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Abstract

Tensors are mathematical objects that have recently become popular in the fields of
machine learning and signal processing. This is due to their ability to describe multi—way
relations and dependencies. For a complete data set, where we have no missing entries,
tensor decompositions can help us model the data set, while others give us the potential
to perform compression. For a data set with missing entries, we can use decompositions to
infer missing values. Tensors however, suffer from the curse of dimensionality. The number
of elements increases exponentially with respect to the order of a tensor. As a result, it is
necessary to develop fast and scalable algorithms to perform these decompositions.

In this thesis, we focus on the CP decomposition, or PARAFAC decomposition. We
begin this work by introducing some definitions from linear algebra, followed by matrix least
squares problems. These chapters are succeded by an introduction to tensor algebra, and
a presentation of the PARAFAC decomposition. The problem we deal with in this thesis is
the speeding of a matrix multiplication during the decomposition algorithm. This product
is known in the bibliography as the matricized–tensor Khatri-Rao product (MTTKRP)
and constitutes the computational bottleneck of the algorithm. To this end, we use a data
structure called a dimension tree. The tree stores intermediate results that can be reused
in the decomposition algorithm, in order to speed up the MTTKRP.

Finally, we describe a parallel implementation in a distrbuted environment of this
algorithm, and present results for various tensors and a range of processors.
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Chapter 1

Introduction

Tensors are mathematical objects that have recently gained great popularity due to
their ability to model multiway data dependencies [2], [3], [1], [4]. Tensor factorization (or
decomposition) into latent factors is very important for numerous tasks, such as feature
selection, dimensionality reduction, compression, data visualization and interpretation.
Tensor factorizations are usually computed as solutions of optimization problems [2], [3].
The Canonical Decomposition or Canonical Polyadic Decomposition (CANDECOMP or
CPD), also known as Parallel Factor Analysis (PARAFAC), and the Tucker Decomposition
are the two most widely used tensor factorization models. In this work, we focus on
unconstrained and nonnegative PARAFAC. We call the latter for simplicity, Nonnegative
Tensor Factorization (NTF).

Alternating Optimization (AO), All–at–Once Optimization (AOO), and Multiplicative
Updates (MUs) are among the most commonly used techniques for NTF [3], [5]. Recent
work for constrained tensor factorization/completion includes, among others, [6], [7], [8],
and [9].

In [6], several NTF algorithms and a detailed convergence analysis have been developed.
A general framework for joint matrix/tensor factorization/completion has been developed
in [7]. In [8], an Alternating Direction Method of Multipliers (ADMM) algorithm for
NTF has been derived, and an architecture for its parallel implementation has been out-
lined. However, the convergence properties of the algorithm in ill–conditioned cases are
not favorable, necessitating additional research towards their improvement. In [9], the au-
thors consider constrained matrix/tensor factorization/completion problems. They adopt
the AO framework as outer loop and use the ADMM for solving the inner constrained
optimization problem for one matrix factor conditioned on the rest. The ADMM offers
significant flexibility, due to its ability to efficiently handle a wide range of constraints.

In [10], two parallel algorithms for unconstrained tensor factorization/completion have
been developed and results concerning the speedup attained by their Message Passing
Interface (MPI) implementations on a multi–core system have been reported. Related
work on parallel algorithms for sparse tensor decomposition includes [11] and [12].
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1.1 Purpose
In this work, we focus on dense unconstrained and NTF problems. Our aim is to derive

an efficient algorithms, suitable for parallel implementation. We adopt the AO framework
and solve each matrix least–squares (MNLS) problem; depending on the constraints, we
either solve an unconstrained matrix least–squares problem, or a nonnegative least-squares
problem via a first–order optimal (Nesterov–type) algorithm for L–smooth µ–strongly con-
vex problems.1 Then, we describe in detail an MPI implementation of the AO algorithms
and measure the speedup attained in a multi–core environment.

1.2 Notation
Vectors, matrices, and tensors are denoted by small, capital, and calligraphic capital

bold letters, respectively; for example, x, X, and X . Its elements are denoted by small
nonbold letters and a set of indices, for example, xi,j. For a matrix or a tensor, we may
also denote an element by [X]i,j and [X ]i,j,k, respectively, for convenience. We denote the
column of a matrix X as xi.

Sets are denoted by blackboard bold capital letters; for example, U. R denotes the set
of real numbers. RI×J×K

+ denotes the set of (I × J × K) real nonnegative tensors, while
RI×J

+ denotes the set of (I×J) real nonnegative matrices. ∥·∥F denotes the Frobenius norm
of the tensor or matrix argument, I denotes the identity matrix of appropriate dimensions,
and (A)+ denotes the projection of matrix A onto the set of element–wise nonnegative
matrices.

The outer product of vectors a ∈ RI×1, b ∈ RJ×1, and c ∈ RK×1 is the rank-one tensor
a ◦ b ◦ c ∈ RI×J×K with elements [a ◦ b ◦ c]i,j,k = aibjck. The Khatri-Rao (columnwise
Kronecker) product of compatible matrices A and B is denoted as A⊙B, the Kronecker
product is denoted as A⊗B and the Hadamard (elementwise) product is denoted as A⊛B.

Finally, inequality A ⪰ B means that matrix A − B is positive semidefinite, and by
X ≥ 0, we denote a matrix X which has nonnegative elements.

1.3 Thesis Outline
The thesis is organized as follows:

1We note that a closely related algorithm for the solution of MNLS problems has been used in [13] and
[14]; we explain in detail later the performance improvement offered by our approach.
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• In Chapter 2, we introduce some linear algebra background, which is needed in order
to explain the matrix least-squares problems that we aim to solve. This background
also serves as basis for several tensor algebra definitions, discussed in chapter 4.

• In Chapter 3, we explain the matrix–least squares problems that we will encounter
in this thesis. The main focus of this chapter is the nonnegative case, as there is no
closed form solution, and we must resort to iterative algorithms.

• In Chapter 4, we present an introduction to tensors. We begin with several def-
initions, and continue with a description of some tensor operations. The chapter
concludes with a reference to matrix and tensor rank decompositions, noting a key
difference between the two.

• Chapter 5 is dedicated to tensor rank decomposition. We present a data structure
called a dimension tree. Its aim is to store quantities that can be re-used for later
calculations. We explain how a dimension tree improves the performance of an ALS
algorithm and we also point out the repeating patterns in calculating the factors.

• In Chapter 6, we describe a parallel implementation of the ALS algorithm presented
in chapter 5. Parallelism is distributed and is carried out by using MPI.

• In Chapter 7, we present experimental results for the unconstrained and NTF prob-
lems. We present speedup plots as well as the exact times.

• The thesis concludes with Chapter 8, which suggests possible future work.
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Chapter 2

Linear Algebra Preliminaries

2.1 Introduction
We begin by presenting several rudimentary definitions of linear algebra.

2.2 Definitions
Definition 2.1 A vector space over a field F is a set V equipped with two binary

operations. Elements in V are called vectors, while elements in F are called scalars. The
binary operations are vector addition and scalar multiplication.

For this thesis, we will refer to real vector spaces, i.e., vector spaces, where the field F
is the field of real numbers. Vectors can either be row or column vectors. For example:

v =
[
1 3 5

]
(2.1)

is a row vector, while

u =

13
5

 (2.2)

is a column vector. Both of these vectors are three dimensional vectors, and we say that
v,u ∈ R3.
Definition 2.2 A matrix over a field F is a rectangular array of scalars each of which is
a member of F.

