
iHome: Smart Home
Management as a Service in

the Cloud

George Myrizakis

School of Electrical and Computer Engineering
Technical University of Crete

Greece

Committee:
Petrakis G.M. Euripedes, Professor (supervisor)

Samoladas Vasilis, Associate Professor
Sotiriadis Stelios, Assist. Professor, Birkberk, UL, UK

January 2019

Contents

1 Introduction 6
1.1 Problem Definition . 6
1.2 Contribution . 7

2 Related Work and Technologies - Tools 9
2.1 Smart Home systems . 9

2.1.1 Amazon Alexa . 9
2.1.2 Apple HomeKit . 9
2.1.3 Google Home . 10
2.1.4 Home Assistant . 10
2.1.5 OpenHab . 10
2.1.6 Pytomation . 11

2.2 Openstack . 11
2.3 FIWARE . 12
2.4 Fiware Services . 13

2.4.1 Publish/Subscribe Context Broker - Orion Context Broker 13
2.4.2 Identity Management (IdM) - Keyrock IdM 14

2.5 Service Oriented Architecture (SOA) 14
2.6 Web Services . 14
2.7 REST . 15

2.7.1 JSON . 16
2.8 NoSQL Database - MongoDB . 16
2.9 PHP . 17
2.10 Java EE . 17
2.11 Spring Boot . 17

3 Requirement Analysis and System Design 18
3.1 Requirement Analysis . 18

3.1.1 User Groups . 18
3.1.2 Functional Requirements 18
3.1.3 Non-Functional Requirements 19

3.2 System Design - UML Diagrams 20
3.2.1 Use Case Diagrams . 20
3.2.2 Activity Diagrams . 24
3.2.3 System’s flowchart . 38
3.2.4 Class Diagram . 40
3.2.5 Architecture Diagram . 42

1

4 System Implementation 46
4.1 FIWARE Platform . 46

4.1.1 Keyrock Identity Management 47
4.1.2 Orion Context Broker . 51
4.1.3 Web Application(UI) . 54
4.1.4 Application Logic . 55
4.1.5 User Authorization Service 56
4.1.6 Complex Event Processing 57
4.1.7 History Database . 61
4.1.8 Connectivity Service . 62
4.1.9 Front-End User Authorization Service 62

4.2 REST Tables . 62
4.2.1 Application Logic . 63
4.2.2 User Identity Manager . 65
4.2.3 Complex Event Processing 66
4.2.4 Publish/Subscribe Service 66
4.2.5 History Database . 67
4.2.6 Connectivity Service . 67

4.3 HTTPS . 67

5 Performance Evaluation 70

6 Conclusion - Future Work 74
6.1 Conclusions . 74
6.2 Future Work . 75

2

Abstract

We present iHome, a smart home management service in the cloud. The
service addresses the need of users to monitor and control their homes remotely
provided that the home devices are “smart” themselves (i.e. they can be con-
nected to the internet and operated remotely). Home devices transmit their
identifier, measurements and status to a fog node and from there to the cloud.
This information becomes available to registered users in the cloud based on sub-
scriptions (i.e. to users authorized to review and respond to this information).
User access rights are defined based on user roles (i.e. cloud administrators,
home moderators and residents). Besides data publication and subscription ser-
vices, an innovative feature of iHome, is a rule-based event management service
which forwards alerts to subscribed users for responding to critical events (i.e.
incidents of fire, malfunctioning appliances at home). iHome is implemented
based on principles of Service Oriented Architecture design as a composition
of RESTful services for the cloud side (back-end). Because a large number of
smart devices for the front-end is not available to us, we decided to rely on
software simulating the operation of smart devices at homes. This allowed us
to shift focus from device specific functionality (e.g. IoT transmission protocols
and vendor specific device functionality), to the design and implementation of
the front and back-end solutions.

We run an exhaustive set of experiments using simulated (but realistic)
data aiming to evaluate both, iHome response time and scalability. The re-
sults demonstrate that the system can handle up to a large number of users and
data in real time.

3

ΠΕΡΙΛΗΨΗ

Παρουσιάζουμε το iHome, μια υπηρεσία διαχείρισης έξυπνου σπιτιού στο υπο-
λογιστικό νέφος. Η υπηρεσία απευθύνεται στην ανάγκη των χρηστών να παρα-

κολουθούν και να ελέγχουν απομακρυσμένα τα σπίτια τους, με προϋπόθεση ότι

οι ίδιες οι συσκευές είναι και αυτές `έξυπνες΄ (δηλαδή έχουν δυνατότητα σύνδεσης

στο διαδίκτυο και απομακρυσμένης λειτουργίας). Οι συσκευές αυτές εκπέμπουν το

μοναδικό αναγνωριστικό τους (ταυτότητα), τις μετρήσεις τους και την κατάστα-

σή τους σε έναν κόμβο και από εκεί μεταφέρονται στο υπολογιστικό νέφος. Η

πληροφορία αυτή γίνεται διαθέσιμη στους χρήστες οι οποίοι είναι συνδρομητές

σε αυτή, μέσω του υπολογιστικού νέφους (σε χρήστες που έχουν εξουσιοδότηση

να ελέγξουν και να ανταποκριθούν σε αυτήν την πληροφορία). Τα δικαιώματα

πρόσβασης των χρηστών, ορίζονται ανάλογα με τον ρόλο τους (διαχειριστές υ-

πηρεσίας, διαχειριστές σπιτιού, κάτοικοι). Εκτός από τις υπηρεσίες δημοσίευσης

και συνδρομής, μια χαρακτηριστική λειτουργιά του iHome είναι η υπηρεσία δια-
χείρισης συμβάντων βασισμένων σε κανόνες, η οποία προωθεί ειδοποιήσεις στους

εγγεγραμμένους χρήστες ώστε να μπορούν να αντιδρούν σε κρίσιμα γεγονότα (πε-

ριστατικά πυρκαγιάς, δυσλειτουργία συσκευής στο σπίτι). Το iHome υλοποιήθηκε
βασισμένο στις αρχές της Υπηρεσιοκεντρικής Αρχιτεκτονικής ως μια σύνθεση από

RESTFul υπηρεσίες στο υπολογιστικό νέφος. Λόγω του ότι δεν είχαμε πρόσβαση
σε μεγάλο αριθμό έξυπνων συσκευών για την παραγωγή δεδομένων, αποφασίσαμε

να βασιστούμε στην προσομοίωση αυτών. ΄Ετσι, δε χρειάστηκε να δώσουμε έμ-

φαση σε εξειδικευμένες λειτουργίες των συσκευών (π.χ. πρωτόκολλα μετάδοσης

και μέθοδοι λειτουργίας συσκευών με βάση τον κατασκευαστή τους), επιτρέποντάς

μας να δώσουμε βαρύτητα στον σχεδιασμό και στην υλοποίηση του συστήματος.

Προκειμένου να αξιολογήσουμε την απόδοση και την επεκτασιμότητα του iHome,
εκτελέσαμε μια σειρά από απαιτητικά πειράματα, χρησιμοποιώντας προσομοιωμένα

(αλλά ρεαλιστικά) δεδομένα. Τα αποτελέσματα έδειξαν πως το σύστημα μπορεί να

διαχειριστεί μεγάλο αριθμό χρηστών και δεδομένων σε πραγματικό χρόνο.

4

Acknowledgments

I would like to express my gratitude to my supervisor, professor Euripides
Petrakis for his valuable help and insightful comments. Also, I would like to
thank the members of the laboratory for the excellent communication and col-
laboration, as well as my family and my friends for the continuous support they
have given me throughout all these years.

5

Chapter 1

Introduction

Smart homes are the building blocks of smart cities. E-government, Green de-
velopment and Energy Management policies for large residential areas may be
benefit from the evolution of smart home technologies. Smart policies and so-
lutions at smart home level may influence policies applying at a larger scale
(i.e. smart city level) and the reverse: Smart city policies may drive the devel-
opment of smart home solutions for more efficient resource management (e.g.
water, energy, internet etc.). Engineering and architectural solutions for smart
homes are reviewed in [2, 4].

The idea of Internet of Things (IoT) combined with cloud computing, opens
new horizons in the field of smart home technology. Smart home systems are now
designed as two-fold solutions involving two interoperable and interconnected
components: The IoT side (front-end) to support the network of home devices
and their connection with the Internet (via some gateway or edge node) and,
the cloud side (back-end) where home control functionality is implemented and
where data are collected for permanent storage and analysis.

1.1 Problem Definition

The use of sensors installed in smart appliances and their capability for Internet
connectivity provides significant benefits in applications areas that require fast
and continuous monitoring from anywhere. In real-life smart home and smart
city applications, huge amounts of data are collected and analyzed (e.g. im-
proved home management solutions or better business policies can be designed
based on the results of this analysis). These solutions have to be scalable (to
deal with the ever-increasing number of smart homes and users, and finally, with
the increased size of data), cost-effective, respond within reasonable time (e.g.
considering the time constraints of each application) and, address concerns re-
lated to users privacy and data safety. While smart home solutions are deployed
for the home and the cloud, security concerns arise at both places. Although
cloud systems are considered to be more secure for deploying IoT applications,
users and data are exposed to many risks as IoT at homes operates in the pe-
riphery of the cloud, it is open to many users and, as such, it is generally less
protected than the cloud itself. The security concerns for the front-end part
are addressed in [6]. In order to guarantee security at the back-end, data must

6

be transferred and stored securely to the back-end, user activities and system
operations must be monitored at all times and, access to data and services must
be allowed based on user roles and authorization [5].

The cloud is the ideal environment for implementing the back-end component
of smart home applications due to reasons related to its affordability (no up-front
investment, low operation costs), ease of deployment (taking advantage of IaaS
and PaaS solutions already available in the market by many cloud vendors), low
maintenance costs (i.e. easy software updates and enhancements), scalability
(i.e. computational resources can be added on demand) and accessibility (i.e.
smart home services can be accessed anytime from anywhere over the Web).

