
Technical University of Crete 
School of Electrician and Computer Engineering 

HOLO-BOARD: AN 
AUGMENTED REALITY 

APPLICATION MANAGER 
SUPPORTING MACHINE 

VISION 

 

Author: Daskalogrigorakis A. Grigorios 
(gdaskalogrigorak@isc.tuc.gr) 

Dissertation Thesis 

Committee: 

Supervisor: K. Mania, Associate Professor 

V. Samoladas, Associate Professor 

M. Zervakis, Professor 

October 2018  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 2 

Acknowledgements 

For this project I would like to especially thank Prof. Katerina Mania for giving me a 

chance to experiment with a new idea. I would also like to thank Professors V. Samoladas 

and M. Zervakis for accepting to be on my committee and approved the idea of Holo-Board. 

I would also like to thank everyone in the MUSIC Laboratory for their valuable 

assistance, as well as all the colleagues that helped me throughout my studies and my friends 

and family for standing by me. Special thanks to Papadogiannis Sevastianos, Psihas 

Konstantinos, Loukas Harisis, Fragoulis Logothetis, Sason Nektarios and many more for 

their valuable assistance. Additional thanks to Konstantinidis Konstantinos for also showing 

me the Garamond font used in this thesis! 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 3 

Abstract:  

In this thesis we present an Augmented Reality Application Manager for Android 

smartphone applications using Google Cardboard. The main focus is to make an Application 

Μanager that links smaller, more specific sub-applications and manages the flow of 

execution. It should also work as a Software Development Kit which provides tools that 

assist in developing new Cardboard-based AR applications. In addition, we provide 

alternative interaction methods between users and AR graphics, so users can interact with AR 

graphics without physical contact to the smartphone itself, as it will be in a Cardboard Mask. 

A custom Input Manager is also provided which can receive inputs from any external 

sources, such as a Machine Vision application, and then forward them to graphics 

applications in a distributed manner for future improvement. 

Holo-Board was developed as a cheaper alternative to the newly developed Microsoft 

Holo-Lens, to run on Google Cardboard. This way developers not only have a cheaper 

alternative until AR masks leave their prototyping stages but also a much wider user 

audience, as almost everyone with an Android smartphone can run Holo-Board. 

Holo-Board was developed in Unity 2017.3 for Android smartphones running with 

Android 3.X and above. We also use ARToolkit 5.3.2 for Unity plugin for Square based 

marker tracking. For the marker-based tracking we used a Hiro square marker (included in 

ARToolkit) of size 1,5x1,5cm mounted on a ring. Development was done on a Dell Inspiron 

15 3000 series laptop and a Xiaomi Mi A1 smartphone. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 4 

Table of Contents: 

1. Introduction ……………………………………………………………………10 

1.1. Brief Description of our Approach ……………………………………………11 

1.2. Thesis Structure ……………………………………………………………11 

2. Augmented Reality ……………………………………………………………………13 

2.1. Introduction ……………………………………………………………………13 

2.2. History of AR ……………………………………………………………………13 

2.2.1. Vlahakis et al (2001): Archeoguide: First results of an augmented reality mobile 

computing system in cultural heritage sites ……………………………14 

2.2.2. Choudary et al (2009): MARCH: Mobile Augmented Reality for Cultural 

Heritage ……………………………………………………………………14 

2.2.3. Yoshitaka et al (2016): Tourist Information System based on Beacon and 

Augmented Reality Technologies ……………………………………………15 

2.3. The Registration Problem ……………………………………………………16 

2.3.1. Marker-Based AR ……………………………………………………16 

2.3.2. Natural Feature Tracking ……………………………………………………17 

2.3.3. Sensor-Based Tracking ……………………………………………………18 

2.3.4. Markerless AR ……………………………………………………………19 

2.3.5. Hybrid Implementations ……………………………………………………20 

2.4. 2018: A New Era for Augmented Reality ……………………………………20 

2.5. AR Masks: The Future of AR ……………………………………………………21 

2.5.1. Microsoft Holo-Lens ……………………………………………………21 

2.5.2. DAQRI AR Mask ……………………………………………………23 

2.5.3. Magic Leap ……………………………………………………………26 

2.6. AR for Smartphones ……………………………………………………………28 

2.6.1. Vuforia ……………………………………………………………………28 

2.6.2. Wikitude ……………………………………………………………………28 

2.6.3. ARCore and ARKit ……………………………………………………29 

2.6.4. ARToolkit ……………………………………………………………29 

2.7. Popular AR End-user Smartphone Applications ……………………………30 

2.7.1. Pokemon GO ……………………………………………………………30 

2.7.2. The Ring brought to life in AR ……………………………………………31 

2.7.3. Nerf Laser Tag AR mode ……………………………………………32 

2.8. The problem of AR Interaction ……………………………………………32 

2.8.1. Touch Screen ……………………………………………………………33 

2.8.2. Controllers ……………………………………………………………33 

2.8.3. Head Movement Interactions ……………………………………………33 

2.8.4. Machine Vision Interaction ……………………………………………34 

3. Requirement Analysis ……………………………………………………………35 

3.1. Introduction ……………………………………………………………………35 

3.2. Requirements ……………………………………………………………………35 

3.3. Platform Information ……………………………………………………………36 

4. Use Cases ……………………………………………………………………………37 

4.1. Programmer’s Use Cases ……………………………………………………37 

The programmer decides what sub-application to make ……………………37 

Designing a HUD-App ……………………………………………………38 

Designing a FULL-App ……………………………………………………38 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 5 

Designing a PB-App ……………………………………………………39 

Designing an IN-App ……………………………………………………40 

Designing a MV-App ……………………………………………………40 

Patching Holo-Board ……………………………………………………41 

4.2. End-User Use Cases ……………………………………………………………41 

The User executes the base Holo-Board app ……………………………41 

The User opens the Main Menu ……………………………………………42 

The User executes a FULL-App ……………………………………………44 

5. Using Holo-Board for Development ……………………………………………45 

5.1. Executing Holo-Board’s Base App ……………………………………………45 

5.1.1. Setting up for Smartphone Execution ……………………………………45 

5.1.2. Setting up for Unity Debug Execution ……………………………………46 

5.1.3. Running the Demo Holo-Board App ……………………………………47 

5.2. The Basics of Holo-Board ……………………………………………………49 

5.2.1. Setting up the Basic Tools ……………………………………………49 

5.2.2. The Basic Hierarchy ……………………………………………………50 

5.2.3. Holo-Board’s Architecture ……………………………………………51 

5.3. Using ARToolkit on Holo-Board ……………………………………………52 

5.3.1. Camera and Scene Settings Through ARToolkit ……………………………52 

5.3.2. ARToolkit’s Marker-Based Tracking ……………………………………54 

5.3.3. Generating Pattern Files for ARToolkit ……………………………………55 

5.4. Holo-Board’s Provided Tools ……………………………………………………56 

5.4.1. Using a Dualshock 4 Controller ……………………………………………56 

5.4.2. Machine Vision Based Cursor ……………………………………………56 

5.4.3. Machine Vision Based Buttons ……………………………………………57 

5.4.4. Adjusting the Main Menu ……………………………………………57 

5.4.5. Using the HUD Handler ……………………………………………………58 

5.4.6. FULL Mode Functionality ……………………………………………59 

5.4.7. Layout Canvas Objects Correctly in the Scene ……………………………59 

5.4.8. Reference Other Objects ……………………………………………………60 

5.4.9. Using the Notification Text ……………………………………………60 

5.4.10. Using the Input Handler ……………………………………………60 

5.4.11. Build and Run Correctly ……………………………………………62 

6. Implementation ……………………………………………………………………63 

6.1. Integrating ARToolkit ……………………………………………………………63 

6.2. Tracking a Marker ……………………………………………………………64 

6.3. Designing a Main Menu ……………………………………………………65 

6.4. Using a Dualshock 4 Controller ……………………………………………65 

6.5. Re-designing the Main Menu ……………………………………………………66 

6.6. Machine Vision Cursor ……………………………………………………67 

6.7. Machine Vision Buttons ……………………………………………………69 

6.8. Dual Camera Handling ……………………………………………………70 

6.9. The HUD Handler ……………………………………………………………70 

6.10. GUI Object Communication ……………………………………………71 

6.11. Notification Text ……………………………………………………71 

6.12. FULL-App Handling ……………………………………………………72 

6.13. Non-Generic Input Handler ……………………………………………73 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 6 

7. Conclusion  ……………………………………………………………………75 

7.1. Summary ……………………………………………………………………75 

7.2. Future Work ……………………………………………………………………75 

7.2.1. Swapping out ARToolkit ……………………………………………………75 

7.2.2. Evaluating Alternatives to our Tools ……………………………………76 

7.2.3. OpenCV# to Unity Middleware ……………………………………………76 

7.2.4. Custom-made Gesture/Object Detection Machine Vision Application ……76 

7.2.5. Holo-Board End-User Apps ……………………………………………77 

8. References ……………………………………………………………………………78 

Bibliography 

Resources 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 7 

List of Figures 
Figure 1.1. AR objects on flat surfaces. …………………………………………………………10 

Figure 2.1. Milgram’s Reality-Virtuality (RV) Continuum. ……………………………………13 

Figure 2.2. The HMD in action (Left). Digital reconstruction of the temple seen through the 

HMD (Right). ……………………………………………………………………………………14 

Figure 2.3. MARCH running in a museum-like environment.  ………………………………15 

Figure 2.4. Yoshitaka et al system layout (Left). Yoshitaka et al AR view of POI information 

(Right). ……………………………………………………………………………………16 

Figure 2.5. ARToolkit’s square markers. Single Hiro Marker (Left). Multimarker surfaces 

(Right). ……………………………………………………………………………………17 

Figure 2.6. ARToolit’s demo NFT marker “gibraltar”. ………………………………………..18 

Figure 2.7. Yoshitaka et al (2016) Beacons on POIs. ………………………………………..18 

Figure 2.8. Pose estimation using a phone’s internal sensors. ……………………………….19 

Figure 2.9. ARCore’s Markerless AR flat surface detection with brightness calculation. ……20 

Figure 2.10. Microsoft Hololens. …………………………………………………………22 

Figure 2.11. Full scale 3D Holograms in Hololens (Left). Traditional windows in AR (Right). 

……………………………………………………………………………………………………..22 

Figure 2.12. Internal sensors of the Hololens. ………………………………………………...23 

Figure 2.13. DAQRI AR mask. ………………………………………………………………….23 

Figure 2.14. DAQRI Worksense. …………………………………………………………24 

Figure 2.15. DAQRI Show. ………………………………………………………………….24 

Figure 2.16. DAQRI Tag. ………………………………………………………………….25 

Figure 2.17. DAQRI Scan. ………………………………………………………………….25 

Figure 2.18. DAQRI Model. ………………………………………………………………….26 

Figure 2.19. Magic Leap One AR mask. ………………………………………………...26 

Figure 2.20. Magic Leap frontal view. …………………………………………………………27 

Figure 2.21. Magic Leap Lightpack (Left). Magic Leap Control (Right). ……………...27 

Figure 2.22. Pokemon Go’s GPS-based map Interface. ………………………………………..31 

Figure 2.23. Pokemon Go’s AR batlle screen. ………………………………………………...31 

Figure 2.24. The Ring brought to life in AR: Monster girl emerging from the TV (Left), 

standing up (Middle) and chasing the user (Right). ………………………………………..32 

Figure 2.25. Nerf Laser Ops with mounted smartphone for AR gameplay. ……………...32 

Figure 4.1. Deciding on a sub-app. …………………………………………………………37 

Figure 4.2. Designing a HUD-app. …………………………………………………………38 

Figure 4.3. Designing a FULL-app. …………………………………………………………38 

Figure 4.4. Designing a PB-app. …………………………………………………………39 

Figure 4.5. Designing an IN-app. …………………………………………………………40 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 8 

Figure 4.6. Designing a MV-app. …………………………………………………………40 

Figure 4.7. Patching Holo-Board. …………………………………………………………41 

Figure 4.8. Initial user interactions. …………………………………………………………42 

Figure 4.9. User Interactions in the main menu. ………………………………………..42 

Figure 4.10. FULL-App interactions. …………………………………………………………44 

Figure 5.1. Cardboard mask with a camera opening front (Left) and back (Right). …………45 

Figure 5.2. Dualshock 4 Controller. …………………………………………………………46 

Figure 5.3. Hiro marker (Left). Our Hiro marker mounted on a ring (Middle and Right). …46 

Figure 5.4. Intro screen while the camera loads (Top Left). Warning message if the touch 

screen is used (Top Right). The camera is loaded (Bottom Left).The Main Menu (Bottom 

Right). …………………………………………………………………………………………….47 

Figure 5.5. Dual camera view (Top). Single camera view (Bottom). ………………………48 

Figure 5.6. The HUD-App demo (Left). The FULL-App demo (Right). …………………….49 

Figure 5.7. Dualshock 4 debug text (Left). Sample hint text (Right). ………………………49 

Figure 5.8. The basic hierarchy. …………………………………………………………50 

Figure 5.9. Holo-Board’s Architecture. …………………………………………………………51 

Figure 5.10. AR Controller script Inspector window. ………………………………………..53 

Figure 5.11. AR Camera inspector window. ………………………………………………...53 

Figure 5.12. ARToolkit on runtime debug menu. ………………………………………..54 

Figure 5.13. AR Marker’s Inspector window. ………………………………………………...54 

Figure 5.14. AR Tracked Object Inspector window. ………………………………………..55 

Figure 5.15. The DS4 inputs in the Player Inputs list. ………………………………………..56 

Figure 5.16. GUICursor’s controller script. ………………………………………………...57 

Figure 5.17. The GUI Button script. …………………………………………………………57 

Figure 5.18.The Main Menu Handler script’s inspector window. ………………………58 

Figure 5.19. The HUD Handler script’s Inspector window. ……………………………….59 

Figure 5.20. Position a GUI object correctly using anchors and zeroing out pixel offsets. ….59 

Figure 5.21. Using the HUD Find Related Object to find a HUD object from the Main Menu 

Handler through its parent, the Left/Right Eye GUI accordingly. ………………………60 

Figure 5.22. The Tracking Input data holder class. ………………………………………..61 

Figure 5.23. The Event Input data holder class. ………………………………………..62 

Figure 6.1. The basic layout of ARToolkit. ………………………………………………...63 

Figure 6.2. The four basic square markers in ARToolkit “Hiro”, ‘Kanji”, “One”, “Two” in 

order. ……………………………………………………………………………………………64 

Figure 6.3. Initial Menu UI designs. …………………………………………………………65 

Figure 6.4. The DS4 Debug Text. …………………………………………………………66 

Figure 6.5. The final main Menu. …………………………………………………………67 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 9 

Figure 6.6. Our UI cursor sprite. …………………………………………………………68 

Figure 6.7. Hiro marker 4x4 cm on a wristband. ………………………………………..68 

Figure 6.8. Hiro marker 1,5x1,5 cm on a ring. ………………………………………………...69 

Figure 6.9. Using the HUD Find Related object From the Main Menu Handler to access a 

child of the HUD Handler. …………………………………………………………………..71 

Figure 6.10. Sending a Notification Text request via Main Menu button on the Inspector 

(Top) or via script from a child to the HUD Handler (Bottom). ………………………72 

Figure 6.11. Simple Notification Text (Left), Hint (Middle), Warning (Right). ……………...72 

 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 10 

1. Introduction 

Augmented Reality is a new and rapidly developing new method of Human and 

Computer Interaction. In general, AR aims to take virtual graphics and blend them naturally 

into the real world. While there are multiple methods to achieve this, the general idea is we 

use various sensors to extract information about the world around the user, as well as his 

own position in it. Using this information, we can show objects around the user in a 

seemingly natural way, such as an object sitting correctly on a flat surface. 

