
Online Road Vehicle Trajectory Specification in

Presence of Traffic Lights with Stochastic Switching

Times

Dynamic Systems and Simulation Laboratory

Department of Production Engineering and Management

Technical University of Crete

Diploma Thesis

Supervisor: Prof. Markos Papageorgiou

Author: VasileiosVolakakis

Chania, 2020

To my beloved grandfather, a true believer of education and moral values.

Abstract

The way someone is driving a road vehicle has an important impact on the fuel

consumption, thus the term eco-driving was recently introduced to denote a driving style that

reduces fuel consumption. This is correlated with many recent advances and developments that

are taking place in vehicle communications and automated driving. One application of vehicle

connectivity is to receive information about the next signal switching time, when a vehicle

approaches a traffic light. Based on this information, appropriately developed systems, known as

GLOSA (Green Light Optimal Speed Advisory), compute a fuel-efficient velocity profile for the

vehicle to cross the traffic lights, e.g. without stopping, and provide drivers with speed advice.

The main goal of this work is to generate optimal trajectories for vehicles crossing a

signalized junction, with traffic signals operating in real-time (adaptive) mode. Specifically, the

switching time of the traffic signal is decided, in real time, based on the prevailing traffic

conditions and is therefore uncertain in advance. This extended (stochastic) GLOSA problem is

addressed by using probabilistic traffic lights information and calculates a velocity profile for the

vehicle based on the vehicle's initial state (position and speed) and a fixed final destination state.

The problem is cast in the format of a stochastic optimal control problem, assuming

availability of a time-window of possible signal switching times, along with the corresponding

probability distribution, and is solved numerically using stochastic dynamic programming(SDP)

techniques. As an ingredient of the stochastic solution, an appropriate deterministic optimal

control problem is also formulated and solved analytically via Pontryagin’s Minimum Principle

for the case of know switching times; the deterministic problem solution is used, as an initial

trajectory for some extended SDP techniques that solve the problem in a significantly less

amount of time compared to the standard SDP approach.

The extended SDP techniques used in this work are the Discrete Differential Dynamic

Programming (DDDP) method and the Differential Dynamic Programming (DDP) method.With

these approaches, the workload and computational time are both significantly reduced, making

the proposedapproaches applicable in real time.

Acknowledgments

At this point, Ι would like to thank from the bottom of my heart everyone who has

involved andcontributed with their own way and with any way,in the completion of my

bachelor’s thesis.

First, Ι would like to refer to my supervisor,in whom I am deeply indebted, Prof. Markos

Papageorgiou, who gave me the opportunity, the stimulus and the means to be involved and be a

part of something so unconventional and interesting, such Dynamic Programming along with the

field of modern and future transportation and provided me with tools and knowledge that will be

really useful in the upcoming future.

Mr. Panagiotis Typaldos (Prof. Papageorgiou’s PhD student), who spent countless hours

with me and tolerated my everyday intrusions into his office (even on Saturdays and Sundays),

providing me with the necessary answers, knowledge and help, despite his enormous amount of

work, and was always there, anytime and day needed.

My parents, my family, who gave me the opportunity, from every aspect considered, to

be standing here today. I wouldn’t have had any of those moments if it wasn’t for them, for their

character, their values, their love and patience and every little or big thing that Ι got from them.

My friends, my girlfriend, for their continuous support and patience, who were there for

me, from the beginning until the end of this journey, playing a major role and having a great

impact in me, by giving me things that Ι am honoured and very lucky to have, during the course

of our lives.

 Last but of course not least, Ι would like to thank the Technical University of Crete,

everyone who is working here,all the staff and members, and of course all the professors and

assistants that Ι was lucky and privileged to meet, for giving me the opportunity and the means to

live this beautiful journey.

Table of Contents
List of Figures ... viii

List of Tables .. viii

Chapter 1: Introduction .. 1

1.1: Prolegomena .. 1

`1.2: Related work ... 4

1.3: What is a GLOSA system .. 7

1.4: Goals of this work .. 8

Chapter 2: Optimal Control Problem .. 10

2.1: Continuous Time Dynamic Systems formulation .. 10

2.1.1: Free final time ... 12

2.2: Discrete Time Dynamic Systems formulation ... 12

2.2.1: Free final time ... 13

Chapter 3: Dynamic Programming .. 14

3.1: Introduction in Discrete Time Optimal Control ... 14

3.2: Bellman’s Recursive Equation ... 16

3.3: Discretization ... 18

3.4: Computational time .. 20

3.5: Discrete Differential Dynamic Programming (DDDP) ... 22

3.5.1: Advantages and Disadvantages of the DDDP method .. 25

3.6: Differential Dynamic Programming (DDP) ... 26

3.6.1: Advantages and Disadvantages of the DDP method .. 29

Chapter 4: GLOSA problem formulation ... 31

4.1: Optimal Control Problem with Known Signal Switching Time .. 31

4.1.1: Problem formulation ... 32

4.1.2: Analytical solution .. 33

4.2: Optimal Control Problem with Uncertain Signal Switching Time .. 36

4.2.1: Problem variables and state equations .. 36

4.2.2: Objective criterion .. 38

4.3: Numerical solution algorithm .. 39

4.4: Discrete Differential Dynamic Programming .. 42

Chapter 5: Results ... 45

5.1: Experimental results on known switching times.. 45

5.2: Experimental results on unknown switching times.. 47

5.3: Comparison of the discretization variable 𝜟𝑼 in relation to cost and computational time,

considering the DDDP method ... 55

5.3.1 Scenario 1 considering the DDDP method .. 55

5.3.2 Scenario 2 considering the DDDP method .. 57

5.3.3 Scenario 3 considering the DDDP method .. 59

5.4: Investigating the use and the impact of the corridor 𝜟𝒍(𝒌) ... 62

5.5: Comparison of the DDDP algorithm with the SDP algorithm ... 63

Chapter 6: Conclusions and Future Steps ... 67

6.1: Conclusions .. 67

6.2 Future Steps .. 67

References .. 69

Chapter 7: Appendix ... 74

7.1 Appendix A ... 74

List of Figures

1. OCP exemplar.

2. Graphical explanation of the discrete time OCP.

3. Discretization of the feasible state area for a two dimension system.

4. Consecutive approximations, regarding Example 2.

5. A vehicle starting from a given position 𝑥0 and speed 𝑣0, starting from a known initial

state[𝑥0, 𝑣0]
𝑇, the traffic light with known position 𝑥1 and also known switching to green

time 𝑡1.

6. Optimal vehicle trajectories (blue solid lines) for Scenario 1 (a) and Scenario 2 (b), with the

correlated trajectories of the UP solution (red doted lines).

7. Optimal final time, acceleration cost, in comparison with weight 𝑤.

8. Initial and Optimal position, speed and acceleration of the vehicle, considering Scenario 1.

9. Initial and Optimal position, speed and acceleration of the vehicle, considering Scenario 2.

10. Initial and Optimal position, speed and acceleration of the vehicle, considering Scenario 3.

11. Trajectory and control comparison, between the DP and the DDDP algorithms.

12. Control comparison, between the SDP and the DDDP algorithms.

13. Control comparison, between the SDP and the DDDP algorithms.

14. Initial and Optimal position of the vehicle, along with the analytical problem solution from

𝑥1 to 𝑥𝑒, considering Scenario 1.

15. Initial and Optimal position of the vehicle, along with the analytical problem solution from

𝑥1 to 𝑥𝑒, considering Scenario 2.

16. Initial and Optimal position of the vehicle, along with the analytical problem solution from

𝑥1 to 𝑥𝑒, considering Scenario 3.

List of Tables

1. Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 1, for the DDDP algorithm, for different values of 𝛥𝑈.
2. Number of iterations, cost and CPU-time per iteration, considering Scenario 1, for the

DDDP algorithm, for different values of 𝛥.

3. Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 2,for the DDDP algorithm,for different values of 𝛥𝑈.

4. Number of iterations, cost and CPU-time per iteration, considering Scenario 2, for the

DDDP algorithm, for different values of 𝛥.

5. Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 3, for the DDDP algorithm, for different values of 𝛥𝑈.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f2
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f3
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23f16

6. Number of iterations, cost and CPU-time per iteration, considering Scenario 3, for the

DDDP algorithm, for different values of 𝛥.

7. Fixed corridor and 𝛥 = 4.

8. Ddynamically changing corridor and 𝛥 = 4.

9. Comparing the SDP and the DDDP algorithms, considering CPU-time and cost reached,

considering Scenario 1.

10. Comparing the SDP and the DDDP algorithms, considering CPU-time and cost reached,

considering Scenario 2.

11. Comparing the SDP and the DDDP algorithms, considering CPU-time and cost reached,

considering Scenario 3.

1

Chapter 1: Introduction

1.1: Prolegomena

 As a result of cheap and productive energy resources shortage, lack of big scale energy

storage ability and of course the excessive environmental pollution, it isbecoming more and

morenecessary for transportation systems to operate with increased fuel efficiency. In the event

of road vehicles, fuel efficiency relates to economic aspects, as fuel economy means fewer

expenses for the driver, but also to the protection of the environment in an era of climate crisis,

which is escalating day by day. Positively, a wide range of technologies have been developed in

the past few years, in order to decrease fuel consumption of vehicles, including efficient engines,

adjusted vehicle designs and lighter chassis. Additionally, considerable efforts in the field of

road vehicle’s transportation development and deployment of efficient intelligent transportation

systems (including real-time traffic signals) lead to reduced congestion and fuel consumption.

First of all, traffic signals secure the safe crossing of vehicles at urban junctions in cities

around the world. Therefore, enforcing safety via traffic lights implies that some vehicles will

have to stop in front of a red light, and then accelerate after the traffic light switching to green,

something that clearly increases significantly the fuel consumption of road vehicles. In order to

reduce the resulting vehicle delays and number of stops, number of algorithms have been created

and used over the last decades, pointing at optimizing the traffic signals operation. Fixed-time

signal plans are derived off-line for respective times-of-day (e.g., rush hours like early morning

congestion or in the afternoons, off-peak etc.) by use of appropriate optimization codes based on

historical constant demands and are applied without deviations.Still, something like that implies

that switching times of the traffic lights are always known in advance. On the other hand, real-

time signal control methods make use of real-time measurements to calculate in real time

suitable signal settings. Depending on the selected signal control strategy, the control update

period may cover an area from one second to one signal cycle. Plainly, for real-time signals, the

next switching time is unknown before the switching decision is actually made. It isalso

important to be noted that real-time methods and implementations are deemed to be more

advanced and possibly more efficient and productive than a fixed signal application. Fuel

consumption is growingly considered as an optimization or evaluation criterion while developing

and deploying signal control systems.

Suppose a vehicle is approaching a red traffic light at a given and known speed. If the

vehicle continues its course with this speed, it may reach the traffic light after it has switched to

green, in which case no fuel-intensive acceleration needs to be applied, although, the constant-

speed vehicle might also reach the traffic light before it turns to green, so it will have to stop and

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23t11
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23t11

2

accelerate to a higher speed after the light turns from red to green. On the contrary, if the vehicle

decelerates smoothly in view of the red light, this may prove beneficial, or not, also depending

on the time of the green switch. This quandary of vehicle movement in the direction of a red

traffic signal may be addressed by appropriately designed systems. Some of the first attempts

were displaying, on road-side dynamic advisory speed signs, the speed that would allow a

vehicle to cross the downstream signalized junction at green. But if you take into consideration

the emerging advances in vehicle communications, the current state and timing of a traffic signal

can be transmitted to equipped vehicles, or applications that the driver possess, in order to enable

sensible approaching speed decisions. Dependingon signal information, it is possible to navigate

the driver or the vehicle itself (in the case of an automated vehicle) all the way from the current

state to the traffic signal by giving speed advice, leading to the fuel consumption and gas

emissions minimized, or at least decreased in a significant level. Systems or applications that

optimize the vehicle approach to traffic lights are often referred to as Green Light Optimal Speed

Advisory systems (GLOSA)[1].

