
Semantically Enriched API Descriptions for

Improving Service Discovery in Cloud

Environments

Mainas Nikolaos

School of Electrical and Computer Engineering

Technical University of Crete

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science.

Committee

Supervisor: Euripides G.M Petrakis, Professor

Stelios Sotiriadis, Research Fellow

Stavros Christodoulakis, Emeritus Professor

June 2017

Abstract

The rapid growth and development of Cloud Computing has allowed the im-

plementation of scalable applications and services in lower costs based on the

principles of Service-Oriented Architecture (SOA). The increasing interest in

Cloud Computing solutions, has led to the proliferation of Cloud service of-

ferings over the Internet by multiple Cloud providers. The need for efficient

and accurate service discovery based on user needs has become a signifi-

cant challenge. Cloud services are mainly offered by means of Web services

based on the REST architecture style and need to be formally described in

a way that is both understandable by humans and machines. In this work,

we propose the adoption of the OpenAPI Specification (OAS), a simple and

yet powerful specification for the description of REST APIs, as the descrip-

tion language of Cloud services. In addition, we present a set of extension

properties, forming the Semantic OpenAPI Specification (SOAS), that se-

mantically enrich the OAS service descriptions, so as to be understandable

by both humans and machines. Finally, we demonstrate that is plausible

to transform SOAS descriptions to ontologies as this enables application of

state-of-the-art querying languages (e.g. SPARQL) for service discovery and

of reasoning tools for detecting inconsistencies and inferred relationships in

SOAS descriptions.

i

Acknowledgments

This thesis would not have been possible without the help of several people

who contributed in the preparation and completion of this study.

Firstly and foremost I would like to thank my advisor, Professor Euripi-

des G. M. Petrakis for his constant supervision. For guiding, advising and

supporting me in every step of this thesis. I am grateful for giving me the

opportunity to work on this very interesting field of research.

Also, I would like to thank Professor Stavros Christodoulakis and Dr.

Stelios Sotiriadis who agreed to evaluate my thesis.

Moreover, I would like to thank my laboratory colleagues for their patient

and constructive comments.

Most of all, I would like to thank my family for their enormous help,

understanding and support.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of figures v

List of tables vi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 3

1.3 Proposed Solution . 4

1.4 Contributions of the Work . 5

1.5 Thesis Outline . 6

2 Background and Related Work 7

2.1 Service-Oriented Architecture (SOA) 7

2.2 SOAP-based Services . 9

2.3 REST-based Services . 10

2.4 Cloud Computing . 13

2.4.1 SOA and Cloud Computing 16

2.4.2 Openstack . 16

2.4.3 FIWARE . 18

2.5 Semantic Web and Linked Data 21

2.6 Interface Description Languages 23

2.6.1 WSDL and SAWSDL 24

2.6.2 WADL . 28

2.6.3 OpenAPI Specification, RAML, API Blueprint 31

2.7 Ontologies and Vocabularies 34

2.7.1 OWL-S . 35

iii

Contents

2.7.2 WSMO . 37

2.7.3 WSMO-Lite . 38

2.7.4 Hydra Core Vocabulary 40

2.8 Service Catalogues . 43

2.8.1 Oracle API Catalog Service 43

3 The Semantic OpenAPI Specification 45

3.1 Adopting the OpenAPI Specification 45

3.2 Describing the OpenAPI Specification 47

3.3 Enriching the OpenAPI Specification 60

3.4 The OpenAPI Ontology . 70

4 Use Case: FIWARE 80

4.1 The FIWARE Catalogue . 81

4.2 API Descriptions of FIWARE’s GEs 93

4.3 Improving the FIWARE Catalogue 95

5 Conclusions and Future Work 102

5.1 Conclusions . 102

5.2 Future Work . 104

Bibliography 106

iv

List of Figures

2.1 SOAP message structure . 10

2.2 Web service basic architecture 10

2.3 OpenStack Conceptual Architecture 17

2.4 RDF data model . 22

2.5 WSDL document structure . 25

2.6 Swagger Editor preview . 32

2.7 Swagger UI preview . 32

2.8 The OWL-S ontology . 35

2.9 Mapping between OWL-S and WSDL 36

2.10 The top-level elements of WSMO 37

2.11 Web service descriptions with WSMO-Lite 39

2.12 The Hydra Core Vocabulary 41

3.1 OAS document structure overview 47

3.2 Swagger Petstore operations grouped by tag ”pet” 68

3.3 The proposed ontology for OAS from [34] 71

3.4 The OpenAPI Ontology . 72

4.1 FIWARE Catalogue web interface 81

4.2 FIWARE Catalogue GE detailed view 82

4.3 The Docker API documentation based on ReDoc 84

4.4 Representation of rules in Bosun GE 94

4.5 The provided JSON Schema of a rule in HTTP requests of

Bosun GE . 95

4.6 API Blueprint description of HTTP requests of Keyrock GE . 96

v

List of Tables

3.1 OAS document structure from [35] 49

3.2 OAS Operation Object structure from [35] 52

3.3 OAS parameter properties from [35] 55

3.4 Schema Object additional properties introduced by the OAS . 56

3.5 Schema Object properties adopted from the JSON-Schema . . 57

3.6 OAS extension properties for semantic annotations 62

4.1 FIWARE GEs of the Cloud Hosting chapter 84

4.2 FIWARE GEs of the Data/Context Management chapter . . . 85

4.3 FIWARE GEs of the Internet of Things (IoT) Services En-

ablement chapter . 87

4.4 FIWARE GEs of the Applications/Services Ecosystem and

Delivery chapter . 89

4.5 FIWARE GEs of the Security chapter 90

vi

1
Introduction

The rapid growth of the World Wide Web (WWW) in recent years has drasti-

cally affected many aspects of our life. The Web provides access to the world’s

information and enables communication in matter of seconds. According to

big data info-graphic contributed by Ben Walker [40], 2.5 quintillion bytes

of data are being created every day. In order to use and analyze this vast

amount of data, systems need to directly communicate to each other. Services

became the prevalent option, as they allow systems to remain independent

and self-contained. More and more organizations build their systems based

on the principles of Service-Oriented Architecture (SOA) [15], in which every

service offers a specific functionality.

Service-Oriented Architecture (SOA) is an evolution of distributed com-

puting based on the request/reply design paradigm for synchronous and asyn-

chronous applications. An application’s business logic or individual functions

are modularized and presented as services for consumer/client applications.

A service, in most cases, is implemented as a Web Service [23] due to its

loosely coupled nature i.e. the service interface is independent of its imple-

mentation. Every service needs to introduce itself to other services in order

to be able to use it by making its API and functionality public and accessible

to others. Service description languages have been introduced to describe the

requirements for establishing a connection with a service as well as message

formats to successfully communicate with it.

In today’s highly competitive environments, organizations are striving to

1

Chapter 1. Introduction

manage the cost of infrastructure and information architecture. Cloud Com-

puting [33], a new paradigm of computing, has emerged allowing users to

gain access over unlimited computing resources that could be managed ef-

fectively and more efficiently. Individuals and organizations can make use

of scalable IT infrastructures in lower costs, while processing power can be

accessed based on demand and on budget allowance.

SOA and cloud computing are complementary technologies as they both

attempt to increase the agility and cost savings of software development

and maintenance. Typically, Cloud services are offered by means of Web

Services and thus they are service-oriented. Therefore, systems driven by

SOA design principles, may include Cloud services as part of their archi-

tecture. Moreover, Cloud providers offer environments that integrate SOA

technologies, such as service management and orchestration platforms as well

as service registries, for the development of services or applications that fully

exploit Cloud Computing capabilities. As the number and diversity of cloud

providers is increasing the need for standardizing technologies for publish-

ing their services to developers is becoming of crucial importance for their

adoption and market success.

1.1 Motivation

The increasing interest in Cloud Computing solutions, has led to the prolifer-

ation of Cloud service offerings over the Internet by multiple Cloud providers.

Cloud providers (such as Amazon and Microsoft) offer services that range

from software to hardware through Web interfaces or APIs (Application Pro-

gramming Interface). The need for efficient and accurate service discovery

based on user needs has become a significant challenge [39].

In order to increase the adoption of cloud services by software developers

and enterprises, these must be accompanied by appropriate service descrip-

tions. Typically, Cloud providers describe their services in plain text (such

2

Chapter 1. Introduction

as the FIWARE catalogue1), which users have to browse and read in order

to determine whether a service meets their needs. However, text descrip-

tions of services are mainly intended to be readable by humans and not by

machines, while in some cases are inaccurate or vague. Cloud services need

to be formally described in a way that is both understandable by humans

and machines. The last requirement would not only improve the accuracy

of service descriptions but also, would allow for services to be discovered by

other services and also orchestrated in composite services or applications e.g.

in the example of AWS formation services2.

1.2 Problem Definition

One of the key components in any service-oriented architecture is service

discovery. It is an active area of research, as the increasing amount of services

imposes suitable discovery and selection capabilities for the identification of

the services of interest. For instance, ProgrammableWeb3, the most well-

known Web service directory, has registered more than 15000 public services,

not considering the amount of private services created by organizations.

Extensive research has been conducted over the years [14] in order to pro-

vide tools and mechanisms that would efficiently describe any aspect of a

service (functional and non-functional). UDDI (Universal Description Dis-

covery and Integration) [11], WSDL (Web Service Description Language)

[9] were introduced as a first approach towards the syntactic description of

services. SAWSDL [16], OWL-S [32] and other approaches were proposed

as an effort to enrich the existing service descriptions with semantics based

on Semantic Web technologies. However, as new technologies and architec-

tural styles (REST [18]) emerged, many of these approaches became obsolete.

The need for better service descriptions and consequently effective discovery

1https://catalogue.fiware.org/
2https://aws.amazon.com/cloudformation/
3http://www.programmableweb.com/

3

https://catalogue.fiware.org/
https://aws.amazon.com/cloudformation/
http://www.programmableweb.com/

Chapter 1. Introduction

fueled new research efforts such as WADL (Web Application Description

Language) [24], Hydra [30], OpenAPI Specification (OAS) [35].

The focus of this work is on improving the description of Cloud services,

and consequently allow the implementation of efficient and accurate service

discovery mechanisms. Cloud services need to be described in a way that

eliminates ambiguities and provides descriptions which are both uniquely

defined and discoverable. Therefore, a description language is required that

would allow for both syntactic and semantic description of Cloud services.

To achieve it, the existing description languages need to be reviewed, analyze

their features and characteristics in order to determine their suitability for

the description of Cloud services.

1.3 Proposed Solution

Our research effort resulted in the adoption of the OpenAPI Specification

(OAS) as the main description language for Cloud services. OAS (formerly

known Swagger) is a simple and yet powerful specification for the description

of REST APIs, as it provides both human-readable and machine-readable

descriptions. Given an OpenAPI service description, a consumer client is

able to understand and discover the functionality of a service, as well as to

interact with it with a minimum implementation logic. In fact, OAS is a

complete framework providing tools for interactive documentation (Swagger

Editor4 and Swagger UI5) and client SDK generation (Swagger Codegen6).

Despite its capabilities, OAS is mainly focused to human-readable service

descriptions. In order for a machine to understand the meaning of an Ope-

nAPI service description, a service description need to be formally defined

and its content be semantically enriched. This work proposes that OAS ser-

vice description can be semantically annotated by associating OAS entities

4https://github.com/swagger-api/swagger-editor
5https://github.com/swagger-api/swagger-ui
6https://github.com/swagger-api/swagger-codegen

4

https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-codegen

Chapter 1. Introduction

to entities of an ontology (e.g. domain ontology). The new approach, hence-

forth referred to as Semantic OAS (SOAS) eliminates any ambiguities in the

original OAS descriptions and produces service descriptions that are under-

standable by both humans and machines. Moreover, this work suggests that

is plausible to transform SOAS descriptions to ontologies as this enables ap-

plication of state-of-the-art querying languages (e.g. SPARQL) for service

discovery and of reasoning tools (e.g. Pellet) for detecting inconsistencies

and inferred relationships in SOAS descriptions.

1.4 Contributions of the Work

The major contributions of this thesis can be summarized as follows:

• Provides a comprehensive review of approaches for service description

and of related technologies including SOA, cloud and semantic Web

technologies. This review provides a critical analysis of each technol-

ogy and highlights its characteristics that restrict its adoption or limit

its usefulness in providing unambiguous and machine readable service

descriptions.

• Proposes Semantic OpenAPI Specification (SOAS) as the description

language for Cloud services. SOAS is an extension to the OpenAPI

Specification (OAS) that semantically enriches service descriptions in

order to eliminate any ambiguities and offer descriptions readable by

both humans and machines.

• Describes a mechanism for transforming SOAS service descriptions to

ontologies so as to benefit from semantic web tools such as reason-

ers and query languages for service discovery and for enabling service

orchestration.

• Demonstrates how SOAS can be applied to describe FIWARE services

(as the FIWARE catalogue of services is available in text only) following

the example of ORACLE which first provided the API Catalog Cloud

Service as a collection of machine-readable OpenAPI descriptions, rep-

5

Chapter 1. Introduction

resenting some of Oracle’s most popular SaaS and PaaS applications.

1.5 Thesis Outline

Chapter 2 provides a brief introduction to basic concepts and technologies

which are used throughout the thesis. In addition, it summarizes and presents

the most common approaches for the description of Cloud services. In Chap-

ter 3 our proposed solution for the description of Cloud services, the Semantic

OpenAPI Specification, is presented. At first, we discuss the reasons the led

us to the adoption of OpenAPI Specification. Then, we introduce the exten-

sion properties that allow OpenAPI service description to be semantically

enriched. Moreover, we describe a mechanism for transforming SOAS ser-

vice descriptions to ontologies. Chapter 4 demonstrates how our proposed

solution can be applied in a Cloud provider, such as the FIWARE platform.

Finally, conclusions and issues for future work are discussed in Chapter 5.

6

2
Background and Related Work

2.1 Service-Oriented Architecture (SOA)

Service-oriented architecture (SOA) represents an architectural model that

aims to enhance the efficiency, agility, and productivity of an enterprise by

designing, developing, deploying and managing systems, based on service-

orientation [15]. Service-orientation is a design paradigm that suggests that

all functional components of a system are viewed as services that communi-

cate with each other through well defined interfaces by message passing.

A service is a function that is well-defined, self-contained, and independent

of other services. The invoker of a service need to be aware of its interface only

and not its implementation. SOA as an architectural model doesn’t impose

a specific technology for the communication of services. With the advent

of machine communication protocols such as HTTP and data formats such

as XML, RDF and JSON, SOA is becoming the mainstream approach for

building distributed systems (communicating systems in general) in terms of

communicating services.

The following principles provides general guidance for the design and de-

velopment of services and Service Oriented Architectures:

• Standardized Service Contract

A service contract is a specification or description that provides infor-

7

Chapter 2. Background and Related Work

mation about a service. It defines information about service endpoint,

service operations, the exchanged message formats and the conditions

which need to be fulfilled before the service can be executed

• Service Loose Coupling

Service minimizes dependencies between service consumers and the un-

derlying service logic and implementation.

• Service Abstraction

Services hide the logic they encapsulate from the outside world

• Service Reusability

Services are reusable resources and thus can be used in multiple solu-

tions.

• Service Autonomy

Services are independent and control the functionality they encapsu-

late.

• Service Statelessness

Services minimize retaining information specific to an activity.

• Service Discoverability

Services are designed to be outwardly descriptive so that they can be

found and accessed via available discovery mechanisms

• Service Composability

Collections of services can be coordinated and assembled to form com-

posite services.

A SOA building block (i.e. a service) can take one of the following roles

according to the ”find-bind-execute” system design paradigm:

• Service registry, which is a repository containing service contracts (de-

scriptions) for service consumers to know how services may be accessed.

• Service Providers, who build and execute services. Moreover, they are

responsible to register services in Service registries.

• Service Consumers, who search for services in Service registries based

on some criteria and when found a dynamic binding is performed.

8

Chapter 2. Background and Related Work

2.2 SOAP-based Services

Initially, the Web services technology platform was built on existing stan-

dards such as, Extensible Markup Language (XML), Simple Object Access

Protocol (SOAP), Web Services Description Language (WSDL) and Univer-

sal Description Discovery and Integretion (UDDI). XML [7] was selected,

due to its popularity at the time, as the main data format for machine to

machine communication.

SOAP [12] designed by Microsoft in 1998, specifies a messaging framework

consisting of an XML-based message format, a protocol binding specifica-

tion, and a mechanism for specifying additional application-level features.

In SOAP-based services, all messages are typically envelopes that contain

header and body elements. Figure 2.11 illustrates the structure of a SOAP

message. An envelope defines the SOAP message, an XML document with a

start and end point so that the receiver knows where the message starts and

where it ends. A header is an optional element which contains application

specific information about the message. Finally, the body is a mandatory

element that contains the application-defined XML data being exchanged in

the SOAP message, that is the information sent to the receiver. An impor-

tant characteristic of SOAP-based services is the ability to leverage different

transport protocols, including HTTP and SMTP, as well as others.

WSDL [9] is a XML-based interface description language that is used for

describing the functionality offered by a web service (Section 2.6.1) e.g. in

a UDDI registry. UDDI [11] was introduced as a registry for the discovery

of services based on their WSDL description files. Figure 2.22 demonstrates

the role of each component in a original Web Service technology platform.

A service provider describes its service using WSDL before it is published

in a service registry, like UDDI (1). A service consumer issues queries to

the registry to locate a service (2). The WSDL description of the service

1Original figure from https://en.wikipedia.org/wiki/SOAP
2Original figure from http://www.service-architecture.com/

9

https://en.wikipedia.org/wiki/SOAP
http://www.service-architecture.com/

Chapter 2. Background and Related Work

Figure 2.1: SOAP message structure

is passed to the service consumer, informing him how to communicate with

the service (3). The service consumer uses the WSDL to send a request to

the service provider (4) and receives the expected response by the service

provider (5).

Figure 2.2: Web service basic architecture

2.3 REST-based Services

A different flavor of Web Services was inspired by Fielding’s Representational

State Transfer (REST) architectural style [18]. REST defines a set of archi-

10

Chapter 2. Background and Related Work

tectural principles by which Web services are designed to focus on a system’s

resources, including how resource states are addressed and transferred over

HTTP by a wide range of clients written in different languages.

The key abstraction of information in REST is a resource. A resource is

anything that is important enough to be referenced as a thing in itself [36],

such as a document or image, a collection of other resources, a non-virtual

object (e.g. a person). Resources can be static, like a book, or dynamic, like

a weather report (i.e., it always changes, but still is a resource). REST uses

a resource identifier (URI) to identify the particular resource involved in an

interaction between components.

According to Fielding’s doctoral dissertation, any Web Service considered

RESTful is characterized by the following principles:

• Client-Server

Client applications and server application must be able to evolve sep-

arately without any dependency on each other. This principle has a

tight relation with the loosely coupled SOA principle, as discussed in

Section 2.1

• Stateless

Each request from a service consumer should contain all the necessary

information in order to interact with the service, as the service doesn’t

store information from previous requests. The same principle is also

found in SOA (Section 2.1).

• Cacheable

Response messages from the service to its consumers are explicitly la-

beled as cacheable or non-cacheable. If a response is cacheable, then

a client cache is given the right to reuse that response data for later,

equivalent requests. Caching brings performance improvement for both

clients and server, as this reduces the number of requests a server has to

manage, while clients may instantly reuse existing information without

the need to send a new request and wait for server’s response.

