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ABSTRACT
This thesis presents work done as part of  the "Brasidas" Unmanned Ground System

(UGS) project. The project aims to design and manufacture a prototype unmanned au-

tonomous ground vehicle (codenamed "Brasidas") for outdoors operations, capable of

both autonomous and remote operation. The platform will be configurable over a wide

range of  missions and with varying operational payloads selectable by the user. The initial

design concept intended for a patrol and observation robot, with capabilities similar to

those of  the TALON SWORDS1 vehicle, being in addition able to operate autonomously.

Herein will be described the initial analysis and design of  the "Brasidas" functional

architecture, as well as its evolution over time during the project's development, to the

current state it stands at today. The initial design concept will be explained, we will at -

tempt to justify the objectives we were aiming for, and the problems we encountered on

the way. The solutions we selected and implemented will also be analyzed and described

in detail.

1 https://en.wikipedia.org/wiki/Foster-Miller_TALON
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INTRODUCTION
Brasidas  (Greek:  Βρασίδας)  (died  422  BC)  was  a

Spartan officer  during the first  decade of  the Pelopon-

nesian War. Thucydides' characterization of  Brasidas sug-

gests  that  Brasidas  united  in  himself  the  stereotypical

Spartan courage with those virtues in which regular Spar-

tans were most signally lacking. Brasidas was apparently

quick in forming his plans and carried them out without

delay or hesitation. Furthermore, Brasidas was also an ac-

complished orator, as recorded by Thucydides.

Brasidas'  operations  as  part  of  his  campaign  in

Macedonia and Thrace were characterized by the rapidity

and boldness of  his military movements, as well as by his personal charm and the moder-

ation of  his demands towards his opponents. During the course of  the winter, Brasidas

succeeded in winning over the important cities of  Acanthus, Stagirus, Amphipolis and

Toroni as well as a number of  minor towns.

The Brasidas UGS, not unlike the an-

cient Spartan general,  is  an innovative ro-

botic system, designed to operate either au-

tonomously  or  via  remote  control,  ahead

of, behind of, or alongside the main force,

in a variety of  roles. Its operational capabil-

ities are partly determined by a modular payload system that enables it to efficiently oper-

ate day and night, in all forms of  military operations, be they surveillance, reconnaissance

and target acquisition, minefield clearing and Explosive Ordnance Disposal (EOD), or

even simply as asset protection, functioning as a robotic sentinel. This last role is in fact

what Brasidas was initially conceived and designed for.

The UGS that was to be named "Brasidas" was conceived as part of  a semester-long

homework,  for  the  first-semester  Robotics  class,  taught  as  part  of  the  Systems
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Engineering graduate course. Initially, the whole idea revolved around a simple robotic

vehicle that could autonomously navigate an area, patroling for intruders and monitoring

the area's security. This initial, theoretical concept, eventually grew out of  the boundaries

of  a semester paper, and became the "Brasidas" project. This thesis presents part of  the

work done within the project, specifically the architecture development and implementa-

tion of  the robot software.

The assembly, programming, and testing lasted almost two years, but  the general

concensus is that it was really worth the effort. "Brasidas" may not rival Data from Star

Trek™: The Next Generation, but it can certainly be used to fill many operational needs

of  today. Its most distinctive feature is that it has been constructed using only commercial

off-the-shelf  (COTS) components, and thus it is a system characterized by a highly com-

petitive price, and ease of  component repair or replacement.

The booklet is organized as follows:

Part I: Requirements Analysis and Specification.
Wherein will be analyzed:

– The project objectives we envisioned to achieve,

–  The  functional  requirements  established  as  a  result  of  research  (market

needs/technology availability/etc.) and scenario-based modeling,

– The non-functional requirements (perfomance, cost, scalability and extensibility,

interfaces, etc.) we accepted, and

– The allocation of  functional and performance requirements in Phases (consecu-

tive operational versions, "Marks" [Mk]), based on the adoption of  a spiral development

model.

The final  products  at  the end of  Part  I  are the Requirements  Specification and

Functional Architecture, as well as the project's expected development Phases.

Part II: Design and Implementation.
Wherein will be described:

4 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
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– The allocation of  the system Blocks to the various project Phases,

– The choice of  programming languages (python, C++ if  and when deemed neces-

sary) and third-party software libraries and toolkits used,

– The implementation of  each functional Block for Phase I, referring to the Physical

Architecture (Cpt.  P. Katselis' thesis) where necessary for the sake of  clarity and com-

pleteness, with analysis of  the fundamental problems encountered, the potential solutions

studied and tested for each problem, and of  course the one finally adopted and applied.

The final products at the end of  Part II are the final specifications and software re-

quirements (in terms of  hardware characteristics) of  the prototype. This work will de-

scribe the implementation of  functions only up to Phase I (Brasidas Mk-I).

Epilogue:
We offer some basic conclusions  and observations stemming from the design and

implementation process thus far undertaken, regarding the degree to which the initial

system requirements were satisfied, and how the divergence affects the viability of  the

initial design concept. We also discuss on the know-how acquired as part of  the endeavor.

Finally,  we  offer  insight  on  the  future  steps  we  intend  to  take  to  continue  the

development  of  "Brasidas"  into  the  next  planned  Phase,  and  discuss  the  project's

potential  for  further  evolution,  extensibility,  and  scalability,  on  a  vision  of  a  fully

operational robotic weapons system.
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Part I

Requirements Analysis and Specification
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CHAPTER 1 .
Preliminary Mission Analysis

§1. The Current Situation
Several robotic systems have been tested over the past decade, mostly by the U.S.

Army, and other western militaries. Some have been deployed operationally, with mixed

results. The most promising such systems, representing the vast majority of  those systems

in operational use today, are UAVs, more commonly known as "drones" (though the two

terms have a different exact meaning), like the Predator, the Heron, etc.

All these systems are remotely operated. Aside from very basic functions, like cam-

era stabilization, closed-loop speed control, flight stability control, etc., which are applica-

tions of  automatic control systems, with very little interest from the perspective of  robot-

ics and artificial intelligence, these drones are entirely remotely operated.

Ground systems are far less featured in operations; indeed when most people hear

about a ground robot, they think of  the robotic drones operated by EOD units. The

older TALON SWORDS system (mentioned in the abstract) was one of  the few UGSs

deployed by the U.S. Army, in limited field role [1]. The limitation came from reluctance

on the commanding officers' part to use a remotely-operated weapons system to seek out

and kill enemies.

This is not a thesis about ethics. However, it is this author's opinion that a remotely-

operated weapon is no different than a weapon one holds in their hands. Once you decide

to use lethal force and take lives, the "how" is irrelevant. Clearly, before we can use ro-

botic weapon systems, the world still has a few non-technical issues to solve…

The lessons learned during the SWORDS's use are summarized in the fact that a re-

motely-operated weapons system can easily substitute soldiers in guard and base patrol

duty. They also permit generally more accurate fire than the average soldier can provide.

No robotic system, no matter with what sensors it has been fit, can substitute for in-per-

son reconnaissance, although it is possible for a field commander to get a sufficiently ac-
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curate  picture  of  the tactical  situation via  remote  sensing.  Thus,  a  remotely-operated

weapons and sensors system provides for worse overall performance than boots on the

ground, but exposes friendly troops to far less danger.

An autonomous system (or at least one that would not require constant supervision)

is also capable of  operating 24/7 with constant perfomance. It is thus well-suited to secu-

rity and monitoring applications, where round-the-clock security otherwise requires care-

ful administration of  shifts, different skillsets, and personnel fatigue, to achieve as close to

constant a performance as possible.

In the technical aspect, there have now been developed several specialized sensors to

allow robots to survey their environment. Planar and 3D scanning lasers, ultrasonic range

finders, stereoscopic cameras, IR-based depth sensors (e.g. Kinect), autofocus lenses for

cameras, etc. Of  course, all of  these have existed for decades, however lately the main-

streaming of  robotics have allowed the development of  cheap, readily available versions

of  technology that once used to be the purview of  the military. Along with the wide-

spread use of  technology have come standards that such technologies now conform to,

making new designs easier and more robust than before.

§2. Overview of  the Proposed System
The initial idea, on which the whole design is based, is that of  an autonomous (or at

least semi-autonomous) robotic sentinel.  It  is  based on the assumption  that it could be

used to efficiently augment the security protocols and personnel of  a Military Base or

otherwise similar facility. In fact, the initial concept vehicle could as well be employed by

any  organization that  requires  monitoring  of  a  location or  establishment  for  security

purposes  or  otherwise,  especially  during  non-office  hours  (i.e.  during  the  night  or

weekends).  This  initial  idea  forms the Mission Needs Statement,  which was then ex-

panded and analyzed in detail, to produce the conceived system's requirements at first,

and to make design choices later on during the more advanced project stages.

The vehicle will be of  a size comparable to that of  a human, so that it can access the
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same locations and navigate through the same terrain as the human personnel it is in-

tended to replace or augment. Naturally, it is expected that the vehicle will not have the

same movement capabilities as a human, but it is not intend to navigate areas that human

personnel would not have to go through anyway.

The system should also be able to function in areas wholly or partially unknown, in

a reconnaissance role. In this function it should also be able to operate ahead of  or along-

side human personnel. In fact, being able to send the vehicle ahead of  the human person-

nel in unknown territory (e.g. to determine if  the area is mined or contains other hazards)

might be of  a higher priority that being able to use it to patrol familiar territory.

2.1. The Mission Needs Statement
The Mission Needs Statement can be summarized as follows: "A robotic sentinel that

can function in non-fully-mapped outdoors environments without constant supervision."

§3. Mission Needs Analysis
To generate a set of  preliminary requirements, the Mission Needs Statement forms

the basis, which is then expanded further, adding more details in the process [2]. Simulta-

neously,  research  was  undertaken  on  whether  similar  systems  are  or  have  ever  been

fielded in similar roles, on the means by which such a need is currently fulfilled, and an

effort was made to determine whether certain technologies that appear to be required, are

available and mature [3]. As it turns out, the Israeli Defense Forces (IDF) are preparing to

employ in the field a system of  similar principles, filling approximately the same opera-

tional niche [4]. Of  course the IDF have been using UGSs for years, and they have a im-

plemented a solution that is a bit more practical, if  even more costly. A more advanced

system, related to [4], is presented in [5].

After several brainstorming sessions, the Mission Needs Statement was expanded,

some new ideas were incorporated, and certain perfomance measures were quantified.

Additional inspiration was taken from study of  already existing similar systems, particu-

larly in terms of  performance. The initial conceived vehicle design then, as encapsulated

by the Mission Needs Statement, can roughly be seen as possessing the following basic
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requirements:

(1) It would operate over any (reasonably flat) terrain,

(2) It would travel at speeds comparable to those of  a human on foot (walking-jog -

ging),

(3) It could be fully operated remotely if  the need arose. Indeed, some functions

should only be usable by a (remote) human operator.

(4) It would possess optical sensors (i.e. cameras) registering in both the visible and

thermal infrared parts of  the spectrum,

(5) It would be able to go to and from its target operational area on its own, without

any operator remote control, other than provision of  a basic list of  waypoints,

(6) It would be able to operate at least 1 Km away from its control station,

(7) It would operate at full capacity under its own power (i.e. without the need to re-

fuel and/or recharge) for at least 4 hours, and

The above set of  initial requirements (mixed functional and non-functional) permits

assembly of  a (coarse) functional architecture, and in turn production of  an initial physi-

cal architecture. Analyzing these even further will refine on the initial design and lead to a

complete requirements specification [6] [7]. These requirements are quite broad, and rep-

resent the intended system through a high-level approach. Decomposing each into pro-

gressively simpler, more detailed, lower-level requirements presents not only an analytical

challenge,  but  requires  research  into  the  potential  technical  implementation  of  each

lower-level requirement, to make sure it can actually be implemented with the means and

knowledge at the project's disposal.

§4. Constraints
Even at this early stage, attention was brought to several constraints and restrictions

that would apply in the project. Some were accepted and imposed by the design team, to

keep the design within the ability to realize the implementation. Others was known would

simply be imposed upon the project due to foreseeable circumstances. In addition, as the
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project progressed into the implementation stage, more constraints were revealed, which

were hardly obvious in the first place.

The major constraints will be presented and analyzed here for completeness, since

they are immutable and one can only accept them, not modify, refine, or ignore them as

needed. As a convention, constraints are numbered with a primary ID of  0.

(0.1) "Brasidas" is a Research Prototype

Manufacturing an operational  prototype,  that would pass all  quality  certifications

and military standards is not the project's intent. It is understandable that these crite-

ria must all be satisfied if  a "Brasidas"-like robotic weapon system is to enter service,

but the main focus is in solving the basic engineering problems first, in figuring out

what can and cannot be done, what knowledge and know-how will be discovered

along the way, and to define a broad roadmap for actually designing and construct-

ing a fully operational robotic weapon system. 

For example, it is clear that an operational version would require armor; There is at

this stage, no interest in researching armor technologies or their applications in a ro-

botic vehicle. Materials and mechanical engineers have already solved those issues to

the degree demanded by the intended use of  the system, and their application is

straightforward. Therefore, no time needs to be wasted on detailing armor require-

ments.

A similar reasoning applies to other aspects of  manufacturing. The research is nar-

rowed down to solving problems that provide know-how in fields where no off-the-

shelf  solution yet exists, and where the design team is lacking, such as finding an op-

timal system architecture (both software and hardware), determining computational

and power requirements of  such a system, required sensors, and so on. Nonetheless,

an effort is being made to satisfy as many standards as possible, from among those

typically used in those areas where custom solutions had to be implemented.

This constraint implies that the overall development should follow the prototyping

paradigm, but that the prototype should be a throwaway prototype [8]. Attempting

to push this into manufacturing an evolutionary prototype is a huge risk, due to the
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design team's minimal knowledge of  and familiarity with production and manufac-

turing methodology.

In fact, even this choice about creating a prototype was not finalized until after the

project had moved well into implementation; when the methodology that would be

applied was decided upon, the project's design had to undergone a major revision,

and still until the time that this document is written (May 2017), this revision is not

complete. The development process will be discussed later.

The summed version of  this constraint can be contained in the following statement:

"If  a subsystem, component, or part can be integrated into the system through a process clearly de -

fined, already known, and with no customization required, said subsystem, component, or part will

not be investigated further, and will be included in the research prototype only if  it is required for

implementation of  the requirements of  the Mission Needs Analysis, and permitted by the other

constraints."

(0.2) Adopt the Use of  COTS Components to the Greatest Extend Possible

"Brasidas"  should  use Commercial  Off-The-Shelf  (COTS)  hardware  as  much as

possible. Such material is by definition easy to acquire and almost always available. It

is also manufactured in bulk, which reduces the manufacturing and repair costs and

delivery times compared to custom, on-request solutions.

Further, "Brasidas" should use open source software, and conform to open stan-

dards to the highest extend possible. This enables easy maintenance of  code, inclu-

sion of  code updates and upgrades at no cost, and complete transference of  knowl-

edge, so we depend less on third parties for manufacturing and customizations. In-

deed, one can take an open-source piece of  software, use it, and afterwards maintain

or expand it on one's own, writing and testing own code on top of  the initial one, at

no cost or need to get any license.

This is a 'soft' restriction, in the sense that it is treated more as a strong guideline,

than a hard limitation. Open-source software is, after all, as good as someone made

it, without any warranty about its perfomance. It is very convenient to use, but ulti-
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mately,  if  some other proprietary solution is acquireable and satisfies the project

needs better than any open-source option, the proprietary solution will indeed be se-

lected.

The summed version of  this constraint can be contained in the following statement:

"If  a functional requirement can be implemented sufficiently well by open-source software or hard -

ware, or by the adoption of  an open standard, then these should be selected in preference to any

other proprietary options."

(0.3) Funding and Support is Very Specific

There is basically no cash funding available to support this project. Limited support

is in the form of  materials made available to us from the Army Research and Tech-

nology Center (A.R.T.C -  Κ.Ε.ΤΕ.Σ.).  Such material, however, is not obtained by

ARTC per the project's demands, then passed on to the design team. Rather, ARTC

searches through its current inventory of  parts not used by any other project, and

the design team gets to choose which of  the available parts might be of  use. Obvi-

ously, this complicates matters, since one must sometimes adapt the designed solu-

tion to the available hardware,  or even scrap certain options altogether, since no

hardware is available.

Small expenses (simple, cheap parts) can be covered through personal contribution,

and indeed this was done so, but this option is obviously out of  the question for ex-

pensive parts, like scanning lasers or FLIR cameras. This constraint also affects ac-

cess to weapons and ammunition, preventing the design team from ever running the

necessary tests to integrate such options on "Brasidas".  This is  a constraint that

mostly applies to the project's hardware, not software.

The summed version of  this constraint can be contained in the following statement:

"If  a required hardware or software part has a cost that we cannot cover on our own, or requires

any kind of  license, it should be considered not available, and discarded as a potential solution op -

tion."
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§5. The Physical Architecture
The physical architecture of  "Brasidas", and its design and assembly are described in

detail in the graduate thesis of  Cpt (AA) Panagiotis Katselis. The relevant details will be

listed here briefly, for completeness.

"Brasidas" is decomposed into subsystems, each in turn consisting of  components.

The basis from which this architecture was derived, are the Work Breakdown Structures

described in [9] for the Surface Vehicle Systems (in particular the Remote Controlled Sur-

face System) and the Unmanned Aerial Vehicles. The first two levels of  the WBS ele-

ments for "Brasidas" are listed in the following tree overview of  the system.

 1. The Carrier Vehicle.

 1.1. Propulsion

 1.2. Transmission

 1.3. System Core (System Processor)

 1.4. Power Grid

 1.5. Communications Grid

 2. The Payload

The structure of  the payload is highly dependent on each payload's mission statement. A

payload module only has to obey the following restrictions:

 2.α It must receive power from the Power Grid.

 2.β It must connect only to the Communications Grid, and not directly to any

other carrier vehicle component. Communication with other vehicle subsys-

tems must be carried exclusively over the Communications Grid.

 3. The Control Station.

 3.1. Telemetry and Video Processor

 3.2. Human-Computer Interface

 3.3. Remote Control Console

 3.4. RF Digital Communications Link

The physical architecture will be called upon when allocating requirements and de-
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ciding on any software implementation issues.

The specific physical architecture used on "Brasidas" is displayed in a block diagram

at the end of  Chapter 8.
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CHAPTER 2 .
System Modeling

Before delving into the detailed analysis of  the system requirements, and given the

rather generalized statements listed in the previous chapter, an effort will be made to pro-

duce various models of  the system and its use, by employing principles from the sce-

nario-based design methodology [10]. This approach is well-suited to the case of  "Brasi-

das", since it allows the most relaxed approach to designing a system.

There is little to no material on projects of  a similar nature undertaken within the

context of  the Greek Armed Forces, and therefore few directives to be followed, which

would help steer design through known and tested procedures and methods. Thus, those

procedures need to be determined first, to a certain extend, and that cannot be achieved

by adopting a strict, structured desing approach such as the Joint Capabilities Integration

and Development System (JCIDS) used by the U.S. DoD for designing, acquring, and

fielding a new weapon system. While the JCIDS and similar methodology (see for exam-

ple [11]) aims to both produce a design conforming to the requirements and minimizing

development risks and costs, it still requires clear, concise requirements to begin with,

something not available in the case of  "Brasidas". "Brasidas" is a research prototype, an

experiment if  you will, which is intended to help produce not only a testbed platform to

develop  various  subsystems,  payloads,  and  allow  generic  robotic  research,  but  also  a

guide, a roadmap as to how to proceed with designing an operational robotic weapon sys-

tem. It  is  hoped that  the whole process  will  help identify  the problems related with,

among others, integrating multiple scientific and engineering disciplines, determining an

overall abstract system architecture that can be used as a generic template for future de-

signs, hardware acquisition procedures (including a list of  potential hardware suppliers

and manufacturers) that reduce acquisition delays and hardware cost, standards to which

said hardware should conform, and a host of  other aspects.

Thus, since "Brasidas" is more free-form than one might expect, the system design

approach must also be free-form, flexible,  and able to adapt to requirements and de-
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mands as these are uncovered along the way. The approach selected is to adopt a spiral

development model  [12],  where consecutive versions of  the system will  be produced

(called Phases),  each one adding more and more functionality over the previous one,

functionality that has in the meantime been well-tested and designed based on the new,

more concise requirements that (hopefully) have been refined as one of  the products of

the previous Phase  [13].  This also offers  the advantage of  defining material  needs as

clearly as possible, thus reducing unnecessary spending of  the extremely limited (own)

funding.

§1. Scenarios
The earlier development Phases, which start from rather vague and generic require-

ments, will  use techniques from the scenario-based design paradigm described in  [10],

such as scenarios and use cases, an approach well-suited to uncovering and producing

technical requirements through a narrative of  the designers' (and the clients') vision of

use of  the system. In layman's terms, one creates short stories describing how the system

would be used, and then sifts through these stories, trying to identify functions and re-

quirements which may not be obvious in the first place.

1.1. Scenario #1: Remote Patrol
"Brasidas" is deployed to patrol a pre-designated, pre-mapped area. The operator

loads the area map (which can be a simple geographical map) into the system before

the mission starts. The Control Station is positioned in a known location (usually a

monitoring or operations center); it may remain stationary throughout the mission,

or relocate if  needed.

As soon as "Brasidas" boots, it attempts to connect to the "Brasidas" network. Once

connected, the platform advertises itself  on the network, so other platforms and

Control Stations can know it is online.

The operator uses the Control Station to connect to the "Brasidas" network, then

retrieves a list of  all "Brasidas" platforms online (if  any others are operating), selects
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the platform and connects to it, then switches it to Teleoperation Mode. The opera-

tor proceeds to guide the robot around the area of  interest, using the feeds from its

onboard sensors and cameras to monitor the area. The robot software uses GPS

readings to locate the robot on the map.

If  the robot comes across other human individuals (either personnel or clients/visi-

tors/etc., the operator can use the bi-directional voice communication channel to

speak to the individuals and receive replies, either to pass warnings, give directions

or orders, or for any other purpose. The operator can also disable Teleoperation

Mode, leaving the robot stationary at a location, and unresponsive to operator com-

mands. The operator can still view the video feeds while Teleop Mode is disengaged.

At any moment the operator can decide to disconnect from the platform, and do as

he wishes (e.g. take a break, or pack up the Control Center and move it to a different

location). At a later time, the operator can reconnect and reassert control of  the ro-

bot.

1.2. Scenario #2: Supervised Autonomous Reconnaissance
"Brasidas" is deployed to patrol a pre-designated, pre-mapped area. The operator

loads the area map (which can be a simple geographical map) and list of  pre-as-

signed wayponts of  the patrol route onto the platform storage before the mission

starts. The Control Station is positioned in a known location (usually a monitoring

or operations center); it may remain stationary throughout the mission, or relocate if

needed.

In this scenario, "Brasidas" acts as a mobile version of  the U.S. Army's upcoming

Unattended Ground Sensor program  [14] [15].  A "Brasidas" element (one robot

plus its operator and control station) or squad (two elements) would typically be at-

tached to a mechanized infantry platoon or similar-sized echelon.

As soon as it is powered up and its System Core boots, "Brasidas" enters Autono-

mous Mode. It loads the map and pre-assigned waypoints of  the patrol route, then

proceeds to move along the route autonomously. It uses SLAM and path planning

algorithms to navigate through the map, continuously updating its pose and calcu-
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lated path, as well as details of  the area, such as landmarks and obstacles, which are

not included in the preloaded map. When "Brasidas" reaches the last waypoint, if

the route is closed (i.e. the last waypoint is the same as the first waypoint), "Brasi-

das" restarts the patrol. If  the route is open, "Brasidas" moves backwards, following

the waypoints in reverse order.

"Brasidas" also attempts to connect to the "Brasidas" network, if  the network is

available. Once connected, the platform advertises itself  over the network, periodi-

cally broadcasting its identity and basic status information.

At any point in time, the operator can power on the Control Center and have it con-

nect to the "Brasidas" network, then retrieve and maintain a list of  all "Brasidas"

platforms online. The operator can connect to the platform from the Control Cen-

ter at his discretion. The Control Center then receives the video feeds and telemetry

of  the platform. While connected, the operator may, if  he so chooses, engage Tele-

operation Mode. In this case,  most of  the Autonomous Mode's  actions are sus-

pended (preempted), and "Brasidas" acts only under the operator's control. SLAM

continues to function (in order to update pose and map), but path planning is sus-

pended.

If  at any point during the operation, a suitable target appears on the feeds, the oper-

ator or echelon's CO can decide to engage, using whatever payload is installed. Po-

tential options would include direct-fire weapons (Recoilless Rifles, GPMGs, LAWs,

etc.) as well as target designation systems for standoff  weapons (e.g. a laser designa-

tor for Hellfires launched from an AH-64 taking cover behind a nearby hill). En-

gagement happens only in Teleop Mode, to keep a human in the loop and avoid

friendly fire incidents.

While connected (regardless of  whether Teleop Mode is engaged or not), the opera-

tor can also modify the patrol route waypoints or the map. Modifying the list of

waypoints is done on the fly, but modifying the map causes Autonomous Mode to

restart,  wiping all previous landmark and path history. When the operator disen-
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gages Teleop Mode, Autonomous Mode resumes control and the robot continues

on its patrol.

When the CO decides reconnaissance is adequate, the operator directs "Brasidas"

back to the Control Station, either by entering it as a waypoint and relying on Au-

tonomous Mode, or by switching the platform to Teleop Mode and bringing it back

via remote guidance.

§2. Use Case Model
Use cases  [16] are abstractions of  system use that describe a class of  scenarions.

Each use case describes one aspect (application) of  a system, and typically includes sev-

eral functions, grouped together in a logical role. Use cases help tremendously in identify-

ing functions and requirements during system design [7], especially when the client-pro-

vided requirements or Mission Needs Statement are not very specific.

A  use  case  has  actors,  which  are  entities  external  to  the  system  (human

operators/other processes or system interfaces/etc.), that interact with it. Use case names

use active voice verbs from the system's point of  view (not its operator's). Obviouly, each use

case may engage different subsystems of  a system; each time, the use case is described

from said subsystem's point of  view.

