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Abstract

This work summarizes the most important localization and simultaneous localiza-
tion and mapping (SLAM) algorithms for indoor navigation and studies a RFID-based
technique for improved localization accuracy. Stereo cameras and LiDARs are widely
used to assist a robot’s movement inside a known or unknown environment, as they
are not easily affected by the environmental noise. On the other hand, radio frequency
identification (RFID) tags are very cheap and do not need any external power source,
despite being affected a lot by the propagation environment. These characteristics
have rendered them very popular and great research interest has risen in order to
create accurate models for them. This thesis tests an approach which combines two
measurements from each RFID tag, the received signal strength indication (RSSI) and
the phase, in order to improve the localization/SLAM accuracy, compared to prior
art. This integration is implemented by a particle filter, with an anchor tag being
essential to compute the model parameters. For good estimation of the parameters, it
is essential that the tags’ measurements are correlated, i.e. tags’ inter-distance should
be less than half of the wavelength. Performance of the RSSI-phase integration was
evaluated by comparing the estimation error to corresponding algorithms, which only
use the RSSI or the phase. Localization error under light multipath (i.e. reflections
of the radiation on surfaces of the area e.g. walls are combined and create a different
than the expected signal to be received by the reader) was found in the order of less
than 20 cm for all three algorithms, inside a 3D area of 12 m3 volume. However,
the error of the algorithm which only used the phase, remained significantly higher
(more than 40 cm) for some time after its beginning. Localization error under strong
multipath was found in the order of 20 cm when only phase was used, 60 cm when
only RSSI was used and 40 cm with their combination, inside a 3D area of the same
volume with above. Again, the phase algorithm induced a great error (more than 1.5
m) before it converged. Therefore, the proposed approach offers a reduced localiza-
tion error from the initial time steps and can be implemented in environments with
both light and rich multipath.
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Chapter 1

Introduction

1.1 The indoor navigation problem

Navigation is the set of techniques required so that a robot can travel between
target points inside an environment. It can be divided into 3 sub-problems [1]:

� Localization of the robot inside the (known or unknown) environment. This
process consists of the computation of the robot’s coordinates relatively to the
environment’s (global) coordinate system. When the environment is unknown,
Simultaneous Localization And Mapping (SLAM) has to be implemented in-
stead of localization (i.e. apart from detecting its position, the robot also con-
structs a map of its environment). It is essential that the robot finds a way to
perceive some characteristics of its surroundings, so that it can relate itself with
them (achieved by the use of sensors) or an external observer to exist and track
the robot’s position.

� Decision about a target location to go. This problem depends on multiple
factors as the kind of the robot, the area where it moves, the purpose of the
movement etc. There are numerous solutions, as numerous problems exist.

� Path planning and transportation from its current to the desired
location. There is a great variety of path planning algorithms [2], with each one
having advantages and disadvantages, depending on the case that it will be used.
Motion control of the robot happens by giving the appropriate instructions to
its actuators (e.g. wheels, arms).

This work assumes that a complete positioning system (such as GPS) is not avail-
able, thus the robot has to decide its position by observing the environment and
measuring its own motion. Those measurements are processed by an inference algo-
rithm (e.g. Kalman or particle filters) and finally an estimation for the current state
is made. Some of the most effective ways to achieve that in indoor environments is a
stereo camera or a LiDAR sensor (which can detect the distance from the surround-
ing objects) or RFID tags (which are also very cheap and can be placed in multiple
anchor points of the area) along with an RFID reader. This thesis focuses on the
first subproblem of the navigation procedure (localization & mapping) and makes an
effort to improve the existing algorithms that use RFID observations.



1.2. Navigation using a stereo camera or a LiDAR sensor 7

1.2 Navigation using a stereo camera or a LiDAR

sensor

A stereo camera (see Section 3.2) and a Light Detection And Ranging (LiDAR)
sensor (see Section 3.1) use different technologies, but all measure the visual distance
from an area’s objects. These measurements are very accurate and can be easily used
in localization or SLAM algorithms. For example, the Robot Operating System (ROS)
framework (see Section 3.3) has many ready-to-use packages with such algorithms
implemented, and they can be easily combined with many commercial sensors. From
the view of the system’s cost, the more expensive an option is, the more accurate
and long-range observations it produces. Generally, stereo cameras are cheaper than
the LiDAR sensors and can be even constructed by using two common monocular
cameras and the appropriate algorithms. The disadvantage of the cameras is their
scanning area, which is more constrained since the LiDARs usually cover a much
wider angle (almost 360◦) of the 2D space.

1.3 Navigation using RFID tags

The use of the RFID technology (see Section 4.1) is getting more and more popular
nowadays. Thanks to the extremely low price of the RFID tags they can be massively
used in large storage rooms (libraries, markets, etc.) to identify the positions of the
objects, as well as some anchor points of the area. Many tasks previously done by
humans can now be automated, since the robots can accurately know their location
and where each object is. That’s the reason for the continuing research to improve
the existing algorithms and increase the accuracy as much as possible. Especially
when combined with other sensors (e.g. camera), the RFID technology is a key to a
robust, efficient indoor navigation solutions [3] [4] [5] [6] [7].

1.4 Navigation using other sensors

Apart from stereo cameras, LiDARs and RFIDs, a great variety of other sensors
can be used. The most common are:

� Infrared (IR) sensors: They measure distances by using triangulation (detec-
tion of the signal’s arrival angle and computation the distance from the object
to which it was reflected). Their range and accuracy is worse than those of the
LiDAR sensors.

� Ultrasonic sensors: They measure distances by using sound waves (counting
of the time since the wave was emitted until it returns back). They are less
accurate than the IR sensors, and with even smaller range.

� Barometers: They can be used to compute the height of a robot from the
ground. However, when inside the room air waves exist (e.g. drone flying,
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open doors/windows), barometers are affected too much and their accuracy is
reduced.

� Compass: Computes the orientation of the robot, relatively to the magnetic
field of the earth. However, it is useless in places with strong magnetic fields.

� Monocular cameras: They can be used to detect landmarks of the area and,
in combination with the robot’s motion, to compute its current pose.

� Radio Frequency (RF) Beacons: They are small devices emitting RF pulses
and they can be considered as “an indoor GPS system” since they emit signals
(just as the GPS satellites) which are detected and processed by the robot. The
only difference is the way of processing, due to the different distances between
the transmitter and the receiver in each case. Furthermore, they require a power
source making their installation more complex (and expensive) than RFID tags.

� Global Positioning System (GPS) sensors: For outdoor places without
many obstacles, GPS sensors offer accurate localization without the need of
transmitting radiation.

1.5 Thesis outline

This work summarizes some of the main indoor localization and SLAM techniques,
as well as investigates the possibilities of RFID-based algorithms. Chapter 2 analyzes
both the localization and the SLAM problem, as well as the most famous algorithms
to solve them. In Chapter 3 the technology of stereo vision and LiDAR sensors is
explained thoroughly, as well as the ROS framework is summarized, through which it
is possible to easily use pre-implemented algorithms with a great variety of sensors.
The technology of RFIDs, some significant papers on their use for navigation and a
new approach for accuracy increase are discussed thoroughly in Chapter 4. Chapter 5
quotes some maps produced by the ‘Google Cartographer’ algorithm in ROS, as well
as the efficiency of the new approach proposed in Chapter 4. Finally, Chapter 6 gives
some conclusions and possible directions for future work.
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Chapter 2

Navigation algorithms

2.1 The localization problem

Localization is the problem of estimating a robot’s pose (i.e. position and orien-
tation) inside a known environment. The estimation is based on measurements taken
by internal or external robot sensors which are analyzed using inference methods.
Dividing the localization problems into categories can be achieved by using many
different criteria, such as [8]:

� The type of knowledge available initially and at run-time:

– Position tracking : The initial pose of the robot is known and the robot is
not static. Its path is tracked using its own motion (i.e. the instructions
that rule its movement inside the environment) or/and observations of the
robot relatively to anchor points in the environment. The greater the noise
is, the greater the uncertainty of the final estimation is.

– Global localization: The same as the position tracking problem, with the
difference that the initial pose of the robot is unknown. A different than
the above approach has to be used to estimate the robot’s pose, by using
anchor points of the environment (and the robot’s motion too, if the robot
is moving). This is a harder problem to solve since the available knowledge
is limited.

– Kidnapped robot problem: The same as the global localization problem with
the assumption that anytime, the robot may be kidnapped by an external
force and moved to another location. That makes the problem even more
difficult than global localization. On the one hand this is not a situation
that often occurs in robotics, but on the other hand, the solution to this
problem makes an algorithm capable of recovering from failures (something
that is not guaranteed by the state-of-the-art localization algorithms).

� The type of environment around the robot:

– Static environments : The only changing thing in such environments is the
robot when it moves.

– Dynamic environments : While time passes parts of the environment are
changing, rapidly or slowly (e.g. people walking, objects moved from one
location to another).
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� The use of the robot’s motion:

– Active localization: The algorithm can control the robot and drive it at
any desired location and perform locomotion actions.

– Passive localization: The algorithm is not capable of controlling the robot.

� The number of robots to localize:

– Single-robot localization: All data being collected concerns the same robot
which needs to be localized.

– Multi-robot localization: This type of localization refers to teams of robots
which are able to detect and communicate with each other. Then, their
belief for each other can furthermore improve the single-robot estimation
computed from each robot for itself.

2.1.1 EKF Localization

EKF localization [8] uses an Extended Kalman Filter to fuse the measurements of
the robot’s motion (e.g. its IMU) with the observations of landmarks in the environ-
ment. This filter uses a Gaussian approximation of the real model, i.e. a mean and
a covariance matrix.

The algorithm (see Algorithm 1) consists of two discrete steps:

1. Prediction step: The motion of the robot is used to change the previous
estimation (mean and covariance matrix), depending on its movement at that
time. This motion contains a significant amount of noise and increases the
variance of the estimation.

2. Correction step: The observations of the environment are used to ‘correct’
the prediction of the previous step (i.e. slightly change the mean and decrease
the variance of the estimation).