In the presence of fixed signals and with prior knowledge of the next switching time, e.g.

via broadcasting of corresponding messages by the signal controller, the problem of how to

optimize the approach to traffic signals has been directed in different ways. In various

researches, such us [2], speed profiles havebeen compared to their energy demand. Rule-based

algorithms have been employed in different works (i.e. in [3]) in order to be speed advisors for

vehicles approaching traffic signals, with the goal of reducing fuel consumption and emissions.

However, rule-based algorithms are not always capable of finding the optimum, and may deliver

sub-optimal results, in particular when the dynamic vehicle kinematics are not accounted for,

such us a case with no vehicle acceleration, but the only thing involved is the vehicle’s speed.

Optimal control approaches (i.e. [4]), considering only the vehicle kinematics, are, by their

nature, more qualified in producing fuel-optimal speed profiles for vehicles approaching fixed

traffic signals.

Working under even more complicated circumstances,referring to the existence of real-

time signals with very short (e.g. second-by-second) control update periods, so it can be

observed that exact prior knowledge of the next switching time is not available even with the

signal controller. In this case, the most accurate information about the next signal switching can

be presented as an estimate or as a probabilistic distribution. There are systems/applications (i.e.

[5]) available that does not need communication to the infrastructure but relies only on an

ensemble of the driver’s mobile phone data, in order to detect and foretell the traffic signal

timing. A mobile phone is able to detect current traffic signals with its camera, cooperatively

communicate and learn traffic signal timing patterns and eventually predict their future timing.

An estimate of those future timings can be used as a proxy for any of the GLOSA systems that

need a given switching time, along with the proper consideration about the consequences of

estimation inaccuracy.

3

Integrated probabilistic information, unlike a single estimation for the next signal

switching time can be produced in form of a probability distribution for the next switching time

inside a short-term future time-window, by use of statistics gathered from previous signal

operations over an enough rolling horizon. An approach to produce probability distribution for

the next switching time, based on past signal switching, can be considered,although the available

probability distribution is used heuristically instead of being used optimally, to accordingly time-

weigh the objective function, within a deterministic optimal control problem that is solved via a

Dynamic Programming algorithm. The problem can be solved via a discrete Stochastic Dynamic

Programming (SDP) algorithm, giving us the ability to support the idea that an appropriate

utilization of the available probabilistic distribution of the next signal switching time is taking

place, within a stochastic optimal control problem. However, the formulated optimal control

problem extends only up the point in time where the next switching time becomes known, thus

neglecting the cost incurred after this time until the vehicle’s final state is reached, something

that may drives us away from the optimal, and subsequently the wanted trajectories.

In the current work, the problem of producing fuel-optimal vehicle trajectories for a

vehicle approaching a traffic signal (GLOSA) for the scenario of probabilistic, namely stochastic

switching times is investigated. Firstly, the problem is formulated with known probability

distribution, and the problem is cast in the format of a stochastic optimal control problem, which

is solved numerically using SDP algorithms. The difference with previous works is that, the

analytic solution of the fixed switching time problem is being exploited by the stochastic

approach, which is formulated as an optimal control problem with pertinent final state for the

vehicle and is solved analytically via Pontryagin’s Minimum Principle, something that provides

that the obtained solution is consistent, separately of the actual switching time occurrence. This

approach, as stated before, can be readily generalized to allow for switching time decisions to be

taken at any time in advance of the actual switching time, not necessarily only between the last

time period prior to the actual switching time.

Furthermore, twomodified SDP techniques are going to be used, known as theDiscrete

Differential Dynamic Programming (DDDP) methodand the Differential Dynamic Programming

(DDP) method. Regarding the DDDP method, each iteration of the corresponding algorithm

solves a stochastic problem in a reduced state space, which is formed around the last solution

trajectory. The initial trajectory to start the iterations is the analytic solution of the pessimistic

case, which assumes that the traffic signal will switch at the latest possible time. With this

approach, the work load and computation cost is significantly reduced, making the method

applicable and realtime, i.e. capable of processing the given data to obtain the solution of the

stochastic problem in few seconds.

The second method, DDP, solves analytically, in every iteration, quadratic approximation

of the initial SDP problem, based on the trajectory of the previous iteration. A main advantage

ofthe DDP method is that there is no need of use a discrete SDP approach, thanks to the

quadratic approximation of the problem that allows for an analytical solution. Consequently, the

4

computational time of the algorithm is reduced, making this approach feasible and accurate for

real-time application.

`1.2: Related work

Vehicle trajectory specification systems, in presence of traffic lights, have gained interest

from different research domains, such as computer science, civil engineering, transportation

research and more. This increasing interest in this particular field led to the creation of a broad

range of simulations,along with real-world implementations, but also various terminologies,

applications and systems installed in a vehicle. In the following, there are summarized relevant

publications in the context of technical and real-time evaluation of vehicle (optimal) trajectory

specification systems when a traffic light is encountered (some, not all, with prejudice of course).

Proposing a sustainable predictive control in urban traffic networks based on general

smoothening methods, Jamshidnejad et al. [6], along with gradient-based approaches, which can

be applied to smooth optimization problems, state that they have proven efficient enough, both

computationally and performance-wise, in finding optima of optimization problems. In their

paper, an MPC system (model-predictive control) is proposed for an urban traffic network that

covers a gradient-based optimization approach to solve the control optimization problem. The

controller uses a new smooth integrated flow-emission model, with the purpose of getting a

balanced tradeoff amid reduction of the congestion and of the total gas emissions. There are also

introduced efficient smoothening methods for non-smooth mathematical models of physical

systems.

While traffic signals are necessary to safely control competing flows of traffic, they

inevitably enforce a stop-and-go movement pattern that increases fuel consumption, reduces

traffic flow and causes traffic jams, as Koukoumidis et al. [5]states. Situations like these can be

decreased in a significant portion, by providing drivers and their onboard computational devices,

like a mobile phone, with information about the schedule of the traffic signals ahead, and after

that the application installed in the device, based on the timing when the signal turn green can

advice the driver or the vehicle to adjust his/its speed. Also, the computational device that the

driver or the vehicle has can suggest an efficient detour that will eliminate stops and long waits

at red lights ahead. This application is called SignalGuru and by using the mobile phone’s

camera, detects current traffic signals, communicate and learn traffic signal schedule patterns and

finally predict a future pattern of theirs. The innovativeness in this work and also the horizons

that opens for further implementations and research are really significant, providing the

transportation community with a really helpful tool, but most importantly with new paths and

knowledge, in terms of control competing flows and fuel consumption.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
https://www.researchgate.net/scientific-contributions/2115666364_Anahita_Jamshidnejad
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n4

5

Lopez et al.[7] states that their preliminary results show that 25% savings are within

range in urban circuits, by introducing and evaluating them, comparing with an established

model called «Intelligent Driver Model» (IDM), a proper driver model (IDMP), in which a

wireless sensor network has been proposed to deliver to the driver or the vehicle the needed

information (data). The IDM model is used in order to simulate the longitudinal dynamics of the

vehicles used in the various examinations. The difference among the two models is that, the

IDMP model takes advantage of an extra knowledge that can be acquired from the upcoming

traffic light, by using a wireless sensor network, that collects and distributes future time of red

and green lights on the wanted street. In this work it is shown that, taking advantage of all the

available knowledge of the system’s environment, the chances of developing a more advanced

model are highly increasing.

Looking back in the middle ‘80s, when Leersum[8], obtained and stated that dynamic

advisory speed signs could be created and programmed in order to display speeds at which

motorists can travel smoothly through downstream signalized intersections, appeared to be

beneficial for both the national economy (and later the environmental crisis, that was even then

operating, «underground», but still operating), along with the driver. Modifications to the traffic

simulation program TRANSYT have enabled some of these benefits to be quantified on a typical

urban road network. Taking as a fact that the greater proportion of motorists obey the signs, it is

concluded that fuel consumption can be reduced by as much as 13% and the total number of

stops by up to 38%.

Borkar et al. [9]discusesa proposed system for predicting the next intersection timing and

generating the needed trajectories (speed) at the present intersection, in favor of crossing the next

intersection without stopping. The system is speed module for next intersection prediction

ingrained in intelligent traffic light control system at intersection. It can also be constructed for a

GPS based navigation system. In order to efficiently predicting the needed time and speed for

crossing next intersection (or a traffic light in case of a urban road, instead of a highway) without

taking into consideration a centralized static approach, the distance between current intersection

and next intersection and traffic signal timings of next intersection are considered as an input to

the system.

Considering a multi-car system, a proper formulated algorithm by Asadi et al. for the

purpose of receiving upcoming traffic light information to minimize idle at the lights and reduce

fuel use, and further simulations shows exactly that in [10]. An optimal control algorithm is

formulated for each equipped vehicle that usesa prediction ofshort range radar and traffic signal

information to create an optimum velocity trajectory for the vehicle. The objectives are timely

arrival at green light with the minimum usage of their breaking systems, maintaining safe

distance among other vehicles and navigating at or near set speed. The Predictive Cruise Control

(PCC) concept proposed in this paper reveals the capability of reducing the fuel consumption and

consequently the CO2 emissions, and also the driving times, by utilizing preview information of

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n5
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n6
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n7
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8

6

traffic signal timing and phase, and all that can be shown from the quite promising results this

paper feeds back.

A paper by Hounsel et al.[11], focuses particularly on signalized junctions within

computer-controlled urban traffic control (UTC) systems, which, as they state, are increasingly at

the heart of traffic control in cities around the world, due toa feature of most urban networks,

which is the high density of city streets with numerous road junctions, which require efficient

control mechanisms in order to contain possible congestion. They also state that, traffic signals

have become the most widely used form of control, with increasing sophistication in detection

and real-time optimization providing new levels of efficiency, so it is needed to embrace and use

them as a tool in order to achieve their goals (optimization of fuel consumption etc.).

A system studied by Wang et al. [12], refereed as Self-Adaptive Traffic Signal Control

System, which is based on future traffic environment. The self-adaptive traffic signal control

system actually is an effective measure for relieving urban traffic congestion. The system is able

to adjust the signal timing parameters in real time according to the seasonal changes and short-

term alternation of traffic request, leading in improvement of the efficiency of traffic operation

on urban road networks. According to them, the evolution of information technologies has

created a sufficient abundance of acquisition means for traffic data, which include the increase of

available amount of holographic data, available data types, and accuracy. Also, the development

of commonly used self-adaptive signal control systems in the world is explored, along with their

technical features, the current research status of self-adaptive control methods, and the signal

control methods for diversified traffic flow composed of connected vehicles and autonomous

vehicles.