While scenarios help immensely to reveal requirements that are not otherwise obvi-

ous,  use  cases  are  particularly  suited to categorizing  and grouping functionality  when

there are multiple actors  [7].  Only a few use cases are listed here. For the most part,

"Brasidas" interacts only with its Control Center (and both are subsystems of  the same

system), and the Control Center interacts with its operator, so there can only be so many

use cases describing interactions between one external actor (mainly, the operator) and

the system. The two most important ones, which represent finalized functionality and are

the least likely to need review at a later design Phase, are listed here. A few additional use

cases, considering interactions between multiple "Brasidas" platforms, pertain to a Phase

of  the system very far in the future, and will not be discussed here. The results of  these

studies are contained in this additional constraint:
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(0.4) All Autonomous Mode functions of  the "Brasidas" carrier vehicle and

payload must not depend on any other subsystem and functionality except

those already installed on the platform and/or payload.

2.1. Use Case #1: Connect to Platform
This is a very basic use case, that nonetheless brings out several useful functional re-

quirements, as will be analyzed later. The network architecture (about which thus far

no mention has been made) will in part be based on this use case.

Subystem: This use case involves the whole system.

Actors: The operator sitting at the control station console ("Operator").

Initiating Actor: The Operator.

Preconditions: The control station is acivated and its RF Digital Communications Link

has established a connection to the "Brasidas" network. The VC2S has retrieved a list

of  all "Brasidas" platforms that are online and ready.

Postconditions: The VC2S is connected to the selected "Brasidas" platform.

Flow of  Events:

Actor Steps System Steps
1.  The  Operator  selects  one  platform from
the list.

2. The VC2S establishes an initial connection
to  the  selected  "Brasidas".  If  a  connection
cannot be established, the VC2S informs the
Operator and ends this use case.
3. The VC2S uses the initial connection to re-
trieve  platform-specific  parameters,  such  as
data  stream availability  (number  and resolu-
tion/framerate of  each video feed available,
telemetry,  etc.)  and  ports  to  connect  on
"Brasidas" to receive those streams.
4.  The  VC2S  signals  "Brasidas"  to  begin
streaming data. If  the signal is acknowledged
unsuccessfully, or no acknowledge is received,
the VC2S displays an error message and termi-
nates the use case.
5. The VC2S connects to any data stream dis-
covered  in  the  previous  step.  The  display
changes to a new window, that can accommo-
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date display of  streamed data.
6.  The  VC2S  begins  to  stream  data  from
"Brasidas", updating the display in real time.

2.2. Use Case #2: Engage/Disengage Teleop Mode
As far as the operator is concerned,  switching mode requires a simple flip of  a

switch (and it should always appear as simple as possible). However, the system han-

dles this change of  state in a bit more complicated manner.

This use case describes what often is called "Manual Override" (MOVRD). This is

the deliberate intervention by the system's supervisor in a predefined matter, when

the system itself  begins to diverge from its predefined or expected operation. In

Teleop Mode, "Brasidas" becomes a simple, remotely-operated platform. All other

functions are suspended.

This use case actually describes two use cases, one for engaging the MOVRD, and

one for disengaging it. However, with the exception of  the result, the steps in each

case are exactly the same, so they are given as a single use case. When differentiation

is required, the individual actions in the flow of  events are separated by a slash ('/'),

giving the action for 'Engage' before the slash, and the action for 'Disengage' after.

Subystem: This use case is initiated from the control station.

Actors: The operator sitting at the control station console ("Operator").

Initiating Actor: The Operator.

Preconditions: The control station is already connected to the platform.

Postconditions: "Brasidas" is in Teleop Mode.

Flow of  Events:

Actor Steps System Steps
1. The Operator toggles the MOVRD switch.

2. The Control Station signals "Brasidas" of
the state change. If  the signal is acknowledged
unsucessfully,  or  if  no  acknowledge  is  re-
ceived, the Control Station displays an error
message and terminates this use case.
3. The Control Station notifies the Operator
and enables/disables use of  the remote con-
trol console.
4. The Control Station initiates/terminates a
data stream link with "Brasidas", to send ve-
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locity commands over it.

§3. Preliminary Software Architecture
Before even beginning to analyze the requirements in detail, and based on the hard-

ware architecture and the scenarios presented in this chapter, one can present a top-level

model of  the software architecture, shown in Figure 2.1: Preliminary System Architecture.

The obvious pieces of  information included in Figure 2.1: Preliminary System Ar-

chitecture are that each software stack (vehicle,  station) operates independently of  the

other, and that all communication uses the IP protocol stack.

Two questions immediately arise: 

a. Should multiple platforms and their control stations be able to connect to the

same network, and be visible to one another, as also implied in Use Case #1, or should

each robot and its control station communicate over a dedicated link?

b. What technology and communications protocols should the network infrastruc-

ture use?

These questions will be tranformed to requirements and constraints during require-

ments analysis.  The answers will  come from attempting to select solutions that satisfy

those requirements and constraints.
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CHAPTER 3 .
Requirements Analysis

Given the abbreviated requirements, the scenarios and use cases, as well as the re-

strictions listed in the previous chapter, the proposed functional architecture will be ana-

lyzed here. First, the initial requirements should be further elaboreated on, always keeping

in mind the constraints imposed. It should be emphasized that from this chapter on-

wards, the primary focus is on the software design and implementation (software compo-

nents). Any reference to hardware components is made mostly for the sake of  clarity, and

will be kept brief  as needed.

§1. Requirements Determination
Besides the initial list of  requirements produced as a result of  the Mission Needs

Analysis, many more requirements can be extracted from the scenarios and use cases pre-

sented in the previous chapter. This task is detailed in this paragraph, separated into sub-

paragraphs  related  to  each  item analyzed.  The  extracted  requirements  will  be  simply

listed. The next paragraph will analyze each in detail.

We repeat the initial list of  requirements here, for completeness. As per the formal

standard, each is also assigned a unique serial ID, for easy reference later. From now on, a

reference to a numbered requirement will be in the form R-XX, where "XX" is the re-

quirement's numeric ID.

1. Move over Flat Terrain

2. Move at Speeds Comparable to a Human

3. Be Fully Teleoperable

4. Possess Optical and IR Sensors

5. Navigate Autonomously

6. Be Operable at a Minimum Range of  1 Km

7. Operate for at least 4 hours at Maximum Load
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1.1. Analysis of  Scenario #1
Even before the first paragraph of  the scenario description is finished, an obvious

requirement is discovered: Store an Area Map. This is clearly a functional requirement.

A second, related functional requirement appears at the end of  the second paragraph:

Track Location via GPS. This also splits off  a hardware requirement – the platform must

have a GPS installed.

The next discovered function relates to the network infrastructure:  Discover On-

line Platforms. Alongside this is also a non-functional (interface) requirement: Connect

to the "Brasidas" Network. This last one is required before the system can perform the

Discover function, but it is not in itself  a system function; rather it is a statement that the

Control Station must connect to a network infrastructure first (that will be defined later),

before conencting to the platform, and not in an arbitrary manner. Thus, this in effect

specifies in an abstract way a form of  interface, to which the system should comply. The

Control Station must also be able to Connect to the Platform, and Disconnect from it,

without affecting the platform's functionality.

Of  course, the platform must also be able to  Connect to the "Brasidas" Net-

work, and in addition, it must be able to Advertise itself  (the Platform)  on the Net-

work. Since advertisement happens automatically, regardless of  whether other nodes are

there to receive, it must happen periodically (not on request). Periodic updating must bal-

ance the need to keep the advertised status from going too stale, with the need to mini-

mize bandwidth usage. More on this later.

One more function is the ability for the operator to view the feeds of  the onboard

sensors and cameras. One of  the initial requirements was for the platform to possess op-

tical and IR cameras, but nowhere was it specified that the data from those sensors would

need to be available to the Control Station. Though this may appear self-evident, in fact it

is not. The sensors could very well be used to feed some onboard algorithm related to the

internal operation of  the system. Now, reading through the scenario, it is obvious that the

system must be able to Stream Data Feeds, and also Stream a Bi-Directional Audio

Feed. In fact, if  this is to be used for guiding the robot, then at least one camera (the
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Navigational Camera, or  NavCam) should be dedicated to this task (at least in Teleop

Mode), and its feed should have minimal latency. Thus, an additional, separate require-

ment is extracted, Stream NavCam Video with Minimal Latency. The "minimal" as-

pect of  its latency will be quantified later, during the functional decomposition.

1.2. Analysis of  Scenario #2
Since this scenario extends Scenario #1, several functions are common. These will

not be listed again, except if  additional functionality is discovered.

The first requirement identified is that Autonomous Mode Must Be the Default

Operating Mode, which makes sense. "Brasidas" is intended to be able to function with-

out a network connection or control station guidance, so when the system starts it stands

to reason to enter Autonomous Mode.

The second requirement pertains to how "Brasidas" should follow a defined patrol

path. The "again-from-start-if-closed, backwards-order-if-open" approach is in fact noth-

ing more than a simple  Move to Next Closest Waypoint function. Obviously, since

waypoints represent a directed sequence (similar to a single-linked list), the waypoint clos-

est to the current waypoint, besides the previous one from whence we came, is the next

in the sequence, unless there is no next waypoint in the sequence, in which case the previ-

ous waypoint becomes the next destination.

Autonomous Mode is Suspended in Teleop Mode. This is the next new require-

ment discovered in Scenario #2, and although it is stated explicitly here, it was until now

implied from the manner operator control was portrayed in Teleop Mode – as absolute

control. The reason is obvious – having path planning generate motion commands in one

way, while simultaneously the operator is trying to steer the robot in a different direction,

is a good recipe for disaster. And why does the platform (or payload) need to evaluate po-

tential targets when the operator, who is clearly monitoring the feeds since the system is

in  Teleop Mode,  can identify  and classify  threats  much more  reliably?  Nontheless,  it

might be beneficial to have some functionality required for Autonomous Mode operation

available even in Teleop Mode (SLAM certainly is). The extend to which Autonomous
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Mode functionality is suspended, will be determined during implementation, and in sub-

sequent project Phases.

Target Engagement Happens only in Teleop Mode, at the direct control of  the

operator. Let's keep the brass happy of  moral dilemmas, shall we?

The last two paragraphs also uncover some additional, useful functionality. The op-

erator can modify the waypoint list or the map (Modify Waypoint List, Update Map),

even while Autonomous Mode is active. Of  course, if  the map is reloaded anew (not sim-

ply updated with additional information), which is a different function (Reload Map), at

the very least path planning must be reset, and the easiest way to do that is to simply wipe

the waypoints list (Wipe Waypoints List on Map Reload). It's like finding yourself  sud-

denly teleported to a different location; it doesn't matter where you were going, you now

need to re-evaluate the situation. Letting the system run unchecked when the map or way-

points are updated is a major breach of  reliability, and makes the system behavior totally

inconsistent.

1.3. Analysis of  Use Case #1
Use cases tend to produce requirements much faster and with less analysis than sce-

narios, mainly because a use case is already much more structured than a scenario. In ad-

dition, the requirements resulting from a use case tend to be more concrete as well. In a

sense, the analysis of  a scenario done to produce a use case, has stripped away much of

the inconsistency, and the results are much clearer.

The main functionality featured in Use Case #1 is the need to standardize the inter-

face of  the initial connection. Afterwards, this protocol can be used to retrieve additional

functionality specific to each platform. This means the connection process hides the indi-

vidual platform's complexity and variations, and presents the available functionality in a

consistent manner. This is similar to the process one finds in many large frameworks and

SDKs (like e.g.  DirectX),  where a  predetermined,  always available method provides  a

common interface that acts as a single point of  entry into the functionality of  the SDK.
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From that interface, the user can call functions to retrieve any additional functionality that

may be available on the current platform, but is not guaranteed to be available on other

platforms running the same SDK (e.g.  framebuffer  object  access,  FSAA, support  for

DMA transfers, or the like). As an analogy to the architecture elements described in [17],

a structurally similar design pattern is the Facade pattern, while the behavior best fits the

Mediator pattern.

Thus, so far Use Case #1 results in the following requirements:

Connect to the Platform,

Disconnect from the Platform,

The Initial Connection Must Follow a Common Protocol,

The Functionality Available In the Initial Connection Protocol Must Be Im-

plemented on All Platforms Regardless of  Payload, and

The Procedure to Expose Additional Payload-Specific Functionality Must Be

Part of  the Initial Connection Protocol.

The ability to Signal the Platform is another system requirement stemming from

Use Case #1. The same requirement mechanism (signaling) appears in Use Case #2, but

for a different function (MOVRD, see next section). From Use Case #1, the important

aspect of  signaling is that it must be acknowledged – it must be a form of  two-way ex-

change. The requirement of  acknowledgement also implies need for verification. Signal-

ing (at least within the context of  Use Case #1) is used to communicate a request whose

complete and correct reception must be communicated back. Depending on the request,

its result of  execution may also need to be communicated back; Signaling Must Be Re-

liable. Within Use Case #1, signaling is used only to request start of  data streaming, but

it might have to support additional requests as the implementation progresses, so its im-

plementation should be generalized to be as extensible as possible – Signaling Must Be

Extensible to Support Future Functionality.

Since signaling will involve acknowledgement, and perhaps will need to support tre-

transmission in case the initial communication was not received correctly, it will impose

additional overhead in the communication. Overhead means signaling will consume more
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bandwidth than its data payload, and will require longer network time to complete, thus a

signal is generally expected to have the greatest latency among the various communica-

tion protocols that may be involved. The requirement to have minimal latency on the

NavCam stream indicates that signaling may not be appropriate for data streaming, but

should be used for one-off  requests, where completeness and correctness of  the commu-

nication is preferrable to minimal latency of  it.

Finally, the streamed data must somehow be displayed at the Control Station. To the

design team this seems self-evident, however what is obvious to one, may be impossible

to fathom to another, so the function to Display Streamed Data is explicitly mentioned.

Note that  All Data Transmitted on a Continuous Basis Should Be Streamed; plat-

form responses to one-time requests, or propagated events need not be displayed (but

should be logged in a logfile or console window). If  such cases need to produce dis-

playable data, they should do so by altering the contents of  an existing data stream (e.g.

telemetry).

1.4. Analysis of  Use Case #2
Given what has been said so far, few additional requirements can be extracted from

Use Case #2. Most of  the functionality described therein has already been encountered

and specified in the previous scenarios and Use Case #1. The new functionality uncov-

ered is that the change between Autonomous and Teleop Mode uses signaling, although

this seems like an implementation-oriented requirement, and the inclusion of  such con-

straints in the requirements specification should be avoided. Likewise, the use of  a sepa-

rate console, with dedicated controls, during Teleop Mode, is implementation-oriented.

Thus, Use Case #2 proves a very implementation-specific use case, and reveals little new

functionality. It will not be considered further during requirements analysis, but since it

specifies the MOVRD transition, it can be used as a guide during system implementation.
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§2. Functional Decomposition
 Now that there is a list of  requirements sufficiently long and detailed to proceed

with designing the system, the next step is to analyze each in detail, and determine how it

can be decomposed further.

1.0 Move over Flat Terrain
This is rather obvious. The platform should be mobile, and able to traverse at least

the least  challenging terrain types,  such as flat,  rolling terrain.  Road mobility  is  a no-

brainer, but ideally the vehicle should possess at least minimal off-road capabilities, mak-

ing suspension a required feature (suspension is  generally  not  included on robots  in-

tended for indoors or on-road movement only).

Still, the intent is not to construct a robotic tank that scales mountains and stairs.

Besides  not  being the vehicle's  primary intended operating  terrain,  a  design for  such

presents  significant  challenges,  best  postponed for  resolving  at  a  future  development

Phase, if  the need to operate in such terrains becomes more prominent. 

2.0 Move at Speeds Comparable to a Human's
A human walking across flat,  horizontal terrain, travels at about 3-5 Km/hr, de-

pending on pace. A human jogging moves at between 6 and 10 Km/hr. This is a perfo-

mance requirement. The actual speed chosen in the first version of  the hardware specifi-

cation, which applies to the current development Phase, is 6 Km/hr.

In terms of  software implementation, we need not concern ourselves much with

how the robot achieves its speed. Motion and velocity commands should be platform-ag-

nostic, and should be translated to signals (voltage and current, absolute values, number

of  parameters, etc.) specific to the platform used, as late in the command delegation as

possible. This enables use of  the same software core on multiple, varied platforms, with

differing speeds, and only a few scaling parameters need to be changed.

The speed requirement mostly applies to the hardware (physical) architecture. The

requirement to have platform-agnostic motion commands,  on the other hand,  applies
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strictly to the software architecture.

2.1 Minimum Platform Top Speed Should Be 6 Km/hr (performance).

2.2 Motion and Velocity Commands Should Be Platform-agnostic (extensibility).

3.0 Be Fully Teleoperable
The Control Station should have the capability, if  the need arises, to manage and

regulate all of  the robot's functions. Onboard automation should exist to the greatest ex-

tend possible, to enhance and augment operator actions, but any and all such automation

should feature a "disable" option (dynamic, if  possible, without needing to restart or re-

connect to the robot). Thus, if  the operator wishes to disable a specific function for any

reason, they can do so. Obviously, core functionality should be excempt from satisfying

this requirement.

4.0 Possess Optical and IR Sensors
To implement this requirement we essentially need cameras, which is a hardware re-

quirement. In software, we need to manage the camera streams, including the NavCam.

As a primarily hardware requirement, this will not concern us further in this work.

5.0 Operate Autonomously
When the system starts, the operator will not have connected yet, but it is possible

that at least a waypoint list is pre-stored in the system's storage, thus "Brasidas" can and

should begin autonomous functions when it boots. If  no waypoints are entered, "Brasi-

das" should not move, at least from a navigational point of  view (a future version might

feature higher-logic structures that would impose a task to seek cover or explore ran-

domly, mapping the immediate vicinity to a minimum radius, if  no navigation path is

specified).

The Control Station can connect to the platform and the operator assume control at

any point during autonomous operation. Likewise, the operator might relinquish control

at any moment, in which case Autonomous Mode must be able to reassert control imme-
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diately, with as little overhead as possible. Thus, suspended actions should be preempt-

able, not requiring a full restart to function again.

Any functionality that is  not  needed for a quick transition back to Autonomous

Mode, but which the operator might occasionally find useful in Teleop Mode, should be

made suspendable and preemptable at the operator's control, without its actual state or

transition thereof  having any effect on subsequent Autonomous Mode or overall vehicle

functionality.

When applied to Autonomous Mode functions, this requirement will translate into

each function characterized as required to be suspendable or not. For now, this remains a

top-level Autonomous Mode constraint. It will be analyzed, evaluated, and defined more

specifically during the development Phase of  Autonomous Mode.

Autonomous navigation, although just a subset of  autonomous operation, is still a

major functional requirement, so much so that an entire development Phase is devoted to

implementing autonomous navigation. This is a very complex requirement, and spawns

an extended tree of  lower-level requirements.  The current  system implementation de-

scribed herein is of  a Phase without this functionality, thus to avoid filling pages with un-

necessary details, this requirement will be described here only briefly. Some additional in-

formation about the concept of  autonomous navigation will be provided in the Epilogue.

Typically, autonomous navigation is broken down into three separate problems:

How to generate a map of  the environment, how to localize the robot within the

environment, and how to plan a path between two points within the environment.

The first two tasks (mapping and localization) are typically solved by a series of  al-

gorithms known as SLAM (Simultaneous Localization And Mapping) – at least that's the

trend nowadays. SLAM solves the "chicken-and-egg" reasoning that you need to know

your location in order to place objects on the map, and you need to know the position of

obejcts on the map in order to determine your location.

Planning a path likewise has another set of  algorithms available that can get the job

done. These algorithms are typically compute-bound, so whether they can function in real

time or not depends entirely on the CPU of  the host system.
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Sensor readings of  the environment are related to the SLAM problem, but not to

path planning. All kinds of  positional sensor readings, like GPS, IMU, planar laser scans,

odometry (wheel encoders), landmark recognition via visual camera snapshots, etc., can

be fused together at various levels [18], in order to support a complete SLAM solution. In

case the map is preloaded, SLAM must also support the capability to function when the

map is reloaded dynamically, even if  it is just a restart of  the SLAM algorithm.

This requirement can be decomposed into the following two requirements:

5.1 Autonomous Mode Must be the Default Operating Mode (usability).

5.2 Autonomous Mode Must be Suspended in Teleoperation Mode (performance).

5.3 Navigate Autonomously (functional).

5.3.1 Perform SLAM and Pose Estimation (functional).

5.3.2 SLAM Must Support Dynamic Map Updates (usability).

5.3.3 Follow Path Between Two Points on the Map (functional).

This function can further be decomposed into the following, including the addi-

tional related functionality uncovered through the analysis of  Scenario #2:

5.3.3.1 Plan Path to Target (fuctional).

5.3.3.2 Generate Motion (velocity) Commands (functional).

5.3.3.3 Path Planning Must Accept Dynamic Waypoint List Updates (us-

ability).

5.3.3.4 Path Planning Must Accept Dynamic Map Updates (usability).

5.3.3.5 The Waypoint List Must Be Wiped Upon a Map Reload (reliabil-

ity).

One additional parameter, that cannot yet be specified, is how often to generate

motion commands (a performance requirement). Needless spamming should be

avoided, since it will tax the motor controller, and also flood the serial port and

increase CPU utilization. We do know from the motor controller's specification

that the watchdog kicks in and stops the motors if  no command is received over

the serial for 1 sec. Thus, motion commands should be generated at least once
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per second. In fact, to account for possible processing delays or otherwise, a safer

choice is to generate motion commands at least twice per second.

6.0 Be Operable at a Minimum Range of  1 Km
If  a robotic sentinel is to have meaningful applications, it should be able to venture a

fair distance away from the Control Station. This is a performance requirement actually

(non-functional).

The token distance of  1 Km was selected based on the assumed mission. A sentinel

robot should patrol and guard an area of  the same approximate size as an Army Base.

For most cases, that translates to a range of  quite less than 1 Km, but if  that same robot

is to be used in other, less localized roles, then 1 Km is a decent choice. In a hilly or

forested terrain, 1 Km approximately represents the maximum meaningful visual range.

7.0 Operate for at least 4 hours at Maximum Power Load
Assuming "Brasidas" operates in its initially specified role (sentry), it should incor-

porate seamlessly with a Hellenic Army Base's guard duty rotations. This translates to a

patrol  duration  of  2-3  hrs  of  near-constant  motion.  When  the  shift  change  occurs,

"Brasidas" should also be eligible to be 'relieved' and its shift taken over, either by the

next "Brasidas", or by the typical two-man patrol element.

The highest power drain is when the robot is moving (the motors are contributing

to the majority of  the load). When stationary, the power drain is reduced, as only the ele-

crtonics are drawing power. To cover the worst-case scenario, where "Brasidas" must con-

stantly be on the move, the Powerplant, which will typically be a battery, should provide

at least 3 hrs of  functionality at the maximum system load.

"Brasidas" can't simply be switched on and sent on patrol. The robot will likely re-

quire a minute or so to boot, the "Brasidas" network will need to be set up, and then the

Control Station must connect to the robot and upload an area map and patrol route way-

points, a process that typically takes 10-15 min. Likewise, when the patrol ends, "Brasi-

das" will need to stay online for a time (typically a few minutes), to allow proper shut-
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down. Thus the required minimum operational time must be greater than 3h20m. A safety

margin of  25% is added to this figure, to account for partial battery charging, battery ca-

pacity degradation over the system's lifetime, and other random events, and the minimum

operational time ends up at 4 hrs. In fact, the calculations leading to this figure are rather

conservative, and the limit should be higher, but for starters it will suffice. This is oviously

a performance requirement.

8.0 Connect to the "Brasidas" Network
As shown on  Figure 2.1: Preliminary System Architecture, the network infrastruc-

ture is a separate functional block. This infrastructure aggregates all the network-specific

functionality. Of  course, since the network hardware is integrated in part on the platform

and in part on the Control Station, the network infrastructure implementation will end up

being split likewise. One should also keep in mind that the actual network functionality

does not exist as standalone code; while it appears as a single separate functional block, its

functions all have the single purpose of  allowing the Control Station and platform soft-

ware stacks to communicate with each other. Thus, some part of  the network functional-

ity will be implemented as part of  each software stack, each part ending up required to

communicate in a specific manner with the part implemented in the other stack.

Therefore, the requirement to connect to the network in the end is not a function

that the system must implement, but an interface to which the system must conform.

This interface will be defined as part of  the network architecture. What is required is con-

formance to this interface, which makes this an interface requirement.

9.0 Discover Platforms Online
After a Control Station connects to the "Brasidas" network, it must somehow figure

out the existence of  "Brasidas" platforms that are also connected to this network. Like-

wise, a "Brasidas" robot that joins a network may also need to build a list of  other plat -

forms online. Furthermore, this discovery must be ongoing; as long as a node remains

connected to the network, it should be able to update its list of  other nodes.
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As explained in R-16.0 (Advertise Platform Over the Network), discovery should be

passive, not active. A note (platform) is responsible for announcing itself  over the net-

work. Other nodes should only listen for such announcements, and need not actively

send requests to receive node updates. Passive discovery is much more conservative on

network resources.

Since discovery is passive, a way must be defined for discarding nodes that were on-

line earlier, but are offline now, and thus no updates are received from them. A node en-

try in the list should be timestamped with the time of  last update received (using the time

of  the node that maintains the list, not that of  the remote node), to facilitate a measure

of  confidence in whether this node is stale or not. According to R-16.0, a node advertises

itself  at least once every 3 sec, so to account for clock discrepancies, a list entry whose

timestamp differs from the system time by more than 4 sec (stale node), should be con-

sidered offline and removed from the list.

This function then decomposes thus:

9.1 Add a Node to the List When Its Status is Received (functional).

9.2 Timestamp Discovered Nodes With Time of  Last Discovery (functional).

9.3 Remove Nodes Whose Timestamp is 4 sec or More Older Than System Time

(performance).