• Uniform interface

11

Chapter 2. Background and Related Work

The uniform interface simplifies the service architecture, enabling every

component of the service to evolve independently. Resources are iden-

tified using URIs, which are different from the representation (XML,

JSON) sent to the client. The client can manipulate the resource rep-

resentations provided they have the permissions. Every message sent

between the client and the server is self-descriptive and includes enough

information to describe how it is to be processed. Server’s responses

should include hyperlinks that a client can use in order to discover all

the available actions and resources it needs (HATEOAS3).

• Layered system

It allows an architecture to be composed of hierarchical layers by con-

straining component behavior such that each component cannot “see”

beyond the immediate layer with which they are interacting.

• Code on demand

An optional constraint where the server temporarily extends the func-

tionality of a client by the transfer of executable code.

REST has gained massive adoption, including Cloud Services, compared to

other approaches, such as SOAP and WSDL. REST-based services are sim-

pler to express, faster to process and make efficient use of bandwidth, as they

don’t require additional parsing for messages and are much less verbose than

SOAP-based services. Unlike SOAP-based services, REST-based services are

designed to be stateless and also enable caching that improves performance

and scalability. Moreover, REST-based services may support multiple data

formats such as XML and JSON, whereas SOAP-based services are limited

to the use of XML.

However, the term REST has been misused as most Web services that

claim to be RESTful (REST APIs) are not, in fact. In most cases services

are based on the REST architecture, but often they violate the hypermedia

constraint (HATEOAS). Fielding wrote a blog post4 explaining that a service

is considered RESTful if all REST principles are met. In order to describe

3https://en.wikipedia.org/wiki/HATEOAS
4http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

12

https://en.wikipedia.org/wiki/HATEOAS
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Chapter 2. Background and Related Work

services that are implemented incorporating the hypermedia constraint, the

term Hypermedia API [1] has been emerged.

2.4 Cloud Computing

The US National Institute of Standards and Technology5 (NIST) defines

Cloud computing as ”a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications and services) that can be rapidly provisioned

and released with minimal management effort or service provider interac-

tion. This cloud model promotes availability and is composed of five essential

characteristics, three delivery models and four deployment models” [33].

Essential Characteristics

Cloud computing characteristics that differentiate it from the traditional

computing

• On-demand self-service

A customer can easily access the required/necessary computing services

without requiring human collaboration with the service providers

• Broad network access

It provides the ability to access various cloud services from different

devices, such as smartphones, desktops and other handheld internet

capable devices.

• Resource pooling

The provider’s computing resources are pooled to serve multiple con-

sumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer

demand. A consumer may be using resources from across the world

5https://www.nist.gov/

13

https://www.nist.gov/

Chapter 2. Background and Related Work

without knowing the exact location, but with the exception of highly

abstract information such as country, state or data-center.

• Rapid elasticity

Consumers are able to purchase capabilities that can rapidly be scaled

up or down, depending on the requirement. Often, services available

to the consumer appear to be unlimited.

• Measured service

Cloud systems automatically monitor and measure resource usage en-

abling this way the implementation of billing strategies per customer

and per use of resources in certain periods of time.

Service Models

Cloud computing has been categorized into three models depending on the

services provided by the cloud.

• IaaS (Infrastructure as a Service)

Basic computing services are provided to a consumer, such as storage,

networking and processing. A consumer is responsible for installing

and maintaining the operating system and other software, but the re-

sponsibility of upgrading or maintaining the hardware resides to the

provider. Examples of IaaS services are Amazon EC26 and Azure Vir-

tual Machines7

• PaaS (Platform as a Service)

A consumer is provided with an environment containing libraries, ser-

vices and other tools through which he is able to deploy his own created

or acquired applications onto the cloud infrastructure. A consumer

doesn’t control or manage cloud infrastructure, however he may be

able to configure settings for the application hosting environment on a

cloud. Examples of PaaS services are Google App Engine8 and AWS

6https://aws.amazon.com/ec2/
7https://azure.microsoft.com/en-us/services/virtual-machines/
8https://cloud.google.com/appengine/

14

https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/appengine/

Chapter 2. Background and Related Work

Elastic Beanstalk9

• SaaS (Software as a Service)

A consumer is able to use the provider’s applications running on a cloud

environment. The applications are typically accessible through a thin

client interface, such as a web browser. A consumer doesn’t control

either the underlying infrastructure or platform. However, there is a

possibility to configure user-specific settings for the application in use.

Examples of SaaS services are Google Docs10 and Dropbox11.

Deployment Models

There are four models for cloud computing service deployment, regardless of

the service or delivery model adopted. These deployment models may have

different derivatives which may address different specific needs or situations.

• Private cloud

The cloud infrastructure is provided solely for a single organization’s

use. It may be operated, managed and owned by the organization, a

third party or combination.

• Community cloud

The cloud infrastructure is provided for restrictive use by a particular

group of users from organization that have common concern (e.g., pol-

icy or mission). It may be operated, managed and owned by one or

more organizations in the society or a third party.

• Public cloud

The cloud infrastructure is made available to the general public for

open use. In this deployment model, the cloud infrastructure may be

operated, managed and owned by an academic institution, government,

business or a combination.

• Hybrid cloud

9https://aws.amazon.com/elasticbeanstalk/
10https://docs.google.com/
11https://www.dropbox.com/

15

https://aws.amazon.com/elasticbeanstalk/
https://docs.google.com/
https://www.dropbox.com/

Chapter 2. Background and Related Work

The cloud infrastructure is a combination of two or more discrete cloud

infrastructures, such as community, public or private, that remaim ex-

clusive units. However, those units are bound together by the propri-

etary technology or the standardization that facilitates application and

data portability.

2.4.1 SOA and Cloud Computing

SOA (Section 2.1) and Cloud Computing (Section 2.4) are technologies that

can exist separately — neither depends on the other. However, the benefits

of an integrated architecture with these two solutions is shown as a largely

favorable strategy in the categories of cost, speed of development, ease of

maintenance, and management.

Cloud Computing provides computational resources, including hardware

and software, for the delivery and deployment of scalable applications and

services. However, it doesn’t impose any specific method for the efficient

use and management of its offering services. SOA promises to fill this gap

by providing guidelines, principles, and techniques for the development of

applications and services, and strictly defines the architecture of service-

oriented systems.

Cloud services are typically API or service-driven, and thus service-oriented.

Cloud providers organize their services in directories or service registries, in

order to enable discovery of services that best fit the needs of customers as

well as reuse and better management of services.

2.4.2 Openstack

OpenStack12 is an open-source cloud operating system platform for support-

ing the management of large pools of compute, storage, and networking re-

12https://www.openstack.org/

16

https://www.openstack.org/

Chapter 2. Background and Related Work

sources through a datacenter. The U.S National Aeronautics and Space Ad-

ministration13 (NASA) and Rackspace14 were the initials contributors of the

project, back in 2010. Nowadays, the community has over 200 participating

members including companies like IBM15, Intel16, HP17 and Red Hat18.

OpenStack is comprised of several open-source sub-projects or services

that manage its resources using either a web-based dashboard (provided by

OpenStack), or through RESTful APIs (Section 2.3). Figure 2.3 demon-

strates OpenStack’s core services.

Figure 2.3: OpenStack Conceptual Architecture

• Horizon a web-based self-service portal for assisting user interaction

with the underlying OpenStack services, such as launching an instance,

assigning IP addresses and configuring access controls.

• Nova provides on-demand access to compute resources by providing

mechanism for the management of large networks of virtual machines.

A user is able to create and manage virtual servers using the machine

images provided by Glance.

• Glance provides a system that manages disk and server images. In

addition, the service has the ability to copy a server image and store

it. These images can be used as templates to create new servers using

Nova or backup running virtual machines.

13https://www.nasa.gov/
14https://www.rackspace.com/
15http://www.ibm.com/us-en/
16http://www.intel.com/content/www/us/en/homepage.html
17http://www8.hp.com/us/en/cloud/cloud-leadership.html
18https://www.redhat.com/en

17

https://www.nasa.gov/
https://www.rackspace.com/
http://www.ibm.com/us-en/
http://www.intel.com/content/www/us/en/homepage.html
http://www8.hp.com/us/en/cloud/cloud-leadership.html
https://www.redhat.com/en

Chapter 2. Background and Related Work

• Swift provides a highly available, distributed, eventually consistent

storage system in which users may store and retrieve arbitrary data

objects.

• Neutron manages the virtual networks in the cloud infrastructure. Us-

ing this service a user may create and control its own networks and

manage the IP addresses that are assigned to its virtual machines.

• Cinder provides the storage resources that are consumed by the virtual

machines created by Nova. The service manages the creation, attach-

ment and detachment of block storage devices to the virtual machines

according to user’s storage needs.

• Heat provides a template-based deployment orchestration for cloud ap-

plications. The service is similar to the AWS CloudFormation19, allow-

ing users to deploy and manage a service as a collection of services.

• Ceilometer monitors and collects usage data from OpenStack services

in order to be used for billing, benchmarking, scalability, and statistical

purposes.

• Keystone provides an authentication and authorization service for other

OpenStack services. The service contains information regarding user

authorization rights so that an OpenStack service will grant access only

to the resources that each user owns or is authorized to access.

2.4.3 FIWARE

FIWARE20 is a European initiative that aims to provide an open platform for

developing and deploying Future Internet (FI) applications and services. The

FIWARE platform is a cloud-based infrastructure built on top of OpenStack,

providing a set of predefined basic services called Generic Enablers (GEs)

which can be viewed as building blocks for an application. Generic Enablers

are considered as software modules that offer various functionalities along

with protocols and interfaces for their communication. Generic Enablers are

19https://aws.amazon.com/cloudformation/
20https://www.fiware.org/

18

https://aws.amazon.com/cloudformation/
https://www.fiware.org/

Chapter 2. Background and Related Work

implementations of open specifications of the most common functionalities

that are provided by FIWARE and are stored in a public catalogue21.

The FIWARE catalogue is organized into the following technical chapters:

• Cloud Hosting offers Generic Enablers that allow the creation and man-

agement of compute, storage and network resources. This chapter

contains services which are mainly provided by Openstack, as well as

Generic Enablers implemented by the FIWARE community such as

the SDC GE 22 which allows the automatic deployment (installation

and configuration) of software on running virtual machines.

• Data/Context Management aims at providing Generic Enablers that

will ease the development and provisioning of innovative applications

that require management and processing of context information (data

which are relevant to a particular entity) as well as data streams in

real-time and at massive scale. The Orion Context Broker GE 23 of-

fers operations regarding the storage, subscription and management of

context information. The Complex Event Processing GE 24 allows the

analysis of data in real-time, detecting and reporting events that occur

within a dynamic time window.

• Internet of Things (IoT) Services Enablement provides Generic En-

ablers that allow Things to become available, searchable, accessible,

and usable resources to FIWARE-based applications enabling interac-

tion with real-life objects. According to the FIWARE architecture25 a

Thing is any physical object, living organism, person or concept inter-

esting from the perspective of an application and whose parameters are

totally or partially tied to sensors, actuators or combinations of them.

21https://catalogue.fiware.org/
22https://catalogue.fiware.org/enablers/software-deployment-

configuration-sagitta
23https://catalogue.fiware.org/enablers/publishsubscribe-context-broker-

orion-context-broker
24https://catalogue.fiware.org/enablers/complex-event-processing-cep-

proactive-technology-online
25https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/

Internet_of_Things_(IoT)_Services_Enablement_Architecture

19

https://catalogue.fiware.org/
https://catalogue.fiware.org/enablers/software-deployment-configuration-sagitta
https://catalogue.fiware.org/enablers/software-deployment-configuration-sagitta
https://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
https://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
https://catalogue.fiware.org/enablers/complex-event-processing-cep-proactive-technology-online
https://catalogue.fiware.org/enablers/complex-event-processing-cep-proactive-technology-online
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Things_(IoT)_Services_Enablement_Architecture
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Things_(IoT)_Services_Enablement_Architecture

Chapter 2. Background and Related Work

The services of the IoT chapter mainly act as gateways in which de-

vices are registered to be discovered by other services in order to obtain

access to the information they collect, such as the IoT Discovery GE 26.

• Applications/Services Ecosystem and Delivery offers a set of Generic

Enablers that form a business framework through which service providers

manage the entire lifecycle of their offerings. The Business API Ecosys-

tem GE 27 allows users to publish their offerings (services, applications,

data) and manage the pricing models, accounting and revenue settle-

ment. On the other hand, the Application Mashup GE 28 provides a

framework through which users without programming skills can easily

create applications by combining services obtained from the Business

API Ecosystem GE.

• Security provides a comprehensive set of services for applications to

comply with major security requirements such as authentication and

authorization. The Identity Management (IDM) GE 29 is one of the

most important services in the FIWARE platform. The service man-

ages all FIWARE users accounts providing access to the platform’s

services. In addition, users can register their services and configure

their security (roles, authorization policy). Finally, the service acts

as an authorization server providing access to third-party applications

using the OAuth2 flow.

• Interface to Networks and Devices (I2ND) provides Generic Enablers

that allow the creation and management of advanced network infras-

tructures such as the Network Information and Control GE 30.

• Advanced Web-based User Interface provides Generic Enablers that

significantly improve the user experience for the Future Internet by

adding new user input and interaction capabilities, such as interac-

tive 3D graphics, immersive interaction with the real and virtual world

26https://catalogue.fiware.org/enablers/iot-discovery
27https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-

ecosystem-ri
28https://catalogue.fiware.org/enablers/application-mashup-wirecloud
29https://catalogue.fiware.org/enablers/identity-management-keyrock
30https://catalogue.fiware.org/enablers/network-information-and-control-

ofnic

20

https://catalogue.fiware.org/enablers/iot-discovery
https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri
https://catalogue.fiware.org/enablers/application-mashup-wirecloud
https://catalogue.fiware.org/enablers/identity-management-keyrock
https://catalogue.fiware.org/enablers/network-information-and-control-ofnic
https://catalogue.fiware.org/enablers/network-information-and-control-ofnic

Chapter 2. Background and Related Work

(Augmented Reality), virtualizing and thus separating the display from

the (mobile) computing device for ubiquitous operations, and many

more.

Overall, FIWARE is an IaaS and PaaS platform that aims to provide an

innovative and cost-effective way of building cloud applications while main-

taining high quality of service and security.

2.5 Semantic Web and Linked Data

Semantic Web

The Semantic Web is an extension of the current Web in which information

is offered not only in the form of natural language documents but also as

machine-readable data, enabling machine to machine communication in ad-

dition to human to machine communication that is supported by the existing

Web [5]. In order to achieve its purpose a set of standards and technologies

have been developed offering an environment where data and their relation-

ships are represented in a common data format, and also inferences can be

drawn from existing data. Vocabularies and data can be accessed using query

languages.

The Resource Description Framework (RDF) [13] builds the foundation of

the Semantic Web. RDF is a data model for expressing information about re-

sources using statements. Resources can be anything, including documents,

people, physical objects, and abstract concepts. A resource is identified by

an International Resource Identifier (IRI). IRIs are global identifiers, so that

an IRI can be re-used to identify the same thing. An RDF statement ex-

presses a relationship between two resources, in the form of triple (Figure

2.4). The Subject and the Object represent the two resources being related,

the predicate represents the nature of their relationship. Multiple triples

21

Chapter 2. Background and Related Work

Figure 2.4: RDF data model

build a graph, and multiple graphs form a dataset.

The RDF data model doesn’t make any assumptions about what resource

IRIs stand for. RDF Schema (RDFS) and Web Ontology Language (OWL)

offer the tools for creating vocabularies or, more formally, ontologies that cap-

ture knowledge in an area of interest. More specifically, ontologies provides

the means for representing high-level concepts, their properties and interre-

lationships. This information is supplemented by classificatory information

for such entities (i.e. making it possible to define classification hierarchies

for objects and object properties) as well as, entity and relation constraints.

Ontology axioms provide the semantics allowing for checking existing infor-

mation for consistency or for inferring new information based on information

defined explicitly in the ontology.

RDF Schema (RDFS) [8] provides a data-modeling vocabulary for RDF

data. It provides mechanisms for describing classes, class hierarchies, data

types, or properties similar to object-oriented programming languages. Un-

like RDFS, the Web Ontology Language (OWL) [21] is a family of knowl-

edge representation languages offering increased expressiveness for describing

classes and properties. Among others, OWL allows the definition of relations

between classes (e.g. disjointness), equality, restrictions over properties (e.g.

cardinality restrictions) and partial order and equivalence relations between

properties (e.g. transitive, symmetric properties).

The last piece of the Semantic Web is the ability for querying RDF data.

22

Chapter 2. Background and Related Work

SPARQL [26], a recursive acronym for SPARQL Protocol and RDF Query

Language, is the W3C recommendation not only for querying and manipu-

lating RDF data but also a protocol to invoke such queries over HTTP and

a number of result formats (XML, JSON, CSV).

Linked Data

In 2006, Sir Tim Berners-Lee31 introduced the term Linked Data [4], de-

scribing how RDF data should be published on the Web, fulfilling part of

the vision of Semantic Web. According to [6] Linked Data refers to data

published on the Web in such a way that it is machine-readable, its meaning

is explicitly defined, it is linked to other external data sets, and can in turn

be linked to from external data sets. Moreover, Berners-Lee introduced a set

of principles for successfully creating and publishing Linked Data.

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names (dereferencing

the URI).

3. When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL).

4. Include links to other URIs so that they can discover more things.

2.6 Interface Description Languages

A service description (or contract) is a fundamental part in SOA [15], as they

expose the purpose and the functionalities of a service and thus allowing for

a service to be discovered and used. It provides all the needed information

about service endpoint, service operations, the exchanged message formats

31https://www.w3.org/People/Berners-Lee/

23

https://www.w3.org/People/Berners-Lee/

Chapter 2. Background and Related Work

and the conditions which need to be fulfilled before the service can be exe-

cuted.

In cloud environments, providers describe their services in plain text (such

as the FIWARE catalogue32), which users have to browse and read in order to

determine whether a service meets their needs. However, text descriptions of

services are mainly intended to be readable by humans and not by machines,

while in some cases are inaccurate or vague. Cloud services need to be

formally described in a way that is both understandable by humans and

machines.

In this section, we will discuss the most noteworthy approaches to describe

interface description languages for Cloud services that are offered by means

of Web services (SOAP-based or RESTful services).

2.6.1 WSDL and SAWSDL

The Web Service Description Language [9] (WSDL) is a XML-based interface

description language that is used for describing the functionality offered by a

Web service. WSDL is part of the initial Web Services technology platform

(Section 2.2). The current version of the specification is 2.0, which is a W3C

recommendation. However, version 1.1 [10] is still in use.

The structure of a WSDL document can be seen in Figure 2.533. WSDL

2.0 introduced changes in document structure, naming conventions, while it

added support for the HTTP 1.1 protocol. SOAP-based services (Section

2.2) were described in WSDL 1.1, using a predefined binding extension for

the SOAP protocol. WSDL 2.0 introduced a corresponding binding extension

for the HTTP 1.1 protocol34, in order to allow the description of RESTful

services (Section 2.3).