 
Figure 1.1. AR objects on flat surfaces. 

The most common way to achieve this is through a screen with a camera on the back, 

usually a smartphone, which scans the environment, extracts necessary information and 

blends graphics appropriately. Others use projectors to project graphics on a surface and by 

utilizing projection mapping tools give simple 2D graphics a pseudo-realistic look. Finally, 

the most optimal method is using dedicated AR masks. These masks are head mounted with 

a transparent screen in front of the user's face and dedicated hardware to scan and project 

graphics as realistically as possible. 

Although all 3 approaches to AR have the same ultimate goal, due to their different 

natures all have different perks and limitations. Smartphone applications are usually 

hardware-limited due to the high performance demands of AR, but a smartphone app can be 

used by almost anyone at any time and smartphones are much cheaper than the alternatives. 

AR masks are the most immersive of the 3 and they have dedicated hardware for all 

necessary features for AR, but the masks themselves are still early in development so they are 

both expensive and not in high demand in the market. Projectors have numerous tools to 

assist in projection mapping and projected applications can be enjoyed by anyone in a certain 

area, not only those that wear a special mask, but projection mapping has plenty of 

limitations to keep up the pseudo-realism. 

Another major problem with all AR approaches is how users will interact with the 

graphics. Most applications have no or minimal interaction, and are mostly used to project 

visuals before the user. Smartphone applications usually use the smartphone’s touch screen 

for interactions, which is not useful when developing a Cardboard-based application. Some 

Cardboard apps as well as some AR masks interact heuristically with objects relative to where 

the user is looking at. Finally, some applications use controllers, which works well even 

though is not as immersive. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 11 

1.1. Brief Description of our Approach 

Holo-Board is a Software Development Kit, or SDK for short, which provides 

developers with tools to design their own AR application. The main focus is Cardboard-

based AR applications which have specific limitations not covered by other existing SDKs. 

Holo-Board also aims to imitate the flow of execution of an AR mask, similar to an 

Operating System linking multiple smaller programs in a distributed manner and working as 

an Application Manager that handles the flow of execution and communication between 

them. Finally, Holo-Board provides support for alternative input methods to the 

smartphone’s touch screen, and also includes support for alternative Machine Vision Apps to 

be added in the future. 

As a Development tool, Holo-Board uses the ARToolkit library for Square Marker 

tracking and Natural Feature Marker tracking, through which we have developed a custom-

made Machine Vision based cursor and buttons for interactions in the UI. ARToolkit also 

automates the process of making a stereo view on the phone’s screen from the camera feed. 

We have also added support for DS4 Playstation 4 controller inputs via Bluetooth, a Main 

Menu as an overlay to the screen usable both by Machine Vision or DS4 controller buttons. 

Holo-Board also includes a camera Handler which allows programmers to design the UI over 

one eye and then it automatically duplicates it to the second, as well as providing us with a 

single camera perspective useful for debugging. 

As an Application Manager, Holo-Board has a premade reprogrammable Main Menu 

made with our custom-made Machine-Vision based buttons and DS4 controller inputs in 

mind, a Heads-Up Display manager which automates enabling and disabling a graphics 

overlay on the screen as well as a FULL-app manager that switches from the basic Holo-

Board’s perspective to a new empty one to give full freedom to any fully functional 

application another developer may make. For the communication between objects we have 

made dictionaries through which any object can reference another, while if we want to 

inform the user about anything we have designed a notification text that shows a message on 

the user’s screen’s overlay for a few seconds. We have also made a skeleton demo App 

through which any user can test how all our tools are used. 

Finally, we have included a custom-made Input manager through which any 

developer can link his own Machine Vision based inputs and any Holo-Board sub-

application, as Unity does not support non-Hardware-based inputs. 

 

1.2. Thesis Structure 

In this chapter we gave a brief description of what Augmented Reality is as well as 

the limitations and problems developers face when developing AR applications. We also 

provided a brief description of what our application accomplices. 

In Chapter 2, we provide an in-depth introduction to Augmented Reality. We start by 

defining what AR is, analyze what the two key issues of AR are (the registration problem and 

user interactions) and we showcase some key AR applications through the years. We then 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 12 

focus more on Smartphone applications, smartphone SDKs and AR Masks, which are 

directly tied to Holo-Board. 

In Chapter 3 we make a requirement analysis about what we should do to consider 

our application complete through different perspectives. We also outline all the Hardware 

and Software used in the development, as well as recommend alternatives not present when 

our development started. 

Chapter 4 is a presentation of the use-cases of our application. Even though our 

application is a development platform we do analyze it both from the perspective of a 

programmer wanting to develop his application, and also from the perspective of an End-

user that executes the demo application we provide, as it is very likely a future End-user 

application made using Holo-Board will have the same use-cases. 

Chapter 5 is the complete developer’s manual for Holo-Board. In this chapter we 

provide a full analysis of how the demo app works, as well as how all the tools present in 

Holo-Board are used from a developer’s perspective. We have a full analysis for Holo-

Board’s Architecture and an explanation of how and why everything is linked the way it is. 

Finally, for every tool in Holo-Board, we analyze how it is used, how a future developer can 

change it to fit his needs and why/when he should use it. 

Chapter 6 is the full Implementation process from our point of view. There we 

analyze exactly what we did and the reason we made everything the way it is. We also explain 

all the issues we faced in the development process and how we solved them or why we didn’t 

solve them, with suggestions for anyone planning to fix them in the future. 

Finally, in Chapter 7 we have a summary of everything we mentioned above, focusing 

more on what we achieved or didn’t achieve. We then summarize some results from tests 

with Holo-Board made by people outside of the developing team and their comments on our 

application. In addition, we list future improvements that can be made to Holo-Board to 

solve some aforementioned problems, mostly left out due to time constraints. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 13 

2. Augmented Reality 
2.1. Introduction 

Augmented Reality (AR) is the act of superimposing digital artifacts on real 

environments. In the reality-virtuality continuum (Milgram 1994) (figure 2.1-1), AR is a part 

of the broader Mixed Reality spectrum. In contrast to Virtual Reality where the user is 

immersed in a completely synthetic environment, AR aims to supplement reality. While early 

research limited the definition of AR in a way that required the use of head-mounted-displays 

(HMDs), a taxonomy introduced in (Azuma 1997) tried to differentiate it from the required 

technologies and defined that any system that;(1) combines virtual and real, (2) registers 

(aligns) real and virtual objects with each other and (3) runs interactively in three dimensions 

and in real time, is considered an AR System.  

 
Figure 2.1. Milgram’s Reality-Virtuality (RV) Continuum. 

Keeping the above definition in mind, in our application we focus on two key issues 

of AR: 1) How do we align virtual objects with real ones and 2) how do we interact with said 

virtual objects in a natural way.  

Before we explore these two issues, we should start from the beginning. First we will 

present a few interesting applications of early AR systems, which mostly attempted early 

solutions of the first issue, the registration problem. Then we will analyze the registration 

problem, outlining exactly what it is and how we can solve it. Next, we will talk about the 

present state of AR, especially focusing on AR masks and smartphone applications which are 

tied directly to our application. Finally, we will talk about the second issue, interactions in AR 

and tried solutions over the years, as this is also directly related to our work as well. 

 

2.2. History of AR 

While AR is most widely known for its modern applications, it has been around and 

experimented upon for approximately 20 years. Thus, various technologies have already been 

tested using a multitude of tools, especially when trying to align the virtual and real worlds. 

Older technologies consisted of Head-Mounted Displays (or HMDs), eyeglasses or contact 

lenses that showed virtual objects in front of the user’s eyes. This posed a multitude of 

problems because the tolerance when tracking sudden movements of the user was low and 

the precision of the then available instruments could not match it, thus users experienced 

frequent nausea and disorientation. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 14 

Moving further into the future, AR applications moved from HMDs to handheld 

tablets and smartphones. As users were distanced from the virtual screens, the tolerance for 

accurate tracking rose making it simpler to test new ideas. In addition, with the rising 

popularity and demand for better smartphones and tablets, many complicated Head-

Mounted sensors were integrated into smartphones and tablets, making them the ideal 

environment for developing new applications. 

Below, we will showcase a few early AR applications using different approaches 

through the years. 

 

2.2.1. Vlahakis et al (2001): Archeoguide: First results of an augmented reality, 
mobile computing system in cultural heritage sites 

One of the first Mobile AR (MAR) Systems was built in 2002, as a predecessor to the 

modern AR masks, for the site of Ancient Olympia (Vlahakis 2001). The system provided 

on-site help and Augmented Reality reconstructions of ancient ruins. The system made use 

of a compass, a DGPS receiver and together with the comparison of live view images from a 

webcam it obtained the user’s location and orientation. Visitors had to carry a backpack 

computer which performed the calculations and wear a See-through Head Mounted Display 

(HMD) to display the digital Content. The mentioned components were hooked on the 

backpack computer making it a cumbersome MAR unit not acceptable by today’s standards. 

In addition, the optical tracking approach requires a large number of images to be compared 

in real time which leads to fixed viewpoints, thus disallowing movement while viewing the 

reconstructions, and adds additional system delays as the communication with a central 

database that holds the original images is required. Despite the ergonomic restrictions, the 

system was very well received by the visitors as it provided a unique site-seeing experience. 

 
Figure 2.2. The HMD in action (Left). Digital reconstruction of the temple seen through the 

HMD (Right). 

 

2.2.2. Choudary et al (2009): MARCH: Mobile Augmented Reality for Cultural 
Heritage 

MARCH was a mobile Augmented Reality application developed for digitally 

enhancing the visits of prehistoric caves. It was developed in Symbian C++, running on a 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 15 

Nokia N95. It was the first attempt of a real time MAR application without the use of grey-

scale markers. Instead, it was using coloured patches added to the corners of images 

containing prehistoric cave engravings. The system made use of the phone’s camera to detect 

these images and overlay them with complete drawings made from experts. The 

augmentations would either be available in museums or by acquiring the prepared images, 

uprooting the experience from its original context and presenting it in a context-less object. 

MARCH works very similarly to more modern Smartphone AR applications even though it 

was made for a standard mobile device. 

 
Figure 2.3. MARCH running in a museum-like environment. 

 

2.2.3. Yoshitaka et al (2016): Tourist Information System based on Beacon and 
Augmented Reality Technologies 

In this project, Yoshitaka et al developed a new sightseeing information system for 

tourists using Augmented Reality on a Smartphone. By installing beacons on Points Of 

Interest (or POIs), key locations were marked. These beacons were standard Bluetooth 

beacons that connected to the phones of visitors using the AR application. When a beacon 

was connected to the phone two things would happen. First, the phone would calculate the 

angle at which the content came from, and when that content was in view would connect to 

an online server and retrieve data relative to that beacon’s ID. It would then show that 

information in AR through the phone’s screen over the estimated beacons’ positions. This 

application is one of the first smartphone applications that was developed in the modern 

standards for AR applications. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 16 

 
Figure 2.4. Yoshitaka et al system layout (Left). Yoshitaka et al AR view of POI information 

(Right). 

 

2.3. The Registration Problem 

Registration in an AR system is the degree in which the virtual information is 

accurately presented with the real environment. The objects in the real and virtual worlds 

need to be properly aligned with respect to each other, or the illusion that the two co-exist 

will be compromised (Azuma 1997). In Virtual Reality such issues would only cause visual-

kinesthetic disorientation, while in Augmented Reality such issues cause visual-visual conflicts 

so they are much easier to detect. 

Earlier AR systems had major issues regarding the registration problem. Most 

registration problems stemmed from end-to-end system delays, from sensors detecting 

movement to the system showing the updated visuals to the user. Another issue of older 

systems was the computational cost of the calculations needed for AR. Even if the sensors 

were instantaneous in sending data to the processing units, the calculations themselves were 

too timetaking for the hardware available at the time. Because of that, early AR systems 

focused on developing new methods to track the environment and/or the user’s position and 

pose in it. 

In order to achieve that, multiple methods were devised, the most popular of which 

will be explained below. These include Marker-based AR, Natural Feature Tracking, Sensor-

based tracking and the newer Markerless AR for Edge Detection. 

 

2.3.1. Marker-Based AR 

Marker- based AR is the simplest form of tracking for AR. It consists of tracking a 

predefined shape, usually a black and white pattern printed on a piece of paper. Detecting 

these shapes is simpler than other more complicated objects, and because of that Marker-

based AR was widely used even in early AR systems. Marker-based detection could be based 

on a single marker or even on a collection of markers, usually for more complicated objects 

or shapes, ex four markers on 4 edges of an object. Markers are usually either 1D barcodes or 

2D square shapes, similar to QR codes. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 17 

 
Figure 2.5. ARToolkit’s square markers. Single Hiro Marker (Left). Multimarker surfaces 

(Right). 

By defining these objects as size specific we can also calculate how far we are from a 

marker by comparing its size with the expected size at some range. Also, another benefit of 

using square markers is we know the expected shape of its edges would be two horizontal 

and two vertical lines. If we see a marker from an angle instead of a square border we will see 

a trapezoid. Using triangular calculations we can determine the marker’s rotation relative to 

the camera. Calculating the rotation of markers was widely used only after AR was developed 

for smartphones, where simply tracking the markers had become a more trivial task. 

Despite all the advantages of Marker-based AR, it still remains the simplest form of 

AR. Due to its nature, the markers are usually black-and-white blocks that feel out of place in 

most environments, sometimes enough to break the users’ immersion. AR content is also 

tied to those markers, thus Marker-based AR is mostly used at specially designed places 

rather than on the fly AR. 

While the above disadvantages certainly make Marker-based AR a more outdated 

alternative, in our application we will show that creative use of Marker-based tracking can be 

beneficial when it comes to interacting with AR, even more so than the more modern 

registration methods we will analyze below. 

 

2.3.2. Natural Feature Tracking 

Natural Feature Tracking, commonly referred to as NFT is a more immersive 

alternative to Marker-based AR. Similarly to Marker-based AR, NFT also tracks pattern 

shapes, the difference being these shapes can be infinitely more complex like photographs. 

By selecting any digital picture, NFT extracts a collection of key features about the shape and 

colors of what is depicted in that picture and use that collection as a complex marker. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 18 

 
Figure 2.6. ARToolit’s demo NFT marker “gibraltar”. 