10.0 Connect to Platform
Assuming a platform has been discovered according to R-9.0 (Discover Platforms

Online), an initial connection should be straightforward. This initial connection needs to

implement several additional requirements, as explained above in the analysis of  Use Case

#1. Following that analysis, this requirement can be decomposed as follows:

10.1 Establish Initial Connection (functional).

10.1.1 Initialize Network Link (functional).

10.1.2 Retrieve Platform-Specific Parameters (functional).

10.1.3 Retrieve Additional Platform-Specific and Payload Capabilities (functional).

10.2 The Initial Connection Must Follow a Common Protocol (interface).
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10.3 The Functionality of  the Initial Connection Common Protocol Must Be Imple-

mented on All Platforms Regardless of  Payload (interface).

11.0 Stream Data Feeds
Data streams are continuous feeds of  logically grouped information sets. Examples

include the NavCam's video stream, another installed camera's video stream, audio stream

from the onboard microphone (if  one is installed), a stream of  telemetry and status re-

ports, etc. A stream may contain raw data (e.g. a video or audio feed), or processed and

structured information (e.g. telemetry); thus, this opens the possibility to perform sensor

fusion onboard the platform, then stream the resulting information instead of  raw data.

Depending on the case, this can reduce bandwidth requirements significantly, albeit prob-

ably at the cost of  additional – and sometimes substantial – CPU utilization.

To stream the sensor feeds over the network produces traffic. Sometimes, this traffic

is pointless, such as when no station is trying to receive the feeds. While capturing the

sensor feeds onboard might have applications besides streaming them to the Control Sta-

tion or some other interested node in the network, and therefore can happen regardless

of  the network state, streaming should only be done when a network request for the

feeds has been submitted. Every data stream should be pausable and resumable indepen-

dently of  any other data streams.

Since, as mentioned, streaming increases network traffic, the data stream should be

compressed before transmitted, if  possible; such a stream obviously needs to be decom-

pressed upon reception before its data content can be utilized. Video feeds can take ad-

vantage of  any available video compression codec, and the same goes for audio feeds;

data feeds are a different matter, but data feeds, even when uncompressed, generally take

up a much smaller portion of  network bandwidth compared to media streams. No func-

tionality  that  depends  on properly  transmitted data  should rely  on data  streams,  and

should instead use the signaling function.

Thus, this requirement evolves into the following ones:
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11.1 Capture Data Feeds from Onboard Sensors (functional).

11.2 Determine If  a Network Request  to Stream a Feed has been Submitted ( func-

tional).

11.3 Stream the Data Feeds Over the Link (functional).

11.4 Each Stream Should be Manageable Independently from Any Other Stream (us-

ability).

The NavCam stream follows the guidelines of  R-11.0 (Stream Data Feeds), so it is

not a separate functional requirement (and receives no separate ID). Its feed however,

when the robot is teleoperated, must be transmitted in real-time, or at least near-real-time,

since any latency directly affects the smoothness or the robot's responses to guidance,

and the operator's response time to obstacles and other events of  interest appearing in

the camera feed. Ideally, the IR camera stream should have a similar latency limitation,

but the IR camera is part of  the payload, and its exact performance requirements will be

determined along with the other payload requirements.

To quantify the "minimal" amount of  acceptable latency, a base calculation can start

from R-2.0 (Move at Speeds Comparable to a Human), and take into account the typical

reaction time of  a human operator, which is around 250 msec. Assume further that the

maximum permitted distance the vehicle may move, before the combination of  latency

and reaction time allow the operator to apply course corrections, is 1 m (positional error).

That is, the vehicle's maximum stopping distance should not exceed 1 m. This is also the

typical positional error of  most modern budget GPS modules. According to the hardware

specification, once a stop command is issued, the motors are powerful enough to stop the

robot instantly, so there is no distance overhead involved, and the only source of  stop-

ping distance comes from the operator's reflexes and network latency.

  Then, given R-2.0's speed limitation, the maximum time differential is

tD=
1 m

6 Km /h
=600 msec

Since a human operator's reflex response time is approximately 0.25 sec, the tolera-

ble latency of  the NavCam video feed must not exceed 0.35 sec. We will settle on a value

of  0.15 sec, so we can account for the additional latency for a stop command to reach the
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robot (round-trip delay), and still have some overhead allowance. This means that this re-

quirement is replaced by the following:

11.5 The NavCam stream must have a latency of  150 msec or less (performance).

The bi-directional audio also follows the guidelines of  R-11.0 (Stream Data Feeds),

so it will be implemented as part of  the latter. Latency limitations apply to the bi-direc-

tional audio feed as well, although they are far less strict than R-11.5.

12.0 Store Area Map
This requirement pertains primarily to autonomous navigation. The robot should

have the capability to store a map of  the operational area. At the initial development

stage, there is not enough information to specify the exact contents of  the map, and the

scales (local, global, etc.) it should support. These will need to be defined during another

pass along the spiral, when autonomous navigation is being developed.

The Control Station should be able to store a map regardles of  the operating mode.

At first glance, the map should store the landmarks used for SLAM. What features

constitute a landmark is determined by the specific SLAM algorithm used. Also, the spe-

cific path planning algorithm will in turn determine what other information needs to be

stored on the map. In addition, the hardware implementation will impose limits on the

possible maximum size of  the map that can be stored and processed. Finally, the rate at

which the map is updated, should be high enough to contain all needed information, but

not so high that it imposes unnecessary computational load on the system. For now, this

rate limitation cannot be specified further, but even incomplete, it should be included in

the specification, if  for no other reason than as a reminder to the development team that

such a restriction exists and should be determined in a future development Phase.

At this time, this requirement can be decomposed into the following reaquirements

only in an abstract approach:

12.1 Load or Reload a Map (functional).

12.2 Retrieve Map-Related Sensor Data (functional)
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12.3 Process Sensor Data to Produce Map-Specific Information Structures (functional).

12.4 Update Map (functional).

12.5 The Map should be Updated as Often as Needed, and not More (performance).

13.0 Track Location via GPS
A GPS module allows each node to determine its approximate location without re-

sorting to more complex algorithms. SLAM generally provides much better positional ac-

curacy than a GPS alone, as it fuses multiple positional sensor data, but SLAM is much

more complex and computationaly-intensive, and SLAM will be implemented as part of

Phase 2 as per R-5.3.1(Perform SLAM and Pose Estimation). A GPS module can, how-

ever, be included since Phase 1, at minimal cost and integration effort, to provide basic

localization functionality. Plus, GPS can be used for more than localization, as it includes

time information as well (can allow time synchronization).

It should be emphasized that the GPS signal is neither secure nor jam-resistant. The

C/A signal available to civilian modules is especially vulnerable. SLAM, which combines

multiple sources, is less prone to spoofing.

14.0 Signal the Platform
Signaling is used to send a single request, and get a response. It can be used to im-

plement multiple functions, by properly specifying the signal mechanism. A signal's recep-

tion must be acknowledged by the platform, and this acknowledgement is separate from

the platform's response to the Control Station's request. A signal is not obligated to know

how to handle a response – only to send the request, verify (via the received acknowl-

edgement) that it was received correctly, then take a response and pass it back to the

client that generated the request in the first place. This approach ensures that a request

and its response are communicated in a reliable manner.

It should be emphasized that at this stage of  the design, signaling is unidirectional –

from the Control Station to the platform, and not the other way round. However, in a fu-

ture development Phase a case can be made for signaling to be possible between plat -
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forms as well. Whether it would be meaningful in that case to also have signaling from a

platform to a Control Station, is a matter that has not yet been studied.

In addition to the possibility of  targeting multiple types of  receivers in a future revi -

sion, a signal mechanism must also be able to communicate any additional signal-depen-

dent functionality that may be introduced in a future Phase. This extendability can be en-

sured by making  the  signaling  protocol  request-agnostic,  i.e.  not  having to  know the

specifics of  individual requests and responses communicated. As long as any additional

future functionality can maintain that agnosticism, the signaling protocol should be able

to accommodate it without problems.

Signaling should only be possible after an initial  connection to the platform has

been established, as per R-10.0 (Connect to Platform). As such, the base signaling func-

tionality should be part of  R-10.0's Common Protocol specification. Thus, given these

guidelines and restrictions, this function can be decomposed like so:

14.1 Send Signal Request (functional).

14.2 Receive Acknowledgement (functional).

14.3 Receive Response and Return It to Request Initiator (functional).

14.4 The Signaling  Mechanism Must  Be Part  of  the Initial  Connection's  Common

Protocol (interface).

14.5 The Signaling Mechanism Must Be Request- and Response-Agnostic (interface).

15.0 Display Streamed Data
The Control Station should be able to display any stream it chooses to request and

receive from the platform. "Display" in this case extends beyond the visual aspect. Play-

ing an audio stream over speakers falls under the "display" aspect, as does updating the

text of  a simple text label component. Each stream will carry its own, additional require-

ments regarding latency handling.

There is no need to specify in a generic manner how to handle the different stream

capabilities of  different payloads. While the initial connection to the platform from the
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Control Station must follow the same common protocol regardless of  the actual options

available, the Control Station can have different display implementations, and use the one

corresponding to the installed payload, information that the Control Station retrieves after

it is connected to the platform, as per R-10.1.3 (Retrieve Platform-Specific and Payload

Capabilities).

16.0 Advertise Platform Over the Network
As soon as a platform connects to the "Brasidas" network, it must begin to advertise

itself. Advertising over a network without prior knowledge of  possible receivers means

that a platform must broadcast its state, typically by including in the broadcast basic in-

formation, such as its ID (which obviously must be unique among all the platforms par -

ticipating in the same network),  location,  and perhaps basic  status information,  most

prominently its current playload. Combined with R-0.6 (The Network Must be Based on

the IP Protocol), broadcasting under the IP protocol uses the appropriate network ad-

dress (based on netmask). However, to allow for the possibility to later allow the network

to be partitioned into group, multicasting should be allowed alongside broadcasting. Mul-

ticasting is not inherently supported in the IP protocol, and instead requires IGMP [19].

This will become a constraint below R-0.6:

0.6.1 The network must support IGMP.

Advertising must be periodic, since it cannot, and should not depend on a request-

reply model. A platform or Control Station only knows about other platforms online by

receiving  their  broadcasts.  If  each node connected to the network were to request  a

broadcast from every other node every let's say 1 sec, then each network update would re-

sult in n2 advertisement broadcasts and n request broadcasts every 1 sec (because each re-

quest would receive n replies). By comparison, a periodic advertisement at the same rate

would require only n broadcasts every 1 sec. The bandwidth saved in the second case is

obvious.

On the other hand, if  the periodic rate is too slow, platform states may end up not

being updated fast enough. It makes sense to further limit advertisement broadcasts by
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adopting a few criteria about when a platform should broadcast an update. To maintain a

reasonably updated tactical picture, this update should happen once every few seconds. A

good choice is about 3 sec, so this is the interval at which updated information about a

node's state should circulate over the network.

A logical assumption is to require that a platform should broadcast an update if  its

location changes by at least 1 m (the typical dimension of  the current "Brasidas" platform

and also the typical accuracy of  GPS), or its payload status changes. The same distance-

based criterion is used to determine the NavCam's acceptable latency. Based on the re-

sults of  the latter, the minimum period between broadcasts is no less than 600 msec. The

assumed maximum period of  3 sec seems acceptable at the moment; it shouldn't need to

be revised until implementation. Thus, we get the following additional requirements:

16.1 Broadcast Platform ID and Status over the Network (functional).

16.2 A Platform Must Advertise At Least Once Every 3 sec (performance).

16.3 A Platform Must Not Advertise More Often Than Once Every 0.6 sec (perfo-

mance).

16.4 A Platform Must Advertise When Its Location Since Its Last Advertisement Has

Changed By At Least 1 m (perfomance).

17.0 Disconnect from Platform
This one is pretty straightforward. Besides signaling the platform to terminate feed

streaming, the platform should switch to Autonomous Mode when the Control Station

disconnects, if  Manual Override had been engaged. Signaling is described as a separate

functional entry, since it is used by multiple other functions, and a requirement that Au-

tonomous  Mode be  the  default  mode is  specified  already  under  R-5.0  (Operate  Au-

tonomously), so there is really nothing more to this function, other than defining a viable

transition between modes.

0.5 Target Engagement Happens Only in Teleop Mode
While target identification algorithms might have evolved to be sufficiently accurate
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today, the same does not apply to threat assessment and target classification algorithms;

these aspects  of  machine learning and artificial  intelligence are  still  being  actively re-

searched, and not mature enough to rely upon them in the field, especially in circum-

stances as chaotic as a potential battlefield. Thus, any sort of  target engagement must be

actively supervised and monitored, lest it leads to friendly fire incidents and unnecessary

loss of  life. This is an overall system operational constraint, and is not limited to the func-

tionality offered by Autonomous Mode.

§3. The Network Architecture
Back in Chapter 2: System Modeling, where an early, rough version of  the software

architecture was presented (see  Figure 2.1: Preliminary System Architecture), two ques-

tions were raised with regard to the mentioned network architecture,  namely whether

multiple "Brasidas" and Control Stations should be part of  the same network, and what

the network's specifications should be. Now, after discussing in detail the system design

and its architecture, it is time to answer these questions. Before doing so, the reader is re-

minded of  the adopted development model: spiral development. This is a case where the

network has been implemented at a very basic level, with additional design, development,

and testing intended in the future.

3.1. The Initial Version
There is only a single vehicle and a single Control Station, and that leaves very little

room to experiment with different network topologies and options. In the beginning, we

used a basic case of  a point-to-point link, as illustrated on Figure 3.1: The Initial Network

Configuration, below.
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The only advantage to this limited case, is that one cannot bother with network de-

sign along the rest of  the system design, even if  they wanted to; it lightens the workload,

in a sense, and in all honesty, it is not as if  there are no other issues to solve during the

design process, plus even this trivial solution has proven more than sufficient in the case

where only a single "Brasidas" needs to be deployed. Needless to say, however, if  "Brasi-

das" is to ever have a potential for use, this simple network architecture could not stand.

3.2. Specifying the Desired Architecture
Any network specification should basically follow the OSI 7-layer architecture [20].

As a well-studied architecture and open standard, it makes little sense not to adhere to it,

especially since virtually every other network systems designer out there does.

The  first  question  posed  in  Chapter  2:  System  Modeling,  was  concerned  with

whether multiple "Brasidas" platforms should be allowed to interconnect. In the absence

thus far of  any indications to the contrary, multiple platform interconnection should be

allowed. The functionality can always be revoked later if  studies show that this is neither

required nor convenient. But as a rule, it is generally better to take away a capability that

you have available in the first place, that to make available a capability that was absent to

begin with.

With respect to the second question, regarding the type of  technologies and proto-

cols to use, the given range of  R-6.0 (Be Operable at a Minimum Range of  1 Km) hints

at the general technology to use: it is obvious that communication should be wireless (un-

less somehow one finds the prospect of  a 1-Km-long cable practical). Since the current

solution uses multi-Mbps WiFi and at no point has this link been utilized to over 50%,

throughput cannot be quantified in detail at this stage. The greatest amount of  link uti-

lization comes from video streaming. Assuming streams are H.264-encoded, an 720p@30

stream consumes around 4 Mbps (average picture quality), and a 1080p@25 consumes

around 7 Mbps. Any future solution should provide at least this much throughput at the

range required by R-6.0, per camera feed required. However, additional overhead may be im-
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posed. Network organization structures, and other aspects of  communications, touched

briefly below, can easily push this single-digits Mbps throughput to a much higher value.

All else being equal, it makes sense that the option with the highest throughout should be

selected.

For the greatest convenience in system design, the network should follow the IP

protocol stack from Layer-3 upwards. The requirements for the Physical and Data-Link

Layers will be the subject of  this section, but since the whole point of  the "Brasidas" net-

work will  be essentially  to interconnect computers,  it  is  only natural  to use the most

proven protocol available – the IP protocol. This is the first and most fundamental re-

quirement (constraint, actually) of  a desired network architecture:

0.6 The Network Must be Based on the IP Protocol.

As mentioned earlier, there is also a need for nodes to advertise their state over the

network, without prior knowledge of  other nodes. In general, this requires support of  a

broadcasting  or  multicasting  protocol  on the network's  behalf,  but  since the network

must be based on the IP protocol, a multicast protocol (IGMP) is already defined as part

of  the IP protocol suite (broadcasting is supported by IP itself), so this must be sup-

ported as well.

3.3. The Current Situation
The current network architecture is based on the mesh topology described later in

this paragraph. Of  course, a two-node mesh is rather trivial, but it is enough to test the

basic aspects of  networking and decide on proper policies (addressing scheme, etc.).

A military-grade, operational network of  "Brasi-

das" platforms and Control Stations would require net-

work management and disruption tolerance. The two

prevalent topologies for more than two participants are

point-to-multipoint (PtMP) and mesh.

PtMP,  or  star  topology,  shown  on  Figure  3.2:

Point-to-MultiPoint  Configuration,  has  a  single  net-
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work controller node (think of  WiFi's Access Points), which represents a single point of

failure, hardly a disruption-tolerant network. Imagine if, during an operation, enemy fire

were to take out this network controller node; the entire network would collapse and all

"Brasidas" platforms would be useless. In addition, as the platforms move around, they

must all remain within range of  the Access Point at all times, or else they lose connectiv -

ity. In addition, the AP must simultaneously service all the clients, so unless it employs an

advanced MU-MIMO scheme, the effective bandwith drops and latency skyrockets. The

only benefit, if  the AP is stationary and its location is known, is that Control Stations can

then use directional antennas for increased range. Clearly however, PtMP is not appro-

priate as it provides virtually no disruption tolerance or adaptability to changing field cir-

cumstances.

A  mesh  topology  on  the  other

hand, in particular that of  a Mobile Ad-

hoc  NETwork  (MANET),  serves  the

concept almost too well. Such a possible

configuration is depicted on Figure 3.3:

MANET  Mesh  Configuration.  Under

such  an  architecture,  every  "Brasidas"

platform or  Control  Station  is  treated

equally  as  a  node.  Nodes  can  join  or

leave a mesh network dynamically,  and

modern mesh routing protocols  like OLSR and BATMAN can route  packets  via  the

shortest hop path and compensate for nodes leaving the network with great efficiency,

making such networks self-healing. As long as each node in a mesh network can "see" at

least two others, the network is disruption-tolerant. Such a dynamic network configura-

tion may occasionally present large traffic latencies, however; this is a topic that requires

further  research.  Nonetheless,  this  culminates  in  the  second  and  third  requirements

(again, both constraints) for the desired "Brasidas" network:
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0.7 The Network Must be Structured According to the Mesh Topology, and

0.8 The Network Must Implement a Routing Protocol for Multi-Hop Ad-hoc

Networks.

Well, in short, the network should just look like that of  Figure 3.3: MANET Mesh

Configuration. Care should be taken in the case of  a MANET that throughput is affected

by the number of  hops as little as possible; it is well known, for example, that single-radio

WiFi repeaters reduce throughput by half, since their radio must switch between receiving

and transmitting. Likewise, when a station has to serve multiple client links (the WiFi

term is 'spatial stream'), it has to transmit or receive only a specific client's data each time,

and ignore the others. In a mesh network, where links are dynamic and change as the

nodes move around, such problems can become insurmountable if  the circumstances

happen to be 'just right', such as when the network ends up being partitioned in two clus-

ters, and only a single node can connect to both. This single node acts as a bridge and a

bottleneck at the same time, if  it suffers from the shortcomings mentioned in this para-

graph.

A typical solution to the problems discussed in the previous paragraph is to use mul-

tiple radios per node, typically two radios, one to transmit and one to receive. This solves

the throughput issue, but still is unable to handle the one-client-at-a-time issue. In addi-

tion, using multiple radios in close proximity produces cross-talk, and causes significant

interference.  A  new  technology  that  greatly  alleviates  both  problems  is  MU-MIMO,

which essentially can handle multiple simultaneous spatial streams, each directed at a dif-

ferent client. At the moment, only a few commercial routers support this option, and only

in the 5 GHz band, which is extremely short-ranged.

3.4. A Glimpse of  the Future
Range and throughput may be the primary requirements from a functional and de-

sign point of  view, but they are not the only ones. One should not forget that "Brasidas"

is intended to (some day) be a military system, and the only two attributes of  military

wireless communications  that  matter  are  security and jam resistance.  Needless  to say,

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

51



DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

WiFi may be fast and cheap, but it is lacking in security. AES128 found in most commer-

cial WiFi transceivers, is NSA-approved and practically unbreakable, but is nonetheless

not recommended by NSA for encrypting information classified above TOP SECRET

(AES128 is Type 3 and part of  NSA's Suite B, but not Suite A), so acceptability of  its use

depends on the circumstances.

The "official", NSA-sanctioned policy is recommended in  [21], under the "Mobile

Access Capability Package" heading. However, NSA is preparing an upcoming cryptogra-

phy suite, to replace the elliptic-curve-based algorithms of  Suite B with quantum resistant

algorithms.

Security means data should be transmitted over the network encrypted with a "suffi-

ciently secure" encryption scheme. How secure should "sufficiently secure" be, and which

algorithms are adequate, is a requirement (constraint) that will be specified by the end

user. Even if  the end user does not specify the parameters of  COMSEC, some form of

access control to the network must be implemented. That is the fourth network require-

ment (constraint):

0.9 The Network Must Implement At Least an Access Control Protocol.

The WiFi modulation scheme is also the joke of  jam resistance, since a second Ac-

cess Point transmitting on the same channel can effectively disrupt communications. Jam

resistance mostly means using either FHSS or DSSS modulation schemes, although other

techniques, such as CCSS (a coded modulation scheme, see [22] and [23]) are beginning to

emerge. Unfortunately, including military-grade communications hardware in "Brasidas"

is impossible given constraint 0.3, and besides constraint 0.1 says that as a problem al -

ready solved, it can be ignored. Since most communications solutions today are designed

based on the OSI 7-layer architecture, security and jam resistance are capabilities that are

implemented transparently over the other attributes (security is usually implemented at

the session or transport layers), and in the majority of  commercial solutions examined

briefly do not affect range or throughout. Jam resistance depends entirely on the end

user's needs; there is no requirement to provide the "Brasidas" network with any kind of
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jam resistance, unless the end user specifies otherwise.

§4. Requirements Overview
Table 3.1:  Requirements Overview lists all  requirements produced so far,  in tree

form. It includes the initial requirements, maintaining of  course the numbers allocated to

each, and is augmented with all the requirements discovered during Requirements Elicita-

tion and Decomposition, each now formally numbered. The requirements are also cate-

gorized according to their type, to make allocation easier.

Table 3.1: Requirements Overview
Numeric ID Description Type

0.1 "Brasidas" is a research prototype Constraint

0.2 Adopt the use of COTS components and open standards Constraint

0.3 Funding and Support is very specific Constraint

0.4 All  Autonomous  Mode  functions  must  depend  only  on  installed
capabilities

Constraint

0.5 Target engagement happens only in Teleop Mode Constraint

0.6 The network must be based on the IP protocol Constraint

0.6.1 The network must support IGMP Constraint

0.7 The network must be structured according to the mesh topology Constraint

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

Constraint

0.9 The network must implement at least an access control protocol Constraint

1.0 Move over flat terrain Hardware

2.0 Move at speeds comparable to a Human's Performance

2.1 Minimum platform top speed should be 6 Km/hr Performance

2.2 Motion and velocity commands should be platform-agnostic Extensibility

3.0 Be fully teleoperable Functional

4.0 Possess optical and IR sensors Hardware

5.0 Operate autonomously Functional

5.1 Autonomous Mode must be the default operating mode Usability

5.2 Autonomous Mode must be suspended in Teleop Mode Performance

5.3 Navigate autonomously Functional

5.3.1 Perform SLAM and pose estimation Functional

5.3.2 SLAM must support dynamic map updates Usability

5.3.3 Follow path between two points on the map Functional

5.3.3.1 Plan path to target Functional

5.3.3.2 Generate motion commands Functional

5.3.3.3 Path planning must accept dynamic waypoint list updates Usability

5.3.3.4 Path planning must accept dynamic map updates Usability

5.3.3.5 The waypoint list must be wiped upon a map reload Reliability

6.0 Be operable at a minimum range of 1 Km Performance

7.0 Operate for at least 4 hrs at max power load Performance

8.0 Connect to the "Brasidas" network Interface
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Table 3.1: Requirements Overview
Numeric ID Description Type

9.0 Discover platforms online Functional

9.1 Add a node to the list when its status is received Functional

9.2 Timestamp discovered nodes with time of reception Functional

9.3 Remove  nodes  whose  timestamp  is  4  sec  or  more  older  than
system time

Performance

10.0 Connect to platform Functional

10.1 Establish initial connection Functional

10.1.1 Initialize network link Functional

10.1.2 Retrieve platform-specific parameters Functional

10.1.3 Retrieve additional platform-specific and payload capabilities Functional

10.2 The initial connection must follow a common protocol Interface

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

Interface

11.0 Stream data feeds Functional

11.1 Capture data feeds of onboard sensors Functional

11.2 Determine if there is a network request to stream data feeds Functional

11.3 Stream data feeds over the network Functional

11.4 Each stream should be manageable independently from others Usability

11.5 The NavCam stream must have a latency of 150 msec or less Performance

12.0 Store area map Functional

12.1 Load or reload a map Functional

12.2 Retrieve map-related sensor data Functional

12.3 Process sensor data to produce map-specific information structures Functional

12.4 Update the map Functional

12.5 Map update rate must be optimal (TBD) Performance

13.0 Track Location via GPS Functional

14.0 Signal the platform Functional

14.1 Send signal request Functional

14.2 Receive acknowledgement Functional

14.3 Receive response and return it to request initiator Functional

14.4 The signaling mechanism must be part  of the initial  connection's
Common Protocol

Interface

14.5 The signaling mechanism must be request- and response-agnostic Interface

15.0 Display streamed data Functional

16.0 Advertise platform over the network Functional

16.1 Broadcast platform ID and status over the network Functional

16.2 A platform must advertise at least once every 3 sec Performance

16.3 A platform must not advertise more often than once every 0.6 sec Performance

16.4 A  platform  must  advertise  when  its  location  since  its  last
advertisement has changed by at least 1 m

Performance

17.0 Disconnect from platform Functional
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CHAPTER 4 .
Requirements Allocation

The basic architecture to begin with is that of  Figure 2.1: Preliminary System Archi-

tecture. Initially, the requirements of  Table 3.1: Requirements Overview will be allocated

to the basic blocks of  the initial architecture, then each block will be segmented further as

deemed practical given the functional requirements allocated to it.