In the case which the landmarks cannot be distinguished from each other, a way for
association of the observations with the known map has to be found. Many techniques
exist for that reason, such as Multi-Hypothesis Tracking. This strategy uses multiple
Gaussians, with each one expressing a different association between the observations
and the map of the landmarks. The final estimation is the weighted average of those
Gaussians or the one with the maximum weight.

Another issue interesting to mention is the initialization of the algorithm’s pa-
rameters. This is not too important, since the algorithm will converge to the right
estimation anyway. However, the more accurate the initial guess is, the faster the
algorithm will converge.
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Algorithm 1 Extended Kalman Filter (EKF) Localization

Required:
µt−1, the estimated mean of the previous time step
Σt−1, the covariance matrix of the previous time step
ut, the robot’s motion (odometry measurement) for the current time step
zt, the observations of the environment’s landmarks for the current time step
m, the set of known landmarks in the environment

Returned:
µt, the estimated mean of the current time step
Σt, the covariance matrix of the current time step

Pseudocode:
1: µ̂t ← gt(ut, µt−1) . Prediction step
2: Σ̂t ← GtΣt−1G

T
t +Rt

3: for j ← 1 : size (zt) do . Correction by using all the observations
4: find ` such that zjt refers to map landmark m`

5: ẑjt = hjt (µ̂t,m`)

6: Kj
t ← Σ̂t

(
Hj
t

)T (
Hj
t Σ̂t

(
Hj
t

)T
+Qt

)−1

. Kalman Gain

7: µ̂t ← µ̂t +Kj
t

(
zjt − ẑ

j
t

)
, Σ̂t ←

(
I −Kj

tH
j
t

)
Σ̂t . Correction step

8: end for
9: µt ← µ̂t, Σt ← Σ̂t

Explanation of the symbols:

� Function gt is the transition model of the robot, i.e. changes its estimated
location according to its motion ut.

� Matrix Gt is the Jacobian of the function g : Gt = ∂gt(ut,µt−1)
∂µt−1

.

� Matrix Rt is the noise covariance matrix of the robot’s motion.

� Function hjt is the observation model of the robot for the map feature j, i.e. a
non-linear function, for which it is true that: z̄jt = hjt(xt,m`). This function
computes the expected value of the observation zjt based on the filter’s estima-
tion for the robot’s pose xt and the map feature m` to which the observation
corresponds.

� Hj
t is the Jacobian matrix of the function hjt : Hj

t =
∂hjt (µ̂t,m`)

∂µ̂t
.

� Matrix Qt is the noise covariance matrix of the observations zjt .

Unscented Kalman Filter (UKF) Localization [8] is an improvement of EKF local-
ization, where a UKF is used instead of an EKF. UKF does not just use a mean and a
covariance matrix to represent each of its states, but also some additional components
which increase the accuracy of the estimation. This accuracy increase can be justified
by the better modeling of the impact of the noise coming from the various sensors,
instead of a simple Gaussian approximation.
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2.1.2 Grid Localization

Grid localization [8] uses a discrete approximation (histogram filter), in which the
space of all possible states (e.g. locations/poses to be estimated) is divided into a
grid of K cells. Each cell is processed separately from the rest, and that procedure
is also comprised by two stages; the prediction and the correction one, similarly to
EKF localization.

Algorithm 2 illustrates the localization procedure, with fmotion(...) and flandmark(...)
being the motion model and the observation model, respectively. Their computation
depends on the sensors, the environment and the robot.

The resolution of the grid is a key factor to the accuracy of the localization.
High resolution induces high accuracy (supposing that the observations are accurate
enough too), but also induces a high computational cost due to the great number
of the grid’s cells. Lower grid resolution also reduces both of those metrics. Thus,
the optimal trade-off has to be decided relatively to the available resources and the
required accuracy.

Algorithm 2 Grid Localization

Required:
p1,2,...,K
t−1 (x1,2,...,K), the posterior belief for each cell x1, x2, ..., xK at the previous

time step
ut, the robot’s motion (odometry measurement) for the current time step
zt, the observations of the environment’s landmarks for the current time step
m, the set of known landmarks in the environment

Returned:
p1,2,...,K
t (x1,2,...,K), the posterior probability for each cell x1, x2, ..., xK at the

current time step
Pseudocode:

1: for k ← 1 : K do
2: p̂kt (xk)←

∑K
kk=1 p

kk
t−1 (xkk) fmotion (xkk, xk, ut) . Prediction step

3: pkt (xk)← ηp̂kt (xk) flandmark (m,xk, zt) . Correction step
4: end for

Explanation of the symbols:

� Function fmotion (xsrc, xdst, ut) returns the probability of transitioning from cell
xsrc to cell xdst with the robot’s motion being equal to ut.

� Function flandmark (m,xk, zt) returns the probability of getting the observation
zt from the cell xk inside the map m.

� η is a normalization factor so that
∑K

k=1 p
k
t (xk) = 1.
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2.1.3 Monte Carlo Localization

Monte Carlo localization [8] is one of the most popular localization algorithms in
robotics (see Algorithm 3). Based on the use of a particle filter it can approximate
multimodal distributions, something very useful in situations where there are areas
in the map very similar to each other. The algorithm works for static environments,
solves the global localization problem and can be used with both active and pas-
sive approaches. An important parameter to be set is the number of the particles
used by the filter (sample size). The more particles to be used, the more accurate
the estimation to be. On the other hand, the less particles to be used, the more
computationally-efficient the implementation to be. That trade-off defines a need for
adaptation of the sample size to every occasion. What is more, there is a technique
called Kullback-Leibler Divergence (KLD) [9], which automatically adapts the sample
size in a way that the estimation error remains under a certain limit. That technique
uses far less particles than the respective fixed-sample-size algorithm with the same
accuracy.

Resampling is a very important step of the algorithm, because it changes the
proposal distribution (particles) in order to approximate more the target distribution
(real). Appendix B gives more details on that process, as well as some methods to
improve its efficiency.

Solving the kidnapped robot problem (equivalently recovering from failures) in
Monte Carlo localization requires just a slight modification. That is, at the resam-
pling step to add some random particles to prevent particle deprivation, when the
robot is kidnapped. The amount of the random particles may be fixed-size or adap-
tive by comparing the short-term with the long-term likelihood of the observations
(Augmented MCL [8] [10]).
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Algorithm 3 Monte Carlo Localization (MCL)

Required:
Xt−1, the sample set of the previous time step
M , the size of the sample set
m, the map of the environment
ut, the robot’s motion (odometry measurement) for the current time step
zt, the observations of the environment’s landmarks for the current time step

Returned:
Xt, the new sample set
X̂t, position estimation for the current time step

Pseudocode:
1: Xt = X̃t = {}
2: for k ← 1 : M do . Particle & Weight update

3: x
[k]
t ∼ motion model distribution

(
x

[k]
t−1, ut

)
4: w

[k]
t ← p

(
zt|x[k]

t ,m
)

. Measurement model

5: X̃t ← X̃t + {〈x[k]
t , w

[k]
t 〉}

6: end for
7: for k ← 1 : M do . Resampling
8: choose i with probability ∝ w

[i]
t from X̃t

9: Xt ← Xt + {x[i]
t }

10: end for
11: X̂t = 1∑M

k=1 w
[k]
t

(∑M
k=1w

[k]
t x

[k]
t

)
. Position estimation

2.2 The SLAM problem

SLAM stands for Simultaneous Localization And Mapping [8]. The robot is placed
inside an unknown environment and it has to create a map of it, as well as localize
itself relatively to the map it built. It is obvious that in this problem far less data
is available, and the number of the unknown variables is increased (compared to the
localization problem), which makes it significantly more difficult.

Briefly, the SLAM algorithm can be described in 4 simple steps:

� Set the starting point of the robot’s path as coordinate 0.

� Use the robot’s estimated pose to observe new landmarks on the environment
and to add them to the map (with an uncertainty, due to the observation’s error
and the uncertainty on the robot’s location).

� Observe the same landmarks multiple times to reduce the uncertainty on their
location.

� Use the observation of the known landmarks (not observed for first time) to
reduce the uncertainty on the robot’s pose after each move.
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The graphical model best describing the above procedure can be seen in figure 2.1,
where:

– xt denotes the robot’s estimated pose at time t.

– ut denotes the instructions which control the robot’s movement (or equiv-
alently the data from the robot’s Inertial Measurement Unit) at time t.

– zt denotes the set of landmark observations in the environment by the
robot at time t.

– m denotes the robot’s estimation for the map of the environment.

Figure 2.1: SLAM Graphical Model.

SLAM comes in 2 forms, accordingly to the amount of information that has to be
estimated:

� Online SLAM: The algorithm returns the posterior probability over the cur-
rent pose of the robot and the estimated map of the environment, i.e.
p (xt,m|u1:t, z1:t).

� Full SLAM: The algorithm returns the posterior probability over the whole
path of the robot as well as the estimated map of the environment, i.e.
p (x1:t,m|u1:t, z1:t).

SLAM algorithms are computationally expensive. Especially the Full SLAM problem
(which requires computation of the full posterior) is usually infeasible, due to the
high dimensionality of the parameters’ space and the large number of possible ways
to match the (already observed) discrete landmarks with the measurements.

2.2.1 EKF SLAM

Extended Kalman Filter (EKF) SLAM [8] is historically the first SLAM algorithm
developed and solves the online SLAM problem. The robot’s motion as well as the
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observations of the environment features are fused inside an EKF and an estimation
of the map and the robot’s pose is induced.

EKF uses a Gaussian approximation of the variables to be estimated. When those
variables are close-to-linear, the EKF converges. However, in the real world there are
cases in which linearity does not exist at all and at such cases the algorithm may
diverge from the correct solution. What is more, EKF SLAM is generally compu-
tationally expensive, despite various techniques proposed to reduce its complexity.
Thus, more efficient algorithms have been developed since then (e.g. FastSLAM) and
EKF SLAM is not widely used anymore, but only in very specific cases.

The main procedure can be divided in two main stages, which are looped at each
time step:

� Prediction step: The motion of the robot (e.g. the data coming from its
IMU) is fused along with the estimation of the previous time step.

