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Hyperspectral imaging (HSI) is an emerging technology that integrates conven-
tional imaging and spectroscopy to attain both spatial and spectral information
from an object. The spectral images, collected in the spectral cube, are tens
of hundreds and the information we receive from them is crucial for many ap-
plications, such as bio-medical technology, remote sensing, microscopy etch.
Nevertheless, the current state of the art includes HSI systems which need
long acquisition time, something that prevents them from observing any dy-
namically developing phenomena. Also, they are expensive and sizeable, which
makes them inaccessible to many important applications. To address these
limitations, a theoretical real-time snapshot spectral imaging system (SNSI)
that captures a small number of spectral bands, and by using dimensionality
expansion techniques, provides real time HSI, is investigated in this study. A
comparative study of the state of the art was conducted under the assump-
tion of various hardware architectures (RGB narrow/wide, three, six, nine, and
twelve spectral channels). Furthermore, two new algorithms called K-Fourier
and 2Level are proposed and compared in terms of minimizing the estimation
error of the uncaptured spectral images. The novelty of the proposed methods
stems mainly from the reduction of the dimensionality of the space needed to be
reconstructed. Experiments on standard color charts show that the K-Fourier
and non-linear kernels outperform the other competing methods. Looking at the
same problem from another perspective, the most feature-rich training yields to
higher estimation accuracy. On that account, a great amount of band selection
techniques, which are based on similarity-measurement, dynamic programming,
and evolutionary formulas were analyzed and compared. Genetic Algorithms
turned out to be the most promising feature selection technique, since it dra-
matically improves the space reconstruction error. Moreover, we introduce a
nonlinear transformation of reflectance values to ensure that the estimated re-
flection spectra fulfill physically motivated boundary conditions. Ending up,
these findings set the basis for the development of a powerful SNSI system.
Medical diagnosis is expected to be a leading application of this novel approach.
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Figure 1.1: A Spectral Cube (source: Quantative BioImaging
Laboratory,(QBIL) [1].)

Chapter 1

Introduction

1.1 Introduction to Hyper Spectral Imaging -
Estimation

Over the last two decades, the field of optical imaging has developed very
rapidly, providing color imaging (CI) systems with very high resolution that
nowadays allow 3D imaging, as well as video capture with a very high frame
rate. These systems try to emulate human vision in order to reproduce a re-
sult (image) that resembles the actual scene as it is perceived by a human eye.
Usually these systems produce three-dimensional data (RGB is more commonly
used), where each of the three dimensions represents the intensity and chromi-
nance of light.

Although CI systems can provide an accurate representation of the scene at
hand, there is a great deal of information that can not be perceived with these
systems; information that may be hidden in the visible spectrum or beyond it,
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i.e. UV or Infrared regions of the spectrum. In the direction to obtain the
hidden information, spectral imaging systems are used.

Spectral Imaging (SI) is the application of reflectance spectroscopy to every
pixel in a spatial image. Every spatial image captured represents a different
wavelength within the electromagnetic spectrum and each pixel represents the
spectral power distribution of the scene at that point. The stack of images
created from this system is called Spectral Cube (Fig. (1.1)), and the data are
represented in multidimensional, spanning spatial and spectral dimensions (x,
y, λ).

Spectroscopy can be used to detect individual absorption features due to specific
chemical bonds in a solid, liquid, or gas. Solids can be either crystalline (i.e.
minerals) or amorphous (such as glass). Every material is formed by chemical
bonds and has the potential for detection with spectroscopy. Actual detection is
dependent on the spectral coverage, spectral and spatial resolution, and signal-
to-noise (SNR) of the SI system, the abundance of the material, and the strength
of absorption features for that material in the wavelength region measured.

SI systems are widely used nowadays in numerous fields such as medicine, as-
tronomy, industry, military etc. and due to the continuous need to improve
the preexisting techniques and methods, many innovations and advances were
developed.

The information provided by these systems, which is usually not discernible to
the human eye, allows useful facts and phenomena to be revealed. Unfortu-
nately, SI systems are expensive and sizable, which makes them inaccessible for
many applications. The acquisition and computational time that is needed is
very high, which prevents the system from observing any dynamically develop-
ing phenomena.

To address these limitations, real-time SNapshot Spectral Imaging (SNSI) sys-
tem needs to be developed that allow simultaneous Hyperspectral Imaging (HSI)
and has lower cost and size. We have developed and proposed a novel real-time
theoretical HSI system that can simultaneously acquires a small number of spec-
tral bands and provide spectral information in any desired wavelength within
the visible and infrared spectrum.
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Figure 1.2: Light as an electromagnetic wave (source: Physic-
stuff [2].)

1.2 Light as electromagnetic wave and also as
particle - Photoelectric Effect

Starting from the beginning of that science, it is important to be clarified that
light is one of the fundamental phenomena of electromagnetism that behaves as
wave and also as photon particle. It is characterized as wave when is emitted
and propagated and as particle when it is absorbed. As an electromagnetic
wave, it has both electric and magnetic field components, which oscillate in a
fixed relationship to one another, perpendicular to each other and perpendic-
ular to the direction of the energy and wave propagation as it is illustrated
in Fig. (1.2). Each electromagnetic wave is characterized by the frequency or
wavelength of its wave. The electromagnetic spectrum, in order of increasing
frequency and decreasing wavelength, consists of radio waves, microwaves, in-
frared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
The eyes of various organisms sense a somewhat variable but relatively small
range of frequencies called the visible spectrum of the light. Higher frequencies
correspond to proportionately more energy carried by each photon; for instance,
a single gamma ray photon carries far more energy than a single photon of vis-
ible light. This phenomenon was described first time by Einstein, who realized
that the energy(E) of any photon is given by the equation

E = h
c

λ
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Figure 1.3: Spectroscopy using a simple prism (source: As-
tronomy, Cosmos [3]).

where h is the Plank constant, c is the speed of the light in vacuum and λ is
the photon’s wavelength.

In classical physics, electromagnetic radiation is considered to be produced when
charged particles are accelerated by forces acting on them. Electrons are re-
sponsible for emission of most electromagnetic radiation because they have low
mass, and therefore are easily accelerated by a variety of mechanisms. Rapidly
moving electrons are most sharply accelerated when they encounter a region of
force, so they are responsible for producing much of the highest frequency elec-
tromagnetic radiation observed in nature. Quantum processes can also produce
electromagnetic radiation, such as when atomic nuclei undergo gamma decay,
and processes such as neutral pion decay.

As it was mentioned before, light behaves as particle when is absorbed. In
other words, that is exactly the reason of the photoelectric effect, in which
“packets” of energy, called photons increase the maximum kinetic energy of the
photoelectrons emitted from a given metal. Einstein got the Nobel Price in 1921
for his paper publication advancing the hypothesis that light energy is carried in
discrete quantized packets to explain experimental data and the photoelectric
effect. Photoelectric effect led both the scientific community and the industry
to implement image sensors, which could read those “packets” of energy and
produce a real digital image characterized by high color fidelity.

In this work, focusing in the duality of light is needed. The science of spec-
troscopy could bring out interesting information about the interaction between
radiation and the chemical structure of the objects as a function of the wave-
length λ.
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1.3 Spectroscopy/ spectrometry

Spectroscopy was originally the study of the interaction between radiation and
the structure of matter as a function of the wavelength λ. In fact, historically,
spectroscopy referred to the use of visible light dispersed according to its wave-
length, e.g. by a prism (Fig. (1.3)). Later, the concept was expanded greatly
to comprise any measurement of a quantity as function of either wavelength or
frequency. Thus, it can also refer to interactions with particle radiation or to a
response to an alternating field or varying frequency v. A further extension of
the scope of the definition added energy (E) as a variable, once the very close
relationship

E = hv

for photons was realized as it mentioned in Section 1.2. Spectrometry is the
spectroscopic technique used to assess the concentration or amount of a given
species. In those cases, the instrument that performs such measurements is a
spectrometer or spectrograph.

Spectroscopy/spectrometry is often used in physical and analytical chemistry for
the identification of substances through the spectrum emitted from or absorbed
by them. Spectroscopy/spectrometry is also heavily used in astronomy and
remote sensing. Most large telescopes have spectrometers, which are used either
to measure the chemical composition and physical properties of astronomical
objects or to measure their velocities from the Doppler shift of their spectral
lines.

1.4 Imaging spectroscopy

Imaging spectroscopy (also spectral imaging or chemical imaging) is the appli-
cation of reflectance spectroscopy to every pixel in a spatial image. In remote
sensing situations (Fig. (1.4)), the surface materials mapped must be exposed
in the optical surface (e.g., to map surface mineralogy it must not be covered
with vegetation), and the diagnostic absorption features must be in regions of
the spectrum that are reasonably transparent to the atmosphere. The optical
surface is the same as what the geologist sees in the field with his or her eyes.
Spectroscopy can be used in laboratories on hand samples, in the field with
portable field spectrometers (spatial resolution in the millimeter to several me-
ter range), from aircraft, and in the future from satellites. The aircraft systems
can image large areas in short time (2 sq. km per second), producing spectra for
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Figure 1.4: Principle of (remote sensing) imaging spectroscopy
(source: Markelowitz [4]).

each pixel that can be analyzed for specific absorption bands and thus specific
materials. These measurements can then be used for the unambiguous direct
and indirect identification of surface materials and atmospheric trace gases, the
measurement of their relative concentrations, subsequently the assignment of
the proportional contribution of mixed pixel signals (e.g., the spectral unmixing
problem), the derivation of their spatial distribution (mapping problem), and
finally their study over time (multi-temporal analysis).

Imaging spectroscopy can be considered as the equivalent of color photography,
but each pixel needs to acquire many bands of light intensity data from the
spectrum, instead of just the three bands of the RGB color model. More pre-
cisely, it is the simultaneous acquisition of spatially co-registered images in many
spectrally contiguous bands. In order to improve the spectroscopy imaging the
scientific community turned into the HSI.

1.5 Hyperspectral Imaging

Hyperspectral Imaging collects and processes information from across the elec-
tromagnetic spectrum. Unlike the human eye, which just sees visible light, HSI
is more like the eyes of the “mantis shrimp”, which can see visible light as well as
from the ultraviolet to infrared. Hyperspectral capabilities enable the “mantis
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Figure 1.5: Electromagnetic spectrum (source: Wikiversity
[5]).

shrimp” to recognize different types of coral, prey, or predators, all which may
appear as the same color to the human eye.

Humans build sensors and processing systems to provide the same type of capa-
bility for application in agriculture, mineralogy, physics, surveillance and other
fields of science. Hyperspectral sensors collect information as a set of “images”.
Each image represents a range of the electromagnetic spectrum (Fig. (1.5)), and
is also known as a spectral band. Hyperspectral sensors look at objects using a
vast portion of the electromagnetic spectrum. Certain objects leave unique “fin-
gerprints” across the electromagnetic spectrum. These “fingerprints” are known
as spectral signatures and enable identification of the materials. For example,
having the spectral signature for oil helps mineralogists find new oil fields.

The precision of these sensors is typically measured in spectral resolution, which
is the width of each band of the spectrum that is captured. If the scanner picks
up a large number of fairly small wavelengths, it is possible to identify objects
even if said objects are only captured in a handful of pixels. However, spatial
resolution is a factor in addition to spectral resolution. If the pixels are too
large, then multiple objects are captured in the same pixel and become difficult
to identify. If the pixels are too small, then the energy captured by each sensor-
cell is low, and the decreased signal-to-noise ratio reduces the reliability of
measured features.
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Figure 1.6: Typical (hyper)spectral imaging approaches. (A)
Point scan. (B) Line scan (i.e. “pushbroom”). (C) Wavelength

scan. (D) snapshot (source: Wang, Yu and P. Reder [6]).

1.6 Single Exposure or Instantaneous Spectral
Imagers

In order to record spectral images, a possible architecture includes tunable
filtered-based systems. Those systems record spectral images in a time-sequentially
manner and obtain the spectra from post hoc assembly of the time-sequential
data. This reveals a major disadvantage of these systems. When we have
phenomena that are changing on a time scale that is sorter that the duration
required for recording the spectral cube, the SI systems described cannot per-
form accurately. Therefore, the scene recorded from the SI system must be
static. Otherwise problems will be created in the co-registration of the spectral
images, which is needed in order to provide accurate spectra.

There are numerous of applications (i.e biomedical and etch) that require spec-
tral imaging and analysis of transient moving scenes. This is why single shot
or instantaneous spectral imagers (Fig. (1.6.D)) need to be developed. Specifi-
cally, there are four techniques to develop a spectral scanner. The most simple
structure of a HS imager is the point scan (Fig. (1.6.A)), where a line array
detector acquires all the spectral information. However, point scan technique is
characterized by really low speed. Furthermore, line scan and wavelength scan
are often used, but it is more profitable to use the snapshot idea in order to
handle quick changing phenomena. SNSI systems have many advantages over



Chapter 1. Introduction 9

Figure 1.7: RBG vs Spectral Cube (source: [7]).

classical SI systems such as fast acquisition of accurately registered images, high
device robustness and reliability, low cost etc. But, there are many trade-offs
in order to achieve all that. Due to current technological limitations there is a
trade-off between spatial and spectral resolution. Specifically, a SNSI system
can capture either a small number of spectral images with high resolution or a
great number of spectral images with really low spatial resolution.

Ending up, in the case of stationary and invariant scenes the point, line, and
wavelength scanners are more preferable due to the fact that spatial and spectral
resolution are superior to SNSI systems. On the other hand, SNSI scanners are
a unique solution to observe dynamically developed phenomena.

1.7 Color vs. Spectral Imaging

Color cameras emulate the human vision for color reproduction and are real-
time devices since they record three spectral bands (RGB) simultaneously. But,
unfortunately, the human vision has some limitations that are shared by these
devices. They allocate the incoming light into the three RGB coordinates, thus
missing the important spectral information. So, objects with the same RGB
values might have different spectral components. These phenomenon is known
as metamerism. Therefore, due to this effect, the RGB imaging systems don’t
have the ability to distinguish material with the same color appearance but
different chemical composition. In the SI systems for each pixel a series of
images corresponding to many wavelengths are appeared. With these images,
the unique fingerprint of each object could be extracted and the matamerism
effect is disappeared (1.7).
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1.8 Spectral Imaging Applications

As it mentioned before, there are numerous of application that the HSI can be
used due to the importance of the spectral information.

HSI is nowadays commonly used in biomedicine. For instance, DYSIS[8] is a
new company, which found out a new colposcope with an advanced cervical
scan. The DYSIS colposcope is a high resolution digital tool with an adjunctive
map. The DYSIS spectral map is generated by a proprietary technology that
measures the aceto-whitening reaction and summarises it in the form of an
intuitive map. The DYSIS map is overlaid on the live image of the cervix to
help with the identification of the most relevant biopsy sites.

HSI is also useful to detect the chemical composition of plants, which can be
used to detect the nutrient and water status of wheat in irrigated systems.
On a smaller scale, NIR HSI can be used to rapidly monitor the application
of pesticides to individual seeds for quality control of the optimum dose and
homogeneous coverage.

In the food processing industry, HSI, combined with intelligent software, enables
digital sorters (also called optical sorters) to identify and remove defects and
foreign material (FM) that are invisible to traditional camera and laser sorters.
By improving the accuracy of defect and FM removal, the food processor’s
objective is to enhance product quality and increase yields.

In astronomy, HSI is used to determine a spatially-resolved spectral image.
Since a spectrum is an important diagnostic, having a spectrum for each pixel
allows more science cases to be addressed. In astronomy, this technique is com-
monly referred to as integral field spectroscopy, and examples of this technique
include FLAMES1 and SINFONI2 on the Very Large Telescope, but also the
Advanced CCD Imaging Spectrometer on Chandra X-ray Observatory uses this
technique.

From all the above examples, the importance of HSI is undisputed.

1.9 What is Spectral Estimation

As we mentioned before the RGB imaging devices miss important spectral in-
formation. Additionally, objects with different spectral information may have

1“FLAMES – Fibre Large Array Multi Element Spectrograph”.
2“SINFONI – Spectrograph for integral Field Observations in the Near Infrared”.
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Figure 1.8: Spectral and spatial domain

same RGB values, which means that RGB devices cannot detect the chemical
difference (metamerism). Furthermore, as we studied in Section 1.6, SNSI is
a new trend of technology, combined with a variety of advantages (e.g Speed
of acquisition). Looking at the same problem from another perspective, it is
more cheaper and quicker to acquire a static number of images in specific wave-
lengths and estimate all the other bands, using a spectral estimation algorithm.
An important question is why is better to estimate signals in spectral domain
and not in spatial domain. The spatial domain is characterized from features
with high spatial frequency (i.e. edges) that are those that change greatly in
intensity over short image distances. These big, non-periodic intensity variation
is very hard to be estimated if we also consider the fact that a natural scene is
in most cases unique. There is no actual pattern or collection of images that
can describe these variations accurately because of the randomness of natural
scene characteristics (from objects to lighting conditions). On the other hand,
spectral domain signals in the UV-VIS-NIR (400nm to 1000nm) are broad with
a few peaks and valleys, as it is illustrated in figure 1.8. The absorption in this
spectral range, comes from the electronic transitions (according to the selection
rules for each atom) that are happening in the complex molecular structures
of matter and the combination of them give these smooth characteristics to
the signal. Most approaches for building a real time HSI device have the al-
ready mentioned trade-off between spectral and spatial resolution that stems
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by optoelectronic limitations. As the spectral band number increases the spa-
tial resolution decrease and vice versa. The estimation of missing information
(spectral or spatial) is a strategic decision for designing these systems. Taking
the above into consideration we choose to preserve the spatial resolution and
estimate the missing spectral information as it is quite obvious that the estima-
tion procedure is less demanding. Our goal is find most appropriate algorithms
in terms of minimizing the estimation error.
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Figure 1.9: Spectral Acquisition Chain of a Snapshot Spectral
Imager

1.9.1 Spectral Acquisition Chain of a Snapshot Spectral
Imager

The above figure shows the procedure that take place in order to build a powerful
SNSI system.