Typlados et al. state in [4] that themainpurposeoftheir

workistogenerateoptimaltrajectoriesforvehiclescrossingasignalizedjunction,withtraffic

signalsoperatingineitherfixed-timeorreal-time(adaptive)mode.Inthelattercase,thenext

switchingtimeisdecidedinrealtimebasedontheprevailingtrafficconditionsandistherefore

uncertaininadvance.TheGLOSAproblemisaddressed as an optimal control

problem,byusingtrafficlightsinformationand

calculatingatrajectoryandvelocityprofileforthevehiclebasedonthevehicle'sinitialstate

(positionandspeed)andafixedfinaldestinationstate. Forthecaseofreal-

timesignals,availabilityofatime-window of possible signal switching times, along with the

corresponding probabilitydistribution,

isassumed,andtheproblemiscastintheformatofastochasticoptimalcontrolproblemandis solved

numerically using Stochastic Dynamic Programmingtechniques, with

anappropriateoptimalcontrol problembeingformulatedandsolvedanalytically at

first,viaPontryagin'sMinimumPrincipleforthecase ofknownswitchingtimes.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n8
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n9
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n10

7

1.3: What is a GLOSA system

The highest fuel consumption on urban arterials is associated with driving in congested

traffic, characterized by higher speed fluctuations and frequent stops at intersections. One way to

reduce excessive stop-and-go driving on urban streets is to optimize signal timings, as stated

before. New methods in traffic signal optimization have incorporated changes in driver’s

behaviour to achieve optimum performance at signalized intersections. Connected vehicles

technology provides a two-way wireless communication environment enabling vehicle-to-

vehicle and vehicle-to-infrastructure communications, which can be used for a variety of

mobility and safety applications. All the above can be summarized, as a GLOSA system [13].

The goal of Green Light Optimal Speed Advisory (GLOSA) systems is to lower

CO 2 emissions and to avoid unnecessary stopping in intersection approach scenarios by giving

speed advices to drivers based on current and future traffic light signal phase timings. So,

basically it is a system that provides the driver (or the vehicle in presence of automated systems

and vehicles) with speed advises any time he/it needs them, in order to achieve all the above.

After extended researches, tests and evaluation of those systems, it can be stated that a

potentially reduce of CO2 emissions and fuel consumption can be done, in a percentage of 13%

and potentially upper than that, and also up to 89% in average stop time[14],[15].The initial

trajectories that are needed for a GLOSA system to calculate the optimal speed and feed it back

to the driver/vehicle, are the distance to the next traffic light, along with the time to the next

signal change.

GLOSA strategies can be categorized into two different sectors, as singe segment or as

multi segment. In the single segment approach speed advisory is calculated for the segment

preceding the nearest traffic signals, as soon as a vehicle enters the segment. It is presumed that

traffic signals are pre-timed and traffic conditions allow vehicles to adapt their speed. In

addition, vehicles have access to traffic signal schedules. In the case of the multi-segment

GLOSA, a vehicle calculates a set of optimal speeds (one speed advice per each segment) before

entering the first segment. The advisory speed for each segment is established as the average

speed that a vehicle should travel on the segment[16].

Similar systems are going to play a major role in the field of future international

transportations and should be available for every different type of adaptive traffic lights.

Adaptive traffic lights range from semi-adaptive controllers that don't change the order of signals

but only alter their length to fully adaptive controllers with the ability to change every aspect of

its program. The most important inputs for these traffic lights (and what separate them) are

detectors, who are capable of counting vehicles, detecting waiting pedestrians, or identifying

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n13
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16

8

approaching buses or emergency vehicles. Every one of them stimulates the controller and can

alter its behavior. As you can see, it is critical for a prognosis algorithm to consider these

detectors as they have a significant impact on the signal transitions of an adaptive traffic light.

Predominantly, GLOSA functionality is based on two message types: SPAT and

MAP [4]. In favor of getting information about current and upcoming traffic light phases from the

traffic light, a connection to the traffic light controller is established. A Signal Phase and Timing

Message (SPAT) informs about the vehicle’s current state, current phase and next phase for each

lane of an intersection. Continuing Map Data Messages (MAP) provides information about the

topology of an intersection such as number of lanes and turning constrains. In order to give the

wanted speed advices to the driver, a vehicle must receive at least one message of every type and

link them using the intersection’s singular identification included in the messages that have been

sent. When a message is received, the GLOSA application generates geometry from the MAP

message to match the vehicle's position and determines the corresponding lane number. By the

time the lane that the vehicle is on is finally known, signal phases and timing data related to this

lane number can be matched. The way that SPAT and MAP messages are transmitted is by

single-hop broadcast.

The application collects information about all vehicles that can currently communicate

with the infrastructure. For every vehicle that is approaching a traffic signal, the system

determines a range of feasible speeds, which in case of implementation, are able to assist the

vehicle to pass through an intersection, or in our case from a traffic light without stopping, which

means pass when the light is green. In case of having a speed price that belongs already within

this range, the application examines the next incoming vehicle [17]. In that way, it is guaranteed

that the GLOSA system is going to send a speed advice to a driver or to a vehicle only if it is

necessary, and the word necessary aims to the situation when this action would prove beneficial,

so pointless and no needed actions are avoided. So, the algorithm affects only those

drivers/vehicles that if keep on travelling with the same speed, would arrive at a traffic light in its

red phase.

1.4: Goals of this work

The main target of this work is to generate optimal trajectories for vehicles crossing a

signalized junction, with traffic signals operated in real-time. The next switching time is decided

in real time based on the prevailing traffic conditions and is therefore uncertain in advance. The

GLOSA problem is addressed by using traffic lights information and calculating a trajectory and

velocity profile for the vehicle based on the vehicle's initial state (position and speed) and a fixed

final destination state.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n16
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17

9

In this particular work, focus is on real-time traffic signals, in order to reach and

approachthat could be used and transformed in the futureto a viable application, that would be a

very useful tool for every driver, and of course for the environment as well (directly or

indirectly), by giving the appropriate speed advices to the driver or the vehicle, making driving

an environmentally orientated process.

The first algorithm that was developed, by Typaldos et al. [4], had the same principals with

the algorithm introduced in this thesis, which is no other than the provision of the needed optimal

trajectories (position and speed), in order to assist the driver or the vehicle to cross the traffic

light optimally, meaning, with the least possible cost (which is fuel, CO2 emissions etc.). The

main difference amidst the previous algorithm implemented by Typaldos et al. in [4] and the

algorithm introduced in this work, is that the workload – computational time of the previous

algorithm was way too big considering with the method used in the current algorithm, that is

presented analytically in the following chapters, and so the application was not able to be

developed as a real-time one. So, the new algorithmdo not provide better results (respectively),

but they can provide the same results in a substantial less amount of time, due to the decrease of

the workload the application has to deal with.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n17

10

Chapter 2: Optimal Control Problem

Optimal Control Problems (OCPs) are obtained in the time state and their solution calls

for initiating an operation index for the system. Due to the dynamic genre of the decision

variables confront, optimal control problems are much more challenging to solve, resembled to

normal optimization where the decision variables are scalars, in addition to the fact that OCPs

become more demanding when uncertainty in any parameter or variable is involved[18].

2.1: Continuous Time Dynamic Systems formulation

 The Optimal Control Problem refers to either continuous time dynamic systems, or to

discrete time dynamic systems. In case of continuous time, the following problem is formulated:

Given the initial state 𝑥(0) = 𝒙0, 0 ≤ 𝑡 ≤ 𝑡𝑒
∗, the time functions of the control variables

𝒖∗(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒
∗ are requested, along with the time functions of the state variables 𝒙∗(𝑡), 0 ≤

𝑡 ≤ 𝑡𝑒
∗, and also the final time 𝑡𝑒

∗, which minimize the cost criterion (also, with no violation of

generality of the problem, the initial time t is being set as 𝑡0 = 0)

 𝐽 = 𝜕[𝒙(𝑡𝑒), 𝑡𝑒] + ∫ 𝜑[𝒙(𝑡), 𝒖(𝑡), 𝑡]𝑑𝑡
𝑡𝑒
0

 (2.1)

and taking into consideration the following constrains ∀𝑡 ∈ [0. 𝑡𝑒]

 �̇� = 𝒇[𝒙(𝑡), 𝒖(𝑡), 𝑡] (2.2)

 𝒉[𝒙(𝑡), 𝒖(𝑡), 𝑡] ≤ 0 (2.3)

here𝜕𝒉 𝜕𝒖⁄ the (fully graded) Jacobi table, and the final target

 𝒈[𝒙(𝑡𝑒), 𝑡𝑒] = 0 (2.4)

Following, a graphical illustration of the OCP (with no violation of generality):

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n1
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18

11

Figure 1: OCP example. Adapted with permission from [20].

Figure 1 explains graphically the OCP for a supposed, one dimensioned system. The

initial state 𝒙0 of the system (ii) needs to be transferred in the final trajectory (iv), avoiding the

restricted areas, which are being specified by the set of inequalities (iii). There are usually quite

enough permissible control time functions 𝒖(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒 , that render feasible this particular

transfer. Among them, the solution of the OCP is achieved by the time functions

𝒖∗(𝑡), 𝒙∗(𝑡), 0 ≤ 𝑡 ≤ 𝑡𝑒
∗, which minimize the cost criterion Eq. (2.1).

 The Optimal Control Problem has been formulated above in its general form. Depending

on the data of every different application, there a series of specific instances:

a) Known final time 𝑡𝑒:

a1) Known final state 𝒙(𝑡𝑒) = 𝒙𝑒

a2) Free final state

a3) Final trajectory 𝒈[𝒙(𝑡𝑒)] = 0.

b) Free final time 𝑡𝑒:

b1) Known final state 𝒙(𝑡𝑒) = 𝒙𝑒

b2) Free final state

b3) Final trajectory.

 Also, in the case of a continuous-time OCP, the following function, known as the

Hamiltonian function is defined [19]:

 𝐻(𝑥, 𝑢, 𝑡) = 𝐿(𝑥, 𝑢, 𝑡) + 𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) (2.5)

where the Lagrange multipliers are defined as 𝜆 ∈ 𝑅𝑛.

According to the above, the Pontryagin’s Principle of Optimality deliver the below essential

constraints (see [19]):

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n18
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e21
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n23
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n23
file:///C:/Users/Bill/Desktop/Thesis-v5.docx#n18

12

 �̇� =
𝜕𝐻(𝑥,𝑢,𝑡)

𝜕𝜆
 (2.6)

 �̇� =
𝜕𝐻(𝑥,𝑢,𝑡)

𝜕𝑥
 (2.7)

 𝑢 = 𝑎𝑟𝑔min
𝑢

𝐻(𝑥, 𝑢, 𝑡) (2.8)

2.1.1: Free final time

 In the presence of free final time (𝑡𝑒), the optimal control vector 𝑢(𝑡) for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒

needs to be calculated, along with the final time 𝑡𝑒, so the minimization of the cost criterion Eq.

(2.1) could be achieved.

 The following equations determines the value of the final time 𝑡𝑒:

 𝐻[𝑥(𝑡𝑒), 𝑢(𝑡𝑒), 𝜆(𝑡𝑒), 𝑡𝑒] + 𝜃𝑡𝑒 = 0 (2.9)

Eq. (2.9) along with the initial and final conditions provide the following boundary constrains,

which can be used in order to solve the two point value problem, and also in order to compute

the value of 𝑡𝑒.

 𝑥(𝑡0) = 𝑥0 (2.10)

 𝑔[𝑥(𝑡𝑒), 𝑡𝑒] = 0 (2.11)

 𝜆(𝑡𝑒) = 𝜃𝑥(𝑡𝑒) + 𝑔𝑥(𝑡𝑒)
𝑇 𝑣 (2.12)

 𝐻[𝑥(𝑡), 𝑢(𝑡), (𝑡), 𝑡𝑒] + 𝜃𝑡𝑒 = 0 (2.13)

2.2: Discrete Time Dynamic Systems formulation

The Optimal Control Problem in the case of discrete time is being formulated in a similar

way as the previous one considering continuous-time dynamic systems, as follows:

 Given the initial state 𝑥(0) = 𝒙0 and the disorders 𝑧(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1, the time

functions of the control 𝑢∗(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1 and state variables 𝑥∗(𝑘), 0 ≤ 𝑘 ≤ 𝐾∗ − 1, are

being wanted, as well as the final time 𝐾∗, which minimize the cost function:

 𝐽 = 𝜕[𝑥(𝐾),𝐾] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0 (2.14)

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e21
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e21

13

by taking into consideration the following constraints ∀𝑘 ∈ [0, 𝐾 − 1]:

 𝒙(𝑘 + 1) = 𝒇[𝒙(𝑘), 𝒖(𝑘), 𝑘] (2.15)

 𝒉[𝒙(𝑡), 𝒖(𝑡), 𝑡] ≤ 0 (2.16)

as well as the final target

 𝒈[𝒙(𝐾),𝐾] = 0. (2.17)

All the explanations, specifications and special cases that were given and presented in

above, in section 2.1, considering the OCP for a continuous-time dynamic system, are valid in

the case of a discrete-time dynamic system.