� Correction step: The observations of the environment’s features are fused
along with the estimation from the ‘Prediction’ step and improve the accuracy
for the estimation of the map features and the robot’s position.

Depending on the type of sensors, correspondence between observations and land-
marks may or may not be a problem, with the correspondence likelihood (i.e. a
function which returns how well a set of correspondences between observations and
landmarks fits) to be computed when necessary and its global maxima to be used
as the most probable set of correspondences. Algorithm 4 describes the EKF SLAM
briefly. At each time step, it returns a vector with the means, and one covariance
matrix, i.e. the Gaussian approximations of all the variables to be estimated:

µt =



x1

x2
...
m1

1

m1
2

...
mN

1

mN
2
...


, Σt =

[
Σxx Σxm

Σmx Σmm

]
(2.1)

xi variables denote the coordinates of the robot, while mk
i denote the i-th coordinate

of the k-th map feature. Finally, Σxm denotes the sub-matrix with the covariances
between each pair of xi and mk

i variable.
Relatively to the initialization of the filter, its state vector initially contains only

the robot’s coordinates, all equal to zero, and its covariance matrix is set to zero too.
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Algorithm 4 Extended Kalman Filter (EKF) SLAM

Required:
µt−1, the vector with the estimation’s means (pose + map) of the previous time

step
Σt−1, the vector with the covariance matrix of the previous time step
ut, the robot’s motion (odometry measurement) for the current time step
zt, the set of observations of map features for the current time step

Returned:
µt, the vector with the estimation’s means (pose + map) of the current time

step
Σt, the vector with the covariance matrix of the current time step

Pseudocode:
1: µ̂t ← µt−1 + F T

x gt(ut, µt−1) . Prediction step
2: Σ̂t ← GtΣt−1G

T
t + FxRtF

T
x

3: for j ← 1 : size (zt) do . Correction by using all the observations
4: find m such that zjt refers to map landmark in position m of the state vector
µ̂t.

5: if landmark m never seen before then . Initialize new feature
6: Initialize landmark m inside the filter’s state and increase size of µ̂t, Σ̂t

7: end if
8: ẑjt = hjt (µ̂t,m)

9: Kj
t ← Σ̂t

(
Hj
t

)T (
Hj
t Σ̂t

(
Hj
t

)T
+Qt

)−1

. Kalman Gain

10: µ̂t ← µ̂t +Kj
t

(
zjt − ẑ

j
t

)
, Σ̂t ←

(
I −Kj

tH
j
t

)
Σ̂t . Correction step

11: end for
12: µt ← µ̂t, Σt ← Σ̂t
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Explanation of the symbols:

� Matrix Fx maps the state vector of the robot to the state vector (robot’s pose
+ map) of the filter.

� Function gt is the motion model of the robot, i.e. changes its estimated location
according to its motion ut.

� Matrix Gt equals with: Gt = I + F T
x G0,tFx, where G0,t is the Jacobian of the

function gt: G0,t = ∂gt(ut,µt−1)
∂µt−1

.

� Matrix Rt is the noise covariance matrix of the robot’s motion.

� Function hjt is the observation model of the robot for the map feature j, i.e.
a non-linear function, for which it is true that: z̄jt = hjt(µ̂t,m). This function
computes the expected value of the observation zjt based on the filter’s estima-
tion for the robot’s pose xt and the map feature m to which the observation
corresponds. Both of them can be found in the state vector µ̂t which is an
argument of the function.

� Hj
t = Hj

0,tFx,j, where Hj
0,t is the Jacobian matrix of the function hjt : Hj

0,t =
∂hjt (µ̂t,m)

∂µ̂t
, and Fx,j maps Hj

0,t to a higher-dimension space.

� Matrix Qt is the noise covariance matrix of the observations zjt .

2.2.2 FastSLAM

FastSLAM [11] [8] is based on particle filters, and more specifically on their ‘Rao-
Blackwellized’ version. The main assumption of this algorithm is that the map fea-
tures are independent from each other, i.e. the following factorization of the full
SLAM posterior is possible:

p (x1:T ,m|z1:T , u1:T ) = p (m|x1:T , z1:T ) p (x1:T |z1:T , u1:T ) =

= p (x1:T |z1:T , u1:T )
N∏
i=1

p (mi|x1:T , z1:T )

� p (x1:T |z1:T , u1:T ) is estimated by the use of a particle filter and the distribution
of the particles.

� p (mi|x1:T , z1:T ) , i = 1, 2, ..., N is estimated by the use of an EKF (per landmark)
which fuses the new observations with the previous ones.

Note: xt denotes the pose of the robot at time t, zt the set of landmark observations
at time t, ut the robot’s motion at time t and mi the i-th map feature.

Online SLAM can also be solved with the change that, instead of x1:T , each particle
will track only the last estimation xT for the robot’s location.
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The algorithm uses a particle filter to estimate both the pose of the robot and
the location of the landmarks in the environment. Thus, each particle consists of the
robot’s coordinates, as well as the coordinates of all the detected map features (1 path
and 1 map). Each feature is updated with the use of an Extended Kalman Filter, while
the weight of each particle equals with the product of the individual weights resulting
from the likelihood of the observations with the features. Correspondence of the
landmarks to the observations may be a problem here too and, again, it can be solved
by computing the correspondence likelihood (as explained in 2.2.1). Algorithm 5
demonstrates the basic procedure of FastSLAM.

Explanation of the symbols:

� Each particle p has the form 〈x[p]
t ,
(
µ

[p]
1,t,Σ

[p]
1,t

)
, ...,

(
µ

[p]
N,t,Σ

[p]
N,t

)
〉 with x

[p]
t being

the robot’s pose and
(
µ

[p]
i,t ,Σ

[p]
i,t

)
being the estimation for the location of the

map feature i, i = 1, 2, ..., N .

� Function h is is the observation model of the robot, i.e. a non-linear function,
for which it is true that: z̄jt = h(xt, µm). This function computes the expected
value of the observation zjt , based on the pose xt of the robot and the mean µm
of the estimation for a map feature.

� H is the Jacobian matrix of the function h: H = ∂h(xt,µm)
∂µm

.

� Matrix Qt is the noise covariance matrix of the observations zjt .
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Algorithm 5 FastSLAM

Required:
Yt−1, the set of particles from the previous time step
Wt−1, the vector with the particle weights from the previous time step
ut, the robot’s motion (odometry measurement) for the current time step
zt, the set of observations of map features for the current time step

Returned:
Yt, the set of particles from the current time step
Wt, the vector with the particle weights from the current time step

Pseudocode:
1: for p← 1 : size (Yt−1) do . For all the particles

2: Retrieve x
[p]
t−1,

(
µ

[p]
1,t−1,Σ

[p]
1,t−1

)
, ...,

(
µ

[p]
N,t−1,Σ

[p]
N,t−1

)
from particle y[p]

3: x
[p]
t ∼ p

(
xt|x[p]

t−1, ut

)
. Prediction step

4: w
[p]
t ← w

[p]
t−1

5: for j ← 1 : size (zt) do . Correction step
6: find m such that zjt refers to map landmark m . Correspondence
7: if landmark m never seen before then . Initialize new feature
8: µ

[p]
m,t ← h−1

(
zjt , x

[p]
t

)
Σ

[p]
m,t ← H−1Qt (H−1)

T

9: w
[p]
t ← w

[p]
t p0 . Weight update with a default value

10: else . Update existing feature

11: z̄ ← h
(
x

[p]
t , µ

[p]
m,t−1

)
, Q← HΣ

[p]
m,t−1H

T +Qt

12: K ← Σ
[p]
m,t−1H

TQ−1 . Kalman gain

13: µ
[p]
m,t ← µ

[p]
m,t−1 +K

(
zjt − z̄

)
, Σ

[p]
m,t ← (I −KH) Σ

[p]
m,t−1

14: w
[p]
t ← w

[p]
t

1√
2πQ

e−
1
2(zjt−z̄)

T
Q−1(zjt−z̄) . Weight update

15: end if
16: end for
17: for all features m not existing in zt do
18: µ

[p]
m,t ← µ

[p]
m,t−1, Σ

[p]
m,t ← Σ

[p]
m,t−1

19: end for
20: end for
21: for p← 1 : size (Yt−1) do . Normalization of the weights

22: w̄
[p]
t ←

w
[p]
t∑M

m=1

(
w

[m]
t

)
23: end for
24: Neff ← 1∑M

m=1

(
w̄

[m]
t

)2
25: if Neff < Nthresh then . Selective resampling - see Appendix B

26: Yt ← resampler
(
w

[1:size(Yt−1)]
t , x

[1:size(Yt−1)]
t ,

(
µ

[1:size(Yt−1)]
1,t ,Σ

[1:size(Yt−1)]
1,t

))
27: Wt ← [1, 1, ..., 1]1xSIZE(Yt)

28: else
29: Yt ← 〈x[1:size(Yt−1)]

t ,
(
µ

[1:size(Yt−1)]
1,t ,Σ

[1:size(Yt−1)]
1,t

)
〉

30: Wt ← w
[1:size(Yt)]
t

31: end if
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Chapter 3

Navigation using stereo vision or
LiDAR technology

3.1 The LiDAR technology

LiDAR stands for Light Detection And Ranging system [12] and it is a technique
for measuring distances using laser pulses. More in detail, the LiDAR sensor emits
laser pulses which are reflected on the nearby objects and return to it. By measuring
the round-trip time, it is easy to compute the distance from the objects by using the
formula:

distance =
c trt

2

with c being the speed of light and trt the round-trip time of the laser pulse.
Depending on the situation, a LiDAR sensor may measure one or more distances,

depending on the number of the returned pulses for each of the emitted ones (e.g.
through a tree, each leaf will reflect some photons, until the pulse reaches to a branch
or the ground which will reflect the remaining). The LiDAR sensor constructs a
waveform with the received pulses. Then, it detects its peaks (which correspond to
the returned pulses) by using a threshold value and, finally, it computes the distances
by comparing the time when those peaks were received with the time when the pulse
was transmitted (see figure 3.1).