Firstly, the SNSI system acquires a low number of spectral images, let this
number be equal to k. In this case, the spectral bands that are captured from
the SNSI scanner are Band1,Band2, . . . ,Bandk. The identity and the number
of these bands are investigated in chapter 4.

Secondly, a pre-trained spectral estimation model which takes as input the k
bands and returns as output the bands Band1,Band2, . . . ,Bandp will be lever-
aged. In order to achieve that goal, we should utilize the most informative
training set and we should extract the k more featured bands that force the
model to minimize the estimation error. All the above are described analyt-
ically at this thesis. In chapter 2 the most well-known spectral estimation
methods are reported and in chapter 3 are compared. Conclusions about the
effectiveness of each method are made. Also in chapter 3 detailed information
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about the experiments are described. In chapter 4 a great amount of feature se-
lection techniques are represented and analyzed in terms of capturing the most
informative and distinctive bands.

To make it clear, at this thesis a complete theoretical SNSI system is investi-
gated.
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Chapter 2

Spectral Estimation - Problem
Statement and Methods

2.1 Introduction

Hyperspectral imaging is an emerging technology that integrates conventional
imaging and spectroscopy to attain both spatial and spectral information from
an object. The spectral images collected in the spectral cube are tens of hun-
dreds and the ither nformation we receive from them is crucial for many ap-
plications, such as bio-medical technology, remote sensing, microscopy etch.
Nevertheless, the current state of the art includes HSI systems which need long
acquisition time, something that prevents them from observing any dynami-
cally developing phenomena. Also, are expensive and sizeable, which makes
them inaccessible for many important applications. To deal with that, many
researchers strive to estimate the spectral domain of the spectral cube by using
digital RGB sensors. Using consumer cameras as relatively cheap measurement
devices for estimating spectral properties (especially color) has become an in-
teresting alternative to making pointwise spectral measurements. The results
obtained with these methods cannot compete with the quality of the traditional
devices but they are very attractive since the equipment is relatively cheap and
instant measurements are obtained for millions of measurement points. These
advantages come, however, at the price of lower-quality measurements, and thus
it is of interest to improve the precision of the spectral estimation. Many stud-
ies use fixed hardware (RGB cameras), and improvements have to come from
better postprocessing algorithms. Wiener and pseudoinverse method [9] are the
most traditional ways for spectral reflectance estimation, even in biomedical
field [10]–[12]. Murakami et. al. [13] proposed an interesting alternative of
dividing into several blocks a three-band image and the spectral estimation is



Chapter 2. Spectral Estimation - Problem Statement and Methods 17

carried out using the Wiener estimation matrix assigned to each block. Many
studies optimized the performance of the above linear methods by defining
them locally [14]–[16]. Separate lest-squares problems are solved for every tar-
get point, where only a pixel or a local neighborhood could be estimated each
time. Hence, that methods are computationally expensive and it cannot be
leveraged in real-time applications. On the other hand, Mansouri et. al [17]
proposed that spectral reflectances can be approximated by a small number of
basis functions, that could be extracted from PCA, Fourier, or Wavelets anal-
ysis. A local applied version of that method is proposed in [18]. On the other
hand, in [19], [20] it was found that linear models could produce adequate re-
sults when number of parameters are five to eight. Additionally, the accuracy of
reflectance estimation can be degraded by the non-linearity in imaging process,
which is due to non-gaussian distribution of the data and the non-linearity of
sensors. For that reason, nonlinear kernel based methods considered to be more
feasible. Comparative studies of linear and non-linear methods could be found
in [21], [22]. Recently, other ways of reconstructing spectral images from RGB
images have been explored, including sparse reconstruction and deep learning.
Sparse reconstruction methods exploit the sparsity of spectra, recover spectra
for every pixels using an learnt overcomplete dictionary [23], [24]. To further
improve reconstruction quality, convolutional neural network [25], [26], genera-
tive adversarial network [27], and neural network [28] based learning methods
which utilize spectral and sometimes spatial information of images have begun
to appear.

The drawback of utilizing RGB sensors is the low amount of obtained spectral
images, that leads to a three-to-many underdetermined problem. Hence, the
accuracy of the aforementioned methods have significant limitations due to the
low number of features, therefore, the reflectance reconstruction will always be
disputable. Current literature uses also Multi Spectral (MS) imagers, in order
to increase the number of the acquired spectral images. In [29], authors used a
16-narrowband wheel-filter MS camera that uniformly covers visible spectrum
and the partial least squares method for estimating the missing spectral im-
ages. Furthermore, MS imagers was also combined with linear and non-linear
methods for reconstructed printed ink’s spectrum. Comparative studies could
be found in [30], [31]. Moreover, Shen et. al. [32] studied the influence of chan-
nels number on performance of local Wiener using luquid crystal tunable filter.
The disadvantage of this non-snaphot technology is the disability of observing
dynamically developed phenomena, due to the time needed for the acquisition
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process. To deal with that, multi-spectral filter arrays (MSFA) or other equiv-
alent snapshot techniques are leveraged. MSFA—based imaging is a compact,
convenient, and robust way to acquire and reconstruct spectral images on-shot.
The method using a camera with mosaic of the multiple filters on the sen-
sor has become commercially available, e.g., SILIOS technologies developed a
manufacturing technique called COLOR SHADES to produce MSFAs. Never-
theless, as the spectral bands increase the spatial resolution decrease and vice
versa. Therefore, the optimal number of spectral channels and their spectral
sensitivities are strategic decision for designing these systems.

In this study we are focusing on conducting a detail research on estimating the
spectral domain using a theoretical one-shot imager equipped with three (RGB)
narrow/wide, six, nine, and twelve evenly distributed spectral bands. Various
linear and non-linear algorithms are compared in terms of minimizing the root
mean square (RMSE) reconstruction error. We propose also two new algorithms
for reducing the spectral dimensionality space that need to be estimated and
performance comparisons take place. Moreover, respecting the physical con-
strains of spectra, we suggest a transformation that restricts the output of esti-
mation models in [0, 1]. Looking at the same problem from another perspective,
in order to increase the performance of the models, training procedure should
be carried out using the most informative and distinctive bands as features.
On that account, a great amount of band selection techniques are analyzed and
compared. The reported experimental results are derived from real HS data
using standard and measured color charts.

2.2 Measures of Spectral Similarities

Before the analyzation of the spectral estimation methods, all mathematical
models that measure the similarity of the original reflactance and the estimated
reflectance should be token into consideration. The are plenty of spectral sim-
ilarity measures but we are going to focus on the most well-known. In the
following metrics, ro is a p × 1 vector and will be the original spectrum. Fur-
thermore, r is the estimated spectrum, which has the same size as ro. Note that
p is the number of the reflectance bands, which were estimated.
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2.2.1 Goodness of Fit Coefficient (GFC)

GFC is defined as the cosine of the angle between the recovered and original
signal, thus

GFC(ro, r) = rTo r
‖ro‖‖r‖

. (2.1)

2.2.2 Spectral Angle Mapper (SAM)

The spectral angle mapper (SAM) determines the spectral similarity between
the measured and the reference spectra. The spectra are treated as vectors in
a space with dimensionality equal to the number of bands, and the angle that
is formed between these vectors is used as a metric of the spectral similarity.
Smaller angles represent closer matches to the reference spectrum. SAM has
also been used as a feature selection method for selecting an optimal subset of
spectral bands. The angle (θ) between pixel vectors as a discrimination measure
is given by the following formula:

θ = SAM(ro, r) = arccos(GFC(ro, r)) = arccos
(

rTo r
‖ro‖‖r‖

)
where 0 ≤ θ ≤ π

2 .

(2.2)
SAM is independent of lighting. Also, it is independent to the multiplications
of a vector with a natural number since it only increases its length and doesn’t
change the angle. Hence, SAM is a non-prosthetic distance function.

2.2.3 Euclidean Distance (ED)

In mathematics, the Euclidean distance or Euclidean metric is the distance
between two points that one would measure with a ruler and is given by the
Pythagorean formula. By using this formula as distance, Euclidean space (or
even any inner product space) becomes a metric space. The associated norm is
called the Euclidean norm. Older literature refers to the metric as Pythagorean
metric.

ED(ro, r) =‖ ro − r ‖=

√√√√ p∑
i=1

(roi
− ri)2. (2.3)

2.2.4 Root Mean Square Error (RMSE)

In statistics, the mean square error or MSE of an estimator is one of many
ways to quantify the difference between an estimator and the true value of the
quantity being estimated. MSE is a risk function, corresponding to the expected
value of the squared error loss or quadratic loss. MSE measures the average
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Figure 2.1: Synopsis of the spectral model of the acquisition
process in a MS system (source: Alamin Mansouri [33]).

of the square of the error. The error is the amount by which the estimator
differs from the quantity that is estimated. The difference occurs because of
randomness or because the estimator doesn’t account for information that could
produce a more accurate estimation.

RMSE(ro, r) = 1
√
p
ED(ro, r) =

√√√√√√√
p∑
i=1

(roi
− ri)2

p
. (2.4)

2.3 Problem Statement

The generally used spectral model of the acquisition chain in a MS system is
illustrated in fig. (2.1), where I(λ) is the spectral radiance of the illuminant,
r(λ) is the spectral reflectance of the surface, o(λ) is the spectral transmittance
of the optical system, tk(λ) is the spectral transmittance related to the kth filter,
c(λ) is the spectral sensitivity of the camera, nk represents the spectral noise for
the kth channel, k = [1, 2, . . . , K], and the function Γk collects the nonlinearity
of the system. The camera output dk, related to the channel k for a single pixel
of the image is given by

dk = Γk

(∫ λmax

λmin

I(λ)r(λ)o(λ)c(λ)tk(λ) dλ+ nk

)
. (2.5)

If the noise is assumed to be removed by preprocessing, and assuming a linear
opto-electronic transfer function, we can replace I(λ), c(λ), o(λ), and tk(λ) by
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the spectral sensitivity sk(λ) of the kth channel. Then, Eq. (2.5) becomes

dk =
∫ λmax

λmin

sk(λ)r(λ) dλ ≈ dk = sTk r (2.6)

where sk = [sk(λ1), sk(λ2), . . . , sk(λp)]T is a column vector containing the spec-
tral sensitivity of the acquisition system related to the kth channel for a single
pixel, r = [r(λ1), r(λ2), . . . , r(λp)] is a column vector of the spectral reflectances
of the scene for a single pixel, and T is the transpose vector operator. We use
the fact that these spectra represent probabilities (of a photon being reflected
from an object point) and that r(λi) will therefore lie in the range from 0 to 1.
Considering the system with all channels, Eq. (2.6) can be written as

d = ST r (2.7)

where d is a column vector containing all k camera outputs [d1, d2, . . . , dk] for
a single pixel, and S = [s1, s2, . . . , sk] is the matrix containing the channels
spectral sensitivities. The final goal is to recover r from the camera output
according to Eq. (2.7). This is obtained by finding an operator Q that solves
for the following equation:

r = Qd. (2.8)

Depending on how the matrix S is determined, three paradigms to assess the
Q matrix exist.

• Underdetermined Problem:
If S is obtained by a direct physical system characterization (combination of all
spectral responses of the acquisition system components, that provided by the
manufacturer), then the operator Q is the inverse of S. However, because S is
a not usually a square matrix, its inverse does not exist. A choice could be the
pseudo-inverse Q = S−, where S− is the pseudo-inverse matrix of S, which is
equal to (STS)−1ST .

• Overdetermined Problem:
If S is obtained indirectly by matching a set of J color patches for which the
theoretical reflectances are already known, we only have to capture an image
of these patches with the MS camera. Then we produce a set of corresponding
pairs (dj, roj) for j = 1, 2, . . . , J , where dj is a vector of dimension k containing
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the camera responses and roj is a vector of dimension p representing the spec-
tral reflectance of the jth patch. The reflectances roj are gathered in the matrix
R = [ro1, ro2, . . . , roJ ] and the camera outputs for the J patches are gathered
in the matrix D = [d1,d2, . . . ,dJ ], in order that D = STR. The operator Q is
straightforwardly assessed by any optimization method (such methods will be
described at the next sections).

• Interpolation Problem:
A third paradigm for spectral reflectance estimation consists of direct inter-
polation of the camera outputs dk. In this case, S is a selection matrix and
specifically a submatrix of the identity matrix. Nevertheless, rigorous condi-
tions about the spectral shape of the filters as well as well-calibrated and nor-
malized data are required for this kind of reconstruction. The reconstruction
can be performed by any interpolation operator (linear, spline, etc.).

This study is focusing on the second way (learning from examples). Assuming
we have the labeled training set (dj, roj) for j = 1, 2, . . . , J , one possibility is to
solve the estimation problem using L2 error on a linear p-dimensionality space

arg min
Q

J∑
j=1
‖ roj −Qdj ‖2 . (2.9)

Overfitting of the model to training data can cause problems. System 2.9 can be
interpolated an infinite number of ways and can be interpreted as an ill-posed
problem. Additional constraints and regularization terms can be introduced to
modify the problem to well-posed. Using Tikhonov regularization, this leads to
the variational problem

arg min
Q

J∑
j=1

(
‖ roj −Qdj ‖2 +γ ‖ Q ‖2

F

)
, (2.10)

where ‖ Q ‖2
F denotes the Frobenius norm. The selection of the gamma param-

eter in system 2.10 depends mainly on the noise properties of the measurement
device and allows the control of the trade-off between the norm of the solution
and the accuracy of the data fitting. Noise in response values can be reduced by
averaging over repeated measurements. For flat, spatially homogenous surfaces,
averaging can also be done over spatial regions.
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In the following section, plenty of methods that are based on second paradigm
(overdetermined case) will be analyzed and evaluated.
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2.4 Spectral Estimation Algorithms

2.4.1 Estimation of Spectral Reflectances Using Wiener
Method

The purpose of the Wiener estimation (Stigell et al. [9]) is to make estimations
from low-dimensional data into high-dimensional data, for example, from six-
filter camera responses into reflectance spectra. The Wiener estimation is one of
the conventional estimation methods which provides accurate estimations. The
purpose of the Wiener model is to assess the matrix Q in terms to minimize the
square error (MSE) between reference ro reflection signal and the estimated r.
Let us assume that the data are centered. The solution of the Wiener method
is denoted by

QWiener = Rrod(Rdd+γI)−1 = E[rodT ](E[ddT ]+γI)−1 ≈ 1
J2 RDT (DDT + γI)−1

,

(2.11)
where E is the expected value. In Eq. (2.11), Rrod is the cross-correlation
matrix of vectors ro and d. Matrix Rdd is the auto-correlation matrix of the
vector d. Eq. (2.11) could be rewritten as

QWiener ≈ 1
J2 RDT (DDT + γI)−1 = 1

J2 (DTD + γI)−1DTR. (2.12)

The time complexity of Wiener algorithm is O(pk). The training phase costs
a constant number of multiplications due to the fact that takes place only one
time.