32https://catalogue.fiware.org/
33Original figure from https://en.wikipedia.org/wiki/Web_Services_

24

https://catalogue.fiware.org/
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language

Chapter 2. Background and Related Work

Figure 2.5: WSDL document structure

In WSDL 1.1 the types element contains the data types definitions that

are required by the request and response message definitions of the service

operations. The XML Schema language (XSD) [20] is used (inline or refer-

enced) for this purpose. The messages element defines the messages that are

required in order to interact with a service operation. A message is described

by the data types defined in types element. WSDL 2.0 preserved the types

element in its syntax, but removed the messages element, as operations could

directly refer to the data types in types element.

The portType element in WSDL 1.1, renamed interface in WSDL 2.0,

defines all the operations that a service may perform. An operation element

represents a function of the service and describes the input, output and fault

messages produced upon successful or unsuccessful invocation of the service.

The binding element is common in both versions of WSDL, and specifies

the network protocol and data format of messages used in operations defined

Description_Language
34https://www.w3.org/TR/wsdl20-adjuncts/

25

https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://www.w3.org/TR/wsdl20-adjuncts/

Chapter 2. Background and Related Work

in portType (or interface for WSDL 2.0).

The service element describes the interface through which service opera-

tions may be accessed. In particular, a port (endpoint in WSDL 2.0) specifies

the address to which the client should request the service. It also has refer-

ence to binding used by the service.

WSDL only describes a service at a syntactic level. In 2007, W3C intro-

duced the Semantic Annotations for WSDL and XML Schema (SAWSDL)

[16] recommendation, in order to provide a mechanism to associate semantics

with service interfaces and message schemas. SAWSDL defines how to add

semantic annotations to various parts of a WSDL document such as inputs,

outputs, interfaces and operations by providing three extensibility attributes

to WSDL and XML Schema elements.

The modelReference attribute defines the association between a WSDL or

XML Schema component and a concept in an ontology. It is used to annotate

XML Schema type definitions, element and attribute declarations as well as

WSDL interfaces, operations and faults.

The liftingSchemaMapping and loweringSchemaMapping attributes are added

in XML Schema element declarations and type definitions for specifying

mappings between semantic data and XML data. A reference using the

liftingSchemaMapping attribute defines the mechanism through which XML

data are transformed to data that conform to some semantic model. On the

other hand, a reference using the loweringSchemaMapping attributes defines

the mechanism through which data from a semantic model are transformed

to XML data.

Listing 2.135 demonstrates how SAWSDL extension attributes are applied

on an XML Schema. The listing describes the confirmation response of a

purchase order. As seen the modelReference property is used to indicate that

the confirmation element is described by the concept ”Order Confirmation” in

35Example taken from https://www.w3.org/TR/sawsdl/

26

https://www.w3.org/TR/sawsdl/

Chapter 2. Background and Related Work

the referenced semantic model. Similarly the liftingSchemaMapping attribute

refers to a XSLT mechanism (represented in Listing 2.2), which a client

processor could use in order to transform the XML data in RDF.

Listing 2.1: Example usage of SAWSDL

. . .

<xs : e l ement name=”OrderResponse” type=” con f i rmat ion ” />

<xs :s impleType name=” con f i rmat ion ” sawsdl :modelReference= ”

h t t p : / / . . . / s p e c / o n t o l o g y / p u r c h a s e o r d e r#OrderConfirmation ”

sawsdl : l i f t ingSchemaMapping= ”

http :// . . . / spec/mapp ing/Response2Ont .x s l t ”>

<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<xs :enumerat ion value=”Confirmed” />

<xs :enumerat ion value=”Pending” />

<xs :enumerat ion value=” Rejected ” />

</ x s : r e s t r i c t i o n>

</xs :s impleType>

. . .

Listing 2.2: The XSLT mechanism for transforming XML data in RDF

<x s l : t r a n s f o r m xmlns:xs l= ”http://www.w3.org/1999/XSL/Transform”

xmlns:rdf= ” http://www.w3.org/1999/02/22−rdf−syntax−ns#”

xmlns:po=” http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#”

xmlns:POOntology=” h t t p : / / . . . / s p e c / o n t o l o g y / p u r c h a s e o r d e r#”

version= ”2 . 0 ”>

<x s l : o u t p u t method=”xml” vers ion= ”1 . 0 ” encoding=” i so −8859−1”

indent=” yes ”/>

<x s l : t e m p l a t e match=”/”>

<rdf:RDF>

<POOntology:OrderConfirmation>

<hasStatus rdf :datatype= ”

http://www.w3.org/2001/XMLSchema#s t r i n g ”>

<x s l : v a l u e−o f s e l e c t= ” po:OrderResponse ”/>

</hasStatus>

</POOntology:OrderConfirmation>

</rdf:RDF>

</ x s l : t e m p l a t e>

</ x s l : t r a n s f o r m>

27

Chapter 2. Background and Related Work

SAWSDL allows multiple semantic annotations to be associated with WSDL

elements. Both schema mappings and model references can contain multiple

pointers. Multiple schema mappings are interpreted as alternatives whereas

multiple model references all apply. SAWSDL does not specify any other

relationship between them. SAWSDL is criticized as it comes without any

formal semantics [27]. This hinders logic-based discovery and composition of

Web services described with SAWSDL but calls for ”magic mediators outside

the framework to resolve the semantic heterogeneities” [27].

Despite the fact that WSDL 2.0 is able to describe both SOAP-based and

RESTful services, it is not perceived as suitable by developers. WSDL is

limited to the description of traditional SOAP-based services. Moreover, the

adoption of WSDL 2.0 is poor as more tools are offered only for WSDL 1.1.

2.6.2 WADL

The Web Application Description Language [24] (WADL) is an XML-based

interface description language that is used for the description of HTTP-based

Web services. WADL is specifically designed for describing RESTful services

(Section 2.3), by modeling the resources provided by the service and the

relationships between them.

Listing 2.3: WADL description for the Yahoo News Search application

<a p p l i c a t i o n xmlns:xs i= ”http://www.w3.org/2001/XMLSchema−
i n s t anc e ” xsi : schemaLocat ion= ”

ht tp : //wad l .dev . j ava .ne t/2009/02 wadl .xsd ” xmlns:tns= ”

urn:yahoo:yn ” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:yn=” urn:yahoo:yn ” xmlns:ya=” urn :yahoo :ap i ” xmlns=”

ht tp : //wad l .dev . j ava .ne t/2009/02 ”>

<grammars>

<i n c lude href=” NewsSearchResponse.xsd ”/>

<i n c lude href=” Error .x sd ”/>

</grammars>

28

Chapter 2. Background and Related Work

<r e s o u r c e s base=”

http ://api . search .yahoo .com/NewsSearchServ ice/V1/ ”>

<r e s ou r c e path=” newsSearch ”>

<method name=”GET” id=” search ”>

<r eque s t>

<param name=” appid ” type=” x s d : s t r i n g ” sty le= ” query ”

required= ” true ”/>

<param name=” query ” type=” x s d : s t r i n g ” sty le= ” query ”

required= ” true ”/>

<param name=” type ” sty le= ” query ” default= ” a l l ”>

<opt ion value=” a l l ”/>

<opt ion value=”any”/>

<opt ion value=” phrase ”/>

</param>

<param name=” r e s u l t s ” sty le= ” query ” type=” x s d : i n t ”

default= ”10”/>

<param name=” s t a r t ” sty le= ” query ” type=” x s d : i n t ”

default= ”1”/>

<param name=” s o r t ” sty le= ” query ” default= ”rank”>

<opt ion value=”rank”/>

<opt ion value=” date ”/>

</param>

<param name=” language ” style= ” query ” type=” x s d : s t r i n g ”

/>

</reques t>

<re sponse status= ”200”>

<r e p r e s e n t a t i o n mediaType=” app l i ca t ion/xml ” element=”

yn :Resu l tSet ”/>

</response>

<re sponse status= ”400”>

<r e p r e s e n t a t i o n mediaType=” app l i ca t ion/xml ” element=”

ya :Error ”/>

</response>

</method>

</r e sourc e>

</ r e s o u r c e s>

</ a p p l i c a t i o n>

29

Chapter 2. Background and Related Work

Listing 2.336 demonstrates an example of a WADL document. The gram-

mars element contains all data types definitions that are used by the service.

In our example, the grammars element specifies the XML Schema files that

contain the data types definitions.

The resources element contains all the resources provided by the service.

The base attribute provides the base path for any resource element. A re-

source element describes a set of methods that define the behavior of a re-

source. The path attribute defines a relative URI (static or template) identi-

fying the resource. It is also possible a resource element to contain resource

elements that act as sub-resources.

A method element describes the input and outputs when applying an

HTTP method to a resource. The name attribute indicates the HTTP

method that is used, while the id attribute provides an identifier for the

method. In our example, a method, named ”search”, describes a GET re-

quest on the path ”newsSearch”. A method element contains a request ele-

ment and zero or more response elements.

A request element specifies the query and headers parameters as well as

the message body that may be included in the HTTP request message. A

response element describes the expected response body messages, HTTP

headers and the HTTP status code that results from performing an HTTP

method on a resource. A body message is described by a representation

element, specifying the media type and the data format as defined in the

grammars element. In our example, the ”newsSearch” method specifies a

request element describing multiple query parameters that may be required

to be included in the HTTP request. In addition, the ”newsSearch” method

specifies the expected responses for 200 and 400 HTTP status codes. In both

cases, the expected response contains a message body in XML representation,

whose data format is defined in grammars element.

Despite the efforts for standardization, WADL hasn’t attracted any sig-

36WADL example taken from https://www.w3.org/Submission/wadl/

30

https://www.w3.org/Submission/wadl/

Chapter 2. Background and Related Work

nificant adoption among developers. The main critique is focused on the

fact that WADL is closely related to WSDL, providing only a syntactic de-

scription of the service, with limited support for describing the meaning of

service’s resources. In contrast to WSDL, no mechanism to semantically

annotate service descriptions exists for WADL.

2.6.3 OpenAPI Specification, RAML, API Blueprint

As the REST architecture style has gained massive adoption over the years,

a number of various interface description languages have been proposed,

promising to provide efficient and accurate descriptions for RESTful services.

OpenAPI Specification, RAML and API Blueprint are the most commonly

used approaches for describing RESTful services. They follow quite a similar

approach to WADL (Section 2.6.2), meaning that everything is bound to the

URLs for accessing resources, which, however, contradicts to REST’s hyper-

media constraint that calls for the dynamic discovery of resources at runtime

(HATEOAS37). However, their adoption is mainly due to the large tooling

support they offer covering the whole API lifecycle from design to sharing.

OpenAPI Specification

The OpenAPI Specification (OAS) [35], formerly known as the Swagger spec-

ification, is probably the most heavily adopted approach, for the description

of RESTful services (Section 2.3). It is an open-source, language-agnostic

specification, through which a consumer can understand and use a service

by applying minimal implementation logic. Service descriptions are offered

in either JSON or YAML [3] format, which can be produced and served

statically, or be generated dynamically from the application. This allows

the design and implementation of APIs to follow either a top-down (the ser-

vice description is initially created and then the service is implemented) or

37https://en.wikipedia.org/wiki/HATEOAS

31

https://en.wikipedia.org/wiki/HATEOAS

Chapter 2. Background and Related Work

bottom-up approach (the service description is generated from the service

implementation). A comprehensive analysis of the specification is presented

in Chapter 3.

OAS is, a complete framework supported by a set of core tools for design-

ing, building and documenting RESTful services. The Swagger Editor38 is

an open-source Web-based editor for designing, defining and documenting

RESTful services (Figure 2.6). It provides instant visualization and interac-

tion with the API while still defining it. The Swagger Codegen39 is an open-

source code generator to build server code and client SDKs directly from

an OpenAPI service description in almost any programming language and

framework (PHP, Java, NodeJS). Swagger UI40 is an open-source HTML5-

based user interface to visually render documentation for an OpenAPI service

description (Figure 2.7).

Figure 2.6: Swagger Editor preview Figure 2.7: Swagger UI preview

The OpenAPI Specification is part of the Open API Initiative41, a collabo-

rative project supported by the Linux Foundation42, which aims at ”creating,

evolving and promoting a vendor neutral API description format”. The ini-

tiative is supported by a constantly increasing community including compa-

38https://github.com/swagger-api/swagger-editor
39https://github.com/swagger-api/swagger-codegen
40https://github.com/swagger-api/swagger-ui
41https://www.openapis.org/
42https://www.linuxfoundation.org/

32

https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-ui
https://www.openapis.org/
https://www.linuxfoundation.org/

Chapter 2. Background and Related Work

nies like Google43, Microsoft44, IBM45 and many others. The current version

of the OpenAPI Specification is 2.0, since September of 2014, however there

is an ongoing process for creating a new version of the specification that will

provide additional features based on users’ requests and needs.

RAML

The RESTful API Modeling Language (RAML) [41] is a YAML-based [3]

language for describing ”practically”-RESTful services. Because of the way

RAML is designed, it can support documentation of REST-based services

(Section 2.3) in addition to services that don’t strictly adhere to REST prin-

ciples, such as SOAP-based services (Section 2.2). Contrary to OpenAPI

Specification, RAML is only a top-down specification, meaning that the API

is first designed and then the rest of the system is implemented.

RAML is also supported by a number of native and third-party tools that

facilitates the management of the whole API lifecycle from design to shar-

ing. API Designer46 is a web-based API development tool that allows API

providers to design their API quickly, efficiently, and consistently and social-

ize the design. It consists of a RAML editor side-by-side with an embedded

RAML console (API Console). The API Console47 provides live interactive

documentation that lets users try out an API in real time. Unlike OpenAPI

Specification, client code generation from RAML API documents is mainly

provided by third-party commercial tools.

43https://www.google.com/intl/en/about/
44https://www.microsoft.com
45http://www.ibm.com
46https://www.mulesoft.com/platform/api/anypoint-designer
47https://github.com/mulesoft/api-console

33

https://www.google.com/intl/en/about/
https://www.microsoft.com
http://www.ibm.com
https://www.mulesoft.com/platform/api/anypoint-designer
https://github.com/mulesoft/api-console

Chapter 2. Background and Related Work

API Blueprint

The API Blueprint [2] follows a different approach compared to OpenAPI

Specification and RAML. It is a documentation-oriented description language

based on a set of semantic assumptions laid on top of the Markdown syn-

tax [22]. Unlike OpenAPI Specification and RAML, API Blueprint doesn’t

dictate a specific style for the description of a service. A service provider is

free to describe the functionality of his service in any way he prefers. For

example, a service may be described by only providing examples for the

various request and response messages without including any data type def-

initions (XML Schema, JSON Schema) that specify the structure of request

and responses messages.

Due to the nature of the API Blueprint specification, there is limited tool

support. The most known tool around API Blueprint is the Apiary plat-

form48, that provides a collaborative design editor, interactive documentation

and other tools to improve user’s experience and interaction with a described

web API. The main drawback of API Blueprint is that it lacks tooling for

code generation.

2.7 Ontologies and Vocabularies

Interface description languages normally offer only syntactic descriptions of

service API. However, such descriptions are insufficient to enable the au-

tomation of tasks such as service discovery and composition. In order to

solve this problem, earlier as well as more recent research suggest describing

services also semantically.

48http://apiary.io

34

http://apiary.io

Chapter 2. Background and Related Work

2.7.1 OWL-S

The Web Ontology Language for Web Services (OWL-S) [32] is an upper

ontology based in OWL, used to semantically annotate Web services. OWL-

S consists of the following main upper ontologies shown in Figure 2.8.

Figure 2.8: The OWL-S ontology

The Service Profile is used to describe what the service does, and is meant

to be mainly used for the purpose of service discovery. A Service Profile

includes information about the service provider as well as functional and

non-functional service parameters. The functional description of the service

specifies the inputs required by the service and the outputs generated. Fur-

thermore, since a service may require external conditions to be satisfied, the

Service Profile describes the preconditions required by the service and the

results from the execution of the service. The non-functional description of

the service may specify parameters such as the category and the rating of

the service.

The Service (Process) Model gives a detailed description of a service’s

operation and describes the composition (choreography and orchestration)

of one or more services. A process in OWL-S can be atomic, simple, or

composite.

35

Chapter 2. Background and Related Work

An atomic process describes a specific action that a service performs in

a single step. An atomic process is described by specifying the input and

output messages as well as preconditions and effects for successful interac-

tion with the service. A composite process describes a hierarchically defined

workflow, consisting of atomic and other composite processes. Finally, a sim-

ple process represent an abstract process which have no specific binding to

a physical service. A simple process can be used to group atomic processes

that provide multiple descriptions of the same process, as well as to provide

a more simplified description of a composite process.

Figure 2.9: Mapping between OWL-S and WSDL

Service Grounding provides the required information for accessing the ser-

vice. Particularly, Service Grounding specifies an mapping between the logic-

based and the syntactic description in order to facilitate service execution.

Figure 2.9 demonstrates how the binding between OWLS-S and WSDL is per-

formed. The atomic processes of the Service Process are mapped to WSDL’s

operations, while the inputs and outputs of atomic processes are mapped to

WSDL’s message elements that contain the XML data types that define the

input and output of WSDL’s operations.

36

Chapter 2. Background and Related Work

2.7.2 WSMO

The Web Service Modeling Ontology (WSMO) [31] defines a conceptual

model and a formal language WSML (Web Service Modeling Language) for

the semantic description of Web services. In WSMO, a Web service is de-

scribed under the notion of four top-level elements, as shown in Figure 2.10.

Figure 2.10: The top-level elements of WSMO

WSMO Ontologies provide the terminology used by other WSMO elements

to describe the relevant aspects of the domain of interest. Goals specify

the requirements that a user might have when searching for a Web service.

WSMO Service describes the functional, non-functional and behavioral as-

pects of a Web service.

Non-functional properties include financial properties that refer to the

charging model of the service as well as properties that describe the per-

formance (execution time, latency), accuracy and security regarding the au-

thorization and authentication of users. The functionality of the service is

defined as capability which, similar to the atomic process of OWL-S, specifies

the input and output messages as well as preconditions and effects to suc-

cessfully interact with the service. Finally, the WSMO Service provides the

necessary information so that a client may communicate and interact with

the service.

37

Chapter 2. Background and Related Work

Mediators describe elements that overcome interoperability problems that

arise between different WSMO elements in data, process and protocol level.

Mediators in data level resolve the terminological mismatches that exist be-

tween heterogeneous data sources (ontology integration). Mediators in pro-

tocol level resolve mismatches that arise between the heterogeneous commu-

nication protocols (e.g. SOAP, HTTP). Lastly, Mediators in process level

resolve the mismatches that arise during the orchestration and cooperation

of services.

WSMO was heavily criticized due to the fact that it has been developed

without any compliance with the existing W3C standards [27]. WSMO On-

tologies defined Classes, subClass hierarchies and properties in a format that

wasn’t compatible with any of the existing standards of the Semantic Web

(RDFS, OWL). In addition, WSMO didn’t provide any connection to the

WSDL service descriptions. To overcome these issues, WSMO-Lite has been

created, that is discussed in the next section.

2.7.3 WSMO-Lite

WSMO-Lite [17] is a lightweight ontology of service descriptions, that can be

used for annotations of various WSDL elements using the SAWSDL anno-

tation mechanism [16]. As stated in Section 2.6.1, SAWSDL doesn’t impose

any formal semantics. The WSMO-Lite ontology aims to fill the SAWSDL

annotations with concrete semantic service descriptions.

WSMO-Lite introduces the following service semantics, in order to provide

better service descriptions and enable service discovery, and orchestration:

• Information semantics are represented using domain ontologies that

describe the data model of a service used in input, output and fault

messages.