2.2.1: Free final time

 When the final time is free in this occasion of the Optimal Control Problem (on a discrete

time dynamic system), the final time 𝑡𝑒 is considered as a variable for optimized, along with the

control variable. The control vector 𝑢(𝑘), 𝑘 = 0,… , 𝐾 − 1and the final free time 𝑡𝑒 needed for

the optimization of the criterion:

 𝐽[𝑥(𝑘), 𝑢(𝑘), 𝑘] = 𝜕[𝑥(𝐾)] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0 (2.18)

where the number of time-steps K is finite, and also

 𝑡𝑒 = 𝐾𝑇 (2.19)

under the constraints

 𝑔[𝑥(𝐾), 𝑡𝑒] = 0 (2.20)

 𝑥(𝑘 + 1) = 𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘, 𝛥𝑡] (2.21)

 𝑥(𝑥0) = 𝑥0 (2.22)

where 𝑇 is considered as the time-step.

14

Chapter 3: Dynamic Programming

Dynamic Programming is a method developed during the 1950 decade by the American

mathematician R. E. Bellman. Dynamic Programming is based on the Principal of Optimality,

which is nothing more than a very simple and understandable capacity of the optimal control

problems solution. The properties of this particular principal are quite significant, leading to the

creation of a vast number of algorithms in order to cope with problems in the field of dynamics,

and also with combinatorial optimization problems, deterministic and stochastic. The

applications of Dynamic Programming (DP) are many and also expand in various areas, such as

Operational Research, Economics etc, along with different types of problems (organization,

automatic control, design and many more) [20].

3.1: Introduction in Discrete Time Optimal Control

 Considering the minimization of the discrete time cost criterion

 𝐽 = 𝜕[𝑥(𝐾)] + ∑ 𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘]𝐾−1
𝑘=0 (3.1)

with defined time-horizon K, taking into consideration the statutory constrains

 𝒙(𝑘 + 1) = 𝒇[𝒙(𝑘), 𝒖(𝑘), 𝑘] (3.2)

and initial state 𝒙(0) = 𝒙0 and final target which is define by

 𝒈[𝒙(𝐾)] = 0 (3.3)

or with every other possible way of defining a set of points 𝒙(𝐾), and only in those are permitted

to end up the state x of the problem. It is also important to mention that, the results of this

chapter can be applied in the particular case of the absence of a final target[20]. In this section,

for convenience purposes, only the given final time K instance is being taken into consideration.

Generalization of the results in case of free final time will be examined in subsection 3.4.

 The allowed control area is defined as

 𝒖(𝑘) ∈ 𝓤[𝒙(𝑘), 𝑘] = {𝒖(𝑘)|𝒉[𝒙(𝑘), 𝒖(𝑘), 𝑘] ≤ 0} (3.4)

and it is supposed that the Jacobi table 𝜕𝒉 𝜕𝒖⁄ is a full degree table. This admission is not

fulfilled if there are state inequality constrains. If that happens, the following inequality

constrains are assumed

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19

15

 𝒙(𝑘) ∈ 𝖃(𝑘) = {𝒙(𝑘)|𝒉𝑋[𝒙(𝑘), 𝑘] ≤ 0} (3.5)

with𝖃(𝑘) being the allowed state area. Moreover, when it is considered necessary, the following

equality constrains can be assumed

 𝑮[𝒙(𝑡), 𝒖(𝑡), 𝑡] = 0 (3.6)

along with discrete control or state areas

 𝑢𝑖(𝑡) ∈ 𝓤𝑖 = {𝑢𝑖,1, 𝑢𝑖,2, … }. (3.7)

Figure 2: Graphical explanation of the discrete time OCP. Adapted with permission from [20].

 In the event of discrete time 𝑘 = 0,1,2, … , 𝐾 this particular problem can be considered as

a multiple decision - multiple step problem, so an approach can be considered, based on the

Bellman’s Principal of Optimality[21], according to which: Every residual 𝒖∗(𝑡), 𝑡 ∈ [𝑡1, 𝑡𝑒], 0 ≤

𝑡1 ≤ 𝑡𝑒, of the optimal control trajectory 𝒖∗(𝑡), 𝑡 ∈ [0, 𝑡𝑒], is an optimal trajectory for thetransfer

of the corresponding intermediate state 𝒙∗(𝑡1) to the final trajectory 𝒈[𝒙(𝑡𝑒), 𝑡𝑒] = 0. For this

purpose, an absolute minimum of the problem is presupposed.

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n20

16

3.2: Bellman’s Recursive Equation

 For the application of the Principal of Optimality in an Optimal Control Problem with

discrete times, the residual cost, or cost-to-go 𝐽𝑘 is defined, for the transportation of a state 𝑥(𝑘)

to the final target Eq. (3.3) as following

 𝐽𝑘 = 𝜃[𝒙(𝐾)] + ∑ 𝜑[𝒙(𝜅), 𝒖(𝜅), 𝜅]𝐾−1
𝜅=𝑘 (3.8)

 Fora specific problem, the minimum cost-to-go 𝐽𝑘
∗ = 𝑚𝑖𝑛𝐽𝑘 (satisfying all the necessary

constrains), depends exclusively on the transporting state 𝑥(𝑘) and the time 𝑘. This minimum

cost is named 𝑉[𝒙(𝑘), 𝑘] with

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛𝐽𝑘 = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝐽𝑘+1} (3.9)

where the minimum is considered among all trajectories 𝒖(𝜅), 𝜅 = 𝑘,… , 𝐾 − 1, that satisfies Eq.

(3.2) - (3.5). By applying the Principal of Optimality on Eq. (3.9)

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝑉[𝒙(𝑘 + 1), 𝑘 + 1]}. (3.10)

Replacing 𝑥(𝑘 + 1)from Eq. (3.2) to Eq. (3.10) the outcome is

 𝑉[𝒙(𝑘), 𝑘] = 𝑚𝑖𝑛{𝜑[𝒙(𝑘), 𝒖(𝑘), 𝑘] + 𝑉[𝒇(𝒙(𝑘), 𝒖(𝑘), 𝑘), 𝑘 + 1]} (3.11)

The right member of Eq. (3.11), bears the name Bellman’s Recursive Equation [22], and

it depends on 𝒖(𝑘), not from the subsequent 𝒖(𝜅), 𝜅 = 𝑘 + 1,… , 𝐾 − 1. Therefore,

minimization on Bellman’s Recursive Equation is understood only for the control variables of

time 𝑘, meaning for 𝒖(𝑘), of course always with respect to the constrains (3.4) and (3.5). This

one-step minimization can be performed independently for every step, starting from the final

time, for 𝑘 = 𝐾 − 1,𝐾 − 2,… ,0, so the initial multiple-step decision problem is distributed in

𝐾one-step decision problems. Following, there is a detailed presentation of this step-process [20]

(which is also known as Dynamic Programming):

 Step K-1: For every 𝑥(𝐾 − 1) ∈ 𝖃(𝐾 − 1) the corresponding 𝒖(𝐾 − 1) is determined,

which minimises

𝐽𝐾−1 = 𝜃[𝒙(𝐾)] + 𝜑[𝒙(𝐾 − 1), 𝒖(𝐾 − 1), 𝐾 − 1]

under 𝒙(𝐾) = 𝒇[𝒙(𝐾 − 1), 𝒖(𝐾 − 1), 𝐾 − 1]

𝒈[𝒙(𝐾)] = 0

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e33
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e32
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e32
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e35
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e39
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e32
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e310
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e311
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n21
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e34
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e35
file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23n19

17

𝒖(𝐾 − 1) ∈ 𝓤[𝒙(𝐾 − 1), 𝐾 − 1]

𝒙(𝐾) ∈ 𝖃(𝐾).

The outcome of this one-step minimization for every 𝒙(𝐾 − 1) ∈ 𝖃(𝐾 − 1) is expressed

via 𝒖(𝐾 − 1) = 𝑹[𝒙(𝐾 − 1), 𝐾 − 1]. The corresponding minimum values of 𝐽𝐾−1 are being

illustrated with the function 𝑉[𝒙(𝐾 − 1), 𝐾 − 1].

 Step K-2: For every 𝑥(𝐾 − 2) ∈ 𝖃(𝐾 − 2)the corresponding 𝒖(𝐾 − 2) is determined,

which minimises

𝐽𝐾−2 = 𝑉[𝒙(𝐾 − 1), 𝐾 − 1] + 𝜑[𝒙(𝐾 − 2), 𝒖(𝐾 − 2), 𝐾 − 2]

under 𝒙(𝐾 − 1) = 𝒇[𝒙(𝐾 − 2), 𝒖(𝐾 − 2), 𝐾 − 2]

𝒖(𝐾 − 2) ∈ 𝓤[𝒙(𝐾 − 2), 𝐾 − 2]

𝒙(𝐾 − 1) ∈ 𝖃(𝐾 − 1).

The final target, Eq. (2.7) doesn’t need to be taken into consideration. The results of this

one-step optimization are being illustrated with the functions 𝑉[𝒙(𝐾 − 2), 𝐾 − 2]and 𝑅[𝒙(𝐾 −

2), 𝐾 − 2].

Step K-3

(every iteration follows the same path as before, with the appropriate

changes of course each time)

Step 0: For 𝒙(0) = 𝒙0 the corresponding 𝒖(0) is defined, which minimizes

𝐽0 = 𝑉[𝒙(1), 1] + 𝜑[𝒙(0), 𝒖(0), 0]

under 𝒙(1) = 𝒇[𝒙(0), 𝒖(0), 0]

18

𝒖(0) ∈ 𝓤[𝒙(0), 0]

 𝒙(1) ∈ 𝖃(1).

The outcome of this one-step minimization is expressed via 𝒖(0) = 𝑹[𝒙(0), 0]and

𝑉[𝒙(0), 0].

In some steps there might be states 𝒙(𝑘) ∈ 𝖃(𝑘) in which the corresponding one-step

minimization problem does not have a solution, because the feasible area that occurs from the

constrains is empty. Such points 𝒙(𝑘) cannot be transferred to the final target, satisfying all the

constrains.

In the end of the presented K-step Dynamic Programming procedure, there have been

calculated not just the optimal trajectories for the transfer of the initial state 𝒙(0) = 𝒙0 to the

final targetEq.(3.3), but instead, an optimal closed loop rule, which is expressed from the results

of the one-step minimization problems

 𝒖(0) = 𝑹[𝒙(𝑘), 𝑘], 𝑘 = 0,1, … , 𝐾 − 1. (3.12)

In order to determine the field of applications of the optimal control rule, the

aforementioned problem for the 0 step can be solved, for every 𝒙(0) ∈ 𝖃(0).Eq. (3.12) includes

sufficient elements for the optimal transfer not only regarding 𝒙0, but for any 𝒙(𝑘) ∈ 𝖃(𝑘), 𝑘 =

0,1, … , 𝐾 − 1for the final target (3.3), under the condition that the transfer is feasible.

The one-step minimization in every step can be attempted either analytically or

numerically (with the help of a personal computer). Analytical solutions are generally applied for

slightly simple problems. It is also worth mentioning that, Dynamic Programming leads to an

absolute minimum of the discrete time OCP, if only the calculated one-step minimums are also

absolute ones.