2.4.2 Estimation of Spectral Reflectances Using Projec-
tion on PCA

Principal component analysis (PCA) was invented in 1901 by Karl Pearson
et al. [34] and is a technique extensively used for dimensionality reduction
in a data set. It consists of finding an orthogonal basis composed of vectors
called principal components. Each component is associated with an energy
that indicates the statistical relevance of the vector in the data. Technically
speaking, PCA is an orthogonal linear transformation that transforms the data
to a new coordinate system such that the greatest variance by any projection of
the data lies on the first coordinate (called the first principal component), the
second greatest variance on the second coordinate, and so on. In the field of MS
imaging, PCA has been largely used for data compression but also in spectral



Chapter 2. Spectral Estimation - Problem Statement and Methods 25

reflectance reconstruction. The main difference from Wiener estimation is that
we approaching r by using the basis matrix B and the weight vector a such
that each reflectance r could be written as

r = Ba. (2.13)

Let us assume that data are centered. Then the p × p covariance matrix C of
ro is given by

C = E[rorTo ] ≈ 1
J

J∑
i=1

rojrToj = 1
J

RRT . (2.14)

It is a symmetric matrix and, therefore, it can be diagonalized. Hence, C of ro
can be rewritten as

C = VLVT (2.15)

where V is a matrix of eigenvectors (each column is an eigenvector) and L is
a diagonal matrix with eigenvalues λi in the decreasing order on the diagonal.
The eigenvectors are called principal axes or principal directions of the data.
Projections of the data on the principal axes are called principal components.
Note that the eigenvectors could be also calculated using singular value decom-
position. We define the p×m matrix B as

B = m first column vectors of matrix V. (2.16)

The basis functions are themselves functions of wavelength but free of con-
straints such as being positive or constrains to be limited to the range [0− 1].
Eq. (2.7) can be written as

d = STBa (2.17)

where a is a m × 1 vector that holds the weights that define the particular
spectrum which we are trying to reconstruct. Furthermore, ST is a k×p matrix
which it is assessed using one of the paradigms that are described in Section
2.3. An approximate solution of Eq. (2.17) is

a = (STB)−d. (2.18)

Totally,
QPCA = B(STB)−. (2.19)

The time complexity of PCA spectral estimation algorithm is O(pm). The
training phase costs a constant number of multiplications due to the fact takes
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place only one time.

Notice that a mean function is subtracted from the training set before deriving
the basis and this mean function should be added when using the basis for the
reconstruction. Mansouri et al. [17] studied the performance of PCA spectral
estimation, alongside with Fourier and Wavelets analysis.

2.4.3 Sparse Dictionary Learning (K-SVD)

Sparse dictionary learning is a representation learning method which aims at
finding a sparse representation of the input data (also known as sparse coding)
in the form of a linear combination of basic elements as well as those basic
elements themselves. These elements are called atoms and they compose a
dictionary. Atoms in the dictionary are not required to be orthogonal, and
they may be an over-complete spanning set. This problem setup also allows
the dimensionality of the signals being represented to be higher than the one of
the signals being observed. The above two properties lead to having seemingly
redundant atoms that allow multiple representations of the same signal but also
provide an improvement in sparsity and flexibility of the representation. One of
the key principles of dictionary learning is that the dictionary has to be inferred
from the input data. The emergence of sparse dictionary learning methods was
stimulated by the fact that in signal processing one typically wants to represent
the input data using as few components as possible. Before this approach the
general practice was to use predefined dictionaries (such as fourier or wavelet
transforms). However, in certain cases a dictionary that is trained to fit the
input data can significantly improve the sparsity, which has applications in
data decomposition, compression and analysis and has been used in the fields of
image denoising and classification, video and audio processing. Recently, other
ways of reconstructing spectral images from raw response images (usually RGB
images) have been explored, including sparse reconstruction and deep learning.
Sparse reconstruction methods exploit the sparsity of spectra, recover spectra
for every pixels using an learnt overcomplete dictionary [23], [24], [35]. Given
the input dataset R = [ro1, ro2, . . . , roJ ], roj ∈ Rp we wish to find a dictionary
Z ∈ Rp×m : Z = [z1, . . . , zm] and a representation matrix A = [a1, . . . , aJ ], ai ∈
Rm such that ‖R − ZA‖2

F is minimized and the representations ai are sparse
enough. This can be formulated as the following optimization problem:
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arg min
Z,A

‖ R − ZA ‖2
2, s.t. ∀i ∈ [1,m], ‖ ai ‖0≤ s, (2.20)

where s is the sparsity constraint. The minimization problem above is not
convex because of the L0-norm and solving this problem is NP-hard. In some
cases L1-norm is known to ensure sparsity and so the above becomes a convex
optimization problem with respect to each of the variables Z and A when the
other one is fixed, but it is not jointly convex in Z,A. The dictionary defined
above can be "undercomplete" if p < m or "overcomplete" in case p > m with
the latter being a typical assumption for a sparse dictionary learning problem.
Overcomplete dictionaries do not require the atoms to be orthogonal (they will
never be a basis anyway) thus allowing for more flexible dictionaries and richer
data representations. As the optimization problem described above can be
solved as a convex problem with respect to either dictionary or sparse coding
while the other one of the two is fixed, most of the algorithms are based on the
idea of iteratively updating one and then the other.

K-SVD is an algorithm that performs SVD at its core to update the atoms of the
dictionary one by one and basically is a generalization of K-means. It enforces
that each element of the input data is encoded by a linear combination of not
more than s elements. This algorithm’s essence is to first fix the dictionary, find
the best possible A under the above constraint (using Orthogonal Matching
Pursuit) and then iteratively update the atoms of dictionary Z [36]. The next
step is to reform Eq. (2.13) for the dictionary case. Therefore, Eq. (2.13) could
be rewritten as

r = Za′ (2.21)

where a′ ∈ Rm. The coefficient vector a′ can be optimized as

a′ = (STZ)−d. (2.22)

The time complexity of the sparse is O(pm). The training phase costs a constant
number of multiplications due to the fact takes place only one time.

2.4.4 Estimation of Spectral Reflectances Using Hybrid
Method

Hybrid is an finite-dimensional algorithm that is based on combination of mod-
els to in order to achieve better estimations with the minimum error [37]. This
algorithm combines Wiener (Stigell et al. [9]) and PCA (Mansouri et al. [17]).
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Figure 2.2: Hybrid model with different values of w.

Specifically, we have already known from Eq. (2.11) that Wiener Estimation is
given by

r = RrodR
−1
ddd (2.23)

additionally, from Eq. (2.13)
r = Ba. (2.24)

As a result, a least squares approximation of a is

RrodR
−1
ddd = Ba′ =⇒ a′ = B−RrodR

−1
ddd. (2.25)

Note that B is a orthogonal matrix, therefore, BTB = I where I is the identity
matrix and B− = BT . Ending up, the Eq. (2.24) can be rewritten as

r = BBTRrodR
−1
ddd. (2.26)

In order to achieve the contribution of the two above methods, we linearly merge
Eq. (2.23) and Eq. (2.26), therefore, we can express the Hybrid model as

r′′ = wRrodR
−1
ddd + (1− w)BBTRrodR

−1
ddd (2.27)

where w ∈ [0.1 0.9] is scaling factors between Wiener and PCA model that were
presented in Eq. (2.26). Hence, QHybrid it can be written as

QHybrid = wRrodR
−1
dd + (1− w)BBTRrodR

−1
dd = [wI + (1− w)BBT ]RrodR

−1
dd.

(2.28)

Moreover, the Gradient Multipliers technique will be utilized to find the value
of w. Hence, finding w could be described as a linear programming problem.

min
w

E ‖ ro − r′′ ‖2

subject to 0.1 6 w 6 0.9.
(2.29)

When w = 0 the Hybrid model is equivalent to PCA model and when w = 1 is
equivalent to Wiener model as it is illustrated in fig. (2.2). The first constraint
ensures that the weightings of the two techniques summarize to 1, while the
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second constraint forces positive contribution (> 0.1) of each method. The
objective functions together with the constraints can be solved using linear
or quadratic programming. Another important aspect is the selection of the
number of m. Usually, this number is chosen such that the highest amount of
signal’s energy is covered. In this study, Wiener and PCA models are exploited
to build a weighted average combination model. Undeniably, that algorithms
could be constituted by any two or more techniques, which are presented at this
chapter. The time complexity of any Hybrid algorithm is O(pk). The training
phase costs a constant number of multiplications due to the fact that takes place
only one time.

2.4.5 Estimation of Spectral Reflectances Using Adaptive(Local)-
Wiener Method

Shen et al. [32] proposed a method to reconstruct spectral reflectance by using
a modified Wiener estimation method, without a prior knowledge of the spec-
tral characteristics of the samples being imaged. Shen investigated whether the
accuracy of reflectance estimation can be improved if the training samples for
calculating the reflectance characteristics are adaptively selected and appropri-
ately weighted. The novelty of the proposed method is mainly in the manner
of training sample selection and autocorrelation matrix construction. Suppose
that the response of the spectral camera is d, and then its corresponding re-
flectance r can be calculated according to the traditional Wiener estimation
using Eq. (2.11). The training samples with reflectance roi can then be se-
lected according to their spectral similarity to r. In the calculation of spectral
similarity, the reflectance is normalized so that its summation is equal to 1.
The reason for normalization is that statistical information of the reflectance is
mainly decided by its shape, not magnitude. The spectral similarity consists of
two terms, i.e., mean spectral distance and maximum spectral distance

disti = α
1
p

∥∥∥∥∥ roi
‖roi‖∞

− r
‖r‖∞

∥∥∥∥∥
1

+ (1− α)
∥∥∥∥∥ roi
‖roi‖∞

− r
‖r‖∞

∥∥∥∥∥
∞

(2.30)

where α is a scaling factor, 1
p
‖ x ‖1 is the mean value of x, and the ‖ x ‖∞ is

the maximum value of x. For two reflectances with similar shapes both of the
mean and maximum distances should not be large. When r is very similar to
roi, disti is close to 0. We select L training samples according to their spectral
similarities and sort the similarity measurements in ascending order, or more
specifically, dist1 6 dist2 6 . . . 6 distL. Among the selected L training samples
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Figure 2.3: Two typical examples of the training sets for
the given candidate samples. Channel number C=6-Adaptive

Wiener (source: Hui-Liang Shen [32]).

it is reasonable to assume that the spectral characteristic of the more similar
roi (1 6 i 6 L) should be more close to that of the candidate sample. Then the
recalculation of the Wiener model is needed using the new adapted training set.
It is noted that Wiener need to be calculated per pixel in a MS image and thus
the proposed method is computationally expensive than the traditional Wiener
estimation. This is actually the common shortcoming for almost all adaptive
methods.

Figure 2.3 shows the selected training sets for the given candidates. As expected,
the shapes of the training samples are similar to those of the candidate samples.
The performance of the proposed adaptive Wiener estimation was investigated
by Shen for different channel numbers. Experimental results of Shen, indicate
that the proposed method is significantly better than the Wiener estimation
when the channel number is not large (for example, 6 or 7), while is slightly
better than or close to the traditional Wiener estimation when channel number
11 or more.

As it mentioned before, adaptive methods are really computationally expensive.
The time complexity of adaptive-Wiener algorithm is Θ(pixels×(2pk+J log J)),
where pk is a constant number describes the number of multiplications need
to be done to calculate two times the vector r (one for similarity check and
one for the final spectral estimation), pixels is the number of pixels of the
image, and J log J is the time complexity of sorting a J-element similarity
matrix (i.e Merge Sort). The last could be improved to Θ(J) by finding the
Lth smallest element and partitioning all the other elements according to Lth

smallest element. Partitioning could be handled using the partition method of
quick sort algorithm.
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In order to implement adaptive methods we need a large training set to guar-
antee the adaptation of different surfaces and colors. In other words, adaptive
methods can produce decent spectral estimation given that there are similar
reflectances in the training set.

2.4.6 Estimation of Spectral Reflectances Using Multi-
variate Linear Regression Method

In spectral estimation, Linear Regression (LR) called also pseudo-inverse method
[38]. In statistics, linear regression is a linear approach to modeling the rela-
tionship between a scalar response (or dependent variable) and one or more
explanatory variables (or independent variables). The case of one explanatory
variable is called simple linear regression. For more than one explanatory vari-
able, the process is called multiple linear regression. This term is distinct from
multivariate linear regression, where multiple correlated dependent variables
are predicted, rather than a single scalar variable. In linear regression, the re-
lationships are modeled using linear predictor functions whose unknown model
parameters are estimated from the data. Such models are called linear models.
Most commonly, the conditional mean of the response given the values of the
explanatory variables (or predictors) is assumed to be an affine function of those
values; less commonly, the conditional median or some other quantile is used.
Like all forms of regression analysis, linear regression focuses on the conditional
probability distribution of the response given the values of the predictors, rather
than on the joint probability distribution of all of these variables, which is the
domain of multivariate analysis. Linear regression models are often fitted using
the least squares approach, but they may also be fitted in other ways, such as
by minimizing the “lack of fit” in some other norm (as with least absolute devi-
ations regression), or by minimizing a penalized version of the least squares cost
function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty).
Conversely, the least squares approach can be used to fit models that are not
linear models. Thus, although the terms “least squares” and “linear model” are
closely linked, they are not synonymous. In spectral estimation approach our
goal is to find the best linear estimation (regression). So, r is given by

r = Qd + b =⇒ r = [Q b]
d

1

 (2.31)
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Figure 2.4: Model of a biological neuron (source: Wikipedia).

where Q is a p × k matrix and b is a p × 1 vector. Since, the criterion is to
minimize the sum of squared error, QLR is expressed as

QLR = [Q b], (2.32)

where Q′ is a p× (k + 1) matrix. Additionally, we define d? = [d 1]T which is
a (k + 1) × 1 vector. Due to this fact, the training set pairs will be (roi,d?i ).
A choice to estimate the Q′ matrix is to minimize the sum of square errors.
Therefore,

arg min
QLR

J∑
j=1

(
‖ roj −QLRd?j ‖2 +γ ‖ QLR ‖2

F

)
(2.33)

The formulation of the problem its the same as Wiener, hence the only difference
is that d should be replaced by d?. Then, we use Eq. (2.31) to calculate r.

2.4.7 Estimation of Spectral Reflectances Using Artifi-
cial Neural Networks

A. Mansouri et al. [28] proposed Artificial Neural Networks as a way for spectral
estimation. Inspired by biological nervous systems, artificial Neural networks
(ANNs) aim at reaching their versatility through learning. ANNs are com-
monly employed in artificial intelligence, machine learning and pattern recogni-
tion. There has been substantial research into how the human brains structure
achieves such a high level of versatility. This research has provided some im-
portant insights, however the conclusions are far from completely explaining
the complex functioning of the brain. Even though we have not been able to
replicate the brain so far, the field of artificial intelligence offers very effective
solutions to many problems by simulating the observations of biological research
of various nervous systems. It is estimated, that the average human brain con-
tains 86 billion neurons. Together they form a huge network. Even if we knew
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Figure 2.5: The Neural Network for the spectral estimation
problem.

the detailed inner structure of the human brain, we would still not be able to
simulate it with current technology because of its robustness. Our efforts are
therefore rather different. We want to build a neural network with a good ratio
between its size and its effectiveness.

Generally, ANNs consist of a set of artificial neurons. Formally, an artificial
neuron has k inputs represented as a vector d. Inputs in an artificial neuron
correspond to the dendrites in a biological neuron, while a single output of an
artificial neuron corresponds to the axon in a biological neuron, which is de-
picted in figure 2.4. Each input i, 1 ≤ i ≤ k, has an assigned weight w1, . . . , wk.
Weighted input values are combined and run through an activation function
producing some output r, as shown in figure 2.6. The network is formed by
connecting the neuron output with the input of a different neuron. ANN is
therefore effectively described as an oriented graph as shown in figure 2.5, where
vertices represent the neurons, and oriented edges represent the output-input
connections between them. A set of input neurons consists of the neurons which
are the first ones in any complete path in the graph. All input neurons have
exactly one input, and all inputs together represent an instance of the problem
to be solved by the ANN. A set of output neurons consists of the neurons which
are the last ones in any complete path in the graph. All output neurons have
exactly one output, and all outputs together represent a possible solution to
the problem to be solved by the ANN. A set of hidden neurons consists of the
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Figure 2.6: Model of a biological neuron (source: Wikipedia).

neurons which are not input, nor output neurons. Their number and organi-
zation into layers may vary even for the same problem, but is a key feature of
the network vastly influencing its performance. An ANN works by feeding the
data into the input neurons. The data flows in the direction of oriented edges
and ends when the output neurons are hit. The result is interpreted from the
values obtained in the output neurons. Formally, an ANN is a 6-tuple M = (N,
C, k, p, w, t), where

• N is a finite non-empty set of neurons,

• C ⊆ N ×N is a non-empty set of oriented edges between the neurons.

• k ⊂ N is a non-empty set of neurons in the input layer.

• p ⊂ N is a non-empty set of neurons in the output layer.

• w : C 7−→ R is a weighting function.