As with vectors, we will focus on matrices where the field F is the field of real numbers.
An example of a matrix is

A =

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

 . (2.3)

We say that this matrix has three rows and two columns and we write that A ∈ R3×2. In
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general, for any matrix A ∈ RI×J we will refer to the elements ai,i, with i ∈ {1, . . . ,min{I, J}},
as elements in the main diagonal of the matrix. A matrix is called a square matrix if it has
the same number of rows and columns. A special square matrix is the identity matrix. It is
denoted as I and all its values are equal to zero, except for the values in the main diagonal,
which are equal to one. Matrices that have nonzero values only in the main diagonal are
called diagonal matrices.
Definition 2.3 The Euclidean norm of a vector v ∈ Rn is defined as

∥v∥2 =

√√√√ n∑
i=1

v2i . (2.4)

Definition 2.4 The Frobenius norm of a matrix A ∈ Rm×n is defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2i,j. (2.5)

Definition 2.5 Addition of vectors v,u ∈ Rn produces a third vector x ∈ Rn which is
defined as

xi = vi + ui, for all i ∈ {1, . . . , n}. (2.6)

Definition 2.6 Scalar multiplication of vector v ∈ Rn with a scalar a ∈ R produces a
vector x ∈ Rn which is defined as

xi = avi, for all i ∈ {1, . . . , n}. (2.7)

Definition 2.7 Addition of matrices A,B ∈ Rm×n produces a matrix C ∈ Rm×n which is
defined as

ci,j = ai,j + bi,j, (2.8)

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Definition 2.8 The transpose of a vector v is denoted as vT . If v is a row vector, it
produces a column vector with the same elements, and if v is a column vector, it produces
a row vector with the same elements.
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Definition 2.9 The inner product of vectors v,u ∈ Rn is a scalar defined as

⟨v,u⟩ = vTu =
n∑

i=1

viui. (2.9)

Definition 2.10 The transpose of a matrix A ∈ Rm×n is denoted as AT , is in Rn×m and
is defined as

[AT ]i,j = [A]j,i. (2.10)

Definition 2.11 Matrix multiplication of A ∈ Rn×m and B ∈ Rm×p produces a matrix
C ∈ Rm×p, which is defined elementwise as

ci,j =
m∑
k=1

ai,kbk,j, (2.11)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. In other words, ci,j is the inner product of the
i–th row of A and the j–th column of B. If n = 1 or p = 1, we have a matrix–vector
multiplication. The inner product is the case where both n and p are equal to one.

Matrix multiplication is noncommutative. If in the definition above n = p also held,
then in general

AB ̸= BA. (2.12)

The identity matrix I, which was defined above, is the neutral element of matrix multipli-
cation, regardless of whether we perform left or right multiplication

AI = A = IA. (2.13)

Definition 2.12 The inverse of a square matrix A ∈ Rn×n is denoted as A−1 and it has
the following property

A−1A = AA−1 = I. (2.14)

We note here, that the inverse of a matrix may not exist. Matrices that have an inverse
are called nonsingular or invertible, while matrices that do not have an inverse are called
singular.
Definition 2.13 Let a square matrix A ∈ Rn×n. A scalar λ ∈ R is called an eigenvalue of
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A if there is a nontrivial solution to the system

Ax = λx. (2.15)

Such an x ∈ Rn is called an eigenvalue of matrix A.
Definition 2.14 Any symmetric matrix A admits the following decomposition

A = UΛUT , (2.16)

where U,Λ ∈ Rn×n. Each column of U contains an eigenvector of A, while Λ is a
diagonal matrix containing all of its eigenvalues. This decomposition is called eigenvalue
decomposition (EVD), or spectral decomposition.

Based on the spectral decomposition of a matrix, we may raise a matrix to an arbitrary
power; it can be proven that

Ak = UΛkUT , (2.17)

where k ∈ R.
Definition 2.15 Any matrix A ∈ Rm×n admits the following decomposition

A = UΣVT , (2.18)

where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. Each column of U contains a vector called a
left singular vector of A, each column of V contains a vector called a right singular
vector of A while Σ is a diagonal matrix that contains nonnegative numbers that are called
singular values of A. This decomposition is called singular value decomposition
(SVD) and is a generalization of the eigenvalue decomposition for nonsquare matrices.
Definition 2.16 The rank of a matrix A ∈ Rm×n, denoted as rank(A), is the maximal
number of linearly independent columns. It can be proven that the rank is also equal to
the maximal number of linearly independent rows. Values of the rank range from 1 to
min(m,n). If rank(A) = min(m,n), we say that A is full rank.

There is a link between the rank of a square matrix and the existence of its inverse. If
a square matrix is full rank, then it is invertible.
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Definition 2.17 The Moore–Penrose pseudoinverse of a matrix A ∈ Rm×n is denoted
as A†, is in Rn×m and has the following properties

• AA†A = A,

• A†AA† = A†,

•
(
AA†)T = AA†,

•
(
A†A

)T
= A†A.

If ATA is invertible, then
A† = (ATA)−1AT (2.19)

and A† is a left inverse of A, i.e. A†A = I. If AAT is invertible, then

A† = AT (AAT )−1 (2.20)

and A† is a right inverse of A, i.e. AA† = I.
Definition 2.18 Let A ∈ RN×M and B ∈ RP×K. The Kronecker product (or tensor
product) of A and B is defined as the matrix

A⊗B =

a1,1B · · · a1,MB
... . . . ...

aN,1B · · · aN,MB

 ∈ RNP×MK . (2.21)

Definition 2.19 Let A ∈ RN×M and B ∈ RP×M . The Khatri–Rao product of A and
B is defined as the matrix

A⊙B =
[
a1 ⊗ b1 · · · aM ⊗ bM

]
∈ RNP×M . (2.22)

Definition 2.20 Let A ∈ RN×M and B ∈ RN×M . The Hadamard Product or element-
wise matrix product of A and B is a matrix of size N ×M , and is defined as

[A⊛B]n,m = an,mbn,m, (2.23)

for all n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}.
Regarding the Kronecker and Khatri–Rao products, we note that they are both as-

sociative [4]. For example, a Khatri–Rao product of three matrices can be equivalently
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calculated as
A⊙B⊙C = (A⊙B)⊙C = A⊙ (B⊙C) . (2.24)

For the latter three products, the following properties hold [1]:

(A⊗B) (C⊗D) = AC⊗BD, (2.25)
(A⊗B)† = A† ⊗B†, (2.26)

(A⊙B)T (A⊙B) = ATA⊛BTB, (2.27)
(A⊙B)† = ((ATA)⊛ (BTB))†(A⊙B)T . (2.28)

Based on the associativity of these products, we can derive generalized expressions for
properties (2.25), (2.27), and (2.28) for three or more operands.
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Chapter 3

Matrix Least Squares Problems

In this chapter, we describe the matrix least squares problem, which will be our
workhorse towards the development of efficient algorithms for tensor factorizations.

3.1 Matrix Least Squares
Let X ∈ RM×N and B ∈ RN×R and consider the problem

min
A

f(A) =
1

2
∥X−ABT∥2F . (3.1)

This problem is known as the matrix least squares problem. The cost function is convex,
therefore, the existence of a global minimizer of f , A∗, is guaranteed. The solution A∗

must satisfy the following linear system of equations

XB = A∗BTB, (3.2)

which are known as normal equations. Thus, A∗ is given by

A∗ = XB† = XB
(
BTB

)−1
. (3.3)

For an extensive discussion on the computational aspects of the solution of the normal
equations the reader is referred to [15].

3.2 Matrix Nonnegative LS
Let X ∈ Rm×n, A ∈ Rm×r

+ , B ∈ Rn×r, and consider the Matrix Nonnegative LS (MNLS)
problem

min
A≥0

f(A) :=
1

2
∥X−ABT∥2F . (3.4)

The problem given in (3.4), is convex, however, it does not have a closed form solution.
Hence, we resort to iterative methods that solve efficiently problems of this form in the
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following sections. The next section focuses on L–smooth µ–strongly convex optimization
problems.

3.2.1 Optimal first–order methods for L–smooth µ–strongly
convex optimization problems

We consider optimization problems of smooth and strongly convex functions and briefly
present results concerning their information complexity and the associated first–order op-
timal algorithms (for a detailed exposition see [16, Chapter 2]).

We assume that f : Rn → R is a smooth (that is, differentiable up to a sufficiently high
order) convex function, with gradient ∇f(x) and Hessian ∇2f(x). Our aim is to solve the
problem

min
x

f(x), (3.5)

within accuracy ϵ > 0. The solution accuracy is defined as follows. If f ∗ := min
x

f(x), then
point x̄ ∈ Rn solves problem (3.5) within accuracy ϵ if f(x̄)− f ∗ ≤ ϵ.