Figure 3.1: LiDAR Transmitted vs Received Waveforms.

A great variety of LiDAR sensors exist with a range from a few to hundreds
of meters. Most of them are 2D (i.e. they only scan a flat wide-angle ‘slice’ of
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the environment, e.g. figure 3.2) and provide their measurements in pairs of the form
(distance, angle) with the angle indicating the direction of the measurement relatively
to the reference axis of the sensor. 3D sensors (i.e. they scan all the dimensions of
the environment) also exist and they provide their measurements in a point cloud
form [13].

Figure 3.2: Wide-angle 2D LiDAR sensor.

3.2 The stereo vision technology

Stereo vision technology is used to produce 3D images (with x,y,z being the width,
height, depth respectively). In contrast to the common cameras, a stereo camera
needs to capture two individual images of the same sight but from different points of
view (for example, a stereo camera may consist of two common cameras at a fixed
distance and a mini computer that will process their images and will produce the 3D
image). In what concerns the processing of those two images for the 3D image to be
produced, the stages are the following [14]:

1. Image rectification: The transformation of both the left and the right image
so that they are coplanar (i.e. projected on the same plane). It would be
useless in the ideal case where the left camera was only horizontally displaced
by an offset, compared to the right one (i.e. not moved towards an object
or rotated). However in general the 2 images are not projected on the same
plane (perfect coplanarity is hard even with high-accuracy equipment), thus
rectification is usually performed. Epipolar curve is defined as the curve which
corresponds to the area of view of the first camera inside the image captured
by the second camera. After the rectification, the matching pixels from the two
images have the same y coordinate (same row in the images), which makes their
correspondence easier. Thus, the epipolar curves turn into horizontal epipolar
lines.
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Figure 3.3: Rectification of 2 stereo images.

2. Image matching: The purpose of this step is to correspond each pixel of the
one image to one on the other (since the 2 images capture the same sight but
from different views). The matching algorithm computes the similarity between
each pair of pixels and determines the most probable correspondence. When the
images are rectified, that process is even simpler because the search space for
each pixel is restricted to the corresponding horizontal line on the other image
(its epipolar curve).

3. Exclusion of unique areas: Due to the different viewpoints of the 2 cameras,
each image may contain an area not visible by the other one. Those areas
have to be excluded from the 3D image that is to be produced, because the
computation of the disparity/depth for those areas is not possible. A left-right
consistency check can be used between 2 separate disparity maps (one for each
image) and the pixels whose disparities do not coincide to be excluded.

Figure 3.4: Matching and exclusion of unique areas for 2 rectified stereo images.

4. Construction of a Disparity Map: Disparity is the (horizontal, for rectified
images) displacement of each pixel of the first image, from its corresponding to
the second one. After the computation of all the disparity values, the disparity
map is induced.



3.3. The ROS Framework 24

5. Computation of the depth image: Finally, the z (depth) dimension of the
produced 3D image can be computed. More specifically, depth is inversely
proportional to the disparity value of each pixel: depth = Bf

disparity
with B the

distance between the two cameras and f the focal length of the cameras.

All in all, by following the above procedure a 3D image is produced. That image,
except from the view that it represents, it also contains information about the distance
of the cameras from the objects captured in the image, which can be used as input
to navigation algorithms (e.g. localization, SLAM)

3.3 The ROS Framework

The Robot Operating System (ROS) is a middleware developed by the ‘Willow
Garage’ Research Lab and released in 2010, with a purpose to simplify the interaction
between different devices. By hiding the details of each device’s specific API, it
achieves a higher-level communication between them without the need of deepening
into too much low-level details. Thus, each implementation is independent of the
hardware and can be used in any ROS-compatible system. ROS consists of various
components (whose relations can be seen in figure 3.5), the most important of which
are:

Figure 3.5: Communication inside the ROS framework.

� ROS Master: Master is the core of ROS, responsible for naming and regis-
tering new nodes, as well as matching publishers/subscribers to topics/services.
Moreover, it controls the Parameter Server. Thanks to the Master the nodes
track each other and can start peer-to-peer communication anytime it is needed.

� Nodes: Each node is a piece of code executing tasks (e.g. communicating with
an actual/simulated robot, sending commands).

� Topics: Topics are the “channels” through which the nodes communicate. ROS
uses the publisher-subscriber technique, with each node publishing its output
data and subscribing at topics from which it reads its input data. This is a
one-way communication from the perspective that there is no way of sending a
response to the publisher of the data.
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� Messages: Information exchanged between nodes comes in the form of mes-
sages, which are transmitted through the topics.

� Services: In contrast to topics, services offer a two-way communication in
ROS. When a node offers a service, it is publicly available to the rest of the
nodes and anyone can call it and wait for the returned result (just as a function
call inside a code).

� Parameters: This is a way to share static configuration data between all nodes.
All parameters are kept in the Parameter Server, from where any node can read
or save information.

3.4 Localization with ROS algorithms and optical

sensors

There are many, implemented in the ROS framework, algorithms for the purposes
of localization. Most of them require distance metrics as measurements from the
landmarks in the environment, thus a LiDAR or the data from a depth image is ideal.
‘AMCL’, ‘AMCL3D’, ‘robot localization’, ‘mrpt localization’ are examples of such
packages, each one with both advantages and disadvantages. However, a thorough
analysis of their specific details is not a purpose of this thesis, thus experiments were
not conducted additionally to the brief theoretical study.

3.5 SLAM with the ‘Google Cartographer’

There is a great variety of SLAM algorithms implemented as packages inside the
ROS framework. Some of them are implementations of the well-known strategies
mentioned in section 2.2, while others use extra tricks and variations to increase their
efficiency.

A detailed analysis of all the existing algorithms is out of the purposes of this
thesis, which attempts a summary of the fundamentals in indoor navigation and
studies more in-depth an approach of improving the RFID-based localization.

One of the most popular and efficient algorithms is the ‘Google Cartographer’ [15].
It mainly consists of a local and a global SLAM subsystem executed simultaneously
in separate threads. Local SLAM constructs sub-maps with collecting data from the
sensors, discarding some and keeping the rest, and assembling area scans from which
it constructs each map. Global SLAM is needed to combine the sub-maps produced
by the local SLAM in order to construct the entire map. It also solves the ‘Loop-
Closure’ problem, i.e. the problem of recognition of the same map features when they
are seen for a second time (and they are not clearly identifiable). To achieve that,
a graph is constructed with its nodes being possible sub-map correspondences and
its edges containing constraints. Thus, an optimization problem is induced on the
graph whose solution is the desired map and robot’s pose. Two maps produced by
this algorithm are given in section 5.1.
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Chapter 4

Navigation using RFID tags

4.1 The RFID technology

Radio-frequency identification (RFID) [16] is a technology used to identify a tag
using radio waves emitted by the reader’s antenna. The tag may be located far from
the reader, not essentialy in a line of sight.

4.1.1 The RFID architecture

Tags can be separated in active and passive ones. The active tags require an
external power source in order to operate, while the passive ones power up from the
energy stored in the reader’s emitted signal (varying from 10µW to 1mW ). The
reasons for which the latter ones gain more popularity are obvious; they are related
with both the price and the usefulness of the passive tags, as they can be attached to
and used for the identification of any kind of objects. On the other hand, the power
level of the signal emitted from the reader has to be significantly higher comparing
to the one required for the active tags.

Passive tags consist of 3 main components: an antenna, an integrated circuit
connected to it and a substrate on which the former two are attached. Finally,
the design may be encapsulated inside a label or any other components. There are
two different ways to transfer energy from the reader to the tag, which exploit the
electromagnetic properties of an RF antenna:

� Near-Field Coupling (NFC): This method uses the principles of magnetic
induction with both the reader and the tag having a coil. The reader creates an
alternating magnetic field in an area close to its antenna. If the tag is placed
inside that field, an alternating voltage appears to the tag’s coil. After the
rectification and coupling of that voltage to a capacitor, an amount of charge is
available to power up the chip of the tag. The tag’s data will be transmitted to
the reader through the technique of load modulation: the reader will detect the
slight changes to its magnetic field which occur from the currents on the tag’s
coil (and they will oppose the reader’s field) (see fig. 4.1a). However, this method
can be used only for short distances, and more specifically distances smaller than
the wavelength of the reader’s radiation, due to the physical limitations of that
method. More disadvantages of that method are the high transmission energy
and the low data transfer rate (for the tag-reader link).

� Far-Field Coupling (Backscattering): This method harvests energy from
the electromagnetic waves transmitted by the reader’s antenna. The reader and
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(a) Near-Field Coupling. (b) Far-Field Coupling.

Figure 4.1: Ways of reader-tag communication.

the tag have a dipole antenna each. When the tag receives the reader’s waves
an alternating voltage appears to its antenna. It is rectified and linked to a
capacitor, so that it ends up being an amount of charge that will power up the
tag. The remaining energy of the radio waves is modulated with the tag’s data
and be sent back to the reader (see fig. 4.1b). This method can be used in
longer distances than those possible in NFC.

For the purposes of a vehicle’s navigation, the most efficient solution is that of
the passive backscattering tags (and this is the kind of tags that will be examined
further below). Passive tags can be easily located at any point without taking care
for a power supply to each one of them. Moreover, the NFC method is not practical
due to the need for movement of the vehicle around the free space without the strict
limitation of a very short distance from the tag.

4.1.2 The RFID measurements: EPC, RSSI, Phase

After each communication between the reader and the tag, there are three pieces
of information available to the reader: the EPC, the RSSI and the Phase.

� Electronic Product Code (EPC): This alphanumeric code is the identity of
each tag. More specifically, EPC is the data transmitted from the tag to the
reader (by modulating the reader’s signal, as explained in Section 4.1.1.

� Received Signal Strength Indication (RSSI): This is the power of the
received (modulated) signal coming from the tag. The way in which the RSSI
will be modeled is described in a previous work [7], with two modifications. First,
the multistatic model has to be converted in a monostatic one (as the emitter
is the same with the reader in our case), and second the 2D localization has to
be adapted for the 3D space.