Compared to Marker-based AR, NFT is more computationally expensive due to its 

nature, but NFT markers can be hidden anywhere and blend into the environment naturally, 

making it better for immersive experiences. 

Even though we could have used an NFT marker in our application we decided to 

stick to a Square marker as we did not need to track anything complex for the scope of our 

demo application. 

 

2.3.3. Sensor-Based Tracking 

Sensor-based tracking is an alternative perspective when it comes to AR tracking. 

Instead of tracking key points around the user, we try to track the position and pose of the 

user himself and build AR content around him. In general, there are two approaches to 

Sensor- based tracking: using external and internal sensors. 

External sensor tracking (like Yoshitaka et al, 2016) uses sensors in pre-specified key 

points in the environment. Using the users’ relative position to these points we can determine 

their actual position and determine what part of the virtual world is visible in front of them. 

 
Figure 2.7. Yoshitaka et al (2016) Beacons on POIs. 

Internal sensor tracking is the opposite approach. Sensors are integrated into the AR 

hardware, like HMDs or smartphones, and using their readings we determine the users’ 

position. Common sensors used are GPS and AGPS locations, compass angle, 

Accelerometer’s acceleration and Gyroscope’s relative rotation. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 19 

 
Figure 2.8. Pose estimation using a phone’s internal sensors 

 Compared to NFT and Marker-based AR, sensor-based tracking works quite 

differently. Instead of AR objects being centered on key points in space, they are instead 

focused around the user himself. Because of that, AR does not need to be tied to a specific 

location and instead can be available anywhere on demand. Also, since smartphone 

technology advances in rapid succession, both more and better sensors are available every 

year making sensor-based apps more precise and more optimized with each passing year. 

Even though most modern SDKs use internal sensor readings in order to track the 

user’s movement in the world we did not use Sensor-based tracking in our application as we 

are not interested on how the user moves or what is outside our field of view, we are only 

interested in what is visible in front of the user. 

 

2.3.4. Markerless AR 

With the rapid development of new technologies when it comes to machine vision, 

Markerless scene tracking has become possible in real time. With high resolution, high 

framerate cameras becoming widely available and cheap, we can extract highly detailed 

information about the surrounding environment, analyze the structure of the world and 

update virtual objects to blend in, all in realtime. 

Usually Markerless AR focus on detecting specific key features of the environment, 

not a full recreation of the real world. The most commonly tracked feature is edge detection 

between objects and identification of flat surfaces. Flat surface detection is popular because 

when AR objects stand on a flat surface or are aligned with the walls of a room they 

immediately look blended into the environment. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 20 

 
Figure 2.9. ARCore’s Markerless AR flat surface detection with brightness calculation. 

 Furthermore, some newer smartphones as well as new HMDs further enhance markerless 

detection using a collection of cameras. By using multiple cameras or Infrared sensors we can 

also detect the depth of objects relative to the user allowing for better precision. 

Compared to other registration methods, Markerless AR is both the most immersive 

and the most complex. Markerless AR has become widely popular only in the last few years 

because with older systems it was nearly impossible to detect scenes correctly, with precision 

and in real time all at once. Even as of writing this paper, Markerless AR is still in early 

development stages as the necessary hardware is still expensive and still in prototype stages. 

 

2.3.5. Hybrid Implementations 

As all the above registration methods are not mutually exclusive and detect different 

things, most developers tend to use multiple at once. Usually, Sensor-based tracking is 

combined with visual detection, as having information about the users’ position and 

movement can be used to improve precision. Sensor-based tracking is also much faster 

relative to other registration methods, so using it is more beneficial than its computational 

cost. 

In addition, visual registration methods are also combined. Since fully immersive 

methods are usually computationally expensive, they are also combined with NFT or Marker-

based AR to reduce the computational cost, or to improve accuracy by detecting key points. 

Due to Holo-Board’s architecture a programmer may find it easier to link different 

libraries and design a Hybrid AR system even if it is not fully supported by one SDK, but for 

our implementation we did not need a Hybrid AR system. 

 

2.4. 2018: A New Era for Augmented Reality 

As of writing this paper, the last few years have seen immense improvements in AR 

technologies. Not only are smartphones becoming equipped with high end sensors 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 21 

mandatory for AR, but also major companies have started prototyping new HMDs, 

commonly known nowadays as AR masks. AR masks tend to make standalone dedicated 

hardware specifically for AR, but unlike old-school HMDs, these will not be application 

specific but reprogrammable AR hardware. On the other hand, there are multiple Software 

Development Kits, or SDKs for short, which can be used to develop smartphone 

applications. As our work reflects technologies from both sections, we will analyze them 

both below. 

A broader look into the current state of AR is shown in Ling et al. (2017). 

 

2.5. AR Masks: The Future of AR 

AR masks are the epicenter of modern AR research. Using new technologies 

borrowed from the nowadays popular VR masks and combining them with spatial scanning 

technologies such as Microsoft’s Kinect promises to create a new standard for AR research. 

These new masks promise to have fully 3D visuals for all necessities, from industrial and 

academic usage to integrating standard computer functionality into a mask. As many major 

companies, such as Microsoft, are investing into developing their own AR masks, this 

medium promises to be as big an evolution in technology as smartphones were 15 years ago. 

Although the new era of AR masks started back in 2016, up until 2018 their 

production and shipping were very limited. Still, AR masks are still a prototype idea starting 

to slowly take form. Major companies are competing to design the optimal User 

Environment, usually with completely different approaches into both the hardware as well as 

the software of these devices. As such, it is a new technology that still requires years of 

optimization and improvement until it is widely known and accepted. 

Below we will analyze a few such AR masks we believe will have major influence in 

the years to come. 

 

2.5.1. Microsoft Holo-Lens 

Developed by Microsoft, back in 2016. One of the first AR masks to be announced 

and sell their prototypes, although in limited regions. Backed up by Microsoft’s name, 

Kinect’s tracking technology and an ambition to fully integrate Windows in an AR 

environment, this mask has set very high expectations both for itself and competitors. Even 

our application Holo-Board was inspired by the Holo-lens’ announcement. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 22 

 
Figure 2.10. Microsoft Hololens. 

When it was first announced, Hololens not only promised to integrate traditional 

computer graphics in AR, but also full scale holograms, for example human holograms, that 

could move naturally or even recreate scenes like a full-scale soccer match from a recording. 

 
Figure 2.11. Full scale 3D Holograms in Hololens (Left). Traditional windows in AR (Right). 

Packed with the processing power of an average laptop and a multitude of sensors 

Hololens aims for precision tracking and world scanning around the user. On the software 

side, it uses an optimized version of the already trained and tested Microsoft Kinect’s Neural 

Network for tracking and environmental scanning. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 23 

 
Figure 2.12. Internal sensors of the Hololens. 

 

2.5.2. DAQRI AR Mask 

Developed by DAQRI, mostly for professional use. This mask focuses on tools 

useful mostly for professionals instead of everyday use. Using DAQRI’s long term expertise 

in AR the goal is to equip this AR mask with any tools a professional environment would 

need. 

 
Figure 2.13. DAQRI AR mask. 

Although still in development, DAQRI have defined the 5 apps included in their 

basic DAQRI Worksense environment: Show, Tag, Scan, Model and Guide 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 24 

 
Figure 2.14. DAQRI Worksense. 

Show consists of streaming video, audio and the 3D environment to a distant user. 

These users can then observe, give instructions or even annotate the real world using visuals 

through a digital tool. This is useful for remote assistance from experts, remote product 

support or even for remote presentations. 

 
Figure 2.15. DAQRI Show. 

Tag helps users mark key objects in the environment, and view that information at a 

glance. Tag attaches critical information on physical objects and shows that information in 

real time on the real world. Also, Tag can also connect to existing IoT systems and present a 

live feed of sensor data. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 25 

 
Figure 2.16. DAQRI Tag. 

Scan is designed to capture the environment into photorealistic 3D models by 

scanning them with the mask. These models can then be enhanced remotely by tagging from 

a computer or be extracted and used in other programs such as Unity. 

 
Figure 2.17. DAQRI Scan. 

Model transforms 3D objects from Autodesk BIM 360 Docs into immersive 

walkthroughs. This can help compare complete virtual designs with real world in-progress 

constructions and also keep a full sync of the progress with a central office. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 26 

 
Figure 2.18. DAQRI Model. 

Finally, Guide provides full scale digital assistance in an AR environment. This helps 

show full scale tutorials, guidance or manuals in AR view. 

 

2.5.3. Magic Leap 

Magic Leap is another popular modern AR mask. Contrary to the serious nature of 

the previously mentioned Hololens and DAQRI masks, Magic leap’s focus is graphics and 

immersion. 

 
Figure 2.19. Magic Leap One AR mask. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 27 

Magic Leap uses Machine vision to thoroughly scan the environment around the user 

and make virtual objects context sensitive to the world around them. In addition, virtual 

objects are not only visually immersive but also use spatial audio with increasing depending 

on the distance from virtual objects. 

 
Figure 2.20. Magic Leap frontal view. 

Magic Leap’s hardware consists of more than just the mask. The mask consists of the 

glasses and stereo headphones the user wears, but all the processing power resides in a 

wearable pouch that clips on the user’s pocket, named Magic Leap Lightpack. Since all 

processing tools are not on the mask itself, it is more comfortable than the previous masks. It 

also comes bundled with a controller with 6-DoF (Degrees of freedom) of movement called 

Magic Leap Control. 

 
Figure 2.21. Magic Leap Lightpack (Left). Magic Leap Control (Right). 

Finally, Magic leap uses its own Operating System called LuminOS, which aims not 

only to assist in developing immersive AR experiences, but also making them a social 

experience that can be shared with others. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 28 

 

2.6. AR for Smartphones 

AR apps utilize the sensors and cameras already present in modern computers or, 

more commonly, smartphones in order to gather information from the real world and allow 

virtual graphics to blend into the natural environment seen through a camera. In order to 

develop an AR application, developers frequently use a pre-built Software Development Kit, 

or SDK for short, which provides them with premade tools useful for AR. These tools vary 

from automating simple jobs, like setting up a new AR scene, to complicated algorithms like 

using Machine Vision to scan the environment and extract data like marker detection. 

While there exist plenty of AR SDKs they usually each have a specific focus, and it is 

quite frequent for companies to stop supporting and killing dated SDKs and newer 

companies publishing brand new SDKs. Luckily, there are still a few older SDKs still in 

existence, even with less support from their developers like Vuforia and Wikitude. In our 

application we used ARToolkit, which is still supported until today due to it being Open 

source. Finally, the newest SDKs available are ARCore and ARKit that unlike previous ones 

are supported by Google and Apple directly. For our application, we selected between using 

Wikitude, Vuforia and ARToolkit as a base and in the end we decided to use ARToolkit. 

Below we will analyze these aforementioned SDKs. 

 

2.6.1. Vuforia 

Developed by Qualcomm, Vuforia is a very popular low level library. It is widely 

known for its Computer Vision capabilities as it supports the natural feature tracking of 

planar images, detection of cylindrical surfaces, small 3D objects, text and small boxes with 

flat surfaces. Even though in recent years it has not been updated there is ample 

documentation in its site and online forum. Using the Vuforia library can either be done with 

the Android NDK in Cor in Unity using the Vuforia pugin. 

 

2.6.2. Wikitude 

Wikitude is a popular high level AR SDK that combines image and object 

recognition, extended tracking, even after recognized objects leave the user’s view as well as 

geo-location services using the GPS signal. It also provides cloud-based recognition for big 

datasets and instant tracking, a combination of sensor readings and image processing for 

environmental tracking and placing objects in AR. Wikitude provides implementations for 

multiple platforms such as Java, JavaScript and Unity. Unlike Vuforia, Wikitude is still being 

actively updated and supported. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 29 

2.6.3. ARCore and ARKit 

As of writing this paper these two SDKs are the top of the line. Both of these SDKs 

provide almost the same tools, ARCore being for Android smartphones and ARKit for 

Apple smartphones. These SDKs were also integrated into Unity Engine so they can be 

added in Unity Projects without externally importing them. ARCore and ARKit are equipped 

with top of the line Macihne Vision for detecting flat surfaces, like walls and floors, with 

detailed information about the lighting conditions and changes in birghtness on the whole 

visual field. In addition, they also calculate the exact position and orientation of the phone 

using the built-in accelerometer and compass and then try to recreate the real world 

continously instead of independently each frame. This way, it recreates the real world as a 

continouous scene, correcting parts of it when viewed from different angles, allowing for 

complex visual interactions with AR graphics. 

On the other hand, ARCore and ARKit have some drawbacks. In order to execute 

such high precision analysis of both the world and the smartphone's position they require 

very demanding top of the line smartphones. As of writing this paper, ARCore and  is only 

available on the top of the line smartphones with Android 8.0 (released in 2018) and ARKit 

only on IPhone 6S and 7 and above. Currently these smartphone have an average minimum 

price of around 700 Euros, which is around the same estimated commercial cost AR masks 

will have when mass produced. In addition, ARCore is not built with Google Cardboard in 

mind. If an application wants to have physical interaction with objects it must use the 

touchscreen. 

 

2.6.4. ARToolkit 

ARToolkit is an older SDK than ARCore and ARKit bought by DAQRI, which later 

even designed their own AR masks based on their experience with AR. Compared to the 

previous SDKs, ARToolkit uses a simpler marker-based approach, with additional support 

for Natural Feature Markers. ARToolkit tracks the markers while in view, calculating which 

markers are in view, their orientation relative to the camera as well as their depth from the 

camera. 

By using markers as position trackers, AR graphics do not blend as naturally to the 

real world and immersion can be broken either by the graphics’ pseudo-3D displaying over 

obstacles which should obstruct them or even by the marker itself. The most commonly used 

markers are 2D barcodes and 3D boxed pattern barcodes, which can often look out-of-place 

if they are not hidden correctly.  

On the other hand, ARToolkit has a few advantages not present in the previous 

SDKs. The best perk of ARToolkit is it is an Open source library. This way, any programmer 

can alter its code and improve it as they see fit. As a result, even though DAQRI recently 

stopped supporting it Realmax Inc. created their own version of ARToolkitX and continue 

to support it. 

Additionally, ARToolkit's marker tracking can be used as a substituted position 

tracking, for example to track a finger. Using this approach, we can create a pseudo-gesture 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 30 

recognition, which because it's tracking a marker is much faster than tracking physical objects 

like fingers. This way, ARToolkit can generate inputs using mid-air gestures or positions 

similar to how Kinect and Leap Motion work and thus be used in Google Cardboard with 

interactable graphics. 

On another note, if it is necessary for markers to hide in the environment NFT can 

substitute traditional markers, at the cost of some performance. As marker tracking is a much 

easier operation than what is used in other SDKs even with the increased performance of 

NFT, ARToolkit can work on almost smartphones due to having very low performance cost 

overall. 