The allocation of  some requirements is pretty obvious; others require some insight,

that occurred after the design team traversed the requirements loop multiple times. This

multiple-traversal journey will not be described here, only its end results, namely how re-

quirements ended up being allocated to each architecture block. This allocation is pre-

sented in brief  on Table 4.1: Requirements Allocation. The further development of  the

architecture, that results from this allocation, is analyzed in the next chapter.

Table 4.1: Requirements Allocation

Numeric ID N
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0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.4 All  Autonomous  Mode  functions  must  depend  only  on  installed
capabilities

X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.7 The network must be structured according to the mesh topology X

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

X

0.9 The network must implement at least an access control protocol X X X

1.0 Move over flat terrain X

2.0 Move at speeds comparable to a human X

2.1 Minimum platform top speed should be 6 Km/hr X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

4.0 Possess optical and IR sensors X

5.0 Operate autonomously X
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Table 4.1: Requirements Allocation
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5.1 Autonomous Mode must be the default operating mode X

5.2 Autonomous Mode must be suspended in Teleop Mode X

5.3 Navigate autonomously X

5.3.1 Perform SLAM and pose estimation X

5.3.2 SLAM must support dynamic map updates X

5.3.3 Follow path between two points on the map X

5.3.3.1 Plan path to target X

5.3.3.2 Generate motion commands X

5.3.3.3 Path planning must accept dynamic waypoint list updates X

5.3.3.4 Path planning must accept dynamic map updates X

5.3.3.5 The waypoint list must be wiped upon a map reload X

6.0 Be operable at a minimum range of 1 Km X

7.0 Operate for at least 4 hrs at max power load X

8.0 Connect to the "Brasidas" network X

9.0 Discover platforms online X

9.1 Add a node to the list when its status is received X

9.2 Timestamp discovered nodes with time of reception X

9.3 Remove  nodes  whose  timestamp  is  4  sec  or  more  older  than
system time

X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

X

11.0 Stream data feeds X

11.1 Capture data feeds of onboard sensors X

11.2 Determine if there is a network request to stream data feeds X

11.3 Stream data feeds over the network X

11.4 Each stream should be manageable independently from others X X

11.5 The NavCam stream must have a latency of 150 msec or less X

12.0 Store area map X

12.1 Load or reload a map X

12.2 Retrieve map-related sensor data X

12.3 Process sensor data to produce map-specific information structures X

12.4 Update the map X

12.5 Map update rate must be optimal (TBD) X

13.0 Track Location via GPS X

14.0 Signal the platform X X

14.1 Send signal request X
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Table 4.1: Requirements Allocation
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14.2 Receive acknowledgement X

14.3 Receive response and return it to request initiator X

14.4 The signaling mechanism must be part  of the initial  connection's
Common Protocol

X

14.5 The signaling mechanism must be request- and response-agnostic X

15.0 Display streamed data X

16.0 Advertise platform over the network X

16.1 Broadcast platform ID and status over the network X

16.2 A platform must advertise at least once every 3 sec X

16.3 A platform must not advertise more often than once every 0.6 sec X

16.4 A  platform  must  advertise  when  its  location  since  its  last
advertisement has changed by at least 1 m

X

17.0 Disconnect from platform X X

Some requirements (particularly constraints) apply to more than one subsystem. In

this case, the functionality contained in the requirement can be split among the subsys-

tems it is assigned to, or it can apply equally to all; the distinction depends on the require-

ment.  Each subsystem's  architecture  must  be  designed  to  accommodate  the  assigned

common functionality or restriction.

Usually, a decomposition of  such a requirement will yield functional elements that

can clearly be assigned only to one of  the subsystems. However, it was deemed acceptable

that requirements not be decomposed to such a depth. This work refers to a product not

yet complete, and even though the initial requirements have been revised many times, it is

almost certain that as development continues, they will be revised even more. To the au-

thor's opinion, it would be a waste of  time and effort to attempt to specify exactly some-

thing that might be entirely different after a while.

For example, in the case of  R-10.0 (Connect to Platform), both the Control Station

and platform must implement some functionality in order for a connection to occur. The

decomposition of  R-10.0 does not seem to lift the ambiguousness, so a deeper decompo-

sition should be attempted. However, up until a few months before this writing, the con-

cept  of  data  streams  had  not  even  been  introduced  in  the  design.  Its  introduction
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changed the connection process, which up until then included no prospect of  dynami-

cally differentiated payload options. The possible further development of  the network ar-

chitecture is bound to change the connection process again, since the network used now

has no access control method implemented, and likewise connection to a platform imple-

ments  no authentication scheme.  The requirements  specified herein  are  those  of  the

complete version, to the extend that they are considered final, but are nowhere near im-

plemented completely in the current version. They are not decomposed as extensively as

perhaps one would expect, nor are they likewise implemented with finality in mind, to al-

low revisions, additions, and modifications during the entire development process.
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CHAPTER 5 .
The Functional Architecture

Now that a rough initial architecture has beed derived and the requirements have

been allocated over its elements, it is time to develop it further.

The elements of  the initial architecture will be examined one by one, and each will

be further structured accordingly. The requirements allocated to ach element are listed at

the beginning of  the respective section, for completeness and ease of  reference.

§1. The Network Architecture
According to the requirements allocation scheme of  the previous chapter, the net-

work must satisfy the following requirements:

Table 5.1: Network Requirements
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0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.7 The network must be structured according to the mesh topology X

0.8 The network must implement a routing protocol for multi-hop ad-hoc
networks

X

0.9 The network must implement at least an access control protocol X X X

6.0 Be operable at a minimum range of 1 Km X

These are mostly constraints, stemming from the fact that, as mentioned earlier, the

network architecture and development has been deliberately postponed, until other robot

functionality more pertaining to the Mission Needs Statement could be developed.

Given the requirements of  Table 5.1: Network Requirements, an OSI-based archi-

tecture for the network can be derived. Extending R-0.6, there should never be a need to

examine network protocols above Layer 3; that is in fact why R-0.6 is there, to allow the

use of  the many readily available such implementations. Typically, only R-0.9's access con-
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trol protocol (EAP on 802.11) will operate at Layer 3 (most likely) or above (unlikely),

and there are even options to push it down to Layer 2 (MAC). EAP (implemented as

WPA2 over AES) is a good choice here. A mesh routing protocol (R-0.8) such as OLSR

also operates typically between Layer 2 and Layer 3. Likewise, a possible future inclusion

of  a jam resistance protocol would most likely involve only the physical layer (Layer 1),

and perhaps Layer 2. All this means that whatever the network architecture may be, appli-

cations can treat is as a standard IP-based, packet-switched network supporting all the

usual protocols such as TCP, UDP, and ARP through the usual interfaces such as Berke-

ley's sockets.

Table 5.2: Network Architecture
Layer Protocols
Layer 3 IP protocol suite access control protocol

Mesh routing protocol

Layer 2 IEEE 802.11 (any variant that suffices) or IEEE 802.22;
(optionally, any accepting IP frames and supporting jam resistance)Layer 1

The color-coded Table 5.2: Network Architecture demonstrates the proposed archi-

tecture from the Layer 3 downwards. It is obviously an early version, containing simpli-

fied protocol references; the network has not been a research priority.

§2. The Platform Architecture
Of  all the requirements specified, the platform has been allocated the bulk of  them.

Table 5.4: Platform Requirements
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0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.4 All  Autonomous  Mode  functions  must  depend  only  on  installed
capabilities

X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.9 The network must implement at least an access control protocol X X X
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Table 5.4: Platform Requirements
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1.0 Move over Flat Terrain X

2.0 Move at Speeds Comparable to a Human X

2.1 Minimum platform top speed should be 6 Km/hr X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

4.0 Possess optical and IR sensors X

5.0 Operate autonomously X

5.1 Autonomous Mode must be the default operating mode X

5.2 Autonomous Mode must be suspended in Teleop Mode X

5.3 Navigate autonomously X

5.3.1 Perform SLAM and pose estimation X

5.3.2 SLAM must support dynamic map updates X

5.3.3 Follow path between two points on the map X

5.3.3.1 Plan path to target X

5.3.3.2 Generate motion commands X

5.3.3.3 Path planning must accept dynamic waypoint list updates X

5.3.3.4 Path planning must accept dynamic map updates X

5.3.3.5 The waypoint list must be wiped upon a map reload X

7.0 Operate for at least 4 hrs at max power load X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

10.3 The functionality of the initial connection's common protocol must
be implemented on all platforms regardless of payload

X

11.0 Stream data feeds X

11.1 Capture data feeds of onboard sensors X

11.2 Determine if there is a network request to stream data feeds X

11.3 Stream data feeds over the network X

11.4 Each stream should be manageable independently from others X X

11.5 The NavCam stream must have a latency of 150 msec or less X

12.0 Store area map X

12.1 Load or reload a map X

12.2 Retrieve map-related sensor data X

12.3 Process sensor data to produce map-specific information structures X

12.4 Update the map X

12.5 Map update rate must be optimal (TBD) X

13.0 Track Location via GPS X

14.0 Signal the platform X X

14.4 The signaling mechanism must be part  of the initial  connection's
Common Protocol

X
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Table 5.4: Platform Requirements
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14.5 The signaling mechanism must be request- and response-agnostic X

16.0 Advertise platform over the network X

16.1 Broadcast platform ID and status over the network X

16.2 A platform must advertise at least once every 3 sec X

16.3 A platform must not advertise more often than once every 0.6 sec X

16.4 A platform must advertise when its location since its last advertise-
ment has changed by at least 1 m

X

17.0 Disconnect from platform X X

Requirements R-1.0, R-2.0, R-4.0, and R-7.0 apply to the hardware, and can be ig-

nored when designing the software architecture. Beyond that, it makes sense to separate

functions that need to directly interact with the hardware, with those that don't. The aim

is to abstract and parameterize the functionality as much as possible, so the same func-

tionality can be used for another platform. One shouldn't forget that "Brasidas" is a re-

search prototype, thus any product coming out of  the project must be adaptable to any

platform it may end up being used. Functions that do not need to directly interact with

the hardware (such as SLAM or the common protocol), are prime candidates for this kind

of  abstraction. Functions that interface with the hardware must be rewritten for each

platform they will be used on.

Naturally, the operating system will help abstract away much of  the hardware inter-

action, but some demand for specialized code will remain.

Because the platform is allocated functions that perform tasks independent of  one

another  (such as  SLAM and platform advertising),  it  makes  sense  to consider  multi-

threaded or multi-process options. In this case, it is necessary to have some method of

inter-thread or inter-process communication (IPC).

Communication among threads is usually trivial, as they run within the context of

the same process, and thus have access to global variables and the stack, and, with proper

argument passing to methods running within threads, the entirety of  process variables
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can be exchanged between threads.  In the case of  threads it is imperative that a thread

synchronization primitive be applied where needed, to avoid variable value inconsisten-

cies, as well as resource deadlocks. However, a single multi-threaded application is really

just a bloated beast waiting to burst on some poor user's (or worse, developer's) face.

A multi-process solution is far more elegant, as each process's code can be kept

small and lean, with little overhead. The downside is that this imposes a multitasking re-

quirement on the hardware used, and context switching between processes is far more

costly (in terms of  CPU time and resources) than context switching between threads.

Also, most processes are unable to directly communicate with one another due to process

isolation (present on all modern multitasking OSes), and therefore the use of  some IPC

protocol is necessitated. Still, even given these shortcomings, the code simplicity comes

on top, and multi-processing is the solution of  choice when performance is not an issue.

The architecture depicted on  Figure 5.1: Carrier Vehicle Architecture is designed

with multi-processing in mind. It is color-coded; solid blue represents external software
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components,  bright blue represents visualization components, while  brown represents

background components, that interact only with other processes. Hardware interfaces are

shown in gray, and light brown represents the IPC component. The Common Protocol,

SLAM, and Autonomous Operation modules, whose internal components are shown, use

a brown-based coloring variant.

The NavCam Streaming Module is also used as the basis of  implementation of  all

other data streaming modules.

The reasoning of  Figure 5.1: Carrier Vehicle Architecture is pretty straightforward.

The Common Protocol Module is the only receiver of  incoming communication; all re-

quests and commands to the platform go through this module, using elements of  the

Common Protocol. This module also handles signaling, since its specification is part of

the  Common Protocol.  All  other  vehicle  operations  are  implemented  as  independent

process modules. Certain modules, like Autonomous Operation and SLAM, also integrate

already defined functionality in a convenient manner.

All onboard process modules communicate via an IPC bus, using some messaging

protocol. This IPC protocol is implementation-specific; it does not form part of  the sys-

tem's requirements, since it is required only as part of  the architecture proposed in Figure

5.1: Carrier Vehicle Architecture. Another architecture proposal could very well do away

with IPC altogether, in which case there would be no point in imposing an implementa-

tion-specific requirement.

Figure 5.1: Carrier Vehicle Architecture does not present the whole platform archi-

tecture. The architecture of  the payload must also be specified. Since there can be multi-

ple payload types, there is no single fully-detailed architecture that describes them all, but

it is possible, given the constraints and requirements specified for the payload, to present

an abstract architecture to which all payload types should conform. This architecture is

presented in Figure 5.2: The Payload Generic Architecture. Module names in italic indi-

cate a generic type module, that may or may not be present in all payloads, as indicated by

the respective multiplicity indicators ("0..n", "1..n").
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What is evident from Figure 5.2: The Payload Generic Architecture is that the com-

mon IPC bus is present, and is the only route of  communication between the payload

and the carrier vehicle. Also, the payload is afforded direct network access for streaming

modules, in order to eliminate a potential mediator module that would otherwise have to

be running on the carrier vehicle. Eliminating the mediator affords the data stream the

minimum possible latency.

It is assumed that the payload includes at least a sensor and some hardware that the

software needs to interface with. Otherwise, there's not much sense in needing to install

an entire separate computer board, and not simply treating it as part of  the carrier vehi-

cle's System Core component. Given the distributed nature of  the architecture, either the

payload's processing component, or the carrier vehicle's System Core, need not be limited

to a single processor board, and can instead easily be composed of  multiple boards, in a

form of  mini-cluster. It's the IPC part that binds everything together seamlessly.

§3. The Control Station Architecture
The Control Station has been allocated the following requirements:
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Figure 5.2: The Payload Generic Architecture
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Table 5.3: Control Station Requirements

Numeric ID N
et

w
o

rk

C
tr

l 
S

ta
ti

o
n

P
la

tf
o

rm

0.1 "Brasidas" is a research prototype X X X

0.2 Adopt the use of COTS components and open standards X X X

0.3 Funding and Support is very specific X X X

0.5 Target engagement happens only in Teleop Mode X X

0.6 The network must be based on the IP protocol X X X

0.6.1 The network must support IGMP X X X

0.9 The network must implement at least an access control protocol X X X

2.2 Motion and velocity commands should be platform-agnostic X X

3.0 Be fully teleoperable X X

8.0 Connect to the "Brasidas" network X

9.0 Discover platforms online X

9.1 Add a node to the list when its status is received X

9.2 Timestamp discovered nodes with time of reception X

9.3 Remove  nodes  whose  timestamp  is  4  sec  or  more  older  than
system time

X

10.0 Connect to platform X X

10.1 Establish initial connection X X

10.1.1 Initialize network link X X

10.1.2 Retrieve platform-specific parameters X X

10.1.3 Retrieve additional platform-specific and payload capabilities X X

10.2 The initial connection must follow a common protocol X X

11.4 Each stream should be manageable independently from others X X

14.0 Signal the platform X X

14.1 Send signal request X

14.2 Receive acknowledgement X

14.3 Receive response and return it to request initiator X

15.0 Display streamed data X

16.0 Disconnect from platform X X

To implement R-8.0 requires the proper hardware to begin with. From the software

perspective, an appropriate device driver is needed. Usually, devices implement Layers 1

and 2 in firmware, and rely on the driver functionality to act as a bridge between the

higher-Layer protocols, implemented in software, and the Layer 1 and 2 protocols imple-

mented on the device.

Since the network is based on the IP protocol, the protocol stack specification is

known (and is also an open standard). Any commercial product has all of  this functional-
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ity implemented in full, and the complementary higher-Layer protocols are also imple-

mented for every operating system available.

R-8.0 and R-0.6 thus are grouped in the Network Interface component, as shown on

Figure 5.3: The Control Station Architecture, which is closely coupled with the Network

Access Control (R-0.9) component. The two modules are independent, to facilitate re-

placing one solution with another (e.g. changing access control protocols) while the rest

of  the system remains the same. However, network access uses both components in par-

allel, as indicated by the thick black lines delimiting the parallel combination of  the two

components.

Figure 5.3: The Control Station Architecture is color-coded like Figure 5.1: Carrier

Vehicle Architecture.

The proposed Control Station architecture also makes use of  an IPC protocol, for

the same reasons explained in the platform architecture section, above.

The Node Discovery Module  is  responsible  for  receiving all  platform advertise-

ments that come over the network. It encapsulates R-9.0 (Discover Platforms Online)

and its descendant requirements.
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Figure 5.3: The Control Station Architecture
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The Connection Management Module is responsible for all communication with the

robot. It handles connection and disconnection, sets up and tears down stream reception

for the Stream Display Module, handles input received from the Teleoperation Console,

and also implements signaling. It encapsulates R-8.0, R-10.0, R-14.0, and R-16.0 (with all

lower-tier requirements of  each).

The three visualization modules are responsible for letting the operator see and in-

teract with the robot. R-15.0 is split between the Stream and Status Display modules,

where the Stream Display Module renders on screen mostly the media streams (camera

feeds, etc.), including "displaying" the incoming audio stream over the speakers, and the

Status Display Module allows the operator to view non-media streams, such as telemetry

and diagnostics updates. The Control Interface Module does not so much display incom-

ing data, as providing a set of  on-screen controls for sending commands to the robot, in-

cluding manipulating the data streams (i.e. it encapsulates R-11.4).

The Teleop Console Interface Module is used to read in motion commands from a

hardware control console, translating them to platform-agnostic motion commands, as

per R-2.2 which it encapsulates. The console has special control hardware (joystick, but-

tons, MOVRD toggle) for optimal teleoperation of  the robot. It is the hardware imple-

mentation of  R-3.0, and is detailed in P. Katselis' thesis. As indicated on Figure 5.3: The

Control Station Architecture, the Teleop Console module sends read in data to the Con-

nection Management Module, which are then transmitted (in platform-agnostic format)

to the platform via  either  the common protocol,  signaling,  or  a  specially  set-up data

stream.
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CHAPTER 6 .
Product Development Phases

Though it may not be the effort to construct Star Trek™'s NCC-1701 "U.S.S. Enter-

prise" starship, "Brasidas" is still a rather ambitious project. To make matters worse, its

design and development is undertaken by an inexperienced team of  dabblers. Thus, to

mitigate the enormous risks in time, effort, and monetary costs involved, the develop-

ment must be meticulous.

The spiral development model is a good choice for developing a complex system

with  multiple  risks  present.  However,  behind it  hides  a  rather  insidious  development

threat: the model assumes those who adopt it do know from beforehand what they want

to accomplish, but haven't figured yet out all the details.

In the case of  "Brasidas", those who adopt the model do not know a priori what

they want to accomplish, and that is a source of  risk that even the spiral model does

not cover. Thus, developing "Brasidas" is more than a matter of  figuring out details; it en-

tails building a knowledge base as well.

Consider also that the design is not only theoretical, but is accompanied by a proto-

type. To adopt Nielsen's terms [24], "Brasidas" is basically a horizontal prototype, as it at-

tempts to encompass an entire system, not just some aspects of  it (i.e. subsystems). Thus,

the basic spiral model can only take development so far.

The above reasoning is what led the development team to built "Brasidas" as a re-

search prototype (and hence imposed R-0.1). A research prototype can be a throwaway

one [8], and therefore more mistakes are allowed. When the problem's scientific and engi-

neering aspects have been studied sufficiently in depth, it might be deemed viable to then

construct a second prototype, closer to a production model.

While "Brasidas" will not be the successor to the M1A1 Abrams tank, it is conve-

nient to follow a similar approach; ToS incorporates that convenience as well. The para-

graphs that follow attempt a description of  the various development Phases, list the func-

tionality that is intended to be integrated into each Phase, and give an estimate of  the ex -
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pected time required for a complete prototype, asuming full-time research from the same

development team.

§1. Phase 1: Remotely Operated Vehicle
This Phase is expected to produce a prototype that can be remotely operated. The

Mk-1 would implement all requirements and follow all constraints, except for those per-

taining to autonomous operation and map management, namely R-0.4 (All Autonomous

Mode  Functions  Must  Depend  Only  on  Installed  Capabilities),  R-5.0  (Operate  Au-

tonomously), and R-12.0 (Store Area Map). R-0.5 (Target Engagement Happens Only in

Teleop Mode) is included here, since even though it may not be directly applicable to this

Phase's functionality, the software design must consider it for when future Phases include

autonomous options that call upon the software produced in this Phase.

The Mk-1 would be a R.O.V that can simply retrieve its location via GPS (since R-

13.0 will  be integrated). It could be teleoperated within known (pre-mapped) environ-

ments  using the NavCam feed and perhaps a  few additional  simple  sensors  (such as

sonars). It would feature a variety of  remotely-operated payload options, such as a sensor

cluster, small arm or an Infantry support weapon with IR targeting camera, an EOD tur -

ret with manipulator arm, perhaps a mine detector payload, etc.

Development of  at least a token payload option is part of  Phase 1. As a long-range,

possibly armed R.O.V., "Brasidas" Mk-1 would be a solution ready for adoption and use

by potential clients now, demanding minimal to no changes in the organizational structure

and operational MOs of  clients.

It is estimated that this Phase will require 1.5 – 2 years to produce a working proto-

type. As of  May 2017, this Phase is complete, though a few software bugs may still re-

main to be solved.

§2. Phase 2: Recon R.O.V.
This Phase also concerns a R.O.V., except this time with additional functionality that
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enable its use in unknown (unmapped) environments. Phase 2 includes all Phase 1 func-

tionality, and also incorporates the following additional requirements: R-5.3.1 (Perform

SLAM and Pose Estimation) and R-12.0 (Store Area Map).

The "Brasidas" Mk-2 will be fieldable in a reconnaissance role, to move into un-

known areas and gather intelligence for advancing units. It could go into areas where a

natural disaster (such as a flood, earthquake, or fire) makes the environment hazardous to

human operators. Viewed from a more military perspective, it makes an excellent "first

man in", luring out ambushes and triggering or detecting traps and minefields (exact ca-

pabilities will depend on installed payload options). If  armed (and armored!), it can even

engage enemy positions, providing heavy weapons support fire or simply forcing the en-

emy to reveal their precise positions (and thus be safely neutralized by accurate artillery or

mortar fire).

SLAM and map management require additional sensors and processing capabilities,

not demanded of  Phase 1, so implementation of  this Phase has impact on hardware de-

sign and integration as well. The full extend of  this Phase's potential capabilities is still

being researched, considered, and decided upon. A fully functional Phase 2 prototype is

estimated to require an extra 0.5-1 years after Phase 1 is complete.

§3. Phase 3: Autonomous Navigating Robot
This Phase is where some autonomy finally begins to be integrated in the prototype

functionality. This Phase includes all functionality of  Phase 2 (and by extension, Phase 1),

plus R-0.4 (All Autonomous Mode Functions Must Depend Only on Installed Capabili-

ties) and the rest of  R-5.0 (Operate Autonomously).

The major challenge of  this Phase is path planning, since it must provide realistic,

traversable paths in an outdoors environment. While the author is aware of  several algo-

rithms and methodologies out there that can solve the problem, only an attempted imple-

mentation will reveal what obstacles must really be overcome to make autonomous navi-

gation feasible.

Payload options may or may not receive additional autonomous functionality during
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this Phase; R-0.5 (Target Engagement Happens Only in Teleop Mode) still applies, but

this Phase intends for all payload operations to still be controlled remotely (so, for exam-

ple, the operator can traverse and elevate the gun turret, searching for potential targets,

while at the same time the robot moves towards its next waypoint on its own).

A fully functional Phase 3 prototype is estimated to require an extra 2-3 years once

Phase 2 is complete.

§4. Phase 4: Autonomous Target Tracking
This Phase is still considered far in the future. In concept, this Phase introduces

mostly new payload functionality, enabling the platform to autonomously identify targets,

and then track them, but not engage them.

"Identify" and "track" in this case refer to the specific payload used, and the same

goes for "target". A mine detection payload would have mines as "targets", and would

equate "identify" with spotting a mine, and "track" with putting its location on the map

for others to avoid. An S.A.R. (Search And Rescue) payload would have survivors or hu-

mans in danger as "targets", and would equate "identify" with spotting such and individ-

ual and deciding whether he does indeed need help, and "track" with passing the location

and status of  the individual to the rescue teams. An armament payload would have ene-

mies as "targets", and the terms "identify" and "track" here are pretty straightforward.

Development of  this Phase primarily consists of  evaluation and development or in-

tegration of  suitable pattern recognition and DSP algorithms. Since all such algorithms

are computationally intensive, development of  this Phase may necessitate replacement or

upgrade of  the currently installed computational infrastructure. The choice of  algorithms

will obviously be tailored to the sensors installed on each payload variant. A potential so-

lution is to improve the payload components, and leave the carrier vehicle as is.

