
Technical University of Crete

Diploma Thesis

Modeling and Design of "Projected
Gauss-Seidel" Algorithm in FPGA

Author:
Petros Toupas

Committee:
Prof. Apostolos Dollas

Prof. Dionisios Pnevmatikatos

Assoc. Prof. Ioannis
Papaefstathiou (AUTH)

A thesis submitted in fulfillment of the requirements
for the Diploma of Electrical and Computer Engineering

in the

School or Electrical and Computer Engineering
Microprocessor and Hardware Lab

October 10, 2018

https://www.tuc.gr/index.php?id=4992
https://www.ece.tuc.gr/index.php?id=4101
http://www.mhl.tuc.gr/Controller?event=SHOW_HOME




iii

TECHNICAL UNIVERSITY OF CRETE

School or Electrical and Computer Engineering

Abstract
Modeling and Design of "Projected Gauss-Seidel" Algorithm in

FPGA

by Petros Toupas

In recent years there has been a continuous increase in the use of physics
engines, which are widely used in the industry of video games, scientific simula-
tions, computer graphics, and films. Their main goal is to simulate the motions
of objects based on physics rules of real-world. The input to a physics engine
is a collection of objects (rigid bodies) with their properties and a collection
of forces acting on those bodies. Rigid bodies are objects that do not deform
when they collide and rigid body dynamics is the study of their motion. This
input is being processed by performing a certain number of simulation steps
which produce the updated properties for each object in the output. Rigid
body simulation along with rigid body dynamics are used to simulate the real
world physics. The complexity of the modern games is rapidly increasing, so
does the computational cost of the simulation the physics engines must accom-
plish. The use of GPGPU (General-Purpose computing on Graphics Processing
Units) can help us overcome the need for high computational requirements by
exploiting the parallel processing a GPU can provide. In this thesis, we are going
to use FPGA instead of GPU since we can still exploit the parallel processing
and furthermore we can achieve much better power consumption in comparison
with GPU. The physics engine we are working on is Bullet which has already
implemented a high computational cost game scene with many rigid bodies
(38880) in GPU with the use of the OpenCL library. Our implementation of
the same game scene in Xilinx UltraScale+ ZCU102 with the use of Vivado HLS
and C++, achieving 7.08× to 8.5× speedups over CPU, while these numbers
change to 1.82× to 2.19× speedups and 35.72× to 43.67× power efficiency when
compared to NVIDIA GeForce GTX 980.

HTTPS://WWW.TUC.GR/INDEX.PHP?ID=4992
https://www.ece.tuc.gr/index.php?id=4101
https://pybullet.org/wordpress/
https://www.khronos.org/opencl/




v

Acknowledgements
I would like to thank my supervisor, Assoc. Prof. Ioannis
Papaefstathiou (AUTH) for his guidance during the course of this thesis,
as well as for the opportunity he gave me to delve into the field of gaming
engines combined with re-configurable hardware and expand my knowledge on
hardware and FPGA designing.

I would also like to thank all the members of Microprocessor and Hardware
Lab (MHL) and especially Andreas Brokalakis for his valuable guidance and
the amount of time he dedicated to help me complete this thesis and Pavlos
Malakonakis for the valuable technical advice whenever I needed them and
for pointing me in the right direction every time I had a dilemma.

I would like to deeply thank my friend and studying partner Giorgos-Antonios
Pitsis for standing always beside me and helping me when I needed his support
the most.

I also want to express my sincere thanks to my good friend and roommate
Loukas-Rafael Nomikos for everything he has done for me in the last months
while hosting me.

Last but not least I would like to thank from the bottom of my heart my
parents and my sister for supporting me all these years and for giving me the
opportunity to achieve my goals and dreams. Without them, I wouldn’t be able
to accomplish any of these.

Petros Toupas

Chania 2018





vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical Background 5
2.1 Physics Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 General Concepts of Physics Engines . . . . . . . . . . . 5
Simulation Loop . . . . . . . . . . . . . . . . . . . . . . 5
Simulation Time-Step . . . . . . . . . . . . . . . . . . . 6
Geometry Types of Shapes . . . . . . . . . . . . . . . . . 7

2.1.2 Collision Detection . . . . . . . . . . . . . . . . . . . . . 8
Broad-Phase Collision Detection . . . . . . . . . . . . . . 8
Narrow-Phase Collision Detection . . . . . . . . . . . . . 9

2.1.3 Equations of Motion and Integration . . . . . . . . . . . 10
Numerical Integration . . . . . . . . . . . . . . . . . . . 10
Explicit Euler Integration . . . . . . . . . . . . . . . . . 11
Semi-implicit/Symplectic Euler Integration . . . . . . . . 11

2.1.4 Collision Response . . . . . . . . . . . . . . . . . . . . . 13
Forces on Collisions . . . . . . . . . . . . . . . . . . . . . 13



viii

Newton-Euler Equations . . . . . . . . . . . . . . . . . . 14
Impulse and Penalty Methods . . . . . . . . . . . . . . . 14

2.2 The Bullet Physics Engine . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Sweep and Prune (SAP) . . . . . . . . . . . . . . . . . . 16
2.2.2 Separating Axis Theorem (SAT) . . . . . . . . . . . . . . 17
2.2.3 Projected Gauss-Seidel (PGS) . . . . . . . . . . . . . . . 18

Linear Complementarity Problem . . . . . . . . . . . . . 18
Gauss-Seidel Method . . . . . . . . . . . . . . . . . . . . 19
PGS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Work 25
3.1 Real-Time Physics Simulation Systems . . . . . . . . . . . . . . 25
3.2 Bullet Physics Library . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Field-Programmable Physics Processor . . . . . . . . . . . . . . 26
3.4 FPGA Acceleration of Molecular Dynamics Simulation . . . . . 27

4 Modeling of PGS and Integration 29
4.1 OpenCL to C++ Conversion . . . . . . . . . . . . . . . . . . . . 29
4.2 Isolating Processing from Rendering . . . . . . . . . . . . . . . . 30
4.3 Demo Description (Game Scene) . . . . . . . . . . . . . . . . . 30
4.4 Data Analysis of PGS and Integration . . . . . . . . . . . . . . 31

4.4.1 Data Redundancies . . . . . . . . . . . . . . . . . . . . . 32
PGS Data Reduction . . . . . . . . . . . . . . . . . . . . 32
Integration Data Reduction . . . . . . . . . . . . . . . . 33
PGS and Integration Combination . . . . . . . . . . . . 34

4.4.2 Memory Footprint . . . . . . . . . . . . . . . . . . . . . 35
4.5 Lack of Determinism in GPU Implementation of PGS . . . . . . 36
4.6 Comparison of Float and Half-Float . . . . . . . . . . . . . . . . 37

4.6.1 Float to Half-Float Conversion and Vice-Versa . . . . . . 38
4.6.2 Half-Float Representation of Input Data . . . . . . . . . 39
4.6.3 Evaluation of Results Using Half-Float Representation . 42

Output of PGS using Float . . . . . . . . . . . . . . . . 42
Output of PGS using Half-Float . . . . . . . . . . . . . . 42

4.6.4 Half-Float to Float Conversion . . . . . . . . . . . . . . 43
4.7 Sorting Input Data on PGS . . . . . . . . . . . . . . . . . . . . 45

4.7.1 Possible Benefits using Sorting . . . . . . . . . . . . . . . 46

5 System Implementation 49
5.1 Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



ix

5.1.1 Vivado HLS . . . . . . . . . . . . . . . . . . . . . . . . . 49
HLS Optimization Directives . . . . . . . . . . . . . . . . 50

5.2 Memory I/O Interfaces . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 A First,Naive Approach . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Bottom-Up Strategy . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Architecture Design . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 Optimizations on the Frist Design . . . . . . . . . . . . . 55

5.4 Floating Point Architecture . . . . . . . . . . . . . . . . . . . . 56
5.4.1 Algorithmic Level Optimization . . . . . . . . . . . . . . 56

I/O Data Reduction . . . . . . . . . . . . . . . . . . . . 56
Memory Footprint . . . . . . . . . . . . . . . . . . . . . 56

5.4.2 Exploitation of the Available Bandwidth . . . . . . . . . 57
Larger Streaming Buses . . . . . . . . . . . . . . . . . . 57
Multiple DMA’s . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.3 Array Partition . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.4 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 59
Custom Loop Unroll . . . . . . . . . . . . . . . . . . . . 59
Remove If-Statements . . . . . . . . . . . . . . . . . . . 60

5.4.5 Array Map . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Half-Precision Floating Point Architecture . . . . . . . . . . . . 62

5.5.1 Conversion to Half . . . . . . . . . . . . . . . . . . . . . 62
5.5.2 Multiple Instances of Algorithm . . . . . . . . . . . . . . 62
5.5.3 Multiple Instances of Arrays in BRAM . . . . . . . . . . 63

6 Results 65
6.1 Specifications of Compared Platforms . . . . . . . . . . . . . . . 65

6.1.1 Zynq UltraScale+ ZCU102 . . . . . . . . . . . . . . . . . 65
6.1.2 NVIDIA GeForce GTX 980 . . . . . . . . . . . . . . . . 66
6.1.3 Intel Core i7 3770 . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.1 Latency Speedup . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Throughput Speedup . . . . . . . . . . . . . . . . . . . . 67

6.3 Power and Energy Consumption . . . . . . . . . . . . . . . . . . 68
6.4 Floating Point Architecture . . . . . . . . . . . . . . . . . . . . 68
6.5 Half-Precision Floating Point Architecture . . . . . . . . . . . . 69



x

7 Conclusions and Future Work 73
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 75



xi

List of Figures

2.1 Rigid body simulation loop . . . . . . . . . . . . . . . . . . . . . 6
2.2 Speed-Accuracy Trade-off . . . . . . . . . . . . . . . . . . . . . 7
2.3 AABB of shpere . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Two non-colliding AABBs . . . . . . . . . . . . . . . . . . . . . 9
2.5 Two colliding AABBs . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Position integration . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Bullet’s simulation pipeline . . . . . . . . . . . . . . . . . . . . . 16
2.8 SAT example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Rigid Body Demo . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Deviation Between two Executions of Demo in GPU . . . . . . . 37
4.3 Floating Point Representation . . . . . . . . . . . . . . . . . . . 38
4.4 Half-Precision Floating Point Representation . . . . . . . . . . . 39
4.5 Distribution of Input Data (Floating Point) . . . . . . . . . . . 39
4.6 Distribution of Input Data (Half-Precision Floating Point) . . . 40
4.7 Error Rate of Half-Float on 100% Input Data . . . . . . . . . . 41
4.8 Error Rate of Half-Float on 99.93% of Input Data . . . . . . . . 41
4.9 Deviation (FPGA vs GPU) of PGS Output . . . . . . . . . . . . 42
4.10 Error Rate (Half vs Float) of PGS Output in FPGA . . . . . . 43
4.11 Conversion of Float to Half-Float . . . . . . . . . . . . . . . . . 45
4.12 Conversion of Half-Float to Float . . . . . . . . . . . . . . . . . 45
4.13 Memory Footprint of PGS with Sorted Input . . . . . . . . . . . 46

5.1 Non-Pipelined Loop . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Pipelined Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Naive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Floating Point Datapath . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Speedup Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Energy Efficiency Chart . . . . . . . . . . . . . . . . . . . . . . 72





xiii

List of Tables

4.1 Data Reduction on PGS Input . . . . . . . . . . . . . . . . . . . 33
4.2 Data Reduction on PGS Output . . . . . . . . . . . . . . . . . . 33
4.3 Data Reduction on Integration Input . . . . . . . . . . . . . . . 34
4.4 Data Reduction on Integration Output . . . . . . . . . . . . . . 34
4.5 Data Reduction on PGS and Integration Input . . . . . . . . . . 35
4.6 Data Reduction on PGS and Integration Output . . . . . . . . . 35

6.1 Zynq UltraScale XCZU9EG-2FFVB1156 Specifications . . . . . 66
6.2 NVIDIA GeForce GTX 980 Specifications . . . . . . . . . . . . 66
6.3 Intel Core i7 3770 Specifications . . . . . . . . . . . . . . . . . . 66
6.4 Floating Point Implementation Results . . . . . . . . . . . . . . 68
6.5 Comparison of the 3 Platforms (Floating Point) . . . . . . . . . 69
6.6 Latency Speedup over GPU and CPU (Floating Point) . . . . . 69
6.7 Power and Energy Efficiency over GPU and CPU (Floating Point) 69
6.8 Half Floating Point Implementation Results . . . . . . . . . . . 70
6.9 Comparison of the 3 Platform (Half Floating Point) . . . . . . . 70
6.10 Latency Speedup over GPU and CPU (Half Floating Point) . . 70
6.11 Power and Energy Efficiency over GPU and CPU (Half Floating

Point) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71





xv

List of Algorithms

1 Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Projected Gauss-Seidel method . . . . . . . . . . . . . . . . . . 22
3 Sorting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Original "Branchy" Code . . . . . . . . . . . . . . . . . . . . . . 61
5 Updated "Branchless" Code . . . . . . . . . . . . . . . . . . . . 61





xvii

List of Abbreviations

CPU Central Processing Unit
GPU Graphics Processing Unit
FPGA Field Programmable Gate Array
DDR Double Data Rate
SDRAM Synchronous Dynamic Random Access Memory
BRAM Block Random Access Memory
LUT Look- Up Tables
FF Flip Flops
DSP Digital Signal Processor
HLS High Level Synthesis
OpenCL Open Computing Language
GPGPU General Purpose computing on Graphics Processing Unit
3D 3 Dimensional space
AABB Axis Aligned Bounding Box
OBB Oriented Bounding Box
SAP Sweep And Prune
SAT Separating Axis Theorem
GJK Gilbert Johnson Keerthi
PGS Projected Gauss Seidel
LCP Linear Complementarity Problem
SIMD Single Instruction Multiple Data
LSB Least Significant Bit
MSB Most Significant Bit
RTL Register Transfer Level
I/O Input / Output
DMA Direct Memory Access





xix

This thesis is dedicated to my beloved parents and my
dear sister for the faith they always showed me and the

unlimited support they provided me...





1

Chapter 1

Introduction

The use of numerical simulation for every kind of physical effects has been well-
developed in the last few years. Many applications such as computer animation,
video games, visual effects in movies, and robotic simulation need these simu-
lations to operate. The use of this type of applications is constantly increasing
so does the need to perform the physics simulation faster and with the best
possible precision.

Real-world systems are modeled by rigid bodies. There are some cases where
the deformation of an object is an important factor in the physical behavior of
the object (for example in a cloth or jelly). In these cases, the rigid bodies
are not acceptable. We are going to work on Bullet, a physics engine which
has been used in the development of many video games like Grand Theft Auto
V and Rocket League as well as in films like Sherlock Holmes and Bolt for
the simulation of special effects and in many 3D authoring tools like Blender,
Cinema 4D and in many other cases[10]. This thesis aims to develop a rigid
body simulation in ZCU102 FPGA, where many objects (38880) are colliding
with each other.

1.1 Motivation

Physics engines in video games have always been CPU-bound tasks, which
means that the CPU is responsible for every processing done inside the physics
engine, apart from the rendering part which is performed on GPU. As the
physics simulation is becoming more and more computationally demanding, the
CPU is reaching its limits, hence there is a need to use a more suitable process-
ing unit for this kind of demanding task. This processing unit will be practically
a powerful, massively parallel co-processor alongside CPU. The calculations a
physics simulation needs to perform are generally independent computations im-
plemented in a software pipeline on a per-object basis. This data-level parallel
nature of the physics simulation can exploit the parallel processing capabilities

https://pybullet.org/wordpress/


2 Chapter 1. Introduction

of GPU/FPGA so that each stage of pipeline executes on different data sets
in parallel. Accelerating the physics simulation on a physics engine is really
important when it comes to video games since they are real-time applications.
The faster the simulation steps are performed, the more times we can render
the scene, which leads to higher FPS.

The Bullet’s implementation of the game scene we are going to work on uses
CPU alongside with GPU[11], where all the computationally intensive parts
(huge loops with cross products, dot products, etc.) of the algorithm are being
processed. In this thesis, we aim to achieve speedup and power efficiency better
than GPU by using FPGA.

1.2 Contribution

This thesis presents two different FPGA architectures which accelerate the
physics simulation of a game scene with many rigid bodies (38880). An ex-
tensive analysis was conducted on input data in order to understand in depth
the way these data are used and to reduce their size as much as possible. This
pre-processing procedure has been used in both architectures. The nature of
the algorithm requires a large amount of data to be able to operate a simulation
step. For this reason, we exploit the full bandwidth from the DDR SDRAM
by using streams to transfer the data to and from the FPGA. Furthermore, we
have executed a conversion of the original code from OpenCL to C++ and at
the same time, we have modified the source code to meet the specifications of
the FPGA.