Because of the above reasons, ARToolkit is used as a plugin to Holo-board providing 

us with a multitude of tools while not restricting it to high end smartphones. 

 

2.7. Popular AR End-User Smartphone Applications 

In the previous section we talked about SDKs for developers to use when develop 

AR applications. But since developing an app is insignificant if no one is interested in the 

medium below we will present a few AR applications which are widely popular and made 

people interested in AR. 

 

2.7.1. Pokemon GO 

The first widely popular AR game of 2016. Developed by Niantic back in 2016 and 

widely known because it was the first smartphone game that incentivized everyone to go 

outdoors to play. Using the GPS signal of players phones it tracks their location and various 

events happened depending on both relative position and distance travelled. It also used key 

locations from Google Maps worldwide and certain events would happen around those key 

locations, incentivizing users to visit multiple places around town. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 31 

 
Figure 2.22. Pokemon Go’s GPS-based map Interface. 

In addition, the main gameplay mechanic is battling wild Pokemon. These battles 

took place in an AR environment, with the target Pokemon being rendered on a flat surface 

around the user through his phone’s camera. 

 
Figure 2.23. Pokemon Go’s AR batlle screen. 

In Pokemon GO, all necessary interactions with the user are done through the touch 

screen or automatically with the user’s Geolocation. 

 

2.7.2. The Ring brought to life in AR 

This is one of many smaller demo applications made by an indie developer in ARKit 

to show off the available tools of the platform. Based on a popular scene from the movie 

“The Ring” it features a monster girl emerging from a TV and then walking around in AR. 

The monster also uses the Geolocation of the user to track him wherever he goes. All of his 

projects are frequently shared in Facebook and all of them are in his website.  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 32 

 
Figure 2.24. The Ring brought to life in AR: Monster girl emerging from the TV (Left), 

standing up (Middle) and chasing the user (Right). 

Unfortunately, other than the Geolocation, there is no direct interaction between the 

user and any AR content. 

 

2.7.3. Nerf Laser Tag AR Mode 

Nerf foam guns have been very popular with people of all ages for the past few years. 

In 2018, Nerf also announced they were developing plastic guns for use in Laser tag. In 

addition to traditional Laser tag, Nerf also uses an Android application which includes an AR 

game for playing in single player. The user mounts their phone on the laser gun itself and 

uses the screen to aim as drones appear in AR around the user. When the user presses the 

trigger of the gun he shoots the flying drones for points. 

 
Figure 2.25. Nerf Laser Ops with mounted smartphone for AR gameplay. 

 

2.8. The problem of AR Interaction 

Up until now we have mentioned how AR has developed, what the registration 

problem is and how we attempt to solve it. Earlier AR systems often only cared about 

solving the registration problem without interacting with AR objects. Nowadays, we have 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 33 

more tools in our disposal, thus newer AR applications also attempt to solve the interaction 

problem.  

Similar to how we want AR visuals to look immersive, the same can be said about 

interacting with them. Unfortunately, interacting with virtual objects in the real world 

immersively is just as hard, but not having immersive interactions in AR is slowing down 

AR’s development (Di Capua et al 2011). Below, we will showcase what approaches are used 

in previously said modern AR, as well as some that could be used. 

 

2.8.1. Touch Screen 

Using the touch screen on smartphones is a tried and true method. Smartphones 

have been a key component in our daily lives for over a decade so most people know how to 

use a touchscreen instinctively by now. Programmers also use an automated method to 

receive touch inputs in a simple and tested way. 

Due to its simplicity, smartphone apps frequently only use the touch screen for 

inputs. The drawback to this is it is not immersive in an AR environment. Using the touch 

screen is by default looking and interacting with virtual objects on a screen. In many simple 

applications interacting through the touch screen is enough but in general we want AR to be 

more immersive so we want alternatives to a touch screen. In addition, when in Cardboard 

mode, the touchscreen becomes inaccessible thus an alternative is mandatory if we want any 

interaction. 

 

2.8.2. Controllers 

Wireless controllers are another tried and true input receiver. Controllers can vary 

from something simple like a keyboard to something truly immersive.  

Multiple new controllers are equipped not only with buttons but also position 

trackers like accelerometers and gyroscopes. That way we have more freedom to select a 

controller which can be as immersive as we need it.  

Examples of immersive controllers are Hololen’s clicker, Magic Leap’s control and 

Nerf’s laser gun. 

 

2.8.3. Head Movement Interaction 

As we mentioned before Sensor-based tracking allows us to track where the user is 

looking at. The difference this time is we use that information as inputs. DAQRI’s AR mask 

uses this approach by drawing a semi-transparent circle in the center of the user’s view. By 

pointing the semicircle over an object and staying still for a few seconds, the mask interacts 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 34 

with it. A similar approach is used in the new Hololens in highlighting the object closest to 

the user’s vision’s center and then interacting with it through other means. 

Similar to touch screens, this is a simple approach, but unlike touch screens, looking 

at an object to interact with it is both immersive and intuitive to use. 

 

2.8.4. Machine Vision Interaction 

As we mentioned before, Machine Vision has improved vastly since the beginning of 

AR and is widely used to solve the registration problem in the most immersive way possible 

to date. In addition there have been multiple Machine Vision applications that aim at gesture 

detection and interaction through Machine Vision. Machine Vision- based inputs owe their 

rapid improvement mostly to Kinect-Based systems, like the one developed by Chen et al. 

(2017) 

The only problem is Machine Vision for interaction in AR environments is it is not 

widely used yet. We believe there are two causes for this. On one hand, AR in its current 

form is still in early prototyping stages and developers still care more about optimizing 

solutions to the registration problem or adding more features into their platforms. Second, 

Machine Vision developers don’t have much incentive to optimize their algorithms for use in 

AR environments as there is no general case Machine Vision receivers. Instead, Machine 

Vision algorithms are tailored around a single application and optimized for that single 

application. This tends to change, as progress with both the Kinect and Hololens as well as 

other research like Mäkelä et al. (2017) have shown how natural Machine Vision interactions 

feel.  

Because Machine Vision interactions are frequently replaced by a simpler, less 

immersive solution for the sake of simplicity, we noticed this is a key flaw of the industry and 

as such that was a core issue we wanted to solve in our approach. 

In Holo-Board, we provide for support for Machine Vision interactions, so future 

developers may add Machine Vision interactions in Unity-based smartphone AR applications, 

which is currently non-existent. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 35 

3. Requirement Analysis 
3.1. Introduction 

Holo-Board is a Software Development Environment for Android applications that 

use Google Cardboard. Currently, Android SDKs for AR applications are built around 

handheld applications, not Cardboard. When developing a Cardboard SDK we have a few 

more issues to solve than simple Android applications. We already mentioned the most 

important of these issues being how we interact with AR objects, and this is a main focus of 

our application. 

Our application should be an Application manager that hosts graphics, applications 

and programming tools specifically tailored around Cardboard apps, as well as provide an 

interface through which External input sources such as Machine vision. 

In this section we will outline what requirements we set for completing our project 

and then we will outline the hardware and software we used in our development. 

3.2 Requirements 

Initially, we want Holo-Board to be a complete project any programmer can adjust to his 

needs, not just a collection of tools to be used by others. As such Holo-Board must: 

 Be a full Android Application. 

 All of its parts should be easily edited/reprogrammed. 

 All of its parts should be independent of one another and replaceable as necessary 

 Have some simple Demos which programmers can run to get an idea of how Holo-

Board operates 

As an application manager we also need: 

 Scripts that act as Managers and mediators between smaller programs 

 Clear cut classification of said smaller programs consisting of what they are and how 

they communicate with each other 

In addition, to assist with Cardboard app optimization we need: 

 Some way to handle 2 fully synchronized camera views in one screen (one for 

each eye) 

 A single camera mode would be good for debugging 

 Some manager that assists with showing canvas objects on both views, without 

the programmers having to set them twice 

Finally, we need fluid support for interaction methods. Thus we also need: 

 An input manager for non-generic inputs, like Machine Vision. 

 Pre-built support for some type of Machine Vision interaction 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 36 

 Preferably, using a controller as an alternative will be helpful, especially for 

development and debugging 

3.3. Platform Information 

Holo-board was fully developed in Unity. The version we used was Unity 2017.3. 

This version was selected due to compatibility issues with our version of ARToolkit with 

newer Unity releases. 

For camera settings and Marker-based tracking ARToolkit was used. The version we 

used was ARToolkit 5.3.2 which was the latest stable version DAQRI published before 

shutting down ARToolkit’s site. This version of ARToolkit was designed as a plugin to Unity 

version 5.X, but we found out it is still compatible with Unity 2017.X. We also used the 

standalone ARToolkit 5.3.2. library as it includes camera calibration tools and marker pattern 

generators for custom square markers as well as NFT markers. 

Since we need to compile our application for Android smartphones we also used 

Android Studio. Since we wanted to develop our application for an Android 8.0 device we 

used Android Studio January 2018 version. Later on, we upgraded to the March 2018 version 

but compiling for Android 8.0 was problematic in that update so we rolled back and kept the 

January 2018 version throughout our development. 

For future releases of Unity, it is recommended to switch plugins to ARToolkitX 

which was updated for use in Unity 2018.X, sadly after our project was completed. Holo-

Board is also compatible with any phone which supports Android 3.X and above, even 

though our testing was done mostly in an Android 8.0 phone. 

To develop Holo-Board a Dell Inspiron 15 3000 series was used, with Windows 7 

OS. This laptop has a dual-core Intel Core I5 CPU @3,2GHz, 4GB RAM, a 0.5 Mpixel front 

camera used for testing and Onboard GPU. The OS is independent of our application since 

Unity is a cross-platform Engine. 

Testing was done on two phones. The first was a Xiaomi Mi A1, having an Octa-core 

Snapdragon CPU @2.02GHz, Full HD screen and dual back camera for Full HD camera 

capture. It also is a mid-budget smartphone (250 euros) designed in 2017, upgradeable to 

Android 8.0. The second phone was a more dated Meizu M3S, a low budget (100 euros) 

phone designed in 2015 with an Octa-core processor, with 4 2GHz and 4 1GHz cores, no 

Full HD screen or camera. The Meizu M3S used Android 5.0. 

We also wanted to integrate a controller in our application. A Dualshock 4 PS4 

controller was selected because it is supported in all Android versions, with fixed keymapping 

for all. 

For Machine Vision interactions we printed a Hiro marker, included in ARToolkit’s 

library with dimensions 1,5cm*1,5cm The marker was then glued with a magnet behind it 

and attached to a ring worn on the index finger of the user. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 37 

4. Use Cases 

Even though Holo-Board is primarily a tool for programmers, it is also designed as a 

full standalone End-user’s experience. As a result, we not only have in mind use cases for the 

programmers that use Holo-Board, but also use cases for End-users that execute the demo 

application or implementations that want to follow our base architecture. 

Below we will first present the use cases of a programmer inside the development 

environment and then an End-user’s use cases when executing the demo app. 

 

4.1. Programmer’s Use Cases 
The programmer decides what type of application to make: 

 
Figure 4.1. Deciding on a sub-app. 

Before developing anything a programmer must decide what type of application he 

wants to make. Since Holo-Board is a full application we call all its smaller components sub-

applications. A sub-application, or Sub-app for short, is an application with a specific 

purpose. In general a programmer may want to develop an application in 2 distinct 

categories, graphics or inputs, or develop a patch for Holo-Board. 

A graphics programmer will have to decide between 3 options for his application: a 

Full application (FULL-App), a Heads-Up Display application (HUD-App) or a Position-

Based application (PB-App). All three categories are graphics sub-apps with different 

capabilities and a distinct way of execution which will be explained below. 

An input developer can develop an interaction sub-application classified either as a 

Machine Vision application (MV-app) or non-Machine Vision, simply put an Input 

application (IN-App). While both of these sub-apps are handled very similarly in Holo-Board 

it is important to distinguish them as MV-Apps may require more resources from Holo-

Board and/or their integration into Unity may be more complicated. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 38 

Finally, since Holo-Board is not a perfect system by any means, a programmer may 

freely choose not to develop a sub-app but patch any of the already existing systems of Holo-

Board. 

 

Designing a HUD-app 

 
Figure 4.2. Designing a HUD-app. 

Heads-Up Display applications (HUD-Apps) are the simplest graphics applications of 

the three. These are 2D canvas applications that exist in an overlay of the real world’s 

camera. Holo-Board has a HUD Handler (HUD-Han) script which can automate when these 

HUD-apps are visible or hidden.  

If the programmer decides to use the HUD-Han then he needs to design the 

behavior of the application and the visuals. The programmer does not need to worry about 

when the application is considered active as that will be handles automatically, thus he can 

focus on optimizing the behavior itself. 

On the other hand, if the user wants to execute his sub-app on a specific condition, 

and not when the whole HUD is shown, he can opt to not use the pre-build HUD-Han. In 

that case, the programmer also needs to program when and how his sub-app is executed, for 

example by adding a new button. 

 

Designing a FULL-app 

 
Figure 4.3. Designing a FULL-app. 

FULL-Apps are the least restrictive sub-apps. When a FULL-App is executed, all 

HUD and Menu elements are hidden and a FULL-app has no restrictions to its execution, 

while all of Holo-Board’s tools remain usable like MV-based inputs or ARToolkit. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 39 

 

Designing a PB-app 

 
Figure 4.4. Designing a PB-app. 

Position-Based applications (PB-Apps) are a more specific type of sub-app. PB-apps 

are graphics applications built around a specific point in virtual space. Through the 

registration method we detect where this central point refers to in the real world and position 

the whole PB-app there. 

A programmer designing a PB-app must first decide on a tracker through which the 

registration is achieved. In the way Unity and Holo-Board work, the trackers are 

interchangeable at any time. In some cases when using standard controllers, Unity supports 

tracking through its basic Player Inputs. Two such controllers are Leap Motion or Oculus 

controllers.  

In Holo-Board we provide two additional tools to receive tracker data from. First, a 

programmer may use ARToolkit’s Marker-Based tracking, simply by creating an AR Tracked 

Object and leaving it up to ARToolkit. A second tool Holo-Board provides in the Input 

Handler (IN-Han). The IN-Han hosts a Dictionary of tracked positions which are written by 

IN-Apps and MV-Apps to be used by graphics applications. 

After the programmer has decided on a tracker he must then design all the visuals of 

his sub-app around the tracked position. Finally he must then program the behavior of the 

sub-app. 

A PB-App is free to be executed as part of a FULL-App or run at all times. It is even 

possible to link a PB-App to the HUD-Han as it is not restricted and it will be executed 

along with any HUD-Apps. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 40 

Designing an IN-app 

 
Figure 4.5. Designing an IN-app. 

Input applications (IN-Apps) are sub-apps that read user inputs without the use of 

Machine Vision, usually these inputs being the readings of a controller or sensor. In most 

cases, these controllers are supported by Unity’s Player Inputs where there is plenty of 

documentation to assist the programmer elsewhere. When a controller or sensor is not 

supported by Unity’s traditional input receivers, programmers can still use the Input Handler 

(IN-Han) Holo-Board provides. Usually, this will mean programming an external to Unity 

library and then simply pass necessary values to the IN-Han in a specific format. 