• Functional semantics represent the capabilities and the classification

of service functionalities. Capabilities define the preconditions and the

38

Chapter 2. Background and Related Work

effects that must hold before and after a client invoke a service, while

classification is achieved using a classification ontology that provides a

hierarchy of categories.

• Nonfunctional semantics are represented using ontologies that describe

nonfunctional properties, such as pricing models and service perfor-

mance.

• Behavioral semantics are expressed by annotating service operations

with Functional semantics.

WSMO-Lite has been designed not to be bound to a particular service

description format such as WSDL. Therefore, it can be also used for the

description of RESTful services (Section 2.3), that are documented in HTML

pages. However, HTML documentation of RESTful services is not machine-

readable. In [37], hRests and MicroWSMO, two HTML microformats that

act similarly to WSDL and SAWSDL (Figure 2.11) have been introduced

for annotating HTML service documentation so that it becomes machine-

readable.

Figure 2.11: Web service descriptions with WSMO-Lite

39

Chapter 2. Background and Related Work

2.7.4 Hydra Core Vocabulary

Hydra [30] is a set of technologies that simplify the development of interop-

erable, hypermedia-driven Web APIs. At the heart of this approach lies the

Hydra Core Vocabulary. It defines a number of concepts in RDF Schema

that allow machines to understand how to interact with an API. The main

idea behind Hydra is to provide a vocabulary through which a server may be

able to advertise valid state transitions to a client. This means that response

messages from the server contain enough information that a client can use

in order to discover all the available actions and resources it needs, and thus

construct new HTTP requests to achieve a specific goal.

Figure 2.12 provides a conceptual view of the Hydra Core Vocabulary.

At the center of the vocabulary stands the ApiDocumentation class, through

which the server defines the main entry point (EntryPoint) and documents all

the operations (Operation) as well as the entities (Class) and their properties

(Property) it supports.

The Resource class is used to inform a client that an IRI is dereference-

able, meaning that when a IRI is accessed a representation of a resource is

retrieved. This is an important feature as it allows a client to distinguish

Linked Data from IRIs that are used exclusively as identifiers. Similarly, the

Link class is used in order to define properties whose properties are known

to be dereferenceable IRIs.

However, there are cases that the interaction with the service requires links

that cannot be created by a server. For example, in order to query a service

a link may contain parameters that a client must fill at runtime. In Hydra,

such cases are described by the IriTemplate class. An IriTemplate consists

of a template that describes an IRI template49 and a number of mappings.

An IriTemplateMappging maps a variable in the IRI template to a property.

Listing 2.4 demonstrates an example of an IriTemplate description, where

49https://tools.ietf.org/html/rfc6570

40

https://tools.ietf.org/html/rfc6570

Chapter 2. Background and Related Work

Figure 2.12: The Hydra Core Vocabulary

the variable ”lastname” maps to the property ”givenName” from Schema.org

vocabulary. With this information, a client may understand the meaning of

variables and generate a complete IRI.

Listing 2.4: Description of an IriTemplate in Hydra

{
”@context” : ” http ://www. w3 . org /ns/hydra/ context . j s o n l d ” ,

”@type” : ” Ir iTemplate ” ,

” template ” : ” http :// api . example . com/ use r s {? lastname }” ,

”mapping” : [

{
”@type” : ” IriTemplateMapping ” ,

” v a r i a b l e ” : ” lastname ” ,

” property ” : ”schema . org /givenName ” ,

41

Chapter 2. Background and Related Work

” r equ i r ed ” : t rue

}
]

}

The Operation class represents the information that is necessary so that

a client may send valid HTTP requests to the server. The method property

specifies the HTTP method, while the expects and returns properties define

the expected data in request and response messages. In addition, the status-

Code property specifies a StatusCodeDescription that provides a developer

with information regarding what to expect when invoking an operation.

An interesting feature of the vocabulary is the Class class that extends

a class definition by providing the supportedProperties that belong to the

class. This is important as in RDF there is not any mechanism informing

which properties belong to a class and also enables properties from other

vocabularies to be reused directly. A SupportedProperty defines the property

that is used and specifies whether it is required, readonly or writeonly.

In a Hydra-driven Web API, the service description may be discovered au-

tomatically by a client if the API provider marks his responses with a HTTP

Link Header to direct a client to the corresponding API document. This

enables the dynamic discovery of API descriptions at runtime. Moreover,

due to the use of RDF’s unique identifiers parts of the API descriptions can

be shared and reused improving interoperability of services.

The Hydra core vocabulary is used along with JSON-LD, in order to enable

the creation of hypermedia-driven APIs [29]. JSON-LD [38] is a lightweight

format for the representation of Linked Data in JSON. Its design allows ex-

isting JSON to be interpreted as Linked Data with minimal changes. More-

over, it is 100% compatible with JSON, and thus the large number of existing

JSON parsers and libraries can be reused. The combination of Hydra and

JSON-LD enables the creation of machine-readable and understandable con-

tracts that can be discovered at runtime. This allows the implementation of

42

Chapter 2. Background and Related Work

completely generic clients50, such as API consoles or client libraries.

Hydra is a promising effort towards the evolution of RESTful services. In

its current state, Hydra is endorsed by the W3C and a community group is

working to extend Hydra and provide tools and guidelines for designing and

creating Hydra-driven Web APIs.

2.8 Service Catalogues

Service descriptions allow services to be stored and organized in registries or

catalogues, enabling the creation of mechanisms for effective service discov-

ery based on specific user needs. Service registries are important components

in SOA (Section 2.1) as they promote service discoverability and reusabil-

ity. Typically, cloud providers don’t provide any specific platform for service

storage and discovery, as Cloud services are described in plain text. How-

ever, Oracle has created an API Catalog service, which is described in the

following section, in an effort to provide formal service descriptions for its

Cloud offerings51.

2.8.1 Oracle API Catalog Service

The API Catalog Cloud Service52 is a collection of OpenAPI service de-

scriptions [35], representing some of Oracle’s most popular SaaS and PaaS

applications. Through the service a user is able to search, browse and try out

Oracle’s Cloud Services using either a web interface or the service API. The

API catalog organizes the APIs by hierarchical categories, allowing a user to

locate an API and export its OpenAPI description either by browsing the

category lists, or by conducting full-text search.

50http://www.hydra-cg.com/#tooling
51https://cloud.oracle.com/home
52https://cloud.oracle.com/en_US/api-catalog

43

http://www.hydra-cg.com/#tooling
https://cloud.oracle.com/home
https://cloud.oracle.com/en_US/api-catalog

Chapter 2. Background and Related Work

Oracle’s API Catalog Cloud Service is a first attempt towards the creation

of Cloud service registries. Oracle utilizes all the capabilities that the Ope-

nAPI Specification offers. However, service discovery is still inaccurate and

inefficient, as the search operation relies on the existence of text terms in API

descriptions. The approach described in Chapter 3 aims to improve Cloud

service discovery by semantically annotating OpenApi service descriptions

and thus reducing unambiguity in service descriptions

44

3
The Semantic OpenAPI Specification

In the previous chapter, we analyzed the importance of formal Cloud service

descriptions in SOA. Moreover, we reviewed the most notable and commonly

used approaches for the syntactic and semantic description of services. How-

ever, the majority of Cloud providers don’t use any of the previously dis-

cussed approaches to describe their offering services. Thus, neither providers

nor potential users can benefit from the capabilities that formal service de-

scriptions offer.

In the following sections, we present our approach the Semantic OpenAPI

Specification (SOAS), an extension of the OpenAPI Specification, for the

effective and efficient description of Cloud services. We analyze the reasons

that led us to the adoption of OAS, and we demonstrate how OpenAPI service

descriptions can be semantically enriched in order to resolve any ambiguities

that may exist in service descriptions. Moreover, we describe a mechanism

for transforming SOAS service descriptions to ontologies so as to benefit

from semantic web tools such as reasoners and query languages for service

discovery and for enabling service orchestration.

3.1 Adopting the OpenAPI Specification

In order to choose a description language for the Cloud services we had to

consider many aspects that would affect our decision. First of all, a descrip-

45

Chapter 3. The Semantic OpenAPI Specification

tion language for RESTful services was needed, as the majority of Cloud

services are offered by means of Web services based on the REST architec-

ture style. In addition, the description language should be simple enough so

that users with different knowledge background could easily learn and adopt.

It is also important the description language to be supported with tools that

facilitate users at every step of their interaction with a service.

Based on these considerations, WSDL and WADL couldn’t serve our goals.

WSDL, despite being a W3C recommendation, hasn’t been adopted by devel-

opers, as they found it complex and with no tooling support. In fact, WSDL

is identified and used mainly as the description language of SOAP-based ser-

vices (Section 2.2). On the other hand, WADL although it was created to

support the description of RESTful services, had small adoption rate by de-

velopers. WADL is mainly supported by JAVA frameworks (JAX-RS1), but

there is not known support for other programming languages.

Hydra is a novel approach, that is entirely based on Semantic Web. In

its current state, Hydra is under constant development and evaluation by

the corresponding W3C group in order to provide guidelines and tools for

the development and design of RESTful services. So far, there is not any

official recommendation, which is a deterrent factor for considering Hydra

suitable for the description of Cloud services. However, we expect Hydra to

gain popularity after the release of a recommended specification.

In our work, we adopt the OpenAPI Specification as the description lan-

guage for Cloud services. The selection was based primarily on the popularity

of the specification, as well as the capabilities and tools it offers facilitating

user’s interaction with a service (Section 2.6.3). Its active community is con-

stantly working to improve its tooling support as well as the specification

itself. In addition, the OpenAPI Initiative is powered by companies such as

Microsoft and Google, attempting to standardize a description mechanism

for RESTful services. It is worth mentioning that OpenStack (Section 2.4.2)

1https://jax-rs-spec.java.net/

46

https://jax-rs-spec.java.net/

Chapter 3. The Semantic OpenAPI Specification

has announced2 the adoption of OAS for the documentation and description

of its services.

3.2 Describing the OpenAPI Specification

Figure 3.1 illustrates the structure of an OAS service description3. An OAS

service description may be written in either JSON or YAML format [3].

YAML is a more human friendly data serialization format, and is considered

as a superset of JSON. In addition, some parts of the document can be split

into separate files, allowing the reuse of these files across multiple service

descriptions.

Figure 3.1: OAS document structure overview

2https://www.openstack.org/summit/austin-2016/
3Examples of the OAS specification are represented in YAML format

47

https://www.openstack.org/summit/austin-2016/

Chapter 3. The Semantic OpenAPI Specification

The specification adopts some features of JSON-Schema4 in order to de-

scribe the content of HTTP requests and responses. In addition, the specifi-

cation introduces the ”file” data type, which is used for describing the content

of HTTP requests and responses that require files. Table 3.1 provides a brief

summary of the components of an OAS service document.

The Info Object provides non-functional information about the described

service. It is required to contain the service name as well as the version of the

service API. In addition, it may provide information regarding the service’s

license, the terms of service, and contact information of the service provider.

Listing 3.1 provides an example of the Info Object.

Listing 3.1: OAS Info Object example from Swagger Petstore

i n f o :

d e s c r i p t i o n : This i s a sample Pet s to re s e r v e r . You can f i n d out

more about Swagger at [http:// swagger . i o] (http:// swagger . i o

) or on [i r c . f r e enode . net , swagger] (http:// swagger . i o / i r c /) .

For t h i s sample , you can use the api key ‘ s p e c i a l−key ‘ to

t e s t the a u t h o r i z a t i o n f i l t e r s .

v e r s i on : 1 . 0 . 0

t i t l e : Swagger Pet s to r e

termsOfServ ice : ’http://swagger.io/terms/’

contact :

emai l : apiteam@swagger . i o

l i c e n s e :

name: Apache 2 .0

u r l : ’http://www.apache.org/licenses/LICENSE -2.0.html’

The SecurityDefinitions Object contains the security schemes that the ser-

vice uses for authentication. The OAS offers support for basic authentication

[19], an API key5 and OAuth2’s common flows [25]. For an API key defini-

tion, it is necessary to specify the name of the parameter that holds the API

key, as well as its location in the HTTP request (a query string parameter or

header). In case of an OAuth2 security scheme, the used authorization flow

4http://json-schema.org/latest/json-schema-core.html#anchor8
5https://en.wikipedia.org/wiki/Application_programming_interface_key

48

http://json-schema.org/latest/json-schema-core.html#anchor8
https://en.wikipedia.org/wiki/Application_programming_interface_key

Chapter 3. The Semantic OpenAPI Specification

Field Description

info Provides non-functional information about the de-
scribed service.

host Specifies the host (name or ip) of the service.
basePath Provides the base path on which the service can

be accessed which is relative to the host.
schemes Defines the used transfer protocols of the service

(http, https).
produces A list of media types that the service supports for

responses. Operations are allowed to override this
declaration and define alternative media types.

consumes A list of media types that the service supports for
requests. Operations are allowed to override this
declaration and define alternative media types.

paths The available paths of the service along with sup-
ported operations.

tags A list of tags that can be used to group operations
by resources or any other qualifier.

definitions Contains all the data types (arrays, models, prim-
itives) definitions that are used by service’s oper-
ations.

parameters Contains the defined parameters that can be
reused across operations.

responses Contains the defined responses that can be reused
across operations.

securityDefinitions Defines the security schemes that can be used
across operations.

security A declaration of which security schemes are ap-
plied for the service as a whole. Operations may
override this declaration if alternative security
schemes are used.

externalDocs Provides link to external resources for additional
documentation if needed

Table 3.1: OAS document structure from [35]

(implicit, accessCode, password, application) must be specified, along with

the scopes and the urls, for obtaining a valid token.

Listing 3.2 demonstrates the security schemes defined in Swagger Pet-

49

Chapter 3. The Semantic OpenAPI Specification

store. The API defines two security schemes that are used in various HTTP

requests. The API key security scheme defines an HTTP header, named

”api key”, which must be provided in every HTTP request that requires it.

On the other hand, the OAuth2 security scheme describes the procedure, in

this case an ”implicit” flow, that must be applied so that a valid token to

be obtained. The OAuth2 security definition specifies the authorization end-

point, as well as the available levels of access (scopes) that the application

can request.

Listing 3.2: OAS Security Definition example from Swagger Petstore

s e c u r i t y D e f i n i t i o n s :

an API key definition

ap i key :

type: apiKey

name: ap i key

in : header

an implicit flow definition

pe t s t o r e au th :

type: oauth2

au tho r i z a t i onUr l : http:// p e t s t o r e . swagger . i o / api /oauth/ d i a l o g

f low: i m p l i c i t

s copes :

w r i t e p e t s : modify pet s in your account

r ead pe t s : read your pets

The Paths Object contains the relative paths for the service endpoints.

Each Path item describes the available operations based on HTTP methods,

as seen in Listing 3.3.

The core of an OAS service document is the Operation Object, as it prac-

tically reveals the functionality of a service path, and guides the user to

interact with it. It contains all the needed information in order to construct

HTTP requests to the service. In addition, it provides information regard-

ing the HTTP responses that the service returns. Table 3.2 summarizes the

fields that describe an Operation Object.

50

Chapter 3. The Semantic OpenAPI Specification

Listing 3.3: OAS Path Item example from Swagger Petstore

paths:

/ pets /{ petId }:
get :

tags :

− Pet

d e s c r i p t i o n : Returns pets based on ID

summary: Find pet by ID

opera t i on Id : getPetById

produces :

− a p p l i c a t i o n / j son

− t ex t /html

parameters :

− name: petId

in : path

d e s c r i p t i o n : ID o f pet to use

r equ i r ed : true

type: s t r i n g

r e sponse s :

’200’:

d e s c r i p t i o n : pet re sponse

schema:

$ r e f : ’#/definitions/Pet’

d e f a u l t :

d e s c r i p t i o n : e r r o r payload

schema:

$ r e f : ’#/definitions/ErrorModel’

s e c u r i t y :

− pe t s t o r e au th :

− wr i t e :pet s

− read:pet s

The Responses Object contains all the expected responses of an Operation

Object. It maps an expected response to a specific HTTP status code. The

Response Object describes the message content and HTTP Headers that an

operation’s response may contain. It is not required to declare all the possible

responses of an operation, as it is expected to describe a successful operation

51

Chapter 3. The Semantic OpenAPI Specification

Field Description

summary A short summary of operation’s functionality.
description A verbose analysis of operation’s behavior.
operationId A unique name for the operation. The operationId

may be used by tools and libraries for creating clients.
externaDocs Provides link to external resources for additional doc-

umentation if needed
tags A list of tags that can be used to group operations by

resources or any other qualifier.
consumes A list of media types that the operation supports for

requests. This overrides the consumes definition at
the beginning of the document.

produces A list of media types that the operation supports for
responses. This overrides the consumes definition at
the beginning of the document.

schemes The transfer protocols used by the operation. This
overrides the schemes definition at the beginning of
the document.

deprecated A boolean property specifying that the operation is
deprecated.

parameters A list of the parameters that the operation uses.
responses A list of possible responses that are returned from

invoking this operation.
security The security schemes that the operation uses. This

overrides the security definition at the beginning of
the document.

Table 3.2: OAS Operation Object structure from [35]

response and the most common error responses.

The Parameters Object contains all the parameters that operations use.

The specification, categorizes parameters into five types:

• Path parameters are used in cases where the parameter’s value is part

of operation’s path. For example, in Listing 3.3 the /pets/{petId} de-

scribes a template path containing a Path parameter (petId). In order

to send a request for the specific endpoint, it is necessary to declare a

value in the place of the parameter.

52

Chapter 3. The Semantic OpenAPI Specification

• Query parameters are appended to the url when sending a request. For

example, in /pets?orderBy=name, the Query parameter is orderBy.

• Header parameters define additional custom headers that may be sent

in a request.

• Body parameters define the message content of a service request. A

Body parameter refers to the data types defined in Definitions Object

to describe the expected structure of the payload.

• Form parameters are a special case of Body parameters, that describe

the content of a service request when the media types ”application/x-

www-form-urlencoded” and ”multipart/form-data” are used as the con-

tent type of the request. Form parameters are used to allow files to be

sent as part of the message in service requests.

Listing 3.4 demonstrates how parameters are declared in a OAS document.

All Parameter Objects are defined in a similar manner. The name field

declares the parameter’s name, while the in field specifies the parameter’s

type (path, body, query, form, header). The required field specifies whether

the parameter is required for the successful execution of an operation. For

Path parameters the value of the required field must always be ”true”.

Listing 3.4: OAS Parameters definitions example from Swagger Petstore

parameters :

userBody: # A body parameter definition

name: user

in : body

d e s c r i p t i o n : user to add to the system

requ i r ed : true

schema:

$ r e f : ’#/definitions/User’

tokenHeader: # A header parameter definition

name: token

in : header

d e s c r i p t i o n : token to be passed as a header

r equ i r ed : true

type: array

53

Chapter 3. The Semantic OpenAPI Specification

i tems:

type: i n t e g e r

format: in t64

co l l e c t i onFormat : csv

queryID: # A query parameter definition

name: id

in : query

d e s c r i p t i o n : ID o f the ob j e c t to f e t c h

r equ i r ed : fa l se

type: array

items:

type: s t r i n g

co l l e c t i onFormat : mult i

userPath: # A path parameter definition

name: username

in : path

d e s c r i p t i o n : username to f e t c h

r equ i r ed : true

type: s t r i n g

formFileAvatar : # A form parameter definition

name: avatar

in : formData

d e s c r i p t i o n : The avatar o f the user

r equ i r ed : true

type: f i l e

The type field describes the data type that each parameter accepts. A pa-

rameter’s type is based on the data types supported by the JSON-Schema6

(string, number, integer, boolean, array). Table 3.3 summarizes the prop-

erties that can also be used in the definition of a parameter. In addition,

Form parameters can use the ”file” data type, allowing files to be sent in ser-

vice requests. Note that, the type field is not applicable in Body parameters.