Assuming Phase 3 is complete, development of  a Phase 4 prototype is estimated to

require an extra 2-4 years.
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CHAPTER 7 .
Interlude I

At this  point,  the most  important steps of  defining a system's specifications are

complete. The designers now know in great detail what the system needs to accomplish,

and how well. However, a few more words must be said, lest one continues reading fur -

ther under the impression that this has been a simple and straightforward process. De-

spite appearances, the readers should be assured that the case has, in fact, been quite the

opposite.

As was stated earlier, the design team has adopted a modified spiral development

model, and deviated from the strict DoD process by relying on scenarios and use cases to

determine  requirements  that  were  not  at  first  apparent.  This  revisiting  of  concepts,

though not stated explicitly,  has indeed happened many times during both the design

phases and the implementation phases. In fact, several of  the scenarios and use cases you

read are the final versions of  the system vision; for some, like the supervised autonomous

patrol scenario, the original idea was vastly different. A different idea sends the design

process down a different path, and produces different requirements. Sometimes, retracing

the design steps and changing direction is easy, but when the process has moved too far,

going back is hard, messy, and frustrating, and one is left with the feeling that this whole

process was nothing more than a waste of  time and effort. In such a case, typically one

just scraps the whole process and starts over, as retracing is too costly in terms of  the

time required. In addition, the whole process gets too error-prone when the revision must

be very extensive.

Other scenarios, pertaining to versions of  the system vision far in the future of  the

development process, that have not been presented here for the sake of  brevity, have

been revisited and revised time and again to such an extend that noone in the design team

remembers anymore what the original idea was. Revisions of  a concept mean that re-

quirements must be revised as well, thus many requirements also are presented in their fi-

nal versions. Some were revised as a result of  a change in the system vision, as mentioned
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in  the previous  paragraph.  However,  others  were dropped or introduced because the

hardware required to implement a desired functionality was never acquired, or what was

acquired had different specifications than expected, either better or worse. If  the case was

for the worse, it necessitated adapting to the reduced perfomance; if  it were for the bet-

ter, the temptation to take advantage of  the new functionality was, naturally, irresistible

(to what engineer is it not?).

Nevertheless, an effort has been attempted in this Part I, to present the require-

ments and proposed architectures of  the envisioned system, to the extend these were

shaped by the design team's experience acquired both during first designing the system,

and subsequently trying to implement the various designs. The system proposed at the

end of  Part I differs from the system that currently sits in one of  the ARTC's labs, which

may represent the product of  Phase 1, but is still not a finalized version of  that product.

What is also not obvious is that not every requirement presented in this Part was

conceived and specified at the beginning. Requirements were not just revised as the con-

cept  evolved  and  the  design  progressed;  they  were  also  introduced  when the  design

progress reached a point where the next stage of  the system vision became clear and con-

cise, and the design team could actually get down and design this next advancement of

the system, because concrete results could finally be produced. The main reason of  this

"in-medias-res" design and evaluation was the lack of  experience and knowledge on the

part of  the design team. Knowing that a planar scanning laser can allow SLAM and path

planning is one thing; knowing exactly what limitations and processing demands this solu-

tion has, is quite another. As the design team became more involved and acquainted our-

selves with the minutiae of  each prospective solution, it often became apparent that the

solution was, after all, not as suitable as it had appeared at first. When that happened, it

was time to go back to the drawing board and, well, rethink matters.

One last source of  requirement revisions was the simple fact that as the implemen-

tation progressed, it became apparent that they didn't represent the system functionality

in a realistic manner – in short, they represented design errors. Naturally, an error meant
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that it was time to go back to the drawing board yet again.

One such example is the use of  the motion application for video streaming. While

initially seeming suitable, and allowed a functional streaming solution to be developed in

but a day, motion proved to stream using TCP, and thus the video stream had very high

latency. The troublesome behavior worsened when the connection quality was dropping,

due to the increased number of  packet retransmission requests, magnifying the problem

of  controlling the platform to a level that was simply unacceptable.

Several such examples will be listed in Part II, when the actual implementation will

have been presented and the reader will  have a more complete picture of  the whole

process.
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Part II

Design and Implementation

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

77





ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

CHAPTER 8 .
Architecture Implementation

To save on development time, and produce results quickly, the development team

decided on using Python as the primary programming language. If  for some parts of  the

implementation Python proved inadequate,  it  is  always  possible  to fall  back to C++,

which interoperates very easily with Python and natively with Cython. Cython has not yet

been considered on a serious basis, mostly because there is a Python package out there

for virtually every need.

Python has proven very popular with robotics researchers and hobbyists [25], partic-

ularly since it is the de facto programming language for the Raspberry Pi single-board

computer [26]. Its abundance of  utility libraries, adequate execution speed, and low time

required to write something that runs have practically displaced all other languages, ex-

cept perhaps the ever-powerful C++. The fact that Python is written in C, and can inter-

face with routines written in C very easily and very efficiently only means that Python will

continue to rise in popularity. It therefore makes sense to base development of  "Brasidas"

on a language that will not become obsolete anytime soon.

§1. Common Architecture Elements

1.1. Operating System
On this matter, Linux was the only practical choice, since it is the only open-source

OS with sufficient support and development to actually be usable. Of  all Linux distribu-

tions, Debian and its derivatives (mainly Ubuntu) are the most popular and afford the

greatest software availability. This choice was also restrained somewhat by the hardware

specifications, as it had to be an OS that was supported by the Raspberry Pi computer

boards that would be used for the platform and Control Station, as shown on Figure 8.1:

Physical (Hardware) Architecture (taken from P. Katselis' thesis, and used with permis-

sion). The RPi Foundation provides Raspbian, a Debian-variant that suits the project's

needs just fine. Raspbian has up-to-date repositories that include full driver support for
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the hardware, including several – very convenient – packages that take advantage of  the

RPi's specific hardware capabilities. "Brasidas" initially ran the earlier Raspbian Wheezy

distribution, it now runs the latest Raspbian Jessie.

1.2. The IPC Module
With the programming language and OS choices figured out, the most important

piece of  software to determine was the IPC module. Both the platform and Control Sta-

tion software require it, so it made sense to use the same toolkit for both. In fact, this not

only streamlined the code between the two, it also greatly simplified signaling. According

to Figure 5.1: Carrier Vehicle Architecture and Figure 5.3: The Control Station Architec-

ture, signaling is handled right after the network stack, and dumps most of  its output into

the IPC bus, so essentially one signaling module is talking directly to another. In addition

to making the tranfer of  signals easy, this permits direct transfer of  data blocks, both

structured and otherwise, by simply implementing a serialization/deserialization protocol

alongside signaling. The transferred data would simply be grabbed off  one IPC bus, be

serialized, transported over the network, be deserialized, and injected directly into the IPC

on the other side, available for process by any node that is interested.

As it turns out, there is just one such toolkit, and it's tailored for robotic applica -

tions; it is called R.O.S. (Robot Operating System - [27]). Which is a good thing, because

having to write an IPC framework would constitute a thesis of  its own. And ROS of

course comes with full C++ and Python bindings. ROS is extremely popular among ro-

botics researchers, and several books outlining its use have been published [28], [29]+[30].

The core philosophy of  ROS is an IPC architecture relying on the concept of  topics

and messages. A topic is a channel through which data are transported in the form of

messages. Each topic handles a specific message format, and messages can be user-de-

fined. Each message is basically a data structure (similar to C's struct). A central server

process (roscore) manages the topics. Multiple processes can register with roscore and

gain access to one or more topics as either subscribers (receiving messages posted on the
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topic), or publishers (putting messages in a topic). The important feature is that when a

message is posted in a topic, all subscribers registered into it will receive a copy of  the

message, as soon as it is posted. This is achieved via callback functions. Each process that

registers to receive messages on a topic specifies a function (part of  the process code) to

be called when a message arrives; the message is then passed to this function as an argu-

ment. A process registered with ROS is called a 'node'. A fully-detailed tutorial on pub-

lishing and subscribing to ROS topics using Python is available on the ROS site1.

Messages can be all sizes and formats (the developer can define their own message

format to suit their needs), and the whole message transfering process is done in memory,

so it is as fast as it gets. The shared access nature of  topics makes ROS an ideal choice for

the IPC Bus module of  both the platform and Control Station proposed architectures. It

can even be used to transport continuous data (i.e. for streaming), however it should be

pointed out that the topic transport mechanism uses TCP, and TCP can introduce delays

in the transport even on localhost configurations (see e.g. [31]).

ROS features an entire ecology of  robotics software packages, most of  them by

third parties. These packages are implementations of  various robotics-related algorithms

and architectures,  interfaces to hardware devices,  visualization tools,  etc.  For example,

there are packages that act as interfaces to GPS devices, reading in the data from the GPS

and posting it in appropriate topics, packages that implement SLAM or even a full-fea-

tured navigation stack (intended for the developer's sensor suite, though), robotic arm

manipulation, etc.

In fact, ROS even works in a distributed configuration, where individual nodes can

run on different machines connected to the same network, however there is a little catch:

there can be only a single  roscore instance running on the network. The distributed

nodes feature would solve the signaling implementation across the entire network in an

ideal manner, since signaling would reduce to a pre-defined set of  topics shared among all

nodes. However the network architecture rejects any form of  centralized control on the

basis of  it being a "single point of  failure", so this ROS functionality cannot be used over

the entire network. But it can be of  use locally on each node (platform or Control Sta-

1 http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
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tion), as will be explained in the respective implementation chapters. A different way for

nodes to communicate over the network must then be employed.

Using ROS for interprocess communication, and implementing distinct functionality

sets as separate Python modules also has the advantage of  effectively bypassing Python's

Global  Interpreter  Lock  (GIL),  which would  otherwise  render  even a  single-process,

multi-threaded approach unattainable (the subprocess-based multiprocessing module

does not permit easy access to shared resources like the threading module does).

§2. Hardware Specifications
Figure 8.1: Physical (Hardware) Architecture shows the system's hardware architec-

ture; it is taken from Cpt. (AA) Katselis' thesis and used with permission. The system's

modularity is obvious.

Here, a short set of  hardware specifications will be provided, only to the extend that

it relates to the developed software. These are as follows:

Table 8.1: System Specifications
Carrier Vehicle

System Core: Raspberry Pi 3 Model B

CPU: 1.2 GHz Quad-core ARMv8 Cortex A-53 (32/64 bits)

RAM: 1 GB LPDDR2 at 900 MHz

GPU: 300 MHz (3D part)/400 MHz (video part) Videocore-IV
Supports GLES 2.0.
MPEG-2 and VC-1 (with license), 1080p60 H.264/MPEG-4 AVC high-profile decoder
and encoder.

Network: RJ-45 port (10/100 Mbps 100BASE-TX auto-negotiation)
802.11n wireless
Bluetooth 4.1

USB: 4×USB 2.0

GPIO: 40-pin header with I2C, I2S, UART, SPI, and GPIO interfaces.

NavCam: Creative Livecam VFO470 (webcam)

Interface: USB 2.0

Video Format: 640×480@30 fps, video encoded as either MJPEG or I420

GPS: UBlox NEO-6M

Interface: TTL UART

Sentence Format: NMEA-0183

IMU: MPU-6050

Interface: I2C
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Table 8.1: System Specifications
Accelerometer Range: ±2/4/8/16 g

Gyro Range: ±250/500/1,000/2,000 degrees per second

Wireless Link: Ubiquiti Bullet M2

RF Power: 28 dBm TX

LAN ports: 1×RJ-45 10/100 Mbps LAN port

Motor Controller: Roboteq AX-3500

Interface: RS-232 (9600 bps, 7E1)

Ethernet Switch: 3Com 8-port 10/100 Mbps

Control Station
Telemetry &

Video Processor:
Raspberry Pi 2 Model B

CPU: 800 MHz Quad-core ARMv7 Cortex A-7 (32 bits)

RAM: 1 GB LPDDR2 at 900 MHz

GPU: 250 MHz Videocore-IV
Supports GLES2.0.
MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-profile decoder
and encoder.

Network: RJ-45 port (10/100 Mbps 100BASE-TX full-duplex, auto-negotiation)

USB: 4×USB 2.0

GPIO: 40-pin header with I2C, I2S, UART, SPI, and GPIO interfaces.

Human-Computer
Interface:

Touch-screen Display

Diagonal: 10.1"

Resolution: 1366×768

Interface: HDMI (video) + USB (touch sensor)

Input: Capacitive touch sensor

Teleop Console: Logitech Gamepad F310

Interface: USB

Wireless Link: Ubiquiti Bullet M2

RF Power: 28 dBm TX

LAN ports: 1×RJ-45 10/100 Mbps LAN port

As has been mentioned repeatedly, the payload does not have a fixed hardware con-

figuration.
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Figure 8.1: Physical (Hardware) Architecture
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CHAPTER 9 .
The Network Infrastructure

As was stated in Chapter 5.1: The Network Architecture, the network is very basic;

there are two nodes in a trivial mesh configuration.

Following constraint R-0.3, the only enterprise-grade link hardware that was made

available are a pair of  Ubiquiti Bullet M2s. These are civilian, enterprise-grade WiFi trans-

ceivers, so again there is little choice on the matter. They are currently configured in mesh

mode, and both routers have been flashed with the AREDN™ mesh-enabled OpenWRT

distribution [32].

The network in this configuration uses static addresses in the 10.x.x.x range for the

mesh nodes (i.e. the mesh wireless interfaces of  the routers), and relies on dynamic ad-

dressing (DHCP server is enabled) over a predetermined, different subnet, for the devices

connected locally to each node. The way the onboard systems are currently linked, every

subsystem connected to the Communications Grid (i.e. the onboard Ethernet) is directly

visible to the Control Station or any other computer joining the network. This is not what

is intended, but for the time being, it permits the system to also access the Internet (using

a gateway that connects to the network's AP), allowing system updates of  the RPi and

software package downloads to be implemented as and when needed. Obviously, when

the system will be assembled as a production prototype, this arrangement will most likely

have to change, although this may depend on the exact network configuration used.

To generalize the discussion a bit and refer to other solutions examined, the real deal

about 802.11 is that unless one adopts a sub-GHz implementation, it really is basically an

obstacle-free LOS communications option. Ubiquiti's NanoStation M9 is one rather pop-

ular option for the 900 MHz band. But the 900 MHz band is not so ideal either, despite

such signals seemingly having a longer range than the 2.4 GHz band. The problem is the

900 MHz band (902-928 MHz) is ham radio territory, and as such, the RF interference is

worse than even in the 2.4 GHz WiFi band.

Promising upcoming options are 802.22 [33] and 802.11af  [34], which take advan-
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tage of  "white spaces" in the TV channel frequencies (54-790 MHz), using the bandwidth

leftover after the transition from analog TV to digital broadcasting. Both standards prom-

ise data rates of  the order of  tens of  Mbps, over distances of  more than 1 Km, and in

the case of  802.22 several tens of  Km (LOS) – naturally, these advertised ranges imply di-

rectional antennas. However, given the transmission properties of  these frequencies, even

NLOS links would function well over the 1-Km limit of  "Brasidas"'s R-6.0. No commer-

cial products implementing these protocols have been released as of  yet (April 2017), and

in addition, according to the initial draft standard specifications, mesh (ad-hoc) mode is

not to be supported.

Even sub-GHz solutions remain LOS-dependent, although as the ferquencies get

lower,  obstacle  tolerance  increases.  However,  without  delving  into  specifics,  a  NLOS

communications link typically requires rather low frequencies to efficiently bypass obsta-

cles (a typical limit is less than 160 MHz, depending on range and nature of  obstacles),

and the data rates that can be achieved at such low-frequency bands are also low. A cus-

tom, from-scratch design might be able to squeeze a couple Mbps at a 50-MHz band, but

that's about as good as it could get, and it violates R-0.2 (use COTS components). In ad-

dition, to achieve such a data rate at this band would require higher-order modulations,

which are typically less resistance to interference and jamming.

Note that at frequencies above approximately 30 MHz, the link cannot extend over

the horizon (as there is no ionospheric refraction or ground wave propagation), but can

still go through many kinds of  obstacles. The downside to using lower frequencies is that

the antenna gets progressively bigger.

Any WiFi-based (IEEE 802.11) solution can be made to satisfy all the requirements

of  Table 5.1: Network Requirements, as long as there is no inclusion of  a requirement for

jam resistance. Consumer-grade 802.11 solutions do not satisfy the range requirement,

however there are enterprise-grade products with more powerful transmitters that can

easily reach the distance of  R-6.0 (e.g. Ubiquiti's line of  AirMAX stations and TP-Link's

line of  MAXtream-based stations). In fact, there are some very nice 802.11 solutions out
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there that far exceed the specifications of  Table 5.1: Network Requirements.

The typical problem encountered with enterprise-grade equipment is that it is de-

signed for infrastructure installations, and thus most such models do not support mesh

topologies. Furthermore, the consumer need that spurred development of  these devices

is  for long-range  static point-to-point  links (to provide Internet  to hard-to-reach loca-

tions), thus the range they advertise is often measured using directional antennas. "Brasi-

das" is a mobile system, so omnidirectional antennas are required, and one can quickly

understand how max range diminishes when comparing a good 9-dBi omni antenna to a

directional 24-dBi one; 15 dBi of  difference translates into an approximate 1/6th of  ad-

vertised maximum range, and that's still under a LOS assumption. Of  course, when cer-

tain products have an advertised maximum range of  15 Km+, they can satisfy R-0.6 suffi-

ciently even at 1/6th of  that range.

One solution to the mesh mode availability, applying to most Ubiquiti and certain

TP-Link products, is to flash them with custom firmware. Specifically, a mesh-enabled

version of  OpenWRT [35]. This is one option that the development team intends to ex-

plore further in the future, as each of  the candidate products has a steep cost of  the or-

der of  60+ €, not including additional peripherals, such as antennas, cables, etc. Mesh-en-

abled OpenWRT distributions include HSMM-MESH™1 ([36]) and AREDN™1 ([32]),

both products of  ARRL member groups. Right now the AREDN™ distribution is used,

however due to FCC regulations, no access control is enabled in the distribution (i.e. no

WPA), so further research is needed to determine how to implement mesh using either

the base OpenWRT image for the routers, or alternatively another distribution (like the

related DD-WRT [37]).

Perhaps the most suitable, easier-to-acquire fully military-standards-complying solu-

tion in this matter, given the company's proximity (to Hellas in general, not just to the

Military Academy of  Athens), is Intracom Defense Electronics' WiWAN system. But this

assessment is based only on the limited information provided on the company website's

product page2, which simply mentions "high data rate" without giving any numerical de-

1 Why on earth would someone trademark an open-source product anyway?
2 https://www.intracomdefense.com/post/410

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

89

https://www.intracomdefense.com/post/410


DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

tails; however it does mention that it is intended to interconnect brigade command eche-

lons with battalion and company ones, so given the expected distance between these ech-

elons during typical operations, it is safe to assume its effective range is over 1 Km. Oth-

erwise, similar military-grade solutions are available from a multitude of  defense indus-

tries (e.g. MeshDynamics1). Such solutions come at the expected price of  course, each ap-

proaching a typical household's yearly revenue.

Back to the current implementation, WiFi is a thoroughly-tested, well-understood

technology, and works fine for the time being. The RF power of  the M2s (28 dBm) satis -

fies R-6.0 more than sufficiently; in fact, over open ground, the link theoretically has a

range of  several Km (LOS), even when using omnis. Since this configuration serves the

project for the time being, no additional options have been tested. Thus, while the issue

of  Control Station – platform communication is settled for now, several issues still re-

main unresolved.

According to the specifications (R-16.0), the platform needs to broadcast its adver-

tisement packets, and the Control Station needs to be able to receive those advertisement

packets. However, both computers sit behind their corresponding routers, and routers

break broadcast domains. After several (failed) efforts to configure the firewalls to allow

broadcast packets through, in the end the design team settled for using  socat on the

OpenWRT  routers.  Specifically,  a  socat instance  is  run  at  startup  (via  an  entry  in

/etc/rc.local). For the Control Station router, socat forwards broadcast packets re-

ceived on port 21000 at the external network interface to the LAN, while for the platform

router, socat forwards broadcast packets originating on port 21000 of  the internal LAN

to the external network. The details are provided in ANNEX B at the end of  this work.

1 http://meshdynamics.com
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CHAPTER 10 .
The Platform Configuration

The chassis was provided by the ARTC (remember constraint R-0.3), and included a

motor controller. An RS-232 interface permits communication with the controller. Thus,

from a functional and software point of  view, the system needs to adhere to the con-

troller's RS-232 command protocol.

A demonstration payload was developed, consisting of  a turret with a paintgun and

an AXIS Q1910-E thermal IP camera. The camera was again provided by the ARTC. The

turret is rotated by servos controlled via an Arduino, and communicates over Bluetooth,

in direct violation of  the current payload proposed architecture, but this demonstration

payload is still under development.

Each module box shown on Figure 5.1: Carrier Vehicle Architecture is implemented

in code as a separate Python module. Virtually all of  the modules are registered as ROS

nodes as well, and use ROS to communicate among themselves. The software stack on

the platform is started by a single command, using ROS's  roslaunch process, which

reads in an XML-formatted file and launches one by one all applications listed therein (be

they ROS nodes or not!).  As part of  the same procedure, a configuration file is  also

loaded automatically. This configuration file contains platform-specific parameters, such

as the node name of  the UART port to which the motor controller is connected, or the

network port used to stream the NavCam video feed. This permits the code to be porta-

ble to other platforms, simply by changing the appropriate parameters. The process stack

launch procedure at the moment requires the operator to login manually via ssh and is-

sue the roslaunch command, but efforts are underway to implement it as a linux ser-

vice, enabling the software to start automatically at system boot.

§1. Signaling and the Common Protocol
Signaling has until now been specified completely abstractly, and has been presented

as functionality that is separate from the Common Protocol. In general, this assumption
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holds; however, in the current Phase's implementation the two functional sets are inter-

twined, although this is not cast in stone, and could be revised in a future Phase (highly

unlikely though).

From a network developer's point of  view, the Common Protocol is nothing more

than an application receiving requests and sending responses over the network. The first

request received is usually from a remote Control Station attempting to establish a con-

nection, and subsequent requests involve exchange of  the platform's specific parameters.

Thus, the Common Protocol module is nothing more than a network server, listening for

incoming (request) connections on a specific port, then servicing each request over a sep-

arate connection (and port). All that remains is to define the request and response for -

mats.

However, the issue can be viewed from a different perspective. The Common Proto-

col can be considered as two objects of  the same application that exchange information

by each calling (some of) the other's methods. Extending this view to include the network

element results in the RPC (Remote Procedure Call) paradigm. Implementing the Com-

mon Protocol as a set of  RPC interfaces will greatly speed development, as there will be

no need to write tedious transport-layer code, and instead approach the solution from a

high-level point of  view, encapsulating functionality parts in self-contained function calls.

Python has Pyro4 (see [38]), a pure-Python package that can wrap a Python object

and expose its interface to the network. Although Pyro4 follows the RPC paradigm, its

overall approach is in fact more similar to Java's object-oriented RMI, and is perfectly

92 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

import Pyro4

@Pyro4.expose
class Exposable(object):
    def method1(self, param1):
        return "Received {0}.".format(param1)

daemon = Pyro4.Daemon()                # make a Pyro daemon
uri = daemon.register(Exposable)       # register the Exposable class as a Pyro object

print("Ready. Object uri =", uri)      # print the uri assigned to the daemon
daemon.requestLoop()

Listing 1: Pyro4 sample daemon code
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suitable for use in modern, object-oriented applications.

The only downside to Pyro4, which is really only a minor inconvenience, is that ob-

jects exposed to the network need to be registered with the Pyro nameserver, in order for

another computer to be able to discover them and call upon their methods. However, if

the remote process has somehow acquired the uri of  an exposed object, it can refer to it

and call its methods without the need for a nameserver. Thus, the Pyro4 uri of  a plat-

form's Common Protocol class is transmitted as part of  the advertisement packet.

Listing 1: Pyro4 sample daemon code (taken from Pyro4's online documentation)

shows how quick  and simple  it  is  to expose the interface of  a  class  to the network.

Pyro4's Daemon class wraps the exposable class and does all the work. Note that it is pos-

sible to expose a class, or an already instantiated object; in the first case, Pyro will create

an instance of  the class when a remote request arrives. Each approach (expose class or

object instance) has its merits and flaws.

Listing 2: Pyro4 sample proxy code shows how simply and elegantly a remote client

can use the exposed object of  Listing 1. The approach and implementation follows the

Proxy design pattern. The client does not even need to include the file specifying the ex-

posable object's method signature.

Pyro also includes additional options that determine, among others, how multiple re-

mote requests are handled. Possible options include delegating all requests to a single in-

stance of  the exposed class or creating multiple instances, and processing one request at a

time or using a thread pool to concurrently access the exposed methods.

Since Pyro uses a very convenient URI string, the advertisement module needs to do

nothing more but broadcast the platform's URI (and a few extra pieces of  information)

to the network using UDP, while a Control Station can just receive these broadcasts and

built its own list of  platforms online. This will also permit keeping the platform list up-
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import Pyro4

expo = Pyro4.Proxy(uri) # get a Pyro proxy to the Exposable object
expo.method1("test")   # call method normally

Listing 2: Pyro4 sample proxy code
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dated.

This rather mundane initial setup might seem somewhat complicated, and was ini-

tially intended to permit sending just the MOVRD signal coming from the Command

Station, via ROS to the other onboard modules. However, after some deliberation, it in-

spired the design team to use it to good advantage in implementing signaling, which until

that point was considered under a different context. The signaling process will be ex-

plained below.

1.1. The Virtual Functional Remote Interface (VFRI)
The Pyro4 library  handles  all  the server/connection/data  (de)serialization issues,

leaving the developer free to focus on the problem at hand: in this case, the Common

Protocol implementation itself,  which consists  of  a ROS node that exposes a Virtual

Functional Remote Interface (VFRI) Python object to the network. This object is detailed

below.

The vfri includes all those methods needed to pass or receive platform-specific pa-

rameters with a connected Control Station. In addition, the  vfri is subscribed to the

onboard ROS IPC Bus, and thus can relay information received over it to the rest of  the

onboard modules.

Listing 3: The "Brasidas" VFRI Docstring shows the Python docstring for the vfri.