 

Designing a MV-app 

 
Figure 4.6. Designing a MV-app. 

Machine Vision applications (MV-Apps) are a specific type of input receiver. These 

sub-apps usually generate software-based inputs, not hardware, which Unity dislikes for its 

traditional inputs. This was the reason we developed Holo-Board’s Input Handler. 

Programmers have two options when developing a MV-App. The simpler solution is 

to use ARToolkit’s Marker-Based tracking and retrain it. In that case the programmer can 

select a marker from a variety of types and use ARToolkit’s pattern generators to scan the 

marker and produce a pattern data file. That file can then be imported to Unity and used by 

ARToolkit. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 41 

The second option is developing a new MV-app from scratch. It is possible this MV-

app is not developed in Unity but is an external program using libraries that excel in Machine 

Vision, for example OpenCV. MV-apps need only connect with the IN-Han and send any 

tracked data in a specific format and the IN-Han will connect to any graphics applications. 

As long as a MV-app is running it should constantly send updated values to the IN-Han 

anytime they are updated. 

 

Patching Holo-Board 
 

 
Figure 4.7. Patching Holo-Board. 

Instead of sub-apps, it is also necessary for programmers to constantly keep Holo-

Board itself up to date. If a programmer decides he wants to reprogram or patch any existing 

part of Holo-Board he is free to do so. In the next chapters we provide a full documentation 

of Holo-Board’s tools, both how they are used and how they were programmed. Any 

programmer can use these as reference and develop his own version of Holo-Board’s tools. 

 

4.2. End-User Use Cases 

The End-user’s use cases are quite different from the programmer’s. We consider 

these use cases from the moment a user executes the base demo app. If programmers 

develop their sub-apps and do not change the basic architecture of Holo-Board all of these 

use-cases remain the same. 

 

The user executes the base Holo-Board app 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 42 

 
Figure 4.8. Initial user interactions. 

When a user initially starts Holo-Board, he is greeted with a free view through the 

phone’s camera. The only virtual objects visible are a semi-transparent button in the middle 

of the screen and a cursor. The cursor can be moved around the screen using either a 

Dualshock 4 controller or a Hiro marker. The cursor will follow the marker when visible, 

otherwise will move according to the DS4’s left analog stick. 

At any point, the user can click the semi-transparent button, either by moving the 

cursor on top of the button and holding it still for a few seconds or by pressing the PS 

button on the DS4 controller. This button will enable the Main Menu through which 

everything is executed. 

 

The user opens the main menu 

 
Figure 4.9. User Interactions in the main menu. 

The Main Menu is presented as an overlay to the user’s screen. For the Demo app we 

have a collection of six buttons each performing a specific functionality. Both the number of 

buttons and their functionality may be different based on the application, but for the demo 

app this is static. 

The user can interact with any button similar to how he interacted with the central 

button. Each button is clickable by moving the cursor on top of it and holding still for a few 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 43 

seconds, and also each button is mapped to a DS4 button. Four of the buttons are color 

coded and positioned in a cross-shape, each mapped to one of the basic face buttons (Cross, 

circle, triangle and square) The other two buttons are positioned on the top left and top right 

corners and mapped to the two bumpers (L1 and R1).  

As long as the main menu is visible, the central button remains on the screen but 

pressing it will have no effect. 

 

Pressing the Close menu button 

If the Close Menu button is pressed, all Main Menu buttons are hidden. 

 

Pressing the DS4 Debug Text button 

This button shows an overlay text indicating the values read from the DS4 controller 

in real time. This is a sub-app used when developing Holo-Board to map the correct buttons, 

but is still useful to get an idea of what values each button outputs. 

 

Pressing the sample notification hint button 

This button shows a simple hint text to the user using the Notification Text tool 

provided by Holo-Board. 

 

Pressing the switch camera mode button 

Using the switch camera button while on dual screen mode, which is the default, 

switches the perspective to a single camera mode. This is useful when we want to try Holo-

Board but do not have a Cardboard mask or we want to debug something. Pressing the 

Camera Mode button again switches us back to dual screen perspective. 

 

Pressing the Toggle HUD button 

Pressing the HUD button toggles on all HUD-Apps linked to the HUD-Han. 

Pressing the same button while the HUD-Apps are active disables them. 

 

Pressing the Execute FULL-App button 

The Execute FULL-App button is the only button that switches the user’s use case 

scenarios. It disables all Main Menu and HUD objects and enables the FULL-App giving it 

full control of the scene. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 44 

 

The user executes a FULL-app 

 
Figure 4.10. FULL-App interactions. 

A FULL-App is given full freedom as to how the user interacts with it. Thus, we 

cannot give specific use cases in this environment. The only interactions available in the 

Demo app is a button that returns us to the Main Menu screen. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 45 

5. Using Holo-Board for Development 

As Holo-Board is an SDK usable by anyone it is important to have clear 

documentation about what can be done with Holo-Board and how. 

Below we will provide a full documentation of Holo-Board. We will explain how 

every part of Holo-Board works and how programmers can use everything correctly. 

 

5.1. Executing Holo-Board’s Base App 

Executing Holo-board can be done on any Android smartphone with Android 3.X or 

higher or inside Unity in debug mode.  

 

5.1.1. Setting up for Smartphone Execution 

To run on Android we just load the HoloBoard.apk file in the phone, install and run 

it. It is also recommended to have a Cardboard mask with an opening behind the camera and 

see the phone through that. To interact with the application we need one of two methods of 

inputs, either a Machine Vision marker or a Bluetooth DS4 controller. 

  
Figure 5.1. Cardboard mask with a camera opening front (Left) and back (Right). 

To use a Bluetooth controller, it is enough to simply connect it via Bluetooth to the 

smartphone and Unity will automatically map it to the correct buttons. As there is no general 

mapping method all button mapping done and explained below is for official Sony PS4 

Dualshock 4 controllers only. Alternatively, other controllers or a Bluetooth keyboard will 

probably work for moving the cursor, but the keymapping will be different for other buttons. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 46 

 
Figure 5.2. Dualshock 4 Controller. 

For marker-based inputs it is recommended to print a Hiro marker of 2x2 cm size. 

For development that marker was mounted onto a ring to track a finger. The Hiro marker, as 

well as more markers are included in Holo-Board’s Assets for future development. 

  
Figure 5.3. Hiro marker (Left). Our Hiro marker mounted on a ring (Middle and Right). 

 

5.1.2. Setting up for Unity Debug Execution 

Executing Holo-Board in a computer is done through Unity in debug mode. It is 

recommended to use Unity Version 2017.3 where Holo-Board was first developed on. 

Information on how to install Unity can be found on the official website. 

When opening Unity open the pre-existing Holo-board project or create a new 

project, import all the Assets, and double click the HoloBoardMain.unity scene file. This is 

the central scene of Holo-board where everything is already set up. Then, by pressing the 

Play button, ARToolkit will open two windows to set the camera parameters with and 

execute.  

For the execution, we can either use the same Machine Vision marker mentioned 

above or the keyboard’s arrow keys (or WASD keys) to move the cursor. As the PS4 

controller’s mapping is not the same as in the smartphone, the left analog stick can still be 

used to move the cursor but the other buttons will probably not work. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 47 

 

5.1.3. Running the Demo Holo-Board App 

When Holo-Board first runs it will show a message that the camera is loading and we 

can see a semi-transparent button in the center of the screen. If we see the Hiro marker 

through the camera feed we can see a cursor appear on top of it. We can move the marker on 

top of the button and hold it still for 2 seconds and the button will be pressed, showing us 

the whole menu. Similarly, we can press any other button to execute something and close the 

menu. Alternatively, we can use the left analog stick of the PS4 controller, the WASD keys or 

the arrow keys of the keyboard. In addition, we can also hold the PS button on the controller 

to click the central button and then use the face buttons (square, X, Circle and Triangle) and 

bumpers (L1, R1) to click the menu’s buttons. The Menu’s layout represents the shape of the 

PS4 controller as to make it easier to press the correct buttons instinctively. If at any point 

we try to use the touch screen Holo-Board will throw a warning, as pressing a button will 

desync the two screen views. 

 

 
Figure 5.4. Intro screen while the camera loads (Top Left). Warning message if the touch 
screen is used (Top Right). The camera is loaded (Bottom Left).The Main Menu (Bottom 

Right). 

By clicking the “Camera Mode” button (assigned to X), we switch form a two camera 

display to a single widescreen one, which helps when debugging outside of the AR mask. 

Pressing the same button again while on single screen resets the two-camera perspective. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 48 

  

 
Figure 5.5. Dual camera view (Top). Single camera view (Bottom). 

Using the two buttons in the middle (assigned to Square and Circle) executes two 

demo applications. The right one, dubbed HUD, enables some Heads-up objects such as a 

battery indicator and accelerometer value monitoring. The left one, dubbed FULL APP, is a 

skeleton interface that simply hides the menu and HUD to clear the screen for any other 

potential End-user app, leaving only one button that returns us to the main menu. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 49 

 
Figure 5.6. The HUD-App demo (Left). The FULL-App demo (Right). 

Finally, the middle of the top three buttons, dubbed “Close Menu”, (assigned to 

Triangle) simply hides the main menu from view while the other two buttons (assigned to R1 

and L1) enable some debugging tools for the DS4 controller and notification text. 

 
Figure 5.7. Dualshock 4 debug text (Left). Sample hint text (Right). 

 

5.2. The Basics of Holo-Board 
5.2.1. Setting up the Basic Tools 

Holo-Board is a complete Unity Project. As such the first step is installing Unity on 

your computer. It is recommended to use Unity Version 2017.3 where Holo-Board was first 

developed on. In future releases of Unity, ARToolkit may need to be changed to a newer 

version of ARToolkitX. Information on how to install Unity can be found on the official 

website. ARToolkit is already integrated into Holo-Board so it is not necessary to import it 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 50 

manually, but we use some tools provided in the standalone ARToolkit package which is 

downloadable from GitHub. 

To compile for Android smartphones Android Studio is also required. For Holo-

Board Android Studio version January 2018 was used. As the March 2018 update introduced 

errors in compiling for certain phones with Android 8.0, the whole development process was 

complete in version January 2018, but future versions should also work correctly. For more 

information on how to install Android studio visit the official site. 

The final step is to setup the target smartphone in Developer mode. This consists of 

unlocking the hidden Developer settings menu and then enabling USB debugging. To unlock 

the hidden menu requires tapping the Kernel version in the Smartphone settings 8 times. If 

this is not the case, search online how to enable Developer mode for your smartphone’s 

model specifically. 

Finally, when opening Unity open the pre-existing Holo-board project or create a 

new project, import all the Assets, and double click the HoloBoardMain.unity scene file. This 

is the central scene of Holo-board where everything is already set up. 

 

5.2.2. The Basic Hierarchy 

When we open up the main scene, there are 3 key objects present: ARToolkit, GUI 

and InputHandler. The Event System is automatically created by Unity. 

 
Figure 5.8. The basic hierarchy. 

Below ARToolkit is the whole tree necessary for anything related to ARToolkit. We 

will analyze all of ARToolkit’s objects and scripts later.  

The Input Handler is responsible for non-generic Unity inputs and only holds one 

script for its behavior. This object is not used directly but accessed through other objects. 

How this is used will be explained later. 

Finally, the GUI holds two canvases for the overlay of the screen, one above each 

eye. Take note, that only the Left Eye GUI has children objects on its canvas and the Right 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 51 

Eye GUI is empty. The Right Eye GUI is setup to dynamically mirror the Left Eye GUI at 

runtime, so programmers have to setup only one canvas and the second is synced 

automatically. 

 

5.2.3. Holo-Board’s Architecture 

As Holo-Board is not based on a pre-existing architecture and is completely 

organized from scratch it is best we first specify what its components are and how they 

interact with each other. 

Holo-board works as a distributed system that links multiple smaller standalone 

programs, referred to as Sub-applications, using some scripts that connect and manage how 

and when they work, referred to as Handlers. 

 
Figure 5.9. Holo-Board’s Architecture. 

Sub-applications are all smaller programs which are executed through Holo-board. 

They can be freely added or removed depending on the developer’s needs without breaking 

the core Holo-board system. Because these Sub-applications must be linked correctly 

through the Handlers they are separated into different categories, each with different use 

cases and rule sets, explained in the previous section. For receiving inputs there are Input 

Applications (IN-Apps) and Machine Vision Applications (MV-Apps) while graphics 

applications are either Heads-Up Display Applications (HUD-Apps), Full Applications 

(FULL-Apps) or Position-based Applications (PB-Apps). 

IN-Apps and MV-Apps are responsible for receiving inputs from the user and 

sending them to the Input Handler (IN-Han).  Holo-board’s graphics applications should not 

care where their inputs come from, so IN-Apps and MV-Apps read the inputs in any way 

they want (ex. using Machine vision or mapping a controller to certain inputs) and send them 

in a specific format to the IN-Hand. These apps can also be developed outside of the Unity 

engine and later be linked with the native handlers using middleware in order to use better 

tools such as OpenCV# or Native Android code.  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 52 

HUD-Apps are applications that are shown on the user’s screen as an overlay to the 

camera feed. They are simple 2D apps that any developer can just lay out on one canvas and 

then let the HUD Handler (HUD-Han) manage how and when they are executed, regardless 

if they must be shown over a single camera or dual cameras for Cardboard mode. 

PB-Apps are based on ARToolkit’s functionality and are 3D graphical applications 

that show up relative to a point in screen space. Currently, these work using ARToolkit’s 

marker detection as base points but this can easily be replaced with any MV-App that 

recognizes a specific point in the camera’s view.  

Finally, FULL-Apps are complete applications where when executing them both the 

Main Menu and all HUD objects are disabled to give the FULL-app complete visual 

freedom. The only GUI elements left are a closing button and a MV cursor to be able to 

return to the main menu, but even these are optional. All non-visual tools remain intact and 

can be used freely in the FULL-App 

 

5.3. Using ARToolkit on Holo-Board 

ARToolkit provides Holo-Board with a few useful tools regarding scene setup and 

Marker-based tracking. While these tools can be swapped at any time with better ones, 

ARToolkit provides enough freedom to repurpose them in a variety of ways. 

Since DAQRI closed the official documentation page, we will provide documentation 

for a few key parts of Holo-Board. Most parts of ARToolkit can be adjusted through the 

Unity inspector, but in some cases we execute scripts provided in the standalone ARToolkit 

package downloaded from GitHub. 

 

5.3.1. Camera and Scene Settings Through ARToolkit 

Setting up all basic parameters of ARToolkit is done on the ARToolkit object. This 

object holds the AR Controller script trough which we can setup all the basic settings of 

ARToolkit. It also hosts all AR Marker scripts for tracked markers which will be explained 

below. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 53 

 
Figure 5.10. AR Controller script Inspector window. 

