293634#p293634

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

142 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ANNEX B:
Forwarding Broadcast Packets through
an OpenWRT Router with socat

The platform discovery functionality required that platform broadcast a basic set of

parameters, that enable Control Stations to connect to them. The information also in-

cludes a basic status report on the whereabouts and condition of the platform. This en-

ables a quick overview of the platforms' state without having to connect to every one of

them.

This information is carried in broadcast UDP packets transported over port 21000,

but you can use any port you prefer. Simply change the '21000' below to whichever port

number you select.

Since both the platform and Control Station computer actuals sit behind their re-

spective network routers, broadcast packets are normally prohibited both from entering

the "Brasidas" network out through the platform router, and entering the Control Station

LAN in through the Control Station router.

The routers used when this work was prepared (May 2017) run the OpenWRT

firmware. After several failed efforts to configure the router firewalls into forwarding

broadcast packets, a workaround was implemented using socat. socat is by default not

a part of a pre-compiled OpenWRT image, so it needs to be downloaded first. This can

be accomplished by first logging in to the OpenWRT router via ssh, and issuing the fol-

lowing commands:

opkg update

opkg install socat

The AREDN™ mesh OpenWRT distribution does already include socat, so

there's no need to install it if you use that distribution.

Then login to the router, either via the graphical interface (LuCI), or via ssh. If you

use the graphical approach, go to System→Startup. There, scroll down to the end of the

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

143

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

page, where the contents of the file /etc/rc.local are displayed. This file contains

shell commands that are executed at the end of the boot process. If you login via ssh,

you need to edit the file manually, using vi (which is the only editor included in an Open-

WRT distribution). Before the line 'exit 0', enter one of the following two lines, de-

pending on which router you are configuring. Note that although the solutions are given

on two lines here (they can't fit on the page otherwise), you should type each in a single

line, without the '\' symbol (which stands for 'line continuation').

For the router installed on the platform, which needs to forward broadcast packets

from the internal LAN to the mesh side, use the line:

socat UDP-RECVFROM:21000,broadcast,bind=<LAN broadcast>,fork \

 UDP-SENDTO:<mesh broadcast>:21000,broadcast

where <LAN broadcast> and <mesh broadcast> should be replaced with the LAN-

side broadcast IP address and mesh broadcast IP address respectively.

For the router installed on the Control Station, which needs to forward broadcast

packets from the mesh to the internal (Control Station) LAN, use this line:

socat UDP-RECVFROM:21000,broadcast,bind=<mesh broadcast>,fork \

 UDP-SENDTO:<LAN broadcast>:21000,broadcast

In order for the socat workaround to work, the Control Station router's firewall

should be configured to allow port 21000 connections to the router (i.e. as INPUT, not

FORWARD).

144 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

REFERENCES
1: The Inside Story of the SWORDS Armed Robot "Pullout" in Iraq,
http://www.popularmechanics.com/technology/gadgets/a2804/4258963/ (accessed 24
Apr 2017)
2: Grady JO, System Requirements Analysis, 2nd Edition, Elsevier Inc., 2014
3: National Research Council, Technology Development for Army Unmanned Ground Vehicles,
The National Academies Press, 2002
4: Robot patrol: Israeli Army to deploy autonomous vehicles on Gaza border,
http://www.foxnews.com/tech/2016/09/01/robot-patrol-israeli-army-to-deploy-
autonomous-vehicles-on-gaza-border.html (accessed 25 Apr 2017)
5: An Israeli hybrid robot hauls 1.2 tons on high risk missions, http://defense-
update.com/20140611_an-israeli-robot-hauls-1-2-tons-payload-on-high-risk-
missions.html (accessed 30 Apr 2017)
6: Shelly G, Rozenblatt H, Systems Analysis and Design, 9th Edition, Course Technology,
2012
7: Dennis A, Wixom BH, Roth RM, System Analysis and Design, Wiley, 2012
8: Crinnion J, Evolutionary Systems Development: A Practical Guide to the Use of Prototyping
Within a Structured Systems Methodology, Plenum Press, 1991
9: U.S. DoD, Military Standard 881C: Work Breakdown Structures for Defense Materiel Items, U.S.
DoD, 2011
10: Carroll, John M., Making Use: scenario-based design of human-computer interactions, MIT
Press, 2000
11: U.S. DoD, Systems Engineering Fundamentals, Defense Acquisition University Press, 2001
12: Boehm B, A Spiral Model of Software Development and Enhancement, 1988
13: Boehm, B, Spiral Development: Experience, Principles,and Refinements, , 2000
14: Unattended Ground Sensor, https://en.wikipedia.org/wiki/Unattended_ground_sensor
(accessed 24 Apr 2017)
15: Feickert A, The Army’s Future Combat System (FCS): Background and Issues for Congress,
Congressional Research Service, 2009
16: Bruegge B, Dutoit A, Object-Oriented Software Engineering: Using UML, Patterns, and Java,
3rd Edition, Prentice Hall, 2010
17: Gang of Four, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994
18: Steinberg AN, Bowman CL, Rethinking the JDL Data Fusion Levels,
19: Holbrook H, Cain B, Haberman B, Using Internet Group Management Protocol Version 3
(IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific
Multicast: , https://tools.ietf.org/html/rfc4604 (accessed 27 Apr 2017)
20: ISO/IEC 7498-1, Information Technology - Open Systems Interconnection - Basic Reference
Model: The Basic Model, , 1994