Let 0 < µ ≤ L < ∞. A smooth convex function f is called L–smooth or, using the
notation of [16, p. 66], f ∈ S∞,1

0,L , if

0 ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn, (3.6)

and L–smooth µ–strongly convex, or f ∈ S∞,1
µ,L , if

µI ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn. (3.7)

The number of iterations that first-order methods need for the solution of problem (3.5),
within accuracy ϵ, is O

(
1√
ϵ

)
if f ∈ S∞,1

0,L , and O
(√

L
µ
log 1

ϵ

)
if f ∈ S∞,1

µ,L [16, Theorem 2.2.2].
The convergence rate in the first case is sublinear while, in the second case, it is linear and
determined by the condition number of the problem, K := L

µ
. Thus, strong convexity is a

very important property that should be exploited whenever possible.
An algorithm that achieves this complexity, and, thus, is first–order optimal, appears

in Algorithm 1 (see, also [16, p. 80]). This algorithm can handle both the L-smooth case,
by setting q = 0, and the L–smooth µ–strongly convex case, by setting q = µ

L
> 0.

If the problem of interest is the constrained problem

min
x∈X

f(x), (3.8)
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Algorithm 1 Nesterov algorithm for L–smooth µ–strongly convex optimization problems
procedure Nesterov_algorithm(x0 ∈ Rn, µ, L, k)

Set y0 = x0, α0 ∈ (0, 1), q = µ
L

xk+1 = yk − 1
L
∇f(yk)

αk+1 ∈ (0, 1) from α2
k+1 = (1− αk+1)α

2
k + qαk+1

βk+1 =
αk(1−αk)

α2
k+αk+1

yk+1 = xk+1 + βk+1(xk+1 − xk)
end procedure

where X is a closed convex set, then the corresponding optimal algorithm is very much
alike Algorithm 1, with the only difference being in the computation of xk+1. We now have
that [16, p. 90]

xk+1 = ΠX

(
yk −

1

L
∇f(yk)

)
, (3.9)

where ΠX(·) denotes the Euclidean projection onto set X. The convergence properties of
this algorithm are the same as those of Algorithm 1. If the projection onto set X is easy
to compute, then the algorithm is both theoretically optimal and very efficient in practice.

3.2.2 Optimal first–order methods for L–smooth µ–strongly
convex MNLS problems

In this section, we present an optimal first–order algorithm for the solution of L–smooth
µ–strongly convex MNLS problems. Optimal first–order methods have recently attracted
great research interest because they are strong candidates and, in many cases, the only
viable way for the solution of very large optimization problems.

Nesterov–type algorithm for MNLS with proximal term

In the sequel, we present a Nesterov–type algorithm for the MNLS problem with prox-
imal term. Let X ∈ Rm×n, A ∈ Rm×r, B ∈ Rn×r, and consider the problem

min
A≥0

f(A) :=
1

2
∥X−ABT∥2F . (3.10)

The gradient and Hessian of f , at point A, are, respectively,

∇f(A) = −
(
X−ABT

)
B (3.11)
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Algorithm 2 Nesterov–type algorithm for MNLS with proximal term
procedure Nesterov_MNLS(X ∈ Rm×n, B ∈ Rn×r, A∗ ∈ Rm×r)

L = max(eig(BTB))
µ = min(eig(BTB))
λ = g(L, µ)
W = −XB− λA∗
Z = BTB+ λI
q = µ+λ

L+λ

A0 = Y0 = A∗
α0 = 1, k = 0
while (1) do

∇fP(Yk) = W +YkZ
if (terminating_condition is TRUE) then

break
else

Ak+1 =
(
Yk − 1

L+λ
∇fP(Yk)

)
+

α2
k+1 = (1− αk+1)α

2
k + qαk+1

βk+1 =
αk(1−αk)

α2
k+αk+1

Yk+1 = Ak+1 + βk+1 (Ak+1 −Ak) k = k + 1
end if

end while
return Ak

end procedure

and
∇2f(A) :=

∂2f(A)

∂vec(A)∂vec(A)T
= BTB⊗ I ⪰ 0. (3.12)

Let L := max(eig(BTB)) and µ := min(eig(BTB)). If µ = 0 (for example, if r > n),
then problem (3.10) is L-smooth. If µ > 0, then problem (3.10) is L–smooth µ-strongly
convex. A first–order optimal algorithm for the solution of (3.10) can be derived using
the approach of Section 3.2.1. We note that [13] and [14] solved problem (3.10) using a
variation of Algorithm 1, which is equivalent to Algorithm 1 with µ = 0. However, if µ > 0,
then this algorithm is not first–order optimal and, as we shall see later, it performs much
worse than the optimal.

We note that the values of L and µ are necessary for the development of the Nesterov-
type algorithm, thus, their computation is imperative.1

1An alternative to their direct computation is to estimate L using line-search techniques and overcome
the computation of µ using heuristic adaptive restart techniques [17]. However, in our case, this alternative
is computationally demanding, especially for large–scale problems, and shall not be considered.
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Under the AO framework, in order to avoid very ill–conditioned problems (and guar-
antee strong convexity), we introduce a proximal term and solve problem

min
A≥0

fP(A) :=
1

2
∥X−ABT∥2F +

λ

2
∥A−A∗∥2F , (3.13)

for given A∗ and appropriately chosen λ. We choose λ based on L and µ, and denote
this functional dependence as λ = g(L, µ). If µ

L
≪ 1, then we may set λ ≈ 10µ, signifi-

cantly improving the conditioning of the problem by putting large weight on the proximal
term; however, in this case, we expect that the optimal point will be biased towards A∗.
Otherwise, we may set λ ⪅ µ, putting small weight on the proximal term and permit-
ting significant progress towards the computation of A that satisfies approximate equality
X ≈ ABT as accurately as possible.

The gradient of fP, at point A, is

∇fP(A) = −
(
X−ABT

)
B+ λ(A−A∗). (3.14)

The Karush–Kuhn–Tucker (KKT) conditions for problem (3.13) are [13]

∇fP(A) ≥ 0, A ≥ 0, ∇fP(A)⊛A = 0. (3.15)

These expressions can be used in a terminating condition. For example, we may ter-
minate the algorithm if

min
i,j

(
[∇fP(A)]i,j

)
> −δ1,max

i,j

(∣∣∣[∇fP(A)⊛A]i,j

∣∣∣) < δ2, (3.16)

for small positive real numbers δ1 and δ2. Of course, other criteria, based, for example, on
the (relative) change of the cost function can be used in terminating conditions.

A Nesterov–type algorithm for the solution of the MNLS problem with proximal term
(3.13) is given in Algorithm 2. For notational convenience, we denote Algorithm 2 as

Aopt = Nesterov_MNLS(X,B,A∗).

Computational complexity of Algorithm 2

Quantities W and Z are computed once per algorithm call and cost, respectively,
O(mnr) and O(rn2) arithmetic operations. Quantities L and µ are also computed once
and cost at most O(r3) operations. ∇fP(Yk), Ak, and Yk are updated in every iteration
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with cost O(mr2), O(mr), and O(mr) arithmetic operations, respectively.
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Chapter 4

Tensor Algebra Preliminaries

4.1 Introduction

Before introducing the algorithms used in this thesis, it is necessary to present several
properties of tensors. Initially, we will give definitions regarding what a tensor is, tensor
operations, and we will note a key difference between matrices and tensors.

4.2 Definitions

Definition 4.1 A tensor is a multidimensional array. The order of a tensor defines
the number of dimensions a tensor has.

Based on the definition above, a third order tensor is a tensor with three indices. An
illustration is shown in Figure 4.1.

A matrix is a second–order tensor and a vector is a first–order tensor. We collectively
refer to tensors of order three or higher as higher–order tensors.

As in matrices, the operations of addition and subtraction are also defined for tensors,
in a straightforward way. There also exist a tensor analogue of matrix multiplication and
matrix–vector multiplication, which will be defined later in this chapter.

j = 1, . . . , J

i = 1, . . . , I

k = 1, . . . , K

Figure 4.1: A third order tensor X ∈ RI×J×K .
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Figure 4.2: Mode–1, mode–2 and mode–3 fibers for a third order tensor, respectively. This
image is derived from [1].

Definition 4.2 The Frobenius norm of a tensor X ∈ RI1×I2×···×IN is defined as

∥X∥ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2
i1,i2,...,iN

. (4.1)

Definition 4.3 A fiber of a tensor is a vector defined by fixing all indices of a tensor but
one.