• t : N 7−→ R is a function for network bias

Let us consider neuron j with its input d(j) = (d(j)
1 , . . . , d

(j)
k ), weights w(j)

1 , . . . , w
(j)
k )

and bias θ(j). Then the potential of the neuron is computed

ξ(j) =
k∑
i=1

w
(j)
i d

(j)
i + θ(j). (2.34)

Consider the following activation function:

f(ξ) = 1
1 + exp(−ξ(j)) . (2.35)

Then the output ri of the neuron j is computed:

r(j) = f(ξ(j)) = f(
k∑
i=1

w
(j)
i d

(j)
i + θ(j)). (2.36)



Chapter 2. Spectral Estimation - Problem Statement and Methods 35

Considering ANN containing p such neurons in the output layer, we obtain the
output of the network as (r1, . . . , rp). During the learning process, ANNs may
change their weights, bias, or in some networks even the number of neurons and
their setup. In contrast, our definition does not allow such modifications andM
does not change in the process of learning. The Multilayer perceptron (MLP)
is a feed-forward neural network consisting of multiple mutually interconnected
layers of neurons. The layers are stacked one onto each other. Every neuron in
one layer is connected to every neuron in the following layer. The motivation
behind designing multilayer networks is to be able to solve more complex tasks
The unit step function is usually not a suitable activation function to be used
with the perceptrons. Because of continuity and greater flexibility, the sigmoid
function is most commonly used instead. When choosing the most suitable
activation function, we want it to be differentiable at every point of its domain,
and to be non-linear. Non-linearity is important, because in general we want
the output to be non-linearly dependent on the given input. Perceptrons are
arranged into k > 2 layers. Let us consider a network M with z layers. The
set of neurons C is split into mutually distinct subsets called layers L1, . . . , Lz.
More formally it holds ∀i, j : 1 ≤ i, j ≤ z, (Li 6= � ∧ Li

⋂
Lj 6= �) =⇒ i =

j. The network layers are stacked one onto each other, L1 being the input
layer, L2, . . . , Lz−1 being the hidden layers and Lz being the output layer. As
shown in figure 2.5, the edges are all oriented in the direction from the input
layer L1 towards the output layer Lz. Each neuron in layer Li is connected to
every neuron in layer Li+1. In other words all neighboring layers form complete
bipartite graphs.

The output of the network is computed sequentially, layer by layer. The neural
network is trained using the backpropagation technique. The purpose of the
back-propagation algorithm is to adjust the synaptic weights of neurons, so that
the network produces the desired output. The algorithm describes the process of
training (also called learning). The result of this algorithm is a neural network
configured to minimize the error when solving given problem. Training must
be performed on labeled data (di 7→ roi) and therefore is supervised.

2.4.8 Kernel Regression

In some cases the linear models seem to be sufficient to provide an accurate
estimation (for example, for the measurements of skylight reported in [39]).
Nonlinear methods are certainly necessary for nonlinear measuring devices, but
even for essentially linear systems they are able to improve the estimation results
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(see [40]–[42]). Intuitively, this can be expected, since the spectra of interest
usually do not fill the whole linear space. Instead, they are typically restricted
to regions of specific geometries. In kernel regression case the minimization
problem 2.10 could be reformed as

arg min
Q

J∑
j=1

(
‖ roj −QΦ(dj) ‖2 +γ ‖ Q ‖2

H

)
, (2.37)

where Φ(d) is function of mapping the measurements d to a feature space H
and ‖ Q ‖2

H is the norm in a reproduced kernel hilbert space (RKHS) defined
by kernel function k(x, z) . For instance the polynomial features Φ of the vector
d are computed as

Φ : d ∈ Rk −→ (1,d,d2, . . . ,dW−1) ∈ RW . (2.38)

polynomial feature maps are one example of reproducing kernel Hilbert spaces
and were investigated in [43]. Computing actual feature maps is computa-
tionally expensive, since the feature vectors can be of a very high dimension-
ality. In the framework of kernel methods [43], [44], the computation of the
mapping Φ : d ∈ Rk 7→ H to feature space H is avoided by combining it
with the subsequent projection step via the positive definite kernel function
k(x, z) = Φ(x)TΦ(z). In that case, r is given by

r = k(d,dj)Qkernel, (2.39)

where d is the actual camera measurement, dj is the jth sample of training set,
k(d,dj) ∈ R1×J , and Qkernel ∈ RJ×p. The above equation is the kernel-based
expression of the 2.8. Specifically, the solution of operator matrix Qkernel is
given by

Qkernel = (K + γI)R, (2.40)

where I is the identity matrix and K is the J × J Gram matrix of the training
data such that

Kij = k(di,dj). (2.41)

The kernel function k(x, z) and the associated RKHS H play important roles,
as H describes the hypothesis space where one looks for the solution. Though
new kernels are being proposed by researchers, the most widely used kernel
functions are the classical gaussian kernel

k(x, z) = ‖ x− z ‖2

2σ2 , (2.42)
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where σ is the bandwidth of the kernel. Small values of σ, correspond to a
small effective area of the kernel, and when σ −→ 0, matrix K approaches
identity matrix I and the solution approaches the interpolating model of the
training data. For small values of σ, there is a risk of overfitting the training
data, leading to poor generalization properties. For large values of σ, higher-
order features have a smaller effect, with the risk of oversimplifying the model
[43], [44]. Poggio and Girosi have discussed the properties and extensions of
estimation with the gaussian kernel in the framework of regularization networks
[45]. Gaussian kernel is sometimes called radial basis kernel. The value of a
radial basis function kernels depends only on the distance between the argument
vector from the training set, rather than their location. Such kernels are also
termed stationary. A non-stationary kernel is the polynomial kernel, which
assigns different values to pair of points that share the same distance, based on
their values. Parameter values must not be negative to ensure that the kernel
will be positive definite. The polynomial kernel is formed as

k(x, z) = (< x, z > +1)W , (2.43)

whereW is the degree of the kernel and < x, z > the dot product of the vectors.
The linear kernel is given by

k(x, z) = xTz. (2.44)

Using the linear kernel is equivalent of using Wiener method (γ = 0). The
computational cost of kernel evaluation depends on the chosen kernel function.
It is, therefore, clear that it is computationally more efficient to use standard
Wiener estimation and linear pseudoinverse regression instead of linear kernels.
It can be assumed that nonlinear features improve the estimation over linear
methods also when the sensor system has more than three channels. Large
training sets are sometimes necessary to achieve great accuracy.

2.4.9 K-Fourier

As it was mentioned, the expansion of a really low dimensional space to a higher
yields to solutions that are generally unstable, especially for the RGB hardware
case. The MS approach leads to a more efficient spectral estimation model due
to the richer feature space. The increment of the spectral dimensionality in
filter arrays is not always feasible due to the spectral-spatial trade off. More
spectral bands means less spatial resolution, something that is more and more
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Figure 2.7: Flow Chart of K-Fourier.

competitive between mobile and imaging manufacturers. In research domain,
the are significant one-shot MS implementations equipped with more than three
spectral bands. Since, raising the spectral bands is a demanding approach, new
ways to reduce the dimensionality of the estimated space must be engineered.
All the above mentioned models target to learn the mapping function from
the camera measurements to p-dimensional reflectance spece. Another possible
attempt to decline the reconstruction error is to reduce the dimensionality of the
reconstructed space. Specifically, the spectral estimation problem is ill-posed
since Q operator has more rows than columns (p << k). Models that decline
the difference between k and p may result in more powerful estimations. At this
point, discrete fourier transform (DFT) is leveraged. In mathematics, the DFT
converts a finite sequence of equally-spaced samples of a function into a same-
length sequence of equally-spaced samples of the discrete-time Fourier transform
(DFT), which is a complex-valued function of frequency. The interval at which
the DFT is sampled is the reciprocal of the duration of the input sequence. An
inverse DFT is a Fourier series, using the DFT samples as coefficients of complex
sinusoids at the corresponding DFT frequencies. It has the same sample-values
as the original input sequence. The DFT, therefore, is said to be a frequency
domain representation of the original input sequence. Most (if not all) of the
signals we deal with in practice are real (such as spectrum). A fourier property
that is associated with the real signals is the conjugate symmetric. Specifically,
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when
x(λ) ∈ R FFT⇐=⇒ X(−ω) = X(ω), (2.45)

where ω is a frequency, x(λ) is the spectrum in reflectance space, and X(ω) is
the spectrum in frequency domain. In this case, one half of the spectrum is
consisted of positive frequencies, and the other half of negatives. The negative
coefficients are conjugate of the positive. This property applies for all the fourier
coefficients except of the first one, which its magnitude is the average value of
signal x(λ). Undeniably, that property yields to a significant improvement. If
the second half part of the spectrum could be deduced for the first half, then
the problem is transformed to

arg min
Q

J∑
j=1

(
‖ roj − IFFT(XQ

K) ‖2
)
, (2.46)

where IFFT is the operation of inverse fast fourier transform, K is the number
of half coefficients, and XQ

K is a p-dimensional vector that contains the entire
set of coefficients. In this study, this procedure will be called compression of the
real spectrum in frequency domain. Due to the compression, the optimization
problem is relied on estimating K+1 (include the first) coefficients from camera
measurement d. In that case XQ

K is emerged from

XQ
K = ψ(QK-Fourierd), (2.47)

where ψ is the function that takes as input a K + 1 dimensionality coeffi-
cients vector and decompresses it into p dimensional vector. QK-Fourier could be
derived using any non-linear model (gaussian kernel, polynomial kernel, neu-
ral networks). Furthermore, the format of the training set must be changed.
Training samples must be pairs of (dj,fft(roj)1,2,...,K+1). The number of K is
crucial for the performance of the algorithm. Given that spectra are broad and
smooth signals, the intermediate coefficients will be close to zero. Only the
first positive and negative coefficients are expected to have significant impact
on reconstruction of spectrum. Hence, K could be less than the half fourier
coefficients. Optimal number of K could be derived by fitting a model with
all possible values of K (in our case K ∈ [1, f loor(p/2)]) with target to min-
imize the reconstruction error of the training set. The reconstruction error of
K-Fourier is factor of both errors that are produced from DFT operator and
the error that stems from the estimation of the fourier coefficients. The former
error could be declined when K = p/2 and the last error relies on regression
technique. The basic steps of the algorithm are depicted in fig. (2.7).
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2.4.10 Two-Level Spectral Estimation (2Level)

The expansion of the spectral dimensionality is more and more important in
one-shot spectral imaging. There is a high research effort on reducing the
reconstruction error having only a low number of observes. Given a specific
number of features, the accuracy of the spectral estimation algorithms can be
upper bounded. For instance, Heihhinen et. al [21] created a simulation of
a RGB system, in order to find the upper bound of accuracy of gaussian and
wiener kernel. There is no doubt, that the upper bound performance could be
increased, using more features or reducing the dimensionality of the reproduced
Hilbert space. The former is more demanding than the last one. As it is already
mentioned, the increment of channels number reduces dramatically the spatial
resolution.

Current literature handles spectral estimation as single level procedure. Specifi-
cally, the aforementioned algorithms optimize the reconstruction by finding the
mapping function from k bands to p bands. The bigger k number, the better the
performance. Based on that, we propose to split the estimation procedure into
two pieces. The first level is consisted of a model that maps k dimensionality
space to b, where k < b < p. After that, the increased b-number of features will
feed the second model in the second level, which projects the increased feature
space b, to the targeted p-dimensionality space. The whole algorithm is depicted
in fig. (2.8). The main goal of that division is to train the second model with
more features and reduce the estimated space both at first and second level.
The optimal number of b can be turned out experimentally, such that,

arg min
Q,b

J∑
j=1

(
‖ roj −QbLevel 2

j ‖2 +γ ‖ Q ‖2
F

)
, (2.48)
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where b is am×1 that is produced from level 1. This scenario could be adapted
from any spectral estimation algorithm.

2.4.11 Spectral Matching Method (Search)

In previous subsections, it was mentioned that the estimation accuracy is de-
clined, when the number of features are low. Even though, the reflectance that
is expected to be estimated is in the training set, the low amount of features
cannot guarantee an accurate estimation. To deal with that, a scenario of sub-
stitute of a spectral estimation model with a spectral matching process will be
evaluated. Spectral matching method is defined as a matching algorithm, that
uses the available features to find the closest spectrum in a dataset. The clos-
est spectrum is used to extract the real reflectance from the observed spectral
points. Note that, this scenario cannot outperforms the other spectral estima-
tion models, since there is no dataset with all the available spectra in nature.
Furthermore, even though a complete dataset was existed, feature points could
have equal distance with more that one spectrum. On the other hand, in some
occasions, the matched spectrum may be more accurate than the corresponding
estimation from trained spectral models.
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Chapter 3

Spectral Estimation -
Experiments

3.1 Datasets, Acquisition, and Pre-processing

(a) Macbeth Color Checker (source:
phononet.com [46]).

(b) Munsell Mate Color Spectra Data.

Figure 3.1: Macbeth and Munsell Color Pallets
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Depending on the available apriori information, we saw that if we have no infor-
mation about the camera’s sensitivities, the most convenient way to learn the
mapping function for reconstructing spectral reflectance, is to learn from exam-
ples. Both standard color sets and a spectral database from Optical Research
Group of Technical University of Crete (TUC) were used as training and test
sets in our experiments.

1. Macbeth ColorChecker SG. (fig. 3.1a)

Specifically designed to meet the needs of digital photographers, the Dig-
ital Macbeth ColorChecker SG target includes the highest quality color
reference standards available. Each of the 140 patches was chosen for its
location in color space to expand the color gamut, so we can create pro-
files that capture the full capabilities of any camera and spectral scanner.
The ColorChecker Digital SG target includes the colors from the standard
ColorChecker target, many of which represent natural objects, such as hu-
man skin tone, foliage and blue sky. Additional skin-tone reference colors
deliver greater accuracy and consistency over a wide variety of skin tones,
and gray scale steps provide accurate control of camera balance to main-
tain a neutral aspect, regardless of light source. Macbeth ColorChecker
SG can also be used to create a white balance with your digital camera
to guarantee precise, uniform, neutral white under any lighting condition.
From the mentioned color chart we isolated all the patches, except of the
spectra with flat reflectance in visible. The remaining spectra are 56.

2. Munsell Book of Colors. (fig. 3.1b)

This database obtained from University of Joensuu Color Group [47] and
contains in ASCII format the reflectance values of 1269 spectra in one file.
Every single entry includes spectral information from 421 channels, be-
tween 380 nm and 800 nm with one nanometer step. In order to visualize
the color, which each spectrum represents, we designed a artificial pallet
of colors like Macbeth ColorChecker.

3. TUC spectral library.

This library contains 2654 spectra of various objects that was acquired in
the Optoelectronics lab of Technical University of Crete.

The spectra of Macbeth ColorChecker and TUC spectral library was acquired
by MUSES-9HS, which was developed from the Optical Research Group at
Technical University of Crete (TUC). MuSES-9 HS is a powerful HS imager for
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spectroscopy and spectrometry in a wide spectral range from 360 nm (UV) to
1000 nm (Near Infrared). Spectral resolution ranges from 7 nm (for visible or
NIR) to 18 nm (for both visible and NIR). More than 110 spectral bands can be
acquired in less than 1 min. From the collected images, millions of spectra can
be obtained and per-point spectral and color analysis can be performed through
a graphical user interface. The main difference we have between the MuSES-9
HS and the simple spectrometer is that MuSES-9 has an acquisition integral of
10nm in contrast with spectrometer, which has lower than 1nm. This affects
our data in the following way: if we want to use the data from MuSES-9 we
must first make a smoothing process. Also when using spectrometer we need to
fit the data in order to remove all kinds of noise the spectrometer might have.
One of the main reasons we wanted to use the MuSES-9 HS camera was that
we would have all the devices needed in one camera.

The next step is the pre-processing of the data. We have to ensure that the
produced spectral cube will be aligned. The spectral cube images registration
process is the technique of wrapping one image, so that the features in the other
spectral images line up perfectly. The avoidance of that step could be resulted in
collection of a spectrum from different adjacent pixels. Furthermore, it should
be mentioned that the iteratively acquisition of the same spectral image, may
eliminate noise component.

Note that, in this study we focus on visible spectrum [400nm-730nm]. There-
fore, we isolated from the aforementioned datasets the spectrum from 400nm
to 730nm from all samples.

3.2 Training and Evaluation

As we mentioned in the introduction chapter, we want to devise a snapshot
imager, which takes k bands as input and estimates all the p− k sparse wave-
lengths. The estimation accuracy of the sparse data relies on both input features
and on the trained-model that is used. Shen et. al [32] showed that using more
than three bands as input yields to lower reconstruction error of GretagMac-
Beth ColorChecker. To evaluate the accuracy of the reflectance reconstruction
methods in detail, we simulate systems with three narrow or wide bands (RGB
case), six, nine and twelve narrow bands. This experiment is conducted in order
to investigate the influence of channel number k on model’s accuracy. Since, we
are not interested in selecting the most informative features as input bands in
this chapter, we select evenly distributed sequences of bands in [400nm, 730nm]
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Figure 3.2: ZWO ASI178MC Spectral Sensitivity.

for each different channel number, except of the RGB cases, where bands se-
lected according to ZWO ASI178MC. Shen et al. [32] and Heikkinen et. al.
[21] employed also evenly distributed bands to conduct their experiments. The
following table illustrates the selected bands.

Wide RGB bands Accodring to ZWO ASI178MC.
Narrow RGB bands [450nm, 550nm, 600nm]
6 Narrow bands [400nm, 460nm, 520nm, 580nm, 640nm, 700nm]
9 Narrow bands [400nm, 440nm, 480nm, 520nm, 560nm, 600nm, 640nm, 680nm, 720nm]
12 Narrow bands [400nm, 430nm, 460nm, 490nm, 520nm, 550nm, 580nm, 610nm, 640nm, 670nm, 700nm, 730nm]

Table 3.1: The channel sequences that are used to conduct the
experiments.