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

145

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

21: NSA, Commercial Solutions for Classified Program: Capability Packages,
https://www.nsa.gov/resources/everyone/csfc/capability-packages/ (accessed 11 Apr
2017)
22: Baird, Leemon C.; Bahn, William L.; Collins, Michael D., Jam-Resistant Communication
Without Shared Secrets through the Use of Concurrent Codes, U.S. Air Force Academy, 2007
23: Bahn, William L., Concurrent Code Spread Spectrum: Theory and Performance Analysis of Jam
Resistant Communication Without Shared Secrets, University of Colorado, 2012
24: Nielsen J, Usability Engineering , Morgan Kaufmann, 1993
25: Lentin J, Learning Robotics Using Python, Packt Publishing, 2015
26: Donat W, Make: A Raspberry Pi-Controlled Robot, MakerMedia, 2015
27: Robot Operating System, www.ros.org (accessed 14 Apr 2017)
28: Martinez A, Fernandez E, Learning ROS for Robotics Programming , Packt Publishing,
2013
29: Goebel PR, ROS By Example, Volume 1 (version 1.1.0 for ROS Indigo), published by the
author, 2012
30: Goebel PR, ROS By Example, Volume 2 (version 1.0 for ROS Indigo), published by the
author, 2014
31: linux-kernel@vger.kernel.org mailing list archive, Unix sockets via TCP on localhost: is
TCP slower?: , http://linux-kernel.2935.n7.nabble.com/Unix-sockets-via-TCP-on-
localhost-is-TCP-slower-td376893.html (accessed 13 Apr 2017)
32: AREDN Mesh-enabled OpenWRT distribution, www.aredn.org (accessed 16 Apr 2017)
33: IEEE 802.22, http://www.ieee802.org/22/ (accessed 29 Apr 2017)
34: Flores AB, Guerra RE, Knightly EW, Ecclesine P, Pandey S, IEEE 802.11af: A
Standard for TV White Space Spectrum Sharing , IEEE, 2013
35: OpenWRT Embedded Linux-based Router Firmware, https://openwrt.org (accessed 29
Apr 2017)
36: HSMM-MESH mesh-enabled OpenWRT distribution, http://www.hsmm-mesh.org/
(accessed 16 Apr 2017)
37: DD-WRT Embedded Linux-based Router Firmware, http://www.dd-wrt.com (accessed 24
Apr 2017)
38: PYRO (PYthon Remote Objects), http://pythonhosted.org/Pyro4/ (accessed 15 Apr
2017)
39: Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version 3.1,
High Performance Computing Center Stuttgart (HLRS), 2015
40: Motion - a Software Motion Detector, https://motion-project.github.io/ (accessed 22 Apr
2017)
41: Requests: HTTP for Humans, http://docs.python-requests.org/en/master/ (accessed 22
Apr 2017)
42: Gstreamer: An Open-Source Multimedia Framework, https://gstreamer.freedesktop.org/
(accessed 21 Apr 2017)
43: NETGEAR Support, Link Rate and Transfer Speed: ,
https://kb.netgear.com/19668/Link-Rate-and-Transfer-Speed (accessed 21 Apr 2017)