As an example, let us assume a tensor X ∈ RI×J×K . x:,j,k defines a mode–1 fiber,
xi,:,k defines a mode–2 fiber and xi,j,: defines a mode–3 fiber, as shown in the figure below.
Definition 4.4 Let a ∈ RN , b ∈ RP , and c ∈ RJ . The outer product of a and b is
defined as the rank–one matrix with elements

[a ◦ b]n,p = anbp, (4.2)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P}. In the same manner, the outer product of a, b and
c is defined as the rank–one tensor with elements

[a ◦ b ◦ c]n,p,j = anbpcj, (4.3)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P} , and j ∈ {1, . . . , J} .

Rank–1 tensors for N–th order tensors, with N > 3, are defined similarly.
Definition 4.5 Let X ∈ RI1×I2×···×IN . The matricization of the tensor with respect
to the j–th mode (mode–j matricization) is defined as the matrix X(j) ∈ RIj×

∏N
k=1,k ̸=j Ik ,

where the element [X ]i1,i2,...,ij ,...,iN is mapped to [X(j)]ij ,k according to [1]:

k = 1 +
N∑
p=1
p ̸=j

(ip − 1)Jp, where Jp =

p−1∏
m=1
m̸=j

Im.
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This can be better understood through an example. Let a tensor X ∈ RI×J×K . We are
interested in examining the mode–1 matricization of X , X(1) ∈ RI×JK . Then, element
[X ]i1,i2,i3 will be mapped to element [X(1)]i1,k, where

k = 1 + (i2 − 1) + (i3 − 1)I2, (4.4)

since
1∏

m=2

Im =
∏
m∈∅

Im = 1 (by convention) and J3 =
2∏

m=2

Im = I2. For the mode–2

matricization, X(2) ∈ RJ×IK , element [X ]i1,i2,i3 will be mapped to element [X(2)]i2,k′ , where

k′ = 1 + (i1 − 1) + (i3 − 1)I1,

since J1 =
0∏

m=1

Im = 1, J3 =
2∏

m=2

Im = I1, and so on.

Definition 4.6 Let X ∈ RI1×I2×···×In···×IN and U ∈ RIn×J . The n–mode product of
X and U, denoted as X ×n U, is a tensor of size I1 × I2 × · · · × In−1 × J × In+1 × · · · × IN

and it is defined, elementwise, as

(X ×n U)i1,...,in−1,j,in+1,...,IN =

IN∑
in=1

xi1,i2,...,in,...,iNuin,j.

The idea can also be expressed in terms of the mode–n matricization of X since

Y = X ×n U ⇔ Y(n) = UTX(n).

Definition 4.7 Let X ∈ RI1×I2×···×In···×IN and v ∈ RIn. The n–mode vector product of
X with v is denoted as X ×nv, and produces a new tensor Y ∈ RI1×I2×···×In−1×1×In+1×···×IN

and is defined as

Yi1,i2,...,in−1,in+1,...,iN =
In∑
j=1

xi1,i2,...,in−1,j,in+1,...,iNvj.

The new tensor Y has order (N −1). This operation is also called tensor–times–vector
multiplication (TTV).
Products between tensors can also be defined, but are beyond the scope of this thesis.
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4.3 Rank Decompositions
In several problems, we may wish to model a data set using multilinear models. Pro-

cedures that can provide such models are called matrix or tensor factorizations or decom-
positions. If we choose to model using sums of rank–1 components, then we we have a
rank decomposition or rank factorization. Some applications are referred at the end of this
section. Before proceeding, we give an alternative definition for the rank of a matrix.
Definition 4.8 Let A ∈ Rm×n. The rank of A is the minimal number of rank–1 matrices
that we need to add, in order to have an exact approximation of A.

The CP rank of a tensor, which we will refer to for the rest of this thesis as the rank
of a tensor, is defined in a similar manner.

4.3.1 Matrix Case

In the matrix case, we can get a rank decomposition through the SVD. For an arbitrary
matrix A ∈ RI×J with rank(A) = R we have:

A = UΣV† =
R∑
i=1

σiui ◦ vi. (4.5)

Computing the SVD has a complexity of O(mn2) [18]. The rank R is equal to the
number of nonzero singular values. As a last note, we mention that the rank decomposition
is not unique. If we consider an orthogonal matrix Q ∈ RI×I , equation (4.5) can be re-
written as

A = UΣV† = UQQTΣV† = ŨΣ̃V†. (4.6)

Uniqueness can be only be achieved by imposing orthogonality constraints on matrices U

and V.

4.3.2 Tensor Case

The rank decomposition of a tensor is given by

X = ⟦U(1), . . . ,U(N)⟧ =
R∑

r=1

u(1)
r ◦ · · · ◦ u(N)

r . (4.7)

This decomposition is called PARAFAC decomposition, or CP decomposition. Com-
puting the rank of a tensor, in contrast to the matrix case, is an NP-hard problem [19]. As
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a result, we cannot hope that we wiil always be able to find an exact approximation of the
initial tensor. Bounds on the rank of tensors for several orders are listed in [4]. In practice,
the rank of a tensor is determined numerically by fitting various rank–R decompositions.
It has been shown, however, that, under mild conditions, a tensor rank decomposition is
unique, up to a scaling and permutation ambiguity. These conditions are shown in the
sequel.

Uniqueness of tensor rank decomposition

We begin with several additional definitions.
Definition 4.9 Let a matrix A ∈ RI×R. The kruskal rank kA of A is the largest integer
k such that any k columns of A are linearly independent. It holds that kA ≤ rank(A) [4].

We can now give the definition of the scaling and permutation ambiguity.
Definition 4.10 Given a tensor X of rank R, we say that its CPD is unique, up to a
scaling and permutation ambiguity, if the R rank–1 terms in its decomposition are unique.

The above definition means that for a tensor X = ⟦Ũ(0), . . . , Ũ(N)⟧, with Ũ(i) ∈ RIi×R

and i ∈ {1, . . . , N}, there exists a permutation matrix Π and diagonal scaling matrices Λi,
with i ∈ {1, . . . , N}, such that for all i ∈ {1, . . . , N}

Ũ(i) = U(i)ΠΛi,
N∏
i=1

Λi,= I. (4.8)

Now we can state the uniqueness condition, for any N–th order tensor, with N ≥ 3.
Theorem 4.1 Let X = ⟦U(1), . . . ,U(N)⟧ =

∑R
r=1 u

(1)
r ◦ · · · ◦ u

(N)
r , with U(i) ∈ RIi×R,

i ∈ {1, . . . , N}. If
N∑
i=1

kU(i) ≥ 2R + N − 1, then the decomposition is unique up to scaling
and permutation ambiguity.

Methods to find the CP decomposition of a tensor are discussed in the next chapter.

4.3.3 Applications
A sample application of matrix and/or tensor decompositions includes recommender

systems. Streaming services, for example, may deploy collaborative filtering and factoriza-
tion techniques in order to suggest new products to their users [4]. Another application
described in [20] is the modelling of chatroom data using tensors. In this study, the bilinear
SVD model is tested versus the PARAFAC and Tucker3 models. The Tucker3 decomposi-
tion is another tensor decomposition model, it is not, however, a rank decomposition. For
more applications of tensor factorizations, we refer the reader to [21], [22] and [4].
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Tensor Factorizations

5.1 PARAFAC model

Let tensor X o ∈ RI1×I2×···×IN admit a factorization of the form

X o = ⟦Uo(1), . . . ,Uo(N)⟧ =
R∑

r=1

uo(1)
r ◦ · · · ◦ uo(N)

r , (5.1)

where Uo(i) = [u
o(i)
1 · · · u

o(i)
R ] ∈ RIi×R, with i ∈ {1, . . . , N}. We observe the noisy tensor

X = X o + E , where E is the additive noise. Then, estimates of Uo(i) can be obtained by
computing matrices U(i) ∈ RIi×R, for i ∈ {1, . . . , N}, that solve the optimization problem

min
U(1),...,U(N)

fX
(
U(1), . . . ,U(N)

)
, (5.2)

where fX is a function measuring the quality of the factorization. A common choice for
fX is

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
. (5.3)

If Y = ⟦U(1), . . . ,U(N)⟧, then for an arbitrary mode i, the corresponding matrix unfolding
is given by [1]

Y(i) = U(i)
(
U(N) ⊙ · · · ⊙U(i+1) ⊙U(i−1) ⊙ · · · ⊙U(1)

)T
,

Y(i) = U(i)KiT ,
(5.4)

where we define Ki as

Ki =

(
N

⊙
j=i+1

U(j) ⊙
i−1

⊙
j=1

U(j)

)
. (5.5)

Thus, fX can be expressed as

fX (U(1), . . . ,U(N)) =
1

2

∥∥X(i) −Y(i)

∥∥2
F

(5.6)
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These expressions form the basis of the alternating least squares algorithm (ALS) for tensor
factorization, in the sense that, for fixed matrix factors U(j), with j ̸= i, we can update
U(i) by solving a matrix least–squares problem.