The first architecture was implemented in floating point precision. We have
used many features of Vivado HLS alongside with streaming to achieve the de-
sired speedup, such as pipeline, array partitioning etc. The second architecture
was implemented with half-precision floating point, which led us to have half
the volume of data at the input, as well as half of the resources in the FPGA.
It also led us to reduce the latency of the simulation step, hence resulted in
a better speedup. The first architecture led us to a speedup 7.08× over CPU
and 1.82× over GPU, as also to 35.72× power efficiency over GPU. When it
comes to the second architecture we have achieved a speedup 8.5× over CPU
and 2.19× over GPU and 43.67× power efficiency over GPU.

1.3 Thesis Outline

The remainder of this work is organized as follows.

https://pybullet.org/wordpress/


1.3. Thesis Outline 3

• Chapter 2: We perform a theoretical background analysis of the physics
engines as well as the heterogeneous systems.

• Chapter 3: We review related work on acceleration of physics simulations
on physics engines with GPGPU systems and FPGAs.

• Chapter 4: We present the analysis and pre-processing we have per-
formed on the Projected Gauss Seidel and Integration algorithms to ex-
tract valuable information about any potential data redundancy and op-
timization.

• Chapter 5: We describe the two different architectures we have designed.

• Chapter 6: We show the results of those architectures and we compare
them with the corresponding implementations on GPU and CPU.

• Chapter 7: We entail the conclusions from this work, as well as the
lessons learned and proposals for improvements.





5

Chapter 2

Theoretical Background

Bullet physics is a professional open source collision detection, rigid body, and
soft body dynamics library. It targets real-time and interactive use in games,
visual effects in movies, and robotic simulation. In this chapter, we will provide
all the necessary information on how a physics engine works, the sub-steps it
performs during a single simulation step and the algorithms it uses to perform
each one of them. We will also analyze how Bullet implements all these tasks and
procedures based on the [9] and [11]. Lastly, we will analyze the heterogeneous
systems and explain why they fit perfectly and why they can be used by physics
engines.

2.1 Physics Engines

A physics engine is computer software that provides an approximate simulation
of certain physical systems, such as rigid body dynamics, soft body dynamics,
and fluid dynamics, of use in the domains of computer graphics, video games
and film. Their main uses are in video games (typically as middleware), in
which case the simulations are in real-time. The term is sometimes used more
generally to describe any software system for simulating physical phenomena,
such as high-performance scientific simulation.

2.1.1 General Concepts of Physics Engines

Simulation Loop

We can think of a rigid body simulation as a continuous loop, which is like the
heartbeat of every physics engine. The complexity of the simulation process
leads us to fragment it into smaller, well-defined pieces. Each one of them is
responsible for solving a simpler task. All pieces are tied together in a simulation
loop as shown in Figure 2.1.

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


6 Chapter 2. Theoretical Background

Figure 2.1: The simulation loop of a physics engine

The loop begins with a collision detection algorithm to find the possible col-
lisions and contact points between all various bodies. These points are necessary
in order to apply the physical laws of motion on the bodies, and finally deter-
mine collision forces which provide proper collision friction effects and prevent
bodies from interpenetrating [18]. The above procedure is termed as “collision
response”. After computing all the collision forces, the positions and velocities
of the bodies are integrated forward in a time step dt before a new iteration of
the simulation loop starts. Several iterations of the loop might be performed
before a frame is rendered.

Simulation Time-Step

We can easily understand that choosing the right value for the time step dt is
really important since it affects how the bodies behave during the loop. Es-
pecially when targeting real-time applications like video games, the choice of
dt also affects how many times the simulation will be executed in one second.
The simulation consists of two parts, updating the physics of the scene(game-
step) and rendering the scene(render-step). In order to achieve a stable and
smooth visual representation over time, we target at 60 FPS, i.e to perform 60
render-steps in one second. Ideally, we want to have one game-step for every
render-step. In some computational intensive scenes, it’s not possible to cal-
culate so many game-steps in one second. However render-steps should always
be at 60 times per second. To overcome this problem we take advantage of the
interpolation technique [3] [19]. For instance, if we can calculate 30 game-steps
in a second but we want to have 60 render-steps we are going to predict the
intermediate game-steps using interpolation so we can still achieve the goal of
60 render-steps in a second. Interpolation is very important in order to help
us achieve the desired FPS especially in computational intensive applications.



2.1. Physics Engines 7

This way we can calculate less game-steps per second and still have a smooth
and stable visual result. In the Figure 2.2 below, which we found at [16], we can
see the speed-accuracy trade-off in physics engines that depends on the value
of time-step (dt).

Figure 2.2: The speed-accuracy trade-off in physics engines
depending on time-step(dt)

Geometry Types of Shapes

The geometry type of simulated rigid bodies is important for collision detection
and contact point generation because it influences the performance and the
complexity of the simulation. It is common that objects are represented by
primitives shapes such as boxes, spheres or cylinders [2]. Convex polygonal
models are also a very common geometry type in the field of interactive rigid
body simulations. Thanks to the properties of these models, very fast algorithms
have been created for collision detection and this is a reason why they are
widely used. In a case where non-convex (concave) shapes exist, they have to
be decomposed into convex shapes.

If each of the interior angles of a polygon is less than 180◦, then it is called
convex polygon. On the other hand, if at least one angle of a polygon is more
than 180◦, then it is called a concave polygon.



8 Chapter 2. Theoretical Background

2.1.2 Collision Detection

The first big step the simulation loop needs to perform is collision detection. The
goal of collision detection is to report if two objects have collided. However, this
operation is extremely time-consuming. In case where the scene is composed
of n bodies, the complexity to test all the possible pairs of bodies is O(n2)

[17]. This can easily become a computational bottleneck so it is divided into 2
phases, Broad-Phase and Narrow-Phase.

Broad-Phase Collision Detection

Broad-phase detection is typically a computationally low cost operation that
quickly answers the question, “Which objects have a strong possibility of collid-
ing?”. Most physics engines use the concept of bounding primitives to simplify
and speed-up the broad-phase detection. There are many types of bounding
primitives but the most common are, bounding spheres, Axis-Aligned Bounding
Boxes, Oriented Bounding Boxes, and Convex Hulls [22]. The most commonly
used is AABB since its faster and quite accurate at this point of the algorithm.
In AABBs, each object is covered by a box as illustrated in 2D by Figure 2.3.
In 3D world, this box is drawn aligning with each axis in coordinate system
(X,Y,Z). Hence, it is called Axis Aligned Bounding Box [15].

Figure 2.3: Axis Aligned Bounding Box of a shpere

We project each box onto each axis, to detect possible object collision. If
projection intervals of both objects in X-axis do not overlap, the two corre-
sponding objects do not collide (as shown in 2.4 where K1 − L1 and K2 − L2

intervals do not overlap).
On the other hand, Figure 2.5 shows two colliding objects because projection

intervals overlap on both axis (X, Y ). Therefore, two objects are called colliding
when projection intervals overlap on any axis (X, Y, Z).



2.1. Physics Engines 9

Figure 2.4: Two objects with their AABBs that don’t collide

There have been developed many methods to solve the broad-phase collision
step, like Sweep and Prune (SAP) [13], Spatial Hash and many more. Some of
them will be discussed later in this chapter.

Narrow-Phase Collision Detection

In the narrow-phase we are using the detailed geometries of bodies instead
of bounding primitives to determine with certainty whether the objects are
penetrating or disjoint or to determine the distance between them [24]. Narrow-
phase algorithms are slower because the calculations have to be much more
accurate. Because of the complexity of this phase, it is preferable to use convex
shapes in the real-time physics simulation. In case of non-convex (concave)
shapes, the convex hull of the shape will be used for collision detection. A
convex set is a set A where for all x and y in A and all t in the interval (0, 1),
the point ((1− t) ·x) + t · y also belongs to A. The convex hull of a set of points
S in n dimensions is the intersection of all convex sets containing S. For N
points p1, ..., pN , the convex hull C is then given by the expression:

C = {
N∑
j=1

λj · pj : λj >= 0 for all j and
N∑
j=1

λj = 1} (2.1)

Some of the many algorithms for narrow-phase collision detection are Sepa-
rate Axis Theorem (SAT) [7], Gilbert-Johnson-Keerthi (GJK) [31], and Distance
Grid.



10 Chapter 2. Theoretical Background

Figure 2.5: Two objects with their AABBs that collide

2.1.3 Equations of Motion and Integration

Numerical Integration

The main task of a physics engine is to provide as well as possible an approxi-
mate simulation of real world in a virtual environment. The desirable simulation
works by making many small predictions based on the laws of physics. These
predictions are performed by using a mathematical technique called numerical
integration, which is a method to calculate the numerical value of a definite
integral. This technique is also used to describe the numerical solution of dif-
ferential equations. Let’s recall the Newton’s second law:

~F = m× ~a (2.2)

It is also well known that acceleration is the rate of change in velocity over time
and that velocity is the rate of change in position over time:

~a =
d~v

dt
=

~F

m
(2.3)

~v =
dx

dt
(2.4)

From the equations 2.2, 2.3, 2.4 we can easily conclude that if we know the
current position and velocity of an object, as well as the forces that will be
applied to it, we can integrate to find its position and velocity at some point in
the future.



2.1. Physics Engines 11

Explicit Euler Integration

The physics engines do not analytically solve the differential equations 2.3, 2.4.
Instead, they are implementing a numerical integrate. Let us consider that the
initial position and velocity of a body are equal to zero, and the acceleration is
constant and equal to 10m/s2. We are going to take a time step (dt) forward to
find the velocity and position at the end of this time step. Then we are going
to repeat this, moving forward in more time steps (dt), using the result of the
previous calculation as the starting point for the next. We can find the values
of position and velocity of a body in a future time by solving the following
equations:

xt = xt−dt + vt · dt (2.5)

vt = vt−dt + a · dt (2.6)

The above technique is called explicit Euler integration and it is the most ba-
sic numerical integration technique. However, some problems arise with this
approach because it is accurate only when the rate of change (in our case the
acceleration and velocity) is constant over the time step. Lets recall one more
equation, to help us find the exact position of a body after time t have passed
when the acceleration is constant:

s = v0 · t+
1

2
· a · t2 (2.7)

In our example the exact position of the body after time t = 10s have passed
will be 500m according to 2.7.

The integration of velocity on 2.6 is 100% accurate because acceleration is
constant. However, we will have a minor error in the integration of position as
this depends on the velocity which will changes on each step (it is not constant).
If we use time step dt = 1s the body will be at position 450m after 10 seconds
have passed. We have a fairly large discrepancy in relation to the exact position
of the body calculated by 2.7. By reducing our time step down to dt = 1/100s

we can reduce this discrepancy significantly. The position of the body after 10s

will be 499.49m. As a result, we have an acceptable discrepancy if we use a
very small time step and this is why we can use the explicit Euler integration.
The difference between the two time steps used is shown in Figure 2.6.

Semi-implicit/Symplectic Euler Integration

When acceleration isn’t constant throughout the time-step the results of ex-
plicit Euler with small value for dt are not acceptable. The workaround in this



12 Chapter 2. Theoretical Background

Figure 2.6: Position integration with different time steps

problem is to integrate the position and velocity of the bodies with the following
equations:

at = at−dt +
F

m
(2.8)

vt = vt−dt + at · dt (2.9)

xt = xt−dt + vt · dt (2.10)

We will calculate the new acceleration with 2.8, then we will calculate the new
velocity using 2.9, which we will use to calculate the new position on 2.10.
This way the result is very close to the exact solution. This technique is called
symplectic Euler. There are many more integration techniques like implicit
Euler [20] [4], Runge-Kutta methods [35] [46], Verlet integration [14]etc, but
among physics engines, the most commonly used is symplectic Euler.

Newton’s Second Law for Rotation Physics engines are simulating scenes
composed of rigid bodies, soft bodies, etc. Those objects have shape and size
as well as mass. This means they should be able to rotate, so there is a need to
represent this rotation in the physics simulation. The 3D environment, in which
physics engines are based on, gives rigid bodies 6 degrees of freedom (6DoF),
which means a translation in x, y, z axes and a rotation about x, y, z axes. We
will extend Newton’s second law 2.11 to rotation. We will update the variables
in order to solve the equation for rotation. Instead of position x, velocity v, and
acceleration a we now have rotation angle θ, angular velocity ω, and angular



2.1. Physics Engines 13

acceleration a. We will also replace mass with moment of inertia I, which is the
property of an object denoting the resistance to any change in velocity. Finally,
we are going to replace force with torque τ , which is a force that has a tendency
to rotate an object. We can now express the Newton’s second law for rotation:

~τ = I × ~a (2.11)

We can integrate to calculate the rotation variables of a body over time, in the
same way we did it for translation.

2.1.4 Collision Response

The collision response phase is the most complex part in a rigid body simulation
loop which intends to be physically accurate. If there are many collisions in
the system, the collision response becomes the limiting factor for the overall
performance of the physics engine. Collisions are described by some properties
that came up during the collision detection step. This step resolves both the
interpenetration and velocities of both objects involved in every collision.

Forces on Collisions

The collisions involve two different bodies and the forces determined during the
collision response which are acting on these collisions. Therefore, there has to
be a way to map these forces to the bodies of each collision. A force ~F is a
vector with a line of action [21]. A force produces a moment ~τ or torque on
each point which is not on the line of action of the force. This is represented by
equation 2.12, where ~r is the vector from the center of mass of a body to the
contact point.

~τ = ~r × ~F (2.12)

Many forces exist in rigid body dynamics like wind, gravity, and electromag-
netic force. However, the factors that are most difficult to deal with, but also
critically important in interactive simulation, are the constraints and friction
forces. Constraints are equations and inequalities that change the way the pairs
of bodies are allowed to move in respect to each other, since they are kinematic
restrictions [25]. Friction consists of dissipative forces, that act in collision in-
terfaces to halt sliding (at sliding collisions) and to prevent sliding (at sticking
and rolling collisions). For each collision, a single force acting on both bodies is



14 Chapter 2. Theoretical Background

calculated. However depending on the collision properties this force acts posi-
tive on one and negative on the other body. This is determined by the way the
local coordinate system of the collision is chosen.

Newton-Euler Equations

The Newton-Euler equations are the result of applying the Newton’s second
law twice, once for motion in translation and again for motion in rotation. In
physics, the momentum can be defined as "mass in motion" and its represented
in 2.13, while angular momentum is represented in 2.14.

~p = m× ~v (2.13)

~L = I × ~ω (2.14)

Combining 2.2 with 2.13 and 2.11 with 2.14, we can extract the Newton-Euler
equations above:

m · dv
dt

= ~F (2.15)

I · dω
dt

+ ω × I · ω = ~τ (2.16)

Impulse and Penalty Methods

When two bodies collide they experience very high forces for a short duration.
Those forces are referred to as impulsive forces. We observe from equations
2.15 and 2.16, that these forces cause infinite accelerations, which makes direct
numerical integration of the Newton-Euler equations impossible. One way to
deal with this problem during simulation is to use a standard integration method
until the time of impact, then use an impulse-momentum law to determine the
new velocities, and finally restart the integrator.

There are algorithms that directly affect the velocities of the intersecting
objects, known as Impulse Methods, and algorithms that directly affect the
acceleration of the bodies, known as Penalty Methods [34].

The impulse methods allows us to directly affect the velocities of the simu-
lated objects which have intersected. This is achieved through the application
of an impulse, which can be thought as an immediate transfer of momentum
between the two bodies. In classical physics, impulse is the accumulated force
applied on a body over a specific amount of time. The impulse ~J is defined by
the equation 2.17 above:

~J = ~F × dt (2.17)



2.2. The Bullet Physics Engine 15

Combining 2.2, 2.3, and 2.17 we get the following:

~J = ~F × dt = m · a · dt = m · dv
dt
· dt = m · dv

⇒ dv =
~J

m
(2.18)

We want to calculate both linear and angular impulse to finally calculate
the linear and angular velocity changes that have to be applied to the colliding
objects. The goal is to give colliding objects a nudge, by changing their linear
and angular velocity by an amount equal to 2.18.

The penalty methods for collision response in the physics simulation are
more straightforward to implement than the impulse methods, and they have
the advantage of directly utilizing the force-based movement implementation.
They replace a constrained optimization problem by a series of unconstrained
problems whose solutions ideally converge to the solution of the original con-
strained problem. Those unconstrained problems have a feature called penalty
function that replaces, in some way, the constraints.