Cloud computing has some inherent disadvantages and limitations. Even
though the cloud may offer virtually unlimited computational resources, internet
bandwidth may impede application performance or, the cost of transferring
and processing large amounts of data to the cloud call for hosting smart home
services at the front-end side (rather than hosting all of them at the back-end
side) or, closer to the place where data is generated (e.g. a server operating at
home). The distance between the front and back-end is also the main reason
for long delays in responding to critical events occurring at home. To address
these limitations, the paradigm of fog computing emerged lately, starting from
Cisco [1]. Fog computing can be assumed as an extension of cloud computing,
bringing virtualized services closer to the edge of the network (e.g. closer to
IoT devices). Fog brings the benefits of low latency (due to its close proximity
with the IoT devices), location awareness and increased security, privacy and
availability. Efforts to standardize architectures and platforms for extending the
cloud to support functional edge nodes are currently underway [3].

1.2 Contribution

The concept of smart home is interesting and trendy1. Existing solutions relying
on the idea sensors and appliances connected to the Internet are now becoming
available as commercial services2 supporting functionalities ranging from home
automation, intelligent home control, ambient or assisted living and health mon-
itoring, to security control (e.g. anti-burglary systems). Off-the shelve smart
devices with the desired functionality are currently becoming available in the
market at affordable prices and can be integrated into smart home applications.
An important feature of all systems (and also of iHome) is user interaction with
a mobile device and intelligent user interfaces (using e.g. voice interfaces) over
the Internet. Commercial applications promise fast responses, high availabil-
ity and, (most important) high reliability. iHome in not intended to compete
commercial solutions in terms of performance but rather, to show how a cost
effective smart home system based on innovative services can be designed and
deployed in the cloud and fog using well established, open-source technologies
and principles of service oriented design.

iHome, is a service that runs in the cloud and the fog and implements a
typical smart home scenario: Smart devices installed at home can transmit
measurements or status information to gateways and from there to the cloud.
To mitigate concerns in regards to data security and in regards to delays in

1https://www.qulix.com/industries/internet-of-things-apps/smart-home/
2https://thinkmobiles.com/blog/best-smart-home-apps/

7

delivering large amounts of data to the cloud, services for the home are realized
within a fog node installed at home. Access to this information is allowed only
for users registered to iHome in the cloud based on their role and authoriza-
tion. (i.e. cloud administrators, home administrators, residents). Permission
to access homes is granted by cloud administrators. Home users (i.e. home
administrators and residents) may access home information based on subscrip-
tions. Besides measurements, alerts are a special type of information which is
generated when events take place. These can be simple events (e.g. room tem-
perature exceeds a threshold) or critical events (e.g. incidents of security breach
or fire). The events are described in terms of rules involving measurements and
threshold values.

The analysis of history (log) data collected from a large number of homes
(eventually this information becomes big) can lead to important conclusions in
relation to people habits and behavior, their needs, the causes of events or, in
relation to energy consumption at peak and non-peak hours. The analysis of
this information may provide the means for policy makers, energy managers
to improve their plan for more efficient, safer and profitable management of a
smart city.

8

Chapter 2

Related Work and
Technologies - Tools

2.1 Smart Home systems

There are many smart home systems available to the consumers; commercial or
open source, some of the most popular being Amazon’s Alexa, Apple’s HomeKit
Google’s Assistant, Home Assistant, OpenHab, Pytomation.

2.1.1 Amazon Alexa

Alexa is Amazon’s digital assistant that’s integrated into devices such as
Amazon Echo (speaker - microphone). She can be connected with other com-
patible devices like thermostats, light switches TVs etc. These devices are con-
trolled by issuing vocal commands to her. Also, she can try provide information
when asked. Using the Alexa app, we can add devices that are connected on
the same network.

2.1.2 Apple HomeKit

HomeKit enables devices that don’t necessarily sync, to work with each
other. Devices can be added to the system using QR and NFC and can be

9

controlled from the Home App via iOS devices (i.e. smartphone, HomePod
etc.) that have Siri (equivalent of Alexa) integrated.

2.1.3 Google Home

Google Home uses Google Assistant as a controller, that is build in Android
smartphones and smartwatches. Compatible devices can be controlled through
it by issuing voice commands on an Android smartphone, smartwatch or smart
speakers (Google Home, Home Mini, Home Max). Adding a device is achieved
by scanning for compatible devices connected on the same network.

2.1.4 Home Assistant1

Home Assistant is an open source, stand alone system that runs on Python
3 and does not depend on third-party cloud services. It is usually installed on
a Raspberry Pi, lowering the cost of the setup. It supports many third-party
components like communication protocols, automation platforms and voice as-
sistants.

2.1.5 OpenHab2

OpenHab is an open source home automation system that is based on Java.
It supports a wide number of third-party devices and multiple operating systems.
It is designed to run on device bindings, making it totally modular. OpenHab
supports almost all commercial brand protocols (i.e. Http, MQTT, Z-Wave
etc.).

1https://www.home-assistant.io/
2https://www.openhab.org/

10

2.1.6 Pytomation3

Pytomation is an open source home automation system, developed using
the Python language. It’s mostly used with the Raspberry Pi and it works as a
microcontroller that can be managed via mobile applications and web servers.
Like Home Assistant, Pytomation is not depended on the cloud and other third-
party web services.

2.2 Openstack4

OpenStack is a cloud operating system that controls large pools of compute,
storage, and networking resources throughout a datacenter, all managed through
a dashboard that gives administrators control while empowering their users to
provision resources through a web interface. An OpenStack deployment contains
a number of components providing APIs to access infrastructure resources. The
most popular components are the following5:

� Horizon: Provides a web-based interface for both cloud administrators
and cloud tenants. Using this interface, administrators and tenants can
provision, manage, and monitor cloud resources. The dashboard is com-
monly deployed in a public-facing manner with all the usual security con-
cerns of public web portals.

� Nova: Provides on-demand access to compute resources by provisioning
and managing virtual servers as well as services to support the manage-
ment of virtual machine instances at scale, instances that host multi-tiered
applications, dev or test environments, “Big Data” crunching Hadoop clus-
ters, or high-performance computing.

� Neutron: Delivers networking as a service to cloud users, including the
creation of private networks, IP address management, DNS, DHCP, load
balancing and security groups. Also, neutron provides a framework for
software defined networking (SDN) that allows for pluggable integration
with various networking solutions.

� Swift: A highly available, distributed, eventually consistent object/blob
store. Organizations can use Swift to store lots of data efficiently, safely,
and cheaply. The Object Storage service provides both a native API and
an Amazon Web Services S3-compatible API. The service provides a high

3http://www.pytomation.com/
4https://www.openstack.org/software/
5https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html

11

degree of resiliency through data replication and can handle petabytes of
data.

� Glance: Provides disk-image management services, including image dis-
covery, registration, and delivery services to the Compute service, as
needed. Glance has a RESTful API that allows querying of VM image
metadata as well as retrieval of the actual image. VM images made avail-
able through Glance can be stored in a variety of locations from simple
filesystems to object-storage systems like the OpenStack Swift project.

� Keystone: Shared service that provides API client authentication, ser-
vice discovery, and distributed multi-tenant authorization by implement-
ing OpenStack’s Identity API. It supports LDAP, OAuth, OpenID Con-
nect, SAML and SQL.

� Cinder: Virtualizes the management of block storage devices and pro-
vides end users with a self service API to request and consume those
resources without requiring any knowledge of where their storage is ac-
tually deployed or on what type of device. This is done through the use
of either a reference implementation (LVM) or plugin drivers for other
storage.

2.3 FIWARE6

FIWARE is an open middleware platform, driven and funded by the Future
Internet Public-Private Partnership (FI-PPP) of the EU. It provides an en-
hanced Openstack-based cloud environment plus a rich set of open standard
APIs and OSS components that enables and eases the full adoption of Future
Internet technologies such as Internet of Things, Big Data Analytics, Service
Marketplaces, Advanced multimedia, User Interaction and Privace and Secu-
rity Management7.

The FIWARE Community is an independent Open Community whose mem-
bers are committed to materialize the FIWARE mission, that is: “to build
an open sustainable ecosystem around public, royalty-free and implementation-
driven software platform standards that will ease the development of new Smart
Applications in multiple sectors”. The FIWARE Community is not only formed
by contributors to the technology (the FIWARE platform) but also those who
contribute in building the FIWARE ecosystem and making it sustainable over
time. As such, individuals and organizations committing relevant resources in
FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE
Mundus or FIWARE iHubs programmes are also considered members of the
FIWARE community.

FIWARE Lab is a non-commercial sandbox environment where innovation
and experimentation based on FIWARE technologies take place. Entrepreneurs
and individuals can test the technology as well as their applications on FI-
WARE Lab, exploiting Open Data published by cities and other organizations.
FIWARE Lab is deployed over a geographically distributed network of federated
nodes leveraging on a wide range of experimental infrastructures.

6https://www.fiware.org/
7https://fimac.m-iti.org/dse.php

12

2.4 Fiware Services

Cloud providers offer catalogs of their services to their clients, which can be
assembled together and with other third party components, in order to assist
them in creating their own applications. FIWARE’s catalog has a rich library of
services (Generic Enablers) that enable the developers to implement functions
such as connection with the Internet Of Things, Big Data Analysis, Context
Management, User Authentication etc. FIWARE’s GEs are open source and
free of charge to its users and are derived in the following 7 categories:

� Advanced middleware and interfaces to Network and Devices

� Advanced Web-based User Interface

� Applications/Services and Data Delivery

� Cloud Hosting

� Data/Context Management

� Internet of Things Services Enablement

� Security

For our application, we used two GEs, Orion Context Broker and Keyrock
IdM.