Instead, the schema field is used, referring to the data type structure that

6http://json-schema.org/latest/json-schema-core.html

54

http://json-schema.org/latest/json-schema-core.html

Chapter 3. The Semantic OpenAPI Specification

describes the message content of an HTTP request.

Field Description

format Extends the format of the parameter’s type. For ex-
ample, a number can have either a ”float” or a ”dou-
ble” format.

allowEmptyValue A boolean property allowing a parameter to be sent
with an empty value. It is valid only for query and
form parameters. The default value is ”false”.

items It is required for array types, specifying the data type
of the items in the array.

collectionFormat Specifies the format of items in an array type. The
available values are:
• csv - comma separated values (foo,bar).
• ssv - space separated values (foo bar).
• tsv - tab separated values (foo\tbar).
• pipes - pipe separated values (foo|bar).
• multi - generates multiple parameter instances

for every item in the array (foo=bar&foo=baz).
It is valid only for query and form parameters.

The default value is ”csv”.
default Contains the default value of the parameter if none is

provided.
maximum Specifies a maximum value in a numeric type.
exclusiveMaximum A boolean property, representing whether the maxi-

mum value should be excluded or not.
minimum Specifies a minimum value in a numeric type.
exclusiveMinimum A boolean property, representing whether the mini-

mum value should be excluded or not.
maxLength Specifies the maximum length of a string.
minLength Specifies the minimum length of a string.
pattern Restricts a string to a particular regular expression.
maxItems Specifies the maximum items of an array.
minItems Specifies the minimum items of an array.
uniqueItems A boolean property specifying that the items of an

array should be unique.
enum Specifies a fixed set of values.
multipleOf Restricts a numeric value to be multiple of a given

number.

Table 3.3: OAS parameter properties from [35]

55

Chapter 3. The Semantic OpenAPI Specification

The Definitions Object contains all data types (called Schema Objects)

that are used to describe the request and response messages. A Schema

Object can be a primitive (string, integer), an array or a model. For the

definition of Schema Objects the specification is based on JSON Schema7

and uses a predefined subset of it.

Field Description

discriminator Provides polymorphism support to models. The prop-
erty’s value specifies the model’s property that is used to
differentiate between the models that inherit this model.

readOnly A boolean property that is used in model’s properties to
declare them as ”read-only”, meaning that the property
may be sent as part of a response but mustn’t be sent as
part of the request.

xml Describes the XML representation of model’s properties.
externalDoc Provides link to external resources for additional docu-

mentation if needed
example Provides an example of an instance for the Schema Object

Table 3.4: Schema Object additional properties introduced by the OAS

Table 3.5 summarizes the properties that are adopted by the JSON-Schema

and can be used for the description of Schema Objects. In addition, Table 3.4

contains the properties introduced by the specification in order to improve a

Schema Object definition as well as support the representation of XML data

types.

Listing 3.5 demonstrates a ”User” model definition in the specification.

A model is defined as an object (in type field) by specifying its properties

within the properties field. A required field, describes the properties that

are required to exist when the model is used by an operation. In addition,

model’s properties can be declared as ”read-only” (readOnly field), or may

contain various restriction regarding their type (e.g. maximum or minimum

restrictions for numeric types).

7http://json-schema.org/latest/json-schema-core.html

56

http://json-schema.org/latest/json-schema-core.html

Chapter 3. The Semantic OpenAPI Specification

Field Description

format Extends the format of the specified type field. For
example, a number type can have either a ”float” or
a ”double” format.

default Contains the default value of the data type if none is
provided.

multipleOf Restricts a numeric value to be multiple of a given
number.

maximum Specifies a maximum value in a numeric type.
exclusiveMaximum A boolean property, representing whether the maxi-

mum value should be excluded or not.
minimum Specifies a minimum value in a numeric type.
exclusiveMinimum A boolean property, representing whether the mini-

mum value should be excluded or not.
maxLength Specifies the maximum length of a string.
minLength Specifies the minimum length of a string.
pattern Restricts a string to a particular regular expression.
maxItems Specifies the maximum items of an array.
minItems Specifies the minimum items of an array.
uniqueItems A boolean property specifying that the items of an

array should be unique.
maxProperties Specifies the maximum properties that an object type

can have.
minProperties Specifies the minimum properties that an object type

can have.
required Specifies a list with the properties of an object type

that are required.
enum Specifies a fixed set of data type’s values.
items It is required for array types, specifying the data type

of the items in the array.
allOf The property is used in order to extend the definition

of an object type.
properties Specifies the properties of an object type.
additionalProperties Specifies whether an object type can contain addi-

tional properties of a specific data type.

Table 3.5: Schema Object properties adopted from the JSON-Schema

Models can be extended using the allOf property of JSON Schema. Note

that, the allOf property is adopted by the JSON-Schema but its definition

57

Chapter 3. The Semantic OpenAPI Specification

and usage is different in the OAS. As seen in Listing 3.6, the PremiumUser

model is formed by extending the User model (from Listing 3.5). The Pre-

miumUser model inherits all the properties of User model while defining

additional properties (dateOfBirth). This feature is very helpful as it allows

the reuse of existing models and also provides a notion of inheritance among

models.

Listing 3.5: OAS Model definition example from Swagger Petstore

d e f i n i t i o n s :

User: # A User object

type: ob j e c t

p r o p e r t i e s :

id :

type: i n t e g e r

format: in t64

readOnly: true

username:

type: s t r i n g

f i rstName:

type: s t r i n g

lastName:

type: s t r i n g

emai l :

type: s t r i n g

password:

type: s t r i n g

address :

$ r e f : ’#/definitions/Address’

r equ i r ed :

− username

− emai l

− password

As the allOf property provides model extensibility, the use of the discrim-

inator property offers polymorphism support among models. The discrimi-

nator property defines the model’s property whose value will determine the

model that is provided in requests or responses. The value of the property

58

Chapter 3. The Semantic OpenAPI Specification

must be the same with the name of models that are used. Listing 3.7 demon-

strates how the discriminator property is used. In the example, a Person

model is defined with its property gender used as a discriminator determining

whether the User model is treated either as a Male or a Female model.

Listing 3.6: OAS Model composition example

d e f i n i t i o n s :

PremiumUser: # A PremiumUser object extending the User object

a l l O f :

− $ r e f : ’#/definitions/User’

− type: ob j e c t

p r o p e r t i e s :

dateOfBirth:

type: s t r i n g

format: date

r equ i r ed :

- dateOfBirth

Listing 3.7: OAS Model polymorphism example

d e f i n i t i o n s :

Person: # An Person model that will be extended

type: ob j e c t

p r o p e r t i e s :

f i r s tname :

type: s t r i n g

lastname:

type: s t r i n g

gender: # The property is declared as a discriminator

type: s t r i n g

r equ i r ed :

− f i r s tname

− lastname

− gender

d i s c r i m i n a t o r : gender

Male: # A Male model extending the Person Model

d e s c r i p t i o n : A r e p r e s e n t a t i o n o f a male person

a l l O f :

− $ r e f : ’#/definitions/Person’

59

Chapter 3. The Semantic OpenAPI Specification

− type: ob j e c t

p r o p e r t i e s :

he ight :

type: i n t e g e r

d e s c r i p t i o n : he ight in cms

weight:

type: i n t e g e r

d e s c r i p t i o n : weight in kgs

r equ i r ed :

- he ight

- weight

Female: # A Female model extending the Person Model

d e s c r i p t i o n : A r e p r e s e n t a t i o n o f a female person

a l l O f :

− $ r e f : ’#/definitions/Person’

− type: ob j e c t

p r o p e r t i e s :

eyesColor :

type: s t r i n g

r equ i r ed :

- eyesColor

The OpenAPI Specification provides a basic format for describing REST-

ful services (Section 2.3). In addition, the specification offers an extension

mechanism that allows the format to be enriched with additional features

that may be considered useful in certain cases. The extension properties are

declared using the prefix ”x-” and can have any valid JSON value. This

feature of the specification is used in order to semantically enrich the service

descriptions as described in the following section.

3.3 Enriching the OpenAPI Specification

The OpenAPI Specification is mainly targeted to provide a human-friendly

environment for discovering and consuming RESTful services (Section 2.3).

60

Chapter 3. The Semantic OpenAPI Specification

The specification offers a syntactic service description that is enriched with

text descriptions (through the extensive use of description property) so that

users may easily discover and understand the functionalities of the service

and interact with it.

Despite its user friendliness the specification is not machine understand-

able, thus limiting the availability of tools that facilitate machine tasks such

as service discovery, which is essential especially in Cloud environments. Us-

ing the extension mechanism that the OAS offers, we introduced some addi-

tional properties that semantically annotate an OpenAPI service description.

Using semantic annotations various parts of an OpenAPI service description

may obtain a semantic content that machines may understand and interpret

similarly to humans. Table 3.6 summarizes the extension properties we de-

fined for the semantic enrichment of OpenAPI service descriptions that form

the Semantic OpenAPI Specification.

The x-refersTo extension property specifies the association between an

OAS element and a concept in a semantic model. The property accepts a

URI, that represents the concept in the semantic model. The property can

be used in Schema Objects and Parameters Objects.

Listing 3.8 demonstrates how the property x-refersTo is used to seman-

tically annotate a Person model and its properties. The model Person is

associated with the concept Person8 from the Schema.org vocabulary, while

its properties are also associated with the corresponding properties of the

semantic concept.

However, it is not always possible for a model to have a relation with an

equivalent semantic concept, as a model may have a narrower meaning over

the referenced semantic concept. For example, consider the Person model in

Listing 3.8. If the model was defined to describe a specific group of people,

e.g. teenagers, it would be inappropriate to associate the model with a generic

8http://schema.org/Person

61

http://schema.org/Person

Chapter 3. The Semantic OpenAPI Specification

Property Applies to Description

x-refersTo Schema Object &
Parameter Object

It specifies the concept in a se-
mantic model that best describes
an OAS element.

x-kindOf Schema Object It specifies a specialization that
exists between an OAS element
and a concept in a semantic
model. The property is mainly
used to declare that a concept in
a semantic model is too generic
to describe the specified model,
whereas a more specific subtype
(if existed) should be considered
more appropriate.

x-mapsTo Schema Object &
Parameter Object

It indicates that an OAS element
is semantically similar with an-
other OAS element.

x-collectionOn Schema Object It indicates that a model de-
scribes a collection over a specific
property.

x-onResource Tag Object It Denotes that the specific Tag
Object refers to a resource de-
scribed by a Schema Object.

x-operationType Operation Object The property is used provid-
ing semantic information on the
type of operation. The sub-
types of the Action concept in
the Schema.org vocabulary can
be used as values of the property.

Table 3.6: OAS extension properties for semantic annotations

concept such as the Person type of the Schema.org vocabulary, whereas a

more specific subtype (if existed) should be considered more appropriate. In

this case, the x-kindOf extension property is used denoting that the model

is actually a subclass of the referred semantic concept. The property accepts

a URI, representing the concept in the semantic model, and is only used for

models in Definitions Object.

62

Chapter 3. The Semantic OpenAPI Specification

Listing 3.8: Semantic annotations for OAS in Definitions Object

d e f i n i t i o n s :

Person:

type: ob j e c t

x−r e f e r sTo : http://schema . org / Person

p r o p e r t i e s :

f i r s tname :

type: s t r i n g

x−r e f e r sTo : http://schema . org /givenName

lastname:

type: s t r i n g

x−r e f e r sTo : http://schema . org /familyName

gender:

type: s t r i n g

x−r e f e r sTo : http://schema . org / gender

r equ i r ed :

− f i r s tname

− lastname

− gender

The x-mapsTo extension property is used to define OAS elements that

share the same semantics. In a OAS service document, there are many ele-

ments that share the same semantic information that a human may under-

stand but a machine cannot. Listing 3.9 demonstrates an excerpt from the

Swagger Petstore9 service description. As seen, there is a semantic similarity

among the petId property of the Order model and the id property of the Pet

model . In addition, this semantic similarity also exists between the status

property of the Pet model and the status query parameter.

Listing 3.9: Excerpt from Swagger Petstore OAS service description

parameters :

statusQuery:

name: s t a t u s

in : query

d e s c r i p t i o n : Status va lue s that need to be cons ide red f o r

f i l t e r

9http://petstore.swagger.io/

63

http://petstore.swagger.io/

Chapter 3. The Semantic OpenAPI Specification

r equ i r ed : true

type: array

items:

type: s t r i n g

enum:

− a v a i l a b l e

− pending

− s o ld

d e f a u l t : a v a i l a b l e

co l l e c t i onFormat : mult i

x−mapsTo: ’#/definitions/Pet.status’

d e f i n i t i o n s :

Pet: # A Pet model definition

type: ob j e c t

r equ i r ed :

− name

− photoUrls

p r o p e r t i e s :

id :

type: i n t e g e r

format: in t64

category :

$ r e f : ’#/definitions/Category’

name:

type: s t r i n g

example: dogg ie

photoUrls :

type: array

items:

type: s t r i n g

tags :

type: array

items:

$ r e f : ’#/definitions/Tag’

s t a t u s :

type: s t r i n g

d e s c r i p t i o n : pet s t a t u s in the s t o r e

enum:

64

Chapter 3. The Semantic OpenAPI Specification

− a v a i l a b l e

− pending

− s o ld

Order: # An Order model definition

type: ob j e c t

p r o p e r t i e s :

id :

type: i n t e g e r

format: in t64

petId :

type: i n t e g e r

format: in t64

x−mapsTo: ’#/definitions/Pet.id’

quant i ty :

type: i n t e g e r

format: in t32

shipDate:

type: s t r i n g

format: date−time

s t a t u s :

type: s t r i n g

d e s c r i p t i o n : Order Status

enum:

− placed

− approved

− d e l i v e r e d

complete:

type: boolean

d e f a u l t : fa l se

A human may easily infer these semantic similarities, either by the element

names or by the description that may be provided. However, in order for a

machine to act similarly to a human it is necessary to provide additional

information, that specifies these relations. This is the case of the x-mapsTo

property applicability, as can be seen in Listing 3.9.

The x-collectionOn extension property is used to indicate that a model in

65

Chapter 3. The Semantic OpenAPI Specification

Definitions Object is actually a collection. A collection (or a list) is defined

in OAS using the array type as seen in Listing 3.10. However, it is very

common a collection’s definition to be enriched with additional properties

and thus to be defined as an object type.

Listing 3.10: A simple collection definition

d e f i n i t i o n s :

Pe tCo l l e c t i on : # A Pet Collection definition

type: array

items:

$ r e f : ’#/defintions/Pet’

Listing 3.11 represents a model definition that is, in fact, a collection con-

taining items of the Pet model, while the totalItems property contains the

total number of elements in the collection, serving as metadata information.

Using the x-collectionOn property a model is considered as a collection. The

property’s value is the name of the property that contains the collection’s

items.

Listing 3.11: A model definition representing a collection

d e f i n i t i o n s :

Pe tCo l l e c t i on : # A Pet Collection definition

x−co l l e c t i onOn : pets

type: ob j e c t

p r o p e r t i e s :

pet s :

type: array

items:

$ r e f : ’#/defintions/Pet’

t o t a l I t em s :

type: i n t e g e r

The x-onResource extension property is used in Tag Objects in order to

specify the resource that a tag refers. As stated in the previous section, tags

are used to group operations either by resources or any other qualifier. A

human may understand the purpose of a tag, by reading its description. In

66

Chapter 3. The Semantic OpenAPI Specification

addition, if the tag is used to group operations by resources, a human may

recognize that the referred resource is described by a Schema Object in Def-

initions Object. For example, in the Swagger Petstore10 service description,

the tag pet groups all the operations which are related with the pet resource,

that is described from the ”Pet” model (the definition of the Pet model is

presented in Listing 3.9). As Figure 3.2 illustrates, tags provide a more com-

prehensive visualization of service’s functionalities, allowing users to easily

browse and discover the operations that refer to a specific resource.

Listing 3.12: Excerpt from Swagger Petstore OAS service description

tags :

− name: pet

d e s c r i p t i o n : Everything about your Pets

externa lDocs :

d e s c r i p t i o n : Find out more

u r l : ’http://swagger.io’

x−onResource: ’#/definitions/Pet’

paths:

/ pet:

post :

tags :

− pet

summary: Add a new pet to the s t o r e

opera t i on Id : addPet

consumes:

− a p p l i c a t i o n / j son

− a p p l i c a t i o n /xml

produces :

− a p p l i c a t i o n /xml

− a p p l i c a t i o n / j son

parameters :

− $ r e f : ’#/parameters/newPet’

r e sponse s :

’405’:

d e s c r i p t i o n : I n v a l i d input

s e c u r i t y :

10http://petstore.swagger.io/

67

http://petstore.swagger.io/

Chapter 3. The Semantic OpenAPI Specification

− pe t s t o r e au th :

− ’write:pets’

− ’read:pets’

Figure 3.2: Swagger Petstore operations grouped by tag ”pet”

This information a machine is not able to infer and thus the x-onResource

property is introduced, by associating the tag with a Schema Object that

describes a specific resource. Note that, Schema Objects can be semanti-

cally annotated, using the x-refersTo property and thus refer to a semantic

content with a specific meaning. Listing 3.12 demonstrates the usage of the

x-onResource property on an excerpt of the Swagger Petstore service de-

scription. The property is assigned on a pet tag that provides information

regarding the operations that are available for the resource that is described

by the Pet model in Definitions Object (the definition of the Pet model can

be seen in Listing 3.9).

Finally the x-operationType extension property is used in order to seman-

tically specify the type of an Operation object. A request (an operation for

68

Chapter 3. The Semantic OpenAPI Specification

OAS) is characterized by the HTTP method that it uses. However, the

semantics of the HTTP methods are too generic and in the context of a ser-

vice they may have a more specific meaning. For example, in the Swagger

Petstore11 service description a GET request on the path /pet/findByStatus

(Listing 3.13) is a search operation of pets based on their status. A human

may refer to the description of the operation in order to understand its in-

tended purpose, but a machine needs additional information as the HTTP

method itself cannot provide such specific information.

Listing 3.13: Excerpt from Swagger Petstore OAS service description

paths:

/ pet / f indByStatus :

get :

x−operationType: ’http://schema.org/SearchAction’

tags :

− pet

summary: Finds Pets by s t a t u s

d e s c r i p t i o n : Mult ip l e s t a t u s va lue s can be provided with

comma separated s t r i n g s

opera t i on Id : f indPetsByStatus

produces :

− a p p l i c a t i o n /xml

− a p p l i c a t i o n / j son

parameters :

− $ r e f : ’#/parameters/statusQuery’

r e sponse s :

’200’:

d e s c r i p t i o n : s u c c e s s f u l operat i on

schema:

$ r e f : ’#/definitions/PetCollection’

’400’:

d e s c r i p t i o n : I n v a l i d s t a t u s va lue

s e c u r i t y :

− pe t s t o r e au th :

− ’write:pets’

− ’read:pets’

11http://petstore.swagger.io/

69

http://petstore.swagger.io/

Chapter 3. The Semantic OpenAPI Specification

This information is specified by the use of the x-operationType as seen in

Listing 3.13. The value of the property is a URL pointing on the concept

that semantically describes the operation type. The Action12 type of the

Schema.org vocabulary provides a detailed hierarchy of Action subtypes that

can be used by the property.