2.2 The Bullet Physics Engine

The Bullet physics engine makes use of all the methods and concepts discussed
above. Of course, there are optimizations and parameterizations in all the
techniques to suit its own specifications. A more detailed representation of the
rigid body simulation loop, here is called rigid body pipeline, is shown in Figure
2.7.

The main algorithms Bullet uses for collision detection step, are Sweep and
Prune (SAP) for broad phase collision detection and Separating Axis Theorem
(SAP) for narrow phase collision detection. In collision response step Bullet
uses the Projected Gauss-Seidel (PGS), which belongs to the family of Linear
Complementarity Problems (LCP) but is implemented in a iterative way to
better match a real-time application, such as simulation of a rigid body.

Below we present some basic concepts used that are used by Bullet physics
engines:

• World: A representation of a real-world scene in a virtual environment.

• World space: The coordinate system for the entire scene. Its origin is
at the center of the scene.

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/
https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


16 Chapter 2. Theoretical Background

Figure 2.7: Bullet’s rigid body pipeline

• Object space: The coordinate system from an object’s point of view.
The origin of object space is at the object’s pivot point, and its axes are
rotated with the object.

• World transform: It changes the coordinates from object space to world
space. In essence, the world transform places an object into the world.

• Dynamic Object: They are rigid bodies whose transforms get updated
by the Bullet Physics engine, as opposed to other objects that serve only
as potential collision objects.

2.2.1 Sweep and Prune (SAP)

Naturally broad phase is a O(n2) problem, since in case of having n bodies
we have to run n2 collision tests between all bodies. To reduce the number of
pairwise collision tests we make use of Sweep and Prune algorithm. Sweep and
Prune actually eliminates group of pairs that are far apart. It is performed in
three steps:

• First Step: Calculation of the bounding box for each body.



2.2. The Bullet Physics Engine 17

• Second Step: Sorting the minimum and maximum coordinated of the
bounding boxes.

• Third Step: Sweeping through each list and determining which bounding
boxes overlap.

The lists mentioned above are the minimum and maximum values of the coor-
dinates of the bounding boxes on each axis (X, Y, Z). We create a list for each
axis and we sort each list. There is a flag for each dimension that informs us
about whether two bodies are overlapping in this dimension. When all three
flags are set then we know that the pair overlap. The flags are modified during
the sorting phase and they are toggled based on whether the coordinate values
both refer to bounding box minimum value, maximum value or one refers to
minimum and the other to maximum value. When a flag is toggled we can
conclude one of the following three situations.

1. Bounding box of the given two bodies overlap in all three dimensions. We
are going to add the corresponding pair to the list of active pairs.

2. Bounding box of the given two bodies overlapped in the previous time
step. We are going to remove the corresponding pair to the list of active
pairs.

3. Bounding box of the given two bodies did not overlap at the previous time
step and does not overlap at the current either. We do nothing.

At the end of this process we will send the list of active pairs to the next
algorithm i.e Separating Axis Theorem to find out which of them are colliding.

2.2.2 Separating Axis Theorem (SAT)

Bullet has more than one algorithms for the narrow phase collision detection.
We are going to give some basic information about Separating Axis Theorem
technique since it’s the one we have used in our implementation. The Separating
Axis Theorem [28] can determine if two convex shapes are intersecting. In some
cases it can also be used to find the minimum penetration vector. Most physics
simulations make use of convex shapes and that’s what Bullet does, so this
algorithm is perfectly suited for our application.

This technique is based on the state that, given two convex bodies, either
the two bodies are intersecting or there exists a separating hyper-plane P such
that one body is on one side and the other body is on the other side, as it is
shown in Figure 2.8.

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


18 Chapter 2. Theoretical Background

(a)

(b)

Figure 2.8: (A) Two convex bodies, separated by a hyper-
plane P . (B) The same convex bodies are now intersecting and

therefore there is no hyper-plane to separate them.

In Figure 2.8a we can also notice that the projections, in the L axis, of both
objects do not overlap. The L axis is the perpendicular to P and its called
Separating Axis hence the name of the technique. In Figure 2.8b the bodies
are intersecting, its not possible to calculate a plane that separates them. If
SAT find an axis where the projection of the shapes are not intersecting it
can immediately exit, determining that the shapes are not intersecting. To
conclude that two shapes are intersecting, the shape’s projections must overlap
in all three axes.

2.2.3 Projected Gauss-Seidel (PGS)

Linear Complementarity Problem

The Linear Complementarity Problem (LCP) of finding a vector x ∈ Rn is
defined in the following way:

M · x+ q ≥ 0, x ≥ 0, x ·M · x+ q · x = 0J · V = 0 (2.19)



2.2. The Bullet Physics Engine 19

where M is an n× n rational matrix and q ∈ Rn is a rational vector. For given
data M and q, the problem is denoted by LCP (M, q)[33]. One of the interesting
aspects of LCP is its range of applications, from well understood and relatively
easy problems such as linear and convex quadratic programming problems to
NP-hard problem.

Gauss-Seidel Method

The Gauss-Seidel falls under the category of LCP’s as we are going to describe
above. Gauss-Seidel is an iterative method that is used to solve a linear system
of equations of type A ·x = ~b, where A is an n×n matrix, ~b is a vector of length
n, and x is the vector of unknowns. The algorithm proceeds for a number of
iterations. During an iteration each row of A is solved by adjusting the element
of x corresponding to the diagonal element of A on the current row [6]. The
algorithm is represented below.

Algorithm 1 Gauss-Seidel method
1: x← x0 . Initializing unknowns x with x0
2: for iter = 1 to iteration limit do
3: for i = 1 to n do . Where n = number of elements
4: ∆xi ←

[
bi −

∑n
j=1Aijxj

]
/Aii

5: xi ←xi + ∆xi

6: end for
7: end for

Iterations can be terminated using several different criteria, such as:

• Terminate after a fixed number of iterations.

• Terminate when ||Ax− b|| falls below a tolerance.

• Terminate when the maximum |xi| falls below a tolerance.

• Terminate when each |xi| is less than some fraction of its value in the
previous iteration.

In a physics simulation with n rigid bodies the linear and angular velocities
of each body are stacked in a 6n-by-1 vector V as shown below:

V =



v1

ω1

...
vn

ωn


(2.20)



20 Chapter 2. Theoretical Background

There are also pairwise constraints between rigid bodies. A single position
constraint Ck is represented in the following expression:

Ck(xi, qi, xj, qj) = 0 (2.21)

where x and q are the position and quaternion (orientation and rotation in 3D)
of the rigid body. All of the constraints in a scene with rigid bodies are collected
in a vector C with length s, with s denoting the total number of constraints.
The time derivative of C yields the velocity constraint vector. By the chain rule
of differentiation, the velocity constraint is guaranteed to be linear in velocity.

dC

dt
= J · V = 0 (2.22)

Where J is the Jacobian. We can calculate the Jacobian in a system of linear
equations by following the procedure below:

1. We determine each constraint equation as a function of body positions
and rotations

2. We differentiate these constraint equations with respect to time

3. We identify the coefficient matrix of V , which is the J.

In general J is s-by-6n. Considering pairwise constraints, each row of J has
at most, two non-zero blocks of length six (three scalars for position and three
scalars for rotation). So we can define Jsp as a s-by-12 array.

Jsp =


J11 J12
...

...
Js1 Js2

 (2.23)

Each block Jij is a row vector of length six, where i denotes the constraint
number and j the number of body (first or second) involved in the constraint.

Each one of the constraint has an internal reaction force fc and a reaction
torque τc. The final vector with the forces and torques of all bodies is represented
below.

Fc =



fc1

τc1
...
fcn

τcn


(2.24)



2.2. The Bullet Physics Engine 21

Because of the velocity constraint in 2.21 we can conclude that the velocity
V is orthogonal to the rows of J, so do the constraint forces. So we get the
following:

Fc = J · λ = 0 (2.25)

where λ is a vector of some multipliers that represent the signed magnitudes of
the constraint forces.

Constraint equations are usually partitioned into equality and inequality
constraints. In a rigid body simulation we have collision constraints and joint
angle limits, which are inequality constraints. For each constraint a lower and
upper bound on λ is specified as part of the constraint model.

λ−i ≤ λi ≤ λ+i , ∀i ∈ [1, s] (2.26)

In case of inequality constraint we specify that (λ−, λ+) = (0,∞).

PGS Algorithm

The Projected Gauss-Seidel [32] [36] is an iterative algorithm based on matrix
splitting. It extends the basic Gauss-Seidel algorithm to handle bounds on the
unknowns. In our case, these are the bounds described as λ on equation 2.26.
In Newton-Euler equations we have calculated in 2.15 and 2.16 we now add
constraint forces and we get the following two equations:

m · dv
dt

= ~Fc + ~Fext (2.27)

I · dω
dt

+ ω × I · ω = ~τc + ~τext (2.28)

We collect masses and rotational inertias along the diagonal of a mass matrix
M as shown bellow:

M =



m1E3×3 0 . . . 0 0

0 I1 . . . 0 0
...

... . . . ...
...

0 0 . . . mnE3×3 0

0 0 . . . 0 In


(2.29)

Where E3×3 is the identity matrix. Using 2.27 leads us to the constrained
equations of motion:

M · dv
dt

= J · λ+ ~Fext (2.30)



22 Chapter 2. Theoretical Background

J · V = ζ (2.31)

Since our rigid body simulation works with time steps we have to add this
time steps to the motion equations we just calculated. Using a time step dt and
considering that the volocities are changing from V1 to V2 the equation 2.30 is
now described as:

M · (V2 − V1) = dt · (J · λ+ ~Fext) (2.32)

Solving this equation and using the equation J · V 2 = ζ we end up with:

J ·B · λ = η (2.33)

where B = M−1 · J and η = (1/dt) · ζ − J((1/dt) · V1 + M−1 · Fext). This way
we reduce the problem to a linear equation in λ.

The algorithm of Projected Gauss-Seidel is shown below.

Algorithm 2 Projected Gauss-Seidel method
1: λ← λ0 . Initializing bounds λ with λ0
2: α← Bλ
3: for i = 1 to s do . Where s = number of constraints
4: di ←Jsp(i, 1) ·Bsp(1, i) + Jsp(i, 2) ·Bsp(2, i)
5: end for
6: for iter = 1 to iteration limit do
7: for i = 1 to s do
8: b1 ←Jmap(i, 1)
9: b2 ←Jmap(i, 2)

10: dλi ←[ηi − Jsp(i, 1) · a(b1)− Jsp(i, 2) · a(b2)]/di
11: λ0i ←λi
12: λi ←max(λ−i ,min(λ0i + dλi, λ

+
i ))

13: dλi ←λi − λ0i

14: a(b1) ←a(b1) + dλi ·Bsp(1, i)
15: a(b2) ←a(b2) + dλi ·Bsp(2, i)
16: end for
17: end for

Where Jmap is the s-by-2 body map as representing below, with bij being
the index of a rigid body and Bsp has been calculated just like Jsp in 2.23.

Jmap =


b11 b12
...

...
bs1 bs2

 (2.34)



2.2. The Bullet Physics Engine 23

Each bij is the index of a rigid body. By convention, if a constraint is between
a single rigid body and ground, then bi1 = 0 and the corresponding Ji1 is zero.

The cost of each iteration of PGS is O(s), where s is the number of con-
straints and n is the number of rigid bodies. An iteration involves simple vector
operations on O(s + n) data. The performance of the algorithm is dominated
by the number of constraints and the number of iterations used.





25

Chapter 3

Related Work

In this chapter, we will present a survey that we have done for related works
that have been made over the subject that this thesis is dealing with.

3.1 Real-Time Physics Simulation Systems

The last few years have witnessed the continuous increase in physics engines
used in the domains of computer graphics, video games and film. The main task
of all physics engines is to solve the forward dynamics problem. The forward
dynamics problem is to find the final motion of a system knowing the forces
acting on it. There are many factors that need to be taken into account in a
physics engine such as the simulation paradigm, collision detection and response
to the type of numerical integrator, and whether air resistance or friction is
considered. As a result each physics engine will provide quite different results
despite stimulating the exact same system.

For a game developer many aspects come into consideration including avail-
able features, supported platforms, ease of use, and run-time performance.
Researchers and simulation engineers are typically more concerned with the
accuracy of a physics system. Most physics engines have a particular target
application to which they are optimized. This results in different performance
in each of the above categories, and often extra features are made available
specifically included for the target application. Some of the most used physics
engines are, AGEIA PhysX (also referred to as Novodex), Bullet Physics Li-
brary, Dynamechs, JigLib, Meqon, Newton Physics SDK, Open Dynamics En-
gine, OpenTissue Library, Tokamak, True Axis Physics SDK. In [5] is presented
a research and comparison between these physics engines.



26 Chapter 3. Related Work

3.2 Bullet Physics Library

We will initially introduce the implementation of the Bullet library (the library
we use as a basis for this work) for acceleration of its GPU physics engine using
OpenCL [23]. Bullet is a physics simulation software, especially for rigid body
dynamics and collision detection. The original Bullet 2.x is written in modular
C ++ and its API was initially designed to be flexible and extendable rather
than optimized for speed [11].

Bullet’s acceleration approach was based on OpenCL to parallelize and pro-
gram in GPU. In order to be able to achieve this, most of the code had to be
rewritten to use C and structures instead of C ++ and classes with inheritance
etc. A high-end desktop GPU has thousands of cores that can run in parallel,
so you need to make effort keep all those cores busy. These cores are grouped
into Compute Units with typically 32 or 64 cores each. The cores inside a sin-
gle Compute Unit execute the same kernel code in the lock-step: they are all
executing the same instruction, like a wide SIMD drive. The work that is per-
formed by executing a kernel on a single core is called a Work Item in OpenCL.
To make sure that multiple work items are executed on the same Compute Unit,
you can group them into a Workgroup. The Workgroups to Compute Units,
and this makes OpenCL scalable: if you add more Compute Units, the same
program will run faster. The drawback is that there is no synchronization be-
tween Compute Units, so you need to design your algorithm around this. The
host can wait until all work groups have finished, before starting new work.

This implementation has achieved the execution of rigid body and collision
detection on the GPU using OpenCL, which has resulted in acceleration com-
pared to original implementation and also the opportunity to simulate scenes
with many rigid bodies (up to 100K).

3.3 Field-Programmable Physics Processor

In [29] it is proposed an alternative way to represent the concept of physics,
through the creation of physics engine hardware, similar to the AGEIA PhysX.
However, it proposes the use of Field-Programmable Gate Arrays (FPGAs),
whose re-congurability should provide unique advantages. They have developed
a numerical integrator which formed the basis of their FPGA-based physics
engine. If a game performs many physics calculations, the FPGA could be
used for accelerating these calculations. If, instead, a game performs many AI
computations, the FPGA could be used to accelerate these AI routines. The



3.4. FPGA Acceleration of Molecular Dynamics Simulation 27

adaptability of FPGAs is illustrated by the way many diverse applications,
such as ray tracing [40] and MATLAB computations [1], have already been
accelerated using an FPGA. Through its re-congurability, the FPGA allows
a multitude of tasks to be accelerated. Physics engines rely heavily on their
implementation of numerical integration algorithms. Although as stated in [30]
the simple Euler integrator is adequate for some kind of applications, such kind
of traditional numerical integration algorithms do not perform well on FPGAs
as they consist of a large number of dependent operations, leaving little scope
for parallelism. In [29] there is a comparison between the more sophisticated
Verlet[27] family of integrators, Runge-Kutta[35] integrators and Euler[20][4]
integrators. It is concluded that Runge-Kutta integrators unlike the Euler and
Verlet integrators are reversible in time, which is highly desirable for computer
game applications.

3.4 FPGA Acceleration of Molecular Dynamics

Simulation

There are many projects dealing with the acceleration of molecular dynamics
simulation, which is a technique for modeling the motion and interaction of
atoms or molecules using the equations of classical Newtonian mechanics[47].
Molecular dynamics (MD) simulation[27] is one of the most important tools for
observing those critical biology phenomena. Basically, it simulates the motions
of the molecular systems at an atomic level by 106 to 1012 iterations for practical
usage, which makes it very time consuming. At each iteration, it first calculates
the forces applied for each atom and then updates the atom’s motion. This
process is very similar to the process PGS uses to update the rigid bodies
position in a game scene. Besides that MD simulations and physics engines have
more common concepts, such as numerical integration, Newtonian equations of
motion and even more.