In it can be seen the various methods currently implemented as part of  the Common

Protocol.  Of  these,  the  most  important  method  is  issue_system_command.  This

method alone implements  the signaling mechanism.  Its  parameters and usage are  ex-

plained below, in the section titled Commands and Command Codes.

The other  vfri methods are  pretty  self-explanatory.  set_manual_override is

used to toggle  the MOVRD of  the robot;  this  method returns  a  boolean,  indicating

whether MOVRD was changed successfully (True) or not (False). This sort of  feedback is

required on the Control Station to enable or disable certain status panel indicators and

control options. The three get_* methods are used to retrieve platform-specific parame-
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ters, as is demanded in the Common Protocol requirements; the dictionary returned by

get_nav_camera_parameters,  for example,  contains four entries,  with keys 'width',

'height', 'cam_ip', and 'cam_port'. 'width' and 'height' specify the dimensions (resolution)

of  the camera feed, and are needed by the Control Station to properly resize the window

of  the Stream Display Module (cf.  Figure 5.3: The Control Station Architecture), while

'cam_ip'  and  'cam_port'  contain  the  IP  and  port  respectively  of  the  NavCam video

stream sent over the network, so the Control Station knows where to expect to receive

the video of  the platform it has connected to.

The implementation is still in a transitional state, and several of  the methods shown

in  Listing  3,  will  be  removed  eventually,  in  particular  get_telemetry_report,

set_lights, and set_pos_lights,  as they violate the new Common Protocol specifi-

cation. These methods where part of  earlier code versions, when signaling was still con-

sidered only theoretically and in a piecemeal fashion. Another method,  set_velocity

(now removed and replaced) was called by the Control Station several times per second to

transmit  velocity  commands,  and  was  very  inefficient  and  laggy,  since  Pyro4's  proxy
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@pyro.expose
class VFRI(object):
  """ Vrasidas Function Remote Interface

  Sole class that acts as a 'public' interface to Vrasidas
  (follows the 'Facade' design pattern).
  The class features methods which expose certain functions
  of the Vrasidas ROS-based software architecture so they can
  be accessed remotely.
  Pyro4 (PYthon Remote Objects v.4.0) serves as the remote
  access bridge (follows the 'Proxy' design pattern).
  Supports the following methods:

  issue_system_command(cmd_group, cmd_id, cmd_params) : sends a generic system command
   (signaling)

  set_manual_override(engaged)              : engages or disengages Manual Override
(MOVRD)

  get_nav_camera_parameters()               : returns a dictionary with the navCamera's
parameters

  get_telemetry_report()                    : returns a dictionary containing current
telemetry values.

  get_velocity_connection_info()            : returns a tuple (host, port), indicating
where to send velocity commands

  set_lights(state)                         : turns the main lights on (state=True) or off
(state=False)

  set_pos_lights(state)                     : turns the positional lights on (state=True)
or off (state=False)

  """

Listing 3: The "Brasidas" VFRI Docstring



DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

mechanism relies on TCP. get_telemetry_report is also called a few times per second

(fewer than set_velocity) to retrieve the current telemetry values. This 'pull' approach

will be replaced by a stream-based 'push' one on the platform's side.

Currently, as per the data stream specification, all continuous data transfers must be

implemented as data streams. Thus, an attempt is underway to re-implement the function-

ality of  get_telemetry_report using data stream mechanics, which will be as simple

as  sending  UDP  datagrams  to  predetermined  address/port  pairs.  set_velocity is

rather easy, as the data required to be sent every time is small and already determined, and

has already been implemented as a UDP stream. get_telemetry_report is more diffi-

cult, as the size of  the telemetry dictionary is as of  yet not finalized, and likely to eventu-

ally grow rather large. The tasks performed by set_lights and set_pos_lights have

already been included in signaling, as are listed below, and the methods are obsolete and

not really called anymore. They will  be removed along with the others when the data

streams for velocity and telemetry are complete.

1.2. Commands and Command Codes
The single  issue_system_command method of  the  vfri object, in combination

with a ROS topic, can handle all the signaling required. This method will simply accept a

signal structure, and inject it into a specific ROS topic, to which every onboard module

subscribes and monitors. Each module can then examine the injected signal, and decide if

it wants to act on it. This approach closely mimics the MPI concept (see [39]), but imple-

ments only the functionality desired in a lean, simple fashion, and avoids having to import

an additional dependency which would include a lot more code that would be used.

Signaling thus is implemented in two layers. The top layer, which is the Signal Specifi-

cation Layer, defines the signals that can be sent to the platform. Signals are called com-

mands, and are organized in groups. Each group has a (numeric) Group ID, and each

command within the group has a Command ID; Command IDs are unique within the

same group, but not necessarily so across groups. Each command can possibly have pa-
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rameters or arguments (its 'payload'), and all payload options are passed along as a single

string of  comma-separated '<key>=<value>' pairs. This is basically a trivial implementa-

tion of  the Command design pattern. Part of  the current (not yet complete) list of  sup-

ported system commands is shown on Table 10.1: "Brasidas" Command Codes.

With respect to the entries on the table, Group 10 contains the primary system con-

trol and configuration commands, while Group 20 contains telemetry control commands.

An additional 11 groups (100-110) are reserved for payload-specific commands, and will

be defined as part of  each payload's specification.

Table 10.1: "Brasidas" Command Codes
Group ID Command ID Description Payload Options

10 0 Manual Override (MOVRD) "True" or "False"

10 1 Enable (start) all PiGstPLBase streams Host address

10 2 Disable (stop) all PiGstPLBase streams Ignored

10 3 Pause all PiGstPLBase streams, resume with 'start'
command(10.1)

Ignored

10 5 Change framerate of specified PiGstPLBase video
stream.

"<stream_name (string)> =
<new_framerate (int)>"

10 6 Turn main lights on or off. "ON" or "OFF"

10 7 Turn positional lights on or off. "ON" or "OFF"

20 0 Enable diagnostics report generation "True" or "False"

20 4 Enable monitor of Primary (motor) battery voltage "True" or "False"

100-110 ALL Payload-specific commands
(11  groups  are  provided  to  allow  to  group
together  in  distinct  sets,  payload  commands
corresponding  to  different  components  of  the
payload).

Varies

PiGstPLBase is a base class that manages a Gstreamer pipeline; more on the use of

Gstreamer below. As is obvious from the table, commands 10.6 and 10.7 implement the

functionality of  vfri's  set_lights and  set_pos_lights methods.  Internally,  both

these methods, as well as  set_manual_override,  just call  issue_system_command

with appropriately formatted arguments.

The important feature is that the signaling mechanism does not need to know the

innerworkings of  each command; as long as the payload is delivered, a recipient module

that knows how to handle the command will know how to parse the payload string.

The  lower  signaling  layer,  the  Signal  Transport  Layer,  takes  advantage  of  the

Pyro4/ROS combination. It consists of  the aforementioned vfri method and a prede-

termined ROS topic.  The  vfri.issue_system_command method receives  the three
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command parameters (Group ID, Command ID, Payload) from the remote Command

Station, then formats them into a custom ROS message called SysCmd, written by the de-

sign team for this purpose, and publishes the message into a (platform-local) ROS topic. 

The topic is named '/System_Com-

mands',  and all  modules running on the

platform are  subscribed  to  it.  Thus,  the

signal gets propagated quickly and seam-

lessly across all platform modules, and the

module responsible for handling it can do

so.  Under  this  approach,  even  the

MOVRD is implemented as a signal com-

mand. This process is depicted on Figure

10.1: The Signaling Procedure.

Despite  the  signaling  specification

requiring that a response be possible to be

returned to the signal originator, the current implementation adopts a middle ground.

Those commands for which a response is necessary (such as whether the MOVRD was

successfully engaged or not), are implemented as separate methods of  the vfri (e.g. the

set_manual_override method).  The  rest  of  the  command  options,  are  handled

through the single, generic issue_system_command method. The effect of  these com-

mands can be determined by examining the appropriate fields in the telemetry informa-

tion that is periodically streamed back to the Control Station. This current signaling im-

plementation is considered very elegant and handy, and is unlikely to be revised in future

Phases; effort will be made instead to keep the number of  commands that demand an

immediate response – hence requiring a separate  vfri method to be implemented for

each – to a minimum.

In effect, each module running on the platform follows in a limited fashion the Fi-

nite State Machine pattern; when a command is received via the '/System_Commands'
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topic, the module may change its behavior to match that imposed by the command. How-

ever, for many modules, this state change is rather trivial, and usually is implemented in a

straightforward manner, without complicated State class implementations and the like.

For example, when the Control Station sends a 10.6."ON" command (turn on the main

lights), the module responsible simply sends an appropriate request over the RS-232 to

the motor controller (in hardware, the lights are controlled by the controller as well)

An identical structure is implemented on the Control Station, but there it is used to

disseminate notifications, as well as commands. This will be explained in the Control Sta-

tion chapter that follows.

§2. The Transmission Interface Module
In order to move the robot, the motor controller needs to receive velocity com-

mands. Since the motor controller is connected to the RPi over a serial connection, care

must be taken to control access to the connection, since it cannot by definition handle

multiple simultaneous requests.  The module that handles all  this is  the Virtual Motor

Controller Interface, or  vmci. The use of  the term 'motor controller' instead of  'trans-

mission' dates back to the early development phases, when the more abstract hardware ar-

chitecture was not yet established. Back then (early fall of  2015), the major focus of  de-

velopment was how to communicate motor commands to the controller, since the thing

has a rather archaic serial protocol.

2.1. The Motor Controller RS-232 Command Protocol
The motor controller accepts motor velocity commands in different modes, depend-

ing on whether wheel encoders (or any other form of  wheel speed measurement) are

connected to it or not. For teleoperation, encoder information is superfluous (the opera-

tor can adequately judge the velocity from the navigational camera's feed and the rest of

the telemetry),  so we adopt the mixed-mode,  open-loop speed control  mode.  In this

mode, velocity commands are given as a linear component along the x-axis (forward/re-
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verse) and an angular component around z-axis (turn left/right)1, with the magnitude in-

dicated by integer values ranging from 0x00 to 0x7F (in hex). For the same velocity value,

a different command prefix denotes the forward or reverse direction. The controller can

also accept velocity commands in non-differential (absolute) format, with one linear ve-

locity component for the wheels on each vehicle side.

The  motor  controller's  RS-232  protocol  supports  additional  functionality  in  the

form of  various kinds of  telemetry queries and control commands, including but not lim-

ited to, battery voltage monitoring, motor current monitoring, control of  up to eight RC-

signal-conformant servos, and an auxiliary power output. Some of  these functions can

and will be integrated into the system as implementation proceeds from one Phase to the

next.

All commands (except a few specific exceptions) are prefixed with either a com-

bined '!' and alphanumeric one-letter symbol that identifies the command, or a or a '^',

followed immediately by the command parameters. Any numeric values (such as e.g. a

speed value) must be given in hex, and all numeric values are limited to one-byte range (0-

255), which is always given as a two-character hex value (e.g. 5 = 05, 111 = 6F, etc.). the

responses are likewise scaled to the same range. Of  the two kinds of  commands, the '!X'

ones are run-time commands, while the '^' commands are used to change the controller's

configuration parameters stored in its flash memory, such as the motor control mode or

ampere limit to the motors. All commands must be followed by a carriage return

character (\r) in order to be accepted by the controller.

In mixed-mode speed control, speed commands in particular use the '!A' prefix for

the x-axis forward component and '!a' for the reverse. Likewise, the z-axis command uses

the '!B' prefix to steer left, and the '!b' to steer right. The x-axis sign was specified in the

controller's manual, but the relation between the z-axis prefix and the direction of  rota-

tion was not specified in the manual, and the design team had to figure it out using estab-

lished scientific methodology – that is, through trial and (mostly) through error.

The controller's RS-232 interface is factory-configured at 9600 bps, 7 data bits, even

1 For coordinate conventions in ROS see http://www.ros.org/reps/rep-0103.html
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parity, 1 stop bit (9600 7E1 for short). These are fixed settings that cannot be changed.

When the motor controller receives a command from the serial port, it echoes back the

command string, then sends back a response, indicating whether the command was re-

ceived and executed successfully or not.

2.2. The Virtual Motor Controller Interface
To establish effective communication with the motor controller, in an abstract man-

ner according to the architecture's hardware abstraction requirements, the vmci is written

as a ROS node that manages the serial port and performs no other task. In true object-

oriented form, the  vmci's main code is contained in a Python class, with module-level

code handling the initialization tasks.

To communicate with the serial port, the vmci makes use of  the pyserial library

(python-serial package), which simplifies serial access in Python to a single line of

code, as opposed to the 50+ lines (and termio structures) required in C/C++. Since on

linux the serial port is line-buffered, each command must be followed by a newline char-

acter (\n) in order to be immediately transmitted. This is in addition to the  carriage

return required by the controller's protocol.

The  vmci's main class is also subscribed to several ROS topics. Of  these, '/Sys-

tem_Commands' is used to receive signaling; the vmci currently responds only to the 10.0

(MOVRD) and 20.4 (enable/disable primary battery voltage monitor) commands.

ROS conventions demand that motor commands be published in a topic named

'cmd_vel'. Note that this need not be a top-level topic (no '/' prefix). Thus, and since R-

5.1 (Autonomous Mode Must be the Default Operating Mode) applies, the  vmci sub-

scribes initially to this topic, so it can receive speed commands from the Autonomous

Navigation module. However, when a MOVRD engage is received via signaling, the vmci

switches its subscription over to the 'Teleop_Vel_Cmds'  topic, which contains speed

commands received from the Control Station in Teleop Mode. Likewise, when MOVRD

is disengaged, the vmci switches back to the 'cmd_vel' topic.

Since speed commands can arrive on the topic at any rate, and the callback used to
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handle each topic message runs on a separate thread, it is possible that the vmci might

end up trying to write to the serial port before a previous write operation is finished.

Thus, a lock (via the threading library) is used to prevent simultaneous writes. This syn-

chronization primitive is well-known and will not be detailed here further.

The vmci also has the capability to query the controller for certain telemetry values.

The controller can report on the battery voltage, the temperature of  its MOSFET-based

dual H-bridges, and the state of  several analog and digital inputs available on the con-

troller board. When these values are retrieved by the vmci, they can be injected into an

appropriate ROS topic, so along with others they can be compiled by another node into a

telemetry report that can be streamed back to the Control Station. This functionality has

not yet been implemented, but it is part of  Phase I development, so it will be worked

upon in the immediate future.

As a module that directly interfaces with the hardware, the vmci would be one of

the modules that would have to be re-written or replaced if  "Brasidas" would ever be in-

stalled on a different platform with a different motor controller (or Transmission subsys-

tem technology in general).

§3. The NavCam Streaming Interface
The Virtual NavCam Streaming Interface (VNCSI) module is one of  the modules

that implement the new data streaming architecture. The streaming of  the NavCam video

feed in particular, is a common element on all platforms regardless of  payload. Video

streaming, due to its high bandwidth and CPU requirements (for encoding/decoding), as

well as analog information nature, is the most complex form of  data streaming. Other

data streams, such as the telemetry report stream or the velocity commands stream (the

latter is incoming to the platform from the Control Station) may require exact bit delivery

to be meaningful, but have much lower bandwidth and processing requirements.
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3.1. The motion-based Implementation
The previous version of  this module was implemented on top of  motion, a free

open-source streaming server program intended for surveillance applications  [40].  mo-

tion is an excellent application, and can be configured for all kinds of  environments and

client needs, but its use was a quick and dirty solution, for while it was implemented in

but a day, it had significant shortcomings.

For one, the motion process ran separate from its controlling node, and has no no-

tion of  ROS, so this essentially meant that a process integral to "Brasidas" ran without

being directly connected to the IPC Bus. The way to control  motion was through a

RESTful HTTP api, so the controlling node basically used the requests python package

[41] to communicate commands to motion, while itself  being connected to ROS.

The worst problem with motion was that it streamed video using software encoding

as MJPEG. This method takes up significant bandwidth and CPU, and with unacceptable

latency. As an example, during the system testing with motion, a 640×480@30fps video

required almost 5 Mbps of  bandwidth, a 65%+ utilization of  one of  the RPi 2B's cores

(before it was uprgaded to a RPi 3B), and the video latency never managed to get below 1

sec. To achieve even these results, the video quality had to be reduced to the bare mini-

mum. The high latency was because  motion assumes a static, wired camera setup, and

thus streams video using TCP. As time passed and errors required packet retransmission,

the stream lagged more and more behind reality,  and when bandwidth improved, one

would get a sudden quick burst of  frames – similar to the rubber-banding effect one ex-

periences when playing an MMORPG with bad latency. Clearly, if  that was the price to

pay for a single stream, transmitting more than one stream by using for example an addi-

tional camera on the payload, was prohibitive.

3.2. The Gstreamer Era
The current video streaming solution is based on Gstreamer 1.0, a free, open-source

toolkit for media streaming [42], and takes advantage of  its Python bindings, available via

the GObject Introspection repository. A set of  stream handling Python classes is written
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(all based on the PiGstPLBase abstract class mentioned on Table 10.1: "Brasidas" Com-

mand Codes), that each provides a native Python interface to the respective GStreamer

pipeline. These classes are shown in  Listing 4: The PiGst* Class Descriptions, which is

taken from the header comments of  the source Python module that defines them.

The base class, PiGstPLBase, defines the common functionality. It basically holds

the Gst.Pipeline object used to implement the streaming pipeline, and defines the follow-

ing methods:

• start(),

• pause(),

• stop(), 

• get_state().

These methods provide all the needed functionality for now. In a future Phase, it is

unlikely the structure will be modified, but it may be expanded to include additional com-

mon functionality. Note that none of  these classes is ROS-aware; they are simply conve-

nience interfaces (wrappers) to Gstreamer pipelines.  But they are used by ROS-aware

nodes, such as the vncsi, to implement video streaming in a structured, elegant fashion.
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# Classes included herein are:
#
# - PiGstPLBase     : Base class for all the rest gstreamer pipelines defined in here.
#   Implements common behavior.
# - PiGstUDPThru    : Implements a UDP "pass-through" pipeline, i.e. one described
#                     by 'udpsrc ! udpsink'. This is used to forward internal video
#                     feeds outside Brasidas, or to forward incoming feeds to internal
#                     processors. 
# - PiGstVideoOut   : implements an RTP-over-UDP video stream FROM onboard Brasidas
#                     to an external client (i.e. Control Station). The video is
#                     encoded in H.264, utilizing the available openMAX extensions
#                     to take advantage of the hardware-accelerated H.264 encoder
#                     available in the Raspberry's VideoCore-IV GPU. Obviously this
#                     class only really works on boards that can support the specific
#                     openMAX extensions (i.e. omxh264enc).
# - PiGstAudioOut   : implements an RTP-over-UDP audio stream FROM onboard Brasidas
#                     to an external client (i.e. Control Station). The audio uses
#                     the Opus codec (free, open-source).
# - PiGstAudioIn    : implements an RTP-over-UDP video stream TO Brasidas (will be
#                     played back through the onboard audio out interface) FROM an
#                     external client (i.e. voice feedback from the Control Station).
#                     The audio uses the Opus codec (free, open-source).
#
# This file is used by the Video Server Node to control each registered camera.
# It is not meant to be run directly as an executable.

Listing 4: The PiGst* Class Descriptions
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As can be seen in  Listing 4: The PiGst* Class Descriptions, the PiGstVideoOut

class encodes video in H.264 format, using hardware acceleration that is available on the

RPi. In fact, the capabilities of  the RPi's VideoCore-IV GPU are quire amazing, as it is

rated at an astonishing 24 Gflops, more than half  the processing capability of  a Core-i7!

Using the OpenMAX extensions is easy for Raspbian Jessie and the latest Wheezy, as they

are thankfully available on the repository (package gstreamer1.0-omx) – Older Wheezy

requires  building  from source,  which is  a  hassle1.  Of  course,  one needs to install  all

Gstreamer required packages, as well as the  gir1.2-gstreamer-1.0 package,  which

contains the Gstreamer Python bindings (introspection data).

The  vncsi node uses the PiGstVideoOut class to transmit the NavCam's video

feed. It is also intended to use PiGstAudioIn and PiGstAudioOut to implement the bidi-

rectional audio link alongside the NavCam stream; this latter functionality is still in devel-

opment. The NavCam stream is sent to the connected Control Station's address, which it

1 See ANNEX A for some instructions on where to start doing it.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

105

Figure 10.2: The PiGst* Class Hierarchy

PiGstPLBase

-pipeline : Gst.Pipeline

+__init__(stream_name : string,
    initial_state : Gst.State = Gst.State.PAUSED)

+start()
+stop()
+pause()
+get_state()

PiGstVideoOut

+__init__(tgt_ip : string,
    tgt_port : int
    video_src : string,
    img_width : int,
    img_height : int,
    img_frate : int)

+set_framerate(framerate : int)

PiGstAudioOut

+__init__(tgt_ip : string,
    tgt_port : int
    audio_src : string = None)

PiGstAudioIn

+__init__(src_port : int
    out_device : string = None)
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receives via signaling (payload of  command 10.1).

Figure 10.2: The PiGst* Class Hierarchy shows the relation between the streaming

classes. PiGstPLBase is the base class, that includes an empty pipeline and defines the ba-

sic functionality. The  __init__ method is Python's class constructor. All classes' con-

structors also call the class's parent constructor before performing any other initialization

(in  other  words,  PiGstVideoOut's  __init__,  for  example,  also  calls  PiGstPLBase's

__init__). It should be noted that for all classes of  Figure 10.2: The PiGst* Class Hier-

archy, the constructor arguments are also saved into additional "private" member vari-

ables, not shown explicitly on the diagram. The term is in quotes here, since Python does

not implement any kind of  strict access control, and all members of  a class are publically

accessible. The use of  the term (and the '-' symbol in the class diagrams) indicates the ar-

chitecture-derived intention, not its implementation.

Some constructor arguments also have default values. For the PiGstAudio* classes,

the recording (src) and playback (out) system devices have a default value of  None, and if

this is not changed, Gstreamer will use the default system device for each operation.

The PiGstVideoOut class is configurable, so the network port, as well as other feed

parameters, such as the camera source device, and video resolution, are passed to it as

constructor parameters, making the class usable in other projects as well. The only restric-

tion is that the video source must be from a Video for Linux-compatible device (the class

uses the  v4l2src pipeline element internally). The rest of  the PiGst* classes are also

configurable to a similar degree.

The fun part of  using Gstreamer+OpenMAX is the performance. The streaming

pipeline uses RTP over UDP to deliver the resulting H.264-encoded video, which at the

same 640×480@30fps setup results in a 1.6-Mbps bandwith utilization, a less than 20%

CPU utilization (on one core only), and a received video latency at the Control Station of

less than 150 msec – as demanded by R-11.5. In fact, the CPU utilization is probably

mostly due to memory copying of  the camera frames to and from the GPU memory area

during encoding. One catch is that the memory allocated to the GPU must be increased
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to at least 128 MB, otherwise the H.264 encoder crashes. The RPi shares its memory be -

tween the CPU and GPU, and the setting that controls the memory allocated to the GPU

is  the  gpu_mem parameter  found  in  /boot/config.txt.  Alternatively,  one  can  use

'sudo raspi-config' (without the quotes!) from an ssh console to change the setting.

Both methods accomplish the same thing.

It should be noted that the H.264 encoder available on the RPi's GPU is a separate

SIP (Semiconductor Intellectual Property i.e. chip section) from the main graphics pipe-

line. Thus, while the Videocore-IV GPU is encoding video, it can also service any graph-

ics operations, or as intended in our case, generic GPU computations.

The only downside to using a Gstreamer pipeline, is that unless one sets it up to be

receivable by vlc or a browser, the bare RTP-over-UDP stream can be opened only by

another Gstreamer pipeline. This is not a problem in the case of  "Brasidas", since the

Control Station does indeed use Gstreamer as well, but it limits somewhat accessibility to

the streamed video. Configuring the pipeline to make the stream viewable in  vlc or a

browser will also significantly increase the video latency.

To conserve bandwidth when not needed, in both the motion and Gstreamer cases

the NavCam's framerate is reduced to 5 fps when MOVRD is not engaged. Simply moni-

toring the robot feed works fine at 5 fps. When the operator engages MOVRD, however,

the framerate is switched to 30 fps, to permit smooth control.

Additional feeds can be streamed by using separate ROS-aware modules and making

use  of  the  appropriate  classes  from  Listing  4:  The  PiGst*  Class  Descriptions.  The

Gstreamer solution is a recent one, so there was not yet the opportunity to expand upon

it. Data streams will probably be implented by wrapping direct use of  sockets and UDP

into a higher-level, PiGst*-type class to facilitate code uniformity, although there is a pos-

sibility that one can take advantage of  Gstreamer to stream custom data as well. The fea-

sibility of  this is still under investigation, however using a UDP socket in Python gener-

ally is much simpler than setting up even the simplest Gstreamer pipeline, so a custom so-

lution is more likely in this case.
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§4. The Advertisement Module
This functionality is currently implemented to transmit UDP packets at a network

broadcast address (X.X.X.255). According to R-16.0 (Advertise Platform Over the Net-

work), the minimum information that needs to be transmitted is the platform's ID and

status. R-16.0 likewise specifies exactly the rate it needs to be transmitted at. The adver-

tisement uses UDP port 20000 (rather arbitrary choice, but who's gonna object anyway?).

The platform's status is a 32-bit integer, accessed as a set of  flags. A flag can be the

typical 1-bit toggle (such as whether MOVRD is engaged or not, or whether the posi-

tional lights are on or off), or it might need to be a set of  bits enough to differentiate be -

tween a set of  options. For example, 2 bits could be used to specify a coarse battery con-

dition, with possible values of  "FULL" (11),  "3/4" (10),  "1/4" (01) or "DANGER -

LOW" (00). If  in the future these 32 bits of  flags are exhausted, an additional 32-bit inte-

ger can be added to the status, or the status extended to a 64-bit integer, with minimal

work. Efficiency hints at matching the integer size to the CPU's word, and the RPi 3's is

64bit. The current Raspbian Jessie comes only with a 32-bit kernel, however, so until that

changes, a 32-bit CPU and OS will be assumed.