5.2 Dimension Trees

As we mentioned above, for fixed matrix factors U(j), with j ̸= i, updating U(i) can be
reduced to the solution of a matrix least–squares problem and by extension to the solution
of the normal equations, which for the PARAFAC model are given by

Y(i)K
i = U(i)

(
Ki
)T

Ki ⇔

Y(i)K
i = U(i)

 N⊛
j=1
j ̸=i

U(j)TU(j)

⇔

Y(i)K
i = U(i)H(i),

(5.7)

where
(
⊛N

j=1
j ̸=i

U(j)TU(j)

)
= H(i) The left–hand term of (5.7) is referred to as matricized

tensor times Khatri–Rao product (MTTKRP). For the PARAFAC decomposition, under
the ALS framework, the calculation of MTTKRP constitutes the computational bottleneck
and finding ways to reduce the computational complexity of MTTKRP has attracted the
interest of many researchers.

Dimension trees are data structures that aim to avoid recalculating expressions that are
common among computations of different MTTKRPs, during a full cycle of factor updates
(ALS iteration). We introduce these expressions by initially examining how they are used
in the case of a third–order tensor, and then of a fourth–order tensor. Based on the analysis
for the fourth–order tensor, this approach can be easily generalized for the case of N–th
order tensors, where N > 4.

Third–Order Tensor Case

Let us consider a tensor X ∈ RI×J×K , and let U(1) ∈ RI×R, U(2) ∈ RJ×R, and U(3) ∈
RK×R be the approximating factors. Then, the MTTKRPs that correspond to factors U(1)



5.2. Dimension Trees 39

and U(2), respectively, are given by

M(1) = X(1)(U
(3) ⊙U(2)),

M(2) = X(2)(U
(3) ⊙U(1)).

In the sequel, we show that the underlined temporary quantities correspond to a common
term, which is actually a tensor. Each element of matrix M(1) can be computed as

m
(1)
i,r =

∑
j,k

xi,j,ku
(2)
j,ru

(3)
k,r =

∑
j

u
(2)
j,r

∑
k

xi,j,ku
(3)
k,r =

∑
j

u
(2)
j,r ti,j,r,

where T ∈ RI×J×R is a tensor that can be reused for the computation of M(2), since

m
(2)
j,r =

∑
i,k

xi,j,ku
(1)
i,r u

(3)
k,r =

∑
i

u
(1)
i,r

∑
k

xi,j,ku
(3)
k,r =

∑
i

u
(1)
i,r ti,j,r.

However, calculating the MTTKRP that corresponds to the factor U(3) has to be computed
from ground.

Fourth–Order Tensor Case

Let X ∈ RI×J×K×L and U(1) ∈ RI×R, U(2) ∈ RJ×R, U(3) ∈ RK×R, and U(4) ∈ RL×R be
the approximating factors. Then, the corresponding MTTKRPs will be

M(1) = X(1)(U(4) ⊙U(3) ⊙U(2)), (5.8)

M(2) = X(2)(U(4) ⊙U(3) ⊙U(1)), (5.9)

M(3) = X(3)(U(4) ⊙U(2) ⊙U(1)), (5.10)

M(4) = X(4)(U(3) ⊙U(2) ⊙U(1)). (5.11)

Working analogously as above, we can obtain

m
(1)
i,r =

∑
j,k,l

xi,j,k,lu
(2)
j,ru

(3)
k,ru

(4)
l,r =

∑
j

u
(2)
j,r r

1
i,j,r, (5.12)

m
(2)
j,r =

∑
i,k,l

xi,j,k,lu
(1)
i,r u

(3)
k,ru

(4)
l,r =

∑
i

u
(1)
i,r r

1
i,j,r, (5.13)

m
(3)
k,r =

∑
i,j,l

xi,j,k,lu
(2)
j,ru

(1)
i,r u

(4)
l,r =

∑
l

u
(4)
l,r r

2
k,l,r, (5.14)
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m
(4)
l,r =

∑
i,j,k

xi,j,k,lu
(2)
j,ru

(1)
i,r u

(3)
k,r =

∑
k

u
(3)
k,rr

2
k,l,r, (5.15)

where R1 ∈ RI×J×R is the result of R TTV products between T 1
:,:,:,r and U

(3)
:,r , for r ∈

{1, . . . , R}, while R2 ∈ RK×L×R is defined in a similar way.

Computing MTTKRP through tensor operations

We can compute the MTTKRP by using TTVs [23]. The i–th factor’s MTTKRP M(i)

is computed column–by–column. The r–th column, for r ∈ {1, . . . , R}, is a result of (N−1)

TTVs:
M(n)

:,r = X ×i ̸=n u
(i)
r , (5.16)

where u
(i)
r is the r–th column of U(i). Equation (5.16) is written equivalently as

M(n)
:,r = X ×1 u

(1)
r ×2 · · · ×n−1 u

(n−1)
r ×n+1 u

(n+1)
r ×n+2 · · · ×N u(N)

r . (5.17)

5.2.1 Dimension Tree Based ALS

{1,2,3,4}

{1,2}

{1} {2}

{3,4}

{3} {4}

Figure 5.1: Dimension tree for a Tensor of order 4. In general, each node is associated
with a tensor, and a set of indices S ⊆ {1, 2, . . . , order(X )}, which give us information
regarding the dimensions of the node’s tensor.

As presented in the previous cases, in each ALS iteration different MTTKRPs share
common terms, the partial MTTKRPs, that can be calculated once and then be saved to
convenient data structures. One popular choice for the needs of the ALS–based PARAFAC
decomposition consists in the deployment of a specific kind of binary trees known as di-
mension trees. As we show in chapter 6, this strategy can offer significant speedup in
computing tensor decompositions.
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Constructing a Dimension Tree

Given a tensor X ∈ RI1×···×IN , a dimension tree follows the structure of a binary tree,
where each node of the tree is associated with a tensor and is labeled by a set of indices.
The cardinality of this set defines the order of the associated tensor, while the i–th index
defines the i–th dimension of the associated tensor, in correspondence to the dimensions of
the initial tensor X . Specifically, regarding the root node, the associated tensor will be X
and will be labeled by the set {1, . . . , N}, while the nonroot nodes will be associated with
tensors of order ≤ N , with the last dimension being equal to the decomposition rank R,
and labeled with a subset of {1, . . . , N}. This specification of the nonroot nodes emerges
from the fact that the associated tensors, in the case of nonroot nodes, are produced by
partial MTTKRP operations. The reader should notice at this point that, for the case of
the leaf nodes, the associated tensor will have a maximum order of 2, in the case where
R > 1; then these nodes will be associated with a matrix, which is one of the MTTKRP
terms M(n), with n ∈ {1, . . . , N}.

Next, we demonstrate an example of a dimension tree for the case of a fourth–order
tensor. Let us assume that we are interested in factorizing a tensor X ∈ RI×J×K×L. Then,
a dimension tree that could be used along with the ALS algorithm is presented in Figure
5.1. In accordance to the relations in (3.18), nodes {1, 2} and {3, 4} will be associated to
tensors R1 and R2, respectively, while nodes {1}, {2}, {3}, and {4} will be associated to
matrices M1, M2, M3, and M4, respectively.