An FPGA acceleration of MD in high-level synthesis (HLS) is being ana-
lyzed in [26], so as to provide affordable programming cost. It demonstrates
that HLS optimizations such as loop pipelining, module duplication and mem-
ory partitioning are essential to improve the performance ver CPU. Another
research about MD can be found at [8], where some hardware structures are
being implemented for computing the more time-consuming parts of molecular
simulation. More specifically two types of hardware engines that compute the
Lennard-Jones and Ewald Direct Space non-bonded interactions[37] have been



28 Chapter 3. Related Work

developed. One more work on MD has been developed in [47] where is given an
overview on FPGA-based MD Simulations, and a way to explore the feasibility
of FPGA-accelerated MD simulations.



29

Chapter 4

Modeling of PGS and Integration

In this thesis, we will focus on the collision response step of the rigid body
simulation. In Bullet physics engine, as in many others, this simulation step is
implemented by Projected Gauss Seidel algorithm, as it was presented in Chap-
ter 2. In order to be able to achieve the best possible results, we have proceeded
with an extensive analysis of the algorithm we are aiming to implement. Above
we quote all of the analysis and pre-processing we have performed in order to
achieve the best possible results.

4.1 OpenCL to C++ Conversion

Bullet’s implementation of rigid body simulation uses OpenCL to accelerate
certain parts of the algorithm in GPU. GPU is used as the device that OpenCL
needs to execute the part of the algorithm that being accelerated. CPU is
also needed as a host for initialization of the device memory and to start the
execution of the program in the device. The portion of the code running on the
device is called kernel.

In Bullet’s case, PGS is implemented by three different kernels that commu-
nicate with each other in order to execute the algorithm. In our implementation
on FPGA, OpenCL was not the best choice since we could not make use of the
streaming feature. Firstly we had to reform every kernel in order to run in C++.
Since OpenCL is very similar to C, this procedure was like converting C to C++.
The only point that needed particular attention was the creation of the loops
that each kernel "hid" internally. This stems from the way OpenCL works with
work-items and work-groups. Work-groups contain multiple work-items that
can be executed in parallel, while each work-item executes the algorithm with
different input data. When a kernel is executed there are many work-items that
being executed, so in order to convert into C++, we need a loop with a size
equal to the number of work-items. Finally, we combined the three converted

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


30 Chapter 4. Modeling of PGS and Integration

kernels together and we formed one final function which implements the PGS
algorithm in C++.

4.2 Isolating Processing from Rendering

The goal of a physics engine in to represent a real-world scene in a virtual en-
vironment. This cannot be achieved without rendering/drawing the desirable
scene in the GPU. Rendering alongside with processing are the two main com-
ponents of a physics engine. evertheless, these two parts are not completely
isolated from each other, contrariwise there is a connection between them dur-
ing the execution of a simulation loop. Their connection takes place when the
processing part has made the necessary calculations and has to send the data
to the rendering part so that the second implements the rendering/drawing of
the current "snapshot" of the scene. Their connection takes place again when
the rendering of the scene has finished and the data are being sent in again for
processing. Bullet transfers the data between processing and rendering parts,
using OpenGL and its features. We could not have the rendering part in the
FPGA, so we had to isolate these two parts of the simulation loop in order
to proceed with the implementation in FPGA. We did some research on how
OpenGL works and how it transfers the data, and we finally have isolated the
two parts from each other. In that point we were able to start analyzing the
PGS and Integration algorithms we were aiming to implement.

4.3 Demo Description (Game Scene)

Bullet has already implemented a demo of a scene with many rigid bodies
colliding with each other. The scene consists of a pile of 38880 cubes, which
start from a certain height, end up falling over a terrain and colliding with each
other until finally, they come to rest. This is the complete demo. We have
isolated and implemented only the processing part of the demo, hence we are
not going to render/draw the scene. In our implementation we are aiming to
accelerate a certain part of the processing of the demo and this is the collision
response and integration. Below, in Figure 4.1 below we present a "snapsot" of
the demo as it is implemented by Bullet:

This demo uses two types of rigid bodies, dynamic and static. Dynamic
rigid bodies are objects that can move during the simulation loop, have positive
masses, and their world transform is being updated in every simulation frame.
All of the cubes represented in our demo are considered dynamic rigid bodies.

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


4.4. Data Analysis of PGS and Integration 31

Figure 4.1: A snapshot of the demo we are going to work on

On the other hand, static rigid bodies have zero masses, and cannot move but
can collide. We have only one static stiff body and this is the surface on which
the dynamic rigid bodies strike.

4.4 Data Analysis of PGS and Integration

The demo we choose is a computational intensive process since it uses a large
number of simulated bodies. The simulation loop has to find the pairs of con-
tacting bodies and "solve" these collisions to finally move the bodies to their
new positions. After counting the time it takes each step to execute, it became
clear that the step that resolves the collisions between the bodies is the bot-
tleneck of the whole process. More precisely the step which finds the collisions
between the bodies consumes the 40% of the time, while the step which is re-
sponsible for the collision resolving consumes the 60% of the time. This is why
this thesis has focused on accelerating the specific step of the algorithm. Before
we start the implementation in Vivado HLS for the FPGA, we performed an
extended analysis for our algorithms in MATLAB. This analysis was performed
in order to fully understand all the aspects of the algorithms and to be able to
take advantage of any possible data redundancy and algorithmic optimization.



32 Chapter 4. Modeling of PGS and Integration

4.4.1 Data Redundancies

PGS Data Reduction

The PGS algorithm gets as input the following:

• Bodies: Algorithm needs all the bodies and their properties in order to
calculate the new velocities for each one of the them. More specifically it
needs the linear and angular velocity, mass, position and inertia of each
rigid body in the scene.

• Collisions: From previous steps in the simulation loop, all the collision
pairs have been calculated. This algorithm needs this information as input
in order to "solve" the collisions. A collision between two bodies consists
of two indexes indicating the number of the two bodies colliding and the
world position of bodies.

Since we are on 3D world we need 3 components to represent a body’s
position, velocity etc, one for each axis (x, y, z). Bullet by default uses a forth
unused component for alignment and SIMD compatibility reasons. So, in our
implementation we cut off this component since it has no practical information
that is needed in processing.

As we mentioned above PGS needs inertia as input. By default this pa-
rameter is being sent into the algorithm as a 3× 3 diagonal matrix. It is easily
perceived that we should send only the diagonal of the table as all the remaining
values of the matrix are zero. We also know from Chapter 2 that inertia is the
resistance, of a body, to any change in its velocity and also a basic manifestation
of the mass. Knowing that we have a scene full of cubes of the same mass and
considering the definition of inertia we can calculate the inertia of a body inside
the algorithm by passing inside only the type of shape and the mass of the
body. These two parameters are only needed in order to calculate the inertia
of a body according to Bullet’s implementation. In our demo, the inertia of all
bodies is the same so we can represent it with a constant value which is being
sent once at the start of the algorithm.

This can easily generalized for all the primitive shapes in a physics simula-
tion. All we have to do is to pass the necessary information for each shape one
time at the start of the algorithm. Afterward, during the simulation loop, we
will send only an index indicating in which primitive shape this body is included
and its mass, and we will calculate the inertia of the rigid body.

The total data we need to send in the algorithm depends on the number of
collisions. This changes in every iteration of the simulation loop. In our demo,

https://pybullet.org/wordpress/
https://pybullet.org/wordpress/


4.4. Data Analysis of PGS and Integration 33

the most intensive iterations of the loop are having total collisions in a range of
90.000 to 130.000. We have implemented one iteration of the simulation loop
with 127.000 collisions. In the Table 4.1 we present the data size we have to
send into the algorithm in every iteration as also the total data size we have to
pass in PGS as input pre and post-reduction.

Table 4.1: Data reduction on input of PGS

Input Data #Data Memory Stream Reads
Footprint

Pre-Reduction(Per Collision) 56 224(B) 14
Post-Reduction(Per Collision) 28 112(B) 7
Pre-Reduction(In Total) 7423040 28.32(MB) 1855760
Post-Reduction(In Total) 3662280 13.97(MB) 915570

The outpout data of the algorithm are the linear and angular velocities of
the bodies. In order to send that data back to the simulation loop we are
passing their values on output streams. The data reduction on output of PGS
is shown in Table 4.2 The outpout data of the algorithm are the linear and
angular velocities of the bodies, so we are reducing the output size by 2 floats
in each iteration of the loop which writes on output streams, or we are reducing
the output size by 77760 floats in total.

Table 4.2: Data reduction on output of PGS

Output Data #Data Memory Stream Writes
Footprint

Pre-Reduction(Per Collision) 8 32(B) 2
Post-Reduction(Per Collision) 6 24(B) 1.5
Pre-Reduction(In Total) 311040 1.19(MB) 77760
Post-Reduction(In Total) 233280 0.89(MB) 58320

Integration Data Reduction

The Integration part of the simulation loop gets as input the following:

• Linear and Angular Velocity: Integration needs linear and angular
velocity of each body in order to calculate its new position and linear
velocity.

• Rotation and Position: In also gets the rotation and position of each
body in order to update them.



34 Chapter 4. Modeling of PGS and Integration

• Mass The mass of every rigid body is needed in order to calculate the
final velocities.

We have performed the same data redundancies as in PGS algorithm but
we have managed to reduce the input on Integration part a bit more. In our
implementation we have incorporate the Integration and the PGS in a single
function. By doing that we have avoided to send the velocities from one part
to the other. We can take the velocities directly from BRAM. The rest of the
data will be send over stream. In Table 4.3 we can see the data redundancies
applied on Integration per iteration, and in total. The third row of the Table
below is representing a projected result which could arise if we have also stored
the positions of the bodies in BRAM, we will analyze this more in the next
subsection.

Table 4.3: Data reduction on input of Integration

Input Data #Data Memory Stream Reads
Footprint

Pre-Reduction(Per Collision) 17 68(B) 4.25
Post-Reduction(Per Collision) 7 28(B) 1.75
Post-Reduction &
Positions in B-RAM(Per Collision) 4 16(B) 1
Pre-Reduction(In Total) 660960 2.52(MB) 165240
Post-Reduction(In Total) 272160 1.03(MB) 68040
Post-Reduction &
Positions in B-RAM(In Total) 155520 0.59(MB) 38880

The output data size of Integration pre and post-reduction are presented
below in Table 4.4.

Table 4.4: Data reduction on output of Integration

Output Data #Data Memory Stream Writes
Footprint

Pre-Reduction(Per Collision) 8 32(B) 2
Post-Reduction(Per Collision) 6 24(B) 1.5
Pre-Reduction(In Total) 311040 1.19(MB) 77760
Post-Reduction(In Total) 233280 0.89(MB) 58320

PGS and Integration Combination

We have implemented both PGS and Integration in a single function instead
of two different functions with the first passing the output data to the second.



4.4. Data Analysis of PGS and Integration 35

This way we were able to reduce further the total size of input data in our
function, as also the total size of the output data. In Tables 4.5 and 4.6 we can
observe the data reduction we achieve by this process in combination with the
data redundancies applied to our initial data. Pre-reduction rows are calculated
by the hypothesis that the two parts, PGS and Integration, are being processed
separately.

Table 4.5: Data reduction on input of PGS and Integration
combination

Input Data #Data Memory Stream Reads
Footprint

Pre-Reduction(Per Iteration) 73 292(B) 18.25
Post-Reduction(Per Iteration) 35 140(B) 8.75
Post-Reduction &
Positions in B-RAM(Per Iteration) 32 128(B) 8
Pre-Reduction(In Total) 8084000 30.84(MB) 2021000
Post-Reduction(In Total) 3934440 15.00(MB) 983610
Post-Reduction &
Positions in B-RAM(In Total) 3817800 14.56(MB) 954450

Table 4.6: Data reduction on output of PGS and Integration
combination

Output Data #Data Memory Stream Writes
Footprint

Pre-Reduction(Per Iteration) 16 64(B) 4
Post-Reduction(Per Iteration) 6 24(B) 1.5
Pre-Reduction(In Total) 622080 2.37(MB) 155520
Post-Reduction(In Total) 233280 0.89(MB) 58320

4.4.2 Memory Footprint

As we can see in Algorithm 2, PGS is executing the outer loop of processing
more than one times in order to identify the active constraints and to be more
accurate in the resolution of the impulse propagation [12]. We are also some
components of the rigid bodies in BRAM to avoid passing the same values again
and again with the stream.

In our implementation with floating point we need to keep in BRAM the data
for the linear and angular velocity of the bodies as long as with a vector of length
four, which is needed for every collision. This vector passes the information of



36 Chapter 4. Modeling of PGS and Integration

the solution of this collision from previous iteration of PGS outer loop to the
present so that we are as accurate as possible. So the total size of the data we
need to store in BRAM is 2.83 MegaBytes.

One would think that in the implementation with the half-precision floating
point we would need exactly the half memory of the floating point implementa-
tion, and this thought is right. But in half-precision floating point approach we
needed a copy of the velocities table to get better results in the latency. That’s
why we needed a total of 1.86 MegaBytes instead of 1.41 MegaBytes.

We could have also stored the position of each rigid-body in BRAM, in order
to reduce the stream reads we have to do in every single iteration of the PGS
inner loop. That would require 0.44 additional MegaBytes in floating point and
0.22 additional MegaBytes in half-precision floating point. In floating point the
final 3.27 MegaBytes needed, is close to the upper limit in BRAM in ZCU102,
thus its hard to implement this. In half-precision floating point we will have to
create a copy of this array too but still there is no problem to tether BRAM
equal to 2.30 MegaBytes.

4.5 Lack of Determinism in GPU Implementa-

tion of PGS

Pairwise constraints such as contact constraints between two bodies need to be
solved sequentially in the PGS algorithm so that the most up-to-date velocity is
available for each constraint. It is not possible to trivially update the velocities
for bodies in each constraint in parallel because there are read-write conflicts.
GPU, in order to "solve" all the collision constraints in parallel, creates inde-
pendent groups of collisions (batches), where the constraints in each batch don’t
have read-write access to the same bodies.

However, even if these batches in a GPU are executed in parallel, the order
in which collision constraints are being solved can be different each time. This
non-determinism, or lack of consistency, can affect the results between different
executions of the demo. If we have a different order of overlapping pairs, and
contact points, we may also have a different order of collision constraints. The
Projected Gauss Seidel algorithm produces different results, if the constraint
rows are solved in a different order.

We executed our demo numerous times in the GPU with exactly the same
input and kept a snapshot of the same physics step. We noticed that the
positions of the bodies in these snapshots of the demo are not the same and



4.6. Comparison of Float and Half-Float 37

this is due to the lack of determinism. However, all of the demo executions
are acceptable based on physics. The Figure 4.2 below shows the difference in
position of the bodies between two different executions of the demo, expressed
as deviation calculated by the following equation:

Deviationposition =
|newV alue− originalV alue|

|originalV alue|
· 100% (4.1)

Figure 4.2: The deviation in positions between two executions
of demo. The Y -Axis has logarithmic scale

The deviation of PGS output between independent executions of demo is
varies between 1% and 3%. This is an acceptable error in physics engines
because it does not ignore the laws of physics in the scene and because the real
change in the position of the bodies is negligible within the overall scene. This
error is derived from the lack of determinism that exists in Bullet physics engine
implementation on GPU.

4.6 Comparison of Float and Half-Float

We have implemented the PGS and Integration algorithms with two different
approaches. Firstly we used the floating point precision to represent the values
in our algorithm. We noticed that the values do not have a big range on the
integer part. We also noticed that even if we lose some resolution, the final
results will be really close to the desired ones. This led us to think of using

https://pybullet.org/wordpress/


38 Chapter 4. Modeling of PGS and Integration

half-precision floating point to represent our values. We have implemented the
floating point to half-precision floating point conversion in MATLAB using a
custom toolbox we found [39]. We have also used the Vivado HLS library
for half-precision floating point arithmetic [42]. We have compared those two
methods and we conclude that they give exactly the same results.

4.6.1 Float to Half-Float Conversion and Vice-Versa

The IEEE 745 floating point representation uses a sign bit, an 8-bit exponent
with a bias of 128, and a 23-bit mantissa as is shown in Figure 4.3. Biasing is
used because exponents have to be signed values in order to be able to represent
both tiny and huge values, but two’s complement, the usual representation for
signed values, would make comparison harder. A biased exponent is the result
of adding some constant (called the bias) to the exponent chosen to make the
range of the exponent non-negative [38]. In order to interpret, it is converted
into an exponent within a signed range by subtracting the bias. To convert a

Figure 4.3: The format of a floating point number

floating point number into a half-precision floating point number the first step
is to shift and mask the sign bit, then to mask off the exponent, and to subtract
the bias-correction. The result is shifted, and finally the mantissa is shifted
and masked off. All the pieces are then assembled together to compose the
half-precision floating point representation of the initial floating point number.
This process is working for the general cases but it doesn’t handle zero, Infinity,
NaN, or small float numbers which are only presentable as subnormal half-floats
[48]. These special cases are being solved by using some arrays of constants,
but we will not further analyze these cases.