As a child to the ARToolkit object, we have the Scene root, which acts as the center 

of the virtual scene. Everything related to ARToolkit is set as a child to that Scene Root. 

While ARToolkit is commonly used for its marker detection, it also helps us in 

setting up the cameras. Adding a camera to our virtual scene and attaching the AR Camera 

script to it will create an AR Background camera showing real-world feed to our scene and 

sync it with the virtual camera. 

 
Figure 5.11. AR Camera inspector window. 

Also, when debugging on a computer we can setup the correct camera parameters 

when we run debug mode. Similarly, while the application is running we can open a debug 

and settings menu provided by ARToolkit through which we can see the console, set camera 

parameters and adjust the thresholding when tracking markers amongst other things. This 

menu is enabled when pressing either Enter on the keyboard (computer) or the R3 button on 

the DS4 controller (smartphone). 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 54 

 
Figure 5.12. ARToolkit on runtime debug menu. 

 

5.3.2. ARToolkit’s Marker-Based Tracking 

ARToolkit’s main purpose is tracking markers using Machine vision. When a marker 

is found, the virtual cameras are positioned relatie to its position in the virtual space and any 

graphics objects below the marker are enabled. This is how traditional PB-Apps are made. 

When we want ARToolkit to recognize a marker, we have to attach an AR Marker 

script to the ARToolkit core object. Through this script we select the type, pattern and size 

of the marker and then set a tag for this marker. Later, we will analyze how to add new 

pattern files to this list. 

 
Figure 5.13. AR Marker’s Inspector window. 

After the AR Marker script is set we need to add a new empty object below the Scene Root. 

This object will hold the AR Tracked Object script and will serve as a root to anything tied to 

this marker. The only parameter we need to set is give it the same Tag as our AR Marker 

script and ARToolkit will automatically link them. We can then position virtual objects on 

this marker by adding them as children to the tracked object. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 55 

  
Figure 5.14. AR Tracked Object Inspector window. 

 

5.3.3. Generating Pattern Files for ARToolkit 

If at any point we want to use a custom marker it is necessary to extract pattern data 

files from it and import them to our project. In our project we used the standard markers of 

ARToolkit, but we also tested how to add new custom markers. Generating the pattern files 

is done using executables in the ARToolkit standalone library from GitHub 

The first type of marker we can easily generate pattern files for is Square markers. 

Square markers, similar to our Hiro marker, are black and-white patterns with a thick black 

outline. The pattern can be any shape we want and the basic marker size is 8x8 cm, 4x4 cm 

of which are the central marker and the rest a pure black outline. 

The first thing to do to generate a pattern file for a Square marker is design it and 

print it. Then in the standalone ARToolkit files in the bin folder execute the mk_patt.exe file. 

This will open a live feed through the camera in a new window. If a marker is detected, it will 

be highlighted and the pattern inside the marker will be shown on a corner of the window. 

When the pattern is detected as clearly as desired and with the correct rotation pressing enter 

will freeze the camera feed. To confirm generating the pattern files enter a file name and 

press enter. This will make a generic file with no suffix in the same directory mk_patt.exe is 

in. Take this pattern file and open Holo-Board’s project’s Assets folder and go into 

ARToolkit5-Unity/Resources/ardata/markers and paste it in there. The new marker should 

now be visible when we select an AR Marker script on the ARToolkit object. 

The second type of marker we can use is Natural Feature Tracking markers, or NFT 

markers for short. NFT markers can be any Jpg image of any size and they can also be 

colored.  

To generate an NFT marker pattern file we must go to the standalone ARToolkit’s 

files in the bin folder and paste our marker file in there. Then, open a command line window 

and change directory to the same file, and then execute the genTexData file adding our image 

name as a parameter to the execution. It will ask us about adjusting some parameters, but if 

we do not need something specific we can keep to the default values. This will generate 3 

new files with suffixes .iset, .fset and .fset3. Take these pattern files and copy them to Holo-

Board’s asset’s StreamingAssets folder. To use an NFT marker, add an AR Marker script to 

ARToolkit, select NFT as the Marker Type and type the name of the new marker on the 

NFT dataset name. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 56 

5.4. Holo-Board’s Provided Tools 

Outside of ARToolkit, Holo-Board also provides us with some new tools of its own. 

All of these tools were developed from scratch for Holo-Board but they can be reused, 

removed or replaced as necessary. Below, we will analyze them one by one. 

 

5.4.1. Using a Dualshock 4 Controller 

As a primary means of input other than Machine Vision, Holo-board also supports 

using a PS4 Dualshock 4 controller. The controller comes with Bluetooth wireless 

connection, and connecting DS4 controllers to any Android phones is already supported. By 

pressing the PS and Share buttons on the controller, it opens up the Bluetooth receiver 

which can then be picked up by the phone and pair to it. We have simply mapped they 

correct buttons in Unity’s Player Inputs list, so they can be used by any application as generic 

Unity inputs.  

As we did not find a full input mapping on the internet anywhere and instead it was 

done through trial and error, a text file with all the mapping done is provided in the 

Assets/Prefabs folder. 

 
Figure 5.15. The DS4 inputs in the Player Inputs list. 

 

5.4.2. Machine Vision Based Cursor 

Outside of the DS4 controller, Holo-Board also provides us with a Machine Vision 

based cursor and buttons. The cursor is provided as a prefab in the Assets/Prefabs folder. 

The cursor follows a 3D object from the 2D point of view of a camera and moves along the 

screen overlay’s 2D canvas. If the 3D object is disabled, for example if it is out of sight, the 

cursor can be moved using the DS4;s left analog stick or the arrows on the keyboard. If the 

cursor stays still for over a few seconds, it is hidden from view until it is moved again. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 57 

To add a new cursor on the screen drag and drop the prefab GUICursor to the scene 

as a child to a screen canvas. Then take a look at the Inspector window and find the HUD 

Pointer Lookat Object script. The Cam object is the camera on top of which the cursor will 

be visible, the Look At object is the 3D object towards which the cursor will point and the 

controller sensitivity is a multiplier to the speed of the cursor if we move it using the DS4 

controller or the keyboard arrow keys. 

 
Figure 5.16. GUICursor’s controller script. 

The default cursor used in Holo-Board is on the Left Eye GUI canvas, the Camera is 

the Left Eye Camera and the Look At object is a target empty object which is a child of our 

Hiro Marker. For the Right eye, the Camera Handler automatically swaps the Cam object 

with the Right Eye Camera. 

 

5.4.3. Machine Vision Based Buttons 

Since our Machine Vision cursor is custom made, interactions with generic Unity 

buttons must be custom made as well. The MV cursor only has a position in space with no 

way of clicking a button. The MV button uses colliders to detect when a cursor is on top of it 

and, inspired by Kinect, simulates a click when the cursor stays on top of it for a few 

seconds.  

To add a new button to the scene just add a new GUIButton object using its prefab 

in the scene. On the GUI Button script adjusting the Cooldown value changes how fast a 

click is simulated. All other functionality is set automatically. 

 
Figure 5.17. The GUI Button script. 

 

5.4.4. Adjusting the Main Menu 

The Main Menu is a collection of the Main Menu Handler and a collection of cursors 

and buttons. All of its components can easily be reprogrammed using the Inspector window. 

The prefab of the Main Menu is the Main Menu mode file. On that object we have two 

scripts: Send to linked notify, which will be explained later, and the Main Menu Handler 

which is used to adjust the Main Menu settings. 

When looking at the Main Menu Handler script on the inspector we first notice two 

cursor objects. The Visible cursor is the MV Cursor explained above while the Hidden cursor 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 58 

is an invisible cursor moved using DS4 buttons to simulate clicks in a similar behavior to the 

MV cursor. We also see a PS4 Text Name field which is used only when pressing the PS4 

debug text button to find the PS4 debug text by name. 

Below the cursors we see the Central button field with 3 subfields that hold relevant 

information to that button. The Central button is used to enable the main menu and is always 

visible in the middle of the user’s viewpoint. We also have an array with the other six buttons 

present on the Main Menu and a field named Usable Buttons that tells us how many of these 

buttons we are using in our application. By reducing the value in the Usable buttons field we 

can show only as many buttons as we need for any app without altering the Main Menu 

object. Each button holds 3 fields of data: a reference to the button’s object, a button text 

which alters the button’s text at runtime and a PS4 button name that tells us using which PS4 

input we can click that button using a controller. 

To change what script is executed when pressing each button we can set its 

OnClick() function in the inspector like any traditional button. 

 
Figure 5.18.The Main Menu Handler script’s inspector window. 

 

5.4.5. Using the HUD Handler 

The HUD Handler script resides on the HUD mode object. This object serves as a 

parent to any GUI object not relevant to the Main Menu or the FULL App. On the 

Inspector window of the script we have a HUDM Object list that holds a list of GUI objects. 

When adding an object to that list it is enabled and disabled through the HUD Handler 

script. If we want more control over our objects we should not add it to this list, but it still 

should be a child of the HUD mode object. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 59 

 
Figure 5.19. The HUD Handler script’s Inspector window. 

 

5.4.6. FULL Mode Functionality 

The FULL mode works in a similar manner to the HUD mode. The FULL mode 

holds a script that enables/disables all of its children when executed, but when the FULL 

mode is enabled it disables all HUD and Main Menu objects. Unlike the HUD mode, the 

FULL mode does not hold a list of objects to manage, instead all of its children are part of 

the FULL mode.  

 

5.4.7. Layout Canvas Objects Correctly in the Scene 

In Holo-Board, we have two canvases, one above each eye, but in order to keep them 

synced we use the Camera Handler script. This script allows us to design only the Left Eye 

canvas and on runtime the Right Eye canvas is created by duplicating its objects. While this 

automates a lot of work there are certain rules that must not be violated in order to duplicate 

the canvases correctly. 

First of all, all canvas object must be children of the Left Eye GUI object. Only 

objects below the Left Eye GUI will be duplicated to the Right Eye GUI. 

Secondly, the objects should be positioned using Anchors and zeroing out all pixel 

offset values. Pixel offsets pose problems not only in our application but in every application 

with adjustable resolutions, such as an Android application that runs on multiple 

smartphones with different resolutions. Anchors are percentage- based so they will occupy 

the same portion of the screen no matter what and will be at a specific position of any canvas 

they are set on. 

 
Figure 5.20. Position a GUI object correctly using anchors and zeroing out pixel offsets. 

Finally, in order to duplicate references correctly, objects should not reference each 

other directly. For example, if object “A” on the Left Eye GUI points to another object “B” 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 60 

on the same eye, the duplicate “A” on the Right Eye will not point to duplicate “B” 

automatically.  

How we solve this problem will be explained later, but in order for our solution to 

work, any objects on the canvas should follow the pre-existing basic hierarchy. Below the 

Left Eye GUI should be the Main Menu prefab, Notification text, HUD Handler and Full 

App Handler. Any other object should be a child of either the FULL Handler only if it is 

relevant to the FULL App otherwise it should be a child of the HUD handler, whether the 

HUD Handler monitors it or not. 

 

5.4.8. Reference Other Objects 

As mentioned above, objects should not reference each other directly, or else the two 

canvases will be de-synced when duplicating. Instead, both the Left Eye GUI and Right Eye 

GUI host the HUD Find Related Object script which has references to the Main Menu-Han, 

HUD-Han, FULL-Han objects as well as dictionaries containing the children of the Main 

Menu-Han and HUD-Han, searchable by name. 

 
Figure 5.21. Using the HUD Find Related Object to find a HUD object from the Main Menu 

Handler through its parent, the Left/Right Eye GUI accordingly. 

 

5.4.9. Using the Notification Text 

The Notification text is a very specific GUI object. It can be used to show a message 

to the user. The text remains visible for a few seconds then disappears automatically. This is 

useful when we want to notify the user about anything, for example when the user uses the 

touch screen we show a warning message, because pressing buttons using touch will de-sync 

the two eye canvases. 

To send a message to the Notify text, the Main Menu, HUD and FULL Handlers 

have the Send to Linked Notify script attached to them. Simply call one of the Show 

Message, Show Hint or Show Warning methods present in there. 

 

5.4.10. Using the Input Handler 

In order to receive non-generic inputs Holo-Board uses its own Input Handler script. 

This Handler can receive inputs in one of two forms either a Tracking input or an Event 

input. A Tracking input is the result of tracking something on the scene and calculating its 

position, similar to ARToolkit’s marker tracking, while an Event input is checking if 

something is happening or not, for example doing a gesture. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 61 

The Input Handler consists of two dictionaries, one for each type of input. Each 

different input is an instance of a data holder class with specific data inside it.  

Tracking inputs contain information relative to the position and pose of an object.  

Thus, the main information kept in there is a Transform object. Since we assume this 

information is relative to the user’s viewpoint, we specify this as the relative pose and 

calculate the true pose in the virtual scene by triangulating this information with the position 

of our camera on the scene. This true pose will be the value we would give to and object to 

place it on the correct position in the virtual scene. 

 
Figure 5.22. The Tracking Input data holder class. 

To add a new tracking input or to update its value we can call the Set Tracking Input 

method on the Input Handler using the Input name as a parameter to specify which input we 

will add/update. Reading a Tracking input is done in a similar manner using the Get Tracing 

Input with its name as a parameter. 

Event Inputs are as the name suggests simple events. When an application wants to 

know if something happens, it subscribes to an event, and when that something happens the 

event is fired. 

In our case, we also extend the above functionality. The event input class has the 

traditional OnEventFired method which is a list of subscribed functions called when an 

event happens. Extending that functionality, we can specify if an event is continuous, like a 

grabbing motion, or one-shot, like a pinch. Continuous motions will be executed every time 

Update() is called on the Input Handler as long as the event is happening, while one-shot 

events will be fired only when the is Active value switches to true or the confidence 

threshold is exceeded. 

In addition, since most Machine vision algorithms don’t simply give us a Boolean if a 

gesture is happening but instead give a confidence percentage of how likely it is a motion is 

detected at any point, we can hold that information in the Confidence field. We can also set a 

Confidence Threshold value above which the event is automatically fired. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 62 

 
Figure 5.23. The Event Input data holder class. 

 

5.4.11. Build and Run Correctly 

Because our application uses ARToolkit and builds for android there are some details 

to set when building the project. When building for Android we must set the Package name 

by going to the Project Settings-> Player in Unity. The project name should have the format 

com.{Company name}.{Application name}. The same name should be changed in the 

Assets->Plugins->Android->AndroidManifest.xml file, used by ARToolkit. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 63 

6. Implementation 

In the previous section we detailed how to use everything Holo-Board has to offer. 

In this section we will analyze why we made everything the way it is and how we developed 

each tool present in Holo-Board. 

 

6.1. Integrating ARToolkit 

Initially we wanted to find an appropriate SDK to base our application upon. When 

our project started, ARCore and ARKit were not as popular so our choice was between 

Wikitude, Vuforia and ARToolkit. All three SDKs have a plethora of tools to assist us and all 

three can be integrated to Unity.  