2.4.1 Publish/Subscribe Context Broker - Orion Context
Broker8

Orion Context Broker is an implementation of the Publish/Subscribe Con-
text Broker GE, providing the NGSI9 and NGSI10 interfaces. Using these in-
terfaces, clients can do several operations:

� Register context producer applications, e.g. a temperature sensor within
a room

� Update context information, e.g. send updates of temperature

� Being notified when changes on context information take place (e.g. the
temperature has changed) or with a given frequency (e.g. get the temper-
ature each minute)

� Query context information. The Orion Context Broker stores context
information updated from applications, so queries are resolved based on
that information.

Orion uses MongoDB to store context in the form of entities.

8https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-
context-broker

13

2.4.2 Identity Management (IdM) - Keyrock IdM9

Identity Management covers a number of aspects involving users’ access to
networks, services and applications, including secure and private authentication
from users to devices, networks and services, authorization and trust manage-
ment, user profile management, privacy-preserving disposition of personal data,
Single Sign-On (SSO) to service domains and Identity Federation towards appli-
cations. The Identity Manager is the central component that provides a bridge
between IdM systems at connectivity-level and application-level. Furthermore,
Identity Management is used for authorizing foreign services to access personal
data stored in a secure environment. Hereby usually the owner of the data
must give consent to access the data; the consent-giving procedure also implies
certain user authentication.

2.5 Service Oriented Architecture (SOA)10

SOA is an application architecture that is based upon the deployment of services
that communicate with each other.

Services are functions that are independent, self-contained with well-defined
invokable interfaces, which can be called in defined sequences to form application
processes11. External components don’t know nor care how services execute
their function; the important thing is that they return the expected response.
Services carry out functions such as validating customers, producing data etc
and they transmit simple data as messages. Being invokable means that they
can be called regardless of being deployed localy or remotely. They might be
in the same application or in a totally different system and still be accessible.
Also, the protocol that is used to effect the invokation or the components that
are used to make the connection between services are irrelevant. Finally, SOA
allows for service reuse so developing or updating an application from scratch
is not necessary.

2.6 Web Services 12

Web Services are the services that exchange data in a text-based format over
HTTP protocol. They are self-contained, modular, distributed, dynamic appli-
cations that can be described, published, located or invoked over the network
to create products and processes. These applications can be local, distributed
or web-based. Web services are built on top of open standards such as TCP/IP,

9https://catalogue-server.fiware.org/enablers/identity-management-keyrock
10https : //www.service − architecture.com/articles/web − services/service −

oriented architecture soa definition.html
11Migrating to a service-oriented architecture - Kishore Channabasavaiah and Kerrie Hol-

ley, IBM Global Services, and Edward M. Tuggle, Jr., IBM Software Group
12https : //www.tutorialspoint.com/webservices/what are web services.htm

14

HTTP, Java, Python, HTML, JSON, XML etc. Applications written in various
programming languages and running on various platforms can use web services
to exchange data over the internet.

2.7 REST13

REpresentational State Transfer (REST) is a design architecture that defines a
set of constraints to be used for creating web services (RESTful Web Services).
These constrains are described bellow.

� Client-Server architecture

Separation of concerns is the principle behind the client-server constraints.
Separating the user interface concerns from the data storage concerns
improves the portability of the user interface across multiple platforms and
improves scalability by simplifying the server components. This separation
allows the components to evolve independently, supporting the internet-
scale requirement of multiple organizational domains.

� Stateless

This constraint refers to the client-server interaction. Communication
must be stateless, meaning that the requests that a client makes to a
server must include all of the information necessary for the server to fulfill
the request. The server doesn’t store information from previous requests
and on a failure, the client must send the request again. Statelessness
improves visibility, scalability and reliability properties. In order to un-
derstand a request, a system must simply look at the request’s data, thus
improving visibility. As mentioned before, on a partial failure, recovery is
easily achieved by resenting the request, improving the reliability of the
system. Last, not storing state between requests means that the server
does not need to manage resources across request, enabling him to quickly
free resources and simplifies its implementation, improving scalability. Of
course, statelessness has some disadvantages such as the possible decrease
of network performance due to the increase of repetitive data (i.e per-
interaction overhead) sent in requests.

� Uniform Interface

Using a uniform interface between components is what distinguishes the
REST architectural style from other network-based styles. This simpli-
fies and decouples the system’s architecture and improves the visibility of
interactions, enabling each part to evolve independently. Resources are
manipulated using CRUD operations. The main concepts of the uniform
interface are:

◦ Resource identification in requests. In RESTful Web services,
resources are identified in requests using URIs. They are separate from
the representations that are returned to the client (i.e. Server can send
data from a database as JSON).

13UNIVERSITY OF CALIFORNIA, IRVINE Architectural Styles and the Design of
Network-based Software Architectures by Roy Thomas Fielding

15

◦ Resource manipulation through representations. The represen-
tation of a resource that a client receives contains information such as
metadata, so the client can modify or delete the resource.

◦ Self-descriptive messages. Messages include information to help
with the message processing.

◦ Hypermedia as the engine of application state (HATEOAS14).
Servers provide hyperlinks dynamically to clients so they can discover
all the available actions and resources they need, decoupling the client
from the application URI structure so there is no need for the client to
have hard-coded information for the structure of the application.

2.7.1 JSON15

The most common format for data exchange between modern web services is
the JSON (JavaScript Object Notation) format. JSON is a lightweight, human
readable file format for storing and transporting data as objects. An object is
an unordered set of key-value pairs and it begins and ends with {} brackets.
The left part of each filed is the Key which is a unique string that is enclosed in
quotes. The right part of each field is the Value which can be a string, number,
array, boolean, null or another object. For example, we have an object ”person”
that has name and age attributes. The JSON object would be:

{name": "John", "age":20}

2.8 NoSQL Database - MongoDB16

A non-relational (NoSQL) database is a database that does not implement the
table-key model that the relational databases use. These databases were de-
signed to overcome the limitations of the relational databases in handling Big
Data. Unlike relational databases which require to predefine a schema in order
to form the structure of data, non relational databases have a dynamic schema
for unstructured data, simplifying a possible change in the application’s struc-
ture. Data in a non relational database are unstructed and can be stored as
key-value pairs, documents and graphs faster than data in a SQL database and
as most of the data that is generated today is unstructed, this is a very useful
aspect.

Usually, SQL databases support vertical scalability, meaning that in order
to cope with increasing load, the server can be supported by adding more CPU,
RAM and Storage. On the other hand, NoSQL databases are horizontally scal-
able, meaning that we can add more servers to handle the load.

Some popular NoSQL databases are MongoDB, Cassandra, CouchDB, HBase.

14https://en.wikipedia.org/wiki/HATEOAS
15https://www.json.org/
16https://www.mongodb.com/scale/what-is-a-non-relational-database

16

Figure 2.1: Example of MongoDB document - key values pairs

2.9 PHP

PHP is a server side scripting language that is designed for web development.
Can be deployed on most web servers, many operating systems and platforms
and can be used with many relational and non relational database management
systems.

2.10 Java EE17

Java-EE is a Java based platform for server programming with specifications for
enterprise features such as web services. Java EE includes several specifications
that serve different purposes, like generating web pages, reading and writing
from a database in a transactional way, managing servlets for HTTP requests,
Java API for RESTful Web services and JSON Processing.

2.11 Spring Boot18

Spring is an open source application framework for the Java platform that pro-
vides many extensions for building web applications. Spring Boot is Spring’s
convention-over-configuration19 solution for creating stand-alone, production-
grade Spring-based Applications that we can ”just run”. Spring Boot’s main
features are:

� Create stand-alone Spring applications

� Embedded Tomcat server

� Automatically configure Spring whenever possible

� Provide opinionated ’starter’ Project Object Models (POMs) to simplify
your Maven20 configuration

17https : //en.wikipedia.org/wiki/JavaP latform, Enterprise Edition
18https : //en.wikipedia.org/wiki/Spring Framework
19https://en.wikipedia.org/wiki/Convention_over_configuration
20https://en.wikipedia.org/wiki/Apache_Maven

17

Chapter 3

Requirement Analysis and
System Design

Requirement analysis relates to describing the needs or the conditions that the
system must meet in order to function properly (i.e. meet the expectations of
its users). Requirements are distinguished in functional and non-functional.

3.1 Requirement Analysis

Functional requirement describe the needs of the users. However , not all sys-
tem users apply the same operations or share the same view in regards to what
functionality the system should support. In the following, the system func-
tional requirements are examined separately per user group or category. There
are also requirements that apply to all users henceforth reformed as General
requirements.

3.1.1 User Groups

Our system supports three user types:

� Cloud Moderator (Infrastructure Administrator): There is only
one infrastructure moderator who is responsible for the home and user
management.

� Home Moderator (Home Administrator): Every home can have only
one home moderator who is responsible for the room, device, user access
and rule management.

� Resident: Every home can have none or more residents. Resident’s device
access is restricted and its controlled by the home moderator by granting
or denying the resident operation permissions for a device group.

3.1.2 Functional Requirements

Functional requirements are the requirements that describe our system’s behav-
ior and they may defer between user groups.

18

General Functional Requirements

� User Authentication: All users must be registered with the cloud (FI-
WARE in our case) and have a username and password in order to log
into the application.

� User Authorization: Access to services (e.g. system operations) is
allowed only to authorized users. For example, a user must not be able to
retrieve the room temperature of a home he doesn’t belong to.