3.4 The OpenAPI Ontology

The extension properties described in the previous section allow an OpenAPI

document to become machine-understandable. In this section, we present an

ontology13, in which any OpenAPI document can be transformed in order to

benefit from Semantic Web tools such as reasoners and query languages for

service discovery and for enabling service orchestration. Figure 3.4 represents

the structure of the OpenAPI ontology that we propose for the transforma-

tion of the OpenAPI documents.

The idea of the OpenAPI ontology stems from [34], where the authors have

demonstrated that it is possible an OpenAPI service description to be trans-

formed into an ontology. Their proposed ontology, presented in Figure 3.3,

is a direct mapping of the OAS objects and properties into the correspond-

ing defined classes and object/data properties of their ontology. In addition,

they suggest using annotations on Schema Objects and Parameter Objects

of an OpenAPI service description by adding a link, inside angle brackets

(”<>”), in their description property that points on a concept in a semantic

model. However, since their ontology is a direct mapping of the OAS objects

and properties, these annotations are not handled properly. From the given

examples14 these annotations are still part of the text description properties

and thus additional processing is required for a machine to extract and use

12http://schema.org/Action
13All examples are provided using the Turtle syntax (https://www.w3.org/TR/

turtle/)
14https://github.com/fathoni/swg-sample

70

http://schema.org/Action
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://github.com/fathoni/swg-sample

Chapter 3. The Semantic OpenAPI Specification

them.

Figure 3.3: The proposed ontology for OAS from [34]

On the other hand, our proposed OpenAPI ontology is based on the struc-

ture of the OpenAPI Specification, and captures all the information that is

provided by an OpenAPI service description, as well as the semantic anno-

tations introduced previously. The rest of the section describes the trans-

formation of an OAS service description into our proposed ontology. The

Document class represents the documentation and the entry point of the ser-

vice. Similarly to the OAS structure, it provides general information (Info

class) regarding the described service, and also specifies the service paths and

the entities that it supports.

A service path is described by the Path class containing the relative path

for the service endpoint (using the pathName property). The Operation class

is similar to the Operation object in the OAS structure. It contains all the

71

Chapter 3. The Semantic OpenAPI Specification

Figure 3.4: The OpenAPI Ontology

needed information in order to construct HTTP requests to the service as

well as the defined HTTP responses.

72

Chapter 3. The Semantic OpenAPI Specification

Listing 3.14 demonstrates how an OAS Path Item and Operation are de-

fined in our proposed OpenAPI ontology, using the example of the Swagger

Petstore in Listing 3.13. As seen, the mapping of the OAS elements into the

ontology is straightforward. A Path individual, named ”path2 ”, defines the

”/pets/findByStatus” service path, as well as the operations it supports. The

”path2 op1 ” is an Operation individual containing all the information that

also exists in the Operation object. Note that the ”path2 op1 ” individual is

also considered as an individual of the SearchAction type of the Schema.org

vocabulary, due to the existence of the x-operationType extension property.

Listing 3.14: Representation of an OAS Path Item and Operation in the

openAPI ontology

@pref ix : <http ://www. i n t e l l i g e n c e . tuc . gr / PetStoreOntology#> .

@pre f ix owl : <http ://www. w3 . org /2002/07/ owl#> .

@pre f ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .

@pre f ix xml : <http ://www. w3 . org /XML/1998/ namespace> .

@pre f ix xsd : <http ://www. w3 . org /2001/XMLSchema#> .

@pre f ix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#> .

@pre f ix openAPI : <http ://www. i n t e l l i g e n c e . tuc . gr /openAPI#> .

@base <http ://www. i n t e l l i g e n c e . tuc . gr / PetStoreOntology> .

<http ://www. i n t e l l i g e n c e . tuc . gr / PetStoreOntology> rd f : type owl :

Ontology ;

owl : imports <http ://www. i n t e l l i g e n c e . tuc . gr /2016/openAPI> .

. . .

: path2 rd f : type openAPI : Path ;

openAPI : pathName ”/ pets / f indByStatus ” ;

: path2 op1 rd f : type openAPI : Operation , <http :// schema . org /

SearchAction> ;

openAPI : onPath : path2

openAPI : method openAPI : Get ;

openAPI : tag : t ag pe t ;

openAPI : parameter : que ry s ta tu s ;

openAPI : re sponse : path2 op1 200 , : path2 op1 400 ;

73

Chapter 3. The Semantic OpenAPI Specification

openAPI : s e c u r i t y : oauth requirement ;

openAPI : ope ra t i on Id ” f indPetsByStatus ” ;

openAPI : produces ” a p p l i c a t i o n / j son ” , ” a p p l i c a t i o n /xml” ;

openAPI : summary ” Finds Pets by Status ” ;

openAPI : d e s c r i p t i o n ” Mult ip l e s t a t u s va lue s can be provided

with comma seperated s t r i n g s ” .

: path2 op1 200 rd f : type openAPI : Response ;

openAPI : message : Pe tCo l l e c t i on ;

openAPI : statusCode 200 ;

openAPI : d e s c r i p t i o n ” s u c c e s s f u l opera t i on ” .

: oauth requirement rd f : type openAPI : Secur ityRequirement ;

openAPI : secur i tyType : pe t s t o r e oauth ;

openAPI : scope : r ead pe t s , : w r i t e p e t s .

. . .

The Security class defines the security schemes that the specification sup-

ports. The Operation class refers to the defined security scheme through the

SecurityRequirement class, which in the case of the OAuth2 security scheme

contains the scopes that are needed in order to successfully execute the oper-

ation. In Listing 3.14 the ”path2 op1 ” operation refers to a SecurityRequire-

ment individual, specifying an OAuth2 security scheme (”petstore oauth”

individual) and the corresponding scopes (”read pets” and ”write pets” indi-

viduals).

The most challenging part in the design of the OpenAPI ontology was

the representation of Schema Objects that describe the input and output

messages of operations in an OpenAPI service document. Since Schema

Objects can be associated with semantic concepts, it is necessary to express

them in terms of classes, object and data properties, and also capture all

the information provided from the OpenAPI document. Therefore, we have

adopted an approach similar to the one used in the Hydra Core Vocabulary

(Section 2.7.4).

74

Chapter 3. The Semantic OpenAPI Specification

The Entity class represents the classes that describe the models of an Ope-

nAPI service description and captures all the information contained in the

models they describe. It allows to specify the operations that are related to

a class (supportedOperation), which comes from the use of the x-onResource

extension property. In addition, it determines whether a class may contain

additional properties (additionalProperties) of a specific type, described by

a TemplateProperty, and specifies the properties that a class contains (sup-

portedProperty).

The Property class represents the properties that a class definition con-

tains. A Property specifies the supported property (predicate) as well as

its expected value (valueType) and any restrictions that may exist (e.g. a

maximum value for a numeric property). In addition, the Property indicates

whether the supported property is required, read-only in the class definition.

The Array class is introduced in order to distinguish the properties that

contain a list of values (properties of type ”array”).

Listing 3.15: Representation of an OAS model in the openAPI ontology

. . .

<http :// schema . org /Person> rd f : type openAPI : Ent ity , owl : Class ;

openAPI : t i t l e Person ;

openAPI : supportedProperty : f i r s tname , : lastname , : gender .

: f i r s tname rd f : type openAPI : Property ;

openAPI : t i t l e f i r s tname ;

openAPI : p r e d i c a t e <http :// schema . org /givenName> ;

openAPI : valueType xsd : s t r i n g ;

openAPI : r equ i r ed true .

: lastname rd f : type openAPI : Property ;

openAPI : t i t l e lastname ;

openAPI : p r e d i c a t e <http :// schema . org /familyName> ;

openAPI : valueType xsd : s t r i n g ;

openAPI : r equ i r ed true .

: gender rd f : type openAPI : Property ;

75

Chapter 3. The Semantic OpenAPI Specification

openAPI : t i t l e gender ;

openAPI : p r e d i c a t e <http :// schema . org /gender> ;

openAPI : valueType xsd : s t r i n g ;

openAPI : r equ i r ed true .

. . .

Listing 3.15 demonstrates how the ”Person” model in Listing 3.8 is rep-

resented in the OpenAPI ontology. Note that the ”Person” model contains

references to the Schema.org vocabulary using the x-refersTo extension prop-

erty. As seen, the Person type of the Schema.org vocabulary is also considered

as an Entity describing the Person model and its properties in the OpenAPI

ontology. In case, the x-refersTo extension property is missing from a model

definition and its properties, then the corresponding class and properties will

be defined in the OpenAPI ontology. Thus, the newly defined classes and

properties can be used as references to other service descriptions if needed.

A model defined using the ”allOf” property, is represented in the Ope-

nAPI ontology as a subclass of the the model that is extended. Listing 3.16

demonstrates how the models of Listing 3.7 are represented in the OpenAPI

ontology. As seen, the ”Male” and ”Female” classes are defined as subclasses

of the ”Person” class due to the existence of the ”allOf” property in model

definitions. In addition, the ”Male” and ”Female” classes also inherit all the

properties of the ”Person” model.

A subclass is also defined in the OpenAPI ontology, when the x-kindOf

extension property is used in a model definition. In this case, the model

that is annotated with the x-kindOf extension property is represented in the

OpenAPI ontology as a subclass of the referenced semantic concept.

76

Chapter 3. The Semantic OpenAPI Specification

Listing 3.16: Representation of OAS models defined using the ”allOf” prop-

erty in the openAPI ontology

. . .

: Person rd f : type openAPI : Entity , owl : Class ;

openAPI : t i t l e Person ;

openAPI : d i s c r i m i n a t o r gender ;

openAPI : supportedProperty : f i r s tname , : lastname , : gender .

: Male rd f : type openAPI : Ent ity ;

r d f s : subClassOf : Person ;

openAPI : t i t l e Male ;

openAPI : supportedProperty : f i r s tname , : lastname , : gender ,

: he ight , : weight .

: Female rd f : type openAPI : Entity ;

r d f s : subClassOf : Person ;

openAPI : t i t l e Female ;

openAPI : supportedProperty : f i r s tname , : lastname , : gender ,

: eyesColor .

. . .

Collections are represented in the OpenAPI ontology through the Col-

lection class by specifying the members (member) of a collection. Listing

3.17 demonstrates the ”PetCollection” of Listing 3.11 representation in the

OpenAPI ontology. A ”PetCollection” class is defined in the OpenAPI on-

tology as a subclass of the Collection class. In addition, the ”PetCollection”

is also considered an Entity in order to describe its properties. Note that

the ”PetCollection” model in Listing 3.11 is defined as an object, and the

x-collectionOn extension property is used in order to specify that the model

is in fact a collection whose members are described by the ”pets” property.

Without the x-collectionOn extension property, the ”PetCollection” model

would be defined as a simple class without any reference of being a collection.

77

Chapter 3. The Semantic OpenAPI Specification

Listing 3.17: Representation of collections in the openAPI ontology

. . .

: Pe tCo l l e c t i on rd f : type openAPI : Entity ;

r d f s : subClassOf openAPI : C o l l e c t i o n ;

openAPI : t i t l e Pe tCo l l e c t i on ;

openAPI : supportedProperty : pet s , : t o t a l I t e ms .

: pet s rd f : type openAPI : Property , openAPI : Array ;

openAPI : t i t l e pet s ;

openAPI : p r e d i c a t e openAPI : member ;

openAPI : valueType : Pet .

: t o t a l I t e ms rd f : type openAPI : Property ;

openAPI : t i t l e t o t a l I t e ms ;

openAPI : p r e d i c a t e : t o t a l I t e ms ;

openAPI : valueType xsd : i n t e g e r .

. . .

A closer look on the definition of the Operation class reveals some differ-

ences that exist with the OAS structure. While in the specification a header

or the body of a HTTP request are treated as parameters objects, in the Ope-

nAPI ontology there is a clear distinction of the various parameter types, by

defining different classes for every parameter type.

As seen in Figure 3.4, the Header class, which is further distinguished

in ResponseHeader and RequestHeader classes, contains all the definitions

of header parameters that are used in HTTP requests and responses. The

Body class defines the body parameters describing the expected message

content of a HTTP request. The FormData class represents the form pa-

rameters that are defined by the specification describing the message con-

tent of a HTTP request when the ”application/x-www-form-urlencoded” and

”multipart/form-data” media types are used. Finally, the Parameter class

defines all parameters that are attached to operation’s URL. The class is

further organized in PathParameter and QueryParameter classes that refer

78

Chapter 3. The Semantic OpenAPI Specification

to the corresponding path and query parameters of the specification.

Parameters of an OpenAPI service description (excluding body parame-

ters) are represented in the OpenAPI ontology similarly to a model’s prop-

erty definition. Listing 3.18 demonstrates a query parameter definition (from

Listing 3.9) in the OpenAPI ontology. A status QueryParam is defined con-

taining the same information that is provided in the OpenAPI service de-

scription. As seen, the same property that describes the status property in

the Pet model, is also used to describe the status QueryParam. This is due

to the existence of the x-mapsTo extension property, stating that the query

parameter shares the same semantic information with the referred property.

Listing 3.18: Representation of Query parameter in the OpenAPI ontology

. . .

: statusQuery rd f : type openAPI : QueryParam , openAPI : Array ;

openAPI : t i t l e s t a t u s ;

openAPI : p r e d i c a t e : p e t s t a t u s ;

openAPI : valueType xsd : s t r i n g ;

openAPI : enumData a v a i l a b l e , pending , s o ld .

openAPI : de fau l tData a v a i l a b l e ;

openAPI : co l l e c t i onFormat mult i ;

openAPI : r equ i r ed true .

: Pet rd f : type openAPI : Ent ity , owl : Class ;

openAPI : t i t l e Pet ;

openAPI : supportedProperty : petId , : petCategory , : petName

, : petPhotoUrls , : petTags , : petStatus .

: petStatus rd f : type openAPI : Property ;

openAPI : t i t l e s t a t u s ;

openAPI : p r e d i c a t e : p e t s t a t u s ;

openAPI : valueType xsd : s t r i n g ;

openAPI : enumData a v a i l a b l e , pending , s o ld .

. . .

79

4
Use Case: FIWARE

The Semantic OpenAPI Specification presented in the previous chapter al-

lows for both, syntactic and semantic description of RESTful services, which

can be used for the description of Cloud services based on REST principles.

In addition, the proposed OpenAPI ontology enables the exploitation of Se-

mantic Web technologies such as reasoners and query languages that may

assist in the creation of service discovery and service orchestration mecha-

nisms.

In the following sections, we discuss how our proposed approach can be

applied in a Cloud provider, such as the FIWARE platform. However, this

is not a trivial process since there are many issues to resolve. Firstly, the

existing descriptions of FIWARE’s services (called Generic Enablers) are in-

complete and vague, not allowing the RESTful APIs to be fully described in

OAS. In addition, the semantic annotation of OpenAPI service descriptions

requires for ontologies that describe the domain of a service, which FIWARE

should provide. A closer collaboration with the FIWARE community can

resolve these issues and allow FIWARE to offer better service descriptions,

as well as tools that improve users’ interaction with the platform.

80

Chapter 4. Use Case: FIWARE

4.1 The FIWARE Catalogue

The FIWARE platform publishes its offering Generic Enablers (GEs) in a

public catalogue, called the FIWARE Catalogue1. The FIWARE Catalogue

is a web interface, that organizes GEs based on FIWARE’s technical chap-

ters (Section 2.4.3). As Figure 4.1 illustrates, a user can navigate through

a list of FIWARE’s offering GEs and discover their intended purpose and

functionality.

Figure 4.1: FIWARE Catalogue web interface

Once a GE is selected, the user is taken to the GE detailed view. In this

page, as Figure 4.2 demonstrates, a user finds all the information that is re-

lated with a GE. The page provides contact information for the organization

or the individual responsible for the specific GE and additionally a menu

with links to other relevant information.

• The ”Overview” item is the main page of a GE detailed view and

provides a more detailed description of the GE, the purpose and the

benefits of using it.

• The ”Creating Instances” item provides instructions for creating an

instance in the FIWARE platform for this specific GE.

1https://catalogue.fiware.org/

81

https://catalogue.fiware.org/

Chapter 4. Use Case: FIWARE

• The ”Documentation” item contains all the documentation of the GE.

Particularly, in most cases it provides links to external sources such as

user manuals, API descriptions and reference architecture.

• The ”Downloads” item provides links where the source code of the GE

is stored, as well as example packages.

• The ”Instances” item registers any available public instance of the spe-

cific GE that a user can use.

• The ”Terms and conditions” item contains the license and the policy

that a user must adhere in order to use the specific GE.

Figure 4.2: FIWARE Catalogue GE detailed view

The FIWARE Catalogue in its current structure cannot offers only a cat-

egorization of GEs in FIWARE’s technical chapters. Users need to discover

on their own what a specific GE offers and how it can be accessed and used.

In fact, a catologue’s entry acts as a mediator that takes users to the GE’s

project repository (such as GitHub2), where the actual documentation and

description of the service is kept. As mentioned in Section 2.4.3, GEs are

considered as software modules that offer various functionalities along with

protocols and interfaces for their communication.

The majority of GEs in the FIWARE platform are provided by means of

2https://github.com/

82

https://github.com/

Chapter 4. Use Case: FIWARE

Web services, however, there are also GEs offering a Web user interface (UI).

It is also very common, GEs to provide both a Web service and a UI, as

well as SDKs in specific programming languages. FIWARE doesn’t impose

any particular guidelines for documenting GEs, which is actually left to the

GE provider’s discretion and capability to decide the best way to do this.

Therefore, it is interesting to review how GE providers tend to describe the

offered services.

Cloud Hosting

The Cloud Hosting chapter contains GEs which are responsible for the pro-

visioning of virtual machines, as well as for associating compute, storage and

network resources to virtual machines. Most of the GEs are provided by

OpenStack (the cloud platform FIWARE is built upon) and the FIWARE

Catalogue refers users to the official documentation and support offered by

OpenStack. OpenStack used to describe its RESTful APIs using WADL,

however, in 2016 OpenStack Summit in Austin3, Texas, the OpenStack API-

WG defined OAS as a standard API documentation way and announced its

adoption for the documentation and description of OpenStack services.

Apart from offering OpenStack services, the Cloud Hosting chapter in-

cludes also GEs implemented and provided by the FIWARE community

(Table 4.1). Bosun, Pegasus and Sagitta GEs are offering additional func-

tionalities and features for the management of infrastructure resources. The

GEs are provided and maintained by the same provider (Telefónica I+D4)

and expose a RESTful API that is described using API Blueprint5.

On the contrary, the Docker GE, which provides the basic docker con-

tainer hosting capabilities on the FIWARE platform, offers a RESTful API6

3https://www.openstack.org/summit/austin-2016/
4http://www.tid.es/
5https://apiblueprint.org/
6https://docs.docker.com/engine/api/v1.25/

83

https://www.openstack.org/summit/austin-2016/
http://www.tid.es/
https://apiblueprint.org/
https://docs.docker.com/engine/api/v1.25/

Chapter 4. Use Case: FIWARE

Generic Enabler Offers API Description

Policy Manager (Bosun) RESTful API API Blueprint
PaaS Manager (Pegasus) RESTful API API Blueprint
Software Deployment &
Configuration (Sagitta)

RESTful API API Blueprint

Docker RESTful API & SDKs OpenAPI Spec.