Finally, it occurs (see proof in appendix A) that the received power equals to:
yout = PTnTG

2
RG

2
TL

2|h|4, where:

– PT is the transmission power of the reader.

– nT is the tag scattering efficiency.
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– GR is the gain of the reader’s antenna.

– GT is the gain of the tag’s antenna.

– L models the path loss between the reader and the tag. For simple en-
vironments (i.e. few surfaces for the signal to be reflected), the 2-ray
model (modeling the direct-path ray and the reflection from the ground)
is accurate enough (but for more complex environments it is just an ap-
proximation). If D = dist(reader, tag) and hR, hT the heights (from the
ground) of the reader and the tag respectively, then:

L =


(

λ
4πD

)2
, D < 4πhRhT

λ(
hRhT
(D)2

)2

, D ≥ 4πhRhT
λ

– |h|4 is the square of a Gamma random variable, meaning |h|2 ∼ Γ(k, θ).
This variable models the effect of the multipath (i.e. reflections of the
radiation on surfaces of the area e.g. walls are combined and create a
different than the expected signal to be received by the reader) in the
environment, which is Gamma distributed for each one of the 2 paths
(reader→tag, tag→reader).

� Phase of the received signal: The phase of the (modulated) signal received
by the reader depends on its distance from the tag and equals to φout = −4πD

λ
+

θ+ φn (with D being the tag-reader distance, θ being a constant offset owed to
the length of the reader’s and the tag’s wires and φn a changing offset due to
the multipath).

However, the reader returns a value in [−π, π) or [0, 2π), which means that
φreader = φout mod 2π. That gives many candidate distances instead of just
one and makes essential the use of an inference method to determine the most
probable.

All in all, both the RSSI and the phase measurements can be used in a localization
algorithm. However, in terms of accuracy multipath affects the RSSI significantly
more than it does with the phase measurements. As a result, in environments with
strong multipath the variance of the RSSI is much greater than that of the phase.
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4.2 Existing work

Enough methods have been proposed for localization and SLAM using RFID tags.
Some of them use the RSSI (when the accuracy is not too important), while others use
the phase in order to make a more accurate estimation (just few centimeters error).
On the other hand, the algorithms using the phase have a higher complexity than
those using the RSSI, because of the great number of distances which correspond to
each phase value (and the need to discover the correct one, additionally to reducing
the noise’s impact). For the needs of a vehicle’s navigation the use of the phase is
necessary, since there is a need for high-accuracy estimation, with some of the better
approaches given below.

4.2.1 Localization using RSSI, Phase and Kalman Filters

The first approach [5] to be examined solves both an active (the robot’s motion
is used) and passive (immovable objects) localization problem using Kalman Filters.
The robot has an RFID reader and moves inside the environment where anchor tags
are located in fixed positions. However, the locations of the tags are not precisely
known, but some uncertainty is involved. While time flows, the location of both the
robot and the tags is estimated with increasing accuracy. Thus, this is not exactly a
localization problem, but more likely a SLAM problem with some initial knowledge
available (i.e. the tags are not discovered while the algorithm runs, but they are
known in advance).

Two variations of Kalman Filter are used by this algorithm. An Extended Kalman
Filter (EKF) utilizes the Taylor series to approximate non-linear functions around a
Gaussian curve and use that Gaussian in order to fuse observations and predict the
future. In other words, it linearizes a non-linear model and then, it behaves as an or-
dinary Kalman Filter. However, depending on the model this linearization may be a
bad approximation and the EKF might become unstable or converge very slowly. Un-
scented Kalman Filters (UKF) solve that issue by approximating the model without
linearizing it first (better approximation of the model, thus more quick convergence).

The proposed algorithm utilizes both of these filters the way explained below.
Actually, it handles many filter instances concurrently with a different initialization
point (state vector) each. Weights are assigned to them, and while time passes the
instances with low weights are deleted, until only one remains. Anytime in the case of
a low likelihood value for the remaining instances, the algorithm restarts. Initially all
instances “work” on the first stage, and when they satisfy the transition criterion they
proceed to the second stage. The only case to go back to the first stage is the algorithm
to be restarted. The transition from the first to the second stage happens for each
part of the state vector (tag/robot coordinates) and for each instance independently.
The criterion is the variance of the respective estimate; when it falls under a threshold
(i.e. the estimation is close to the real state) stage 2 is used to further increase the
accuracy.

1. On the first stage, the robot’s motion is fused with the RSSI observations inside
an Unscented Kalman Filter (UKF). The state vector of the filter contains the
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coordinates of the robot, as well as the coordinates for each one of the tags and
it is accompanied by a covariance matrix. At each time step the motion (i.e.
the data from the robot’s IMU) is fused along with the state vector and the
a priori estimate (state vector + covariance matrix) is computed. Afterwards,
this estimate is corrected by the RSSI measurements taken at the same time
step and the final estimate is returned. The choice of a UKF is based on the
very complex non-linear model of the RSSI measurements (for which an EKF
would be unsuitable).

2. On the second stage, both the RSSI and the phase are used. The RSSI and the
motion of the robot are fused as previously inside an Unscented Kalman Filter.
Then, the estimation returned by the UKF is fused with the phase observations
inside an Extended Kalman Filter (EKF). EKF is preferred in this case as
the algorithm’s estimate is close to the real one now, thus the linearization
performed by the EKF is a good enough approximation.

4.2.2 Localization using Phase and a Particle Filter

The second approach [6] is a passive localization algorithm with as few parameters
as possible, designed to investigate the accuracy that can be achieved in various
environments. Its purpose is the localization of an immovable tag by using only the
phase measurements (by a moving robot whose trajectory is precisely known), and
they are integrated inside a particle filter. The weights of the particles are computed
based on a distance metric (instead of the actual phase) so that slight changes of
phases near to 0/2π due to noise do not influence the weights significantly. The
method computing the weight update of the particles is explained more thoroughly
in section 4.3.2.

4.2.3 SLAM using Phase and a Particle Filter

The last of the approaches [4] to be analyzed is about the SLAM problem using
RFID tags. Again, only the measured phase is used and the FastSLAM algorithm as
described in section 2.2.2.

The special characteristic of this algorithm is owed to the nature of the phase
values, which correspond to multiple distances each. When a new tag is detected, a
Gaussian instance for it has to be initialized in every particle. However the possible
coordinates lie on multiple spheres (for 3D SLAM, or circles for 2D) and just one
instance is not enough. Thus, a set of instances is initialized for each newly detected
tag in multiple angles and distances. While more and more observations are integrated
inside the filter, the instances with very low weights are deleted. Finally, the state
estimation at each time step is the weighted average of all the remaining instances
and all the particles.

Apart from the difference in the nature of the problems (localization vs SLAM),
there are two major differences in this algorithm compared to 4.2.2. First, this ap-
proach is more complex, since it implements two particle filters and one Kalman filter
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compared to 4.2.2 where only one particle filter is used. Second, the weight update
of the particles takes into account the difference in the phases and not the distance
that they represent, as in 4.2.2. Consequently, phases close to 0 and 2π may not have
similar weights, despite corresponding to almost equivalent distances.

4.3 Localization using RSSI and Phase inside a

particle filter

The idea of this approach is that for the fusion of RSSI and phase measurements,
a particle filter is a good approach (and easy-to-implement at the same time), if
the right models are used for the weight updates. The purpose is for the RSSI to
be used in a way which will further improve the accuracy succeeded by the phase
measurements.

A passive (with respect to the robot’s motion), single-robot, global localization
scenario in a static environment is used to test the efficiency of the approach. The
specific scenario was chosen due to its simplicity, in contrast to active localization
approaches or SLAM problems. Moreover, change of accuracy in this scenario would
result to a respective accuracy change in the rest scenarios too.

More in detail, the problem is the one of the localization of an immobile tag (pas-
sive localization). The RFID reader is located on a moving robot, whose trajectory
is known (thus, the exact location of the reader is also known for each observation).
Each observation consists of an RSSI and a phase value which will update the weights
of a particle filter. Localization of more than one tags simply requires the execution
inside a loop. In appendix F an example of a more complex localization algorithm
is given (localization of a moving robot using anchor tags), where the robot’s motion
model is also used. However, no further analysis or experimental results are con-
ducted, due to its greater number of parameters which need tuning compared to the
previously mentioned approach.

Algorithm 6 is used, which is a common Monte-Carlo Localization algorithm.
The resampling method is optimized as described in appendix B. Lines 12 & 13 are of
particular interest, as they are induced from the models of the RSSI and the phase.
More details and explanation follow.

4.3.1 RSSI Weight Update

This section explains the way that the WRSSI weight update is computed for a par-
ticle X [m] =

[
x[m]y[m]z[m]

]
that represents the tag’s location, a vector g = [xg yg zg θg]

symbolizing the reader’s location & orientation and a RSSI measurement yout.
The model described in section 4.1.2 is used. What is more, the gain of the reader’s

antenna is not a constant, but depends on the signal’s angle of arrival because the
antenna is directional. A simplified model is used, described below:
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(a) X-Y plane. (b) X-Z plane. (c) Y-Z plane.

Figure 4.2: 3D model of directional antenna.

3D Antenna Model:

A 3D directional antenna model is used, as demponstrated in figure 4.2. X-Y
plane is the ground and the Z axis is vertical to it. The 3-dimensional antenna vector
is always vertical to the z axis (parallel to the ground). The gain of the main lobe
equals with G0, and the gain of the side lobes with GSLL. Finally, the backside lobe
has a gain of GBLL. Thus, the reader’s antenna gain at the direction (φT1, φT2, φT3)
of the tag is given by:

GR(φ, φT1, φT2, φT3) =


G0, all(φT1, φT2, φT3) ∈ [φ− φs1, φ+ φ1s]

GBLL, φT1 or φT2 or φT3 /∈ [φ− φs1 − φs2, φ+ φs1 + φs2]

GSLL, elsewhere

By making a simplification, φs1 = φs2, i.e. the main lobe is assumed to have opening
of angle 2φs, twice of the two side lobes which have opening of angle φs each.