Cloud Moderator

� Home Insert/Edit/View/Delete

� Home Moderator Insert/Edit/View/Delete

� User Insert/Edit/View/Delete

� View Homes

� View Home Moderators/Residents

� View Home/Home Moderator/Resident History

Home Moderator

� Room Insert/Edit/View/Delete

� Device Insert/Operate/View/Delete

� Resident Access Control

� Rule Insert/Delete/View

� View Rooms

� View Devices

� View Users

� View Room/Device History

Resident

� View Rooms

� View Devices

� Operate Device

3.1.3 Non-Functional Requirements1

Non-functional requirements are the requirements that specify criteria that can
be used to judge that the system operates as expected.

1https : //en.wikipedia.org/wiki/Non− functional requirement

19

Availability: It’s important for a web application to be always online and
available to the user. The user must be able to access it from anywhere as long
as he has access to an internet connection and a web browser. We achieve that
by having our application deployed on the cloud.

Security: It refers to the secure access of a user in the application, the pro-
tection of user’s data from unauthorized users as well as the prevention of unau-
thorized access to the system.

Performance: Has to do with the response time of the system (for example
how much time does it need for the lights to turn on once the users issues the
command)

Scalability: The capability of the system to handle an increasing number of
requests (horizontal, vertical scalability)

Disaster recovery: The application must be able to recover fast after a dis-
aster (for example DDOS attack, server failure) and this can be achieved in a
cloud environment by having backups of the service ready to be deployed.

Open source: The software is open for study, change or distributed according
to any ones interests.

Usability: It refers to the ease of use by a customer. This is achieved by
providing a user interface.

3.2 System Design - UML Diagrams2

In order to better understand the system’s functionalities and their relation
to the user groups, we will use UML diagrams. UML diagrams are graphical
representations of the system’s functions or the system itself.

3.2.1 Use Case Diagrams

Use case diagrams are used to describe a set of actions that someone can perform.
Having defined the system’s functional requirements for each one of the user
groups, we created relative services that our system provides to them.

Cloud Moderator

For the cloud moderator, there are two services:

� User Management Service that includes:
Insert/Edit/Delete/View user

� Home Management Service that includes:
Insert/Edit/Delete/View home

2https : //www.uml− diagrams.org

20

Apart from these two services, the Cloud Moderator can access the home and
user logs. These logs contain information about the moment a home or a user
was created, edited or deleted from the system and are retrieved from the history
database. We can see these services in the diagram below

Figure 3.1: Cloud Moderator Use Case Diagram

21

Home Moderator

Likewise, we created the following four services for the Home Moderator:

� Room Management Service that includes:
Insert/Edit/Delete/View Room

� Device Management Service that includes:
Insert/Operate/Delete/View Device

� User Management Service that includes:
View/Edit Resident Access

� Rule Management Service that includes:
Insert/Delete/View Rule

In addition, Home Moderator has access to room and device logs, that are
retrieved from the history database and contain information about the moment
a room or a device was created, edited or deleted. Finally, he can receive
notifications and alerts that are created on events such as the switch on of a
device when a rule is triggered or a device failure. This mechanism will be
further explained later in this chapter. The following diagram illustrates Home
Moderator’s available actions.

22

Figure 3.2: Home Moderator Use Case Diagram

23

Resident

Resident’s operations are generally more restricted as he can only view the rooms
and the devices of the home and operate the devices that the Home Moderator
has given him access to. He can also view the logs of his device operations and
retrieve notifications and alerts. That said, we can assume one service:

� Device Management Service that includes:
View/Operate Device

In figure 1.3 we see the operations that a Resident can execute.

Figure 3.3: Resident Use Case Diagram

3.2.2 Activity Diagrams

Activity diagrams show us the steps and actions that can take place when an
operation is executed. Again, we are separating them per user group.

Cloud Moderator

House Management Service

1. Cloud Moderator logs into the system.

2. Selects the Insert Home option from the UI. A form that must be filled with
the home’s attributes is displayed. If the form is submitted successfully, a
home entity is created into the system.

4. Selects the Manage Homes option from the user interface and a table with
all the system’s homes appears. Three operations are available:

24

4.a. Edit Home: A form with the home’s attributes filled is showed to Cloud
Moderator. If he successfully submits the edited form, the home entity
is updated.

4.b. View Home: Home’s attributes are presented to the Cloud Moderator
in a table form.

4.c. Delete Home: The home is deleted from the system along with it’s
Home Moderator, Residents, rooms, devices and rules.

The diagram below demonstrates the Home Management Service’s operations;
Insert/Edit/Delete/View Home.

25

Figure 3.4: Cloud Moderator Home Management Activity Diagram

User Management Service

1. Cloud Moderator logs into the system.

2. Selects the Insert User option from the UI. A form that must be filled with
the user’s attributes as well as the home Id he belongs to, is presented to
the Cloud Moderator. If the form is submitted successfully, a user entity

26

is created into the system. We should point that the username of a user
must be the same as the username the user users to login in FIWARE and
we will explain the reason later.

4. Selects the Manage Home Moderator/Resident option from the user in-
terface and a table with all the system’s Home Moderators/Residents ap-
pears. Three operations are available:

4.a. Edit User: A form with the user’s attributes filled is showed to Cloud
Moderator. If he successfully submits the edited form, the user entity
is updated.

4.b. View User: User’s attributes are presented to the Cloud Moderator in
a table form.

4.c. Delete User: User is deleted from the system.

The User Management Service’s operations are illustrated in the diagram below;
Insert/Edit/Delete/View User.

27

Figure 3.5: Cloud Moderator User Management Activity Diagram

Home Moderator

Room Management Service

1. Home Moderator logs into the system.

2. Selects the Insert Room option from the UI. A form that must be filled

28

with the room’s attributes is displayed to him. If the form is submitted
successfully, a room entity is created into the system.

4. Selects the Manage Room option from the user interface and a table with
all the home’s rooms appears. Three operations are available:

4.a. Edit Room: A form with the room’s attributes filled is showed to the
Home Moderator. If he successfully submits the edited form, the room
entity is updated.

4.b. View Room: Room’s attributes and devices are presented to the Home
Moderator. From here, he can operate a device.

4.c. Delete Room: Room is deleted from the system along with it’s devices
and rules.

In the following diagram we can see the Room Management Service’s operations;
Insert/Edit/Delete/View Room.

29

Figure 3.6: Home Moderator Room Management Activity Diagram

Home’s User Management Service

1. Home Moderator logs into the system.

3. Selects the Manage Users option from the UI and a table with all the
home’s users appears. Two operations are available:

30

3.a. View User: Resident’s attributes and access rights are presented to the
Home Moderator.

3.b. Edit User Access Rights: Can grand or deny access for a device type
to the Resident. (Figure 1.9)

The diagram below represents the Home’s Resident Management Service
operations; View/Edit User’s Access Rights.

Figure 3.7: Home Moderator User Management Activity Diagram

In our system, every home’s user has an ”access number” as an attribute. This
number, R, has as many digits as our system’s device types which in the current
state is nine. When a digit of this number is 1, it means that the user has access
to the relative device type. When it’s 0, user has no access. Home Moderators

31

have access to all devices (their access number is ”111111111”). For better
understanding, lets think of the following example. Assume that we have a
room with three devices; an air condition, an oven and a lamp light. A Home
Moderator, apart from his ability to insert, view or delete a device, can also
operate any of them. On the other hand, a Resident has restricted access to
the devices, which is controlled by the Home Moderator; he can allow or deny
a Resident from operating a device type.
In the image below, we see the access number of the home’s Resident; all digits
are 0. This means he has no access in any device type.

Figure 3.8: View Home’s Users

Figure 1.9 shows us how the Home Moderator can give access to a Resident
on a device group, by selecting the respective boxes.

Figure 3.9: Edit Home User’s Rights

32

In the image bellow we see which digit of the number R corresponds a device
type. R(8) is the left digit and R(0) the right.

Figure 3.10: Rights Access 9-digit number

So, taking into consideration the image above, in our example if Home Moder-
ator selected the ”Air Conditioner” and ”Lamp Light” boxes, Resident’s access
number R, from ”000000000” (figure 1.8) would have become ”110000000”.
This number is checked every time a Resident tries to operate a device.

Device Management Service

1. Home Moderator logs into the system.

2. Selects the Insert Device option from the UI. A form that must be filled
with the device’s attributes is displayed. If the form is submitted success-
fully, a device entity is created into the system.

4. Selects the Manage Devices option from the user interface and a table
with all the home’s devices appears. Three operations are available:

4.a. Operate Device: An interface of the device is shown to the Home Mod-
erator (like a controller). If he successfully submits new operation data,
the device entity is updated and a signal is send to the home.

33

4.b. View Device: Device’s attributes are presented to the Home Moderator.

4.c. Delete Device: Device is deleted from the system.

The diagram below shows the Device Management Service’s operations; In-
sert/Operate/Delete/View Device.

Figure 3.11: Home Moderator Device Management Activity Diagram

34

Rule Management Service

1. Home Moderator logs into the system.

2. Selects the Insert Rule option from the UI. First of all, the rule type must
be chosen. Our system supports two rule types; condition rule and time
rule. In order to create a condition rule, one or two conditions (AND/OR
relation between them) must be set. When a time rule is to be created,
the time of the execution must be set. In both cases, a device must be
chosen to be operated when the rule is triggered. If the form is submitted
successfully, a rule entity is created into the system.

4. Selects the Manage Rules option from the user interface and a table with
all the home’s rules appears. Two operations are available:

4.a. View Rule: Rule’s description is presented to the Home Moderator.

4.b. Delete Rule: Rule is deleted from the system. Here we should point
out that only conditional rules can be deleted.

In the following diagram we can see the Rule Management Service’s opera-
tions; Insert/Delete/View Rule.

35

Figure 3.12: Home Moderator Rule Management Activity Diagram

Apart from the services that we presented above, Home Moderator has also
access to the room and device logs that display the history of his actions and
when a change in temperature, humidity and luminosity occurred.