Table 4.1: FIWARE GEs of the Cloud Hosting chapter

described using OAS. The API allows users to control every aspect of Docker,

and can be used for the development of tools for managing and monitoring

applications running on Docker. Figure 4.3 illustrates how Docker’s Ope-

nAPI description is visualized using ReDoc7, a tool similar to Swagger UI.

Figure 4.3: The Docker API documentation based on ReDoc

Data/Context Management

The Data/Context Management chapter contains GEs that provide various

functionalities regarding the management and processing of data. Table 4.2

summarizes the offered GEs and illustrates the given interfaces to access their

functionalities. In addition, the BigData analysis (Cosmos) GE is included in

7https://github.com/Rebilly/ReDoc

84

https://github.com/Rebilly/ReDoc

Chapter 4. Use Case: FIWARE

the chapter and offers a Hadoop8 cluster as well as a Storm9 cluster allowing

the analysis of data in real-time and massive scale. The main purpose of

the Cosmos GE is to offer a framework through which service providers may

expose services that application developers may use to perform such data

analysis.

Generic Enabler Offers API Description

CKAN RPC-style API & Web UI Text description
Stream-oriented
(Kurento)

JSON-RPC 2.0 API
& SDKs

Text description

Publish/Subscribe
Context Broker (Orion)

RESTful API API Blueprint

Complex Event
Processing (CEP)

RESTful API & Web UI API Blueprint

Table 4.2: FIWARE GEs of the Data/Context Management chapter

The CKAN GE offers a Web interface through which a user can manage

and organize datasets and their resources. Moreover, a RPC-style API10 is

provided, given a text description of its functionalities. Overall, the descrip-

tion of the API is poor as it doesn’t provide sufficient information regarding

the structure of HTTP requests and responses in order to allow a user interact

with it.

The Kurento GE provides a framework for the development of interactive

multimedia applications. The Kurento media server is accessed through an

API via WebSockets, which is based on JSON-RPC 2.0 protocol11. A text

description of the API is provided, which is quite informative as it provides

a complete description of API’s request and response elements. Moreover,

Java and JavaScript clients are available for developers to connect to Kurento

media server.

8http://hadoop.apache.org/
9http://storm.apache.org/index.html

10http://docs.ckan.org/en/latest/api/index.html
11http://www.jsonrpc.org/specification

85

http://hadoop.apache.org/
http://storm.apache.org/index.html
http://docs.ckan.org/en/latest/api/index.html
http://www.jsonrpc.org/specification

Chapter 4. Use Case: FIWARE

The Orion Context Broker GE is one of the most important and commonly

used GEs in the FIWARE platform. It allows the management of context

information (data which are relevant to a particular entity) including up-

dates, queries, registrations and subscriptions. The GE offers a RESTful

API implementing the NGSI9/1012 specification that is described using API

Blueprint, as well as an informative user manual. Note that, a new version

of Orion’s API is implemented and is about to replace the existing one.

The CEP GE allows the analysis of event data in real time. A user may

interact with the GE through a Web interface or a RESTful API. Although

an informative description of the technology used by the GE is provided, and

a guide for interacting with the Web interface, the description of the API is

incomplete. The API is described using API Blueprint, however, it doesn’t

provide sufficient information regarding the structure of HTTP requests and

responses or even examples.

Internet of Things (IoT) Services Enablement

The Internet of Things (IoT) Services Enablement chapter contains GEs that

allow devices and sensors to be registered and discovered by other FIWARE

services in order to obtain access to the information they collect. In most

cases, GEs act as gateways gathering information from the registered sensors

or devices and offering it as NGSI context information, that is the FIWARE

standard data exchange model. The offered chapter’s GEs are specified in

Table 4.3, which also describes the given interfaces for interacting with them.

The IDAS GE enables IoT devices and sensors to be connected to FIWARE-

based services and provides the tools for translating IoT specific protocols to

the NGSI context information protocol. Thus, the information retrieved from

devices can be used by other GEs, such as the Orion Context Broker GE.

12https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI_Open_RESTful_API_Specification

86

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI_Open_RESTful_API_Specification

Chapter 4. Use Case: FIWARE

Generic Enabler Offers API Description

Backend Device
Management (IDAS)

RESTful API API Blueprint

IoT Discovery RESTful APIs &
Web UI

API Blueprint &
Text Description

IoT Broker RESTful API API Blueprint
IoT Data Edge
Consolidation (Cepheus)

RESTful API Text Description
& API Blueprint

Table 4.3: FIWARE GEs of the Internet of Things (IoT) Services Enablement
chapter

The IDAS GE offers a RESTful API, called IoT Agent Provision API, which

is described using API Blueprint, allowing the registration of new devices

and the management of existing ones.

The IoT Discovery GE allows the registration and discovery of IoT sen-

sors and devices using either the NGSI context information protocol or as

Linked Data, based on the IoT-A13 ontologies. Therefore, the IoT Discov-

ery GE exposes two modules, an NGSI server and the Sense2Web platform.

The NGSI server is a repository for the storage of NGSI entities exposing a

RESTful API that implements the NGSI-914 specification described in API

Blueprint. The Sense2Web platform is also a repository that contains the

semantic descriptions of IoT sensors and devices, offering a Web interface

as well as a RESTful API. The Sense2Web API is described as text, and

the given documentation is incomplete as it merely states the available paths

which are accompanied by a small description of their intended functionality.

The IoT Broker GE provides a repository allowing the collection and ag-

gregation of context information from IoT devices and sensors. The GE

exposes a RESTful API implementing the NGSI-1015 specification described

in API Blueprint.

13www.iot-a.eu
14https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI-9_Open_RESTful_API_Specification
15https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-

WARE_NGSI-10_Open_RESTful_API_Specification

87

www.iot-a.eu
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification

Chapter 4. Use Case: FIWARE

The Cepheus GE supports the processing and management of data in real

time. The GE exposes two modules, a NGSI server (Cepheus-Broker) and

a Complex Event processor (Cepheus-CEP). The Cepheus-Broker acts as a

repository collecting data provided by IoT devices and sensors. This infor-

mation can be forwarded to other GEs, such as the Orion Context Broker,

or can be used by the Cepheus-CEP module.

The Cepheus Broker exposes a RESTful API, which according to the given

text documentation implements the NGSI9/10 specification. However, as the

project’s Github repository16 states some features of the NGSI9/10 specifi-

cation are not provided. The Cepheus-CEP module is based on the Esper17

engine allowing the process and analysis of data real time, such as filtering,

aggregating and merging real time data from different sources. The GE ex-

poses a RESTful API, which allows the configuration of the CEP engine and

the communication with other GEs. The description of Cepheus-CEP API

is given as text, however, as seen in the project’s Github repository an API

Blueprint description is being implemented.

Applications/Services Ecosystem and Delivery

The Generic Enablers of the Applications/Services Ecosystem and Delivery

chapter form an ecosystem that enable developers to publish their products,

services and applications and manage their offerings in order to generate rev-

enue. In addition, the chapter offers tools that support application mashup,

which is mainly focused on the creation of visualization dashboards based on

underlying services and data. Table 4.4 demonstrates the chapter’s offered

GEs and specifies the given interfaces for accessing their functionalities.

The Biz Ecosystem RI GE offers a framework through which developers

can publish their products, services, applications and manage the entire life

16https://github.com/Orange-OpenSource/fiware-cepheus
17http://www.espertech.com/esper/

88

https://github.com/Orange-OpenSource/fiware-cepheus
http://www.espertech.com/esper/

Chapter 4. Use Case: FIWARE

Generic Enabler Offers API Description

Business API Ecosystem
(Biz Ecosystem RI)

Web UI &
RESTful API

API Blueprint

Data Visualization
(SpagoBI)

Web UI, RESTful API
& SDK

API Blueprint

Application Mashup
(Wirecloud)

Web UI &
RESTful API

API Blueprint

Table 4.4: FIWARE GEs of the Applications/Services Ecosystem and Deliv-
ery chapter

cycle of their offerings in order to obtain some revenue. The Generic Enabler

provides a Web interface, through which a user can interact with it, having a

twofold role. On one hand, a user acts as a seller publishing and managing his

offerings, and on the other hand a user acts as a customer buying products,

services or applications. The functionalities of the Biz Ecosystem RI GE are

also exposed by a RESTful API, described in API Blueprint.

The SpagoBI GE offers analytical capabilities for business intelligence and

Big Data analytics. The GE provides tools ranging from traditional reporting

and charting features to generating insights on data and turning them into

actionable knowledge for effective decision-making processes. A user can

interact with the GE using the provided Web interface, while a RESTful

API is also offered, described in API Blueprint, allowing a user to manage

the documents and datasets. In addition, SpagoBI GE provides a Javascript

SDK that helps users to embed parts of the offering functionalities inside a

web page or to retrieve information about datasets and documents.

The Wirecloud GE provides a web application mashup platform. Web

application mashups integrate heterogeneous data, application logic, and UI

components (widgets) to create new value-adding composite applications. A

Web interface is offered so that users can choose the best suited widgets

and create new composite applications such as dashboards for visualizing

the data of interest. In addition, the Wirecloud GE provides a RESTful

API, called Apllication Mashup API, and described in API Blueprint, which

89

Chapter 4. Use Case: FIWARE

allows users to manage their workspaces as well as the widgets available at

the Application Mashup server.

Security

The purpose of the Security chapter is to provide a comprehensive set of

services for applications to comply with major security requirements such

as authentication and authorization. Table 4.5 summarizes the offered GEs,

as well as the offered interfaces, that users can use in order to secure their

services and applications based on FIWARE security layer. Note that, the

Security chapter may also includes software components, such as the PEP

Proxy (Wilma) GE, which are added in the backend of applications, in order

to ensure authorization and authentication of FIWARE users.

Generic Enabler Offers API Description

Identity Management
(KeyRock)

Web UI &
RESTful API

API Blueprint

Authorization PDP
(AuthZForce)

Web UI &
RESTful API

WADL

Table 4.5: FIWARE GEs of the Security chapter

The Keyrock GE is one of the most important components in the FI-

WARE platform, as it provides user, organization and application identity

management, and authentication. The Generic Enabler is based on Open-

stack Keystone18 fully implementing its APIs as well as additional function-

alities that only Keyrock offers. Using the offered Web interface developers

can register their applications, and manage the security of their applications

(credentials, authorization policy, and roles). In addition, users and client

applications interact with Keyrock GE for authentication and even provide

access to third-party applications using the OAuth2 flow. Users can also

interact with the GE using the RESTful API that is also provided and de-

scribed in API Blueprint.

18https://developer.openstack.org/api-ref/identity/v3/index.html

90

https://developer.openstack.org/api-ref/identity/v3/index.html

Chapter 4. Use Case: FIWARE

The AuthZForce GE allows the creation and management of authorization

policies, which are responsible for authorizing or denying access requests of

services. The Generic Enabler offers a RESTful API, described in WADL,

that complies with XACML19 (eXtensible Access Control Markup Language),

an OASIS standard for authorization policy format. The functionalities of

the AuthZForce GE are used by the Keyrock GE to manage policies defined

by developers for their applications.

Interface to Networks and Devices (I2ND)

The Generic Enablers of the Interface to Networks and Devices chapter are

mainly focused to offer services for the creation and management of Software-

Defined Networks20 (SDN) in private, enterprise and public settings. More-

over, the chapter may contain libraries and tools (middlewares) that are

integrated within application, supporting a wide range of communication

scenarios.

The Network Information and Control (OFNIC) GE provides the means

for the management of network infrastructures. It exposes network status in-

formation and enables a certain level of programmability within the network.

Users of the OFNIC GE may use the provided Web interface, or the RESTful

API, described in API Blueprint, in order to access the networks and retrieve

information and statistics as well as set control policies exploiting networks’

capabilities.

Advanced Web-based User Interface

The main objective of the Advanced Web-based User Interface chapter is to

provide Generic Enablers that will improve the user experience in Future

Interner applications by adding new features such as interactive 3D graph-

19http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
20https://en.wikipedia.org/wiki/Software-defined_networking

91

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://en.wikipedia.org/wiki/Software-defined_networking

Chapter 4. Use Case: FIWARE

ics and immersive interaction with the real and virtual world (Augmented

Reality21).

The 3D-UI-XML3D GE adds new HTML elements for describing 3D scenes,

including geometry, material, textures, lights, and cameras. The GE is

the reference implementation of XML3D22, a proposal for an extension to

HTML5 to provide Web developers an easy way to create interactive 3D

Web applications.

The Synchronization GE allows multiple instances of 3D and 2D envi-

ronments (scenes) running on different clients to synchronize in real-time.

Clients may interact with the GE either using the WebSocket protocol, or

a RESTful API (Scene API) for infrequent queries and modifications. The

Cloud Rendering GE is a service that connects to a synchronization server

and is responsible for the rendering of a scene based on a chosen camera view

and streams the results back to the client.

The GIS Data Provider (Geoserver/3D) GE enables the storage of geo-

graphical data which can also be represented in 3D form. The GE’s imple-

mentation is based on the open source GeoServer23 project, a Java server

that allows users to share and edit geospatial data. A user may interact with

the GE either through a Web interface or a RESTful API in order to access

and manage its resources.

The POI Data Provider GE offers a repository for the management and

retrieval of Point of Interest24 (POI) data. Thus, the GE can be used for

the positioning of content in the context of 3D or 2D scenes. A user is

provided with a RESTful API, described in API Blueprint, that allows the

management and retrieval of information related to locations.

The Interface Designer GE offers a Web editor for the creation and manip-

21https://en.wikipedia.org/wiki/Augmented_reality
22http://xml3d.org/
23http://geoserver.org/
24https://en.wikipedia.org/wiki/Point_of_interest

92

https://en.wikipedia.org/wiki/Augmented_reality
http://xml3d.org/
http://geoserver.org/
https://en.wikipedia.org/wiki/Point_of_interest

Chapter 4. Use Case: FIWARE

ulation of scene objects (entities). The GE doesn’t fully support the creation

of content, but depends on pre-existing content that is added to a scene, in

order to be properly positioned and whose parameters and animations can be

modified. On the other hand, the Virtual Characters GE allows the insertion

and control of animated virtual characters in 3D scenes.

4.2 API Descriptions of FIWARE’s GEs

The FIWARE catalogue offers developers with tools for the creation of in-

novative applications or the integration of new functionalities to existing

applications. The majority of FIWARE’s Generic Enablers offer a RESTful

API, through which developers can access their functionalities and manage

their resources. Therefore, it is important the GEs to offer an accurate and

complete description of their APIs, so that developers may easily interact

with them.

API Blueprint is the most commonly used service description specification

among GE providers, but it cannot be considered very useful for GE con-

sumers. Due to its nature, the specification is mainly focused providing a

human readable text description of services, without imposing any particu-

lar restrictions and guidelines for the description of APIs. Thus, a service

provider is free to describe the functionality of his service in any way he

prefers. However, this freedom of expression comes with a cost of limited

tool support, such as client generation.

In the case of FIWARE’s GEs, the description of RESTful APIs is based

on providing examples for every HTTP request and its corresponding re-

sponse. In addition, these examples may be accompanied by a small text

that briefly explain their components. However, these type of descriptions

tend to be incomplete or even misleading, not allowing developers to properly

communicate and interact with the Generic Enabler.

93

Chapter 4. Use Case: FIWARE

For example, consider the API Blueprint description of the Bosun GE,

which allows the management of Cloud resources based on rules. Figure 4.4

illustrates a part of the API’s description that explains the representation

of a rule in JSON format. As seen, a rule comprises of three parts: name,

condition and action. The name property specifies the rule’s name, while the

condition property describes the conditions that must be met (i.e. the CPU

usage of a server is greater than a certain limit) so that specific actions (i.e.

a server scale up) to be performed as described in the action property. The

description of a rule representation continues by explaining the structure of

condition and action objects.

Figure 4.4: Representation of rules in Bosun GE

Nevertheless, as the service description presents API’s endpoints regarding

the creation and management of rules, a different and non-compatible rep-

resentation of rule is provided. Figure 4.5 demonstrates a part of the API’s

description, which describes the HTTP request for the creation of a new rule.

As seen, a JSON Schema is also provided for validating the JSON message

that will be sent for the creation of a new rule. However, a closer look at the

given JSON Schema reveals some inconsistencies regarding what was pre-

viously described at the representation of a rule. According to the JSON

Schema the condition and action properties are expected to contain string

94

Chapter 4. Use Case: FIWARE

values, while the value of these properties should be other JSON objects.

Figure 4.5: The provided JSON Schema of a rule in HTTP requests of Bosun
GE

Another example of incomplete description is the RESTful API of Key-

rock GE. As Figure 4.6 illustrates, the API is described by simply providing

examples for every HTTP request and its corresponding response, without

providing any description of the properties that are used in JSON struc-

tures. Therefore, developers with no previous experience with Keyrock GE

may face many difficulties during their interaction with it. Such descriptions

are found on the majority of Generic Enablers in the FIWARE catalogue,

which in many cases may prevent potential developers from using them.

4.3 Improving the FIWARE Catalogue

The FIWARE platform needs to define guidelines and instructions in order to

offer better service descriptions for its Generic Enablers, and consequently to

improve user’s experience and interaction with the platform. In this context,

FIWARE should consider the adoption of the OpenAPI Specification for the

description of RESTful APIs and take advantage of its tools and features,

such as our proposed approach SOAS that semantically enriches the Ope-

nAPI service descriptions. During our research, we attempted to generate

95

Chapter 4. Use Case: FIWARE

the OpenAPI service descriptions of FIWARE’s GEs. However, these de-

scriptions are not completed and cannot be used yet, since they are based on

information collected from the existing API descriptions which as seen pre-

viously in many cases are incomplete and inadequate. Nevertheless, this is a

work in progress since the FIWARE platform and its Generic Enablers are

constantly evolving, and thus a cooperation with the FIWARE community is

needed in order to achieve this integration. The generated OAS descriptions

are stored in a public repository25, so as to be easily retrieved and further

improved.

Figure 4.6: API Blueprint description of HTTP requests of Keyrock GE

Listings 4.1 and 4.2 provide an excerpt of Bosun’s RESTful API described

in OAS. Listing 4.1 demonstrates how a Rule (Figure 4.4) can be described in

OAS. As seen, a Rule is represented as a rule Object containing 3 properties:

the name property that specifies the rule’s name, and the condition and

action properties, which are described by other Objects. A Rule’s condition

is described by the ruleCondition Object whose properties contain conditions

about CPU, Memory, Disk and Network usage to be evaluated. The action

Object describes the available actions that will be performed. Based on

the existing documentation there are two types of actions, notify-email and

25https://www.dropbox.com/sh/gy6j6ia6ce9kdpl/AADWzXB7lq4-vovk0ZVFR9X_a?

dl=0

96

https://www.dropbox.com/sh/gy6j6ia6ce9kdpl/AADWzXB7lq4-vovk0ZVFR9X_a?dl=0
https://www.dropbox.com/sh/gy6j6ia6ce9kdpl/AADWzXB7lq4-vovk0ZVFR9X_a?dl=0

Chapter 4. Use Case: FIWARE

notify-scale. According to the value of the actionName property, a different

action is specified. This is a typical example of Polymorphism that OAS

supports through the use of the ”discriminator” property.