146 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

44: OpenSLAM.org: Platform for SLAM Algorithms, https://www.openslam.org/ (accessed
22 Apr 2017)
45: Martijn Tijndagamer, A Python module for accessing the MPU-6050 digital accelerometer and
gyroscope on a Raspberry Pi: ,
https://github.com/Tijndagamer/mpu6050/blob/master/mpu6050/mpu6050.py
(accessed 22 Apr 2017)
46: Madgwick SOH, Harrison AJL, Vaidyanathan R, Estimation of IMU and MARG
orientation using a gradient descent algorithm, Proceedings of the 2011 IEEE International
Conference on Rehabilitation Robotics (ICORR) 2011; 1 (152-161)
47: Thrun S, Montemerlo M, Dahlkamp H, Stavens D, et al., Stanley: The Robot That Won
the DARPA Grand Challenge, 2007
48: Albus et al., 4D/RCS Version 2.0: A Reference Model Architecture for Unmanned Vehicle
Systems, National Institute of Standards and Technology, 2002
49: KIVY - Open source Python library for rapid development of applications, https://kivy.org/
(accessed 20 Apr 2017)
50: Gstreamer cheat sheet, http://wiki.oz9aec.net/index.php/Gstreamer_Cheat_Sheet
(accessed 13 Apr 2017)

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

147

DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

148 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

	TABLE OF CONTENTS
	ABSTRACT 1
	INTRODUCTION 3
	Part I 7
	CHAPTER 1 .
	Preliminary Mission Analysis 9
	§1. The Current Situation 9
	§2. Overview of the Proposed System 10
	§3. Mission Needs Analysis 11
	§4. Constraints 12
	§5. The Physical Architecture 16

	CHAPTER 2 .
	System Modeling 19
	§1. Scenarios 20
	§2. Use Case Model 23
	§3. Preliminary Software Architecture 26

	CHAPTER 3 .
	Requirements Analysis 27
	§1. Requirements Determination 27
	§2. Functional Decomposition 33
	§3. The Network Architecture 47
	§4. Requirements Overview 53

	CHAPTER 4 .
	Requirements Allocation 55

	CHAPTER 5 .
	The Functional Architecture 59
	§1. The Network Architecture 59
	§2. The Platform Architecture 60
	§3. The Control Station Architecture 65

	CHAPTER 6 .
	Product Development Phases 69
	§1. Phase 1: Remotely Operated Vehicle 70
	§2. Phase 2: Recon R.O.V. 70
	§3. Phase 3: Autonomous Navigating Robot 71
	§4. Phase 4: Autonomous Target Tracking 72

	CHAPTER 7 .
	Interlude I 73
	Part II 77

	CHAPTER 8 .
	Architecture Implementation 79
	§1. Common Architecture Elements 79
	§2. Hardware Specifications 82

	CHAPTER 9 .
	The Network Infrastructure 87

	CHAPTER 10 .
	The Platform Configuration 91
	§1. Signaling and the Common Protocol 91
	§2. The Transmission Interface Module 99
	§3. The NavCam Streaming Interface 102
	§4. The Advertisement Module 108
	§5. The SLAM Module 109
	§6. The Autonomous Operation Module 110

	CHAPTER 11 .
	The Control Station Configuration 113
	§1. The Connection Management Module 113
	§2. The Node Discovery Module 116
	§3. The Teleop Console Interface Module 117
	§4. The Display Modules 118

	CHAPTER 12 .
	Testing and Verification 123
	§1. Network Tests 123
	§2. Platform Software Tests 124
	§3. Control Station Software Tests 125

	CHAPTER 13 .
	Interlude II 127
	EPILOGUE 131
	§1. Future Work 131
	§2. Survivor's Guide to Robot Software Design	133
	§3. In Closing 138

	ANNEX A: Installing Gstreamer 1.0 OpenMAX Extensions on Raspberry Pi 139
	ANNEX B: Forwarding Broadcast Packets through an OpenWRT Router with socat 143
	REFERENCES 145
	ABSTRACT
	INTRODUCTION
	Part I: Requirements Analysis and Specification.
	Part II: Design and Implementation.
	Epilogue:

	Part I

	CHAPTER 1 .
	Preliminary Mission Analysis
	§1. The Current Situation
	§2. Overview of the Proposed System
	2.1. The Mission Needs Statement

	§3. Mission Needs Analysis
	§4. Constraints
	§5. The Physical Architecture

	CHAPTER 2 .
	System Modeling
	§1. Scenarios
	1.1. Scenario #1: Remote Patrol
	1.2. Scenario #2: Supervised Autonomous Reconnaissance