36

Resident

Device Management Service

1. Resident logs into the system.

3. Selects the View Devices option from the user interface and a table with
all the home’s devices appears. Two operations are available:

3.a. Operate Device: If the Resident has been granted authorization to
operate the specific device type, an interface of the device is shown to
the user (like a controller). If he successfully submits new operation
data, the device entity is updated and a signal is send to the home.

3.b. View Device: Device’s attributes are presented to the Resident.

37

Figure 3.13: Resident Device Management Activity Diagram

Also, a Resident can view all the home’s rooms and the log files that keep
track of his device operation history.

3.2.3 System’s flowchart

The system’s overall functionality is illustrated in the diagram below. We can
also see the input that is required from the insert and edit forms that the User
Interface serves to the users.

38

Figure 3.14: System Flowchart

39

3.2.4 Class Diagram

The UML Class Diagram describes the system’s classes with their attributes as
well as their functions and the relations between them. In the diagram below,
we distinguish 10 main classes:

� User: A superclass that gets extended by the three user types our system
supports; Cloud Moderator, Home Moderator, Resident. These classes
extend user’s e-mail, username, password, name, surname attributes and
they defer in the methods they implement as well as the operation rights
they have.

� Cloud Moderator: Is responsible for the home and user management of the
system. Can insert/view/edit/delete homes and users as well as view/clear
home or user logs.

� Home Moderator: Is responsible for his home management. Can in-
sert/view/edit/delete rooms, devices, rules, change the Residents’ device
operation rights and view/clear room or device logs.

� Resident: Can view houses rooms and devices but can only operate devices
that the Home Moderator gave him access to.

� Home: Contains users, rooms and devices.

� Room: Contains devices. Every room has three main attributes; temper-
ature, humidity, luminosity.

� Rule: A superclass that gets extended by two rule types; conditional
and time rule, with attributes: roomId, deviceId, mode, device tempera-
ture/percentage (for example switch on the air condition at 22oC or switch
on a lamp light at 80

� Conditional Rule: As the name suggests, this rule is executed when one
or two conditions are met.

� Time Rule: This rule is executed in a specific time instance.

� Device: There are nine device types that our system supports: Air Con-
dition, Oven, Refrigerator, Washing Machine, Dishwasher, Lamp Light,
Blinds, TV and Alarm.

� Alert: When a device malfunctions and it’s status changes from normal
to error, or if an alarm is triggered, an alert is been raised and send to the
user.

� Notification: When a rule is executed, a notification is sent to the user.

40

Figure 3.15: Class Diagram

41

3.2.5 Architecture Diagram

The Architecture Diagram illustrates the services that compose our system as
well as the way they communicate.

Figure 3.16: Architecture Diagram

Front-end

As front end we define the data producing mechanisms. They can be gateways,
mobile devices, computers, sensors, a fog network etc. In our system we assume
that data is produced by devices and sensors that are installed in homes and is
send to the back-end with the use of a gateway. Each home contains rooms and
each room contains devices. We consider that every room has a temperature,
humidity and luminosity sensor and their measurements are send to the Data
Collector. Also, each device produces its own data (power, operating tempera-
ture, mode etc) that is also send to the Data Collector. Every one minute, this
gathered data is send to the back-end.

Data Collector: A gateway that gathers all the data the home’s devices and
sensors produce as well as the data that’s been received from the back-end. It
sends the collected sensor and device data to the back-end on a time period or
distributes commands on the home’s devices. In our system’s implementation,
we assume this time period to be one minute. In the data collector’s database,
apart from all the collected data, the home’s authorized users ids are stored, in
order to be used from the user authorization service as well as the SSL certificate
for the HTTPS communication.

42

Connectivity Service

� Protocol adaptation: In the REST environment of our system, services
communicate via HTTPS protocol. Home’s devices on the other hand,
use other protocols to communicate with the gateway or between them
(WiFi, Bluetooth, ZigBee etc). So, in order for the data to be send from a
device or a sensor to the back-end or vice versa and be accessible without
causing interoperability problems, a protocol adaptation must be applied.

� Encryption/Decryption: The data received from the devices and sensors
are encrypted with the use of a private ssl key. The data received from
the back-end is decrypted with the back-end’s public key.

� Connection establishment: After the protocol adaptation, an HTTPS con-
nection is established between the front-end and the back-end.

� Data transfer: The encrypted data is transferred to or from the back-end

User Authorization This service’s role is to prevent unauthorized users ac-
cess into the home. Uses the OAuth 2 mechanism to confirm a user’s authoriza-
tion. It will be further explained in chapter 4.1.5.

Back-end

Back-end is responsible for managing, processing and storing the data that’s
been send from the front-end as well as controlling the operations of our system.
The services that compose the back-end are:

Application Logic (Service Endpoint: https://147.27.60.196:8448)
The orchestrating service of the system. It controls the application’s data flow
and the operations’ order of execution. When a request is generated by a user,
the Application Logic decides to which service it will be forwarded to in order
to be completed. When this happens, a response is returned that informs the
Application Logic if the request was executed successfully or not. It is connected
with the User Interface, User Authorization, Context Broker, Log Database and
Connectivity services that will be described bellow. Also, it creates notifications
when a rule is executed and alerts when a device presents a malfunction or
an alarm triggers. These notifications and alerts are retrieved from the Web
Application.

Use Identity Management (Endpoint: https://account.lab.fiware.org)
In our system we use a public instance of Fiware’s Keyrock Identity Manage-
ment. Keyrock IdM is responsible for user authentication and access authoriza-
tion. First of all, a user, in order to use our application, must have an account
in Fiware. After he creates the account, the Cloud Moderator must add him
to the authorized user list of the application and define its role. Then, when a
user tries to login to our application using the User Interface, he is redirected to
Keyrock, where he inputs the username and password he uses to login to Fiware.
If the login attempt succeeded and the user is authorized to use the application,
he is redirected to the main page of the User Interface we created and he is
provided with the OAuth2 token that was generated by Keyrock. This token is
stored in the PHP session and is used as a header in the outgoing requests.

43

User Authorization This service ensures that every user action is ”legal”.
When a user makes a request, he must be authorized to be able to execute it.
For example, if a Home Moderator tries to view all homes of the system, his
request must be rejected because this is Cloud Moderator’s operation. This is
achieved with the User Authorization service. Part of this service is a MongoDb
database that contains all system’s users with their attributes as well as their
home’s id. Once a request reaches Application Logic, the token is retrieved
from it’s header and its send to the User Authorization service. From there, it
is send to Identity Management Service (Keyrock) who responds with the user’s
credentials. These credentials are used for the authorization. This will be fully
explained in the next chapter.

Web Application (UI) (Service Endpoint: https://147.27.60.196:80)
Allows system’s operation and control from the users through a user interface.
Once a user logs into the system, the OAuth2 token that is created from Keyrock
is saved into the user session. When a user uses the interface and a request is
created (e.g. view room), this token is added to the request so the authorization
service can use it and decide if the request will be forwarded or denied. Also,
every one minute, Web Application asks the Application Logic for notifications
or alerts that might have been produced and displays them to the users.

Publication/Subscription Service3 (Endpoint: https://147.27.60.71:1026)
This service mediates between consumer producers (devices, sensors) and the
context consumer applications (e.g. user that reads a room’s temperature using
the User Interface). It’s responsible for registering context producer applications
(e.g. room temperature), updating context information (e.g. send updated tem-
perature) and notifying when changes on context information takes place (e.g.
change in room’s temperature). For example, when a Home Moderator inserts
a new room “kitchen” in his home, he issues a POST request that contains
the room’s data in JSON format and a new entity with type “room” is created
into the Publication/Subscription Service. In addition, a subscription about
this rooms is created. This subscription is used for the creation of the log en-
tities and will be explained in the History Database service. When the user
wants to retrieve data regarding this room, he issues a GET request to the
Publication/Subscription Service and he responds by sending the specific entity
in a JSON format. Every minute, each home sends it’s rooms values to the
back-end, Connectivity Service retrieves them and sends them to the Publica-
tion/Subscription Service. If they are different from the already existing ones,
they are updated. For our system’s needs, we used Fiware’s Orion Context
Broker as the publication/subscription service.

Complex Event Processing (CEP, Endpoint: https://147.27.60.196:8888)
Responsible for the conditional rules management. CEP receives the notifica-
tions that Orion Context Broker sends when one or more attributes change (e.g.
temperature) and compare the notification’s values with the values of the rule.
If the conditions are met, CEP sends a request to Application Logic informing
it to operate a device in a specific home. CEP will be fully explained in chapter
5.1.6.

3Services In Cloud And Fog Computing - Euripidis G.M. Petrakis

44

History Database (Service Endpoint: https://147.27.60.196:7777)
Our system keeps log entries for each user group on the following cases:

� Cloud Moderator

◦ Home Insert/Edit/Delete

◦ User Insert/Edit/Delete

◦ Home Moderator

◦ Room Insert/Edit/Delete/Attribute value change

◦ Device Insert/Operate/Delete/Status change

� Resident

◦ Device Operate

In the device logs are also stored the alerts that are generated when a device
malfunctions (status different than Ok) or when an Alarm is triggered. All
logs contain a timestamp of the action that occurred on a specific entity. This
timestamp is extracted from the entity’s objectId. An example of a log view
can be seen in the figure below.

Figure 3.17: View Room Logs

As we mentioned above in the CEP description, when an entity is created,
a subscription for this entity is created too. This way, when a change occurs,
a notification is send to the History Database service, where is stored as a log
entity.

Connectivity Service (Service Endpoint: https://147.27.60.196:8282)
It’s functionality is the same as the Front-End’s home Connectivity Service.

45

Chapter 4

System Implementation

In this chapter we are going to further explain our system’s components and
services.