Of  course, given that the typical ID will be a string of  around 15-20 characters,

sending 24 or so bytes using a UDP packet is a waste of  bandwidth, as a UDP packet has

an 8-byte header, increased by the at least 20 bytes of  the IP header, for a total of  28

bytes of  header and 24 bytes of  payload, not including the link layer's framing bits.

After Phase I is complete and the development moves into Phase II, the advertised

information will also include the robot's SLAM-derived coordinates. The coordinate sys-

tem that will be used is yet to be determined. Given that the scale of  applications for

"Brasidas" is of  the order of  1 Km or so, and that coordinates need no better accuracy

than 1 m, this should not become much of  an issue. Right now, the coordinates provided

by the GPS are transmitted instead.

In any event, two coordinates need to be specified, perhaps a third if  elevation is to

be considered. It is assumed that in whatever form these are given, a 32-bit word for each
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will be more than sufficient, so a Phase II advertisement packet would have about 36

bytes of  payload (and 28 bytes of  header).

All numeric values (status, coordinates) are transmitted as Base64-encoded strings.

This adds a bit to the overhead, but allows transmissions to treat the data as a big string

with fields separated by commas, rather than having to assume fixed-width byte fields.

Even adding 36 more bytes of  status data, yields an IP packet that is 100 bytes long.

Transmitting this at the maximum rate of  R-16.3 (1 packet every 0.6 sec) requires only

~1400 bps bandwidth. This is still  a very minimal network load, so much that if  the

knowledge of  robot ID, status, and coordinates alone is enough, a separate, low-band-

width, long-range network can be used to transmit those, such as the Xbee-based solution

proposed by Cpt (Inf) Botonis Dimitrios and Cpt (Sig) Lefteris Takis in their semester

project for the Robotic Systems course (spring 2015, under Prof. Mavridis Nikolaos), the

same course which gave birth to "Brasidas". Since the advertisement module will run as

an independent ROS node, it will be capable of  using any hardware interface available

and not restrict itself  to network interfaces. In all likelihood, however, the implementa-

tion will not diverge from using a single radio (digital link), and advertisement packets will

be routed over the IP-based network.

A more accurate  bandwidth estimate should take  into  consideration the link  layer

overhead induced (error correction and coding), but even a ratio of  1:5 (transfer speed :

link rate) as is typical in 802.11 (see [43]), is acceptable.

§5. The SLAM Module
This module is as of  the time of  this writing (Apr 2017) still in its infancy. Granted,

its functionality is part of  Phase II, while "Brasidas" still struggles to finish Phase I, but

some notes can be provided.

SLAM is a CPU-intensive task, and every solution (i.e. algorithm design and imple-

mentation) must be tailored to the sensor data available; the observations matrix in partic-

ular must be structured differently when using a planar laser scanner than when using a

stereoscopic camera and point cloud data. Now most implementations out there rely on
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planar laser scanners, and it should be obvious that such mapping hardware may be ap-

propriate for indoors applications, but it is whoefully inadequate for outdoors environ-

ments, with sloped ground, uneven surfaces, and random-circumference obstacles such as

rocks and tree trunks. Thus, the design team is still in the process of  attempting to deter -

mine what sort of  sensor is appropriate and adequate. Of  course, R-0.3 (Funding and

Support is Very Specific) still applies. Once this is determined, then the proper SLAM im-

plementation can be selected, or coded if  desired. OpenSLAM.org [44] contains several

algorithms to choose from before delving into state updates and filtering, and some of

those are also ported to ROS.

One part of  the SLAM module that is implemented is the GPS tracking component.

The module is actually taken ready from the ROS repository of  packages, and all it does

is read in the NMEA-0183-formatted sentences from the GPS sensor, extract coordinate

data, and post these in a ROS topic. No sweat.

Another functionality taken in part from the ROS package ecology is the IMU mod-

ule. The IMU module is actually two separate ROS nodes. One is an in-house (i.e. written

by the design team) IMU data acquisition node, which uses the class  MPU6050 given in

[45], and along with a few ROS parameters and Python goodness, publishes the raw IMU

data (accelerations and angular velocities) into the ROS topic '/imu/data_raw'. The data

are in turn consumed by the IMU filter node, which integrates the instantaneous readings

and publishing the robot's  orientation (pose)  into topic 'imu/data'.  The filter  node is

available as an official ROS package1, and uses a sensor fusion filter based on the algo-

rithm described in [46].

§6. The Autonomous Operation Module
Much like the SLAM module, the Autonomous Operation (AutoOp) module has

not been implemented. It is expected that this will contain CPU-intensive code as well, so

it is planned that it will be run on a separate system Core computer, an additional one to

1 http://wiki.ros.org/imu_filter_madgwick
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the RPi currently installed in the System Core. A tentative initial research has uncovered a

ready-made ROS package for autonomous navigation. This will be examined and tested,

in the hope that perhaps the AutoOp module can be based on that solution and save

some code writing time.

Autonomous robot operation is still in its infancy, and most progress and ideas are

purely theoretic. The DARPA Challenge to produce a driverless vehicle may have resulted

in several viable prototypes and solutions [47], but these are mostly autonomously navigat-

ing robots, not autonomously operating in general.

There is still no standard among protocols and theories regarding autonomous oper-

ation. ROS includes a task-executive based package called actionlib1, and other action-

based approaches  do exist,  such as the military-compliant,  NIST-sanctioned 4D/RCS

[48]. When Phase IV development begins, the then-current status and options will have

to be re-examined before a proper implementation can be chosen.

Autonomous operation is still debated among the design team as to whether such a

capability is really desired of  a robot like "Brasidas". An independent capability to track

targets is definitely desired, and is intended to be included, but more complicated pro-

cesses may be superfluous and never actually be used.

The design team's intent is to have Autonomous Operation permit the robot to pri-

oritize  a  list  of  operator-provided  tasks,  and identify  certain  operator-defined  targets

(such as cars, doorways and windows, pedestrians, and so on). This will still demand sig-

nificant onboard processing power, but will provide specific needed services, with as little

possibility of  error as possible.

1 http://wiki.ros.org/actionlib
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CHAPTER 11 .
The Control Station Configuration

Currently, the Control Station exists only in software; its hardware is not yet com-

plete. The software stack runs fine on a Core-i3-based laptop, and is expected to run just

as well on a Raspberry Pi 2B or later, that is intended to be used as the Control Station

processor.

The software stack is initialized in the same manner as the platform's software stack,

using roslaunch to load configuration files and start nodes with a single command. The

big difference between the platform code and the Control Station code, is that the Con-

trol Station features a GUI for human-computer interaction. The GUI layout is not final-

ized and is still under development; more on the matter in the Display Modules section

later in this chapter.

§1. The Connection Management Module
This is the most important module of  the Control Station, as it essentially routes

network  connectivity.  Currently,  it  implements  a  set  of  services  offered  to  the  other

nodes of  the Control Station, that manage aspects of  the connection to a remote plat-

form.

The module functions in one of  two states: Connected (to a remote platform) or

Disconnected, with the module being by default in the Disconnected state at startup.
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Figure 11.1: Connection Management module (Disconnected state)

ConnectToPlatform

Connection Management

DisconnectFromPlatform

GetNavcamProps

VFRI
Proxy

"B
ra

si
d

as
" 

N
et

w
o

rk

GetVelocityStreamInfo



DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Figure 11.1: Connection Management module (Disconnected state) displays the ser-

vices in the Disconnected state. Here, there is no VFRI Proxy instantiated, since no re-

mote platform is specified to connect to. Only the ConnectToPlatfrom ROS service is

enabled. When the operator selects a platform from the displayed list of  discovered plat-

forms, the generated UI event calls this ConnectToPlatform service, which if  successful,

causes the module to change state to the Connected one shown on Figure 11.2: Connec-

tion Management module (Connected state).

When a connection to a remote platform's VFRI has been established, all the ser -

vices offered by the module become enabled. The other modules of  the Control Station

use these services to receive information about specific platform parameters, for example,

the GetNavcamProps service is called by the Stream Display module when a connection

is  establish,  to  retrieve  the  parameters  (video dimensions,  network  port  of  incoming

stream), so it can properly receive and render the NavCam stream from the platform.

The Connection Management module uses information supplied as argument to the

ConnectToPlatform service call, to create a Pyro4 Proxy to the vfri of  the platform se-

lected by the operator. It also monitors the '/CtrlStation_Commands' ROS topic for

any system commands (non-notifications) posted by other Control Station modules, that

necessitate a call to the  vfri.issue_system_command method, to forward the com-

mand to the platform.

Finally,  the DisconnectFromPlatform service tears down the connection,  releases

the reference to the remote VFRI proxy, and disables all other services except Connect-
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Figure 11.2: Connection Management module (Connected state)
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ToPlatform. Right now, it is required to disconnect from a platform before connecting to

another, however when the current code revision is complete, the system will be able to

switch connections on the fly, without having to disconnect first. This will permit faster

control of  multiple platforms by a single Control Station, e.g. to quickly issue a new way-

point to another robot operating autonomously, then go back to the one currently being

teleoperated.

Currently, the Connection Management module also pulls periodically telemetry data

from the platform, and posts back the returned result into the '/CtrlStation_Com-

mands' topic, using appropriate Group 90 commands (notifications, see below). However,

this is a temporary solution, as it goes against R-11.0 (Stream Data Feeds); a revision is al-

ready underway to implement telemetry as a data stream (i.e. data will be "pushed" by the

platform), that will be handled by a separate code module.

1.1. The Control Station Signaling
Signaling is handled a bit differently on the Control Station. While the overall soft-

ware architecture mirrors that of  the platform's, the mission of  the Control Station soft -

ware is fundamentally different from that of  the platform's software stack.

The platform software works in an active manner, taking in sensor readings, execut-

ing Control Station requests, streaming media, etc. Inter-module signaling on the plat-

form aims to propagate commands and effect status changes. The Control Station soft-

ware, on the other hand, works reactively to respond to operator commands. Inter-mod-

ule signaling on the Control Station intends to propagate notifications about data received

by one module that necessitate a change in the visual interface presented, or data dis-

played by another module.

Thus, signaling on the Control Station consists mostly of  notifications. The various

modules of  the Control Station keep tabs about the currently connected platform in the

form of  a set of  various state variables, such as the platform's ID, the port where the

platform's NavCam stream is received, whether the platform's MOVRD is engaged or

not, whether the lights have been turned on or not, etc. All these variables remain valid in
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the current state (their values may change, but their raison d'être does not). They are the

equivalent of  state variables in a thermodynamic system (the set of  state variables and

their relations is the equivalent of  the state function of  a thermodynamic system).

A notification informs all modules of  a change in the collection of  state variables.

This may be a change in the value of  a variable, or the addition or removal of  a variable

from the set of  state variables. Thus, notifications are analogous to process functions in

thermodynamics.

Notifications are propagated through the '/CtrlStation_Commands'  ROS topic,

and have command Group ID and Command IDs, like other signaling commands. Noti-

fications are assigned the command Group ID 90, and are published only on the Control

Station. Note that other commands can also be used on the Control Station, and indeed

are, notifications (i.e. Group ID 90 commands) are simply restricted to the Control Sta-

tion only. Most of  the additional non-notification commands are forwarded to the plat-

form, although Command Group 91 is reserved for (the future possibility) of  Control-

Station-only commands.

§2. The Node Discovery Module
This module is a simple UDP server at its core, listening on the network for plat-

form advertisement packets. It is build on top of  python's SocketServer module (specifi -

cally, it uses the ThreadedUDPServer class as base).

When running, the node maintains a dictionary of  all robots currently discovered. If

a new packet from an already discovered robot arrives, the node simply updates the dic-

tionary entry with the new values. If  a new robot appears, it is added to the dictionary.

Along with the data included in the advertisement packet (robot VFRI uri, IP ad-

dress, coordinates, and status word), the module stores in each dictionary entry the (Con-

trol Station local) time of  the last advertisement packet received from that robot. A sepa-

rate thread runs every few seconds (10 in the current implementation), and cleans up the

list of  stale entries, removing robots for which the last advertisement packet is more than
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10 sec old. The requirements (R-9.3) specify 4 sec, but 10 sec are used at the moment un-

til the code is refined and stable.

Whenever a new packet is received, or the cleanup thread completes, the updated

platform list is published in the '/node_list' topic.

§3. The Teleop Console Interface Module
Much like a reverse version of  the vmci running on the platform, this module mon-

itors the teleoperation console and forwards any button presses or joystick moves to the

currently teleoperated robot. The teleoperation console is connected to the Control Sta-

tion over USB, but it's really just a wired (USB) XBox game controller. A third-party ROS

node,  joy_node (from the  joy package) is used to read in the controller's state. The

Teleop Console Interface module simply picks up the messages published by joy_node

and converts them to velocity commands for the remote platform.

3.1. Sending Velocity Commands 
Upon  receiving  a  notification  in  the  '/CtrlStation_Commands'  topic  that  the

Control Station has been connected to a platform, the module calls the GetVelocityS-

treamInfo service (part of  the Connection Manaement module) to retrieve the details

needed to create the velocity commands stream (in particular, the platform's IP address

and port where it receives velocity command packets). Velovity values are converted from

the 16-bit signed integer values read in from the controller, to platform-agnostic 0.0-1.0

range floats.

In particular, the MOVRD enable/disable is routed over signaling, since it is impera-

tive that its reception (and execution) be acknowledged. At the same time, the velocity

commands are sent over a separate data stream. Such a stream (i.e. basically UDP destina-

tion host/port pair…) is initialized upon connection, and utilized only when MOVRD is

engaged. In fact, since a UDP-based solution is actually connectionless, "connecting" and

"disconnecting" is really a software flag toggle. By simply changing the stream's parame-

ters (host and port), the velocity commands stream can be directed at a different platform
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on the fly.

Right now, velocity command packets are sent at a rate of  20/sec, and each velocity

command is sent only once. In this UDP-based approach, where packets can get lost or

discarded on reception due to corruption, an error correction and order detection scheme

is employed, to avoid having to send each command packet multiple times for redun-

dancy.

Each velocity command packet essentially contains an NMEA-0183-compliant1 sen-

tence as follows:

$PVEL,<time_count>,<x-axis value>,<z-axis value>*<checksum>

The <time_count> field is an auto-incrementing unsigned integer, used as an index,

to allow the platform to determine if  a packet is received in-order (hence, valid) or out-

of-order (in which case it should be discarded).

The two float velocity values, each in [0,1], are transmitted in their string representa-

tion, using 5 decimal digits, which is sufficient accuracy for our needs. The checksum is

calculated per the NMEA-0183 specification, and is two characters (hex representation of

a byte). Thus, each UDP velocity command packet is 26-36 bytes long (depends on the

size of  the <time_count> field), and has a 28 bytes header, for a total max size of  64

bytes. At 20 such commands per second, the required bandwidth would be of  the order

of  ~10 Kbps. As in the case of  the platform's Advertisement module, this does not in-

clude link layer overhead, but again the amount of  data rate required does not pose a

problem when using a multi-Mbps link like 802.11.

§4. The Display Modules
Each of  the display modules is a GUI application that implements specific function-

ality. The current implementation represents updated code, conforming to the architec-

ture of  Figure 5.3: The Control Station Architecture. it has superceded the previous GUI

code, which combined all display functions into a single code module, making its mainte-

1 https://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp. See also the (more informative) wikipedia 
entry at https://en.wikipedia.org/wiki/NMEA_0183.
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nance and further development rather arduous.

The Control Station currently uses kivy as its GUI framework. Kivy is an open-

source Python library for native user interface development,  that runs,  among others,

even on Android. The framework takes advantage of  GPU acceleration where available,

and is maintained to be up to date – the latest version as of  this writing is 1.10.0, released

concurrently with this work (May 2017). Kivy uses a script-based notation to define the

layour of  GUI components, then applies pure Python goodiness to manage the compo-

nent interactions. It is  well  documented, and  [49] has all  the details  and tutorials one

needs.

Using Kivy, the design team has defined three GUI modules, as shown on  Figure

5.3: The Control Station Architecture. Each module is also a ROS node.

The screen layout of  the Display modules is shown on Figure 11.3: The Control Sta-

tion's Display Modules Layout.

The top area is the Status Display module, which is basically nothing more than a

passive panel filled with indicators and value displays. This panel does not respond to any

user input, and only updates the values and indicators it displays when a connected plat-

form transmits its telemetry.

The middle area is the Stream Display module. When the Control Station connects
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to a platform, this window displays the feed from the platform's NavCam, and also the

list of  all platforms found online, with each platform shown as a clickable button – click-

ing the button connects to that platform.

On the Figure, the Control Station is connected to the network, so it has found the

robot, and it is also connected to it, with the NavCam stream being displayed.

The bottom area is the Control Interface module. Currently it contains very few

control buttons (only "Disconnect" and two toggles for the platform's lights). As the to-

bot's functionality becomes consolidated, this panel is bound to have additional control

options integrated. It is assumed a touch display will be used, eliminating the need for a

mouse, and relying on the keyboard and XBox controller for all control options.

4.1. The Stream Display Module
The Stream Display Module displays the NavCam feed from a connected "Brasi-

das". Internally it uses Gstreamer to receive the transmitted stream, decode it, and render

it on the window. Again, a custom Python class is used here, called PiGstVideoInXID (a

concrete descendant of  the PiGstPLBase class). The implementation takes advantage of

the ability of  Gstreamer to render the video into a custom window. The xvimagesink

element accepts a parameter (aptly) named 'xid', which is the XWindow ID of  the target

window. As can be expected, this method only works on the X window manager. By re-

trieving the X-ID of  the target window, and setting it as the value of  xvimagesink's 'xid'

parameter  during  pipeline  initialization,  the  Gstreamer  pipeline  renders  the  resulting

video directly onto that window.
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From suboprocess import check_output
.
.
.
# get the xid of the video feed window
#get the xwininfo output
xwininfo_output = check_output(['xwininfo', '-name', 'VC2S Video Feed Panel'])
xid_startidx = xwininfo_output.index('Window id:') + len('Window id:')
xid_endidx = xwininfo_output.index('\"VC2S Video Feed Panel\"')
self.win_xid = int(xwininfo_output[xid_startidx:xid_endidx].strip(),16)

Listing 5: Retrieving a Window's XID on Linux
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Listing 5: Retrieving a Window's XID on Linux displays the Python code snippet

from the Control Station code that retrieves the XID of  the Stream Display window. The

code takes the output from the xwininfo system application and parses it to extract the

XID, which is displayed as a hexadecimal value (hence the '16' parameter to the int cast-

ing of  the extracted string at the last line).

The only drawback to this is that Gstreamer cannot be limited to a specific part of

the window; it renders over the entire window and any graphical controls it may contain.

Thus,  a  window receiving a Gstreamer video cannot be used for  anything more.  Of

course, if  a video is not rendered, the window can function normally.

This drawback can be mitigated somewhat by processing (resizing/scaling/etc) the

video in the  pipeline,  using  additional  Gstreamer  elements  such as  videoscale and

videobox.  [50] has a lot of  similar examples. It uses the now obsolete Gstreamer 0.10,

however the examples can be adapted to Gstreamer 1.0 with minimal work.

The Stream Display module is actually two separate windows; one that receives the

list of  discovered platforms, and presents it as a set of  clickable buttons, one for each

platform (to facilitate choice of  platform for connection), and the main window that dis-

plays the streamed video. The stream is of  course displayed only when the Control Sta-

tion is connected to a platform; at other times, this window is blank.

In Phase II, the platform selection screen could display the pre-loaded or current

area map, then draw the discovered platforms as pins or icons over each corresponding

platform's location, updated in real  time as platform advertisements are received. The

icons can be clickable to allow selection – and perhaps right-clickable to present a context

menu with appropriate options. The exact UI layout is still not finalized, as it also needs

to be made flexible enough to accommodate possible different options of  the various

possible payloads.

4.2. The Status Display Module
The Status Display Module is used only to display information and indicators re-

garding the status of  several plarform options, such as whether the lights are on on off,
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the charge state of  the battery, etc. It serves as the primary visual feedback source for the

operator regarding the platform's status. Otherwise, this module does not accept any user

input. It is the equivalent of  the Annunciator Panel (Master Caution) found on aircraft

cockpits, albeit much simpler and less cluttered with readings (for the time being, at least).

Depending on the notifications received, the module's panel can flash warning mes-

sages to draw the operator's attention when a critical situation occurs, such a state of  low

battery charge. The use of  audio warnings is also being considered if  their use proves jus-

tified.

This module also displays all received telemetry values, such as the System Core's

temperature (measured via the onboard IMU's temperature sensor), or the amount of

available RAM.

4.3. The Control Interface Module
This module provides a series of  GUI controls beyond the teleoperation-specific

physical controls of  the teleop console. The 'Disconnect' button is found here, among

others, enabling disconnection from a platform. Other button controls currently include

the light switches (both main and positional), and a few placeholder buttons, whose use is

yet to be determined. Much like the Status Display module, this module is the result of

code reorganization and is not yet complete. The design team is considering the option

of  transferring to this module some amount of  functionality that were implemented as

physical controls on the (old) Arduino-based teleop console.
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CHAPTER 12 .
Testing and Verification

Testing was subsumed into the development process since the early stages of  the

project. Every subsystem and code module was tested individually for errors and perfor -

mance. However, testing the prototype as a whole proved a bit more difficult; multiple

hardware and software components had to be completed and integrated before the entire

prototype could be put to the test.

§1. Network Tests
Given that the network infrastructure is taken ready with no modifications or addi-

tions, little dedicated testing was implemented. The network performance was tested as

part of  various general system tests, where the platform was teleoperated in increasingly

larger distances from the Control Station, until the connection was lost.

As has been mentioned earlier, tests on software versions using  motion for video

streaming, recorded network utilization in excess of  5 Mbps, while Gstreamer-based ver-

sions ran at 1.6-2 Mbps. These were taken off  the OpenWRT router's bandwidth moni-

toring page, and are tranfer rates, i.e. including the Layer-3 and higher protocol overheads,

but not the physical and data link framing overheads. The fact that 802.11 has a rather

high framing overhead is an open topic of  discussion among the design team members,

but replacing that with a wireless implementation of  more efficient protocols is not being

considered at the moment.

All such tests took place in the ARTC. The place is filled with buildings, vehicles

(metal obstacles), and multiple WiFi access points (interference) operating right outside

the area. During those tests, the network permitted effective teleoperation (using motion)

to a maximum recorded distance a little over 250 m, with a large building interposed be-

tween the platform and the Control Station. The network utilization was also monitored

closely to determine the amount of  bandwidth that the platform-Control Station link re-

quires. This experimentally recorded range limit demonstrates why motion is inadequate,
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as with a lower bandwidth usage the robot would most likely have ventured a bit further.

However, no test has yet taken place using the newer, Gstreamer-based implementation.

It is expected that the effective teleop range will be significantly longer, though.

A second, limited test was performed as part of  a presentation held at the Military

Academy of  Athens. The Control Station and Access Point were positioned inside the

Academy's main amphitheater, and the platform was teleoperated to a course leading it

outside  the  amphitheater  and  the  building.  The  software  during  this  test  did  use

Gstreamer, but the test was terminated while the robot was approximately 50 m from the

Access Point (straight-line distance),  and until then the connection was active and the

video feed and teleoperation were smooth. No attempt was made to move the platform

further away to determine the range limit under such conditions. However, attenuation

was quite severe, as there were several attendees (and thus active smartphones) in the in-

termediate area, not to mention that the signal had to pass through a concrete wall.

§2. Platform Software Tests
Most of  the platform software tests were run on the RPi. A few simple pieces of

code were tested first on a development laptop, then deployed to the RPi, but the major -

ity of  the code was debugged and tested on the platform itself. Especially those modules

that facilitated hardware access could be tested on no other machine.

Apart from correctness of  code, the tests sought to measure primarily the amount

of  RAM and CPU utilized by each module, as well as whether each started and shut

down appropriately and without exceptions or possible memory leaks.

These tests showed that the current implementation runs with no problems on the

RPi 3B. Memory suffices with no swapping involved. During video streaming no CPU

core went above 40% utilization for an appreciable amount of  time. By comparison, tests

run on the older, motion-based versions, recorded CPU utilizations of  the order of  40-

60% on two cores, a result of  motion's software MJPEG encoding. RAM utilization was

also greater in the motion-based versions, reaching a peak of  almost 550 MB of  RAM,
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versus 350 or so MB in the newer version.

The most significant difference was observed in overall video quality. Despite the

lower bandwidth,  the H.264-encoded video has better quality than  motion's  MJPEG,

since to reduce bandwidth the design team had set the MJPEG quality to a rather low set-

ting. The hardware H.264 encoder available on the Videocore-IV GPU has a default en-

coding setting of  'H.264 high-profile'.

§3. Control Station Software Tests
As currently the Control Station software runs on the laptop on which it is also de-

veloped, only a few dedicated test runs were made; every functionality not requiring plat-

form connectivity could be tested at any time – and indeed was – by simply running the

code.

The visualization modules, and in particular the GUI component layout, were tested

separately. A mock Kivy module was written, which rendered the windows and controls

according to how it was intended each time, but the controls had no user responsiveness

or functionality. This way, the Kivy script additions and modifications could be tested for

correctness without mixing them with already existing, complex code. It made error trac-

ing far easier. Whenever the layouting code and script tested through the mock module

was deemed satisfactory, it was copied over and integrated with the rest of  the Control

Station code base.

The focus of  testing for the Control Station code was on responsiveness. Perfor -

mance was not considered until recently, since it was assumed that a desktop-based sys-

tem would be used for the Control Station. After the decision to use a single-board com-

puter in that subsystem as well, future tests have been scheduled to test the Control Sta-

tion software's performance as well, since the GUI puts a heavy strain on embedded sys-

tem resources, especially RAM – and RAM on the Pi is limited.