Computation of the weight update:

According to section 4.1.2 RSSI = PTnTG
2
RG

2
TL

2|h|4 with:

� GR = GR(X [m], g) = G
[m]
R

� L = L(X [m], g) = L[m].

� |h|2 ∼ Γ (k, θ)

If it is denoted that a[m] = PTnT

(
G

[m]
R

)2

G2
T

(
L[m]

)2
, then RSSI = a[m]|h|4. It can

be shown (Appendix C) that, for a RSSI measurement y, the weights of the particles
are updated as follows:

WRSSI = fy|X[m]

(
y|X [m]

)
=

1

2
√
a[m]y

((
y

a[m]

) k−1
2

)(
e
− 1
θ

√
y

a[m]

)
θkΓ(k)

=

=
1

2θkΓ(k) (a[m])
k/2

(y)
k−2
2

(
e
− 1

θ
√
a[m]

√
y
)
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Estimation of the (k, θ) parameters for the Gamma distribution:

The estimation method used is the Maximum Likelihood (ML) estimation. As
proved in appendix D, given a set of N independent observations {y1, y2, ..., yN}
with yi = aiz

2, z ∼ Γ(k, θ), and the respective values of the scaling variable a
{a1, a2, ..., aN} the estimated parameters are computed as follows:

θ̂ = 1
Nk

∑N
i=1

√
yi
ai

, k̂ ≈ 3+
√

9+12s
12s

with s = ln
(

1
N

∑N
i=1

√
yi
ai

)
− 1
N

∑N
i=1 ln

(√
yi
ai

)
However due to the nature of the particle filters, two problems arise:

1. The value of the {ai} scaling variables is unknown (since they depend on the
tag’s location). Moreover, these parameters cannot be included inside the par-
ticles, as they are used for the computation of their weights. Their inclusion
would require the use of the Expectation - Maximization Algorithm, which does
not guarantee the finding of a global maximum (i.e. the right location of the
tag).

To face that problem an anchor tag can be used. Since its location is known,
the {ai} parameters are also known and k, θ can be easily computed. It is
important to note that they are considered constant inside the environment so
that the resulting model is simplified (despite the fact that this assumption is
not accurate, especially for complex environments).

2. At the initial time steps, the observations are too few for a correct estimation
of k, θ. Thus, a fixed predetermined value has to be used, until their number
exceeds a certain limit (see fig. 1). Afterwards, they are computed according to
the formulas mentioned above. Of course in some scenarios this issue does not
even exist, since the robot may have already estimated the parameters before
it starts localizing a tag.

4.3.2 Phase Weight Update

Let X [m] =
[
x[m]y[m]z[m]θ[m]

]
be a particle corresponding to the tag’s location and

constant phase offset, g = [xg yg zg θg] the reader’s position and orientation and φout
the phase measurement returned by the reader (getting values in the interval [0, 2π)
or [−π, π)).

The particle’s weight update WPHASE = p
(
φout|X [m]

)
for that measurement is

based on the model described in 4.1.2. Given a phase, the candidate points for the
tag’s position are located on concentric spheres centered on the reader and with radius
difference equal to λ/2. The value of the phase determines the radius of the smallest
sphere ρφ and it is compared with the respective spheres as they should be based on
the particle-reader distance (fig. 4.3).

This method [6] converts phase into a distance metric before it computes p
(
φout|X [m]

)
.

That is very important in environments with multipath, because the noise may change
a value near to 0 into a value near to 2π and vice versa. Thus, the weights for both
values should be relatively close to each other.
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. Subtraction of a constant offset from all phase observations

1: φ∗ = ((φout mod (2π))− θ[m]) mod (2π)

. Computation of the radius for the 2 spheres to be compared

2: ρφ = λφ∗

4π
, ρd = ||X [m]

1:3 − g1:3||2 mod (λ/2)

3: ρmax = max(ρφ, ρd), ρmin = min(ρφ, ρd)

. Distance of the observation from the nearest peak in the phase’s distribution

4: ∆[m] = min(ρmax − ρmin, λ
2
− (ρmax − ρmin))

5: WPHASE = p(∆[m]|X [m]) ≡ N(∆[m]; 0, σ2
phase) . Weight computation

Figure 4.3: Conversion of a phase observation to distance metric.

Note: σphase is the standard deviation of the phase measurements and is computed
heuristically (' 0.05λ− 0.2λ, depending on the amount of multipath).

4.3.3 Resampling

When the object that is to be localized does not move, resampling should not
happen as described in appendix B. That’s because the duplicate particles are useless,
since they will have exactly the same weights without ever changing location. To face
that problem, a Gaussian approximation of the resampled distribution is used and
the particles are drawn from that. This way, the probability of two particles to be
sampled and be equal is almost zero.

Another issue is the value of the threshold that determines the frequency of the
resampling, with a commonly used value being Nthresh = M

2
. However, there is a

high risk of particle deprivation and the threshold has to be set to a significantly
lower value. The reason is that the new set of particles is drawn from a Gaussian
approximation which is unimodal, while the distribution of the particles is initially
multimodal (since a phase observation corresponds to multiple distances). As time
passes, the multimodal distribution gradually turns into a unimodal one by converging
to the right mode but if resampling happens too often, particles may be deprived from
it.
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Algorithm 6 Tag localization

1: Set M (number of particles), T (time window), Nthresh

2: Set Xa
min, X

a
max, Y

a
min, Y

a
max, Z

a
min, Z

a
max(search area dimensions)

3: Set {g[1], g[2], ..., g[T ]} (the locations of the robot for time t=1,2,...,T)
4: for m← 1:M do
5: x[m]∼U [Xa

min, X
a
max] , y

[m]∼U [Y a
min, Y

a
max] , z

[m]∼U [Za
min, Z

a
max] , θ

[m]∼U [0, 2π)

6: X
[m]
0 ←

[
x[m]y[m]z[m]θ[m]

]
, w[m] ← 1

7: end for
8: for t← 1:T do
9: Collect the RSSI yt and the phase φt.
10: for m← 1:M do
11: for j← 1:G do

12: WRSSI ← f
yt|X[m]

t

(
yt|X [m]

t

)
= 1

2θkΓ(k)
(
a
[m]
t

)k/2 (yt)
k−2
2

(
e
− 1

θ

√
a
[m]
t

√
yt
)

13: WPHASE ← p(∆
[m]
t |X

[m]
t ) ≡ N(∆

[m]
t ; 0, σ2

phase)

14: w[m] ← w[m]WRSSIWPHASE . Correction step
15: end for
16: end for
17: w[1:M ] ← w[1:M ]∑M

m=1 w
[m] . Normalization of weights

18: Neff ← 1∑M
m=1(w[m])

2

19: X̂
[t]
est =

∑M
m=1w

[m]X
[m]
t . Position estimation for time t

20: if Neff < Nthresh then . Resampling if needed

21: X
[1:M ]
LV S ← LVS

(
X

[1:M ]
t , w[1:M ]

)
22: X

[1:M ]
t+1 ∼ N

(
E
[
X

[1:M ]
LV S

]
, V ar

[
X

[1:M ]
LV S

])
23: w[1:M ] ← 1
24: else
25: X

[1:M ]
t+1 ← X

[1:M ]
t

26: end if
27: end for
28: return X̂est
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Chapter 5

Numerical results

5.1 SLAM maps by the ‘Google Cartographer’

In figure 5.1 two maps of the same place are given, the one constructed with a
LiDAR sensor and the other with a stereo camera (green color denotes the algorithm’s
estimation for the path of the robot). Due to the camera’s narrow angle-of-view and
its lower accuracy, the map produced by it is not as accurate as the map by the
LiDAR.

(a) Map by using a LiDAR sensor. (b) Map by using a stereo camera.

Figure 5.1: Maps constructed by Google Cartographer.

5.2 Accuracy of RFID-based localization

algorithms

In Figure 5.2 the RSSI and the phase measurements are plotted, exactly as re-
turned by the RFID reader. Relatively with the robot’s trajectory, it is a straight
line with the distance from the tag initially being decreased and afterwards being
increased. It is worth noting that the noise (because of the multipath) affects the
RSSI significantly more than the phase. Moreover, the plot of the RSSI should be
unimodal (according to the squared Gamma model used in this work), but the greater
the amount of multipath that exists, the more modes to also appear.

The choice of the location for the anchor tag is important. To simplify the model,
it has been assumed that the parameters (k, θ) of the RSSI’s Gamma distribution do
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(a) RSSI observations. (b) Phase observations.

Figure 5.2: RSSI & Phase measurements inside different environments.

not change from point to point, but the reality is quite different. Thus, the actual
parameters are not exactly the same with the ones estimated by the anchor tag.

Figure 5.3 demonstrates how the anchor tag’s location affects the RMSE of the
estimation. Each curve corresponds to a different distance between the anchor tag
and the tag which has to be localized, and the particle filter uses only the RSSIs in
order to update the weights of the particles. The wavelength of the reader equals with
0.173 m and the search area’s dimensions with 2m x 3m x 2m. As expected, the closer
that the anchor is to the unknown tag, the better the estimation of the parameters
is, and the lower the RMSE is too. When that distance is greater than λ/2, then the
tags are uncorrelated and the estimation of the parameters is not accurate. On the
other hand, distance less than half of the wavelength induces correlated tags and a
good estimation.

Figure 5.3: RMSE for various locations of the anchor tags under strong multipath.
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Figure 5.4 contains photos from the environments where the experiments were
conducted.

(a) Light multipath environment. (b) Strong multipath environment.

Figure 5.4: The environments of the experiments.

5.2.1 Localization in the 3D space

Figure 5.5 shows the results of the algorithm implemented in strong and light
multipath environments (see figure 5.4). All cases are about localization in the 3D
space and the search area’s dimensions are 2m x 3m x 2m. An anchor tag is used
for the estimation of the RSSI’s distribution parameters (k, θ) located close to the
unknown tags.

(a) Accuracy under light multipath. (b) Accuracy under strong multipath.