4.1 FIWARE Platform

In order to create our application, we used FIWARE as our cloud provider.
Our system’s back-end is implemented as a composition of eight main services
(Figure 3.17):

1. User Identity Management

2. User Authorization Service

3. Application Logic

4. Web Application (UI)

5. Publish/Subscribe Service

6. Complex Event Processing

7. History Database

8. Connectivity Service

For the back-end, we used three virtual machines (VMs); two of them we
created ourselves and the third is a shared VM installed in a remote FIWARE
node. The first one, with floating IP 147.27.60.196 hosts all the services we
created; the User Authorization, Application Logic, Web Application, Complex
Event Processing, History Database and Connectivity services. The second one,
with floating IP 147.27.60.71, hosts the publish/subscribe service.

For the implementation of User Identity Management and Publish/Subscribe
service we used two services from the Fiware Catalog; Keyrock Identity Manage-
ment and Orion Context Broker. The rest services, except the Web Application,
were implemented with the use of JavaEE and the Spring Framework. Every
Java service has embedded a Tomcat server and as its end-point we define a
specific port in the VM. The Web Application service, created with PHP and

46

HTML, uses an Apache server and communicates with the Application Logic
with CURL. The services’ endpoints are presented in figure 4.1.

Regarding the front-end, we crated a VM with floating IP 147.27.60.61, that
simulates the homes. It contains a MongoDB, where the devices and the rooms
attributes are stored. The home’s Connectivity Service that listens in port
8668, retrieves all incoming data.

Figure 4.1: Services End-Points for 147.27.60.196

4.1.1 Keyrock Identity Management1

Keyrock’s IdM is the central component that provides a bridge between IdM
systems at connectivity-level and application-level that manages:

� Users’ and organizations’ access to networks, services and applications by
having a registered account in Keyrock

� Secure authentication from users to devices, networks, services

� Roles and permissions to manage authorization of users and organizations

� Foreign services authorization to access personal data

� Users’ profiles

� Privacy-preserving disposition of personal data

� Single Sign-On (SSO) to service domains

� User authentication using their OAuth credentials (id and secret)

Keyrock complies with the OAuth2 standard described in RFC26162. In order
to use our application, a user must be registered in Fiware lab and be authorized
for the application.

1https : //catalogue− server.fiware.org/enablers/identity −management− keyrock
2https://www.ietf.org/rfc/rfc2616.txt

47

OAuth 2.0 3

OAuth 2.0 is the industry-standard protocol for authorization and provides
specific authorization flows for users, applications and devices. The main idea
is to enable applications to obtain limited access to user accounts on a HTTP
service such as Facebook, GitHub, our application without exposing the user’s
sensitive information. The OAuth roles are:

� Resource Owner: the user who authorizes an application to access their
account.

� Client: The application that wants to access the user’s account.

� Resource/Authorization Server: The resource server hosts the protected
user account and the authorization server verifies the identity of the user,
then issues access tokens to the application.

The figure below demonstrates how the OAuth roles interact with each other.

Figure 4.2: OAuth 2.0 Protocol Flow

3https : //www.digitalocean.com/community/tutorials/an−introduction−to−oauth−2

48

In order to create our application, we first created an account in FIWARE Lab
(Figure 5.2).

Figure 4.3: Fiware Lab Sign Up Page

After that, we had to register our application by providing application’s
name, description, URL and callback URL (the url that the user is redirected
after the OAuth flow is finished). We created the Smart Home application
(Figure 5.3).

49

Figure 4.4: Fiware Lab Application Register

In order for a user to be able to use our application, he must be inserted to
the application’s Authorized Users list. We inserted more users and we provided
them with a role. Our application supports three roles:

� Provider: Predefined by Fiware Lab and has all permissions on the appli-
cation. We assigned this role to the Cloud Moderator.

� Purchaser: Predefined by Fiware Lab with permissions to get and assign
all public application roles. In our system this role is assigned to Home
Moderator.

� User: We created this role with the same permissions as the purchaser in
order to distinguish the Resident from the Home Moderator.

Figure 4.5: Application’s Authorized User

After that, when a user wants to use our application, an OAuth 2 authentication
procedure is taking place.

50

� User selects ”Login With Fiware” button.

� An authorization code is requested from Keyrock by sending the applica-
tion’s client id that is provided upon its registration (Figure 5.5).

� The authorization code is then send to Keyrock along with the header
”Authorization: Basic base64(client id:client secret)” and the access token
is issued.

� When the token is issued, it’s stored in a PHP session and is used when a
request is generated.

Figure 4.6: Application’s OAuth2 Credentials

4.1.2 Orion Context Broker 4

Orion Context Broker allows the management of the entire lifecycle of context
information including updates, queries, registrations and subscriptions. It is an
NGSIv2 server implementation to manage context information and its availabil-
ity. Using the Orion Context Broker, we are able to create context elements
and manage them through updates and queries. In addition, we can subscribe
to context information so when some condition occurs (e.g. the context ele-
ments have changed) we receive a notification. Orion’s Context Broker basic
operations are:

� GET-POST /v2/entites :Retrieve all entities-create entity.

� GET-[PUT-PATCH-POST]-DELETE /v2/entities/{entityId}: Retrieve-
Update-Delete an entity.

� GET-PUT-DELETE /v2/entities/{entityId}/attrs/{attrName}: Retrieve-
Update-Delete an attribute.

4https : //fiware− orion.readthedocs.io/en/master/

51

� GET-PUT /v2/entities/{entityId}/attrs/{attrName}/value: Retrieve-Update
attribute’s value.

� GET-POST /v2/subscriptions: Retrieve all subscriptions-Create subscrip-
tion.

� GET-DELETE /v2/subscriptions/{subscriptionId}: Retrieve-Delete sub-
scription.

In our system, when an entity is created in Orion (e.g. room, user), a sub-
scription on this entity is created too. When a change occurs to the entity, this
subscription is notifying History Database service.
Orion Context Broker supports Entity Service Paths; hierarchical scopes, so en-
tities can be assigned to a scope at creation time. Then, query and subscription
can be scoped to locate entities in the corresponding scopes. In the figure below
our system’s service path is shown.

Figure 4.7: System’s Service Path

This service path is used when a request is issued and is added in the header
with the key ”Fiware-ServicePath”. In the following images we can see the data
that is send to Orion Context Broker when an entity is created, the subscription
that is created and the data we receive when we issue a GET entity request.
We can also observe that in the POST and GET room request the ”Fiware-
ServicePath: homeId” was added as a header in order to follow the system’s
service path.

52

Figure 4.8: POST room JSON Data

Figure 4.9: Room Subscription

53

Figure 4.10: View Room JSON Data

An ”?options=keyValues” parameter can be added at the end of the request
URI and Orion will return the room’s attributes in a simple format, as in figure
5.3.
Apart from Keyrock IdM and Orion Context Broker, the rest services were
created by us.

4.1.3 Web Application(UI)

We created the Web Application(User Interface) service using PHP, HTML,
CSS, Javascript, JQuery and AJAX tools. After successfully loging into the ap-
plication, the token that’s issued by Keyrock IdM is saved to the PHP session.
All operations available to the user are displayed with a menu in the User Inter-
face. When he selects an option from the menu, a request is generated. After
the token is added to its header, it’s send to the Application Logic. We used
the CURL library of PHP in order to handle the requests. If the user is autho-

54

rized for that request, it is executed and a response is returned. A response is
displayed using HTML and is managed by Javascript and CSS. For example, a
Home Moderator wants to view a room. He logs into the system and chooses the
Rooms - Manage Rooms option. A GET /homes/homeId/rooms request is is-
sued and if it is executed successfully, a response with all home’s rooms in JSON
format is returned. Rooms are inserted in a HTML table and are formatted with
CSS rules (Figure 5.10). Next to every room entity are three buttons that exe-
cute Javascript functions (View, Edit, Delete) on a click event. Home Moderator
clicks the view button and again a GET /homes/homeId/rooms/roomId request
is issued with response the room’s attributes as well as its devices.

Figure 4.11: View Rooms

Web Application, with the execution of a jQuery ajax function, polls the
Application Logic every one minute for notifications and alerts. If a notification/
alert is created, it’s written in a database and it’s not deleted until the user clears
it using the interface. We created the rest of the system services using
the Java’s Spring Boot framework.

4.1.4 Application Logic

Requests from the Web Application and Complex Event Processing are directed
to the Application Logic. A Controller class is processing the requests by
mapping them onto methods with the use of annotations. For example, the
annotation ”@RequestMapping (value = ”/homes/{homeId}/rooms/{roomId},
method = GET)” above the method ”public String viewRoom()”, binds this
method with the GET https://147.27.60.196:8448/homes/5bfc2052ea636e15c973a7bd/

rooms/5c0281e37592c31084a217e1 request that arrives to Application Logic.
If the request is user generated, user’s authorization to issue such a request must
be first checked. This functionality is covered by the User Authorization service
that is part of the Application Logic.

55

4.1.5 User Authorization Service

All requests that comes from the Web Application to the Application Logic,
except the notification/alarm polling, are user issued. In order to ensure that
each owner’s data is safe into the application, we must make sure that no unau-
thorized user can access it. This is accomplished with the implementation of
the User Authorization Service. Every user’s request is relevant to his home
and contains the homeId into its URI(e.g. Insert room, View Device etc). This
means that we have to check that the user doesn’t try to access another home’s
data. When the Cloud Moderator inserts a user in the system, he links him with
a home. We created a MongoDb collection that contains all system’s users. In
the figure bellow we can see an example user entity.