The half-precision floating point data type in IEEE 754 standard, sacrifices
range and accuracy in favor of representation size. A half-precision floating
point is composed of a sign bit, a 5-bit exponent with a bias of 15, and a 10-bit
mantissa as is shown in Figure 4.4. Conversion of half-precision floating point
number to floating point number is implemented by executing the following
steps: copy the sign bit, subtract the half-precision floating point bias (15)
from the exponent and add the floating point bias (127), finally append 13
zero-bits to the mantissa. The above conversion it does not work for special



4.6. Comparison of Float and Half-Float 39

Figure 4.4: The format of a half-precision floating point num-
ber

cases such as zero or subnormal (denormal) numbers [48]. In order to be able to
convert half-precision floating point numbers that belong to these special cases
some arrays containing constants are needed, but we are not going to analyze
the procedure they execute.

4.6.2 Half-Float Representation of Input Data

We have converted the data that our algorithm takes as input, from floating
point into half-precision floating point using MATLAB. We are going to juxta-
pose them and to inspect whether the error that occurs is acceptable for our
application or not. The distribution of the input data for the floating point is
shown in Figure 4.5, and for the half-precision floating point in Figure 4.6.

Figure 4.5: The distribution of the input data of algorithm
expressed in floating point



40 Chapter 4. Modeling of PGS and Integration

Figure 4.6: The distribution of the input data of algorithm
expressed in half-precision floating point

As we can see from the two histograms, the half-precision floating point
values are very close to the original floating point values. In order to be able
to better observe their difference, we have calculated the error between the
values of half-precision floating point compared with the initial floating point
values. This error is a measure that indicates how close the values are in the
two representations. The expression we used to calculate the error is shown in
4.1.

In Figure 4.7 below we present a plot showing the percentage error of the
converted half-precision floating point values relative to the initial floating point
values. As we can see the error in values with zero integer part is high enough.
However, this figure is not showing the whole truth. As we mentioned above
when we have values with zero integer part just a small change in the value can
lead to a really high error compared to the initial value.



4.6. Comparison of Float and Half-Float 41

Figure 4.7: The error rate of half float compared to float on
100% of input data. The Y -Axis has logarithmic scale

In our case the 99.93% of the values have error rate less than 1% as presented
in 4.8 . The rest of the values (0.07%) with the high error rate are of the order of
10−4 and even smaller, but this is an accepted error since the real change in the
position of the bodies is negligible within the overall scene. The average error of
the half-precision floating point values compared with the initial floating point
values is equal to 0.02%.

Figure 4.8: The error rate of half float compared to float on
99.93% of input data. The Y -Axis has logarithmic scale



42 Chapter 4. Modeling of PGS and Integration

4.6.3 Evaluation of Results Using Half-Float Representa-

tion

Output of PGS using Float

Thereafter we have executed the algorithm in FPGA using float values as input,
and we compared its output with the GPU’s. The deviation on output values
of then algorithm in FPGA using float values as input is 2.97% compared to
the GPU’s output. This is presented in Figure 4.9. As we mentioned above in
the analysis about GPU’s lack of determinism, GPU is executing the algorithms
based on some batches it creates. The deviation we observe between FPGA’s
and GPU’s implementations derives from the fact that FPGA’s implementation
is deterministic while GPU’s is not. This is within the permissible limits for the
deviation of the final positions of the bodies. However, it was calculated that
84.29% of the position’s values from FPGA implementation has deviation less
than 1% compared with the position’s values from GPU implementation.

Figure 4.9: The deviation of PGS output between FPGA’s
and GPU’s implementation using floating point. The Y -Axis

has logarithmic scale

Output of PGS using Half-Float

We have executed the algorithm in FPGA using half values as input, and we
compared its output with the GPU’s. We did not notice a big difference in



4.6. Comparison of Float and Half-Float 43

results of FPGA float comparison with GPU. In order to be sure about the
validation of results in FPGA using half-float values we have also compared
this implementation with the FPGA implementation using float values.

The error rate between those two implementations is shown in Figure 4.10.
We saw that the 99.64% of the position’s values from FPGA implementation
with float has error less than 1% compared with the position’s values from
FPGA implementation with half-float and that the average error on output
values is 0.06%. Knowing that our FPGA’s implementation with float produces
valid results and knowing that we have such a small error between half-float
and float implementations we can tell for sure that our implementation with
half-float leads to valid results.

Figure 4.10: The error rate of PGS output between FPGA’s
implementation with float and half-float. The Y -Axis has loga-

rithmic scale

4.6.4 Half-Float to Float Conversion

In our quest to create the implementation of PGS and Integration with half-
precision floating point values, we have encountered some problems. Converting
a floating point number to a half-precision floating point gives us a 16-bit un-
signed integer value. The parts of the half-precision floating point number, i.e.
sign bit, exponent, and mantissa, are generated by the conversion process, and
they produce a binary value that is represented by the 16-bit unsigned integer
mentioned above. Vivado HLS does not allow us to pass directly half-precision
floating point numbers to the FPGA. For this reason we had to pass its inte-
ger representation and convert it to a half-precision floating point within the
function.



44 Chapter 4. Modeling of PGS and Integration

The first approach was to use the library provided by Vivado HLS in order
to manipulate half-precision floating point numbers. On the test bench, all
conversions between 16-bit integer and half-precision floating point worked fine.
But they could not pass from synthesis. So we had to find a different way to
make these conversions.

We first thought of using the union just as we use it to represent the floating
point in a 32-bit unsigned integer and vice versa. But this conversion was not
possible on half-precision floating point. We then implemented the logic that
the union uses internally, parameterizing it to the demands of our own problem.
In particular, we specified a memory address of type "void" to store the integer
representation of the half-precision floating point and then we were reading from
the same address by casting to the type that we wanted i.e. half. This approach
also worked on the test bench but did not go through the synthesis.

Since we did not have any other options, we proceeded to a solution trying
to create a 16-bit representation of a floating point number. We observed the
representation of floating point in 32-bit integers in contrast to the 16-bit rep-
resentation of the half-precision floating point. After many tests with different
numbers, we found a pattern in the process of conversion. The first bit is the
sign bit, so we keep it as it is. We also noticed that the second bit i.e the first
bit of the exponent indicates if the exponent is negative or positive or equivalent
if we need to shift left or right, so we had to keep this bit also untouched. The
range of the values in our application lies between 3.0 ·10−5 and 450.0. Knowing
that, we can be sure for the values of the 2nd, 3rd and 4th bit of the exponent for
every value in our application. If the 1st bit of the exponent is equal to 0 then
the next three bits will be equal to 1. If its equal to 1 then the next three bits
will be equal to 0. We only need to keep the 4 LSB of the exponent. Finally
we need the 10 MSB of the mantissa. The combination of those three parts
gives us the 16-bit integer representation of a floating point number as shown
in Figure 4.11. This way we can represent values in a range of 6.10352 · 10−5 to
512.0 so we are able to represent all the values in our application.

In order to covert back to 32-bit representation of floating point value we ap-
ply the inverse process by adding the 3 bits we have not include in the exponent
and zero padding the last 13 bits of mantissa as is shown in Figure 4.12.

Depending on the range of values in an application we can cut of bits from
the exponent and add more bits to mantissa to achieve better precision. We
can also represent a floating point value with less than 16 bits cutting of bits
from mantissa. This way we sacrifice precision in order to lower the number of
bits we are going to use.



4.7. Sorting Input Data on PGS 45

Figure 4.11: Conversion of a floating point value to half-
precision floating point

Figure 4.12: Conversion of a half-precision floating point value
to floating point

This custom conversion does not work in all cases. There are special cases
like subnormal numbers etc. which need a different approach. If we want to
include these special cases in our conversion we need some arrays of constants
and a more complex conversion, something we have not implemented since we
did not need it. The way this conversion is implemented can be found in [48].

Besides all the previous work we have also found a workaround with a dif-
ferent library of Vivado HLS to implement the conversion easier. The library
mentioned above is "x_hls_utils.h" [42].

4.7 Sorting Input Data on PGS

Bullet’s implementation of the PGS algorithm in GPU uses a pre-sorting on
input data before moving to the main processing part of the algorithm. The
process of solving pair-wise constraints means that the data for each of the
bodies involved must be updated. That’s why solving multiple constraints is
not embarrassingly parallel because there might be needed access to the same
bodies. This is why GPU is sorting the constraints in independent batches,
where the constraints in each batch don’t have read-write access to the same

https://pybullet.org/wordpress/


46 Chapter 4. Modeling of PGS and Integration

bodies. This sorting on input data also helps GPU to execute the processing of
the constraints in parallel and so achieve better execution times.

4.7.1 Possible Benefits using Sorting

Based on this idea we implemented in MATLAB a sorting wise algorithm so
that we can exploit this parallelism in the FPGA. We started with the idea of
resolving all the collisions concerning a particular body. Then we will resolve
the collision of the active (body that has already been processed in a previous
collision) body with the fewest remaining collisions. We have followed this
deapth first search approach so that we can start the second iteration of the
external PGS loop without having to complete the first one. That way we
create a pipeline between the iterations of the PGS outer loop and we can
achieve better latency speedup and reduce the BRAM footprint significantly.
Implementing the PGS without sorting the input we need to keep data (i.e
linear and angular velocities) for all 38880 rigid bodies in our memory. In case
of PGS with sorted input we found that in the worst case we need to store data
for 1528 bodies in memory. That’s the 3, 85% of the memory we needed in case
of unsorted input. In figure 4.13 we can see a plot showing the number of bodies
we need to store during the execution of the algorithm. Also in 3 we present
the sorting algorithm we used.

Figure 4.13: Worst case scenario of bodies need to be sorted
in BRAM

The PGS algorithm produces different results, if the constraints of contact-
ing bodies are solved in a different order. However, the application will behave



4.7. Sorting Input Data on PGS 47

Algorithm 3 Sorting algorithm
1: pairs_array . The unsorted array of pairs
2: cur_body ← body_1 . Initializing with body no 1
3: active_bodies_ins(cur_body) . Inserts the cur_body in ac-

tive_bodies array
4: while cont_left(cur_body)>0 do . Shows the number of colli-

sions left in cur_body
5: k ← get_pair(pairs_array, cur_body) . Gets the 1st pair of

cur_body in pairs_array
array

6: sorted_array ← add_pair(cur_body, k) . Add this pair to the final ar-
ray

7: swap_pairs(pairs_array, cur_body) . Brings the next pair of
cur_body in 1st place of
pairs_array array

8: active_bodies_ins(k)
9: end while

10: active_bodies_del(cur_body) . Deletes the cur_body from
active_bodies array

11: for all bodies do
12: cur_body ← schedule() . Gets body with fewer colli-

sions in active_bodies array
13: while cont_left(cur_body)>0 do
14: k ← get_pair(cur_body)
15: add_pair(cur_body, k)
16: active_bodies_ins(k)
17: end while
18: active_bodies_del(cur_body)
19: end for
20: return sorted_array



48 Chapter 4. Modeling of PGS and Integration

similarly in both cases and the deviation of the final results after many simu-
lation steps will be small enough to be acceptable in real-time applications. In
our implementation on FPGA, we have not applied the sorting on input data.
The whole analysis was implemented in MATLAB.



49

Chapter 5

System Implementation

In this chapter, we are going to present our implementation of the PGS and
Integration algorithms targeting ZCU102. We will start by giving some general
information about the tools we used and their capabilities, as also the capabil-
ities of the FPGA (ZCU102). Following, we will present our first approach in
the algorithm implementation combined with the problems we have faced. Last
but not least, we are going to fully analyze our two final implementations of the
algorithm. The first one uses values of floating point precision while the second
uses half-precision floating point values.

5.1 Tools Used

In this thesis, we worked on Xilinx’s design tools for FPGA and more specifically
in Vivado HLS 2017.1. The targeted FPGA in our architectures was Zynq
UltraScale+ ZCU102. Below we are going to provide some general information
about the tools we have used and the FPGA we have targeted.

5.1.1 Vivado HLS

Vivado HLS[43] is a tool created by Xilinx[41] in order to transform a C speci-
fication (i.e code written in C, C++, SystemC, or as an OpenCL API C kernel)
into a register transfer level (RTL) implementation that is synthesizable into a
Xilinx FPGA. This way, HLS can take advantage of the capabilities of a pro-
gramming language with a higher level of abstraction to produce IP blocks,
generating the appropriate VHDL and Verilog code. Those IP blocks can be
integrated into a hardware design.

Firstly HLS executes the scheduling phase by determining which operations
occur during each clock cycle. In order to schedule these operations takes into
account the clock frequency, the time it takes for the operation to complete and
any possible optimization directives that have been applied. The next phase



50 Chapter 5. System Implementation

is binding, where HLS determines which hardware resource implements each
scheduled operation. Finally it extracts the control logic to create a finite state
machine (FSM) that sequences the operations in the RTL design.

When an IP block is created HLS exports a synthesis report showing the
performance metrics of the generated design. The report’s information on per-
formance metrics are presented below:

• Area: Amount of hardware resources required to implement the de-
sign based on the resources available in the target FPGA. The types of
resources are, Look-Up Tables (LUT), Flip Flops (FF) , Block RAMs
(BRAMs), and DSP48s.

• Latency: Number of clock cycles required for the function to compute
all output values.

• Iteration Interval (II): Number of clock cycles before the function can
accept new input data.

• Loop Iteration Latency: Number of clock cycles it takes to complete
one iteration of the loop.

• Loop Initiation Interval: Number of clock cycle before the next itera-
tion of the loop starts to process data.

• Loop Latency: Number of cycles to execute all iterations of the loop.

In our implementation we used C++ to write our code as we have already
mentioned. In order to debug our code we used a C test bench to simulate the
C function prior to synthesis. Finally, the tool allows for directives to be added
to the code to direct the synthesis process to implement a specific behavior or
optimization. Directives are optional and do not change the behavior of the C
code in the simulations, only the synthesized IP block.

HLS Optimization Directives

To optimize a design, we need to reduce the latency, the used area, the iteration
interval, etc. To be able to do that we make use of the directives provided by
HLS. There are many directives available but we will analyze only the directives
we used in our architectures[44].

• PIPELINE
Reduces the initiation interval for a function or loop by allowing the con-
current execution of operations. A pipelined function or loop can process



5.1. Tools Used 51

new inputs every N clock cycles, where N is the initiation interval (II)
of the loop or function. In case where II = 1 we can process a new in-
put data every clock cycle. In Figure 5.1 we present a loop without using
pipeplining and in Figure 5.2 we present a loop with the use of pipeplining.

Figure 5.1: Presentation of a loop without using pipelining

Figure 5.2: Presentation of a loop with the use of pipelining

• ARRAY_PARTITION
Partitions an array into smaller arrays or individual elements. The parti-
tioning:

– Results in RTL with multiple small memories or multiple registers
instead of one large memory.

– Effectively increases the amount of read and write ports for the stor-
age.



52 Chapter 5. System Implementation

– Potentially improves the throughput of the design.

– Requires more memory instances or registers

• DEPENDENCE
Provides additional information that can overcome loop-carry dependen-
cies and allow loops to be pipelined (or pipelined with lower intervals).
There are two kind of dependencies.

– Dependencies within loops (loop-independent dependence)

– Dependencies between different iterations of a loop (loop-carry de-
pendence)

These dependencies impact when operations can be scheduled, especially
during function and loop pipelining.

• UNROLL
Unroll loops to create multiple independent operations rather than a sin-
gle collection of operations. The directive transforms loops by creating
multiples copies of the loop body in the RTL design, which allows some
or all loop iterations to occur in parallel. Loops in the C/C++ functions
are kept rolled by default. When loops are rolled, synthesis creates the
logic for one iteration of the loop, and the RTL design executes this logic
for each iteration of the loop in sequence. This directive can increase data
access and throughput by unrolling the loops.