Since HS cube contains narrow spectral images, the input parameters of the
estimation models have to be also narrow. Nevertheless, a huge effort exists
on reconstructing spectral reflectance from digital cameras. The problem in
RGB case, therefore, alters from estimating p − k sparse narrow bands to p

sparse bands, since their is no logical connection between narrow and wide
spectral bands. Hence, the model in RGB case learns the mapping from digital
wide RGB images to narrow HS images. Both scenarios are evaluated in this
study, in order make comparisons of different hardware architectures. In narrow
bands case, the training set is created by keeping only the k values of spectral
bands, which are given in table 3.1. Then, the main target is to reconstruct the
reflectance from 400nm to 730nm with band step 10 of each pixel of the spectral
cube. On the other hand, in RGB wide case, a simulation of digital camera is
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developed using the spectral transmittance of ZWO ASI178MC digital camera.
From that simulation, the corresponding RGB values of each spectrum was
extracted to construct another training set.

The evaluation process is divided into three sub-experiments;

1. Training Set: Munsell patches/ Test Set: Munsell patches (10-fold cross-
validation)

2. Training Set: Munsell patches/ Test Set: Macbeth patches

3. Training Set: TUC dataset patches/ Test Set: Munsell patches.

The first experiment was conducted using 10-fold cross validation technique,
which used to predict new data that was not used in estimating it, in order to
flag problems like overfitting or selection bias and to give an insight on how the
model will generalize to an independent dataset. In 10-fold cross-validation,
the original sample is randomly partitioned into 10 equal sized subsamples.
Of the 10 subsamples, a single subsample is retained as the validation data
for testing the model, and the remaining 10-1 subsamples are used as training
data. The cross-validation process is then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. The 10 results be averaged
to produce a single estimation error.

Macbeth is a global standard set through photographers. For that reason, the
accurate estimation of the 56 isolated patches from Macbeth SG is considered
to be the minimum requirement of any spectral estimation model. Experiment
2 will give us an insight about the satisfaction of that demand.

Experiment 3 is an additional experiment to evaluate the spectral estimation
models. The best models must produce low RMSE in all experiments.

Tuning hyper-parameters of models is also a demanding process and is crucial
for the final performance. The parameters that are selected are depicted in the
following section.

3.3 Tuning Hyper-Parameters

The hyper-parameters of the models were investigated and are presented in this
section. Wiener method and linear regression (pseudoinverse) provides an up-
per bound performance in ideal conditions (noise free), when γ = 0. However,
since we are working in real enviroments, γ was chosen as γ = 10−5. In some
cases, Wiener model was used with γ = 0 with adequate results [9]. On the
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other hand, PCA’s accuracy is based on the number of the m eigenvectors. In
[48] it was shown that for the Munsell set, an six-eight dimensional PCA-basis
approximation explained 99.9% of the captured variance. For industrial appli-
cations, where high accuracy is needed, it is possible that even the accuracy
provided by an eight-dimensional approximation is insufficient. In our experi-
ments we kept the highest six eigenvectors in PCA and Hybrid cases. Adaptive
Wiener is a local algorithm, as it is applied on each pixel. In [32] it was investi-
gated the influence of training sample number L on the accuracy of reflectance
reconstruction and it was found that when the obtained spectral channels are
six and SNR = 50db the optimal value is L = 50.

In [21], where gaussian kernel, polynomial, and Wiener kernel were compared,
authors were chosen as (σ, γ) = (1.5, 10−3). Also, they argued that the param-
eters chosen are not optimal, but since they are used for every test case, they
provide information about the generalization properties of the parameters when
the training data changes, noise is random, and the nonlinear transformation is
used. In our experiments we adopted that hyperparameters and when polyno-
mial kernel was employed, W was set to three. Furthermore, for K-fourier, K
value was set to half fourier coefficients (p/2) and the model that was used for
learning the mapping from camera measurements to fourier coeffiecient space is
the gaussian model. Two level algorithm (2Level) is also a new proposal, that
devides reflectance reconstruction problem into two pieces. The first level is
consisted of the estimating model of b bands, where b > k, and the second level
estimates the real reflectance. In this study, b was set to p/2 evenly distributed
bands, and 2Level modification was applied on a third-degree polynomial ker-
nel. Spectral matching method (SEARCH) is a simple searching algorithm that
locates the closest available spectrum in a dataset. RMSE was leveraged as
distance metric for that method.

The neural network that we designed is not deep. Through experiments, it was
turned out that deep networks are not the optimal solution for the spectral
estimation problem, due to the fact that spectrum has low amount of features
(peaks, valleys, slopes). On contrary, a small neural network with one hidden
layer that contains 15 neurons turned out to be a really efficient predictor.
Additionally, we used the “momentum” optimizer, “sigmoid” activation function
in hidden layer and “ELU” activation function in output layer.

At least, for the sparse representation case the dictionary size was limited to 15
atoms, under a sparsity constraint of 28 non-zero weights per atom. The sparsity
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constraint were determined to be ideal via exploration of the parameter space
in [24].

3.4 Results

Here we report the results of our experiments. Experiment 1, 2, and 3 are
given in tables 3.2, 3.3, 3.4, respectively. Each table illustrates analytically
the average, max, and min reconstruction error of the corresponding test set,
depending on the choice of both estimation algorithm and channels number.
Furthermore, figures 3.3, 3.4, 3.5 illustrate how average RMSE is affected by
the number of channels.
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Figure 3.3: Experiment 1. Average RMSE plotted versus the
number of spectral channels.
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Figure 3.4: Experiment 2. Average RMSE plotted versus the
number of spectral channels.
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Figure 3.5: Experiment 3. Average RMSE plotted versus the
number of spectral channels.

3.5 Discuss

The execution of the above experiments give us undeniably useful information
about the effectiveness of the each method. It can be seen from table (3.2)
that the linear regression method gives less average RMSE than Wiener is all
cases, except of the cases of 9, 12 narrow bands, where they have approxi-
mately equal average RMSE. Through both methods optimize L2-norm, the



Chapter 3. Spectral Estimation - Experiments 51

Root Mean Square Error (%)
Wide RGB Narrow RGB 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.63 3.44 1.23 0.67 0.34
Max 11.70 22.73 4.49 2.32 1.01
Min 0.54 0.24 0.14 0.10 0.08

Adaptive
Wiener

Mean 3.84 2.67 0.86 0.44 0.30
Max 17.72 21.74 4.16 1.83 0.96
Min 0.22 0.21 0.14 0.10 0.08

PCA
Mean 6.67 20.22 2.00 1.41 1.28
Max 19.90 47.95 8.38 4.18 4.08
Min 0.91 3.25 0.46 0.36 0.32

Hybrid
Mean 4.06 11.31 1.46 0.91 0.70
Max 14.88 29.85 5.68 2.68 2.07
Min 0.64 1.76 0.30 0.21 0.18

Gaussian
Kernel

Mean 1.63 2.60 0.71 0.36 0.23
Max 8.74 18.58 2.78 1.40 0.67
Min 0.18 0.37 0.12 0.09 0.07

Polynomial
Kernel

Mean 1.39 2.41 0.61 0.30 0.20
Max 7.78 17.65 2.67 1.30 0.60
Min 0.20 0.33 0.11 0.09 0.07

Linear
Regression

Mean 2.04 3.08 1.14 0.60 0.30
Max 10.46 20.71 4.28 2.30 0.94
Min 0.37 0.65 0.20 0.14 0.08

K-SVD
Mean 3.53 4.73 1.78 1.00 0.52
Max 12.37 19.57 6.67 3.76 2.00
Min 0.29 0.38 0.19 0.14 0.10

K-Fourier
Mean 1.27 2.25 0.53 0.27 0.19
Max 7.23 16.96 2.46 1.15 0.68
Min 0.20 0.28 0.11 0.09 0.06

Neural
Network

Mean 1.08 2.15 0.63 0.36 0.23
Max 6.10 15.59 2.50 1.49 0.72
Min 0.23 0.32 0.13 0.10 0.08

2 Level
Mean 1.48 2.49 0.78 0.54 0.48
Max 7.79 17.68 2.65 1.55 1.36
Min 0.22 0.36 0.12 0.09 0.09

Search
Mean 1.75 2.55 1.61 1.56 1.55
Max 8.85 16.78 6.29 6.07 6.00
Min 0.00 0.00 0.00 0.00 0.00

Table 3.2: [Experiment 1] Training Set : Munsell patches /
Test Set: Munsell patches. (10-fold cross validation)
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Root Mean Square Error (%)
Wide RGB Narrow RGB 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 4.11 5.27 1.64 1.10 0.65
Max 9.81 19.22 3.02 2.07 1.21
Min 1.81 1.40 0.73 0.51 0.26

Adaptive
Wiener

Mean 7.40 19.52 2.38 1.73 1.59
Max 16.57 32.32 7.08 4.18 3.99
Min 0.91 5.39 1.11 0.82 0.79

PCA
Mean 6.08 4.71 1.47 1.08 0.86
Max 13.52 18.73 4.62 1.89 2.36
Min 1.48 0.91 0.64 0.50 0.26

Hybrid
Mean 4.96 11.95 1.91 1.30 0.91
Max 12.59 24.26 4.09 2.48 2.02
Min 1.24 3.03 0.95 0.60 0.40

Gaussian
Kernel

Mean 2.35 3.78 1.31 1.00 0.67
Max 7.40 14.73 2.61 1.88 1.20
Min 0.86 0.86 0.65 0.54 0.24

Polynomial
Kernel

Mean 2.06 3.46 1.37 1.05 0.72
Max 6.16 13.08 2.74 1.93 1.36
Min 0.72 0.97 0.76 0.48 0.25

Linear
Regression

Mean 2.78 4.25 1.56 1.05 0.66
Max 8.85 17.34 3.09 1.97 1.21
Min 1.24 1.01 0.48 0.46 0.29

K-SVD
Mean 4.50 5.70 1.49 1.48 0.81
Max 10.57 15.45 2.82 3.51 1.65
Min 1.06 1.00 0.70 0.54 0.34

K-Fourier
Mean 2.35 3.78 1.31 1.00 0.67
Max 7.40 14.73 2.61 1.88 1.20
Min 0.86 0.86 0.65 0.54 0.24

Neural
Network

Mean 1.94 3.17 1.38 1.07 0.75
Max 6.29 9.13 2.37 1.77 1.82
Min 0.84 1.05 0.66 0.58 0.28

2 Level
Mean 2.06 3.45 1.32 0.96 0.68
Max 6.16 13.10 2.41 1.81 1.26
Min 0.72 1.00 0.69 0.43 0.32

Search
Mean 3.57 4.83 2.93 2.81 2.79
Max 8.81 15.03 6.16 5.96 5.96
Min 1.21 1.21 1.21 1.21 1.21

Table 3.3: [Experiment 2] Training Set : Munsell patches/
Test Set: Macbeth patches.



Chapter 3. Spectral Estimation - Experiments 53

Root Mean Square Error (%)
Wide RGB Narrow RGB 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.35 3.65 1.45 0.73 0.41
Max 13.78 28.68 7.40 2.60 1.32
Min 0.43 0.27 0.13 0.08 0.06

Adaptive
Wiener

Mean 4.13 2.68 0.93 0.55 0.38
Max 25.83 28.92 8.31 3.28 2.07
Min 0.17 0.19 0.13 0.08 0.07

PCA
Mean 5.06 19.28 2.66 1.70 1.60
Max 19.29 48.87 10.69 6.12 6.10
Min 0.70 2.85 0.48 0.34 0.31

Hybrid
Mean 3.56 10.85 1.84 1.07 0.87
Max 15.18 33.64 8.84 3.29 3.10
Min 0.54 1.56 0.31 0.18 0.17

Gaussian
Kernel

Mean 2.07 3.08 1.05 0.46 0.33
Max 11.31 24.25 5.85 1.71 1.03
Min 0.41 0.50 0.12 0.09 0.07

Polynomial
Kernel

Mean 1.94 2.89 0.98 0.45 0.31
Max 11.45 23.96 5.08 1.73 1.03
Min 0.39 0.37 0.12 0.09 0.07

Linear
Regression

Mean 2.75 3.74 1.61 0.66 0.37
Max 11.61 25.92 6.78 2.58 1.23
Min 0.92 0.83 0.26 0.12 0.08

K-SVD
Mean 5.20 7.44 4.27 0.97 0.66
Max 15.69 27.07 23.75 3.73 2.64
Min 0.35 0.59 0.20 0.11 0.11

K-Fourier
Mean 2.07 3.08 1.05 0.46 0.33
Max 11.31 24.25 5.85 1.71 1.03
Min 0.41 0.50 0.12 0.09 0.07

Neural
Network

Mean 1.50 2.49 0.94 0.47 0.32
Max 11.07 24.64 4.03 1.64 1.05
Min 0.28 0.28 0.16 0.10 0.08

2 Level
Mean 2.04 2.96 1.06 0.61 0.53
Max 11.41 23.97 5.00 1.89 1.62
Min 0.47 0.53 0.12 0.08 0.07

Search
Mean 3.84 4.52 2.85 2.74 2.70
Max 17.40 24.32 8.57 7.55 7.55
Min 0.29 0.29 0.29 0.29 0.29

Table 3.4: [Experiment 3] Training Set : TUC dataset patches
/ Test Set: Munsell patches.
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addition of a constant factor b in equation r = Qd + b enforces linear regres-
sion method to achieve lower reconstruction error. The effectiveness of linear
models are analyzed in [19], [20], where it was found that the ensembles of re-
flectance spectra need to be represented with linear models with at least five
to eight parameters. This finding indicates that linear models are impractical
for estimating spectral reflectance from RGB sensors, due to the low number
of input parameters. The accuracy of the linear models could be dramatically
increased by employing more bands (6, 9, 12 narrow bands). Moreover, it is
expected that if linear models would be applied locally and not globally, then
the reconstruction error could be declined. Fernardo et. al. [49] proposed that
using smaller subsets based on similar hue values, for example, leads to an im-
proved accuracy of linear models. Separate least-squares problems are solved
for every target point, where only the local neighborhood is affecting the solu-
tion. In [50] Dicarlo and Wandell proposed the use of global Wiener solution
combined with an adjustment term calculated from weighted linear regression
with a compact tricube kernel. In [51] an algorithm was proposed that first
computes a preliminary global linear estimate and then computes a local linear
regression based on the local neighborhood of the preliminary global estimate.
A weighted version of this method was proposed in [52]. In our experiments the
locally applied wiener (adaptive Wiener) outperforms the global Wiener and
linear regression in 3 and 6 narrow bands cases. Using global applied models
instead of an adaptive method is more profitable, due to the fact that adaptive
Wiener computes different Q operator for each pixel, hence, the computational
cost is really high and depends on the length of training set. Undeniably, local
based methods are considered to be prohibitive for real time applications. The
reconstruction accuracy is approximately halved when PCA is employed. Table
(3.2) indicates that principal component analysis worsens the estimation as it
gives the highest RMSE both in RGB and in six narrow bands case. In [21]
authors performed different PCA approximations for a small set and the whole
Munsell set of 1269 samples. From these results it can be seen that there is only
a marginal improvement in the accuracy of the estimation based on a smaller
subset, In that case, we could improve the accuracy of PCA either by applying
local PCA or by leveraging an overcomplete sparse dictionary, as it proposed
in [53]. The trained dictionary is proved to be more efficient rather than PCA,
since mean RMSE is 3.53% versus 6.67% of PCA in wide RGB case and 1%
instead of 1.41% of PCA in 6 narrow bands case. Max RMSE is also lower.
K-SVD algorithm leads clearly to lower reconstruction error than PCA in all
cases but does not surpass linear regression. Reconstruction efficiency of PCA
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is improved when it is combined with other methods according to [37]. Hybrid
algorithm combines Wiener and PCA methods, which results in slightly lower
average RMSE rather than single PCA.

For the table 3.2, it is clear that the nonlinearity provided by the gaussian and
polynomial kernel makes them superior to standard linear methods. Specifi-
cally, the mapping of the data to the polynomial feature space provides one of
the greatest estimations. For intance, in 6 narrow bands case polynomial kernel
achieves 0.61% average RMSE, where linear regression has 1.14%. Our experi-
ments show that polynomial kernel outperforms also adaptive Wiener , KSVD,
PCA, and Wiener in all cases. Gaussian kernel drops down the max RMSE in
RGB cases but polynomial kernel is more powerful when it is employed with
more than 6 bands as input. Greater accuracy than polynomial kernel achieved
by K-Fourier. According to table 3.2, K-Fourier gives the lowest average, max
and min RMSE when channels number is greater than three. This result leads
as to comprehend that reducing the dimensionality of the estimated space, could
also decline respectively the produced error in this problem. On the other hand,
2 Level algorithm gives higher average and max RMSE compared to the poly-
nomial kernel in all band cases. Neural net has the highest performance in
RGB cases, something that confirms that the spectral estimation problem is
non-linear in RGB case. The assumption of a linear optoelectronic transfer
function is a simplification in order to extract a more comprehensive relation
between camera measurements and spectral reflectance. This assumption will
be accurate if the measuring devices are ideal. Therefore, non-linear methods
outperforms linear due to the fact the former methods are certainly necessary for
non-linear measuring devices [21]. Linear models perform better when number
of spectral bands are more than nine, but non-linear models produce adequate
results in all cases. Neural net, polynomial kernel, and K-Fourier also overpass
spectral matching algorithm (search method).