3.3: Discretization

 The general numeric solution of a discrete time OCP is possible, if a discrete grid of

points is entered in the feasible areas 𝖃(𝑘) and 𝓤[𝒙(𝑘), 𝑘] (see Figure 3below). The discrete

intervals 𝛥𝒙(𝑘) and 𝛥𝒖(𝑘) can be chosen depending on the specific problem and the desirable

solution’s precision. In case of an unlimited feasible state or control area, it is necessary to attach

appropriate bounds, in order to have a finite number of discrete points.

 If someone applies in a discrete state 𝒙𝑖(𝑘) all the discrete controls 𝒖𝑗(𝑘), there are a

finite number of transitions to the next step 𝑘 + 1, with the corresponding costs

file:///C:/Users/Bill/Desktop/Thesis-v5.docx%23e312

19

𝜑[𝒙𝑖(𝑘), 𝒖𝑗(𝑘), 𝑘]. Applying this procedure in all discrete state points of all the discrete times,

the result is a discrete decision multiple-step system.

 The application of a discrete control 𝒖𝑗(𝑘) in a discrete state 𝒙𝑖(𝑘) leads to the state

 𝒙(𝑘 + 1) = 𝒇[𝒙𝑖(𝑘), 𝒖𝑗(𝑘), 𝑘] (3.13)

of the step 𝑘 + 1. There are two particular cases that need to be taken into consideration:

• State 𝒙(𝑘 + 1) is out of the feasible area 𝖃(𝑘 + 1). In this case, this particular transition

does not be taken into consideration.

• State 𝒙(𝑘 + 1) does not coincides with a discrete point of step 𝑘 + 1. In this case, it can

approximately be considered that the state 𝒙(𝑘 + 1) concurs with the closest discrete

point. However, if a more precise solution is wanted, the answer is a linear interpolation

approach. Also need to be stated that, if the problem is statutory, Eq. (3.2) is invertible as

to 𝒖(𝑘) (something that presuppose that dim(𝑥) = dim(𝑢)), meaning that if

 𝒖(𝑘) = 𝑭[𝒙(𝑘), 𝒙(𝑘 + 1), 𝑘] (3.14)

can be educed analytically from Eq. (3.2), then there is no need of discretization of the feasible

control area in advance. Instead of that, for every transition from a discrete point 𝒙𝑖(𝑘) to a

discrete point 𝒙𝑗(𝑘 + 1) of the next step, the necessary control 𝒖𝑖𝑗(𝑘) = 𝑭[𝒙𝑖(𝑘), 𝒙𝑖(𝑘 + 1), 𝑘]

can be computed through Eq. (3.14), and if 𝒖𝑖𝑗(𝑘) ∈ 𝓤[𝒙𝑖(𝑘), 𝑘], then the transition is feasible,

otherwise, the transition violates the control constrains and consequently, it does not taken into

consideration.

20

Figure 3: Discretization of the feasible state area for a two-dimension system. Adapted with

permission from [20].

Final target 𝒈[𝒙(𝐾) = 0] needs also to be adjusted into the problem’s discrete

environment. By entering a tolerance zone ±𝛿around the final target, the following discrete final

target is formulated

 𝒬 = {𝒙(𝐾)|∃𝜷:|𝒙(𝐾) − 𝜷| ≤ 𝛿, 𝒈(𝜷) = 0} (3.15)

 It can now be assumed that the final target has been fulfilled (approximately), provided

that 𝒙(𝐾) ∈ 𝒬.

3.4: Computational time

Suppose 𝑎𝑖(𝑘), 𝑖 = 1,… , 𝑛, the number of discrete points of the component 𝑖 of the

vector 𝒙(𝑘) and 𝛽𝑗(𝑘), 𝑗 = 1,… ,𝑚, the number of discrete points of the component 𝑗 of the

vector 𝒖(𝑘). The total state grid includes

 ∑ ∏ 𝑎𝑖(𝑘)
𝑛
𝑖=1

𝐾
𝑘=0 (3.16)

21

discrete points and the number of transitions for each point is

 ∏ 𝛽𝑗(𝑘)
𝑚
𝑗=1 . (3.17)

 If, for convenience purposes, it is assumed that 𝑎𝑖(𝑘) = 𝑎 and 𝛽𝑗(𝑘) = 𝛽 for each 𝑖, 𝑗, 𝑘,

then the needed computational time 𝜏 for processing the multi-step procedure of a Discrete

Dynamic Programming problem is equal to the total number of nods,

 𝜏~𝐾 ∙ 𝑎𝑛 ∙ 𝛽𝑛. (3.18)

The necessary storage space of the table that stores the control rule is 𝑚 values for each

discrete point 𝒙𝑖(𝑘); for the m components of the control 𝒖𝑙(𝑖)(𝑘) vector, and in total

 𝑚∑ ∏ 𝑎𝑖(𝑘) = 𝑚 ∙ 𝐾 ∙ 𝑎𝑛𝑛
𝑖=1

𝐾
𝑘=0 (3.19)

values to store. Eq. (3.18), (3.19)point out that computational time during a Discrete Dynamic

Programming application increases exponentially with the 𝑛,𝑚 dimensions of the problem,

something that constitutes a major disadvantage of this, and similar to this, method. Following,

an example is presented in order to understand better the term exponential increase [20].

Example 2

 Assume 𝐾 = 10 steps and one dimension control (𝑚 = 1). Also assume 𝛼 = 𝛽 = 100

discrete points and 𝜏𝑠 = 100𝜇𝑠the required computational time for the computation of the cost

for one transition. Using Eq. (3.18), the necessary computational time of the total solution

through a Discrete Dynamic Programming approach is estimated, as stated next:

 for 𝑛 = 1𝜏 = 10𝑠

 for 𝑛 = 2𝜏 = 17𝑚𝑖𝑛

 for 𝑛 = 3𝜏 = 28ℎ

 for 𝑛 = 4𝜏 = 3,9𝑚𝑜𝑛𝑡ℎ𝑠

 for 𝑛 = 5𝜏 = 32𝑦𝑒𝑎𝑟𝑠

Due to the exponential increase of the computational time, narrow limits are being

instated on a problem’s dimensions, which can be solved with a Discrete Dynamic Programming

method. An inquiry regarding a problem’s dimensions limits can be performed as follows:

22

• For each particular problem, it is necessary to check if the feasible state and control area

can be further confined, aiming to the reduction of the corresponding number of points of

the grid, and also the number of transitions. Nevertheless, that extra constrain needs to be

performing in a way that it does not excluding optimal solutions, something that it is

frequently difficult to be assessed before the problem’s solution.

• The length of the discrete intervals 𝛥𝒙(𝑘) and 𝛥𝒖(𝑘) needs to be chosen as big as

possible, meaning, not smaller than necessary. Nevertheless, bigger intervals usually lead

to less precise solutions. A reliable (in advance) assessment of the solution’s precision is

demanding, if not difficult in many applications.

• There have been some suggestions, regarding variations and simplifications of the

Discrete Dynamic Programming method, aiming to the reduction of the workload and

eventually the computational time. Such algorithms (DDDP and DDP) have been used in

this work, which are being presented in the next chapters.

• The latest and ongoing evolution and changes in the field of computer science are being

used, in order to investigate the dimensions of the Discrete Dynamic Programming

applications. The simple structure of the Dynamic Programming multi-step procedure is

offered for parallel processing in multiple computer systems.

3.5: Discrete Differential Dynamic Programming (DDDP)

The Discrete Differential Dynamic Programming algorithm solves in every iteration the

discretized problem introduced in subsection 2.2.1, with the following, additional, constrains

 |𝑥𝑖(𝑘) − 𝑥𝑖
(𝑙−1)(𝑘)| ≤ 𝛥𝑖

(𝑙)
, 𝑖 = 1,… , 𝑛 (3.20)

where𝑥𝑖
(𝑙−1)

 is the determined optimal trajectory for the last iteration 𝑙 − 1. In other words, the

discretized problem is solved in every iteration into a corridor with 𝛥(𝑙)(𝑘)width, about the

previous approximation 𝑥𝑖
(𝑙−1)(𝑘), which reduces significantly the corresponding work load and

computational time. The selection of the 𝛥(𝑙)(𝑘)width, and also the discrete intervals

𝛥𝒖(𝑙), 𝛥𝒙(𝑙), can all be different (meaning, they can be changing from iteration to iteration) in

every iteration, with declining tendency of course. The convergence criterion is satisfied if

 ‖𝒖(𝑙)(𝑘) − 𝒖(𝑙−1)(𝑘)‖
∞
< 휀∀𝑘 ∈ [0, 𝐾 − 1] (3.21)

where휀 > 0is a tolerance limit, and ‖𝒖(𝑘)‖∞ = max
𝑖
(|𝑢𝑖(𝑘)|).

Below, an example is presented, aiming to the better understanding of the method [20].

23

Example 2

Minimization of

𝐽 =
1

2
∑[𝑥(𝑘)2 + 𝑢(𝑘)2]

3

𝑘=0

considering

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑢(𝑘), 𝑥(0) = 2, 𝑥(4) = 0

𝖃 = {𝑥(𝑘)|0 ≤ 𝑥(𝑘) ≤ 2}

𝓤 = {𝑢(𝑘)|−2 ≤ 𝑢(𝑘) ≤ 0}

As an initial trajectory the feasible trajectory 𝑢(0)(0) = 𝑢(0)(1) = 0, 𝑢(0)(2) =

𝑢(0)(3) = −1 is designated, which corresponds to 𝑥(0)(0) = 𝑥(0)(1) = 𝑥(0)(2) = 2, 𝑥(0)(3) =

1, 𝑥(0)(4) = 0, with cost equal to 7.5. In Figure 4 below, a graphic approach of the problem’s

solution is being presented, using the DDDP method, displaying for every iteration 𝑙 = 1,… ,5:

• The previous state approximation 𝑥(𝑙−1)(𝑘), presented by a solid line.

• The discrete points of the solution’s corridor.

• The new state approximation 𝑥(𝑙)(𝑘), presented by a dashed line, and the corresponding

cost (presented by a circled number on top of the initial state).

24

Figure 4: Consecutive approximations, regarding Example 2. Adapted with permission from

[20].

 In every iteration, the width of the corridor is considered to be equal to a discrete interval

𝛥𝑥. The width of the corridor is equal to zero for times 0 and 4, due to the specified initial and

final state. It is also considered that the corridor doesn’t expand to not feasible areas, meaning it

is restrained from 0 to 2, (0 ≤ 𝑥(𝑘) ≤ 2) in this particular problem, and generally specified

depending on the problem constrains.

 The first three iterations taking place under the discrete intervals 𝛥𝑥 = 𝛥𝑢 = 1. During

the first iteration, the cost criterion is being reduced from 7.5, to 4, and continuing, during the

second iteration declines from 4 to 3.5. In the third iteration, it is obvious that no further

improvement can be achieved. Reducing the discrete intervals from 𝛥𝑥 = 𝛥𝑢 = 1to 𝛥𝑥 = 𝛥𝑢 =

0.5, a cost criterion reduction is achieved, as it declines from 3.5 to 3.375 during the fourth

iteration. In the fifth iteration no further improvement can be achieved, so the process can be

stopped here, or it could be continued by further reduction of the discrete intervals, in order to

improve further the problem’s solution.