Figure 4.12: User Entity of Users Collection

We observe that the user’s homeId is included in the user entity. Also,
the ”username” field contains the username that the user uses to log in the
application. This is the user’s id in Keyrock IdM and of course it’s unique.
When a request arrives to Application Logic, the User Authorization Service
retrieves its token from the header and it sends it to Keyrock IdM requesting
the user’s credentials with the GET http://account.lab.fiware.org/user?

access_token={accessToken} request. If the token is valid, user’s information
is returned. User Authorization Service gets the user’s id and checks if the user
exists in the Users collection. If he exists, it retrieves his homeId and compares
it to the homeId that is in the request’s path. If it’s the same, the request
is executed. If the token is not valid or the user’s homeId is different that
the request’s homeId, the request is rejected. The following sequence diagram
demonstrates the ”GET room” example.

56

Figure 4.13: User Authorization Sequence Diagram - GET Room

4.1.6 Complex Event Processing

Responsible for the conditional rules management. The way we created CEP, a
rule can have two conditions at max (e.g. temperature > 20 AND humidity >
90) and only one device can be operated per rule. When a rule regarding a
room is created, a Context Broker subscription that contains the conditions,
the conditions’ values, the device that must be operated as well as the device
operation values (e.g. mode, operation temperature), is created. A subscription
is represented by JSON with the following fields (Figure 5.13):

� id: Subscription unique identifier that is automatically created at creation
time.

� description: A free text that is inserted by the user to describe the sub-
scription.

� expires: Expiration date of the subscription

57

� notification: An object that describes the notification to be send when the
subscription is triggered. Includes the following sub fields

◦ attrs: These are the room’s attributes that will be send with the noti-
fication. Being empty means that every attribute will be send. If for
example, “temperature” was in attrs (“attrs”: [“temperature”]), only
the temperature value would be send with the notification.

◦ attrsFormat: How values are represented. If is set as keyValues, the
notifications are send in a simple format (e.g. “temperature”:22).

◦ http: Shows the URL that the notification will be send.

◦ lastNotification: Timestamp of the last time the notification was sent.

◦ lastSuccess: Timestamp of the last successful notification.

◦ metadata: We use this field to store the rule information that will be
retrieved by CEP. One condition rule metadata:

· home Id

· device Id

· device Type

· power: true = power on, false = power off

· device operation temperature (e.g. air condition at 16oC)

· mode (e.g. air condition in cool mode)

· condition value (e.g. temperature 30)

· condition operator (e.g. greater)

◦ Two conditions rule metadata:

· home Id

· device Id

· device Type

· power: true = power on, false = power off

· device operation temperature (e.g. air condition at 16oC)

· mode (e.g. air condition in cool mode)

· condition 1 value (e.g. temperature 30)

· condition 2 value (e.g. humidity 90)

· condition 1 operator (e.g. greater)

· condition 2 operator (e.g. less)

· conditions relation (AND/OR)

� Subject: contains the following sub fields

◦ condition: The conditions that trigger the notifications. It contains the
following sub field:

· attrs: The names of the attributes that trigger the notification.
The order of their appearance follows the order of the condition
values in the metadata of the notification field.

◦ entities: The Context Broker entity that the rule was created for. Has
two sub fields:

58

· id: id of the entity

· type: type of the entity (e.g. room)

� throttling: Minimal period of time in seconds which must elapse between
two consecutive notifications.

Figure 4.14: Example Of a Two Conditioned Rule Subscription

Every time a change occurs in the room’s attributes, a notification is send
to CEP that has two fields (Figure 5.14):

� data: contains the subscribed entity’s id and type, as well as the attributes
that changed and triggered the notification.

� subscriptionId

CEP, afterwards, using the subscriptionId from the notification, with a GET
request on the Context Broker, retrieves the subscription (Figure 5.13) and com-
pares the metadata attribute values with the attribute values of the notification.

59

Figure 4.15: Example of Notification Send to CEP

If the conditions are satisfied, CEP sends a request to Application Logic to act
according to the rule’s instructions.

Example - Analyzing figure 5.13, the following ”query” results. IF
”temperature” is ”less” than ”18°C” ”AND” ”humidity” is ”greater” than
”90%” in the room with id:”5c0281e37592c31084a217e1” of home with
id:”5bfc2052ea636e15c973a7bd” THEN ”power ON” ”Air Condition” with
id:”5c0284177592c31084a217e4” and set it to work at ”24°C” in ”Heat” mode.
We can see in figure 5.14 that the room’s temperature is 17.5°C and humidity is
95%, thus, the conditions are satisfied. CEP then sends a request to Application
Logic that informs it to switch on the air condition in the specific room on Heat
mode, at 24°C. After that, if the device was operated successfully, Application
Logic deletes the rule subscription and a notification is created saying that the
rule was successfully executed. We can view this functionality in Figure 4.15.

Sequence Diagram-Complex Event Processing A sequence diagram demon-
strates the sequence of interactions and messages that occur between the users
and the objects in a system. In the figure bellow we can see the Complex Event
Processing Service’s (CEP) sequence diagram. Initially, Home Moderator uses
the web application to create a rule. With an HTTPS Post call, the json data
is passed from the UI to the Application Logic, which sends a subscription
creation request to Orion Context Broker. When the home sends it’s rooms val-
ues (temperature, humidity, luminosity) to the back end, CEP checks the rule
from the Publish/Subscription Service and compares the home’s values with the
subscription’s values. If the conditions are met, CEP sends a confirmation to
Application Logic which sends a device operation request to the home.

60

Figure 4.16: Complex Event Processing Sequence Diagram

4.1.7 History Database

We created this service using MongoDb in order to keep history of users’ actions
and data send from homes to the back-end. It listens for notifications Orion
Context Broker sends and when it receives them, creates a log entity in the
database. Logs are derived in categories and are accessible from specific user
types. Generally, Orion sends notifications only when something changes to an
entity. For example, when the temperature of a room changes, a notification
will be send. On the other hand, if a home sends the temperature of the room
and it’s the same as the previous one, no change will take place. This means
that a log entity will be created when something is: Created, edited, operated
and deleted. The list bellow shows which log types are accessible from each user
type.

� Cloud Moderator: Home, User Logs.

� Home Moderator: Room, Device Logs.

� Resident: Device Logs.

Logs keep information regarding the actor, the type of action, the time it took
place as well as the entity it refers to. The following figure illustrates the form
of a device log entry.

61

Figure 4.17: Example of a Room Log entry

The ”lastUser” field contains the user that issued the request. If it’s ”home”,
it means that the data was received from the front-end when the room or device
data was updated. The action field can have the following values: insert, up-
date, delete, operate and the notificationType field can be: homeLog, userLog,
roomLog, deviceLog, alarmTrigger, deviceError. The last two types state the
alarms and notifications that Application Logic creates when a home alarm is
triggered or when a rule is executed.

4.1.8 Connectivity Service

Connectivity Service is the bridge between the back-end and the front-end.
When a request that is destined for a home is generated from the Web Appli-
cation, it ends up in Connectivity Service. There, the data is parsed in Json
format (protocol adaptation) and then is encrypted with the use of an ssl cer-
tificate, to be send over HTTPS protocol. In our system that we have no real
devices, data are simulated and are already in Json format, so this parsing isn’t
needed. Also, all services communicate with each other over HTTPS protocol
so data is encrypted when it exits and decrypted when it enters each service.

4.1.9 Front-End User Authorization Service

It’s really important for a home to be inaccessible from an unauthorized user.
For example, a user that is not resident of a home must not be able to control
a device of it. We created User Authorization service to filter the request and
reject the unauthorized ones. As we saw in chapter 4.2.6, the Data Collector
has stored in it’s database the home’s authorized users’ ids. If a user makes a
request, an OAuth2 token that is generated by FIWARE once he logins to the
system is added to the request’s header. When it arrives to the home, User
Authorization service receives this token and sends it to FIWARE’s Keyrock
Manager who is responding with the token’s user credentials (id, email, role
etc). User’s id from the token is compared to the user ids that are stored into
the Data Collector Database; if it matches with one of them, the request is
executed or else, its rejected.

4.2 REST Tables

In this section we will present the REST API of each service.

62

4.2.1 Application Logic

The rest API of Home and User management services is displayed in the tables
below.

� Cloud Moderator

Figure 4.18: Home Management REST API

Figure 4.19: User Management REST API

63

� Home Moderator

Figure 4.20: Room Management REST API

Figure 4.21: Device Management REST API

Figure 4.22: Rule Management REST API

64

Figure 4.23: User Management REST API

� Resident

Figure 4.24: Device Management REST API

4.2.2 User Identity Manager

Figure 4.25: Keyrock REST API

65

4.2.3 Complex Event Processing

Figure 4.26: CEP REST API

4.2.4 Publish/Subscribe Service

Figure 4.27: Entity Management API - Orion

Figure 4.28: Subscription Management API - Orion

66

4.2.5 History Database

Figure 4.29: History Database API

4.2.6 Connectivity Service

Figure 4.30: Connectivity Service API

4.3 HTTPS 5

In order to secure data integrity in our system, the communication between
services and between the front and back-end is implemented in HTTPS over
SSL. HTTPS is an extension of the HTTP protocol and is used for secure

5https : //www.globalsign.com/en/ssl − information− center/

67

communication. It provides data encryprion and authenticated client - server
connection by using trusted, signed certificates. SSL Certificates are small data
files that bind a cryptographic key to an organization’s detail and includes the
domain name, server name or hostname as well as the organization’s details
(i.e. company name, email, location). Anyone can create an SSL Certificate,
but in order to be valid and trusted must be issued from a trusted Certificate
Authority (CA). CAs can be private companies to governments and the longer
they are operational, the more their certificates are trusted. Before issuing a
Digital Certificate, the CA conducts checks into the identity of the applicant
(i.e. a domain validated SSL Certificate will have verified the ownership of the
domain to be included in the certificate).
The certificate is composed from two keys; the private and the public. Once
the certificate is installed on the server, an encrypted connection between the
server and the client can be initiated, starting with an SSL handshake6. The
steps for an HTTPS communication over SSL are the following:

� Server sends a copy of its public key to the client.