Updating Procedure of a Dimension Tree

In this section, we rely on the notation and discuss the algorithms that are presented in
[24]. Assume that factor U(i) has been successfully updated after taking into consideration
the associated matrix of leaf {i}. It should be clear that several contents of the dimension
tree are no more up to date and proceeding with the course of the ALS algorithm could
lead to inaccurate results. Hence, after updating a matrix factor, the need of updating
efficiently the dimension tree arises. In order to describe the procedures one should perform
to achieve this, we introduce some useful notation. A dimension tree generated by a tensor
X is denoted in the sequel as T (X ). The leaf node labeled by {i} is denoted as li. For
a node t, we denote the set of indices node t has as µ(t), while we define µ′(t) to be the
complement of µ(t) with respect to µ(root), namely µ′(t) = {1, . . . , N} \ µ(t). The parent
of node t is denoted as P(t), while the left and right children nodes are denoted as L(t)
and R(t), respectively. The associated to node t tensor is denoted by X (t). At last, we let
δ(t) to be the set of indices that the sibling node of t has, namely, δ(t) = µ′(t) \µ′(P(t)) =
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µ(P(t)) \ µ(t).
Updating a node t requires the parent node P(t) to be updated. Hence, in order to

update node t, all the nodes that belong to the path connecting t and the root node have to
be traversed, beginning from node t, until an updated node is met. Note that the existence
of an updated node in every ending to the root path is guaranteed, since the content of the
root node does not change during the execution of the ALS algorithm and therefore can be
always considered as updated. As a result, updating node t can be achieved in a recursive
fashion. Algorithms 3 and 4, presented on [24], are devised within this framework for the
problem of efficient updating a dimension tree for the needs of PARAFAC decomposition
via ALS optimization.

Dimension Tree based ALS

Algorithm 3 is a recursive algorithm that takes as input argument a node t ∈ T (X ),
deals with the update of all nodes on the path connecting node t and the root node and
returns an updated version of X (t). From the perspective of [24], a node t′ is assumed to
be updated, when tensor X (t′) exists, since when node t′ becomes outdated. Algorithm
4 proceeds to set X (t′) as outdated. Algorithm 4 can be characterized as an customized
version of vanilla ALS–PARAFAC, where the interaction of the dimension tree is supported
by functions Construct_Dimension_Tree, Destroy, and Dtree_TTV.

Before introducing the algorithms, we present additional notation. We refer to X (t)
r , as

a subtensor of X (t), where the last index is fixed at value r, with r ∈ {1, . . . , R}. For the
root node root, we have that X (root)

r = X , for all r.

Algorithm 3 DTree_TTV: Dimension tree–based TTV with R vectors in each mode
procedure DTree_TTV(Node t ∈ T (X ))

if exists(X (t)) then
return X (t)

end if
XP(t) = DTree_TTV(P(t))
for r = 1, . . . , R do

X (t)
r = X (P(t))

r ×d∈δ(t) u
(d)
r

end for
return X (t)

end procedure
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Algorithm 4 DTree–PARAFAC–ALS: A dimension tree–based PARAFAC–ALS algo-
rithm, for unconstrained and NTF problems.

procedure DTree–ALS(X ,R,constraint_flag[ ])
k = 0
T (X ) = Construct_Dimension_Tree(X )
for i = 1, . . . , N do

W(i) = U
(i)T
k U

(i)
k

end for
repeat

for i = 1, . . . , N do
for t ∈ T (X ) do

if i ∈ µ′(t) then
Set_outdated(X (t))

end if
end for
M(i) = DTree_TTV(li)
H(i) =⊛N

j=1
j ̸=i

W(i)

U
(i)
k+1 = Update_Factor(M(i),H(i),U

(i)
k , constraint_flag[i])

W(i) =
(
U

(i)
k+1

)T
U

(i)
k+1

end for
k = k + 1

until convergence is achieved or maximum number of iterations has been reached
return [U(1), . . . ,U(N)]

end procedure

Algorithm 5 The Update_Factor function

procedure Update_Factor(M(i),H(i),U(i)
k ,constraint_flag)

if constraint_flag = ’unconstrained’ then
U

(i)
k+1 = M(i)H(i)†

else if constraint_flag = ’nonnegativity’ then
U

(i)
k+1 = Nesterov_MNLS(M(i),H(i),U

(i)
k )

end if
return U

(i)
k+1

end procedure

5.3 Constrained Tensor Decomposition

In many applications, we are interested in tensor decompositions where the requested
factors are desired to comply with constraints emerging from underlying models or for
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interpretability reasons. Specifically, let tensor X o ∈ RI1×···×IN admit a factorization of
the form

X o = ⟦U(1)o, . . . ,U(N)o⟧ =
R∑

r=1

u(1)o
r ◦ · · · ◦ u(N)o

r , (5.18)

where U(n)o =
[
u
(n)o
1 · · · u

(n)o
R

]
∈ Bn ⊆ RIn×R, with n ∈ {1, . . . , N}. We observe the noisy

tensor X = X o + E , where E ∈ RI1×···×IN is the additive noise. Then, the problem of
finding estimates of the factors U(n)o can be formulated as

min
U(1),...,U(n)

fX
(
U(1), . . . ,U(N)

)
s.t. U(n) ∈ Bn, n ∈ {1, . . . , N}

(5.19)

where fX is a function measuring the quality of the factorization. As in the unconstrained
case, we focus on the sum of squared errors cost function

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
. (5.20)

Under the ALS framework, each factor can be updated via solving an unconstrained/constrained
matrix least–squares problem. It can be formulated as:

min
U(i)

1

2
∥X(i) −U(i)Ki∥2F

s.t. U(i) ∈ Bi, i ∈ {1, . . . , N}.
(5.21)

Set Bi, for i ∈ {1, . . . , N}, can be

• RIi×R: unconstrained case,

• RIi×R
+ : case of nonnegativity constraints.

Tensor Decomposition with nonnegativity constraints

Recall expressions (5.2), (5.3) and (5.6):

min
U(1),...,U(N)

fX
(
U(1), . . . ,U(N)

)
,

fX
(
U(1), . . . ,U(N)

)
=

1

2

∥∥X − ⟦U(1), . . . ,U(N)⟧
∥∥2
F
,

fX (U(1), . . . ,U(N)) =
1

2

∥∥X(i) −Y(i)

∥∥2
F
.
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If we introduce the constraint {U(i)}Ni=1 ≥ 0, then these expressions form the basis for the
AO NTF in the sense that, if we fix all but one of the matrix factors, we can update the
remaining factor by solving an MNLS problem.

For later use, we note that the most demanding computations during the update of
any factor matrix U

(i)
k via the Nesterov–type MNLS algorithm are (see lines 4 and 5 of

Algorithm 2)

M̃(i) := X(i)

(
N

⊙
j=i+1

U
(j)
k ⊙

i−1

⊙
j=1

U
(j)
k+1

)
= X(i)K

i
k, (5.22)

Z̃(i) := KiT

k Ki
k =

(
N⊛

j=i+1

(
U

(j)T

k U
(j)
k

))
⊛
(

i−1⊛
j=1

(
U

(j)T

k+1U
(j)
k+1

))
, (5.23)

where Ki
k is defined as:

Ki
k =

(
N

⊙
j=i+1

U
(j)
k ⊙

i−1

⊙
j=1

U
(j)
k+1

)
. (5.24)

It has been shown in [25] that the AO NTF algorithm with proximal term falls under the
block successive upper bound minimization (BSUM) framework, which ensures convergence
to a stationary point of problem (5.2).
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Chapter 6

Parallel Implementations

In this section, we assume that we have at our disposal p =
∏N

i=1 pi processing elements
and describe a parallel implementation of the AO algorithms, which has been motivated by
the medium–grained approach of [11].1 The p processors form an n-dimensional Cartesian
grid and are denoted as pi1,...,iN , with ij ∈ {1, . . . , pj} and j ∈ {1, . . . , N}.

6.1 Variable partitioning and data allocation
In order to describe the parallel implementation, given a decomposition problem of a

tensor X ∈ RI1×···×IN into a set of factors U(i) ∈ RIi×R, for all i ∈ {1, . . . , N}, we introduce
certain partitionings of the factor matrices and tensor X . Specifically, we partition each
factor matrix U(i) into pi block rows as

U(i) =
[ (

U(i)1
)T

· · ·
(
U(i)pi

)T ]T
, (6.1)

with U(i)j ∈ R
Ii
pi

×R, for all j ∈ {1, . . . , pi}. Additionally, we partition tensor X into p

subtensors as

X i1,...,iN = X
(
(i1 − 1)

I1
p1

+ 1 : i1
I1
p1
, . . . , (iN − 1)

IN
pN

+ 1 : iN
IN
pN

)
∈ R

I1
p1

×···× IN
pN (6.2)

where ij ∈ {1, . . . , pj} and j ∈ {1, . . . , N}.
From the perspective of the processors, processor pi1,...,iN receives subtensor X i1,...,iN

and contributes into updating the ij–th part of factor U(j), U(j)ij , for all j ∈ {1, . . . , N}.
At last, we assume that, at the end of the k–th outer AO iteration,

(a) processor pi1,...,iN knows U
(1)i1

k , U(2)i2

k , . . . , U(N)iN

k

(b) all processors know
(
U

(i)
k

)T
U

(i)
k , for all i ∈ {1, . . . , N}.