25

3.5.1: Advantages and Disadvantages of the DDDP method

 This particular method is well-known and used in a variety of applications, due to the

reduction in the workload and the faster results compared to other similar methods, as it can be

observed by Feng et. al. in [23], that the “curse of dimensionality” (mentioned in Chapter 2) is

posing a great challenge to the optimal operation of a hydropower system (OOHS) due to the

exponential growth of the computational cost, with the increasing number of plants and the

DDDP method is used, as well as Heidariet. al. state in [24], where an approach to water

resources systems optimization is presented, based on Discrete Differential Dynamic

Programming. According to [24], ,the major factors that led to a DDDP approach in their paper

were the inherent drawbacks and disadvantages of a «traditional» dynamic programming

approach, such as, memory, capacity and computer time requirements. By limiting optimization

to a few points grid around the initial trajectory, the memory requirements appear to have been

curbed considerably. So, a DDDP method can be quite applicable in many cases, if the workload

of a DP method is considered, versus the one that a DDDP algorithm has to overcame, which is

substantially less, as stated before.

 The percentage of saved computational time, through a DDDP method depends on 𝜟, the

corridor’s width, and also the number of iterations performed, which generally depends on the

corridor’s 𝜟 width. In a problem with 𝑛 = 5 and 𝑎 = 100 for example, according to Eq. (3.20),

the computational time of the problem is equal to 1005 = 1010𝑠𝑒𝑐. Considering a corridor’s

width equal to five discrete points, for every iteration of the DDDP algorithm there is

computational time equal to 55 = 3125𝑠𝑒𝑐. However, the exponential increase of

computational time still exists in a DDDP algorithm, but with a much smaller impact compared

to a Discrete Dynamic Programming algorithm.

 The disadvantages of a DDDP algorithm compared to a Discrete Dynamic Programming

algorithm are:

• Convergence of the algorithm can be proved only if relevant restrictive admissions take

place.

• The possibility of convergence in a relative minimum cannot be excluded, except of

specific problem categories.

• A control rule is computed only for the last iteration’s corridor, and not for the whole

feasible state area 𝖃(𝑘).

Concluding, it is clear that someone can argue that there are available methods faster than a

DDDP algorithm, and the convergence times are even lower. Nevertheless, it is important to take

into consideration that a DDDP algorithm provides us with high precision results, in a quite

small amount of time, mostly due to the use of the corridor 𝛥, considering the computational

time that a DP algorithm is going to need to solve the exact same problem and also provide the

26

same results. It is important to be mentioned that, the initial SDP algorithm [4], needs

approximately from 10 to 20 minutes to solve and provide back the wanted results of a certain

OCP. On the contrary, a same formulated problem, using a DDDP algorithm, and specifically the

one that is described in chapter 5, is under the barrier of a second, meaning that a significant

amount of computational time and workload is being avoided.

3.6: Differential Dynamic Programming (DDP)

Differential Dynamic Programming avoids the exponential increase of computational

time, by leading in a quadratic convergence, inside an area around the wanted minimum,

meaning that

 ‖𝒖(𝑙)(𝑘) − 𝒖∗(𝑘)‖
∞
≤ 𝐴[‖𝒖(𝑙−1)(𝑘) − 𝒖∗(𝑘)‖

∞
]
2
, where 𝐴 < 1. (3.22)

 In terms of better understanding, the DDP method is going to be presented for the case of

graded state 𝑥(𝑘) and graded control 𝑢(𝑘). Generalization of the method in a vector instance

does not present any methodology difficulties, although its presentation includes some quite

complicated vector terms [20].

 Let’s consider the OCP from section 3.1, without taking into consideration the final target

(3.3) and also without the inequality constrains (3.4) and (3.5). Except that, the admission that

functions 𝜃, 𝜑 and 𝑓 are sufficiently differentiable for the following calculations is being made,

something that narrows the implementation amplitude of the method. In order to properly present

the algorithm, the following equations are being defined

 𝛿𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑙−1)(𝑘)

 𝛿𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑙−1)(𝑘) (3.23)

 The basic principle of the algorithm lies on the solution, for each iteration 𝑙, of a

quadratic approximation of the initial OCP, based on the last solution 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘). The

advantage of this procedure emanates from the fact that the solution of a quadratic approximation

of the OCP; with no constrains involved, is possible analytically, without the use of a

discretization variable, something that prevent the workload from increasing exponentially.

 The procedure starts with the last step 𝐾 − 1, according to the algorithm presented in

section 3.1, assuming the Bellman’s retroactive Eq. (3.11). The under minimization term of Eq.

(3.11), for 𝑘 = 𝐾 − 1, is

 𝜑[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1] + 𝜃[𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]] (3.24)

27

The quadratic approach of this term, under the values 𝑥(𝑙−1)(𝐾 − 1), 𝑢(𝑙−1)(𝐾 − 1) returns

𝑄[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1] =
1

2
𝐷(𝑘 − 1)𝛿𝑥(𝐾 − 1)2 + 𝐸(𝐾 − 1)𝛿𝑥(𝐾 − 1)𝛿𝑢(𝐾 − 1) +

+
1

2
𝐹(𝐾 − 1)𝛿𝑢(𝐾 − 1)2 + 𝐺(𝐾 − 1)𝛿𝑥(𝐾 − 1) + 𝐻(𝐾 − 1)𝛿𝑢(𝐾 − 1) (3.25)

where the zero grade constant term was omitted, because it does not affect the outcome of

minimization. Matrices𝐷, 𝐸, 𝐹, 𝐺 and 𝐻of Eq. (3.25) can be computed as follows (with the same

principles as for array D below):

𝐷(𝐾 − 1) =
𝜕2𝜑[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)2
+
𝜕2𝜃[𝑥(𝐾)]

𝜕𝑥(𝐾)2
[
𝜕𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)
]

2

+
𝜕𝜃[𝑥(𝐾)]

𝜕𝑥(𝐾)

𝜕2𝑓[𝑥(𝐾 − 1), 𝑢(𝐾 − 1), 𝐾 − 1]

𝜕𝑥(𝐾 − 1)

 (3.26)

where every term is being computed for 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘).

 Minimization of the quadratic approach 𝑄, Eq. (3.25), with respect to 𝑢(𝐾 − 1) produces

 𝑢(𝐾 − 1) = 𝑢(𝑙−1)(𝐾 − 1) + 𝛿𝑢(𝐾 − 1) (3.27)

with

 𝛿𝑢(𝐾 − 1) = 𝑎(𝐾 − 1) + 𝛽(𝐾 − 1)𝛿𝑥(𝐾 − 1) (3.28)

 𝑎(𝐾 − 1) = −𝐹(𝐾 − 1)−1𝐻(𝐾 − 1) (3.29)

 𝛽(𝐾 − 1) = −𝐹(𝐾 − 1)−1𝐸(𝐾 − 1) (3.30)

Using again Eq. (3.9), the approximate function �̂�[𝑥(𝐾 − 1), 𝐾 − 1], without the constant term,

from the minimum value of 𝑄 is

 �̂�[𝑥(𝐾 − 1), 𝐾 − 1] =
1

2
𝐴(𝐾 − 1)𝛿𝑥(𝐾 − 1)2 + 𝐵(𝐾 − 1)𝛿𝑥(𝐾 − 1) (3.31)

with

 𝐴(𝐾 − 1) = 𝐷(𝐾 − 1) − 𝐸(𝐾 − 1)𝐹(𝐾 − 1)−1𝐸(𝐾 − 1) (3.32)

 𝐵(𝐾 − 1) = 𝐺(𝐾 − 1) − 𝐸(𝐾 − 1)𝐹(𝐾 − 1)−1𝐻(𝐾 − 1) (3.33)

Computation of steps below 𝐾 − 1 is done in a similar way. Suppose that the by

quadratic approximation function

28

 �̂�[𝑥(𝑘 + 1), 𝑘 + 1] =
1

2
𝐴(𝑘 + 1)𝛿𝑥(𝑘 + 1)2 + 𝐵(𝑘 + 1)𝛿𝑥(𝑘 + 1) (3.34)

is already been computed. Defining 𝑄[𝑥(𝑘), 𝑢(𝑘), 𝑘] as a quadratic approximation of the term

𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑘] + �̂�[𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘], 𝑘 + 1], with respect to 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘) and without

the constant term, the corresponding equation to Εq. (3.25) for the interval 𝑘 is

 𝑄[𝑥(𝑘), 𝑢(𝑘), 𝑘] =
1

2
𝐷(𝑘)𝛿𝑥(𝑘)2 + 𝐸(𝑘)𝛿𝑥(𝑘)𝛿𝑢(𝑘) +

1

2
𝐹(𝑘)𝛿𝑢(𝑘)2 + 𝐺(𝑘)𝛿𝑥(𝑘) +

+𝐻(𝑘)𝛿𝑢(𝑘) (3.35)

Arrays𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 of the above equation can be calculated as follows (using the same

principles as for array D below):

𝐷(𝑘) =
𝜕2𝜑[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)2
+ 𝐴(𝑘 + 1) [

𝜕𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)
]

2

+ 𝐵(𝑘 + 1)
𝜕2𝑓[𝑥(𝑘), 𝑢(𝑘), 𝑘]

𝜕𝑥(𝑘)

 (3.36)

where every term is being computed for 𝑥(𝑙−1)(𝑘), 𝑢(𝑙−1)(𝑘).

 Function 𝑄 can now be minimized, with the same principles as in interval 𝐾 − 1, with

respect to 𝑢(𝑘),

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘) (3.37)

where𝑎(𝑘), 𝛽(𝑘) are being calculated according to Eq. (3.29) and (3.30). From this minimization

the approximation �̂�[𝑥(𝑘), 𝑘] =
1

2
𝐴(𝑘)𝛿𝑥(𝑘)2 + 𝐵(𝑘)𝛿𝑥(𝑘) also transpires, where 𝐴(𝑘), 𝐵(𝑘)

are being calculated using Eq. (3.32) and (3.33). Vectors 𝑎(𝑘), 𝛽(𝑘), need to be stored in every

step of the method, counter to arrays 𝐴(𝑘 + 1) and 𝐵(𝑘 + 1), which do not have a further use

and can be erased from the computer’s memory.

 After the calculation of all the steps of the problem, an improved version of the control

variable, for every iteration 𝑙, can be formulated

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘) (3.38)

 𝑥(𝑙)(𝑘 + 1) = 𝑓[𝑥(𝑙)(𝑘), 𝑢(𝑙)(𝑘), 𝑘], 𝑥(0) = 𝑥0 (3.39)

In some instances, the use of the following Eq. (3.40) might be needed, instead of Eq. (3.38), in

order to avoid a possible deviation of the algorithm.

 𝑢(𝑙)(𝑘) = 𝑢(𝑙−1)(𝑘) + 휀[𝑎(𝑘) + 𝛽(𝑘)𝛿𝑥(𝑘)], 0 < 휀 ≤ 1 (3.40)

Nevertheless, it is possible even with this precaution (the use of constant 휀), that, derivation of

the algorithm might occur, so, other measures need to be taken. It is also important to mention

29

that, the state and control variables do not have bounds, meaning that 𝒙and 𝒖are not bordered

amidst some ensuing regions.

3.6.1: Advantages and Disadvantages of the DDP method

 The DDP method solves the initial OCP without the use of a discretization value, since

the quadratic approximation problem is being solved analytically, so the computational time is

being reduced even more than the DDDP method, something that makes this a very useful and

vastly used method, like in an interesting work by Tassaet. al. [25], considering ways for

generating goal-directed robot motion using a DDP algorithm, as well as in a similar work

released by Levine and Koltun, [26], considering Variational Policy Search via trajectory

optimization, using also DDP algorithmic implementations.

 Α Differential Dynamic Programming application can be also expanded in problems with

linear inequality constrains. In this particular case, in every step of every iteration, a quadratic

programming problem is being solved, something that increases the workload, however, retains

the increase of the computational time as to the dimensions of the problem in a polynomial way.