These tests will heavily influence the further Control Station development. If  the

tests show that, with the current single-board computer capabilities, this solution is not

viable, this approach will be re-evaluated, and other solutions will be examined. There al-
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ready exists a proposal to use a mini-itx-based computer board, such as those typically

used in hi-end car PCs. Such a system could easily have a mobile, lower-power version of

a Core-i5 and several GB of  RAM, allowing extended capabilities for the Control Station.

A final aspect of  the Control Station that needs to be tested is operability. As thus

far the controls have been operated by the members of  the design team, who have inti-

mate knowledge of  the system, no feedback exists on what sort of  window layout and

physical controls is easier and more intuitive to operate, as far as a person who has not

participated in the project development is concerned, and who most likely will not have

an engineering background (i.e. any one of  the expected future operators, but not a de-

signer).

At this stage in development, the most prominent control layout concept involves a

set of  physical and software controls akin to the interface of  a first-person shooter game

(at least for control a single platform), where the main view comes from the NavCam,

and an XBox-compatible game controller is used to steer the vehicle and handle control

of  the payload (turret azimuth/elevation, fire button, etc.).  An additional custom key-

board panel will most likely be assembled, to permit extra function-specific buttons, in-

stead of  mapping all functions to controller keypresses.
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CHAPTER 13 .
Interlude II

Programming a robot is no easy task, even a simple teleoperated one like the "Brasi-

das" Mk-I. Again, the reader is reminded that the streamlined form of  process appearing

in the chapters of  Part II is convenient, but not representing reality. In truth, things did

no go so easy and the path was never very clear.

Of  course, it must be emphasized that the design team had next to zero experience

in the matter. This whole process has been an entire 'learn through trial-and-error' travel

down failure road. In fact, it was mostly 'learn through error'.

Just sorting out what OS distribution and version to use took over three months.

Initially, the design team settled on ROS Indigo, which was available on Ubuntu ARM,

but not on Raspbian Wheezy. An attempt to compile it took a few days of  effort and re-

sulted in a not-so-fully-functional ROS install. So for a while, Ubuntu 14.40 (armhf) was

used on the Raspberry Pi.  When Gstreamer was found to be applicable,  things went

south again. Now Gstreamer may be available on both Ubuntu and Raspbian, but – most

importantly – the OpenMAX-based pipeline elements were available only for Raspbian

Jessie, and not Ubuntu ARM. Thus, after a lot of  deliberation, the OS went back to being

Raspbian, this time the more recent Jessie distribution. Thankfully, in the second iteration

the desing team were wiser, and attempted to compile a leaner ROS setup, which suc-

ceded – the release was even upgraded to use ROS Kinetic!

The previous software versions, which relied too heavily on Pyro4 and motion, are

also good examples of  bad development; the latency of  motion's feed and the jerking

and rubber-banding of  teleop control through Pyro4 should have resulted in the immedi-

ate drop of  that implementation. However, due to time constraints and focus on attempt-

ing to close Phase I and move into Phases II and III, in trying to implement autonomous

navigation, caused the problem to be sidelined and tolerated, until it became apparent af-

ter some tests that that implementation was going to no serious town. It was a good

waste of  time and a good lesson learned.
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Even Kivy, the GUI framework, was not the project's first choice. PyQT was initially

used, but proved cumbersome and resource-demanding. A different framework,  VisPy1,

was then adopted. This framework was still under development, and suffered from a mul-

titude of  bugs. Eventually, it was abandoned in favor of  Kivy.

Another issue was that of  the Control Station control layout. Initially, a custom con-

troller console was constructed, using an Arduino board and compatible joystick, which

was programmed accordingly and used alongside a standard keyboard. The console sent

sentences formatted following the NMEA-0183 HS (High-Speed) protocol, except the

sentence headers used custom symbols, and not two-letter vendor or sentence codes. A

sample sentence is shown below (the '0' and '1' entries are button states, the other four

numbers are axis positions, the last value is the sentence checksum):

$TCSTA,1,0,1,1,412,887,515,512*57

Although this approach was very flexible and extensible (we could add as many but-

tons, extra joysticks, and additional controls are we liked), it used a custom board instead

of  a COTS solution, and consumed a non-trivial amount of  development time. Most of

it was spent in designing the Arduino communications protocol. The teleop console was

designed to initially accommodate an old analog 4-axis, 4-button joystick (the author had

one lying around from his early Wing Commander 2 and 3 days, and contributed it to the

project), although eventually a different analog joystick, a 2-axis Arduino-compatible one,

was used.

Another idea considered the use of  a gamepad (XBox-compatible game controller).

This can in theory aggregate more controls in a smaller package, and make the Control

Station more portable (perhaps even man-portable), but no such controller was available

initially, and there were concerns that it may be less convenient than the keyboard+joy-

stick approach.

Eventually,  both  options  were  tested.  Our  concerns  about  the  XBox  controller

proved to be inaccurate, and thus the XBox option was adopted. It is by far the most

convenient option, as it allows us to use a COTS component in place of  a custom-made

1 http://vispy.org/
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one. Plus, the keyboard still remains in use, and is a viable option for providing additional

controls.

The combination of  multiple architecture revisions and lack of  knowledge on the

design team's part have resulted in slow development progress, and a Phase I that has

taken more than it should, and thus far delivered less than expected. Finally however,

things are beginning to coalesce into something that will resemble a robot… eventually…
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EPILOGUE
There is still much work to be done. Phase I may be practically complete, but "Brasi-

das" is not – plus, you know what they say about "almost": it only works when throwing

horseshoes and hand grenades.

The software has been designed to be modular and plarform-agnostic, opening up

the possibility of  using it on other ground vehicles. Thus, it can form the core software

of  a family of  vehicles that may perform totally different functions, but be able to inter-

connect and communicate, all the better to execute their assigned mission.

The development speed is likely to pick up from now on, as a valuable knowledge

base of  know-how and practical skills has been developed.

While the intent is to eventually have "Brasidas" operate autonomously, a robust

R.O.V. implementation is required first. A R.O.V. includes all low-level functionality and

basic concepts that will be required by the higher-level protocols employed in autono-

mous operation. In addition, many aspects of  autonomous operation are at the moment

still being researched actively, and lack a robust implementation. Not many aspects of

such implementations are standardized, which means any autonomous operation architec-

ture we might implement is likely to run into standardization issues (non-conformance to

standards) in the future. Thus, it is advantageous to the project's development to first im-

plement a R.O.V. version that is pretty standardized, then build upon this and relevant

standards when developing autonomous operation elements. This approach will reduce

development and cost risks substantially.

§1. Future Work
"Brasidas" is a project as simple as a remotely operated vehicle. It can also be as

complex as a fully operational military-grade autonomoung ground robot. The work out-

lined in this dissertation has layed the foundation for turning this project into serious

business. As Phase 1 is all but completed, and Phase 2 begins, a multitude of  tasks be-
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come available.

A robust SLAM implementation for day/night outdoors environment is required,

which can be a research project on its own.Visual SLAM seems promising, but it requires

night vision cameras at the least, to satisfy the nocturnal operation requirement. Other

spatial sensor configurations, like IR/ultrasonic arrays and 3D laser scanners might be

able to fill the void if  a night vision camera is not available, but these are active sensors

that can potentially give out the robot's position. A fair amount of  research and experi-

mentation is required on the SLAM matter, and then the specific requirements for this

component must be drawn up so design and analysis of  the component's implementation

can finally begin.

Autonomous operation will require a specification for the mission logic and task ex-

ecution algorithms, as well as autonomous navigation. A robust implementation for each

of  these is also needed. There are several tried and proven solutions for autonav, but au-

tonomous operation is a field of  robotics and AI where few mature choices exist at the

moment (May 2017), so an effort must be made to test and evaluate the possible options,

and perhaps combine and improve them until the result is satisfactory. Once a suitable

solution is identified, system requirements for the autonomous operation and navigation

must then be specified before design and implementation of  this component must begin.

All the above work has been outlined roughly when the project workload was di-

vided into Phases, but this is not just a problem of  how and when to implement a solu-

tion, but what solution to implement, making the matter more a subject of  scientific re-

search than evaluation of  available options.

As if  all the above are not enough, "Brasidas" also needs to produce alternate pay-

load packages, to fulfil the operational needs of  potential users. Each payload requires in-

vestigation and study into potentially different fields, and each can be a separate project

on its own.

All these of  course assume that at some point, "Brasidas" becomes a 'proper' re-

search project, backed by access to required restricted equipment and facilities, and basic

132 MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017



ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ
DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND ROS-BASED

CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

funding. But that is another story...

§2. Survivor's Guide to Robot Software Design
This short text presents the design team's lessons learned thus far. It is a compila-

tion of  'words of  wisdom'. Though it is not yet complete, like the project itself,  it  is

hoped that it will help others not make the same mistakes. The guidelines apply to any

well-written software, so it is likely that they will be encountered elsewhere as well.

This  part  only  contains  software-related  guidelines.  Cpt  (AA)  Katselis'  thesis

presents the part containing the hardware-related guidelines.

1.0. Get a Rounded-Out Design Team
You need a software expert (programmer), an electronics expert (electrical engineer),

and a mechanic (mechanical engineer) at the very least, before embarking on a quest to

design and build a robot. The more relevant an experience they have, the better. Do not

even start until you have those.

Ideally, your robotics "adventuring party" should also include an end-user liaison (to

provide problem-domain feedback from the end user's perspective), a physicist (good all-

round helper boy, ocassionally pops a weird but useful theory or two, do not assign him

very specialized tasks), and a marketing expert (to monitor expenses and funding usage,

and also to organize the product presentations and marketing campaign,  and perhaps

conduct market research on potential business opportunities).

1.1. Know What You Are Making
Figure out your vision as early as possible, before even determining whether it is vi -

able technologically or not. A clear objective allows you to easily determine what needs

and need not be done, to evaluate requirements and proposed solutions with greater cer -

tainty, and to more easily avoid being distracted down a path that will not deliver. Write a

scenario, create a CGI video, draw a cartoon, or anything that will allow you to form a

clear picture of  what you want to make.

MILITARY ACADEMY OF ATHENS – TECHNICAL UNIVERSITY OF CRETE
2017

133



DESIGN AND IMPLEMENTATION OF THE FUNCTIONAL ARCHITECTURE AND
ROS-BASED CONTROL/LOGIC SOFTWARE FOR THE "BRASIDAS" UGS

ΜΑΚΡΗΣ ΔΗΜΗΤΡΙΟΣ

Sun Tzu's advice applies here in its entirety: "If  you know yourself  and your enemy,

you need not fear the result of  a hundred battles."

1.2. Before You Do It, Find Out If  Someone Else Has Already Done It
This point applies generally to all kinds of  software projects. Robotics in particular

is a hot subject, and many research teams are working on solving the problems in the

field. Much code is produced and disseminated as part of  that research. It may not be in-

dustrial-quality code, but is is ready code. Before attempting to re-invent a wheel, spend

some time searching if  someone else has already invented the wheel you are after. If  they

are, and you can use their code, do so.

Even if  you find ready code, ALWAYS make sure it fulfils the requirement YOU

were trying to satisfy precisely. Also, make sure it is  optimized, and not low-grade re-

search code. This cannot be emphasized enough. Robotics covers a vast spectrum of  ap-

plications, and each one imposes different requirements. It may look similar, but make

sure it is similar enough, and will not cause you headaches in the long run.

Robotic applications are often demanding in terms of  RAM and CPU. You don't

want to adopt code into your project that wastes these two very valuable computer re-

sources, or that you will have to later optimize yourself. Optimizing code is one of  the

hardest missions a programmer can take, and optimizing code that is not your own incurs

a forbidding time cost.

If  there are differences but are small, evaluate whether modifying the foreign code is

worth the time, or an in-house implementation is a better option. Also, sometimes you

can get away with murder and use bad quality code if  it is working – see the next guide-

line.

1.3. Be Flexible and Keep an Open Mind
Never reject an idea or possible solution until you have evaluated it against your

project's requirements, regardless of  whether it seems fitting in concept or not. In any

bleeding-edge  research  field  like  robotics,  there  are  no  "correct"  answers;  each  re-
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searcher's perspective is unique and can provide useful insight to the problem at hand, as-

suming of  course someone else has not already figured the answer (see the previous para-

graph). Abstract the specific problem to generic requirements, and only evaluate every-

thing against the requirements, not the problem itself.

As an example, consider what is the best propulsion solution for a ground vehicle

that has to move over thin, soft mud: wheels or tracks? Does it have to do with overall

vehicle weight? Speed?

What do you mean it didn't occur to you that in the Everglades they use airboats?

Remember Polyvios Dimitrakopoulos's words in 'The Iron Will': "Man rarely com-

prehends what he sees; often he sees what he comprehends." Avoid comprehending first

and seeing after.

1.4. Use a Results-First Approach to Coding
Adopt a choice of  programming language and development process that delivers us-

able results as soon as possible. Avoid pondering code optimization until after you have a

complete program or application component. That way you can reject bad choices early

on and with little cost in time and effort.

Unless you have a short deadline to meet (a circumstance you generally should try to

avoid getting into) test every bit of  code whenever it is complete enough to permit test-

ing. It is easier to spot an error in 100 lines of  code, than it is in 1,000. Then, after you

write the next 100 lines of  code, do test the previous code again, on occasion. You never

know.

This is general software engineering advice, but it cannot be emphasized enough.

Really.

1.5. Watch Out for the Dreaded Comms
Unless aiming for a totally autonomous or wired-connections system, communica-

tions is the real deal-maker or deal-breaker during the design and manufacture of  a ro-

botic system. The communications scheme that is to be adopted should satisfy the fol-
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lowing obvious (and not-so-obvious) requirements: 

– Its absolute minimum required data rate should be estimated as late in the project

development as possible.  Only employ a comms component when really  needed, and

then use an option that fully covers the need. By delaying selection and adoption of  a

comms component, the designer allows as many details and needs to become apparent, as

possible.

– It should afford a data rate at least  TWICE the estimated one,  including future

expansion plans, to account for the worst case of  overhead and link degradation due to

range.

– ALWAYS test the candidate comms scheme out to the specified maximum range,

in as realistic conditions as possible. If  it fails to deliverer as advertised, determine if  it's

worth considering a revision, and if  not, discard it.

– IP-based communications schemes afford the biggest flexibility in system integra-

tion, but also have significant data overhead. However, almost all the IP/OSI-7 protocol

implementations  can  be  found  as  industrial-quality,  fully-certified,  open-source  code,

making the engineer's job much easier. DO NOT adopt a non-IP-based scheme, unless

absolutely necessary.

– Adjust all range and data rate requirements according to the MAXIMUM expected

number of  concurrent users/connections during an actual field operation of  the system.

Then, further increase the resulting values by 20% (designer's sanity margin).

–  Constantly  investigate  the  latency-vs-network  load  relationship,  and  determine

whether the communications scheme can fulfil timing requirements along the entire range

of  its expected data rate utilization.

1.6. Your Electrical Engineer is Your Best Friend
Robotics needs both software and hardware. And the software often runs close to

the hardware. As hard as it seems for you to write code that runs on certain hardware, it

is equally hard (pun intended) for the electrical engineer to devise hardware that will run
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your code.

Make sure you communicate with your team's electrical engineer often, to early on

clarify on any issues regarding low-level protocols and capabilities of  the hardware used.

Top performance requires  both hardware and software optimizations,  and often your

(software)  requirements  will  become constraints  on the  electrical  engineer's  hardware

choices, and vice versa (for instance, if  you want H.264 encoding, the electrical engineer

must choose a computer board that features hardware H.264 acceleration). Gaming con-

soles use hardware that is often much worse than the best desktop PC configuration, yet

they deliver far greater performance. They achieve this because they optimize at both the

hardware and software layers. For example, they avoid if-based error checking at certain

points in code when they know that due to the hardware choices that error or disparity

will never occur.

1.7. Your Mechanical Engineer is Your Second Best Friend
Your software controls a mechanical vehicle, and the electrical engineer's hardware is

also mounted on that vehicle. Coordinate with the team's mechanical engineer on matters

of  component placement and dimensions. You need to be aware of  the propulsion (drive

and steering) method chosen, to properly structure your Transmission Interface software.

You also need to know where on the platform the various sensors are placed (coordinate

transformations).

Software is less tightly coupled to mechanical parts than it is to electronics hardware,

but you and the mechanical engineer still need to see eye to eye on project decisions and

implementation details.

1.8. Never Believe Other Robots' Specifications
Most designers will publish results that are slightly… exaggerated, either (rarely) to

satisfy their ego, or (mostly) to fool competitors into wasting time and effort surpassing a

benchmark that is usually unattainable without exorbitant cost. If  the specification of  a

RPi-based robot with a HD webcam says it can do real-time pedestrian recognition and
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point cloud-based mapping, grab your popcorn and read the rest of  the specs in a kid-

ding mood, because it most likely  is kidding. Unless you have discovered Alan Turing's

reincarnation.

The same guideline should apply to your selection and adoption of  third-party soft-

ware libraries, especially when they are non-commercial and their license states they are

provided 'AS IS'. Actually, the development of  "Brasidas" thus far has been rife with such

examples of  gullibility on the design team's behalf.

§3. In Closing
"Brasidas" is an ambitious project, especially given the restrictions regarding funding

and access to equipment. It represents but a minuscule part of  a vision; in particular the

part of  the place of  robotic software and systems in the ground battlefields of  the 21st

century.

Many more visions have come before this, and much grander. This is not a better or

worse vision, it is just another one, perhaps different, perhaps not. It will not be the vi-

sion to rule them all,  but it could possibly contribute something to what is to come.

Maybe soon some scientist  will  discover how to create true AI, or something equally

ground-breaking. Even if  that does not happen in our lifetimes, the proliferation of  auto-

mated, robotic, and autonomous systems will happen.

Make no mistake, robotic systems are here to fight, and are here to stay. Soldiers and

defense designers alike must adapt to this reality, or become extinct – the former literally,

the latter professionally.

It sure has been fun, though…
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ANNEX A:                                  
Installing Gstreamer 1.0 OpenMAX 
Extensions on Raspberry Pi

All versions of  Raspberry Pi feature the VideoCore-IV GPU, which among others

includes a set of  multimedia codecs in hardware. These modules can be accessed by using

the OpenMAX extensions1. Gstreamer includes pipeline elements which can take advan-

tage of  these extensions, to do hardware-accelerated encoding or decoding of  media.

On the Raspberry Pi, these pipeline elements are packaged in gstreamer1.0-omx, but

this package is available only for Raspbian Jessie, and the latest Raspbian Wheezy distri-

butions. If  you have an older RPi that still runs Wheezy and the distribution is out of

date, you need to either upgrade the distribution, or attempt to build gstreamer1.0-omx

from source.

Note that this Appendix is only concerned with the new Gstreamer release 1.0. The

older 0.10 release that was used for a long time, can support omx as well, but it is no

longer supported, so if  you are setting up a Gstreamer system now, it is recommended

that you use version 1.0. Before installing anything, always do a

pi@raspberrypi ~ $ sudo apt-get update
pi@raspberrypi ~ $ sudo apt-get upgrade

to make sure all repositories and dependencies are up to date.

If  you run Wheezy, also upgrade the distribution to the latest version

pi@raspberrypi ~ $ sudo apt-get dist-upgrade

Then, all you have to simply do to get gstreamer installed along with the OpenMAX

extensions, is to issue

pi@raspberrypi ~ $ sudo apt-get install libgstreamer1.0-0 \ 
gstreamer1.0-{omx,alsa} gstreamer1.0-tools \ 
gstreamer1.0-plugins-{bad,base,good,ugly}

This should also automatically pull in all additional package dependencies, and all

should be installed after a while. To verify that the omx pipeline elements are indeed in-

1 Official site: https://www.khronos.org/openmax/
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stalled, do a

pi@raspberrypi ~ $ gst-inspect-1.0 | grep omx

and you should get a result that includes all or part of  the following lines:

omx:  omxhdmiaudiosink: OpenMAX HDMI Audio Sink
omx:  omxanalogaudiosink: OpenMAX Analog Audio Sink
omx:  omxh264enc: OpenMAX H.264 Video Encoder
omx:  omxvc1dec: OpenMAX WMV Video Decoder
omx:  omxmjpegdec: OpenMAX MJPEG Video Decoder
omx:  omxvp8dec: OpenMAX VP8 Video Decoder
omx:  omxtheoradec: OpenMAX Theora Video Decoder
omx:  omxh264dec: OpenMAX H.264 Video Decoder
omx:  omxh263dec: OpenMAX H.263 Video Decoder
omx:  omxmpeg4videodec: OpenMAX MPEG4 Video Decoder
omx:  omxmpeg2videodec: OpenMAX MPEG2 Video Decoder

You might get less packages than the above listing; this is usually because in latest re-

leases some (notably the audio sinks) are disabled, since they are available directly at the

kernel level via ALSA (so you can use them just as well by using the Gstreamer alsa-re-

lated plugins).

All the extensions but one are decoders, but there is an H.264 encoder, and that is

what most folks are after. Note that despite H.264 requiring a licence1, the purchase of  a

RPi includes this licence, so anyone purchasing a Pi can use the H.264 encoder with no

legal worries.

You can test a successful installation by connecting a USB webcam on the Pi (will be

assigned node  /dev/video0) and running in bash the following pipeline (change the

'width', 'height', and 'framerate' parameters to a resolution supported by your camera):

pi@raspberrypi ~ $ gst-launch-1.0 -ve v4l2src device=/dev/video0 \
! video/x-raw,width=320,height=232, framerate=15/1 \
! omxh264enc ! rtph264pay config-interval=3 \
! udpsink host=<IP_of_target_PC> port=15575

Then, on the computer having the IP specified in the 'host' parameter above, run

the following pipeline to receive the stream:

pi@raspberrypi ~ $ gst-launch-1.0 -ve udpsrc port=15575 \
caps="application/x-rtp" ! rtph264depay ! avdec_h264 \
! xvimagesink sync=false

You can of  course use any port you wish. If  all works as intended, a window should

1 Also check Cisco's OpenH264 (http://www.openh264.org/) for an open-source version of H.264.
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pop up, showing the camera video, and with minimal latency. Beyond this, all pipeline ele-

ments have additional parameters that you can tweak to tune the streaming to your liking.

As a side note,  the author has  successfully  installed and used these elements to

stream H.264-hardware-encoded video, at 640×480@30 fps from an old RPi Model A+

(only used ~60% of  the single-core CPU). This was possible because of  a third-party

repository that offered precompiled gstreamer1.0-omx binaries for the older Wheezy re-

leases.  However,  with  the  inclusion of  gstreamer1.0-omx into  the  latest  Wheezy  and

Jessie releases, this repository has not been updated since late 2014, and its key has ex-

pired. This process is detailed in this (outdated) RPi forum topic:

https://www.raspberrypi.org/forums/viewtopic.php?p=293634

Finally, if  all else fails, you can attempt to build from source as a last resort. The fol-

lowing post in a Stack Exchange topic explains the process:

https://raspberrypi.stackexchange.com/a/4628

Note: The author assumes NO responsibility for bad source building attempts. Be

warned that attempting to build Linux packages from source can result, among others, in

a deep knowledge of  C++ and linux kernel programming, fascination with compilers, ob-

session with instruction optimizations, lack of  social contact, decrease in vocabulary, pos-

sibly slight overall increase in intellect, a fondness for pizza, burgers, and all kinds of  junk

food, and a massive collection of  single-board computers and electronic boards of  all

kinds that takes up space and serves no purpose.
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ANNEX B:                               
Forwarding Broadcast Packets through 
an OpenWRT Router with socat

The platform discovery functionality required that platform broadcast a basic set of

parameters, that enable Control Stations to connect to them. The information also in-

cludes a basic status report on the whereabouts and condition of  the platform. This en-

ables a quick overview of  the platforms' state without having to connect to every one of

them.

This information is carried in broadcast UDP packets transported over port 21000,

but you can use any port you prefer. Simply change the '21000' below to whichever port

number you select.

Since both the platform and Control Station computer actuals sit behind their re-

spective network routers, broadcast packets are normally prohibited both from entering

the "Brasidas" network out through the platform router, and entering the Control Station

LAN in through the Control Station router.

The routers used when this  work was  prepared (May 2017)  run the OpenWRT

firmware.  After several  failed efforts to configure the router firewalls into forwarding

broadcast packets, a workaround was implemented using socat. socat is by default not

a part of  a pre-compiled OpenWRT image, so it needs to be downloaded first. This can

be accomplished by first logging in to the OpenWRT router via ssh, and issuing the fol-

lowing commands:

opkg update

opkg install socat

The  AREDN™ mesh  OpenWRT  distribution  does  already  include  socat,  so

there's no need to install it if  you use that distribution.

Then login to the router, either via the graphical interface (LuCI), or via ssh. If  you

use the graphical approach, go to System→Startup. There, scroll down to the end of  the
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page, where the contents of  the file  /etc/rc.local are displayed. This file contains

shell commands that are executed at the end of  the boot process. If  you login via ssh,

you need to edit the file manually, using vi (which is the only editor included in an Open-

WRT distribution). Before the line 'exit 0', enter  one of  the following two lines, de-

pending on which router you are configuring. Note that although the solutions are given

on two lines here (they can't fit on the page otherwise), you should type each in a single

line, without the '\' symbol (which stands for 'line continuation').

For the router installed on the platform, which needs to forward broadcast packets

from the internal LAN to the mesh side, use the line:

socat UDP-RECVFROM:21000,broadcast,bind=<LAN broadcast>,fork \

    UDP-SENDTO:<mesh broadcast>:21000,broadcast

where <LAN broadcast> and <mesh broadcast> should be replaced with the LAN-

side broadcast IP address and mesh broadcast IP address respectively.

For the router installed on the Control Station, which needs to forward broadcast

packets from the mesh to the internal (Control Station) LAN, use this line:

socat UDP-RECVFROM:21000,broadcast,bind=<mesh broadcast>,fork \

    UDP-SENDTO:<LAN broadcast>:21000,broadcast

In order for the  socat workaround to work, the Control Station router's firewall

should be configured to allow port 21000 connections to the router (i.e. as INPUT, not

FORWARD).
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