Figure 5.5: Comparison of localization accuracies - 3D.
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Under light multipath, the noise in the RSSI observations is not much and the
Gamma distribution is an accurate approximation for them. Actually, the RMSE of
the algorithm which uses only the phase (10-20 cm) is about the same with the one
which uses only the RSSI. Finally, their combination does not further improve the
accuracy, but neither worsens it.

Under strong multipath, the proposed model (unimodal squared Gamma distri-
bution for the RSSI observations which are multimodal) is not good, so the accuracy
of the RSSI-based algorithm is not either. It’s also worth noting that the accuracy of
the phase-based algorithm remains about the same compared to the light multipath
conditions. Finally, the RMSE of the combination is lower compared to the case in
which only the RSSI is used, as it is affected by the phase.

Moreover, the accuracy when only phase is used is very low at the beginning
of the algorithm, and it takes time until it is increased. For that time period, the
combination of RSSI and phase is much better, since it produces the greatest accuracy
achieved.

5.2.2 Localization in the 2D space

The results from the same algorithm implemented in 2D space (search area’s
dimensions equal with 2m x 3m) for both light and strong multipath (see figure 5.4)
are shown in figure 5.6. Because of the less dimensions (i.e. variables inside the
particles) to be estimated, the achieved accuracy is higher. As previously, an anchor
tag is used for the estimation of the RSSI’s distribution parameters (k, θ) and it is
located close to the unknown tag.

The results are similar to the implementation in 3D space, but with each case
having lower RMSE from its corresponding 3D one. Again, the lighter that the
multipath is, the more accurate that the squared Gamma approximation for the
RSSI’s distribution is. Moreover, the RMSE of the RSSI-phase combination is lower
than the only-RSSI case but not essentially lower than the only-phase situation.

(a) Accuracy under light multipath. (b) Accuracy under strong multipath.

Figure 5.6: Comparison of localization accuracies - 2D.
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It can be easily understood that the filter’s accuracy (when both RSSI and phase
are used for the weight update) is mainly affected by the accuracy on the RSSI’s
model and not on the phase’s. This can be reasoned because of the multimodality of
the phase in contrast to the unimodality of the RSSI. The PDF of the phase has many
peaks in concentric spheres with a radius difference λ/2, and the weight update of a
particle is related to the nearest peak. On the contrary, the RSSI model has just one
peak, common for all particles, and the weight update is related to their distance from
it. An error on the RSSI will move the total estimate to the wrong direction, with
the phase just making slight corrections to it (and so is reasoned the lower RMSE in
the strong multipath situation, compared to the only-RSSI approach).

However, the combination of RSSI along with the phase offers a reliable estimation
algorithm. It can be used in both light and strong multipath and it achieves an RMSE
not greater than the corresponding algorithm which uses only the RSSI. Moreover,
it does not need time until it converges, since the RMSE does not vary significantly
while time passes, but it remains about the same.
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Chapter 6

Conclusions

This work summarizes the most popular strategies for indoor navigation. More
emphasis was given to the localization and SLAM algorithms, as yet they are open for
research problems. Two of the most popular technologies were mentioned; the visual
one with many packages implemented and ready-to-use, and the RFID one which is
a popular research topic.

Moreover, an approach to combine RSSI and phase inside a particle filter was
proposed, so that a further increase on the accuracy is achieved. RSSI is modeled
by a scaled squared variable which follows the Gamma distribution. Additionally,
maximum likelihood estimation is used to estimate the parameters of the distribution.
However, in cases of strong multipath the localization error is increased as the specific
distribution does not approximate the model of the measurements as good as under
light multipath conditions.

Relatively to the numerical results, it is obvious that the smaller the distance be-
tween the anchor tag and the unknown is, the better the estimation of the parameters
is too, especially when that distance is less than half the wavelength and the measure-
ments of the tags are correlated. When only the phase is used for the weight update
of the particles, the localization error is initially increased, but it is reduced while
time passes. On the other hand, when only the RSSI is used the localization error is
higher than before, but it does not increase at the beginning either. Finally, when the
two measurements are combined, the localization error is less compared to when only
the RSSI is used and it does not increase significantly at the beginning, making that
solution suitable for all environments without the need for waiting until the algorithm
converges. Of course, in environments with rich multipath the estimation error will
be higher compared to light or no multipath.

Future work may include a further analysis for accurate RSSI models under
strong multipath conditions, by implementing the Expectation-Maximization algo-
rithm modified to use complex data. Also, the phase is affected by the power of the
received signal (RSSI), thus a study on that topic would be interesting too (with such
a study to prerequisite a good modeling of the RSSI, first). Finally, more complex
resampling strategies for the phase model should be also examined, in order that its
unimodality is preserved instead of approximated by a Gaussian.
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A Conversion of multistatic RSSI model to

monostatic

According to previous work [7], the power of the received signal at time t equals
with:

y = PTxnTGTxG
2
TGRxL

2
TxL

2
Rx|hTx|2|hRx|2

with

LTx =


(

λ
4π||xTx−xT ||2

)
, if ||xTx − xT ||2 < 4πhTxhT

λ(
hTxhT

||xTx−xT ||22

)2

, if ||xTx − xT ||2 ≥ 4πhTxhT
λ

LRx =


(

λ
4π||xRx−xT ||2

)
, if ||xRx − xT ||2 < 4πhRxhT

λ(
hRxhT

||xRx−xT ||22

)2

, if ||xRx − xT ||2 ≥ 4πhRxhT
λ

PTx refers to the transmission power and nT to the tag scattering efficiency. Also,
GTx/Rx/T is the gain of the transmitter’s/receiver’s/tag’s antennas respectively. Sim-
ilarly, xTx/Rx/T indicates the transmitter’s/receiver’s/tag’s locations and hTx/Rx/T
their heights respectively. Finally, λ is the wavelength of the radiation and |hTx/Rx|
are independent Nakagami random variables modeling the transmitter-to-tag and
tag-to-reader fading coefficients (thus, |hTx/Rx|2 are independent Gamma variables).

This is a multistatic model, which means that the location of the transmitter
(of the unmodulated signal) and the reader (of the modulated by the tag signal) is
different. For the purposes of this thesis it has to be converted to a monostatic one,
because the same antenna is used both as the transmitter’s and the reader’s antenna.
To keep things simple the 2-ray model is used, which is an accurate enough model
for environments with light multipath (not many surfaces exist for the signal to be
reflected). However, for environments with strong multipath this model is significantly
inaccurate compared to the actual measurements.

In the case of a monostatic model, the same device both transmits a signal and
reads the tag’s response. That simplifies the above formula as follows:

� GTx = GRx since the transmitting and receiving antennas are the same one.

� ||xTx − xT ||2 = ||xRx − xT ||2 since the transmitting and receiving antennas are
the same one.

� |hTx|2 = |hRx|2 since the reader-to-tag and tag-to-reader channels are the same
one.

Thus, in a monostatic model the power of the received signal equals with:

y = PTxnTG
2
RG

2
TL

2|h|4 =

PTxnTG
2
RG

2
T

(
λ

4π||xR−xT ||2

)4

|h|4, if ||xR − xT ||2 ≤ 4πhRhT
λ

PTxnTG
2
RG

2
T

(
hRhT

||xR−xT ||22

)4

|h|4, if ||xR − xT ||2 > 4πhRhT
λ

For the monostatic formula’s symbols explained also refer to 4.1.2.
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B Importance sampling in particle filters

Importance sampling [8] [17] (or resampling) is used to transform the distribution
of the particle set into another one. The new set of particles will be distributed
according to the posterior probability, and particles will not be spent in areas with
low probability density.

However, repetitive resampling induces loss to the diversity of the particles (re-
duction to the variance of the samples), which may lead to particle deprivation.
That’s because of the random nature of resampling, due to which some particles may
be excluded (not resampled) and consequently, be lost. Many different resampling
strategies have been suggested [17] with each one having both advantages and disadvan-
tages. Two easy-to-implement techniques that improve significantly the performance
of importance sampling are analyzed below:

� Low Variance Sampling (LVS): This algorithm is about the method of the
resampling process (i.e. the way in which M new particles are sampled from the
existing ones, depending on their weights). Their selection does not take place
independently of each other, but it involves a sequential stochastic process. Yet,
the probability for selection remains proportional to each particle’s weight.

Algorithm Low Variance Sampling (LVS)

Required:
M , the number of the particles
X̄t = {x̄[1]

t , ..., x̄
[M ]
t }, the set of particles which will be sampled.

W̄t = {w̄[1]
t , ..., w̄

[M ]
t }, the normalized weights of the particles in X̄t.

Returned:
Xt = {x[1]

t , ..., x
[M ]
t }, the set of the sampled particles.

Pseudocode:
1: Xt ← ∅
2: r ← rand

(
0, 1

M

)
3: c← w̄

[1]
t

4: i← 1
5: for m← 1:M do
6: U ← r + m−1

M

7: while U > c do
8: i← i+ 1
9: c← c+ w̄

[i]
t

10: end while
11: Xt ← Xt + {x̄[i]

t }
12: end for

LVS covers the samples in a more systematic way, compared to choosing some
random numbers and getting the particles which correspond to them (inde-
pendently from each other). Actually, if the weights of a sample set are all
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equal, then the returned by the algorithm set will be the same as the input one.
Moreover, the complexity of resampling using the LVS algorithm is linear with
respect to the number of particles (O(M)) in contrast with other implementa-
tions whose complexity is greater (O(M logM)).

� Reduction of the resampling frequency: Too frequent resampling may
lead to loss of diversity among the particles, while rare resampling wastes too
many particles in low probability regions. The estimation of the right resampling
frequency is important and the variance of the weights is a good enough criterion
for that. Resampling will only take place when Neff = 1∑M

m=1(w̄[m])
2 < Nthresh

with Neff being the Effective Sample Size and w̄[1,2,...,M ] the normalized weights
of the particles.