Listing 4.1: Rule representation of Bosun GE in OAS

d e f i n i t i o n s :

r u l e :

type: ob j e c t

p r o p e r t i e s :

name:

type: s t r i n g

cond i t i on :

$ r e f : ’#/definitions/ruleCondition’

ac t i on :

$ r e f : ’#/definitions/action’

r equ i r ed :

− name

− cond i t i on

− ac t i on

ru l eCond i t i on :

type: ob j e c t

p r o p e r t i e s :

cpu:

$ r e f : ’#/definitions/condition’

mem:

$ r e f : ’#/definitions/condition’

hdd:

$ r e f : ’#/definitions/condition’

net:

$ r e f : ’#/definitions/condition’

cond i t i on :

type: ob j e c t

p r o p e r t i e s :

va lue :

type: number

format: f l o a t

operand:

97

Chapter 4. Use Case: FIWARE

type: s t r i n g

enum:

− g r e a t e r

− g r e a t e r equal

− l e s s

− l e s s equal

r equ i r ed :

− value

− operand

ac t i on :

type: ob j e c t

p r o p e r t i e s :

actionName:

type: s t r i n g

d i s c r i m i n a t o r : actionName

requ i r ed :

− actionName

not i f y−emai l :

a l l O f :

− $ r e f : ’#/definitions/action’

− type: ob j e c t

p r o p e r t i e s :

emai l :

type: s t r i n g

body:

type: s t r i n g

r equ i r ed :

- emai l

- body

not i f y−s c a l e :

a l l O f :

− $ r e f : ’#/definitions/action’

− type: ob j e c t

p r o p e r t i e s :

ope ra t i on :

type: s t r i n g

98

Chapter 4. Use Case: FIWARE

enum:

- scaleUp

- scaleDown

requ i r ed :

- opera t i on

Listing 4.2 illustrates the description of a HTTP POST request and its cor-

responding responses from the API of Bosun GE (Figure 4.5) for the creation

of a Rule in OAS. The listing describes an operation (named ”createRule”,

as the operationId property states) on the path ”/{tenant id}/rules”. The

operation specifies a path parameter (”tenant id”) as well as a body param-

eter (”newRule”) using the rule definition, as seen in Listing 4.1, in order

to describe the body of the HTTP request. In addition, the operation also

describes the responses that are sent from the server. A response with status

code 200 informs that the new rule was successfully created and a JSON

message is also received containing the ID of the new rule. The ”default”

response describes the message that is returned in case of an error. Accord-

ing to the existing documentation the returned error message is described

similarly for every status code (except for status code 200).

Listing 4.2: Creating a Rule operation of Bosun GE in OAS

paths:

/{ t enan t id }/ r u l e s :

post :

ope ra t i on Id : c reateRule

d e s c r i p t i o n : This operat i on c r e a t e s a new r u l e (General

Rule) a s s o c i a t e d to a tenant or p r o j e c t i d e n t i f i e d by

tenantId .

consumes:

− a p p l i c a t i o n / j son

produces :

− a p p l i c a t i o n / j son

parameters :

− name: t enant id

in : path

type: s t r i n g

d e s c r i p t i o n : Alphanumeric i d e n t i f i e r o f the Tenant to

99

Chapter 4. Use Case: FIWARE

perform ac t i on with , f o l l o w i n g the OpenStack ID

format e . g . d3fdddc6324c439780a6fd963a9fa148

r equ i r ed : true

− name: newRule

in : body

requ i r ed : true

schema:

$ r e f : ’#/definitions/rule’

r e sponse s :

200:

d e s c r i p t i o n : s u c c e s s f u l r u l e c r e a t i o n

schema:

$ r e f : ’#/definitions/newRuleId’

d e f a u l t :

d e s c r i p t i o n : d e f a u l t re sponse f o r e r r o r s

schema:

$ r e f : ’#/definitions/errorRespose’

Developers can benefit from the OpenAPI service descriptions by gener-

ating clients in any programming language using Swagger Codegen26. The

generated client library provides a connection with the service and imple-

ments all the functionality for successfully interacting with the service. In

addition, the Swagger Codegen allows developers to configure custom tem-

plates in order to generate client libraries based on their preferences. Thus,

developers can integrate the functionalities of a Generic Enabler into their

working applications with minimal programming effort.

Apart from client generation, the existence of OpenAPI service descrip-

tions allows FIWARE to develop and implement tools and services that may

further improve users’ experience with the platform such as service discovery

mechanisms. As seen in Section 2.8.1, Oracle has already released an API

catalogue for its Cloud services based on the OpenAPI Specification. How-

ever, service discovery is not yet efficient as it solely relies on searching for

keywords that exist in API descriptions. Service discovery could be improved

using the SOAS approach as presented in Chapter 3.

26https://github.com/swagger-api/swagger-codegen

100

https://github.com/swagger-api/swagger-codegen

Chapter 4. Use Case: FIWARE

Through the proposed extension properties various parts of an OpenAPI

service description can be semantically enriched and obtain a semantic con-

tent that machines may understand and interpret similarly to humans. The

SOAS approach may eliminate any ambiguities and provide descriptions

which are both uniquely defined and discoverable. Regarding FIWARE, the

semantic enrichment of OpenAPI service descriptions can be performed using

any existing vocabulary, such as Schema.org, that best describes the domain

of a service. Nevertheless, in cases where an appropriate vocabulary doesn’t

exist, FIWARE should consider defining a new one.

The semantically annotated OpenAPI service descriptions allows the im-

plementation of a semantic API catalogue based on the proposed OpenAPI

ontology, as presented in Section 3.4. The OpenAPI ontology preserves all

the syntactic and semantic information of an OpenAPI service description

and thus allowing the utilization of Semantic Web tools, such as reasoning

and querying. In fact, the semantic API catalogue is a triplestore27 (or RDF

store), containing all the OpenAPI service descriptions transformed in the

OpenAPI ontology. Reasoners, such as Pellet, can be used in order to check

the consistency of ontologies and also infer additional relations that may

exist. An important feature of the semantic API catalogue is the querying

support that is offered through SPARQL, the standard query language for

RDF data.

Using SPARQL, users can perform various queries in order to find the

services that meet their needs. For example, consider a user searching for a

service to create a virtual machine in the FIWARE platform. In this case,

a SPARQL query should require all services of the API catalogue using the

virtual machine entity, as well as any operations that are responsible for cre-

ating a virtual machine. This discovery method should be more accurate and

efficient, compared to the text search that Oracle’s API catalogue offers. The

implementation of an semantic API catalogue and its discovery mechanism

is a challenging project, which we are willing to undertake as future work.

27https://en.wikipedia.org/wiki/Triplestore

101

https://en.wikipedia.org/wiki/Triplestore

5
Conclusions and Future Work

The advent of Cloud Computing and its rapid development led organiza-

tions and individuals to redesign their strategy and products. However, as

the number of Cloud services is constantly increasing, the need for efficient

and accurate service discovery has become a significant challenge. This is

mainly due to the lack of formal service descriptions, as the majority of Cloud

providers describe their offerings in plain text. Therefore, the purpose of our

work was to propose a description language for Cloud services, that both

humans and machines could understand, and thus allow the implementation

of various tools, such as service discovery mechanisms.

5.1 Conclusions

During our research we reviewed many approaches that would efficiently de-

scribe any aspect of a service, both syntactically and semantically. However,

we were mainly focused on approaches for describing RESTful services, as the

majority of Cloud services are offered by means of Web services based on the

REST architecture style. Unlike SOAP-based services, using the standard

WSDL, there are many approaches for the description of RESTful services.

This is quite normal, as REST is not a specific framework, rather a set of

principles and guidelines by which Web services are designed to focus on a

system’s resources. Therefore, there are diverse techniques for implementing

RESTful services, which don’t facilitate the existence of a standard descrip-

102

Chapter 5. Conclusions and Future Work

tion language.

For the description of Cloud services, we ended up proposing and using

the OpenAPI Specification. The selection of the OAS, was motivated by

the popularity of the specification, its powerful tool support, and the active

community. In addition, there was a series of events that also affected our

decision. At the end of 2015, the OpenAPI Initiative was announced, founded

by organizations such as Google, Microsoft and IBM, in order to extend

the OpenAPI Specification (formerly known as Swagger) and standardize

a description mechanism for RESTful services. Openstack, in mid 2016,

has announced the adoption of the OAS for the description of its offering

services. Oracle, was the first organization that released an API catalog of its

offering Cloud services described in OAS, while Microsoft preserves a Github

repository1, where the OpenAPI descriptions of Azure’s Cloud services can

be found.

As we demonstrated, the OpenAPI Specification offers a human-friendly

environment for discovering and consuming RESTful services. However, de-

spite being machine-readable the specification is not machine understandable,

thus limiting the availability of tools that facilitate machine tasks such as ser-

vice discovery. Our proposed solution, the Semantic OpenAPI Specification,

attempted to fill this gap, allowing the description of RESTful services both

semantically and syntactically. Using the extension mechanism that the OAS

offers, we defined some additional properties that semantically enrich various

parts of an OpenAPI service description, resolving any ambiguities that may

exist in service descriptions and allowing machines to better understand the

described services. In addition, we developed an ontology allowing any Ope-

nAPI service description to be transformed in, enabling the use of Semantic

Web tools such as reasoners and query languages.

The adoption of the whole OAS ecosystem in conjunction with our pro-

posal can be substantially beneficial for both Cloud providers and users as it

offers many opportunities. Nevertheless, this is not a straightforward process,

1https://github.com/Azure/azure-rest-api-specs

103

https://github.com/Azure/azure-rest-api-specs

Chapter 5. Conclusions and Future Work

as significant work is required. In the case of the FIWARE platform, we re-

alized that the offering services are insufficiently described, complicating the

generation of OpenAPI service descriptions. Thus, the FIWARE community

is needed to resolve these deficiencies. In addition, the semantic annotation

of OpenAPI service descriptions requires for ontologies that best describes

services’ domains. The FIWARE community should provide such ontologies,

either using existing ones or defining new.

5.2 Future Work

Regarding future work, there are many issues worth considering further. Cur-

rently, the OpenAPI Specification is evolving, and a new version2 of the spec-

ification is expected to be released. The new version will bring structural im-

provements as well as new features. For example, a mechanism for describing

links contained in HTTP response messages is introduced, while additional

features from JSON-Schema will be adopted, such as the ”oneOf”, ”anyOf”,

and ”not” properties. Therefore, a new analysis must be performed, in order

to determine whether additional properties are required for the semantic an-

notation of new features. The OpenAPI ontology will also be affected, since

all changes and the new features must also be defined.

Regarding the OpenAPI ontology, we should consider the alignment with

emerging technologies, such as the Shapes Constraint Language (SHACL)[28].

SHACL, is a specification produced by the W3C RDF Data Shapes Working

Group3, offering an RDF vocabulary that can be used to describe the struc-

ture of data, similarly to XML-Schema or JSON-Schema. Therefore, we need

to examine if it can be used for the representation of Schema Objects of an

OpenAPI service description in the OpenAPI ontology.

The implementation of a semantic API catalogue is also a project that we

2https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-

draft-released
3https://www.w3.org/2014/data-shapes/wiki/Main_Page

104

https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-draft-released
https://www.openapis.org/blog/2017/03/01/openapi-spec-3-implementers-draft-released
https://www.w3.org/2014/data-shapes/wiki/Main_Page

Chapter 5. Conclusions and Future Work

are willing to undertake. The system should transform the semantically an-

notated OpenAPI service descriptions into our proposed OpenAPI ontology

and store them, allowing users to query them in order to discover the services

that best meet their needs. The existence of a semantic API catalogue would

also give us the opportunity to further extend its usage in more complicated

tasks, such as service orchestration.

105

Bibliography

[1] Mike Amundsen. Building Hypermedia APIs with HTML5 and Node. ”

O’Reilly Media, Inc.”, 2011.

[2] Apiary. Api blueprint. Technical report, Technical report,

https://github.com/apiaryio/api-blueprint.

[3] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup

language (yaml)(tm) version 1.2. yaml. Technical report, org, Tech. Rep,

2009.

[4] Tim Berners-Lee. Linked data-design issues (2006). URL http://www.

w3. org/DesignIssues/LinkedData. html, 2006.

[5] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.

Scientific american, 284(5):28–37, 2001.

[6] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the

story so far. Semantic Services, Interoperability and Web Applications:

Emerging Concepts, pages 205–227, 2009.

[7] Tim Bray, Jean Paoli, CM Sperberg-McQueen, Eve Maler, Franois

Yergeau, and John Cowan. Extensible markup language (xml) 1.1-

w3c recommendation. World Wide Web Consortium. http://www. w3.

org/TR/xml11/, 2006.

[8] Dan Brickley and R Guha. Rdf schema 1.1. w3c recommendation (25

february 2014). World Wide Web Consortium, 2014.

[9] Roberto Chinnici, J Moreau, Arthur Ryman, and Sanjiva Weerawarana.

Web services description language (wsdl) version 2.0 part 1: Core lan-

guage, w3c recommendation, june 2007, 2007.

106

Bibliography

[10] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-

awarana. Web services description language (wsdl) 1.1, w3c note, 2001,

2001.

[11] Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers, et al.

Uddi version 3.0. 2, uddi spec technical committee draft. OASIS UDDI

Spec TC, 2004.

[12] World Wide Web Consortium et al. W3c: Simple object ac-

cess protocol, soap, version 1.2 part 0: Primer,(2003). Web site:

http://www.w3.org/TR/soap12-part0.

[13] Richard Cyganiak, David Wood, and Markus Lanthaler. Rdf 1.1 con-

cepts and abstract syntax. W3C Recommendation, 25:1–8, 2014.

[14] Hai Dong, Farookh Khadeer Hussain, and Elizabeth Chang. Semantic

web service matchmakers: state of the art and challenges. Concurrency

and Computation: Practice and Experience, 25(7):961–988, 2013.

[15] Thomas Erl. Soa: principles of service design, volume 1. Prentice Hall

Upper Saddle River, 2008.

[16] Joel Farrell and Holger Lausen. Semantic annotations for wsdl and

xml schema. w3c recommendation, 28 august 2007. World Wide Web

Consortium (W3C), Tech. Rep, 2007.

[17] D Fensel, F Fischer, J Kopeckỳ, R Krummenacher, D Lambert, and

T Vitvar. Wsmo-lite: Lightweight semantic descriptions for services on

the web, w3c member submission. 2010.

[18] Roy Fielding. Fielding dissertation: Chapter 5: Representational state

transfer (rest). Recuperado el, 8, 2000.

[19] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler, Scott Lawrence,

Paul Leach, Ari Luotonen, and Lawrence Stewart. Http authentication:

Basic and digest access authentication. Technical report, 1999.

107

Bibliography

[20] Shudi Gao, CM Sperberg-McQueen, and Henry S Thompson. W3c

xml schema definition language (xsd) 1.1 part 1: structures: W3c

recommendation 5 april 2012. Available at h ttp://www. w3. o

rg/TR/xmlschema11-1, 2012.

[21] OWL Working Group et al. W.: Owl 2 web ontology language: Docu-

ment overview. w3c recommendation (27 october 2009), 2012.

[22] John Gruber. Daring fireball: Markdown syntax documentation, 2004.

[23] Hugo Haas and Allen Brown. Web services glossary. W3C Working

Group Note (11 February 2004), 9, 2004.

[24] Marc J Hadley. Web application description language (wadl). w3c mem-

ber submission. World Wide Web Consortium, W3C (November 2006),

2009.

[25] Dick Hardt. The oauth 2.0 authorization framework. 2012.

[26] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. Sparql 1.1

query language. W3C Recommendation, 21, 2013.

[27] Matthias Klusch. Semantic web service description. In CASCOM: intel-

ligent service coordination in the semantic web, pages 31–57. Springer,

2008.

[28] Holger Knublauch and Arthur Ryman. Shapes constraint language

(shacl). W3C First Public Working Draft, 8:W3C, 2015.

[29] Markus Lanthaler. Creating 3rd generation web apis with hydra. In

Proceedings of the 22nd International Conference on World Wide Web,

pages 35–38. ACM, 2013.

[30] Markus Lanthaler and Christian Gütl. Hydra: A vocabulary for

hypermedia-driven web apis. LDOW, 996, 2013.

[31] Holger Lausen, Axel Polleres, Dumitru Roman, et al. Web service mod-

eling ontology (wsmo). W3C Member Submission, 3, 2005.

108

Bibliography

[32] D Martin, M Burstein, J Hobbs, O Lassila, D McDermott, S McIlraith,

S Narayanan, P Paolucci, B Parsia, T Payne, et al. Owl-s: Semantic

markup for web services. w3c submission (2004), 2004.

[33] Peter Mell and Tim Grance. The nist definition of cloud computing.

2011.

[34] Fathoni A Musyaffa, Lavdim Halilaj, Ronald Siebes, Fabrizio Orlandi,

and Sören Auer. Minimally invasive semantification of light weight ser-

vice descriptions. In Web Services (ICWS), 2016 IEEE International

Conference on, pages 672–677. IEEE, 2016.

[35] Open API Initiative (OAI). Open api specification. Technical report,

Technical report, https://github.com/OAI/OpenAPI-Specification.

[36] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly

Media, Inc.”, 2008.

[37] Dumitru Roman, Jacek Kopeckỳ, Tomas Vitvar, John Domingue, and

Dieter Fensel. Wsmo-lite and hrests: Lightweight semantic annotations

for web services and restful apis. Web Semantics: Science, Services and

Agents on the World Wide Web, 31:39–58, 2015.

[38] Manu Sporny, Gregg Kellogg, Markus Lanthaler, W3C RDF Working

Group, et al. Json-ld 1.0: a json-based serialization for linked data.

W3C Recommendation, 16, 2014.

[39] Le Sun, Hai Dong, Farookh Khadeer Hussain, Omar Khadeer Hussain,

and Elizabeth Chang. Cloud service selection: State-of-the-art and fu-

ture research directions. Journal of Network and Computer Applications,

45:134–150, 2014.

[40] Ben Walker. Every day big data statistics–2.5 quintillion bytes of data

created daily. VCloudNews. April, 5, 2015.

[41] RAML Workgroup. Restful api modeling language (raml). Technical

report, Technical report, https://github.com/raml-org/raml-spec.

109

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	Introduction
	Motivation
	Problem Definition
	Proposed Solution
	Contributions of the Work
	Thesis Outline

	Background and Related Work
	Service-Oriented Architecture (SOA)
	SOAP-based Services
	REST-based Services
	Cloud Computing
	SOA and Cloud Computing
	Openstack
	FIWARE

	Semantic Web and Linked Data
	Interface Description Languages
	WSDL and SAWSDL
	WADL
	OpenAPI Specification, RAML, API Blueprint

	Ontologies and Vocabularies
	OWL-S
	WSMO
	WSMO-Lite
	Hydra Core Vocabulary

	Service Catalogues
	Oracle API Catalog Service

	The Semantic OpenAPI Specification
	Adopting the OpenAPI Specification
	Describing the OpenAPI Specification
	Enriching the OpenAPI Specification
	The OpenAPI Ontology

	Use Case: FIWARE
	The FIWARE Catalogue
	API Descriptions of FIWARE's GEs
	Improving the FIWARE Catalogue

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