• ARRAY_MAP
Combines multiple smaller arrays into a single large array to help reduce
BRAM resources. Each array is mapped into a block RAM or UltraRAM.
The basic BRAM unit provided in an FPGA is 18K. If many small arrays
do not use the full 18K, a better use of the block RAM resources is to
map many small arrays into a single larger array. There are two ways of
mapping small arrays into a larger one:

– Horizontal Mapping: This corresponds to creating a new array by
concatenating the original arrays. Physically, this gets implemented
as a single array with more elements. The arrays are concatenated in
the order that the pragmas are specified, starting at target element
zero.

– Vertical mapping: : This corresponds to creating a new array by
concatenating the original words in the array. Physically, this gets



5.2. Memory I/O Interfaces 53

implemented as a single array with a larger bit-width. The arrays are
concatenated in the order that the pragmas are specified, starting at
bit zero.

• DATA_PACK
Packs all the elements of a struct into a single wide vector to reduce
the memory required for the variable, while allowing all members of the
struct to be read and written to simultaneously. The bit alignment of the
resulting new wide-word can be inferred from the declaration order of the
struct fields. The first field takes the LSB of the vector, and the final
element of the struct is aligned with the MSB of the vector.

5.2 Memory I/O Interfaces

In order to be able to exploit the bandwidth of the DDR as much as possible, we
did some research for the I/O interface between processor’s DDR and FPGA.
There are two methods of performing I/O between the CPU (in our case the
DDR of CPU) and peripheral devices (in our case the FPGA):

1. Memory Mapped I/O: Memory-mapped I/O uses the same address
space to address both memory (e.g DDR) and I/O devices (e.g FPGA).
The memory and registers of the I/O devices are mapped to address val-
ues. This method is appropriate in applications where there is no need
for low I/O bandwidth. Its random access nature can not allow it to effi-
ciently drive multiple requests because for each request there is a 30 - 50
clock cycles penalty for the initial interval.

2. Direct Memory Access (DMA) I/O: DMA is a method that allows
an I/O device (e.g FPGA) to send or receive data directly to or from
the main memory (e.g DDR), bypassing the CPU to speed up memory
operations. The DMA method is perfectly suited for applications that
needs high I/O bandwidth. Its like creating a FIFO between the DDR
and FPGA, in which we send data without the need of sending requests,
so we reduce the penalty of the initial interval we have to pay.

Since we have an application with a high bandwidth I/O we have figured out
that the best choice was to use the DMA I/O method. This method allows us
to use streaming interface to pass our data in FPGA which is something that
allows us to exploit the available bandwidth of the DDR in the best possible
way.



54 Chapter 5. System Implementation

5.3 A First,Naive Approach

As a first step, we transferred the C ++ code of the individual parts of the
algorithm to HLS to confirm their synthesizability.

5.3.1 Bottom-Up Strategy

In first approach we followed the bottom-up strategy. This strategy is merging
many small individual problems/systems, in our case the 4 different parts of the
PGS and Integration algorithms, in a single more complex final system. The
three individual parts (kernels in GPU implementation) of PGS algorithm and
the Integration are presented below:

• Contact to Constraint Conversion (Cont2Constr): Gets all the
pairwise contact points for all rigid bodies and creates the corresponding
contact constraints for every single collision.

• Contact Constraint Solver (Constr_Solver): Solves the collisions
based on the constraints between the two colliding bodies.

• Contact Friction Solver (Frict_Solver): Solves the collisions based
on the friction force between the two colliding bodies.

• Integration (Integrate): Updates the position of the bodies based on
the new values of angular and linear velocities.

We have tested the functionality of each part separately to be able to move
on the next step i.e. the combination of those parts.

5.3.2 Architecture Design

In order for the algorithm to be functional, we had to link all the individual
parts that we had implemented. So we created a first naive design where we
have executed the four pieces of the algorithm sequentially. The input of the
system was led to Cont2Constr whose output went as input to Constr_Solver.
Then its output came as an entry to Frict_Solver, where again the output was
the input for the last piece, Integrate. The final output of the system was
Integrate’s output. We present this naive design in Figure 5.3.

Here it should be stressed that input data from the outside world for each
of the functions is different and not used in any other function. They are used
to produce the output of each function in combination with the input from the
previous function.



5.3. A First,Naive Approach 55

Figure 5.3: The first naive design of the algorithm

This design was implemented in order to check the full functionality of PGS
and Integration algorithms and to get a first designing experience with HLS, to
understand the potential it could offer us. The data transfer between the parts of
the algorithm was performed through DDR since the goal of this implementation
was to test the tools we had at our disposal.

5.3.3 Optimizations on the Frist Design

Since we had a fully functional algorithm, we started to think about some
optimizations we could possibly implement.

Our data were stored in arrays of structs. We used the DATA_PACK
directive in order to pack all the elements together and having simultaneously
access on those elements. But the size of each structs was big enough and we
couldnt achieve the desired result. So we divided all of the arrays of structs into
many individual arrays, which were stored in different memory locations and
we could have access on each one of them concurrently.

As we mentioned above we were passing the data to algorithm directly
through DDR (i.e Memory Mapped I/O). Since our application needs a lot
of data in every single iteration this was not the best possible option. We have



56 Chapter 5. System Implementation

applied the streaming interface in order to exploit the bandwidth in a better
way. The buses we used while streaming the data in and out of algorithm
were 32-bits. Using the streaming interface the overall latency of the algorithm
reduced significantly but still, it was not even close to the latency of GPU’s
implementation.

5.4 Floating Point Architecture

This is the first complete architecture of the PGS and Integraton algorithms.
Below, we will analyze the process through which the final design emerged.
Several optimization techniques have been tested. We will present the most
important and those that gave us the best results.

5.4.1 Algorithmic Level Optimization

We applied a different approach to the order and manner in which the separate
parts of the algorithm are executed. As shown in Figure 5.3, Cont2Constr is
initially executed, and then the two basic collision-resolving functions are exe-
cuted. The Cont2Constr function creates the input data to the Constr_Solver
and Frict_Solver in combination with the input data from the outside world.

We divided Cont2Constr into two parts, one for creating input data for
Constr_Solver and one for Frict_Solver. Then we inserted the first part of
Cont2Constr into the Constr_Solver and the second part of Cont2Constr into
the Frict_Solver. This way we added some complexity on both of the solver
functions but we reduced the input data from the outside world significantly
and we eliminated the piece of communication between the Cont2Constr and
both of the solvers.

I/O Data Reduction

Based on the analysis in Chapter 4, we implemented all the optimizations for
reducing the size of the input data. This reduction gives us many possibilities
to reduce the latency of the algorithm as we will need fewer read/writes through
the streams. An extensive analysis of how we can achieve this is presented in
Chapter 4.

Memory Footprint

As we have already analyzed in Chapter 4, because of the nature of the algorithm
we need to store some essential data for all the rigid bodies in the BRAM



5.4. Floating Point Architecture 57

of FPGA. The rest of the data the algorithm needs will be acquired through
incoming streams from the outside world.

In particular, the data on rigid bodies to be stored at BRAM will be sent
at the beginning. Then, while executing the main loop of the algorithm, we
will be passing the data of the collisions through streams. Whenever necessary,
BRAM data for rigid bodies will be updated. The exact same procedure is
followed for the 2 solvers of our algorithm. Lastly, for the implementation of
the Integration, the data it needs will come through the BRAM and stream.
Rather, data from the outside world will not concern collisions but the rigid
bodies. There are additional data that was not stored in BRAM due to lack of
space that must come within the algorithm with the usage of streams.

5.4.2 Exploitation of the Available Bandwidth

Larger Streaming Buses

Having already reduced data to our system’s input, the next optimization is to
fully exploit the available bandwidth to bring the data to the FPGA in the best
possible way.

The first step was to increase the size of the streaming buses in order to
pass more data with a single stream read or write. The maximum memory
bus that DMA can support is 1024 Bits. Although this is limited by the High-
Performance (HP) ports of the ZCU102 where the DMA has to go through.
The maximum memory bus the HP ports allow from CPU memory to FPGA is
128-bit, so this the the maximum size of the bus we can have when streaming
data in and out of FPGA.

Using 128-bit streaming buses instead of 32-bit we can have the 4x band-
width than before and ideally we can achieve a 4x speedup.

Multiple DMA’s

The next thought was to use multiple DMA’s in order to exploit even better
the available bandwidth. Using the information we obtained from some of our
fellow students analysis for the maximum possible bandwidth from DDR (16
GB/s) we concluded that we can use multiple DMA’s. Each one of them would
pass through an HP port (ZCU102 has 6 of them). Theoretically, we could use
6 DMA’s, but the analysis of our fellow students showed that in the best case
we can use 4 of them efficiently.

Using 4 DMAs with 128-bit streaming buses can have the 16x bandwidth
than the first approach and ideally we can achieve a 16x speedup. In our case



58 Chapter 5. System Implementation

we used 3 DMAs with 128-bit buses and 1 DMA with 64-bit bus because that
was enough to pass all the data we needed. Further analysis will be performed
later on this chapter.

In Figure 5.4 below we present the new datapath that came up after imple-
menting all the optimizations above. Where "Part 1" is the first part of the
Cont2Constr function inserted inside the functionality of Constr_Solver and
the "Part 2" is the is the second part of the Cont2Constr function inserted
inside the functionality of Frict_Solver.

Figure 5.4: The floating point architecture datapath

5.4.3 Array Partition

During the execution of the main loop of PGS there are many accesses to
BRAM. In particular in a single iteration of the loop we will need to access the
same array in BRAM many times. Since BRAM is dual port we can only have
two accesses in a single clock cycle. So, we can either read/write, read/read
(from different memory addresses) or write/write. Our goal is to reduce as
much as possible the cycles we need to read data from BRAM so that it does
not restrict us to achieve low value for iteration interval in the basic loop of
our algorithm. That’s why we used the ARRAY_PARTITION directive that
HLS provides us. AS we mentioned above ARRAY_PARTITION effectively



5.4. Floating Point Architecture 59

increases the amount of read and write ports for the storage by creating multiple
instances of arrays. This also leads to increased size of data is being stored in
BRAM. Using this directive we manage to achieve the desirable read and write
accesses to BRAM in a single clock cycle.

5.4.4 Pipeline

As shown in Figure 5.2 it is obvious that using pipeline can reduce significant
the latency of a loop. The two solvers of the algorithm are based on a loop with
many iterations so the PIPELINE directive is perfectly suited for our case. The
most important in pipeline is to be able to achieve low value for II, if possible
equal to 1. This is not always easy since there are many restrictions related to
I/O, the accesses in BRAM and many more.

We have reduced the restrictions from accesses in BRAM with the use of
ARRAY_PARTITION directive. The data we need from the outside world for
a single iteration of the loop, can be passed into the FPGA with 7 streams of
128-bit buse each. This mean we have to pass into the FPGA 896 bits for every
iteration of the main loop of PGS. As we analized above we can efficiently use
only 4 DMA’s so we can not "feed" the FPGA with all the data in a single clock
cycle. We can conclude that the best possible II for this architecture is equal
to 2, because we cannot bypass the restrictions derive from I/O.

Dependencies

Knowing that our bottom line was II = 2, we started by setting it as a target.
At first, we could not achieve this because there were additional restrictions that
we had to overcome. One of these was some inter-dependencies that arose from
the multiple accesses to BRAM. We have managed to overcome this obstacle
by using the DEPENDENCE directive. The tool gave us the information that
there were dependencies between the iteration of the loop which actually was
not problem for us. Like GPU’s implementation we could afford to calculate
some values for the bodies involved in a collision without always have the last
updated values of the bodies. That’s why we have declared these dependencies
as false and we bypassed the specific problem.

Custom Loop Unroll

By default using the PIPELINE directive all the loops inside the loop being
pipelined are being unrolled. Of course, loops with many iterations can not
unrolled since it would demand really high usage of FPGA resources. In the PGS



60 Chapter 5. System Implementation

main loop, there was a loop that could be unrolled and the use of the PIPELINE
directive did just that. Because of this action, some conflicts emerged which,
in theory, should not exist. Because of this, we implemented the unroll custom
so we can overcome the problems that arose from the default unroll from HLS.
After several changes to the code and using a "datacarrier" as we called it
(discussed in the following paragraph), we were finally able to overcome the
problems that had arisen.

Remove If-Statements

It is well known that branches must be avoided in hardware design. Their
implementation is many times costly and in the case where there are many
branches, the system can be significantly delayed. In PGS algorithm there is a
statement needs to be checked before updating a rigid body’s velocities. This
statement depends on a value coming from the outside world so it is not known
before run time. This if-statement needs to be checked 4 times in a single
iteration loop, one time for each axis (X, Y , Z) and one time for some special
cases. All these if-statements increase the use of FPGA resources and also make
it difficult to achieve the desired II = 2.

In order to get rid of these if-statements we have created a code where all
the 4 cases are executed. In order to choose which one of the results to keep we
also multiply the intermediate results with the value on original if-statement,
which has been converted in boolean value. If the value is equal to 1 then we
need to update the velocities else we do not. We have also added an attribute
of 384 bit width, which we have named "datacarrier", to reduce the accesses
in BRAM. In "datacarrier" we store all the velocities (12 floating point values)
of the two bodies involved in the specific collision. In order to take advantage
of the huge bandwidth of BRAM the "datacarrier" stores 12 floats in a single
attribute so we can read or write to this attribute in a single clock cycle. Below
we present the pseudocode of the original and converted part of the algorithm
containing the if statements.



5.4. Floating Point Architecture 61

Algorithm 4 Original "Branchy" Code
1: coeffInv . Stream values indicating the update or not velocities
2: inter_values . Set of intermediate values
3: update . Calculates the intermediate values
4: velocities . Velocities of bodies stored in BRAM
5: if coeffInv1 then
6: inter_values← update(velocities)
7: velocities← velocities+ inter_values
8: end if
9: if coeffInv2 then

10: inter_values← update(velocities)
11: velocities← velocities+ inter_values
12: end if
13: if coeffInv3 then
14: inter_values← update(velocities)
15: velocities← velocities+ inter_values
16: end if
17: if coeffInv4 then
18: inter_values← update(velocities)
19: velocities← velocities+ inter_values
20: end if
21: new_velocities← velocities

Algorithm 5 Updated "Branchless" Code
1: coeffInv . Stream values indicating the update or not velocities
2: coeffInv_bol . 1 if we need to update velocities else 0
3: inter_values . Set of intermediate values
4: update . Calculates the intermediate values
5: velocities . Velocities of bodies stored in BRAM
6: coeffInv_bol← (bool)coeffInv
7: datacarrier ← velocities
8: inter_values1← update(datacarrier) ∗ coeffInv1_bol
9: datacarrier ← datacarrier + inter_values1

10: inter_values2← update(datacarrier) ∗ coeffInv2_bol
11: datacarrier ← datacarrier + inter_values2
12: inter_values3← update(datacarrier) ∗ coeffInv3_bol
13: datacarrier ← datacarrier + inter_values3
14: inter_values4← update(datacarrier) ∗ coeffInv4_bol
15: datacarrier ← datacarrier + inter_values4
16: new_velocities← velocities



62 Chapter 5. System Implementation

5.4.5 Array Map

to reduce resources in the FPGA used by our algorithm and especially in BRAM,
we used the ARRA_MAP directive. This directive combines multiple smaller
arrays a single larger array, which can then be targeted to a single larger re-
source. We used vertical mapping since it is creating a new array by concate-
nating the original words in the array. Physically, this gets implemented as a
single array with a larger bit-width. Using this directive we reduced the BRAM
by 3%.

5.5 Half-Precision Floating Point Architecture

The second architecture we propose for the PGS algorithm was implemented
using half-precision floating point. Based on the floating point architecture
and taking advantage of the fact that all of our data require half the memory
footprint relative to previous architecture we came up with some optimizations
and transformations of the previous architecture to end up with better speedup
and lower memory footprint.

5.5.1 Conversion to Half

The first step was to convert everything in our implementation in half-precision
floating point. The arrays stored in BRAM, the way our streams work and
all of the variables in our code had to change in order to be able to handle
half-precision floating point values. This way we now need half-sized arrays in
BRAM than before and we can also send the double information using the same
exact streams we used. So there will be no more I/O restriction that did not
allow us to achieve II = 1.

However, there has been another restriction on accesses to BRAM. During
the iteration of the loop, we need to have 4 accesses to the same memory
array. Because of the BRAM (dual port) design, we can only have 2 accesses
on the same array within a clock cycle, so we will have II = 2. Using the
ARRAY_PARTITION directive could not solve this problem. A solution to
this problem will be presented later in this chapter.