 The disadvantages of the DDP method, compared with a Discrete Dynamic Programming

method can be summarized below

• The possibility that the algorithm does not converge, always exist.

• The possibility that the algorithm converges to a relative minimum.

• There is a difficulty taking into consideration generic inequality constrains, or

allowed discrete range of values.

As stated by Pan et. al. [27], comparing a DDP algorithm with global optimal control

approaches, the local optimal DDP shows superior computational efficiency and scalability to

high-dimensional problems, due to the fact that is derived based on linear approximations of the

nonlinear dynamics along state and control trajectories, therefore it relies on accurate and explicit

dynamics models.

 As specified by Levine et. al. [26], their results show that the developed algorithm (which

is based on a variant of DDP called iterative LQR) outperforms prior methods because of two

advantages: the use of a model-based trajectory optimization algorithm instead of random

exploration, which allows the algorithm to outperform model-free methods, and also due to the

decomposition of the policy search into two simple optimization problems that can each be

solved efficiently by standard algorithms, which leaves this specific method less vulnerable to

local optima than more complex methods like Guided Policy Search (GPS), introduced by

Levine et. al. in [28].

31

Chapter 4: GLOSA problem formulation

 This chapter contains the GLOSA problem implemented in this thesis, from its

mathematic viewpoint, starting from the OCP with known signal switching times, which is a

simplified version of the problem that is being researched. Continuing, the OCP with unknown

signal switching times is being presented, which is a lot more complicated than the previous one,

and along with that, the workload and the CPU-time are exponentially increasing, and that is the

main reason that the two methods mentioned in this chapter (Discrete Differential Dynamic

Programming and Differential Dynamic Programming) are being used in order to solve the

Optimal Control Problem investigated in this thesis.

4.1: Optimal Control Problem with Known Signal Switching Time

In this subsection the theoretical background and the method followed of the algorithm

introduced in [4] are presented, when the switching time is known in advance. Taking into

consideration Figure 5, the studied vehicle starts from an initial state 𝒙0 = [𝑥0, 𝑣0]
𝑇, with 𝒙0 a

given initial position and 𝑣0 a given initial speed of the vehicle, which intends of reaching a final

position 𝑥𝑒 with a final speed 𝑣𝑒, with the limitation that the vehicle isn’t able to pass through the

traffic light (which current position is at let’s say 𝑥1) before the time 𝑡1, which is the time that

the traffic light turn from red into green. The purpose of the driver is to reach at his final

destination, with the minimum possible fuel consumption, by regulating his acceleration

accordingly with respect to the initial and final conditions 𝒙0and 𝒙𝑒, along with not violating the

traffic signal constraint. In order to avoid a possible myopic operation of the developed

algorithm, it is necessary to take into consideration that the final position 𝒙𝑒 needs to be adequate

downstream of the traffic signal, e.g. 75 m., along with the final speed 𝑣𝑒, which needs to be

sufficiently high (e.g. 11 m/s).

The purpose of the driver is to reach at his final destination before the time that the traffic

light turn from red into green.

32

Figure 5: A vehicle starting from a given position 𝑥0 and speed 𝑣0, starting from a known initial

state[𝑥0, 𝑣0]
𝑇, the traffic light with known position 𝑥1 and also known switching to green time

𝑡1.The main target is to enable the vehicle (by adjusting appropriately its speed and acceleration,

which in this particular case acceleration is also our control variable) to reach at a wanted and

also given state 𝑥𝑒 with a speed 𝑣𝑒 without stopping at the traffic light, which means passes it at

the right time, meaning when the light is turned into green.

4.1.1: Problem formulation

The minimization problem presented above is formulated as an optimal control problem

which accounts for the vehicle kinematics through the following state equations:

 �̇� = 𝑣 (4.1)

 �̇� = 𝑎 (4.2)

where𝑎is the vehicle’s acceleration which has the role of the control variable. The target is to

navigate the driver or the vehicle from the initial state 𝒙0 = [𝑥0, 𝑣0]
𝑇to the determined final

condition 𝒙𝑒 = [𝑥𝑒 , 𝑣𝑒]
𝑇within the final time 𝑡𝑒 ,while minimizing the cost criterion

 𝐽 = 𝑤 ∙ te +
1

2
∫ 𝑎2𝑑𝑡
te
0

 (4.3)

Furthermore, the green light constraint 𝑡𝑠 ≥ 𝑡1 must be respected, in which 𝑡𝑠 is the time

vehicle crosses from the signal position 𝑥1. Also, the final time 𝑡𝑒 is free (penalized by the

parameter w), due to the desire to have a flexible problem formulation that applies to a multitude

of certain instances of: initial positions (near and far beyond the traffic signal), initial speeds

(low or high) and switching times. In addition, if the above not accounted for in the cost

criterion, there is a chance of problem instances emerging and eventually leading to immoderate

final time. After consideration, a minimum acceleration cost (𝑎2) is accomplished withw = 0, but

with a high enough price for the final time 𝑡𝑒 and therefore, an appropriate trade-off amidst the

33

acceleration cost and time 𝑡𝑒was found with a value of 𝑤 equal with 0.1, and the explanation of

why 𝑤 is equal to 0.1, is presented in the following paragraph, along with Figure 7. Finally,

lower and upper limits can be placed to speed and acceleration 𝑎, bounding the speed in the

middle of minimum (which in this case is zero) and maximum values, between minimum and

maximum values for the acceleration.

Tracking and finally choosing the proper weighting factor (𝑤) for every particular

scenario investigated, plays a significant role in the shape and the outcome of the optimal

trajectories. By creating the following diagram using the setup of Scenario 2, the behaviour of

the weighting factor 𝑤 in relation to the final free time 𝑡𝑒 seems to be the exact opposite, since

for different weighting factor values, but with identical boundary values, as 𝑤 increases, the final

free time decreases analogously.

Figure 7: Optimal final time, acceleration cost, in comparison with weight 𝑤. Adapted with

permission from [4].

4.1.2: Analytical solution

Firstly, the use of the Hamiltonian function [29], [19] is necessary in favour of the

necessary conditions of the analytical solution of the problem

 𝐻(𝑥, 𝜆) = 𝜑(𝑥, 𝑎) + 𝜆𝛵𝑓(𝑥, 𝑢) (4.4)

34

in which 𝜆 represents the co-state vector for the analogous state equations and𝜑(𝑥, 𝑎) =
1

2
𝑎2

represents the running cost. For this exact problem, the Hamiltonian function is:

 𝐻(𝑣, 𝑎, 𝜆1, 𝜆2) =
1

2
+ 𝜆1𝑣 + 𝜆2𝛼. (4.5)

Following are presenting the necessary (for this particular problem’s formulation) conditions of

optimality

 �̇� =
∂𝛨

∂λ1
= 𝑣 (4.6)

 �̇� =
∂𝛨

∂λ2
= 𝑎 (4.7)

 𝜆1̇ = −
∂𝛨

∂𝑥
= 0 (4.8)

 𝜆2̇ = −
∂𝛨

∂𝑣
= −𝜆1 (4.9)

∂𝛨

∂𝛼
= 0 (4.10)

 All the above equations must be fulfilled, along with the initial and final state conditions

for certain problem formulation. Except that, as a result of the free final time 𝑡𝑒, an extra

condition for optimality [29], [19] is added

 𝐻(𝑡𝑒) + 𝑤 = 0. (4.11)

Initially, the unconstrained problem (UP) is taking into consideration, which means that

the intermediate green light constraint is not considered. Eq. (4.8) – (4.10)promptly wield an

analytic linear-in-time optimal acceleration solution in this specific problem that is considering

in this chapter [30], [31]

 𝑎(𝑡) = 𝑐1𝑡 + 𝑐2 (4.12)

and after integration in agreement with Eq. (4.6), (4.7), also the speed and position solutions are

 𝑣(𝑡) =
1

2
𝑐1𝑡

2 + 𝑐2𝑡 + 𝑐3 (4.13)

 𝑥(𝑡) =
1

6
𝑐1𝑡

3 +
1

2
𝑐2𝑡

2 + 𝑐3𝑡 + 𝑐4 (4.14)

where𝑐1, … , 𝑐4 are four integration constants, which, along with the optimal final time 𝑡𝑒, may

be considered as the solution of a system of five algebraic equations, including the initial and

final states and the final time condition Eq. (4.11).

35

Continuing with the constrained problem (CP), at which the vehicle’s position is required at

some given time 𝑡𝑐 to be at the traffic signal, i.e. 𝑥(𝑡𝑐) = 𝑥1. In this instance, all necessary

conditions (Eq. (4.6)-(4.11)) remain the same, but there is an additional necessary condition that

must be fulfilled (see[19]), which, for this particular problem, suggests that the co-state 𝜆1(𝑡)

may be dis-continuous at the intermediate time 𝑡𝑐. This and Eq. (4.8)-(4.10)then compose a

continuous two-branch piece-wise linear optimal acceleration solution

 𝑎(𝑡) = {
𝑐1𝑡 + 𝑐20 ≤ 𝑡 ≤ 𝑡𝑐

−

𝑐5𝑡
′ + 𝑐6𝑡𝑐

+ ≤ 𝑡 ≤ 𝑡𝑒
 (4.15)

and after integration with Eq. (4.6), (4.7), the corresponding speed and position solutions are

 𝑣(𝑡) = {

1

2
𝑐1𝑡

2 + 𝑐2𝑡 + 𝑐30 ≤ 𝑡 ≤ 𝑡𝑐
−

1

2
𝑐5𝑡

′2 + 𝑐6𝑡
′ + 𝑐7𝑡𝑐

+ ≤ 𝑡 ≤ 𝑡𝑒
 (4.16)

 𝑥(𝑡) = {

1

6
𝑐1𝑡

3 +
1

2
𝑐2𝑡

2 + 𝑐3𝑡 + 𝑐40 ≤ 𝑡 ≤ 𝑡𝑐
−

1

6
𝑐5𝑡

′3 +
1

2
𝑐6𝑡

′2 + 𝑐7𝑡′ + 𝑐8𝑡𝑐
+ ≤ 𝑡 ≤ 𝑡𝑒

 (4.17)

where𝑡′ = 𝑡 − 𝑡𝑐 and 𝑐1, … , 𝑐8 are eight integration constants, which, along with the optimal

final time 𝑡𝑒, may be specified as the solution of a system of nine algebraic equations, including

the initial and final states, the final time condition Eq. (4.11), the continuity conditions for

control and states 𝑎(𝑡𝑐
−) = 𝑎(𝑡𝑐

+), 𝑣(𝑡𝑐
−) = 𝑣(𝑡𝑐

+), 𝑥(𝑡𝑐
−) = 𝑥(𝑡𝑐

+) and the intermediate

condition 𝑥(𝑡𝑐) = 𝑥1.

𝐽𝐶𝑃(𝑡𝑐)is denoted as the optimal objective value of the constrained problem (CP) as a

function of 𝑡𝑐 and 𝐽𝐶𝑃, the optimal objective value of the unconstrained problem (UP).

Considering CP was derived by additional constraining of UP, 𝐽𝐶𝑃(𝑡𝑐) ≥ 𝐽𝑈𝑃 ∀𝑡𝑐, and, as a

matter of fact, 𝐽𝐶𝑃(𝑡𝑐)obtains its minimum value for𝑡𝑐 = 𝑡𝑠,𝑈𝑃 , where 𝑡𝑠,𝑈𝑃 isthe time when the

UP trajectory attains the traffic signal position 𝑥1. Additionally, it was verified that, as expected,

the function 𝐽𝐶𝑃(𝑡𝑐) increases monotonically for 𝑡𝑐 ≥ 𝑡𝑠,𝑈𝑃.