	§2. Use Case Model
	2.1. Use Case #1: Connect to Platform
	2.2. Use Case #2: Engage/Disengage Teleop Mode

	§3. Preliminary Software Architecture

	CHAPTER 3 .
	Requirements Analysis
	§1. Requirements Determination
	1.1. Analysis of Scenario #1
	1.2. Analysis of Scenario #2
	1.3. Analysis of Use Case #1
	1.4. Analysis of Use Case #2

	§2. Functional Decomposition
	1.0 Move over Flat Terrain
	2.0 Move at Speeds Comparable to a Human's
	3.0 Be Fully Teleoperable
	4.0 Possess Optical and IR Sensors
	5.0 Operate Autonomously
	6.0 Be Operable at a Minimum Range of 1 Km
	7.0 Operate for at least 4 hours at Maximum Power Load
	8.0 Connect to the "Brasidas" Network
	9.0 Discover Platforms Online
	10.0 Connect to Platform
	11.0 Stream Data Feeds
	12.0 Store Area Map
	13.0 Track Location via GPS
	14.0 Signal the Platform
	15.0 Display Streamed Data
	16.0 Advertise Platform Over the Network
	17.0 Disconnect from Platform
	0.5 Target Engagement Happens Only in Teleop Mode

	§3. The Network Architecture
	3.1. The Initial Version
	3.2. Specifying the Desired Architecture
	3.3. The Current Situation
	3.4. A Glimpse of the Future

	§4. Requirements Overview

	CHAPTER 4 .
	Requirements Allocation

	CHAPTER 5 .
	The Functional Architecture
	§1. The Network Architecture
	§2. The Platform Architecture
	§3. The Control Station Architecture

	CHAPTER 6 .
	Product Development Phases
	§1. Phase 1: Remotely Operated Vehicle
	§2. Phase 2: Recon R.O.V.
	§3. Phase 3: Autonomous Navigating Robot
	§4. Phase 4: Autonomous Target Tracking

	CHAPTER 7 .
	Interlude I
	Part II

	CHAPTER 8 .
	Architecture Implementation
	§1. Common Architecture Elements
	1.1. Operating System
	1.2. The IPC Module

	§2. Hardware Specifications

	CHAPTER 9 .
	The Network Infrastructure

	CHAPTER 10 .
	The Platform Configuration
	§1. Signaling and the Common Protocol
	1.1. The Virtual Functional Remote Interface (VFRI)
	1.2. Commands and Command Codes

	§2. The Transmission Interface Module
	2.1. The Motor Controller RS-232 Command Protocol
	2.2. The Virtual Motor Controller Interface

	§3. The NavCam Streaming Interface
	3.1. The motion-based Implementation
	3.2. The Gstreamer Era

	§4. The Advertisement Module
	§5. The SLAM Module
	§6. The Autonomous Operation Module

	CHAPTER 11 .
	The Control Station Configuration
	§1. The Connection Management Module
	1.1. The Control Station Signaling

	§2. The Node Discovery Module
	§3. The Teleop Console Interface Module
	3.1. Sending Velocity Commands

	§4. The Display Modules
	4.1. The Stream Display Module
	4.2. The Status Display Module
	4.3. The Control Interface Module

	CHAPTER 12 .
	Testing and Verification
	§1. Network Tests
	§2. Platform Software Tests
	§3. Control Station Software Tests

	CHAPTER 13 .
	Interlude II
	EPILOGUE
	§1. Future Work
	§2. Survivor's Guide to Robot Software Design
	1.0. Get a Rounded-Out Design Team
	1.1. Know What You Are Making
	1.2. Before You Do It, Find Out If Someone Else Has Already Done It
	1.3. Be Flexible and Keep an Open Mind
	1.4. Use a Results-First Approach to Coding
	1.5. Watch Out for the Dreaded Comms
	1.6. Your Electrical Engineer is Your Best Friend
	1.7. Your Mechanical Engineer is Your Second Best Friend
	1.8. Never Believe Other Robots' Specifications

	§3. In Closing

	ANNEX A: Installing Gstreamer 1.0 OpenMAX Extensions on Raspberry Pi
	ANNEX B: Forwarding Broadcast Packets through an OpenWRT Router with socat
	REFERENCES