Out of the three we selected ARToolkit for a few reasons. The main reason is that 

ARToolkit is Open Source, which is ideal since Holo-Board is a reprogrammable tool. The 

second reason ARToolkit was chosen is that we wanted an SDK that helped us design a basic 

Machine Vision interaction system and Marker-based tracking was enough to achieve that. In 

addition, our system will be using a distributed architecture so we will use ARToolkit but we 

will not tailor our application around it so it will be interchangeable at any point. 

For starters, we downloaded the ARToolkit library as well as the Unity package from 

Github. Following the example of the sample projects we added the first objects to our 

scene.  

 
Figure 6.1. The basic layout of ARToolkit. 

First of all, we added an empty object named ARToolkit with the AR Controller 

script attached to it. By adding the package, the script was already set with correct parameters 

so we did not change anything. 

Next we added another empty object called SceneRoot as a child to the ARToolkit 

object and added the AR Origin script to it. We made sure both our objects were initially 

positioned at the point (0, 0, 0) in the scene so our real scene root and Unity would have the 

same central point.  

Finally, we added cameras to the scene removing the default camera provided by 

Unity. Since we have a Cardboard application we needed two cameras, one for each eye 

covering half the screen. By adding the AR Camera script to each camera and checking the 

box “Part of a stereo camera” and setting one as the left and the other as the right cameras, 

ARToolkit automatically set the viewpoint Rectangular fields correctly. The only thing we 

changed was these cameras would have a culling mask of UI and AR Foreground objects 

only. At runtime ARToolkit creates two additional cameras named Video Background that 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 64 

view only the AR Background layer from the camera feed and show it behind our virtual 

cameras. 

After setting up the basic scene, we changed the build settings to Android and 

changed the parameters by following Unity’s manual, as we explained in the previous section 

of the thesis, and our initial, empty application was buildable. 

 

6.2. Tracking a Marker 

As our next step, we wanted to track a marker using ARToolkit. By default, 

ARToolkit supports 4 types of markers: Square, Square barcodes, Multimarkers and NFT. 

Multimarkers were not useful for our application, while Square barcodes have fixed shape. 

NFTs would be ideal for our application, since they can be any shape or color we want but 

Square markers are simpler and also good enough for our basic application. A Square marker 

can be swapped with an NFT marker at a later date when a developer has a more specific 

application in mind and wants the marker to blend in some environment. Thus we chose to 

use Square markers. 

ARToolkit itself provides us with two base square markers the Hiro and Kanji 

markers. In ARToolkit’s files there is also a template empty marker on which we can add any 

shape we want as well as two more shapes simply named “one” and “two”. Since we wanted 

to test how to add custom shapes to ARToolkit we decided to use the “two” marker. 

    
Figure 6.2. The four basic square markers in ARToolkit “Hiro”, ‘Kanji”, “One”, “Two” in 

order. 

In order to generate and integrate the pattern files into ARToolkit we printed all four 

markers in 8x8cm size and followed the instructions mentioned in the previous section. We 

then added an AR Marker script to our ARToolkit object. By selecting Square in the marker 

type and the “patt.two” as the pattern file ARToolkit set a UID for our marker. We then 

added another empty game object as a child to the SceneRoot object that held the AR 

Tracked Object script. We gave both scripts the same marker tag and the “Got marker” field 

changed to “yes” indicating that the tag is correct. By adding a cube as a child to that marker 

and placing it on top of it we can then see that cube on top of the real world marker. 

Later on in the development process we noticed that the “two” marker is too simple 

and would be falsely detected on random shadows in the environment frequently, even when 

the actual marker was in sight. Thus, the “two’ marker was swapped with the Hiro marker. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 65 

6.3. Designing a Main Menu 

Now that we can see virtual objects on the scene, the first thing we wanted to make 

was a Main Menu. The initial design was a menu visible on top of a marker somewhere in the 

world, for example on a wall or on a bracelet on the user’s wrist. The user would then 

interact with any visible menu using gestures, or a controller.  

 
Figure 6.3. Initial Menu UI designs. 

Eventually this menu design was scrapped because it was too impractical. Because the 

marker was supposed to be in the central square of the menu, doing a gesture over it would 

hide the marker, and thus close the menu itself. Also, by showing the menu on one hand like 

a wristwatch while holding a controller and then pressing buttons on the controller was 

uncomfortable. 

At this point we also noticed a key flaw of ARToolkit. If we want to track two 

markers in one scene, these markers are detected as a continuous scene, not two distinct 

collections of objects. If for example we want to show a menu over one marker and a pointer 

above a second, moving the pointer around would either move the whole menu with the 

pointer or show the menu correctly while freezing the pointer in a fixed spot. 

 

6.4. Using a Dualshock 4 Controller 

Before scrapping our first menu though, we attempted to design some ways to 

interact with it. One of our attempts was testing out Bluetooth controllers for Android 

smartphones. Initially we tried using a one-handed Bluetooth controller for Android, but 

after testing a couple of cheap controllers we found out they all have different and very 

random keymappings. 

After finding out Dualshock 4 controllers support connecting to all Andorid phones 

via Bluetooth and testing one out, we selected that as our main controller. DS4 controllers 

are straightforward to use, even when navigating the basic menus of an android phone, 

moving the left analog stick highlights an object on screen and then moves accordingly, the 

square button was a click on the selected button and the X, Circle and Triangle buttons serve 

as the 3 basic Android buttons (back, home and active apps). Furthermore, it is a controller 

with 16 buttons and 2 analog sticks giving us plenty of keymapping options. 

Following the instructions in a video tutorial we designed the DS4 debug text field 

and the keymapping for PC execution for the DS4 controller. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 66 

 
Figure 6.4. The DS4 Debug Text. 

When we executed the application on Android however, we noticed the keymapping 

was different. Since the correct keymapping for Android was nowhere to be found online, 

using trial and error we changed the keymapping to be correct for Android smartphones. We 

included the results of our research in a text file along with the project’s prefabs. We also 

confirmed these keybindings were independent of Android version by testing on two 

smartphones running on different versions of Android. 

We also noticed that ARToolit’s debug menu, which was enabled with the Enter key 

on PC execution was mapped to the “joystick button 10” which, lucky for us was mapped on 

the DS4 controller as the R3 button. Through this we can set the threshold value for marker 

detection manually on any smartphone at runtime and change the camera resolution through 

a menu among some other tools, mostly useful for debugging. 

 

6.5. Re-designing the Main Menu 

As our initial design of the main menu was flawed we need a new one. Since our 

main problem was covering the marker when doing gestures in front of it, we want for the 

reverse approach. Instead of setting the menu on top of a marker in 3D space, we designed 

the menu as a 2D overlay to the camera and we would then use the marker as a position 

tracker to detect gestures.  

Because doing gestures in midair is not precise, we wanted the buttons to be far apart 

from each other so users can easily press the correct buttons. By following the previous 

layout’s example, we added a central button with 2 additional ones on opposite sides of the 

screen. The central button is used to enable the other two buttons which in turn could be 

used for anything. Because this time there was no marker in the middle of the menu, we also 

had the freedom of adding two more buttons vertically and make a cross- shaped menu. 

Since the cross-shape resembled the layout of the four face buttons on the DS4 

controller (X, Square, Circle and Triangle) we also made a simple script that mapped the DS4 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 67 

buttons to the appropriate menu buttons. We also changed the color of all the buttons to be 

slightly transparent so it would not totally cover the user’s field of view and also colored the 

four buttons according to their DS4 controller’s counterparts so one could instinctively tell 

how they were connected. The central button was also mapped to the PS button which is in 

the middle of the DS4 controller and works as a menu button even in the Playstation 4 

system. 

After we added the cursor we also noticed that we could add four more buttons to 

the edges of the screen and they would still be distinct enough to press, but adding all four 

additional buttons to the screen covered too much of the actual field of view. Instead we 

opted to add two more buttons in the top-left and top-right corners. These two buttons were 

also bound to the L1 and R1 bumpers on the controller and were made visually thinner and 

wider than the more squared cross buttons. These buttons were also colored gray. 

 
Figure 6.5. The final main Menu. 

Keeping in mind our menu should be reusable in future applications, we also added 

some parameters to the Main Menu that can set how many buttons are usable, their names 

and the key bindings to the DS4 controller. All of these can be set from the Inspector at any 

point without altering any scripts or deleting any objects. 

For starters, we kept the two horizontal central buttons empty for the two modes of 

executions we had planned in the initial version of the game, HUD and FULL-App modes. 

We also added the already made DS4 debug text to the L1 button for future use. Finally, we 

used one of the buttons as a close menu button. In the beginning we used the central button 

both for enabling and disabling the menu but this was changed for optimization after testing. 

 

6.6. Machine Vision Cursor 

Up until now, the only thing resembling Augmented Reality in our project is that we 

see the camera behind a simple menu. At this point we wanted a more immersive way to 

interact with our buttons than a controller.  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 68 

Since our main menu is on top of the UI, when executing in Debug mode, the 

Windows cursor interacts with the buttons and clicking the mouse clicks a button. 

Connecting a Bluetooth mouse to our smartphone also enabled the same cursor in the app 

even when running on a phone. We can use ARToolkit’s marker position as a reference point 

for the marker and Unity’s “Camera.worldToScreenPoint()” function to convert a 3D point 

on screen to a 2D point in the UI. Using this we can, theoretically, move the cursor wherever 

we want. 

Unfortunately, enabling and moving the cursor without appropriate hardware is 

highly rejected in Unity. Instead we designed our own cursor, using an image with the sprite 

of a button and moving it on the UI as mentioned before. 

 
Figure 6.6. Our UI cursor sprite. 

For a physical marker, initially we used a Hiro marker of the default size of 8x8cm 

glued to a cardboard to stay flat. This was not ideal when we wanted to move it as a pointer. 

Instead we reduced the size to 4x4cm and attached it to a wristband that could be worn on 

four fingers. Initially, we were hesitant about reducing the marker size as we thought it would 

increase the error rate for detecting the marker. After testing with the wristband we noticed 

that was not the case. 

 
Figure 6.7. Hiro marker 4x4 cm on a wristband. 

Even though using the wristband is a good solution for what we hoped for, ideally we 

would like to track the user’s index finger as this will be a more natural motion. Following the 

success of the wristband, we reduced the size of the marker to 1,5x1,5 cm. While reducing 

the marker size made our application error prone when there are shadows in the background, 

this happened when the marker is not visible and not frequently enough to be a problem. 

This new smaller marker was attached to a ring using a magnet glued to its back. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 69 

  
Figure 6.8. Hiro marker 1,5x1,5 cm on a ring. 

When ARToolkit detects a marker on the screen it positions the virtual marker on the 

correct point in the screen. On the other hand when the marker is not visible the virtual 

marker is positioned in a generic point in space, specifically in the SceneRoot since we didn’t 

move it away from there when we crated it. This behavior posed problems with the cursor 

flickering every time the marker was momentarily lost. To fix this problem we created an 

empty game object as a child to the marker object itself and made the pointer target that. 

Unlike the base marker object, ARToolkit’s marker disables all of its children when it 

is not visible, so instead of flickering when the marker was lost, the cursor simply stayed in 

place, and the momentary detection errors became unnoticeable. 

Extending the above behavior when the target remains out of sight for over a few 

seconds we hide the cursor so it won’t lurk on the field of view if we don’t want to move it. 

In addition, if the marker is not visible we added functionality to move the cursor using the 

DS4 controller’s left analog stick as an alternative (or the arrow/ WASD buttons on the 

keyboard). 

 

6.7. Machine Vision Buttons 

Since our cursor was custom made, currently it is a simple image moving through the 

screen. Next, we needed the buttons to notice it and act like it is an actual cursor. For that 

purpose, we added 2D colliders to both our cursor and buttons. When the cursor enters a 

button’s collider we highlight it and after it exits we un-highlight it. 

Next we needed a way to click our button. After testing, we noticed that clicking by 

checking the depth changes when doing a click motion was unstable. Sometimes buttons 

were clicked by accident, the clicking motion moved the cursor outside the button while 

other people curved their fingers to imitate a click, hiding the marker in the process. 

As an alternative we imitated Kinect’s clicking method. On the Kinect, clicking a 

button is done by holding our hand over a button for a few seconds. To indicate a click will 

be made, the button starts filling with color in a circular manner and when the button is filled 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 70 

with color it is clicked. We designed our buttons to work in the exact same manner and the 

result was satisfactory. 

With these new buttons on the Main Menu, we re-designed the clicking method of 

the DS4 controller. This time, we added a second invisible cursor without visuals that moves 

on top of any button we press imitating the same clicking method the actual cursor uses. 

 

6.8. Dual Camera Handling 

A problem we ignored until now is that our application has two cameras on one 

screen. When designing the main menu, we used a canvas on top of one of the two cameras, 

and when we wanted to test in a Cardboard mask we had to duplicate and re-initialize all 

objects for the second camera. 

After doing this more than a few times we searched for alternative solutions. One 

solution we found used in VR applications is setting the canvas in world space instead of 

screen space and setting it as a child to a camera. The same canvas would then be visible on 

top of both our cameras as they move in a similar manner. In our case this approach did not 

work for two reasons. First, our Machine Vision cursor was not translated correctly on the 

canvas when it was on 3D space. Instead of tracking the marker and pointing towards it 

while being on the 2D canvas, it just moved to the 3D point of the marker. Secondly, the 

more important problem was that ARToolkit automatically changes some camera parameters 

so our canvas was partially outside the field of vision and static in size no matter how we 

resized or moved the canvas and its children. 

As an alternative solution, we reset our canvas on Screen space and made a custom 

camera and GUI Handler. This handler took all objects from the Left Eye GUI and 

duplicated them automatically when we pressed Play. We also added extra functionality to 

automatically set the target camera of our duplicated MV cursor to the Right Eye so it 

appeared on the correct half of the screen. 

In addition, we added another functionality to the Camera Handler to switch from a 

two camera perspective to a one camera perspective for debugging purposes. This feature 

was used a lot in the development so we made one of the menu buttons the “Camera Mode” 

button that switched between the two modes. 

 

6.9. The HUD Handler 

After our menu was complete, the next step is to create an appropriate environment 

for Sub-applications to be executed upon. We want Holo-Board to not only support 

complete graphics applications, but also some simpler sub-apps with limited and semi-

automated usage.  

The first of these smaller Sub-Apps were Heads-Up display Apps. HUD-Apps are 

simple graphical applications that can show some simple information to the user at any time. 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 71 

Examples of such apps are a battery indicator or a GPS feed in the corner of the user’s field 

of view. Using the HUD Handler a user can see the world through Holo-Board’s camera 

uninterrupted and whenever he wants to augment his view he can enable the HUD with the 

push of a button. 

The HUD Handler was created as an empty object, sibling to the Main Menu. Its 

only functionality was getting a list of objects as input from the Inspector and enable/disable 

them with the press of a button from the Main Menu. One of the Main Menu’s buttons was 

set to call the HUD Handler’s toggle function. 