1 We note that both the single–core and the multi–core implementations solve the same problem, thus
problems that are identifiable in single-core environments remain identifiable in multi–core environments
and the solutions, in both cases, are practically the same.
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Figure 6.1: Tensor X , factors U(1), U(2), and U(3), and their partitioning for p1 = p2 = 3
and p3 = 2.

6.2 Communication groups
We define certain communication groups, also known as communicators [26], over sub-

sets of the p processors, which are used for the efficient collaborative implementation of
specific computational tasks, as explained in detail below.

First, we define as Ci,j, for i ∈ {1, . . . , N} and j ∈ {1, . . . , pi}, to be the (N − 1)–

dimensional group of processors, involving the
N∏

k=1,k ̸=i

pk processors having the i–th index

equal to j, which are used for the collaborative update of U(i)j

k . Additionally, we define

as Di,J i , for i ∈ {1, . . . , N} and J i ∈
N

×
n=1,n ̸=i

Sn, with Sn = {1, . . . , pn}, to be the one–

dimensional processor groups, each involving the pi processors that differ only at the i–th
index. Each of these groups is used for the collaborative computation of

(
U

(j)
k+1

)T
U

(j)
k+1,

for j ∈ {1, . . . , N}.

6.3 Parallel implementation

6.3.1 Factor update implementation

In this section, we consider the case of updating the factor matrix U
(1)
k . In order to

facilitate our analysis, we introduce the following partitioning of the mode–1 matricization
of the tensor X , as

X(1) =
[ (

X1
(1)

)T
· · ·

(
Xp1

(1)

)T ]T
, (6.3)

with Xj
(1) ∈ R

I1
p1

×
∏N

n=2 In , for all j ∈ {1, . . . , p1}. We describe in detail the update of U(1)
k ,

which is achieved via the parallel updates of U(1)i1

k , for all i1 ∈ {1, . . . , p1}, and consists of
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the following stages:

1. Processors in C1,i1 , for all i1 ∈ {1, . . . , p1}, collaboratively compute the I1
p1
×R matrix

M(1)i1 = Xi1
(1)K

(1), (6.4)

and the result is scattered among the processors in the group; thus, each processor
in the group receives I∏N

i=1 pi
successive rows of M(1)i1 . Term M(1)i1 can be computed

collaboratively because

Xi1
(1)K

(1) =

p2∑
i2=1

· · ·
pN∑

iN=1

Xi1,...,iN
(1) (U

(N)iN

k ⊙ · · · ⊙U
(2)i2

k ), (6.5)

where Xi1,...,iN
(1) is the matricization of X i1,...,iN with respect to the first mode. Each

processor pi1,...,in in C1,i1 knows Xi1,...,iN
(1) , U(2)i2

k , . . . , U(N)iN

k and computes the corre-
sponding term of (6.5). The sum is computed and scattered among all processors in
C1,i1 via a reduce–scatter operation.

2. Each processor in the group C1,i1 uses the scattered part of M(1)i1 , matrix K(1) and
partial factor U

(1)i1

k , in order to compute the updated part of U(1)i1

k+1 , via the update
factor algorithm.

3. The updated parts of U(1)i1

k+1 are all–gathered at the processors of the group C1,i1 , so
that all processors in the group learn the updated factor U

(1)i1

k+1 .

4. By applying an all–reduce operation to
(
U

(1)i1

k+1

)T
U

(1)i1

k+1 , for all i1 ∈ {1, . . . , p1},
on each of the single–dimensional processor groups D1,J 1 , all p processors learn
U

(1)T

k+1U
(1)
k+1.2

As for the rest of the factors, the updates can be implemented by following analogous steps.

6.3.2 Communication cost
We focus on the parallel updates of U(1)i1

k , for all i1 ∈ {1, . . . , p1}, and present results
concerning the associated communication cost. Analogous results hold for the updates of

2In the cases where R ⪆ I1
p1

it seems preferable to compute
(
U

(1)
k+1

)T (
U

(1)
k+1

)
via an all–gather operation

on terms U(1)i1

k+1 , for all i1 ∈ {1, . . . , p1}, on each of the single–dimensional processor groups D1,J 1 . However,
in this work, we mainly focus on small–rank factorizations, thus, in our communication cost analysis and
experiments we do not present results for this alternative.
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the remaining factor matrices U
(j)ij

k , for all j ∈ {2, . . . , N} and ij ∈ {1, . . . , pj}.
We assume that an m–word message is transferred from one process to another with

communication cost ts+ twm, where ts is the latency, or startup time for the data transfer,
and tw is the word transfer time [26].

Communication occurs at three algorithm execution points.

1. The I1
p1

×R matrix M1i1 is computed and scattered among the
∏N

j=2 pj processors of
group C1,i1 , using a reduce–scatter operation, with communication cost [26, §4.2]

Cost11 = ts

(
N∑
j=2

pj − (N − 1)

)
+ tw

I1R

p

(
N∏
j=2

pj − 1

)
.

2. Processors in C1,i1 learn the updated U
(1)i1

k+1 through an all–gather operation on its
updated parts, each of dimension I

p
×R, with communication cost [26, §4.2]

Cost12 = ts

(
N∑
j=2

pj − (N − 1)

)
+ tw

I1R

p

(
N∏
j=2

pj − 1

)
.

3. Finally,
(
U

(1)
k+1

)T
U

(1)
k+1 is computed by using an all–reduce operation on quantities(

U
(1)i1

k+1

)T
U

(1)i1

k+1 , for all i1 ∈ {1, . . . , p1}, on each single–dimensional processor group
D1,J 1 , with communication cost [26, §4.3]

Cost13 =
(
ts + twR

2
)
log2 p1. (6.6)

The communication that takes place during the acceleration step involves scalar quantities
and, thus, is ignored.

When we are dealing with large messages, the tw terms dominate the communication
cost. Thus, if we ignore the startup time, the total communication time is

C1 = tw

(
2I1R

p

(
N∏
j=2

pj − 1

)
+R2 log2 p1

)

≈ tw

(
2I1R

p1
+R2 log2 p1

)
≈ 2I1R tw

p1
,

(6.7)
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with the second approximation being accurate for R ≪ I1
p1

. The presence of p1 in the
denominator of the last expression of (6.7) implies that our implementation is scalable in
the sense that, if we double I1, then we can have (approximately) the same communication
cost per processor by doubling p1. Again, analogous results hold for the updates of the
remaining factor matrices U

(j)ij

k , for all j = {2, . . . , N} and ij ∈ {1, . . . , pj}.
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Chapter 7

Simulations

7.1 Parallel environment–MPI
We now present results obtained from the MPI implementation described in detail

in Section 6.3. The program is executed on a DELL PowerEdge R820 system with
SandyBridge–Intel(R) Xeon(R) CPU E5−4650v2 (in total, 16 nodes with 40 cores each at
2.4 GHz) and 490 GB RAM per node. The matrix and tensor operations are implemented
using a combination of routines of the C++ library Eigen’s Matrix module, as well as
Eigen’s unsupported tensor module. [27]. For the NTF problem, we assume a noiseless
tensor X , whose true latent factors have i.i.d elements, uniformly distributed in [0, 1], while
for the unconstrained problem, its elements are i.i.d, uniformly distributed in [−1, 1]. The
terminating conditions for MNLS are determined by values δ1 = δ2 = 10−2. In addition,
we set the limit for the number of AO iterations to 10, and for the Nesterov algorithm
iterations to 50.