In experiment 2, the majority of RMSE metrics are higher compared to the
first experiment. In wide and narrow RGB cases, neural network keeps the first
position, as in experiment 1, with 1.94% and 3.17% average RMSE, respectively.
When number of bands are six or nine, gaussian kernel, K-Fourier, and 2Level
algorithms give the same average RMSE, while 2Level method has the lowest
max RMSE. This trait is changed when number of bands are twelve, where
Wiener and linear regression gives approximately 0.65% and outperform the
other models.

From experiment 3, is turned out that in 9 narrow, and 12 narrow spectral
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bands cases, polynomial kernel estimates better the Munsell spectra with 0.45%,
0.31% average RMSE, respectively. Furthermore, in narrow/wide RGB and in
6 narrow bands cases, neural net gives the lowest average RMSE compared to
other methods.

Summing up, when the available hardware is an RGB digital imager with
wide/narrow filters a trained neural net turns out to be the most profitable
choice. If spectral imager contains 6 or 9 evenly distributed bands, gaussian,
polynomial kernel, and K-Fourier is more preferable. On the other hand, when
spectral bands are more than 12, both linear and kernel models would perform
approximately in the same way. As it was mentioned before, increasing the
number of spectral channel is embraced with a significant limitation. While
the spectral domain is increased, the spatial resolution is declined dramatically.
On the other hand, RGB camera is not adequate for spectroscopy purposes,
since even using a well-trained neural net, the max RMSE exceeds 6%, when
the model is tested on standard Macbeth patches. For that reason, six evenly
distributed spectral bands seems to be necessary for generating accurate esti-
mations.

3.5.1 Respecting physical constraints

A spectral reflectance of an object or material is defined as the ratio of its
luminance to the luminance of a perfect white diffuser material at the same
position. The measure of this physical property satisfies then physical con-
straints. For instance, there is no physical meaning of a negative reflectance.
But when performing spectral reconstruction, negative reflectances can appear
in the solutions. This is due to the mathematical formulation of the problem.
In general, the reconstruction methods seek to minimise a measure of accuracy
which sometimes leads to negative values. In our knowledge, the only effort to
deal with this constraint is in [54] where the authors apply the Non Negative
Least Squares (NNLS) algorithm to build reconstruction operators estimating
curves without negative values. As this algorithm is based on the introduction
of zeros (instead of negative values) on the constructed operator it is predictable
that its accuracy decreases. In any case, the algorithm deals with the problem
of non-negative values but not with others constraints. Three constraints are
important on a spectral reflectance curve:

1. the curve cannot be negative,
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2. it has an upper bound of 1 (we consider here only diffuse materials without
specular)

3. the curve must be continuous and smooth.

The reconstruction methods studied on chapter 2 respect the third condition
but not the others. In the MS community there exists another problem that is
sometimes solved by similar linear methods as the ones presented on chapter
2. This is the problem of filter optimisation. In this context [55] introduced
an estimation method for spectral sensitivity curves based on the method of
Projections Onto Convex Sets (POCS). The method itself was not new, the
first image processing application of POCS was on [56] where the aim was the
restoration of images. POCS is a method that allows the use of non-linear maps
in simple terms. Every known property of an original signal or image f can be
restricted to lie in a well-defined closed convex set. Thus, m such properties
place f in the intersection of the corresponding closed convex sets C1, C2, . . . Cm.
Given the projector operators Pi onto the individual Ci‘s, i = 1, . . . ,m, we find
f by the recursive application of the operators Pi. The approach is conceptually
simple and the major synthesis problem becomes the realization of operators
Pi. [55] used several convex sets for filter transmittance optimization, they
are: the non-negative and upper bounded vector set, the noise variance set, the
noise outliers set, the passive response set, the smoothness constraint set, the
unimodal set and the set of vectors close to the Human Visual Space. Using
projection operators onto these sets they solved their problem. As we can see
two of this sets are adapted to the constraints of reconstructed spectral curves:
the non-negative (and upper bounded) vectors set and the smoothness set. We
can think about the application of POCS to spectral reconstruction. However,
the nonnegative and upper bounded convex set and the smoothness set are not
enough. In fact, they guarantee the reconstruction to be physically feasible
but they do not guarantee a good reconstruction accuracy. Consequently, a
projection operator minimizing an accuracy criterion must be included. Once
done, we could apply POCS for spectral reconstruction. But we must not forget
that POCS is an iterative method based on projection operators. Such a method
is then not bounded on time and can converge slowly, depending on the case.
It is then not adapted for spectral reconstruction where existing methods are
bounded and fast. Even if we cannot consider the use of POCS for spectral
reconstruction the underlying idea is still interesting. A second solution for this
problem proposed by Heikkinen. Heikkinen et. al. [21] introduced the following
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transformation for reflectance spectra

r′ = arctanh(2r− 1), (3.1)

where arctanh : [−1, 1]→ R is used pointwise. The inverse transformation, i.e,
the restoration from nonlinear features is written as

r = (1 + tanh(r′))/2 (3.2)

After this transformation we will apply one of the estimation methods described
above to compute an estimate in this space. This solution will afterward be
mapped back to the original space of reflection spectra. In this way the val-
ues of reflectance estimates are constrained to the [0, 1] range. We also see
that this transformation introduces a nonlinearity into the whole process, even
though the estimation in the “arctanh” space might be linear. Third experi-
ment (experiment 3) will be repeated in order to evaluate the performance of the
aforementioned spectral estimation algorithms using the above transformation.
Results are depicted in table 3.5 and in fig. 3.6.
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Figure 3.6: Experiment 3 with “arctanh” transformation. Av-
erage RMSE plotted versus the number of spectral channels.

Comparing table 3.4 with corresponding results of 3.5 it is observed that the av-
erage RMSE is raised for Wiener method in all cases. For instance, the average
RMSE in 6 narrow bands case is increased from 1.45% to 2.02%. Furthermore,
adaptive Wiener follows the same pattern. On the other hand, gaussian and
polynomial kernel’s average RMSE is dropped in all band cases. Specfically,
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Root Mean Square Error (%)
Wide RGB Narrow RGB 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.59 4.18 2.02 0.71 0.42
Max 11.14 22.94 11.03 2.47 1.28
Min 0.98 0.50 0.41 0.15 0.06

Adaptive
Wiener

Mean 4.45 4.05 1.71 0.81 0.52
Max 15.97 26.49 9.59 3.79 1.90
Min 0.44 0.35 0.13 0.07 0.07

PCA
Mean 4.20 14.74 3.15 2.12 1.94
Max 17.22 23.56 9.70 5.59 5.96
Min 1.76 1.99 0.88 0.61 0.55

Hybrid
Mean 3.41 7.12 2.48 1.25 1.07
Max 13.03 17.40 10.41 3.54 3.26
Min 1.33 1.73 0.60 0.35 0.28

Gaussian
Kernel

Mean 1.80 2.22 0.80 0.43 0.32
Max 11.93 23.86 4.36 1.70 1.44
Min 0.16 0.24 0.09 0.08 0.07

Polynomial
Kernel

Mean 1.96 2.55 0.82 0.42 0.32
Max 12.31 23.94 6.42 1.88 1.45
Min 0.22 0.28 0.09 0.07 0.06

Linear
Regression

Mean 3.03 3.98 1.40 0.61 0.36
Max 10.84 21.87 8.88 2.74 1.12
Min 0.93 0.97 0.20 0.09 0.07

K-SVD
Mean 3.86 6.77 1.68 0.90 1.06
Max 10.02 21.83 5.28 4.12 4.47
Min 1.35 1.05 0.39 0.17 0.15

K-Fourier
Mean 1.80 2.22 0.80 0.43 0.32
Max 11.93 23.86 4.36 1.70 1.44
Min 0.16 0.24 0.09 0.08 0.07

Neural
Network

Mean 1.76 2.41 0.85 0.44 0.34
Max 12.51 22.13 4.00 1.60 1.19
Min 0.27 0.25 0.12 0.10 0.07

2 Level
Mean 2.01 2.60 0.93 0.59 0.52
Max 12.28 23.95 6.31 1.81 1.56
Min 0.21 0.28 0.08 0.07 0.06

Search
Mean 3.91 4.49 2.92 2.80 2.78
Max 16.17 32.28 9.05 7.99 7.55
Min 0.29 0.29 0.30 0.29 0.29

Table 3.5: [Experiment 3 with “arctanh” transformation]
Training Set : TUC dataset patches / Test Set: Munsell patches.
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in wide RGB case, average RMSE is dropped from 2.07% to 1.80%, in RGB
narrow case is dropped from 3.08% to 2.22 and in 6 narrow case is reduced from
1.05% to 0.80%. In 12 narrow narrow band case the performance of that kernels
are affected negatively by “arctanh” transformation, and as it depicted in table
3.5 the max RMSE is increased. Generally, except of the case of 12 narrow
bands, gaussian and polynomial kernels, linear regression, K-SVD, K-Fourier,
and 2 Level models produce more accurate estimations after the transforma-
tion. Note that, in this experiment, gaussian and K-Fourier give the lowest
reconstruction error. Specifically, in narrow RGB and 6 narrow cases, gaussian
and K-Fourier drop the previous lowest average RMSE from 2.49% (neural net)
to 2.22% and from 0.94 (neural net) to 0.81%, respectively.

Ending up, the combination of gaussian kernel or K-Fourier with “arctanh’
transformation lowers the reconstruction error when the input spectral bands
are less than ten.
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Chapter 4

Band Selection - Feature
Extraction/Selection

4.1 Introduction to Band Selection

A HS cube contains hundreds of spectral bands with very fine spectral reso-
lution. In particular, the very high data dimensionality presents a challenge
to many traditional image analysis algorithms. One approach of reducing the
data dimensionality is to transform the data onto a low dimensional space by
using certain criteria. For instance, the objective of principal component anal-
ysis (PCA) is to maximize the variance of the transformed data (or minimize
the reconstruction error). However, these methods usually change the physical
meaning of the original data because the channels in the low dimensional space
do not correspond to individual original bands but their linear combinations.

Another dimensionality reduction approach is band selection (BS) in order to
select a subset of the original bands without losing their physical meaning.
That two mechanisms create the main difference between feature extraction
and feature selection. Feature extraction and feature selection are two different
methods for dimensionality reduction of HS data. Feature extraction methods,
such as PCA, project the original HS data into a new low dimensional data by
reducing the spectral dimension. Feature extraction methods alter the physical
meaning of the HS data during transformation to a new (and lower) dimensional
space whereas feature selection methods preserve the original features. Feature
selection essentially boils down to carefully selecting a subset of the available
wavebands (i.e. waveband selection) that preserves certain traits of the full
dataset.

Many band selection methods have been proposed. In terms of object informa-
tion availability, band selection techniques can be divided into two categories:
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supervised and unsupervised. Supervised methods are to preserve the desired
object information, which is known a priori, whereas unsupervised methods
do not assume any object information. For example, canonical analysis was
employed for band selection in [57]; the Jeffries–Matusita distance, divergence,
and Bhattacharya distance between classes were used as selection criteria in
[58]–[59], respectively. Although these supervised techniques clearly aim at se-
lecting bands that include important object information and the selected bands
can provide better detection or classification than those from unsupervised tech-
niques, the required prior knowledge may be unavailable in practice. For in-
stance, the bands that are more informative and they contribute in order to
achieve more considerable spectral estimation are unknown and there is no
apriori knowledge. Therefore, it is a need to develop reliable unsupervised band
selection methods that can generally offer good performance regardless of the
types of surfaces they estimate (or classify). Arad and Ben-Shahar [60] first
recognized that the quality of HSI recovery from a single RGB image was sensi-
tive to the band selection. To avoid the heavy computational cost of exhaustive
search, they proposed an evolutionary optimization based selection strategy.

Because the basic idea of unsupervised band selection methods is to offer the
most distinctive and informative bands, a plenty of algorithms have been pro-
posed over the last years. The major difference is that the algorithms are
applied in the spatial domain, instead of being applied in the spectral domain
for endmember extraction. There are quite few endmember extraction algo-
rithms and a comparative study can be found in [61]. In general, endmember
extraction algorithms can be divided into the following two categories: one ex-
tracting distinctive pixels based on similarity measurement and the other using
the geometry concept, such as simplex. In this chapter, we propose the ap-
plication of endmember extraction in the spectral domain towards improving
spectral reconstruction from low number of observes. Practical considerations
such as algorithm initialization, the number of pixels to be involved in the band
selection process are investigated.

4.2 Data Preprocessing

To select the most distinctive but informative bands, low SNR bands need to be
preremoved. This is because they can be very distinctive but not informative.
Instead of manual selection, we compute the spectral correlation coefficients
between original bands; those bands that have very low correlation coefficients
with adjacent bands are considered as bad bands and will be preremoved[62].
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The noise component in different bands is varied. If the noise component is
larger, a band may look more different from others, although it may not be
informatively distinct. Thus, noise whitening is needed, which requires noise
estimation. It is known that noise estimation is a difficult task. In [63], it
was demonstrated that the net effect of noise whitening and data whitening is
similar. Therefore, we apply data whitening to the original bands (after bad
band removal), which can be easily achieved by the eigendecomposition of the
data covariance matrix. Then, the whitened bands actually participate in the
following band selection process. Note that the selected bands are the original
ones, not the whitened ones.

4.3 Properties of Similarity-Based Band Selec-
tion

To select the most distinctive and dissimilar bands, a similarity metric needs
to be designated (widely used metrics include distance, correlation, etc). The
measurement is taken on each pair of bands. In addition, due to the large num-
ber of original bands, the exhaustive search for optimal band combinations is
computationally prohibitive. The sequential forward search can save significant
computation time [58]. It begins with sub-optimal two bands combination, and
then, this band combination is subsequently augmented to three, four, and so
on until the desired number of bands are selected. The proposed band selec-
tion algorithms using the endmember extraction concept adopt this sequential
forward search strategy. The basic steps of that method can be described as
follows:

1. Initialize the algorithm by choosing a pair of bands b1 and b2. Then, the
resulting selected band subset is Φ = {b1b2}.

2. Find a third band b3 that is the most dissimilar to all the bands in the
current Φ by using a certain criterion. Then, the selected band subset is
updated as Φ = Φ ∪ {b3}.

3. Continue on Step 2) until the number of bands in Φ is large enough.

Another advantage is that, it is less dependent on the number of bands to be
selected because those bands that are already being selected do not change
with this value; increasing this value simply means to continue the algorithm
execution with the bands being selected, whereas decreasing this number simply
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Figure 4.1: MVS-SFS (source: [64])

means to keep enough bands from the selected band subset (starting with the
first selected band) as the final result.

4.4 Band Selection Algorithms

Five band selection algorithms are analyzed and evaluated here. MEV-SFS,
Linear Prediciton (LP), Orhogonal Subspace Projection (OSP), Band Section
using Linear Interpolation (LIBS), and Genetic Algorithm (GA) are discussed
in this section.

4.4.1 MEV-SFS

MEV is a BS method originally proposed for MS images. It attempts to find
the bands that have a large amount of information and low correlation at the
same time. Reference [65] gives an example in 2-D, which is shown in Fig.
4.1. The total variance in Fig. (4.1a) is larger than that in Fig. (4.1b), i.e.,
λ1 +λ2 > λ3 +λ4. However, the correlation of the bands in Fig. (4.1a) is higher
than that in Fig. (4.1b); therefore, λ1×λ2 < λ3×λ4. The ellipse in Fig. (4.1b)
has a larger area than the ellipse in Fig. (4.1a). When extended to a high-
dimensional space, MEV attempts to select the ellipsoid, which discourages the
selection of band sets with high correlation. It can be proven that the volume of
the ellipsoid equals the determinant of the covariance matrix of bands, except for
a constant factor [65]. For a band set B = [b1,b2, . . . ,bp] ∈ RN×p, where N and
p are the numbers of pixels and bands in the set, respectively , assume that the
mean value of each band has been removed, then the ellipsoid volume of B can be
measured by the determinant of the covariance matrix (neglecting the constant
factor) [65]. For computational convenience, the square root term is neglected
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in the following. Therefore, the criterion of the MEV method is selecting the
band set with the maximum determinant of the covariance matrix. The MEV
method was originally designed for the Landsat-4 Thematic Mapper, which is
a MS sensor and has seven bands [66]. In paper [64], the MVS-SFS is used as
a searching strategy. SFS is a simple greedy search algorithm that belongs to
the heuristic suboptimal search methods. MEV-SFS starts with calculating the
covariance matrix of all bands and selects as initial bands, the band with the
maximum variance. The next step is tentatively add the candidate band to the
selected band set by turns and determine the band to be selected, i.e.,

Φ = arg max
Φt

det(ΦtΦ) (4.1)

where Φt = Φ∪bt, t = 1, 2, . . . , p. MVS-SFS is terminated when desired number
of bands are collected. Note that set Φ cannot contains duplicate bands.