After designing the above functionality, we noticed a key flaw of our duplications. If 

we referenced a canvas object from another using the Inspector, after duplicating both 

objects this reference was not duplicated. This is also very card to automate as it is very 

dependent to the objects themselves. We also noticed that these references were duplicated 

only if the objects had a parent/child relationship. To solve this, we designed a new system 

of GUI Communication. 

 

6.10 GUI Object Communication 

The basic concept of the GUI communication was simple. Our hierarchy consists of 

the parent canvas, two key Holo-Board objects (the Main Menu and HUD) and their 

children. When the application starts and after the duplication is complete, the Left and Right 

eye GUI objects keep a reference to each of their children, identifying each by the Handler 

script attached to each, and then makes a dictionary for each of their children list.  

If an object wants to reference the Main Menu Handler or HUD Handler they can 

get the reference directly from their parent canvas, or if they want a child of these two they 

can make a search by name to the appropriate dictionary. All these references exist in the 

HUD Find Related Object Script accessed through other scripts. 

 
Figure 6.9. Using the HUD Find Related object From the Main Menu Handler to access a 

child of the HUD Handler. 

In order for this communication to work, it is necessary for future applications to 

keep our basic structure of the hierarchy. As children to the Left/Right Eye GUI objects 

should be only the key Holo-Board objects referenced directly in the HUD Find Related 

Object script while any other objects should be children to the appropriate Handler. 

 

6.11. Notification Text 

For our next step, we wanted to develop something to resemble the system 

notification popups present in both Computers and Smartphones. Through this we could 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 72 

show a message to the user for a short time whenever we wanted to inform him about 

something. 

In order to achieve this we created the Notification Text object and placed it in the 

center of the Canvas. The Notification Text would receive a text to print via a function, a 

color for the text and a duration. It would then show that text in the middle of both eyes’ 

view in the specified color and then hide it after the specified duration.  

Accessing the Notification Text is done via a similar manner to the HUD Find 

Related Object, this time on the Send to Linked Notify script present on the Main Menu and 

HUD Handlers for simpler access from their children. 

 

 
Figure 6.10. Sending a Notification Text request via Main Menu button on the Inspector 

(Top) or via script from a child to the HUD Handler (Bottom). 

After testing, we decided to keep the Text duration static, add a second color outline 

to the text and pre-specify the colors of the text for three occasions: Normal text, Hints and 

Warnings. Normal text is Black and white, Hints have a vibrant color of yellow and green 

while warning a more aggressive red and black. 

   
Figure 6.11. Simple Notification Text (Left), Hint (Middle), Warning (Right). 

 

6.12. FULL-App Handling 

As we mentioned before, we designed the HUD Handler for simpler HUD-App 

objects, but Holo-Board should also support fully functional, unrestricted Applications.  

To achieve that we also made the FULL-Handler. When executing a FULL 

Application, we disable both the Main Menu and all objects in the HUD, related and 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 73 

unrelated to the HUD Handler. This essentially clears all GUI objects unrelated to the FULL 

App itself. 

The FULL-Handler, similar to the HUD-Handler should be the parent to all on-GUI 

elements relevant to the FULL-App, but unlike the HUD-Handler, the FULL-App may also 

be tied to any other object in the scene, both inside and outside the GUI. A FULL-App may 

control 3D objects in the virtual scene unrelated to the GUI hierarchy or even enable other 

markers in ARToolkit’s hierarchy. 

For the above reasons, we added the FULL-Handler to the HUD Find Related 

Object script as a reference, but the FULL-Handler should exclusively be responsible for any 

further execution, so we do not provide a dictionary of tis children. 

We also added a function to the Main Menu to re-enable it, which we can call from 

the FULL-App to go back from a FULL-App execution to the basic Holo-Board. 

 

6.13. Non-Generic Input Handler 

As the final part of Holo-Board we wanted to develop a full Machine Vision 

Application that could track a finger and replace ARToolkit’s square marker. Sadly, Unity 

itself is not made with Machine Vision in mind. Alternatively, we wanted to make an 

OpenCV# application for Machine Vision and execute it parallel to Holo-Board in real time. 

This solution proved to be problematic in multiple forms. First, two separate 

applications are not permitted to access the camera at the same time. Second, gathering the 

data from Holo-Board then sending it to an external MV-app and reading it back is possible, 

but it will require the development of a new type of Middleware that connects Unity’s C# 

with OpenCV# as OpenCV# is not supported in Unity yet. Finally, even if such a 

Middleware existed, developing an optimal Machine Vision algorithm for gesture detection 

from First-person could be a whole thesis on its own. 

Instead, we decided to create an Input receiver for such inputs as if such Middleware 

existed and streamline the way we would receive Machine Vision Inputs in a Unity-based 

desired manner. If a future developer decides to design such a Middleware in the future, it 

will be useful to have a pre-defined structure to his output than doing it blindly. 

As for the format we expect such inputs in, we were inspired by the Kinect as well as 

ARToolkit. In the end, we decided on two distinct types of inputs: Transformation data 

(position and pose) or Events. For both of these inputs we created a data holder class to keep 

the data in a specific format and functions that provide some additional control over the data 

when they will be used later. We also created two dictionaries where programmers can 

read/write inputs simply by using a reference by name. 

Transformation data comes from tracking a specific point in space, similar to our 

markers, and calculating its relative position to the camera’s viewpoint. These can be used to 

position objects somewhere in the virtual 3D space, similar to how ARToolkit handles its 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 74 

markers. The class holds a single Transform object that records the position, rotation and 

scale of the object. Because this is a result of Machine Vision, this transform position is 

relative to the camera, so when reading the data we triangulate the transform of the camera 

and the transform of the object relative to the camera to find the true transform position of 

the object in the virtual scene. 

Event data tells us if something is happening or not, for example if a gesture is 

detected. Machine Vision techniques may provide this info in two ways: either a Boolean true 

or false if the gesture is happening at any given point or a confidence value telling us how 

likely it is that gesture is happening at any point. Our Event Input data holder supports both 

forms. If an input gives us a percentage of confidence we can also set a Confidence 

Threshold value above which the event is considered as happening through Holo-Board. 

Finally, an event may be a one-shot event, like a click or a continuous event like a waving 

motion that happens over a long time. In the data holder we can specify if it is continuous 

and continuous events will be fired every time the Update function is called on the Input 

Handler as long as that event is happening. 

 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 75 

7. Conclusion 
7.1. Summary 

In our application we have designed a new SDK that programmers can use to design 

AR applications for Google Cardboard. We noticed how many unsolved problems still exist 

when developing a Cardboard-based AR applications. Outside of the touch screen, 

alternative input methods are scarce and unoptimized. Also, non-hardware inputs were 

openly rejected by Unity up until recently, and even now they have limited support, thus 

Machine Vision inputs are almost unusable. Also, even modern SDKs focus on handheld 

applications, as they are more popular than Cardboard apps, ignoring the problems of a 

Cardboard-based app completely. Finally, there is no organized structure to an AR 

application, as is the case for example in a website or a windowed application for a PC. 

Because of that, many parts that can be automated are still left unorganized. 

On our part, we managed to solve a few problems presented above. We designed a 

system with specific architecture for organizing an AR application as well as tools that 

automate parts of the development process. We mapped a DS4 controller to Unity’s input 

list for the inputs received from an Android smartphone, which was currently not available 

online. We also designed a Machine Vision based interaction system with a cursor and 

buttons. We have solved a few issues present in Cardboard app development, like GUI 

canvas layout and duplicating GUI objects on two cameras. 

 

7.2. Future work 

On the other hand, there are also quite a few issues we faced and could not solve in 

our current time frame. We will outline these parts here in hopes of future improvement 

from other developers. 

 

7.2.1. Swapping out ARToolkit 

 In order to have tracking in our application, the camera feed we used was provided 

by ARToolkit and ARToolkit gives us a stream of screenshots instead of a video stream, 

which is limited on all phones at 30fps. For mask-based applications in VR it is proven that 

the optimal refresh rate is 120fps, so this is a serious delay issue that causes dizziness over a 

long period of use.  

Also, the way we use ARToolkit is unconventional so we would prefer having a more 

dedicated Machine Vision tracker for gesture and object detection in order to optimize Holo-

Board further. Ideally we wanted this to be included in the basic Holo-Board, but the focus 

shifted to more technical issues in the process. Regardless, ARToolkit is used as an assisting 

library, but no existing systems are built around it so it can be swapped with any alternative 

later on. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 76 

7.2.2. Evaluating Alternatives to our Tools 

The other key issue we faced when developing is that we were not based on a 

predefined architecture. Any tools we developed were either inspired from other applications 

we found online or came to us during development. Now that we have a general idea of what 

we want to achieve we would like to test some alternative solutions to the tools we 

developed.  

In addition, we would also like to further test Holo-Board and add even more 

development tools that we did not find in our design attempt. Our testing was done with 

only a few people, all of which had previously used a VR or Cardboard mask in the past. 

Further testing in a wider audience would be beneficial to detect further flaws that require 

optimization. 

 

7.2.3. OpenCV# to Unity Middleware 

Since Holo-Board has a receiver for Machine Vision applications, it would be 

beneficial if we could link our unity project to a library better tailored around Machine 

Vision. Currently, Unity does not support non-hardware inputs so using Machine Vision at 

all is only achievable through external libraries like ARToolkit. Ideally, we would want 

something easier to customize through Unity. 

OpenCV is the most popular library for smartphones when it comes to Computer 

Vision, and it even has a C# version in OpenCV#. If we had some Middleware that could 

connect OpenCV# and Unity to send data from an OpenCV# program to our IN-Han it 

would open new horizons to Holo-Board. With the plethora of already existing OpenCV 

Machine Vision algorithms, and the simplicity of making new ones, we would have a vast 

library of Machine Vision tools to add to Holo-Board as necessary. 

 

7.2.4. Custom-made Gesture/Object Detection Machine Vision Application 

As we mentioned before, in Holo-Board we use ARToolkit for object detection and 

tracking. We also mentioned the way we use ARToolkit is a bit unconventional to what 

ARToolkit expects, and as such it is difficult to improve Holo-Board’s detection in its current 

form. Ideally, ARToolkit will be replaced by a new Machine Vision system providing us 

inputs in the format our IN-Han can receive. This Machine Vision application can either be 

an OpenCV# application using the Middleware mentioned above, or even a standalone 

library linked to Holo-Board directly. 

In our case, we wanted to design a system using a Deep Learning Neural Network for 

Gesture Detection similar to the one proposed in John et al. (2017), but designing such a 

system would be very time consuming. 

 



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 77 

7.2.5. Holo-Board End-User Apps 

Finally, the ultimate goal of Holo-Board is to be a platform on top of which 

developers create their own End-User applications. As such, the ultimate improvement for 

Holo-Board would be for developers to start using it as a development platform. 

  



Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 78 

8.References 

[1].   Milgram, Paul, and Fumio Kishino. "A taxonomy of mixed reality visual 
displays." IEICE TRANSACTIONS on Information and Systems 77.12 (1994): 1321-
1329. 

[2].   Azuma, Ronald T. "A survey of augmented reality." Presence: Teleoperators & 
Virtual Environments 6.4 (1997): 355-385. 

[3].   Vlahakis, Vassilios, et al. "Archeoguide: first results of an augmented reality, 
mobile computing system in cultural heritage sites." Virtual Reality, Archeology, and 
Cultural Heritage 9 (2001). 

[4].   Choudary, Omar, et al. "MARCH: mobile augmented reality for cultural 

heritage." Proceedings of the 17th ACM international conference on Multimedia. ACM, 2009. 
[5].   Shibata, Yoshitaka, and Katsumi Sasaki. "Tourist information system based 

on beacon and augumented reality technologies." Network-Based Information Systems 

(NBiS), 2016 19th International Conference on. IEEE, 2016. 
[6].   Chen, Jen-Yang, et al. "Kinect augmented reality gear game design." Applied 

System Innovation (ICASI), 2017 International Conference on. IEEE, 2017. 
[7].   Di Capua, Michele, et al. "Rapid prototyping of mobile applications for 

augumented reality interactions." Visual Languages and Human-Centric Computing 
(VL/HCC), 2011 IEEE Symposium on. IEEE, 2011. 

[8].   Mäkelä, Ville, et al. "" It's Natural to Grab and Pull": Retrieving Content from 
Large Displays Using Mid-Air Gestures." (2017). 

[9].   John, Vijay, et al. "Real-time hand posture and gesture-based touchless 
automotive user interface using deep learning." 2017 IEEE Intelligent Vehicles 
Symposium (IV). IEEE, 2017. 

[10].   Ling, Haibin. "Augmented reality in reality." IEEE MultiMedia 24.3 (2017): 
10-15. 
 

Bibliography: 

[1].   Mike Mc Shaffy, David Graham. Game Coding Complete, Fourth Edition, 

2012 

 

Resources: 

[1].   ARToolkit GitHub: https://github.com/artoolkit 

[2].   ARToolkit X website: http://www.artoolkitx.org/ 

[3].   ARToolkit alternative documentation: 

https://www.hitl.washington.edu/artoolkit/ 

[4].   ARCore website : https://developers.google.com/ar/ 

[5].   ARKit website: https://developer.apple.com/arkit/ 

[6].   Microsoft Holo Lens: https://www.microsoft.com/en-us/hololens 

[7].   DAQRI AR mask: https://daqri.com/ 

[8].   Magic Leap: https://www.magicleap.com/ 

[9].   Vuforia SDK: https://developer.vuforia.com/downloads/sdk 

https://github.com/artoolkit
http://www.artoolkitx.org/
https://www.hitl.washington.edu/artoolkit/
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://www.microsoft.com/en-us/hololens
https://daqri.com/
https://www.magicleap.com/
https://developer.vuforia.com/downloads/sdk


Holo-Board: An Augmented Reality Application Manager supporting Machine Vision 

Grigorios Daskalogrigorakis Technical University of Crete 79 

[10].   Wikitude SDK: http://www.wikitude.com/download/?gclid=CI-

LwfWhrNQCFSIL0wod4xgB4w 

[11].   Pokemon GO: https://www.pokemongo.com/en-us/ 

[12].   The Ring brought to life in AR and various other AR projects: www.shek.it 

[13].   Nerf Laser ops AR apps: https://apps.hasbro.com/ 

[14].   Unity tutorials: https://unity3d.com/learn/tutorials  

[15].   Unity Manual: https://docs.unity3d.com/Manual/index.html  

[16].   Android studio: https://developer.android.com/studio/  

[17].   OpenCV library: https://opencv.org/  

 

http://www.wikitude.com/download/?gclid=CI-LwfWhrNQCFSIL0wod4xgB4w
http://www.wikitude.com/download/?gclid=CI-LwfWhrNQCFSIL0wod4xgB4w
https://www.pokemongo.com/en-us/
http://www.shek.it/
https://apps.hasbro.com/
https://unity3d.com/learn/tutorials
https://docs.unity3d.com/Manual/index.html
https://developer.android.com/studio/
https://opencv.org/