The AO algorithm terminates at iteration k if (recall that tensor X is noiseless)

RFE(U
(1)
k ,U

(2)
k , . . . ,U

(N)
k ) < 10−3, (7.1)

where
RFE(U(1),U(2), . . . ,U(N)) :=

∥∥X − ⟦U(1),U(2), . . . ,U(N)⟧
∥∥
F

∥X∥F
(7.2)

We test the behavior of our implementation for various tensor orders and rank R = 10, 50.
The performance metric we compute is the speedup attained using p =×N

i=1 pi processors.
In the sequel, we plot the speedup and show exact performance times. The times that will
be presented are the averages of five Monte Carlo trials. The tensors that we conducted
our tests on are the following (in all cases, the tensor X has one billion entries or a little
above a billion entries):

1. Third order tensor: we set I = J = K = 1000.

2. Fourth order tensor: we set I = J = K = L = 178.
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3. Fifth order tensor: we set I = J = K = L = M = 64.

The number of processors used in the trials were p = 1, 2, 4, 8, 16, 32, 64, 128, 256. For
specific tensor orders, we also used p = 27, 81, 125, 243, in order to test the performance of
cubic grids. We present the formation of the grid for the various experiments carried out:

Table 7.1: Grid formations used.

Cores Third order tensor Fourth order tensor Fifth order tensor
1 1× 1× 1 1× 1× 1× 1 1× 1× 1× 1× 1
2 2× 1× 1 2× 1× 1× 1 2× 1× 1× 1× 1
4 2× 2× 1 2× 2× 1× 1 2× 2× 1× 1× 1
8 2× 2× 2 2× 2× 2× 1 2× 2× 2× 1× 1
16 4× 2× 2 2× 2× 2× 2 2× 2× 2× 2× 1
27 3× 3× 3 − −
32 4× 4× 2 4× 2× 2× 2 2× 2× 2× 2× 2
64 4× 4× 4 4× 4× 2× 2 4× 2× 2× 2× 2
81 − 3× 3× 3× 3 −
125 5× 5× 5 − −
128 8× 4× 4 4× 4× 4× 2 4× 4× 2× 2× 2
243 − − 3× 3× 3× 3× 3
256 8× 8× 4 4× 4× 4× 4 4× 4× 4× 2× 2

We first present results from the unconstrained problem.
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7.1.1 Unconstrained Problem
Speedup Plots
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Figure 7.1: Speedup plot for the unconstrained problem, for R = 10 and for p =
1, 2, 4, 8, 16, 27, 32, 64, 81, 125, 128, 243, 256.
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Figure 7.2: Speedup plot for the unconstrained problem, for R = 50 and for p =
1, 2, 4, 8, 16, 27, 32, 64, 81, 125, 128, 243, 256.
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Exact times

Table 7.2: Exact times for various tensor orders and rank R = 10 for the unconstrained
problem.

Cores Third order tensor Fourth order tensor Fifth order tensor
1 159.257 s 222.011 s 774.17 s
2 78.77 s 125.646 s 434.156 s
4 39.147 s 63.879 s 227.832 s
8 20.534 s 32.34 s 115.235 s
16 11.589 s 17.886 s 61.672 s
27 8.142 s − −
32 6.928 s 13.096 s 34.648 s
64 3.81 s 7.362 s 22.027 s
81 − 5.635 s −
125 2.276 s − −
128 2.006 s 3.567 s 12.067 s
243 − − 7.439 s
256 1.139 s 2.176 s 6.503 s

Table 7.3: Exact times for various tensor orders and rank R = 50 for the unconstrained
problem.

Cores Third order tensor Fourth order tensor Fifth order tensor
1 423.309 s 712.77 s 2146.863 s
2 222.632 s 443.927 s 1379.992 s
4 112.565 s 245.307 s 754.291 s
8 61.004 s 123.023 s 399.606 s
16 34.716 s 72.039 s 219.717 s
27 23.059 s − −
32 20.524 s 56.895 s 147.784 s
64 11.334 s 31.891 s 109.083 s
81 − 22.449 s −
125 6.547 s − −
128 6.744 s 16.247 s 71.906 s
243 − − 50.77 s
256 4.098 s 9.96 s 45.361 s

We will now present results for the NTF problem.
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7.1.2 NTF
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Figure 7.3: Speedup plot for the Nonnegative Tensor Factorization problem, for R = 10
and for p = 1, 2, 4, 8, 16, 27, 32, 64, 81, 125, 128, 243, 256.
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Figure 7.4: Speedup plot for the Nonnegative Tensor Factorization problem, for R = 50
and for p = 1, 2, 4, 8, 16, 27, 32, 64, 81, 125, 128, 243, 256.
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Exact times

Table 7.4: Exact times for various tensor orders and rank R = 10 for the NTF problem.

Cores Third order tensor Fourth order tensor Fifth order tensor
1 165.193 s 215.081 s 762.868 s
2 79.047 s 125.035 s 435.582 s
4 40.019 s 63.829 s 228.697 s
8 21.017 s 33.663 s 115.854 s
16 10.881 s 18.047 s 62.748 s
27 7.751 s − −
32 6.738 s 13.041 s 35.435 s
64 3.891 s 7.355 s 22.205 s
81 − 5.736 s −
125 2.377 s − −
128 2.087 s 3.716 s 11.915 s
243 − − 7.32 s
256 1.212 s 2.426 s 6.471 s

Table 7.5: Exact times for various tensor orders and rank R = 50 for the NTF problem.

Cores Third order tensor Fourth order tensor Fifth order tensor
1 431.771 s 709.627 s 2137.673 s
2 225.379 s 443.120 s 1396.606 s
4 112.651 s 240.3 s 754.005 s
8 61.646 s 123.059 s 400.661 s
16 35.355 s 70.906 s 221.396 s
27 23.569 s − −
32 21.076 s 57.533 s 147.984 s
64 11.582 s 32.044 s 109.259 s
81 − 22.901 s −
125 6.8 s − −
128 6.865 s 16.651 s 72.164 s
243 − − 45.651 s
256 4.098 s 10.526 s 50.381 s

7.1.3 Conclusions

Based on the results, we observe that performance is similar for both problems; the
procedure that solves the least squares problems has little effect on the algorithm’s per-
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formance. This is in accordance to what was mentioned in chapter 5, regarding the ALS
algorithm’s computational bottleneck.
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Chapter 8

Discussion and Future Work

8.1 Conclusions

We considered tensor rank factorization problems, unconstrained and problems with
nonnegativity constraints. In order to tackle the computational bottleneck that charac-
terizes the ALS algorithm, we presented the Dimension Trees. These structures store
intermediate results that are repeated among several factors. We explained how they
function, which quantities are stored, which operations are used to calculate them, and
we presented examples for third–order tensors and fourth–order tensors. Dimension Trees
can be used regardless of factor constraints. We also presented a parallel implementation,
based on [28] and [29], for N–th order tensors, with N ≥ 3.

8.2 Future Work

We conclude this thesis by presenting possible future extensions of this work.

8.2.1 Inclusion of additional constraints

While we focused on unconstrained and nonnegativity constraints, we may wish to
impose other constraints on factors, based on how we model a problem. Sparsity constraints
and orthogonality constraints, for example, in which cases, for each factor we will solve the
corresponding matrix least squares problems.

8.2.2 Using Dimension Tree–like schemes for other
decompositions

We can examine if we can derive dimension tree–like schemes for other decomposition
models. Some examples follow.
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Tucker3 Decomposition

The Tucker3 decomposition of a tensor X ∈ RI×J×K is given by

xi,j,k =
P∑

p=1

Q∑
q=1

R∑
r=1

qp,q,rai,pbj,qck,r + ei,j,k, (8.1)

where A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R are the factor matrices of the first, second and
third modes respectively, E ∈ RI×J×K contains the residuals, and G ∈ RP×Q×R is called
the core tensor. A key difference between PARAFAC and Tucker3 is the existence of three
rank parameters in the latter, instead of one rank parameter in PARAFAC. PARAFAC
can be viewed as a special case of Tucker3, where P = Q = R, and gi,j,k = 1, if i = j = k,
otherwise it is equal to zero.

Tensor Completion

In cases where we have missing data, we must use algorithms that take this fact into
account. Algorithms for factorizing tensors with missing elements are called tensor com-
pletion algorithms. The cost function for this problem is the following

fW(U(1), . . . ,U(N)) =
1

2
∥W ⊛

(
X − ⟦U(1), . . . ,U(N)⟧

)
∥2F , (8.2)

where the tensor W ∈ RI1×···×IN is called the mask and is defined as

wi1,...,iN =

1 if xi1,...,iN is observed
0 if xi1,...,iN is missing.

(8.3)
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