4.4.2 Linear prediction (LP)

Qian et al. [67] proposed the LP band selection method. The concept in the LP-
based band selection was originally used in the UFCLSLU for endmember pixel
selection in [68], which means that a pixel with the maximum reconstruction
error, using the linear combination of existing endmember pixels, is the most
distinctive pixel. The difference here is that, for band selection, there is no
constraint imposed on the coefficients of linear combination. Assume that all
the pixels in a spectral cube for each band are gathered in B, where B =
[b1,b2, . . . ,bp] is a N × p matrix and there are two bands b1 and b2 in Φ with
N pixels each. To find a band that is the most dissimilar to b1 and b2, b1 and
b2 are used to estimate a third band b, i.e.,

a0 + b1a1 + b2a2 = b′ (4.2)

where b′ is the estimate or linear prediction of band b using b1 and b2, and
a0, a1, and a2 are the parameters that can minimize the linear prediction error.
Let the parameter vector be a = (a0 a1 a2)T . It can be determined using a least
squares solution

a = (XTX)−1XTy (4.3)

where X is an N × 3 matrix whose first column is one, second column includes
all the N pixels in b1, and third column includes all the pixels in b2. y is an
N × 1 vector with all the pixels in b. The band that yields the maximum error
emin (using the optimal parameters) is considered as the most dissimilar band
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to b1 and b2 and will be selected as b3 for Φ. Obviously, the similar procedure
can be easily conducted when the number of bands in Φ is larger than two.

4.4.3 Orthogonal Subspace Projection (OSP)

Qian et al. [67] proposed the OSP algorithm for band selection approaches.
Assume that there are two bands b1 and b2 in Φ. To find a band that is the
most dissimilar to b1 and b2, an orthogonal subspace of b1 and b2 is constructed
as

P = I− Z(ZTZ)−1ZT (4.4)

where I is an N × N identity matrix, and Z is an N × 2 matrix whose first
column includes all the pixels in b1 and second column includes all the pixels in
b2. Then, the projection yo = PTy is computed, where y includes all the pixels
in b and yo is the component of b in the orthogonal subspace of b1 and b2.
The band that yields the maximum orthogonal component ‖ yo ‖ is considered
as the most dissimilar band to b1 and b2 and will be selected as b3 for Φ.
The similar procedure can be easily conducted when the number of bands in
Φ is larger than two. Compared to the OSP solution, the LP-based approach
is computationally more efficient because it involves matrices with relatively
smaller size. The remaining problem is to find the initial bands.

Band Used as the Initial for Band Selection for OSP and LP

The initial band pair is critical to the performance of the proposed algorithms.
Intuitively, we should use the two bands whose dissimilarity is the largest. In-
stead of the exhaustive search, the following algorithm can be applied to an
original p-band data set.

1. Randomly select a band A1, and project all the other p − 1 bands to its
orthogonal subspace 〈A1〉⊥.

2. Find the band A2 with the maximum projection in 〈A1〉⊥, which is con-
sidered as the most dissimilar to A1.

3. Project all the other p− 1 bands to the orthogonal subspace 〈A2〉⊥, and
find the band A3 with the maximum projection.

4. If A3 = A1, A1 and A2 are confirmed to be the pair with the most
significant dissimilarity, and the algorithm is terminated; if A3 6= A1, go
to the next step.
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Figure 4.2: LIBS algorithm.

5. Continue the algorithm until Ai+1 = Ai−1, then either Ai−1 or Ai can
be used as the band selection initial b1 (or Ai−1 and Ai are used as the
initial band pair).

Qian et al. [67] found out that this algorithm can always extract the two
most distinctive bands, regardless of its initial A1, although it will result in a
suboptimal set of bands. In the following experiments we exhaustively searched
the two initial-optimal bands, due to the fact that a suboptimal initialization
could easily decline the accuracy of the spectral estimation algorithms.

4.4.4 Band selection using Optimal Linear Interpolation
(LIBS)

Another idea to fulfill the aim of the band selection is to consider as features the
bands of the spectrum that can be united using linear interpolation technique,
and that union would yield to the reconstruction of the spectrum with the min-
imum error. This procedure is known as optimal piecewise linear interpolation.
In same cases, there is no single line that could pass accurately through a set
of points in a 2D space. Considering the example in fig. (4.2), the only way to
cover the red signal, is to find more that one optimal lines towards representing
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accurately the line. For the aforementioned example, the first line covers the
range [400nm, 480nm], the second the range [480nm, 600nm], and etch. Find-
ing the optimal lines that reduce the reconstruction error of the red signal,
is equivalent of finding the blue points that must be connected through lines
in order to reproduce the signal. Finding the aforementioned optimal points
is computationally prohibitive, especially in case of p-dimensionality spectum.
The calculation cost could be reduced by leveraging dynamic programming.
That problem can be solved optimally by breaking it into sub-problems and
then recursively finding the optimal solutions to the sub-problems. A possible
sub-problem is to minimize Eij, where 1 < i < j < p, and Eij is the average
square euclidean error that is produced by linearly interpolating the ith and the
jth points of all samples of the data set. Then all the sub-problems can be nested
recursively inside the larger problem (reconstruct accurately all the spectra of
the data set). The algorithm of the optimal piecewise linear interpolation is the
following:

Algorithm 1 LIBS Algorithm
1: procedure LIBS(number of bands to keep k)
2: /*Compute Opt[k, j] for 0 < k < j < p*/
3: for j : 1 to p do
4: Opt[1, j] = E1,j

5: end for
6: for l : 2 to k − 1 do
7: for j : 2 to p do
8: t := E1,j

9: for i : 1 to j − 1 do
10: t := min(t, Opt[l − 1, i] + Ei,j)
11: end for
12: Opt[l, j] = t

13: end for
14: end for
15: end procedure

When Opt[l, j] is computed, the value of i that minimized the cost function
must be recorded in a auxiliary array. Finally, the auxiliary array is used to
retrieve all the blue points. The computational cost is equal to the number of
Opt cells that need to be filled, in order to extract the optimal solution.



Chapter 4. Band Selection - Feature Extraction/Selection 70

4.4.5 Genetic Algorithm (GA)

Figure 4.3: Genetic Algorithm Flow Chart

As we already mentioned, optical filters are usually used to increase the spec-
tral resolution or sampling in multi/hyper spectral architectures. The accuracy
of the spectral data reconstruction strongly relates to the estimation procedure
and also to the characteristics of the imaging system including light source, sen-
sor sensitivity and spectral transmission of the filters in the visible range of the
spectrum. Although, a naive solution would be the exhaustive search for find-
ing the best answer among all possible filter combinations, it cannot be done in
practice. To reduce the computational time, we applied the genetic algorithm to
overcome such difficulty. Genetic algorithm is a stochastic general method for
solving optimization problems. It uses stimulated mechanisms of biological eval-
uation systems. In the genetic algorithm, every possible combination of filters
as a solution is expressed as chromosome. That chromosomes can be altered or
not, until a given “STOP” limit is satisfied or a value of a suitable ‘fitness” func-
tion is reached. The simplest form of the genetic algorithm involves three types
of operators: selection operator; which selects chromosomes in the population,
crossover operator which takes two individuals and cuts their chromosome at
some randomly chosen position for producing two “head” and “tail” segments
and bounds them interchangeably, and mutation operator which is a random
process where some values (genes) of a chromosomes are randomly changed .
A flow chart of the genetic algorithm in given in fig. (4.3). Specifically, for
the band selection problem each chromosome is a k length vector, which is a
possible (sub)optimal solution. Each gene of chromosome has a value between
400nm − 730nm and at the beginning of the process the vector is initialized
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randomly. A population of the z chromosomes is created and evaluated from
the fitness function at each step of the algorithm. The fitness function deter-
mines how fit an individual is (the ability of an individual to compete with other
individuals). In our case, the fitness function evaluate a chromosome according
to the reconstruction error of a dataset set. Chromosome that makes the best
fit contains a set of bands, which gives the lowest reconstruction error among
all chromosomes. The spectral estimation model that can be used is any from
chapter 2. Ansari et. al. [69] applied genetic algorithm for finding the best set
of three to eight filters combinations with specific full width half max. Ansari
used Wiener filter estimation for reconstruction of the Munsell spectral data,
something that will be adapted in our experiments.

4.5 Practical Considerations

1. Number of Pixels Involved in the Band Selection Process: Au-
thors of [67] found out that using a small subset of dataset in the band
selection process will not change the results in most cases. This is because
each band image is spatially highly correlated.

2. Number of Bands to be Selected: In practice, it is difficult to know
how many bands should be selected. It is more than sure that by in-
creasing the number of the selected bands, the estimation accuracy will
be also increased. The number of selected bands is depend on the optical
limitations of the hardware and on the application that is studied.
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Chapter 5

Band Selection - Experiments

5.1 Information about experiments and Results

In [60] Arad and Ben-Shahar proved that optimal band selection could boost the
quality of HSI recovery from a single RGB image. In other words, they proved
that spectral estimation is sensitive to the band selection. This assumption is
intuitively confirmed, since the accuracy of any trained model could be enforced
by selecting the best features to feed the model. To evaluate the above concept,
a real band selection procedure took place. Our goal is to find the set Φ, which
is consisted of the k most informative and distinctive bands of Munsell dataset.
The next step, is to feed spectral regression algorithms with the bands of set
Φ to make practical considerations about the improvement of reconstruction
(see tables 5.5, 5.6, 5.7, 5.8, 5.9). (Sub)Optimal bands for the cases of narrow
three, six, nine, and twelve spectral bands will be extracted from each band
selection algorithm and will be employed to repeat experiment 3 of chapter 4 (see
tables 5.1, 5.2, 5.3, 5.4). Since, we are purely interested in respecting physical
constraints of spectra, we will also evaluate the performance of the “arctanh”
transformation on spectral estimation models using an improved band set (see
table 5.10). A visualization of average RMSE produced from each BS method
and estimation model is given in fig. (5.1, 5.2, 5.3, 5.4, 5.5, 5.6). Since Munsell
dataset contains only 1269 spectra, there is no need for reducing the number of
samples that are involved in band selection process.
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Method Selected Bands

OSP [430nm, 540nm, 630nm]
LP [430nm, 550nm, 670nm]
LIBS [400nm, 530nm, 730nm]

MVS-SFS [480nm, 560nm, 730nm]
GA [460nm, 560nm, 680nm]

Table 5.1: Three narrow bands that are selected bands from
the band selection algorithms.

Method Selected Bands

OSP [430nm, 490nm, 540nm, 590nm, 630nm, 690nm]
LP [430nm, 500nm, 550nm, 600nm, 670nm, 730nm]
LIBS [400nm, 480nm, 540nm, 590nm, 640nm, 730nm]

MVS-SFS [420nm, 480nm, 560nm, 620nm, 720nm, 730nm]
GA [430nm, 490nm, 540nm, 590nm, 640nm, 700nm]

Table 5.2: Six narrow bands that are selected bands from the
band selection algorithms.

Method Selected Bands

OSP [430nm, 460nm, 490nm, 540nm, 590nm, 630nm, 690nm, 720nm, 730nm]
LP [400nm, 430nm, 460nm, 500nm, 550nm, 600nm, 670nm, 720nm, 730nm]
LIBS [400nm, 450nm, 500nm, 540nm, 570nm, 610nm, 650nm, 720nm, 730nm]

MVS-SFS [420nm, 480nm, 520nm, 560nm, 590nm, 620nm, 660nm, 720nm, 730nm]
GA [400nm, 450nm, 490nm, 520nm, 550nm, 580nm, 620nm, 660nm, 710nm]

Table 5.3: Nine narrow bands that are selected bands from the
band selection algorithms.

Method Selected Bands

OSP [400nm, 430nm, 460nm, 490nm, 540nm, 560nm, 590nm, 630nm, 660nm, 690nm, 720nm, 730nm]
LP [400nm, 430nm, 460nm, 500nm, 550nm, 570nm, 600nm, 630nm, 670nm, 710nm, 720nm, 730nm]
LIBS [400nm, 430nm, 460nm, 500nm, 530nm, 560nm, 590nm,620nm, 650nm, 710nm, 720nm, 730nm]

MVS-SFS [400nm, 420nm, 450nm, 480nm, 520nm, 560nm, 590nm, 620nm, 660nm, 700nm, 720nm, 730nm]
GA [400nm, 440nm, 480nm, 500nm, 530nm, 560nm, 580nm, 600nm, 630nm, 670nm, 700nm, 730nm]

Table 5.4: Twelve narrow bands that are selected bands from
the band selection algorithms.
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Figure 5.1: [Experiment 3/ BS: GA]. Average RMSE plotted
versus the number of spectral channels.
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Figure 5.2: [Experiment 3/ BS: OLI]. Average RMSE plotted
versus the number of spectral channels.
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Figure 5.3: [Experiment 3/ BS: LP]. Average RMSE plotted
versus the number of spectral channels.
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Figure 5.4: [Experiment 3/ BS: OSP]. Average RMSE plotted
versus the number of spectral channels.
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Figure 5.5: [Experiment 3/ BS: MVS-SFS]. Average RMSE
plotted versus the number of spectral channels. Blue arrow in-

dicates the algorithm that has the lowest average RMSE.
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Figure 5.6: [Experiment 3/ BS: GA with “arctanh” transfor-
mation]. Average RMSE plotted versus the number of spectral

channels.

5.2 Discuss

This experiment aims at providing an performance analysis of various band se-
lection algorithms towards improving spectral dimensionalality expansion. Ex-
tracting set Φ, therefore, is crucial step for improving the training manner,
hence, the most informative and distinctive bands must be identified in the
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 2.99 1.53 0.77 0.43
Max 13.06 8.37 4.99 1.46
Min 0.30 0.09 0.09 0.06

Adaptive
Wiener

Mean 2.44 1.33 0.55 0.37
Max 12.79 8.14 2.86 1.50
Min 0.21 0.12 0.11 0.06

PCA
Mean 7.96 2.18 1.79 1.69
Max 19.51 11.38 6.45 6.07
Min 1.03 0.33 0.35 0.34

Hybrid
Mean 4.99 1.55 1.09 0.92
Max 15.23 9.79 5.52 3.24
Min 0.64 0.19 0.16 0.18

Gaussian
Kernel

Mean 2.29 0.88 0.48 0.31
Max 11.59 5.76 2.53 0.92
Min 0.43 0.20 0.08 0.07

Polynomial
Kernel

Mean 2.21 0.82 0.45 0.30
Max 11.46 4.78 1.76 1.16
Min 0.46 0.17 0.08 0.06

Linear
Regression

Mean 3.19 1.52 0.71 0.36
Max 11.45 7.89 4.78 1.66
Min 0.95 0.43 0.15 0.05

K-SVD
Mean 4.78 3.51 1.48 1.50
Max 13.21 22.30 6.65 11.86
Min 0.43 0.18 0.14 0.09

K-Fourier
Mean 2.29 0.88 0.48 0.31
Max 11.59 5.76 2.53 0.92
Min 0.43 0.20 0.08 0.07

Neural
Network

Mean 1.90 0.73 0.55 0.34
Max 9.17 2.66 1.82 1.19
Min 0.38 0.17 0.13 0.07

2 Level
Mean 2.30 0.99 0.61 0.52
Max 11.41 4.68 1.73 1.54
Min 0.56 0.18 0.09 0.06

Search
Mean 3.72 2.86 2.74 2.73
Max 15.59 7.77 7.77 7.77
Min 0.29 0.29 0.29 0.29

Table 5.5: Training Set: TUC dataset/ Test Set: Munshell/
Band Selection Method GA.
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 4.86 1.68 0.80 0.47
Max 17.17 8.40 3.20 1.42
Min 0.24 0.10 0.07 0.07

Adaptive
Wiener

Mean 3.74 1.20 0.57 0.41
Max 22.92 10.50 2.25 1.85
Min 0.22 0.12 0.09 0.06

PCA
Mean 17.20 2.74 1.84 1.65
Max 47.94 9.08 6.98 6.36
Min 1.95 0.55 0.35 0.31

Hybrid
Mean 8.85 1.93 1.06 0.90
Max 29.17 8.64 4.86 3.38
Min 0.65 0.31 0.17 0.17

Gaussian
Kernel

Mean 3.35 0.95 0.48 0.37
Max 14.56 4.97 2.48 1.74
Min 0.23 0.11 0.08 0.07

Polynomial
Kernel

Mean 3.18 0.87 0.46 0.36
Max 16.37 4.08 2.80 1.53
Min 0.30 0.13 0.07 0.07

Linear
Regression

Mean 5.15 1.61 0.67 0.46
Max 14.98 8.15 2.76 1.43
Min 0.81 0.15 0.13 0.08

K-SVD
Mean 7.26 5.15 1.46 0.76
Max 28.75 11.05 5.46 2.60
Min 0.66 0.68 0.09 0.11

K-Fourier
Mean 3.35 0.95 0.48 0.37
Max 14.56 4.97 2.48 1.74
Min 0.23 0.11 0.08 0.07