Regarding the weight updates at each time step, they will be set equal to 1
after each resampling, or they will be multiplied with the respective weights of
the previous time step when no resampling takes place:

w
[m]
t =

{
1, after resampling

w
[m]
t−1p

(
zt|x[m]

t

)
, after no resampling

Since 0 ≤ w̄[m] ≤ 1 and
∑M

m=1 w̄
[m] = 1, it is induced that 1 ≤ Neff ≤ M . A

typical value for the fixed threshold is Nthresh = M
2

. The smaller the threshold
is, the longer it takes for the estimation error to be reduced. The higher the
threshold is, the greater the danger for particle deprivation is.
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C PDF of a scaled squared Gamma variable

Let Z = aY = aX2 with X ∼ Γ(k, θ) (=Gamma distribution with shape k, scale

θ) and a, Y,X ≥ 0. It is induced that fX(x) = xk−1e−
x
θ

θkΓ(k)
.

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (|X| ≤ √y) = P (X ≤ √y) = FX(
√
y) =⇒

=⇒ fY (y) =
dFY (y)

dy
=
fX(
√
y)

2
√
y

fZ(z) =
1

a
fY

(z
a

)
=
fX(
√

z
a
)

2a
√
za

=
1

2
√
az

√
z
a

k−1
e−
√

z
a
θ

θkΓ(k)
=

1

2
√
az

( z
a
)
k−1
2 e−

1
θ

√
z
a

θkΓ(k)
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D Estimation of (k, θ) parameters for a scaled

squared Gamma variable

Let X = aZ2, with a ∈ R (known variable) and Z ∼ Γ(k, θ). The problem is to de-
termine the values of k, θ given a set of N independent measurements {x1, x2, ..., xN}
for the variable X and the respective {a1, a2, ..., aN} variables. Maximum Likelihood
(ML) estimation will be used to solve this problem.

The likelihood function is:

L(k, θ) =
N∏
i=1

f(xi, ai; k, θ) =
N∏
i=1

1

2θkΓ(k)
√
aixi

(
xi
ai

) k−1
2
(
e
− 1
θ

√
xi
ai

)
The log-likelihood function is:

`(k, θ) = ln(L(k, θ)) = ln

(
N∏
i=1

(
xi
ai

) k−1
2

)
+ln

(
N∏
i=1

e
− 1
θ

√
xi
ai

)
−ln

(
N∏
i=1

2
√
aixiθ

kΓ(k)

)
=

=
k − 1

2

N∑
i=1

ln

(
xi
ai

)
− 1

θ

N∑
i=1

√
xi
ai
− 1

2

N∑
i=1

ln(aixi)−N ln(2)−Nk ln(θ)−N ln(Γ(k))

The log-likelihood function has to be maximized with respect to θ, by setting its
partial derivative equal to zero.

Let A = k−1
2

∑N
i=1 ln

(
xi
ai

)
− 1

2

∑N
i=1 ln(aixi) − N ln(2) − N ln(Γ(k)) and B =∑N

i=1

√
xi
ai

.

Then, `(k, θ) = −B
θ
−Nk ln(θ) + A.

∂`

∂θ
=
B

θ2
− Nk

θ
=
B −Nkθ

θ2

As stated above, to compute the maximum likelihood estimator of the θ parameter
it is required that:

∂`

∂θ
= 0⇔ θ̂ =

B

Nk
⇔ θ̂ =

1

Nk

N∑
i=1

√
xi
ai

By replacing θ with its ML estimator in `, it is induced that:

`(k) =
k − 1

2

N∑
i=1

ln

(
xi
ai

)
−

N∑
i=1

ln (2
√
aixi)−N ln (Γ(k))−Nk−Nk ln

(
N∑
i=1

√
xi
ai

)
+Nk ln(Nk)

The partial derivative of ` with respect to k is:

∂`

∂k
= N ln(N) +N ln(k)−Nψ(k) +

N∑
i=1

ln

(√
xi
ai

)
−N ln

(
N∑
i=1

√
xi
ai

)
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The ML estimator of the k parameter will be computed the same way as above,
by setting the partial derivative equal to zero:

∂`

∂k
= 0⇔ ln(k)− ψ(k) = ln

(
1

N

N∑
i=1

√
xi
ai

)
− 1

N

N∑
i=1

ln

(√
xi
ai

)
There is no closed-form solution to this equation, so an approximation will be used

instead. With the proof given at the appendix E, it can be shown that: ln(k)−ψ(k) ≈
1
2k

(
1 + 1

6k

)
. Thus, if it is denoted s = ln

(
1
N

∑N
i=1

√
xi
ai

)
− 1

N

∑N
i=1 ln

(√
xi
ai

)
, the ML

estimator for parameter k is:

1

2k̂

(
1 +

1

6k̂

)
≈ s⇔ k̂ ≈ 3 +

√
9 + 12s

12s

The accuracy of the ML estimators in contrast to the sample size can be seen in
figure 1.

Figure 1: Accuracy of the (k̂, θ̂) ML estimators.
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E Stirling approximation

The Stirling Series formula states [18] that: ln(n!) = n ln(n)−n+ 1
2

ln(n)+ln(
√

2π)+∑∞
k=1

B2k

2k(2k−1)n2k−1 where Bm is the m − th Bernoulli number. For greater accuracy,

the 2nd order approximation will be used, that is:

ln(n!) ≈ n ln(n)− n+
1

2
ln(n) + ln(

√
2π) +

1

12n
=⇒

=⇒ ln(nΓ(n)) ≈ n ln(n)− n+
1

2
ln(n) + ln(

√
2π) +

1

12n

∂/∂n
===⇒

=⇒ ψ(n) = ln(n)− 1

2n
− 1

12n2
=⇒ ln(n)− ψ(n) =

1

2n

(
1 +

1

6n

)
Accuracy of the 2nd order approximation: The approximation of ln(n!) using

the 2nd order Stirling Series is extremely precise [19]. On the table below, the difference
between the Digamma function (ψ(n)) and its approximation

(
ln(n)− 1

2n

(
1 + 1

6n

))
can be seen (in % percentage of the Digamma’s value), for various values of n.

n 0.5 0.8 1 3 5 10 20

Difference (%) 3.21 1.38 1.06 0.01 8.69 ∗ 10−4 3.68 ∗ 10−5 1.75 ∗ 10−6

Thus, for any n > 1 the error due to the approximation will be less than 1%.
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F Localization approach with the use of a motion

model

Algorithm 8 Localization of a moving robot using anchor tags

1: Set M (number of particles), T (time window), dreadermax (reader’s max distance to
detect a tag), Nthresh

2: Set Xa
min, X

a
max, Y

a
min, Y

a
max, Z

a
min, Z

a
max (search area dimensions)

3: Set {g[1], g[2], ..., g[G]} (the positions of the anchor tags)
4: for m← 1:M do
5: x[m] ∼ U [Xa

min, X
a
max] , y

[m] ∼ U [Y a
min, Y

a
max] , z

[m] ∼ U [Za
min, Z

a
max]

6: φ[m] ∼ U [φamin, φ
a
max] , θ

[m]
i ∼ U [0, 2π)∀i = 1, 2, ..., G

7: X
[m]
0 ←

[
x[m] y[m] z[m] φ[m] θ

[m]
1 θ

[m]
2 ... θ

[m]
G

]
, w[m] ← 1

8: end for
9: for t← 1:T do
10: Collect the RSSI {y[1]

t , y
[2]
t , ..., y

[K]
t } & the phase measurements

{φ[1]
t , φ

[2]
t , ..., φ

[K]
t }, K ≤ G.

11: Collect the robot’s odometry dXt.
12: for m← 1:M do
13: X

[m]
t ∼ N

(
X

[m]
t−1 + dXt, σ

2
odometry

)
14: for j← 1:G do

15: WRSSI ← p
(
y

[j]
t |X

[m]
t

)
≡ 1

2θkΓ(k)
(
a
[j,m]
t

)k/2
(
y

[j]
t

) k−2
2

(
e
− 1

θ

√
a
[j,m]
t

√
y
[j]
t

)
16: WPHASE ← p(∆

[j,m]
t |X [m]

t ) ≡ N(∆
[j,m]
t ; 0, σ2

phase)

17: w[m] ← w[m]WRSSIWPHASE

18: end for
19: end for
20: w[1:M ] ← w[1:M ]∑M

m=1 w
[m] . Normalization of weights

21: Neff ← 1∑M
m=1(w[m])

2

22: if Neff < Nthresh then . Resampling if needed

23: X
[1:M ]
LV S ← LVS

(
X

[1:M ]
t , w[1:M ]

)
24: w[1:M ] ← 1

M

25: end if
26: X̂

[t]
est =

∑M
m=1w

[m]X
[m]
t . Position estimation for time t

27: end for
28: return X̂est
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[18] J. Gélinas, “Original proofs of Stirling’s series for log(n!),” Jan. 2017.

[19] W. Feller, An introduction to probability theory and its applications, Vol 2. John
Wiley & Sons, 2008.


	Table of Contents
	Introduction
	The indoor navigation problem
	Navigation using a stereo camera or a LiDAR sensor
	Navigation using RFID tags
	Navigation using other sensors
	Thesis outline

	Navigation algorithms
	The localization problem
	EKF Localization
	Grid Localization
	Monte Carlo Localization

	The SLAM problem
	EKF SLAM
	FastSLAM


	Navigation using stereo vision or LiDAR technology
	The LiDAR technology
	The stereo vision technology
	The ROS Framework
	Localization with ROS algorithms and optical sensors
	SLAM with the `Google Cartographer'

	Navigation using RFID tags
	The RFID technology
	The RFID architecture
	The RFID measurements: EPC, RSSI, Phase

	Existing work
	Localization using RSSI, Phase and Kalman Filters
	Localization using Phase and a Particle Filter
	SLAM using Phase and a Particle Filter

	Localization using RSSI and Phase inside a particle filter
	RSSI Weight Update
	Phase Weight Update
	Resampling


	Numerical results
	SLAM maps by the `Google Cartographer'
	Accuracy of RFID-based localization algorithms
	Localization in the 3D space
	Localization in the 2D space


	Conclusions
	Conversion of multistatic RSSI model to monostatic
	Importance sampling in particle filters
	PDF of a scaled squared Gamma variable
	Estimation of (k, ) parameters for a scaled squared Gamma variable
	Stirling approximation
	Localization approach with the use of a motion model

	References