5.5.2 Multiple Instances of Algorithm

The information we must send in FPGA for a single iteration of the loop is
exactly half the size of the previous one. So, we want to send 448-bits using



5.5. Half-Precision Floating Point Architecture 63

streams with 128-bit buses. So we need "3.5" stream accesses (actually 4) to
send this information to the FPGA. To be able to exploit the remaining 0.5
from a access we created 2 instances of our algorithm in the base loop. So in
a single loop iteration, we send data and we calculate results for two collisions
instead of one. Of course, the total iterations of the main loop were halved.

So now the main loop of our algorithm will be half the size and in each
iteration will perform twice as much work. It is easy to see that the best II we
could achieve with the pipeline would be II = 2 (as if we had II = 1 in the
original loop). Because of the limitations of BRAM at this point of design, the
II we could achieve was equal to 4 (as if we had II = 2 in the original loop).

5.5.3 Multiple Instances of Arrays in BRAM

In order to overcome the restrictions due to BRAM we have thought of creating
two instance of our arrays stored in BRAM. In this way, we can have double
accesses in the data we need as we can get them from different memory locations.
Of course, we should always update both of the instances of the array, which
will eventually restrict us. We recall that we need 4 accesses on the same array
during a clock cycle, 2 reads and 2 writes. Exploiting the second instance of
the array we can perform the first read in the first instance of the array and
the second read in the second instance of the array. However, because writing
should be done on both arrays, we need 2 more accesses in each. So a total of
3 accesses than the 4 needed before. This way, we ended up in II = 3 (as if we
had "II = 1.5" in the original loop) in relation to II = 4 (as if we had II = 2

in the original loop) of the array. This is the best II we can achieve in the way
this design has been implemented. Even if we extend this logic of the many
instances of the original array, the fact that we have 2 write operations in each
instance, limits us to being unable to descend below II = 3.

Because of this restriction and because of final achieved II = 3 for the inner
loop pipeline we only need 3 DMAs instead of 4. More precisely we have 2
DMAs with 128-bit buses and 1 DMA with 64-bit bus.





65

Chapter 6

Results

This chapter summarizes the results obtained from the two architectures that we
proposed for the implementation of PGS and Integration algorithms in FPGA,
as well as their comparison with the corresponding implementations in GPU
and CPU. The comparisons are based on the latency of the two algorithms as
well as on their energy consumption.

6.1 Specifications of Compared Platforms

6.1.1 Zynq UltraScale+ ZCU102

The ZCU102 features a Zynq UltraScale+ MPSoC device with a quad-core
ARM Cortex-A53, dual-core Cortex-R5 real-time processors, and a Mali-400
MP2 graphics processing unit based on Xilinx’s 16nm FinFET+ programmable
logic fabric[45]. The features of ZCU102 are presented below:

• Optimized for quick application prototyping with Zynq Ultrascale+ MP-
SoC

• DDR4 SODIMM – 4GB 64-bit w/ ECC attached to Processor Subsystem
(PS)

• DDR4 Component – 512MB 16-bit attached to Programmable Logic (PL)

• PCIe Root Port Gen2x4, USB3, Display Port and SATA

• 4x SFP+ cages for Ethernet

• 2x FPGA Mezzanine Card (FMC) interfaces for I/O expansion including
16 x 16.3 Gb/s GTH transceivers and 64 user defined differential I/O
signals

We also present the specifications of the Zynq UltraScale XCZU9EG-2FFVB1156
FPGA in Table 6.1:



66 Chapter 6. Results

Table 6.1: The specifications of Zynq UltraScale XCZU9EG-
2FFVB1156 FPGA

System Logic Memory DSP Slices Maximum I/0
Cells Block RAM Pins

600 K 4 MB 2,520 328

6.1.2 NVIDIA GeForce GTX 980

In Table 6.2 below we present the specifications of NVIDIA GeForce GTX 980
GPU:

Table 6.2: The specifications of NVIDIA GeForce GTX 980
GPU

NVIDIA GeForce GTX 980

CUDA Cores 2048
Clock Frequency 1126 MHz
Memory Clock Frequency 1750 MHz
Memory 4GB GDDR5
Memory Bus 256-bit
Bandwidth 224 GB/s
Thermal Design Power (TDP) 165W

6.1.3 Intel Core i7 3770

In the following 6.3 we present the specifications of Intel Core i7 3770 CPU:

Table 6.3: The specifications of Intel Core i7 3770 CPU

Cores Clock Threads Cache Thermal Design
Frequency Power (TDP)

4 3.4 GHz 8 8 MB 77 W

6.2 Speedup

We mention the concept of speedup in many chapters of this diplomatic work,
so it’s time to give a definition of what speedup means. Having two different
systems processing the same problem we can measure their relative performance



6.2. Speedup 67

by a number called speedup. Technically speaking, it is the improvement in the
speed of execution of a task executed on two similar architectures with different
resources. The inspirator of the concept of speedup is Amdahl with the much-
known Amdahl’s law, which was especially focused on parallel processing.

Speedup can be defined for two different types of quantities: latency and
throughput.

• Latency: It is the reciprocal of the execution speed of a task of an archi-
tecture.

L =
1

v
=

T

W
(6.1)

where v is the execution speed of the task. T is the execution time of the
task and W is the execution workload of the task.

• Throughput: It is the the execution rate of a task of an architecture.

Q = ρ · v · A =
ρ · A ·W

T
=
ρ · A
L

(6.2)

where ρ is the execution density (e.g. the number of stages in an instruc-
tion pipeline for a pipelined architecture) and A is the execution capacity
(e.g. the number of processors for a parallel architecture).

6.2.1 Latency Speedup

Let us consider two different two different systems processing the same problem.
Setting L1 to be the the latency of the architecture 1 and L2 to be the the latency
of the architecture 2 we get the following:

Slatency =
L1

L2

(6.3)

where Slatency is the speedup in latency of the architecture 2 with respect to the
architecture 1.

6.2.2 Throughput Speedup

Following the same pattern we set Q1 to be the the throughput of the architec-
ture 1 and Q2 to be the the throughput of the architecture 2 and we get the
following:

Sthroughput =
Q2

Q1

(6.4)



68 Chapter 6. Results

where Sthroughput is the speedup in throughput of the architecture 2 with respect
to the architecture 1.

6.3 Power and Energy Consumption

Power consumption of a system is the electrical energy per unit time that this
system needs in order to execute a task. Power consumption is usually measured
in units of watts (W). In order to measure the energy consumption of a system
we have to multiply the power consumption by the total time our system needs
to complete the execution of an application. Energy consumption is usually
measured in units of joule (J). Our measurements in FPGA is in theoretical
level since we did not went through Vivado IDE tool which indicates the values
for power consumption in our implementations. We might actually have better
power consumption than the maximum but since we can not measure it we get
the worst case scenario. So we set the power consumption for our architectures
as the maximum power consumption of ZCU102.

6.4 Floating Point Architecture

Below we present the comparison of our floating point architecture implemen-
tation of PGS and Integration algorithms in FPGA with the corresponding
implementations of GPU and CPU. Starting with Table 6.4 we present the
results of FPGA implementation.

Table 6.4: The results of Floating Point Implementation

Clock Clock BRAM_18K DSP48E FF LUT
Cycles Frequency Usage Usage Usage Usage

2062697 275 MHz 70% 42% 32% 47%

In Table 6.5 we present the results of the PGS and Integration algorithm
implemented on GPU and CPU compared to our implementation in ZCU102.



6.5. Half-Precision Floating Point Architecture 69

Table 6.5: Comparison between FPGA, GPU, CPU and FPGA
for the floating point architecture

ZCU102 GTX 980 i7 3770

Clock Frequency 275 (MHz) 1126 (MHz) 3.4 (GHz)
Latency (ms) 7.49 13.64 53.01
Total On Chip Power (Watt) 15 288 133
Energy Consumption (Joule) 0.11 3.93 7.05

The next Table 6.6 is showing the speedup we get in FPGA over GPU and
CPU and in the final Table 6.7 we present the energy efficiency over GPU and
CPU.

Table 6.6: The latency speedup we achieve in FPGA over GPU
and CPU for the floating point architecture

GTX 980 i7 3770

Latency Speedup 1.82× 7.08×

Based on Amdahl’s law

Slatency(s) =
1

(1− p) + p
s

(6.5)

where Slatency is the speedup for the whole task, s is the speedup of the part
of the task being accelerated, and p is the proportion of execution time of this
part in relation to the total execution time of the task.

In our case we can achieve 1.37× speedup in the whole simulation step for
the floating point architecture.

Table 6.7: The power and energy efficiency of FPGA over GPU
and CPU for the floating point architecture

GTX 980 i7 3770

Power Efficiency 19.2× 8.67×
Energy Efficiency 35.72× 64.09×

6.5 Half-Precision Floating Point Architecture

Below we present the comparison of our half-precision floating point architec-
ture implementation of PGS and Integration algorithms in FPGA with the



70 Chapter 6. Results

corresponding implementations of GPU and CPU. Starting with Table 6.8 we
present the results of FPGA implementation.

Table 6.8: The results of half-precision floating point imple-
mentation

Clock Clock BRAM_18K DSP48E FF LUT
Cycles Frequency Usage Usage Usage Usage

1557317 250 MHz 48% 42% 29% 49%

In Table 6.9 we present the results of the PGS and Integration algorithm
implemented on GPU and CPU compared to our implementation in ZCU102.

Table 6.9: Comparison between FPGA, GPU, CPU and FPGA
for the half-precision floating point architecture

ZCU102 GTX 980 i7 3770

Clock Frequency 250 (MHz) 1126 (MHz) 3.4(GHz)
Latency (ms) 6.23 13.64 53.01
Total On Chip Power (Watt) 15 288 133
Energy Consumption (Joule) 0.09 3.93 7.05

The next Table 6.10 is showing the speedup of FPGA over GPU and CPU
and in the final Table 6.11 we present the energy efficiency over GPU and CPU.

Table 6.10: The latency speedup we achieve in FPGA over
GPU and CPU for the half-precision floating point architecture

GTX 980 i7 3770

Latency Speedup 2.19× 8.5×

We can achieve 1.48× speedup in the whole simulation step for the half-
precision floating point architecture based on 6.5.

Below 6.1, we present a chart of FPGA speedup over GPU and CPU for
three different architectures. The floating point architecture, the half-precision
floating point architecture and the first naive design.We have not analyzed the
naive design but we include it in the chart for completion reasons.



6.5. Half-Precision Floating Point Architecture 71

Table 6.11: The power and energy efficiency of FPGA over
GPU and CPU for the half-precision floating point architecture

GTX 980 i7 3770

Power Efficiency 19.2× 8.67×
Energy Efficiency 43.67× 78.34×

Figure 6.1: The speedup of FPGA over GPU and CPU for our
three different architectures

Finally in 6.2, we present a chart of FPGA energy efficiency over GPU and
CPU for the same three architectures.



72 Chapter 6. Results

Figure 6.2: The energy efficiency of FPGA over GPU and CPU
for our three different architectures



73

Chapter 7

Conclusions and Future Work

In this last chapter we will refer to the conclusions that have emerged during
the course of this thesis as well as the lessons we have learned. We will also
mention a number of proposals as a future work, extending the work of this
thesis.

7.1 Conclusions

During this work, we have been able to conclude many interesting things about
how physics engines work, their particularities, their bottlenecks, and so on. We
have succeeded in accelerating in FPGA a basic algorithm (PGS) that physics
engines use and implement in the GPU. This could possible lead to the creation
of heterogeneous systems consisting of FPGAs and GPUs, where the FPGA will
deal with processing and the GPU with rendering of the whole physics engine
simulation loop. We have also concluded that in certain applications based on
physics engines the half-precision floating point values are acceptable and can
lead to a better speedup and resource utilization overall.

7.2 Lessons Learned

During the preparation of this work there were several problems and obstacles
that we had to overcome. One of the most challenging steps was to understand
in depth the nature of the problem and to make a very good analysis so as to
reveal opportunities for exploiting possible weaknesses in the already existing
implementation. A very time consuming process involved the understanding of
the library code we worked on, as we had to fully understand the mentality of
the programmer who had composed it, which is often not easy at all.

We learned and understood in depth the Xilinx tools and more specifically
the vivado HLS. We also expanded our knowledge of programming languages C
++, C and we learned some things about how OpenCL and OpenGL work.



74 Chapter 7. Conclusions and Future Work

Last but not least, we have learned some very important lessons about the
way we should approach a problem, how important it is to be able to properly
manage the available time we have, and the absolute need for a proper planning
of the work and to stay faithful to this plan.

7.3 Future Work

Starting with the analysis described in Chapter 4 for the case we are sorting
the data that comes as an input to the FPGA, we suggest as a future work to
implement this kind of sorting within the FPGA i.e the transference of software
implementation in MATLAB to HLS. As we analyzed, such an approach could
significantly reduce BRAM and allow us to introduce pipeline between the it-
erations of the outer loop of the two solvers as also a pipeline between the two
solvers.

Another idea for future work is to implement the part of the simulation
loop which concerns the collision detection, i.e broad-phase, and narrow-phase
collision detection. This will lead to the implementation of the entire simulation
loop in the FPGA. It is possible that it can not fit into a small FPGA, which
may require two FPGAs to communicate, or a larger FPGA that can fit the
entire design.

Finally, we suggest an idea of combining an FPGA together with a GPU
into one system. The idea is to use the FPGA to run the algorithm’s entire
simulation loop and to communicate with the GPU to send out the results for
rendering.



75

References

[1] A. Choudhary P. Banerjee A. Nayak M. Haldar. “Precision and error anal-
ysis of MATLAB applications during automated hardware synthesis for
FPGAs”. In: Proceedings Design, Automation and Test in Europe. (2001).
url: https://ieeexplore.ieee.org/document/915108.

[2] Martin Rölin Axel Seugling. “Evaluation of Physics Engines and Imple-
mentation of a Physics Module in a 3d-Authoring Tool”. MA thesis. Umeå
University Department of Computing Science, Sweden, 2006.

[3] Ian Robert Ballantyne. “Collision Overload: Reducing the Impact in Real-
time Physics”. MA thesis. 2009.

[4] Somnath P Mukherjee S Pal Subhradeep Biswas B N Chatterjee. “A
DISCUSSION ON EULER METHOD: A REVIEW”. In: Electronic Jour-
nal of Mathematical Analysis and Applications 1 (2013). url: https:
//www.researchgate.net/publication/239525844_A_DISCUSSION_

ON_EULER_METHOD_A_REVIEW.

[5] Adrian Boeing. “Evaluation of real-time physics simulation systems”. In:
GRAPHITE. Proceedings of the 5th international conference on Computer
graphics and interactive techniques, Australia and Southeast Asia (2007).
url: https://dl.acm.org/citation.cfm?id=1321312.

[6] Erin Catto. “Iterative Dynamics with Temporal Coherence”. In: (2005).
url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.574.6641&rep=rep1&type=pdf.

[7] Xiao jian Liu Cheng Liang. “The Research of Collision Detection Algo-
rithm Based on Separating axis Theorem”. In: International Journal of
Science 2 (2015). url: https://pdfs.semanticscholar.org/65c6/
ce78829efaeacbb29e753a13c3a1838e53db.pdf.

[8] David Chui. “An FPGA Implementation of the Ewald Direct Space and
Lennard-Jones Compute Engines”. In: Master of Applied Science (2005).
url: https://www.semanticscholar.org/paper/An-FPGA-Implementation-
of-the-Ewald-Direct-Space-Chui/40347f255de5769232cea8e333e32d33744f6e20.

https://ieeexplore.ieee.org/document/915108
https://www.researchgate.net/publication/239525844_A_DISCUSSION_ON_EULER_METHOD_A_REVIEW
https://www.researchgate.net/publication/239525844_A_DISCUSSION_ON_EULER_METHOD_A_REVIEW
https://www.researchgate.net/publication/239525844_A_DISCUSSION_ON_EULER_METHOD_A_REVIEW
https://dl.acm.org/citation.cfm?id=1321312
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.574.6641&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.574.6641&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/65c6/ce78829efaeacbb29e753a13c3a1838e53db.pdf
https://pdfs.semanticscholar.org/65c6/ce78829efaeacbb29e753a13c3a1838e53db.pdf
https://www.semanticscholar.org/paper/An-FPGA-Implementation-of-the-Ewald-Direct-Space-Chui/40347f255de5769232cea8e333e32d33744f6e20
https://www.semanticscholar.org/paper/An-FPGA-Implementation-of-the-Ewald-Direct-Space-Chui/40347f255de5769232cea8e333e32d33744f6e20


76 REFERENCES

[12] Tomas Berglund Da Wang Martin Servin. “Warm starting the projected
Gauss-Seidel algorithm for granular matter simulation”. In: Computa-
tional Particle Mechanics 3 (2016). url: https://link.springer.com/
article/10.1007/s40571-015-0088-x.