Neural
Network

Mean 2.89 0.98 0.51 0.39
Max 22.43 4.17 1.74 1.78
Min 0.35 0.17 0.10 0.08

2 Level
Mean 3.17 0.95 0.60 0.54
Max 16.31 3.93 2.70 1.60
Min 0.29 0.11 0.07 0.07

Search
Mean 4.72 2.93 2.74 2.72
Max 31.29 9.59 8.32 7.55
Min 0.29 0.29 0.29 0.29

Table 5.6: Training Set: TUC dataset/ Test Set: Munsell/
Band Selection Method: OLI.
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 2.97 1.41 0.87 0.50
Max 13.16 5.92 4.96 2.05
Min 0.31 0.09 0.08 0.05

Adaptive
Wiener

Mean 2.33 1.34 0.67 0.43
Max 12.81 6.55 3.65 2.10
Min 0.21 0.12 0.09 0.07

PCA
Mean 6.99 1.78 1.73 1.64
Max 22.63 6.30 6.46 6.15
Min 0.76 0.32 0.31 0.30

Hybrid
Mean 4.50 1.29 1.13 0.93
Max 15.23 5.90 5.32 3.15
Min 0.55 0.19 0.19 0.17

Gaussian
Kernel

Mean 2.33 0.75 0.62 0.40
Max 12.46 2.51 2.57 2.32
Min 0.46 0.14 0.08 0.07

Polynomial
Kernel

Mean 2.21 0.70 0.57 0.38
Max 12.52 3.14 2.59 2.64
Min 0.42 0.13 0.09 0.06

Linear
Regression

Mean 3.23 1.18 0.83 0.48
Max 11.07 5.71 4.57 2.13
Min 0.87 0.16 0.10 0.08

K-SVD
Mean 4.25 1.95 1.59 2.82
Max 13.74 11.33 6.59 14.50
Min 0.38 0.23 0.11 0.11

K-Fourier
Mean 2.33 0.75 0.62 0.40
Max 12.46 2.51 2.57 2.32
Min 0.46 0.14 0.08 0.07

Neural
Network

Mean 1.94 0.71 0.57 0.40
Max 11.98 2.42 1.94 1.85
Min 0.26 0.12 0.10 0.06

2 Level
Mean 2.31 0.87 0.72 0.58
Max 12.50 3.15 2.40 2.32
Min 0.46 0.12 0.08 0.08

Search
Mean 3.70 2.83 2.82 2.77
Max 15.59 8.39 8.40 7.69
Min 0.29 0.29 0.29 0.29

Table 5.7: Training Set: TUC dataset/ Test Set: Munsell/
Band Selection Method: LP.
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.11 1.68 1.15 0.51
Max 18.85 6.72 5.62 2.14
Min 0.26 0.16 0.07 0.05

Adaptive
Wiener

Mean 2.24 1.30 1.30 0.42
Max 17.13 6.38 6.55 2.90
Min 0.16 0.12 0.10 0.07

PCA
Mean 9.44 3.65 1.69 1.65
Max 28.11 19.51 6.30 6.18
Min 1.22 0.35 0.30 0.31

Hybrid
Mean 5.81 2.36 1.07 0.92
Max 19.68 10.60 3.65 3.29
Min 0.80 0.24 0.17 0.17

Gaussian
Kernel

Mean 2.50 1.16 0.62 0.40
Max 16.92 6.36 2.98 2.44
Min 0.49 0.23 0.07 0.07

Polynomial
Kernel

Mean 2.37 1.26 0.57 0.36
Max 16.95 7.06 2.92 2.29
Min 0.46 0.24 0.08 0.07

Linear
Regression

Mean 3.30 1.89 0.91 0.48
Max 16.17 3.90 3.18 2.13
Min 0.82 0.47 0.09 0.07

K-SVD
Mean 4.69 1.77 1.61 0.82
Max 18.42 7.26 4.98 4.91
Min 0.40 0.23 0.20 0.09

K-Fourier
Mean 2.50 1.16 0.62 0.40
Max 16.92 6.36 2.98 2.44
Min 0.49 0.23 0.07 0.07

Neural
Network

Mean 1.96 0.99 0.62 0.39
Max 16.19 5.94 2.75 2.28
Min 0.34 0.25 0.09 0.09

2 Level
Mean 2.45 1.41 0.75 0.55
Max 16.92 7.04 2.57 1.92
Min 0.53 0.25 0.08 0.07

Search
Mean 3.91 3.00 2.83 2.76
Max 21.92 14.40 7.80 8.27
Min 0.29 0.29 0.29 0.29

Table 5.8: Training Set: TUC dataset/ Test Set: Munsell/
Band Selection Method: OSP.
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.80 1.73 1.12 0.55
Max 14.32 6.41 5.29 2.14
Min 0.20 0.13 0.09 0.07

Adaptive
Wiener

Mean 2.77 1.60 1.30 0.44
Max 21.66 6.21 6.65 3.35
Min 0.20 0.16 0.08 0.07

PCA
Mean 19.53 2.31 1.64 1.62
Max 50.95 10.28 6.47 6.16
Min 2.60 0.35 0.30 0.30

Hybrid
Mean 9.97 1.66 1.06 0.94
Max 29.12 6.99 4.48 3.14
Min 1.08 0.21 0.17 0.16

Gaussian
Kernel

Mean 2.87 0.99 0.54 0.39
Max 14.89 5.41 1.83 1.56
Min 0.31 0.13 0.08 0.07

Polynomial
Kernel

Mean 2.83 0.91 0.51 0.37
Max 15.19 4.93 1.84 1.68
Min 0.19 0.12 0.10 0.06

Linear
Regression

Mean 4.47 1.44 0.90 0.53
Max 12.55 5.64 2.63 2.17
Min 0.91 0.14 0.13 0.08

K-SVD
Mean 8.05 1.94 1.47 0.67
Max 28.86 9.32 5.61 3.26
Min 0.32 0.21 0.24 0.09

K-Fourier
Mean 2.87 0.99 0.54 0.39
Max 14.89 5.41 1.83 1.56
Min 0.31 0.13 0.08 0.07

Neural
Network

Mean 2.47 0.92 0.53 0.41
Max 17.86 5.70 1.79 1.99
Min 0.32 0.15 0.11 0.08

2 Level
Mean 2.89 1.05 0.71 0.57
Max 15.12 4.90 1.95 1.76
Min 0.18 0.12 0.08 0.07

Search
Mean 4.11 3.03 2.76 2.75
Max 31.29 15.04 7.77 7.55
Min 0.29 0.29 0.29 0.29

Table 5.9: Training Set: TUC dataset/ Test Set: Munsell/
Band Selection Method: MEV-SFS.
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Root Mean Square Error (%)
3 Narrow 6 Narrow 9 Narrow 12 Narrow

Wiener
Mean 3.73 1.85 0.82 0.44
Max 12.04 11.70 4.47 1.33
Min 0.47 0.33 0.15 0.05

Adaptive
Wiener

Mean 3.30 1.56 0.88 0.56
Max 11.63 12.84 3.63 2.91
Min 0.27 0.13 0.10 0.07

PCA
Mean 6.83 2.24 2.24 2.00
Max 17.37 10.70 6.66 5.79
Min 1.86 0.70 0.62 0.56

Hybrid
Mean 4.37 1.86 1.37 1.07
Max 11.09 11.25 5.49 3.23
Min 1.70 0.43 0.40 0.29

Gaussian
Kernel

Mean 1.76 0.69 0.41 0.31
Max 6.83 3.67 1.74 1.17
Min 0.22 0.08 0.08 0.06

Polynomial
Kernel

Mean 2.08 0.75 0.41 0.31
Max 11.00 4.25 2.88 1.25
Min 0.33 0.12 0.08 0.06

Linear
Regression

Mean 3.55 1.26 0.61 0.36
Max 10.78 9.96 3.18 1.60
Min 0.98 0.18 0.10 0.07

K-SVD
Mean 4.48 2.52 1.72 0.62
Max 11.07 7.46 6.40 1.99
Min 1.33 0.74 0.11 0.14

K-Fourier
Mean 1.76 0.69 0.41 0.31
Max 6.83 3.67 1.74 1.17
Min 0.22 0.08 0.08 0.06

Neural
Network

Mean 1.90 0.71 0.47 0.32
Max 12.39 2.27 1.90 1.25
Min 0.27 0.10 0.08 0.06

2 Level
Mean 2.15 0.92 0.58 0.52
Max 10.89 4.16 2.81 1.51
Min 0.32 0.10 0.08 0.06

Search
Mean 3.70 2.92 2.81 2.79
Max 15.59 8.55 8.32 8.32
Min 0.29 0.29 0.29 0.29

Table 5.10: Training Set: TUC dataset/ Test Set: Munsell/
Band Selection Method: Genetic Algorithm/ “arctanh” trans-

formation.
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full set of bands. In Chapter 3, evenly distributed bands was selected to con-
stitute set Φ, since we were more interested in evaluating the performance of
model-based spectral estimation methods rather than locating the most feature-
rich wavelengths. If set Φ is consisted of unique and informative wavelengths,
then the average error is expected to be declined, otherwise, the band selection
method is not able to locate the proper features. To make comparisons with ex-
periment 3 of chapter 3, neural net and polynomial kernel, gaussian kernel and
K-Fourier are employed since was turned out to be the most powerful estimation
models in previous chapter.

Overall, it can be seen from tables 5.5, 5.6, 5.7, 5.8, 5.9 that GA produces
the most considerable spectral estimations. On the other hand, OLI follows
counterbalancing direction.

OLI is a piecewise linear interpolation algorithm that considers as critical bands,
the wavelength-points that minimize the reconstruction error of the input set,
when they are interpolated. This assumption does not improve the estimation
error of Munsell dataset. Technically speaking, when set Φ is consisted of evenly
distributed bands, the average RMSE of neural net was 2.49% with three narrow
bands, while OLI increases that number to 2.89%. Equivalently, average error
of six spectral bands climbs from 0.94% to 0.98%, while for nine and twelve
bands the reconstruction error seems to be the same. Slightly better results are
obtained by employing MVS-SFS. For three narrow bands, max RMSE of neural
net drops from 24.64% to 17.86%, but when the amount of captured bands are
greater than three, MVS-SFS produces richer estimations. Changing physical
meaning is the main reason beyond the defectiveness of MVS-SFS. On the other
hand, preserving the original features, lead to more effective estimation models.
For instance, OSP algorithm reduces the average RMSE from 2.49% to 1.96%
of neural net but worsens the average error when number of spectral bands
are six. Furthermore, the same pattern is followed when number of bands are
nine or twelve. Average RMSE is declined when LP method is employed. Even
though, in the case of three narrow bands is reduced from to 1.95% (close to
OSP), in case of six narrow bands error is fallen from 0.94% to 0.71% leveraging
neural net. That trend is changed in cases of nine and twelve bands, since max
RMSE is raised compare to evenly distributed bands. The drawback of that
algorithms, however, is that relied on crucial assumptions. Technically speaking,
OSP, LP and MVS-SFS apply a heuristic assumption to identify the first band
from the full set, something that affects negatively the final performance of the
algorithm when that selection is not optimal. To deal with that, GA is also
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employed in our research. The structural manner of GA algorithm is based
on evolutionary process, where only the capable solutions are survived. GA is
the most profitable band selection method, as it improves the average RMSE
of neural met from 2.49% to 1.90% and from 0.94% to 0.73% of three and
six narrow spectral bands, respectively. In cases of nine and twelve bands the
average estimation error is approximately equal using either evenly distributed
bands or GA, when polynomial kernel is leveraged.

From table 5.10 it is revealed that applying “arctanh” transformation using set
Φ as produced from GA, improves sharply the performance of gaussian and
polynomial kernel, K-Fourier, and Neural Net. According to tables 5.5 and
5.10, it is indicated that in case of three bands, average RMSE of gaussian
kernel drops from 2.29% to 1.76%, while for polynomial kernel’s same error is
reduced from 2.21% to 2.08%. Neural net preserves the same average error, but
max RMSE is increased. When the available hardware consisted of six informa-
tive narrow bands, max RMSE of gaussian is sharply moderated from 5.76% to
3.67% and from 4.78% to 4.25% when polynomial kernel is employed, respec-
tively. Additionally, the average error of neural net is also declined from 0.55%
to 0.47%. Average and max RMSE is also reduced in case of nine narrow bands
for the same spectral dimensionality expansion model and seems to converge
to reconstruction error without “arctanh” transformation, when twelve spectral
bands hardware is available. Note that, gaussian kernel and K-Fourier produce
equal results in all occurrences.

Summing up, GA band selection method offers the most informative and dis-
tinctive k bands from a full set of p bands. The combination of neural net with
GA yields to a significant reduction of RMSE rather than considering evenly
distributed bands. Moreover, when “arctanh” is employed to enforce the physi-
cal constraints of spectrum, the combination of gaussian or K-Fourier with GA
yields to the most promising results.
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Chapter 6

Conclusions and Future Work

Throughout this thesis we studied and compared methods of spectral estima-
tion alongside with band selection methods.

In Chapter 1, a plenty information about spectroscopy and hyper-spectral imag-
ing were provided. Furthermore, we shew that simple exposure imagers reveal
a major disadvantage. When we have phenomena that are changing on a time
scale that is sorter than the duration required for recording the spectral cube,
the HS system cannot perform accurately. On that account, a need for a snap-
shot spectral imager that acquires in appropriate time the spectral data was
revealed. Then, we utilized spectral estimation methods due to the fact that
snapshot imagers cannot obtain a huge number of wavelengths without rapid
loss of the spatial resolution.

In Chapter 2, all the well-known spectral estimation methods were compared
according to the quality of their estimation using RMSE metric. Two new
algorithms called K-Fourier and 2level proposed by us, in order to overcome
shortcomings of the other methods.

In Chapter 3, detailed experiments were carried out using Munsell, Macbeth
ColorChecker color charts, and TUC dataset. When the available hardware was
an RGB digital imager with wide/narrow filters a trained neural net turned
out to be the most profitable choice. Nevertheless, digital RGB camera is not
adequate for spectroscopy purposes, since even using a well-trained neural net,
the max RMSE exceeds 6%, when the model was tested on standard Macbeth
patches. If spectral imager contains 6 or 9 evenly distributed bands, gaussian,
polynomial kernel, and K-Fourier is more preferable. On the other hand, when
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spectral bands are more than 12, both linear and kernel models would perform
approximately in the same way. Furthermore, the combination of gaussian
kernel or K-Fourier with “arctanh’ transformation lowers the reconstruction
error when the input spectral bands are less than ten. Consequently, linear
methods are sufficient when spectral channels are more that ten. On the other
hand non-linear kernels, K-Fourier, and neural net perform accurately in the
most of the cases.

Looking at the same problem from another perspective, the most feature-rich
training yields to higher estimation accuracy. On that account, a great amount
of band selection techniques are represented in chapter 4 and tested in chapter 5,
which are based on similarity-measurement, dynamic programming, and evolu-
tionary formulas were analyzed and compared. Genetic Algorithm (GA) turned
out to be the most promising feature selection technique, since it dramatically
improves the space reconstruction error.

A major advantage of acquiring two-dimensional spectral information from a
series of complete images is that both spectral and spatial information can be
depicted and displayed comprehensively with the aid of the so-called “thematic
maps” which are constructed by annotating different artificial colors to pixel
clusters belonging to different classes. Referring particularly to biomedical sci-
ences, the diagnostic value of these thematic maps depends on whether a certain
spectral class indicates (or not) the presence of a certain structural condition
or a pathology. The diagnostic thematic maps as the end-product of an inte-
grated SI platform would constitute the basis for the development of efficient
“optical biopsy” techniques. A major obstacle, however, for the realization and
generalization of this concept to a wide range of medical applications is the
long time required for the capturing and processing of SI data. With today’s
SI technological solutions and concepts, the capturing and post-processing of
the spectral cube (composed by tens of images or millions of pixel spectra) is
a computational intensive and time consuming procedure. Indicatively, typical
post-capturing processing times are in the range of several minutes, which re-
stricts the applicability of the method to time invariant and stationary targets.
Moreover, it should be emphasized that the existing tunable filter-based SI sys-
tems record spectral images in a time-sequential manner and obtain the spectra
from post hoc assembly of the acquired data. Thus, independently of the post-
processing times, the today’s scanning SI systems are fundamentally unsuitable
for analyzing moving targets or targets whose spectral content is changing with
the time. Thus, the clear and unmet need for alternative SI methods, is handed
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in this study and solutions are proposed. The ability of displaying a diagnostic
map in nearly video rates is expected to substantially advance analytical sci-
ences and change biomedical practices. The availability of the thematic map
in real time will, for example, guide medical actions, such as biopsy sampling
and/or treatment, during the diagnostic scanning/interrogation of the tissue.
That will be our future work.
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