� Client creates a symmetric session key and encrypts it with the server’s
public key, then sends it to the server.

� Server decrypts the encrypted session key using its private key to get the
symmetric session key.

� Server and client encrypt and decrypt all transmitted data with the sym-
metric session key. Only the server and the client know the symmetric
session key that is used for that specific session. When a new connection
is established, a new session key is created.

For the purpose of our application, we used Java’s keytool7 command and
created three self-signed certificates, one for every VM, using the RSA crypto-
graphic algorithm. The private key of each certificate is stored in the corre-
sponding VM and the public keys are stored in the trusted certificates database
(cacerts) of the rest VMs. In figure 5.29 we see an example of a public key. In
the Owner-Common Name field the domain name or the IP of the server must
be inserted. In this example we use the floating IP of the VM, 147.27.60.196
because we don’t have a DNS name. In the field ”SubjectAlternativeName” we
inserted as DNSName the ”localhost” value and as IPAddress the VM’s floating
IP. This was necessary because in this VM are many services that communicate
with each other using HTTPS and if the localhost DNS name was missing, the
communication would be rejected.

6https://www.digicert.com/ssl-certificate/
7https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

68

Figure 4.31: public key of ApplicationLogic VM certificate

69

Chapter 5

Performance Evaluation

We run an exhaustive set of experiments and we analyze the performance limits
of the services running in the cloud. We study also system scalability (i.e. how
system response time increases with the number of connected users). iHome is
deployed in three Virtual Machines (VMs).The first two VMs are deployed in
the FIWARE node of TUC (FIWARE is a federation of distributed cloud in-
frastructures running OpenStack). These are small flavor VMs with one virtual
processor (x86 64 processor architecture, 2,800 Mhz, first level cache size 32 KB,
second layer 4,096 KB cache size), 2,048 MB RAM, 20 GB hard drive capacity.
Each VM runs Ubuntu Operating System 14.04 and Apache HTTP server. The
first VM runs application logic, user authorization, EP, database and connectiv-
ity service. The second VM runs PS service alone. Finally, the third VM runs
Keyrock IdM service which is provided by a shared VM installed in a remote
FIWARE node (e.g. in Spain). All VMs may receive up to a large number of
simultaneous requests as the number of users and requests increase. All mea-
surements of time below account also for the time spent for the communication
between VMs or between services within the same or different VMs.

For each experiment we report average response time (over 2,000 requests)
for the most common operations. Each operation can be executed either sequen-
tially (i.e. one after the other) or in parallel. We use ApacheBench1 (Apache
HTTP server benchmarking tool) to send multiple simultaneous requests to
iHome. In ApacheBench we are opted to define the total number of requests
and how many of them will be executed simultaneously. We report average
response time for 1,000 requests executed in a sequence (concurrency = 1) and
also for increasing values of concurrency (i.e. concurrnecy >> 1). All service
requests address the user authorization and Keyrock IdM service at the back-
end which checks if the user or service issuing the request has the necessary
access rights. Figures 5.1 - 5.6 summarize the performance of the following
basic operations executed in iHome.

A home posts room values to the connectivity service (at the back-end)
and published in PS service (i.e. the corresponding entities are updated) and
the database. Users subscribing to this information get a notification about
this change on the Web application (through application logic service). The EP
service subscribes always to this information and triggers the execution of rules

1https://httpd.apache.org/docs/2.4/programs/ab.html

70

that govern the monitoring of a home. If these values are within the pre-defined
limits, no action is taken; otherwise (e.g. temperature exceeds a limit), EP
service notifies the home moderator to take action.

A user requests room values from a home. The request is issued on the
Web application. From there, it is forwarded to PS service which always holds
the most recent values of all home entities. Finally, the Web application receives
the requested information (again through application logic which is responsible
for orchestrating operations running in iHome).

Insert a device at a home. The home moderator needs to start monitoring
a new device in a home. The request is issued on the Web Application and its
forwarded to application logic service. This operation will insert a new entity
in PS service with the three default values (i.e. temperature, humidity and
luminosity). The request is forwarded (through connectivity service) to the
front-end. After decoding, user authorization service in the front-end will check
if the user has the necessary access rights. If access is granted, the new device is
created (data collector and database services are updated as well). The device
is published at PS service (i.e. a new entity is created) and the home moderator
can define users subscribing to the new PS entity. The user receives a notification
upon successful completion of this process.

Figure 5.1: Performance of the first experiment

Figure 5.2: Resources utilization; first experiment

71

Figure 5.3: Performance of the second experiment

Figure 5.4: Resources utilization; second experiment

Figure 5.5: Performance of the third experiment

72

Figure 5.6: Resources utilization; third experiment

Response times improve with the simultaneous execution of requests (i.e.
the Apache HTTP server switches to multitasking) reaching their lowest values
for concurrency between 50 and 150. Even with concurrency = 300 the average
execution time per request is close to real-time and resource usage is well below
100% in most cases.

iHome may produce big amounts of data and requests, requiring large pro-
cessing capabilities which can surpass the capacities that our experimental sys-
tem set-up is able to provide. In this iHome set-up, core services are imple-
mented in three VMs. Presumably, overloading the VMs might occur in an
application with a much larger number of concurrent users. An obvious solu-
tion to dealing with performance would be to employee additional VMs each
running a single service (or a small group of services). Alongside, we can allo-
cate additional VMs implementing the same service (or groups of services) thus
having more than on VM sharing the load.

73

Chapter 6

Conclusion - Future Work

Leveraging PaaS functionality we show how a smart home management system
is designed and implemented as a service in the cloud. iHome exhibits a highly
modular SOA design based on micro-services running both, at a home (i.e. a
fog node) and in the cloud allowing users to monitor and control their homes
remotely in real-time.

6.1 Conclusions

The main goal of this thesis was to design and implement a service oriented
architecture system for managing smart homes. During this process, we came
to some conclusions.

Choosing a cloud environment for the development of a system proves to be
very beneficial. A big variety of services, like the Orion Context Broker and the
Keyrock Identity Manager, is provided to the users, making easier and faster
the implementation and deployment of applications. Using virtual resources
(i.e. CPU, RAM, Storage) and virtual machines, as well as having the ability
to scale up or down your system according to the demands, cuts down the
high cost of hardware and removes the need of complicated setup of networks
and computing systems. Nowadays, almost everyone has access to internet
through their smartphones, laptops etc. Connecting to a cloud application
requires nothing more, and can be done from everywhere. Our system, provides
a cloud application with no need for installation; just a device with a browser
is enough, making it accessible from virtually everywhere.

Using service oriented architecture and RESTful Web services, we achieved
the services isolation and modulation. As a result, communication between
them is guaranteed even if they are deployed into different cloud environments.
Also, by deploying our system in a virtualized environment, we are avoiding
compatibility issues that could arise from hardware architecture.

iHome has been tested in a realistic scenario with up to three hundred con-
current users. The experimental results reveal that, iHome is capable of respond-
ing in real time even under heavy workloads. Besides being fast and modular,
iHome innovative design relies on secure cloud services permitting access to ser-
vices and information based on access rights and authorization (i.e. all services
are protected by a security mechanism). At the same time, iHome implements

74

secure communication for data and services over HTTPS.

6.2 Future Work

As a future extension, iHome must be tested using a large number of physical
devices and appliances installed at homes, instead of simulated data. A node
like a gateway should be used, to collect all the data from these devices. After
converting the device communication protocol (e.g. ZigBee) into a JSON format,
data would be send to the back-end and vice versa.

Also, we could implement a better, reactive User Interface, that can run
flawlessly on smartphones and computers and use technologies like Angular1,
to reverse some of the server’s workload to the browsers. Another way would
be to create a PC and mobile application, that would have to be installed and
take the role of the gateway.

Concerning security issues, we could provide a proxy (FIWARE’s PEP Proxy-
Wilma) over our system, in order to enforce better access control to our appli-
cation. Further, we should implement an authorization mechanism (i.e. mac
address locking) for data transmitted from a home to the back-end.

A better implementation of the Complex Event Processing service could be
achieved by supporting more simultaneous conditions (our system supports up
to two conditions) as well as pattern detection.(i.e. events occur into a specified
order in a specific time window).

Finally, implementation of data analytics functionality in a public cloud, in
a use case with many homes connected to iHome, is also an interesting direction
for future work.

1https://angular.io/

75

Bibliography

[1] F. Bonomi, R.A. Milito, J. Zhu, and S. Addepalli. Fog computing and its role
in the internet of things. In Proceedings of the first edition of the MCC work-
shop on Mobile cloud computing (MCC’12), pages 13–16, Helsinki, Finland,
8 2012.

[2] S. Ghosh. Smart homes: Architectural and engineering design imperatives
for smart city building codes. In Technologies of Smart-City Energy Security
and Power (ICSESP’2018), pages 1–4, Bhubaneswar, India, March 2018.

[3] OpenFog Architecture Working Group. Openfog architecture overview,
February 2016.

[4] L. Liu, Y. Liu, L. Wang, A. Zomaya, and S. Hu. Economical and balanced
energy usage in the smart home infrastructure: A tutorial and new results.
IEEE Transactions on Emerging Topics in Computing, 3(4):556–570, De-
cember 2015.

[5] E. G.M. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. Tsiachri Renta,
R. Buyya, and N. Bessis. Internet of things as a service (itaas): Chal-
lenges and solutions for management of sensor data on the cloud and the
fog. Internet of Things, 3–4(9):156–174, September 2018.

[6] S. Rehman and V. Gruhn. An approach to secure smart homes in cyber-
physical systems/internet-of-things. In Software Defined Systems (SDS),
pages 126–129, Barcelona, Spain, May 2018.

76