[13] Oliver G. Staadt Daniel S. Coming. “Kinetic Sweep and Prune for Colli-
sion Detection”. In: Workshop On Virtual Reality Interaction and Physical
Simulation (2005). url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.115.4443&rep=rep1&type=pdf.

[15] Sukamto Elfizar. “Analysis of Axis Aligned Bounding Box in Distributed
Virtual Environment”. In: International Journal of Computer Applications
(0975 – 8887) 105 (2014). url: https://www.semanticscholar.org/
paper/Analysis- of- Axis- Aligned- Bounding- Box- in- Virtual/

c3b7cb8acc91dc9e1ac0912506d155748e844f81.

[16] Tom Erez, Yuval Tassa, and Emanuel Todorov. “Simulation tools for
model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and
PhysX”. In: 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA) (2015). url: https://ieeexplore.ieee.org/document/
7139807/media.

[17] Christer Ericson. Real-Time Collision Detection. 2005. url: http : / /
realtimecollisiondetection.net/books/rtcd/.

[18] Earl Wells Falco Girgis. “GPGPU Acceleration for Video Game Physics
Engines”. In: (). url: http : / / elysianshadows . com / updates / wp -

content/uploads/2011/05/cpe790FINAL.pdf.

[21] Fredrik Fossum. “Real-Time Rigid Body Interactions”. MA thesis. Nor-
wegian University of Science, Technology Department of Computer, and
Information Science, 2011.

[22] Stefan Gottschalk. “Collision Queries using Oriented Bounding Boxes”.
PhD thesis. Univerisy of North Carolina at Chapel Hill, 2000.

[24] Tamer Abd Elmouty Elawady Hussein A. Aly. “A new narrow phase col-
lision detection algorithm using height projection”. In: 4th European Ed-
ucation and Research Conference (EDERC 2010) (2010). url: https:
//ieeexplore.ieee.org/document/6151418/?part=1.

[25] Jeff Trinkle Jan Bender Kenny Erleben and Erwin Coumans. “Interactive
Simulation of Rigid Body Dynamics in Computer Graphics”. In: STAR
Proceedings of Eurographics (2014). url: https://doi.org/10.1111/
cgf.12272.

https://link.springer.com/article/10.1007/s40571-015-0088-x
https://link.springer.com/article/10.1007/s40571-015-0088-x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.4443&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.4443&rep=rep1&type=pdf
https://www.semanticscholar.org/paper/Analysis-of-Axis-Aligned-Bounding-Box-in-Virtual/c3b7cb8acc91dc9e1ac0912506d155748e844f81
https://www.semanticscholar.org/paper/Analysis-of-Axis-Aligned-Bounding-Box-in-Virtual/c3b7cb8acc91dc9e1ac0912506d155748e844f81
https://www.semanticscholar.org/paper/Analysis-of-Axis-Aligned-Bounding-Box-in-Virtual/c3b7cb8acc91dc9e1ac0912506d155748e844f81
https://ieeexplore.ieee.org/document/7139807/media
https://ieeexplore.ieee.org/document/7139807/media
http://realtimecollisiondetection.net/books/rtcd/
http://realtimecollisiondetection.net/books/rtcd/
http://elysianshadows.com/updates/wp-content/uploads/2011/05/cpe790FINAL.pdf
http://elysianshadows.com/updates/wp-content/uploads/2011/05/cpe790FINAL.pdf
https://ieeexplore.ieee.org/document/6151418/?part=1
https://ieeexplore.ieee.org/document/6151418/?part=1
https://doi.org/10.1111/cgf.12272
https://doi.org/10.1111/cgf.12272


REFERENCES 77

[26] Hassan Kianinejad Peng Wei Jason Cong Zhenman Fang. “Revisiting
FPGA Acceleration of Molecular Dynamics Simulation with Dynamic
Data Flow Behavior in High-Level Synthesis”. In: (2016). url: https:
//arxiv.org/abs/1611.04474v1.

[27] Walid A. Najjar Jason Villarreal. “Compiled hardware acceleration of
Molecular Dynamics code”. In: International Conference on Field Pro-
grammable Logic and Applications (2008). url: https://ieeexplore.
ieee.org/document/4630035.

[28] Dinesh Manocha Madhav K. Ponamgi Jonathan D. Cohen Ming C. Lin.
“I-COLLIDE: An Interactive and Exact Collision Detection System for
Large-Scale Environments”. In: (2005). url: http://www.cs.jhu.edu/
~cohen/Publications/icollide.pdf.

[29] Daniel Wagner Wolfgang J. Paul Philipp Slusallek Jörg Schmittler Sven
Woop. “Towards a Field-Programmable Physics Processor (FP)”. In: 7th
Irish Workshop on Computer Graphics (Eurographics Ireland Chapter
2006), At Dún Laoghaire, Dublin, Ireland (2006). url: https://www.
researchgate.net/publication/242482020_Towards_a_Field-Programmable_

Physics_Processor_FP.

[30] Evangelos Kokkevis. “Practical Physics for Articulated Characters”. In:
Game Developers Conference (2004). url: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.445.9996&rep=rep1&type=pdf.

[31] Patrick Lindemann. “The Gilbert-Johnson-Keerthi Distance Algorithm”.
In: 2 (). url: https://www.medien.ifi.lmu.de/lehre/ss10/ps/
Ausarbeitung_Beispiel.pdf.

[32] Sarah Niebe Morten Silcowitz and Kenny Erleben. “Projected Gauss-
Seidel Subspace Minimization Method for Interactive Rigid Body Dynam-
ics - Improving Animation Quality using a Projected Gauss-Seidel Sub-
space Minimization Method.” In: (). url: https://www.researchgate.
net/publication/220868749_Projected_Gauss-Seidel_Subspace_

Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-

_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_

Subspace_Minimization_Method.

[33] Panos M. Pardalos. “The Linear Complementarity Problem”. In: (). url:
https://page-one.springer.com/pdf/preview/10.1007/978-94-

015-8330-5_3.

https://arxiv.org/abs/1611.04474v1
https://arxiv.org/abs/1611.04474v1
https://ieeexplore.ieee.org/document/4630035
https://ieeexplore.ieee.org/document/4630035
http://www.cs.jhu.edu/~cohen/Publications/icollide.pdf
http://www.cs.jhu.edu/~cohen/Publications/icollide.pdf
https://www.researchgate.net/publication/242482020_Towards_a_Field-Programmable_Physics_Processor_FP
https://www.researchgate.net/publication/242482020_Towards_a_Field-Programmable_Physics_Processor_FP
https://www.researchgate.net/publication/242482020_Towards_a_Field-Programmable_Physics_Processor_FP
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.445.9996&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.445.9996&rep=rep1&type=pdf
https://www.medien.ifi.lmu.de/lehre/ss10/ps/Ausarbeitung_Beispiel.pdf
https://www.medien.ifi.lmu.de/lehre/ss10/ps/Ausarbeitung_Beispiel.pdf
https://www.researchgate.net/publication/220868749_Projected_Gauss-Seidel_Subspace_Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_Subspace_Minimization_Method
https://www.researchgate.net/publication/220868749_Projected_Gauss-Seidel_Subspace_Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_Subspace_Minimization_Method
https://www.researchgate.net/publication/220868749_Projected_Gauss-Seidel_Subspace_Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_Subspace_Minimization_Method
https://www.researchgate.net/publication/220868749_Projected_Gauss-Seidel_Subspace_Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_Subspace_Minimization_Method
https://www.researchgate.net/publication/220868749_Projected_Gauss-Seidel_Subspace_Minimization_Method_for_Interactive_Rigid_Body_Dynamics_-_Improving_Animation_Quality_using_a_Projected_Gauss-Seidel_Subspace_Minimization_Method
https://page-one.springer.com/pdf/preview/10.1007/978-94-015-8330-5_3
https://page-one.springer.com/pdf/preview/10.1007/978-94-015-8330-5_3


78 REFERENCES

[36] Emil Rönnbäck. “Parallel implementation of the projected Gauss-Seidel
method on the Intel Xeon Phi processor – Application to granular mat-
ter simulation”. MA thesis. Umeå University Department of Computing
Science, Sweden, 2014. url: http://www8.cs.umu.se/education/
examina/Rapporter/EmilRonnback.pdf.

[38] Christopher Stover. Biased Exponent. url: http://mathworld.wolfram.
com/BiasedExponent.html.

[40] Michael Woulfe Muiris Manzke. “Realtime Ray Tracing of Dynamic Scenes
on an FPGA Chip”. In: Graphics Hardware (2004). url: http://www.
sven-woop.de/papers/2004-GH-SaarCOR.pdf.

[46] Y. J. Uncertain. Anal. Appl Yang X. Shen. “Runge-Kutta Method for
Solving Uncertain Differential Equations”. In: Electronic Journal of Math-
ematical Analysis and Applications 3 (2015). url: https://doi.org/
10.1186/s40467-015-0038-4.

[47] Dou Y. Yang X. Mou S. “FPGA-Accelerated Molecular Dynamics Simu-
lations: An Overview”. In: Reconfigurable Computing: Architectures, Tools
and Applications (2007). url: https://page-one.springer.com/pdf/
preview/10.1007/978-94-015-8330-5_3.

[48] Jeroen van der Zijp. Fast Half Float Conversions. Tech. rep. 2008. url:
http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf.

http://www8.cs.umu.se/education/examina/Rapporter/EmilRonnback.pdf
http://www8.cs.umu.se/education/examina/Rapporter/EmilRonnback.pdf
http://mathworld.wolfram.com/BiasedExponent.html
http://mathworld.wolfram.com/BiasedExponent.html
http://www.sven-woop.de/papers/2004-GH-SaarCOR.pdf
http://www.sven-woop.de/papers/2004-GH-SaarCOR.pdf
https://doi.org/10.1186/s40467-015-0038-4
https://doi.org/10.1186/s40467-015-0038-4
https://page-one.springer.com/pdf/preview/10.1007/978-94-015-8330-5_3
https://page-one.springer.com/pdf/preview/10.1007/978-94-015-8330-5_3
http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf


79

External Links

[9] Erwin Coumans. Bullet Physics SDK Manual. 2015. url: https : / /

github.com/bulletphysics/bullet3/blob/master/docs/Bullet_

User_Manual.pdf.

[10] Erwin Coumans. Bullet Real-Time Physics Simulation. url: https://
pybullet.org/wordpress/.

[11] Erwin Coumans.GPU Rigid Body Simulation using OpenCL. url: https:
//github.com/bulletphysics/bullet3/blob/master/docs/GPU_

rigidbody_using_OpenCL.pdf.

[14] Jonathan "lonesock" Dummer. A Simple Time-Corrected Verlet Integra-
tion Method. 2016. url: http://lonesock.net/article/verlet.html.

[19] Glenn Fiedler. Fix Your Timestep! url: https://gafferongames.com/
post/fix_your_timestep/.

[20] Forward and Backward Euler Methods. url: http://web.mit.edu/10.
001/Web/Course_Notes/Differential_Equations_Notes/node3.html.

[23] Khronos Group. OpenCL Overview. url: https://www.khronos.org/
opencl/.

[34] Physics Tutorial: Collision Response. url: https://research.ncl.ac.
uk/game/mastersdegree/gametechnologies/physics6collisionresponse/

2017\%20Tutorial\%206\%20-\%20Collision\%20Response.pdf.

[35] Runge-Kutta Methods. 2016. url: http://web.mit.edu/10.001/Web/
Course_Notes/Differential_Equations_Notes/node3.html.

[37] Oliver Smart. Non-bonded Interactions. url: http://www.cryst.bbk.
ac.uk/PPS2/course/section7/os_non.html.

[39] James Tursa. IEEE 754r Half Precision floating point converter. 2009.
url: https://www.mathworks.com/matlabcentral/fileexchange/
23173-ieee-754r-half-precision-floating-point-converter.

[41] Xilinx. Official Xilinx Website. url: https://www.xilinx.com/.

https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://pybullet.org/wordpress/
https://pybullet.org/wordpress/
https://github.com/bulletphysics/bullet3/blob/master/docs/GPU_rigidbody_using_OpenCL.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/GPU_rigidbody_using_OpenCL.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/GPU_rigidbody_using_OpenCL.pdf
http://lonesock.net/article/verlet.html
https://gafferongames.com/post/fix_your_timestep/
https://gafferongames.com/post/fix_your_timestep/
http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html
http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physics6collisionresponse/2017\%20Tutorial\%206\%20-\%20Collision\%20Response.pdf
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physics6collisionresponse/2017\%20Tutorial\%206\%20-\%20Collision\%20Response.pdf
https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/physics6collisionresponse/2017\%20Tutorial\%206\%20-\%20Collision\%20Response.pdf
http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html
http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html
http://www.cryst.bbk.ac.uk/PPS2/course/section7/os_non.html
http://www.cryst.bbk.ac.uk/PPS2/course/section7/os_non.html
https://www.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter
https://www.mathworks.com/matlabcentral/fileexchange/23173-ieee-754r-half-precision-floating-point-converter
https://www.xilinx.com/


80 EXTERNAL LINKS

[42] Xilinx. Vivado Design Suite User Guide High-Level Synthesis. 2018. url:
https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2017_4/ug902-vivado-high-level-synthesis.pdf.

[43] Xilinx. Vivado High-Level Synthesis. url: https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html.

[44] Xilinx. Vivado HLS Optimization Methodology Guide. url: https://
www.xilinx.com/support/documentation/sw_manuals/xilinx2017_

4/ug1270-vivado-hls-opt-methodology-guide.pdf.

[45] Xilinx. ZCU102 Evaluation Board User Guide. url: https : / / www .

xilinx . com / support / documentation / boards _ and _ kits / zcu102 /

ug1182-zcu102-eval-bd.pdf.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Contribution
	Thesis Outline

	Theoretical Background
	Physics Engines
	General Concepts of Physics Engines
	Simulation Loop
	Simulation Time-Step
	Geometry Types of Shapes

	Collision Detection
	Broad-Phase Collision Detection
	Narrow-Phase Collision Detection

	Equations of Motion and Integration
	Numerical Integration
	Explicit Euler Integration
	Semi-implicit/Symplectic Euler Integration

	Collision Response
	Forces on Collisions
	Newton-Euler Equations
	Impulse and Penalty Methods


	The Bullet Physics Engine
	Sweep and Prune (SAP)
	Separating Axis Theorem (SAT)
	Projected Gauss-Seidel (PGS)
	Linear Complementarity Problem
	Gauss-Seidel Method
	PGS Algorithm



	Related Work
	Real-Time Physics Simulation Systems
	Bullet Physics Library
	Field-Programmable Physics Processor
	FPGA Acceleration of Molecular Dynamics Simulation

	Modeling of PGS and Integration
	OpenCL to C++ Conversion
	Isolating Processing from Rendering
	Demo Description (Game Scene) 
	Data Analysis of PGS and Integration
	Data Redundancies
	PGS Data Reduction
	Integration Data Reduction
	PGS and Integration Combination

	Memory Footprint

	Lack of Determinism in GPU Implementation of PGS
	Comparison of Float and Half-Float
	Float to Half-Float Conversion and Vice-Versa
	Half-Float Representation of Input Data
	Evaluation of Results Using Half-Float Representation
	Output of PGS using Float
	Output of PGS using Half-Float

	Half-Float to Float Conversion

	Sorting Input Data on PGS
	Possible Benefits using Sorting


	System Implementation
	Tools Used
	Vivado HLS
	HLS Optimization Directives


	Memory I/O Interfaces
	A First,Naive Approach
	Bottom-Up Strategy
	Architecture Design
	Optimizations on the Frist Design

	Floating Point Architecture
	Algorithmic Level Optimization
	I/O Data Reduction
	Memory Footprint

	Exploitation of the Available Bandwidth
	Larger Streaming Buses
	Multiple DMA's

	Array Partition
	Pipeline
	Dependencies
	Custom Loop Unroll
	Remove If-Statements

	Array Map

	Half-Precision Floating Point Architecture
	Conversion to Half
	Multiple Instances of Algorithm
	Multiple Instances of Arrays in BRAM


	Results
	Specifications of Compared Platforms
	Zynq UltraScale+ ZCU102
	NVIDIA GeForce GTX 980
	Intel Core i7 3770

	Speedup
	Latency Speedup
	Throughput Speedup

	Power and Energy Consumption
	Floating Point Architecture
	Half-Precision Floating Point Architecture

	Conclusions and Future Work
	Conclusions
	Lessons Learned
	Future Work

	References