These observations conclude to the following approach for finding the solution of the

original GLOSA problem in presence of a traffic signal at 𝑥1 and switching time to green𝑡1:

a) Solve the Unconstrained Problem (UP). If 𝑡𝑠,𝑈𝑃 ≥ 𝑡1, the GLOSA problem is solved,

as the UP solution respects the green-light constraint. Otherwise:

b) Solve the Constrained Problem (CP). with 𝑡𝑐 = 𝑡1 to acquire the GLOSA solution.

Regarding the indications above, the solution of UP or CP for a specific problem instance

requires the solution of a corresponding system of five or nine, respectively, algebraic equations.

Those solutions were obtained analytically (yielding lengthy formulas) using symbolic

36

differentiation tools (e.g. Mathematica [32]). The numerical solution of those analytical formulas

to obtain the solution of (UP) or (CP), and subsequently of the GLOSA problem for a specific

problem instance, needs only fractions of a second of computation time and as a result it can take

place within the vehicle once the next switching time becomes known. Also, it may be

reasonable to continuously update the vehicle trajectory, in a model predictive control (MPC)

loop,to account for possible deviations from the first computed vehicle trajectory, something that

may happen as a consequence of a variety of disturbances, for instance, a slower vehicle ahead.

For a given junction, the final state is the same for any initial vehicle state 𝒙0 and any switching

time 𝑡1. Therefore, the optimal value of the cost criterion,Eq. (3.7), of the deterministic GLOSA

problem depends on these variables, and is denoted as𝐽𝐶𝑃
∗ (𝑥0, 𝑡1).

4.2: Optimal Control Problem with Uncertain Signal Switching

Time

 The fact that this particular problem cannot be approached analytically, leads to the use

of various discrete techniques in order to reach a complete solution of the OCP. Following, the

case of uncertain signal switching times is being presented.

In this section, the case of not known traffic light switching times is being presented, or when

subjected in of short term decisions due to real-time signals. When that happens, based on proper

statistics from past signal switching activity, vacancy of a time-window of viable signal

switching times, along with the equivalent probability distribution can be presumed, in which

case the problem can be transformed into a stochastic optimal control problem, which may be

solved numerically using SDP (Stochastic Dynamic Programming) techniques. Except that, the

analytical solution of the deterministic GLOSA optimal control problem obtained in

section4.1and 4.1.2 is used within the stochastic approach, which is presented and explained

following.

4.2.1: Problem variables and state equations

 Stochastic Dynamic Programming algorithms have the need for a discrete-time system

the discrete-time version of the vehicle kinematics with time-step 𝑇 is formulated as shown

following [33]:

 𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑣(𝑘)𝑇 +
1

2
𝑎(𝑘)𝑇2 (4.18)

 𝑣(𝑘 + 1) = 𝑣(𝑘) + 𝑎(𝑘)𝑇 (4.19)

37

where 𝑥(𝑘), 𝑣(𝑘)relate to the vehicle’s position and speed at discrete times 𝑘 = 0,1,2, … while

the acceleration (control variable) 𝑎(𝑘) remains constant during every time period 𝑘. The

following feasible regions (Eq. (4.20) and Eq. (4.21)) bound the state and control variables

 𝒙(𝑘) ∈ 𝑿 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] (4.20)

 𝒂(𝑘) ∈ 𝑈 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] (4.21)

where 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥 are the upper and lower bounds of the state and control

variables. The traffic light’s switching time 𝑘1 is not certain, but it is assumed that 𝑘1exist in a

known range 𝑘𝑚𝑖𝑛 ≤ 𝑘1 ≤ 𝑘𝑚𝑎𝑥, where 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are the minimum and maximum

possible switching times.

 In order to achieve an appropriate problem formulation, a virtual state �̃�(𝑘) is introduced,

which accounts for the stochasticity of the traffic light’s operation

 �̃�(𝑘 + 1) = �̃�(𝑘) ∙ 𝑧(𝑘) (4.22)

 �̃�(0) = 1

where𝑧(𝑘) is a discrete stochastic variable represented as

 𝑧(𝑘) = {
0𝑖𝑓𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑙𝑖𝑔ℎ𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠𝑎𝑡𝑡𝑖𝑚𝑒𝑘 + 1
1𝑒𝑙𝑠𝑒

 (4.23)

Based on Eq. (4.22), (4.23), the virtual state �̃�(𝑘)is either equal to 1, if the traffic light has not

yet switched until time 𝑘 − 1, or equal to zero if switching takes place at time 𝑘 or before. The

virtual state �̃�(𝑘)is assumed measurable, meaning that the system is aware at each time 𝑘𝑇 of

any switching that has taken place or not, within the last time period [(𝑘 − 1)𝑇, 𝑘𝑇].

 The stochastic variable 𝑧(𝑘) is independent from its previous values 𝑧(𝑘 − 1), 𝑧(𝑘 −

2), … and takes values in according to a time-dependent probability distribution 𝑝(𝑧|𝑘).

Depending on the statistics of previous signal switching activity, availability of an a-priori

discrete probability distribution 𝑃(𝑘), 𝑘𝑚𝑖𝑛 ≤ 𝑘1 ≤ 𝑘𝑚𝑎𝑥 is assumed, for signal switching

within the time-window, where ∑ 𝑃(𝑘) = 1
𝑘𝑚𝑎𝑥
𝜅=𝑘𝑚𝑖𝑛

. In view of no switching takes place for 𝑘 ≤

𝑘𝑚𝑖𝑛 − 1, then

 𝑝(0|𝑘) = 0𝑓𝑜𝑟𝑘 < 𝑘𝑚𝑖𝑛 − 1. (4.24)

When 𝑘 = 𝑘𝑚𝑖𝑛, traffic light switching may take place, with a-priori probability 𝑃(𝑘𝑚𝑖𝑛).

Consequently

 𝑝(0|𝑘𝑚𝑖𝑛 − 1) = 𝑃(𝑘𝑚𝑖𝑛). (4.25)

38

In the case of the traffic light has not switched at time 𝑘 = 𝑘𝑚𝑖𝑛, the probabilities of switching

at some point later within the time-window are increased, contrasted with the respective a-priori

distribution, and the updated probabilities can be computed through “crop and scale”[34], which

means that the a-priori probability 𝑃(𝑘𝑚𝑖𝑛) is distributed analogously to increase the

probabilities of the remaining discrete times, inside of course the time-window. Using this same

argument, the crop-and-scale procedure for updating the switching probabilities need to be

carried out at each following time step, as long as the switching has not taken place. This update

may be accomplished by use of the following crop-and-scale formula that applies for 𝑘𝑚𝑖𝑛 ≤

𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1 and for any a-priori distribution 𝑃(𝑘)

 𝑝(0|𝑘) = 𝑃(𝑘 + 1) [1 +
∑ 𝑃(𝑘)𝑘
𝜅=𝑘𝑚𝑖𝑛

∑ 𝑃(𝑘)
𝑘𝑚𝑎𝑥
𝜅=𝑘+1

] (4.26)

where the term inside the square brackets displays the crop and scale update.

4.2.2: Objective criterion

The cost criterion of the stochastic problem is the same as in the deterministic case Eq.

(4.3). Nevertheless, in the stochastic case, the exact value of the criterion depends on the

stochastic variable’s realization, and consequently its expected value is being minimized

 𝐽 = 𝐸 {𝑤 ∙ te +
1

2
∫ 𝛼2𝑑𝑡
te
0

} (4.27)

where the expectation refers to the stochastic variable 𝑧(𝑘), 𝑘 = 0, . . . , 𝑘𝑚𝑎𝑥 − 1. Also, when

the switching time becomes known at time 𝑘1, while the vehicle is at state 𝒙(𝑘1), proceeding to

the traffic signal, the problem immediately turns into a deterministic GLOSA problem, and the

corresponding optimal cost-to-go is 𝐽𝐷𝐺
∗ [𝒙(𝑘1), 𝑘1], which will be denoted as the escape cost.

According to the Principle of Optimality [35], obtained from Eq. (4.27), after introducing

discrete-time notation

 𝐽 = 𝐸 {
1

2
∑ 𝑎(𝑘)2 +
𝑘𝑚𝑎𝑥−1
𝑘=0 𝐽𝐷𝐺

∗ [𝒙(𝑘1), 𝑘1]} (4.28)

To obtain a formally proper cost criterion [33], the stochastic variable 𝑧(𝑘) and the virtual

variable �̃�(𝑘) introduced earlier are used, replacing the state 𝒙(𝑘1), from Eq. (4.18), (4.19) as a

function of the state and acceleration of the previous time period. This yields the objective

function in the necessary form, which is

 𝐽 = 𝐸 {�̃�(𝑘)∑ [
1

2
𝑎(𝑘)2 + [1 − 𝑧(𝑘)]𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1]]
𝑘𝑚𝑎𝑥−1
𝑘=0 } (4.29)

39

Eq. (4.18)-(4.26)and Eq.(4.29)constitute an ordinary stochastic optimal control problem.

Denoting the corresponding optimal cost-to-go function by 𝑉[𝑥(𝑘), �̃�(𝑘), 𝑘],the Bellman’s

Recursive Equation [33], for 0 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥– 1reads

𝑉[𝑥(𝑘), �̃�(𝑘), 𝑘]= min
𝑎(𝑘)∈𝑈

{𝐸 {
1

2
𝑎(𝑘)2 + [1 − 𝑧(𝑘)]𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1] +

+𝑉[𝑥(𝑘 + 1), �̃�(𝑘)𝑧(𝑘), 𝑘 + 1]}} = min
𝑎(𝑘)∈𝑈

{
1

2
𝑎(𝑘)2 + 𝑝(0|𝑘) ∙ 𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘 + 1] +

+[1 − 𝑝(0|𝑘)] ∙ 𝑉[𝑥(𝑘 + 1), 1, 𝑘 + 1]} (4.30)

with boundary condition 𝑉[𝑥(𝑘𝑚𝑎𝑥),1, 𝑘𝑚𝑎𝑥] = 0. The minimum is required with respect to

𝑎(𝑘) ∈ 𝑈 only, as typical in Dynamic Programming, which facilitates the numerical solution.

In this formulation, it is assumed that the decision on traffic light switching is taken

between the last time period before the actual switching. The generalization to the case of taking

a switching decision 𝜅 timeperiods ahead of the actual switching is simple. Accordingly, the time

𝑘1 and the definition of the stochastic variable 𝑧(𝑘)reflect the decision time (instead of the

switching time), and the only change needed in the above equations is that the escape function

𝐽𝐷𝐺
∗ needs to include as an argument for the switching time 𝑘 + 𝜅 instead of 𝑘 + 1.

4.3: Numerical solution algorithm

For the sake of implementation of the discrete Stochastic Dynamic Programming

algorithm for the numerical solution of the problem, the state and control variables need to be

discretized. The level of discretization has an important impact on computational time, memory

requirements and the amount of workload the application has to overcome, but also on the

accuracy of the computed solution. Consequently, an appropriate trade-off needs to be specified

concerning reasonable computation requirements against achievable solution quality.

For the discretization, firstly the discrete time-interval has been set as 𝑇 = 1 s, which is a

reasonable choice for the problem at hand. Continuing, is assumed a general discretization

interval 𝛥 for the problem variables and the discretization interval of acceleration is set as𝛥𝑎 =

𝛥. Taking into consideration Eq. (3.19), it is obvious that the speed and acceleration intervals are

equivalent, and, hence, the discretization interval of speed can also assume the same value

(𝛥𝑣 = 𝛥𝑎 = 𝛥). By the same logic, in view of Eq. (3.18), the discretization interval for the

position has being set according to the following

 𝛥𝑥 =
1

2
𝛥 ∙ 𝛵2 (4.31)

40

Based on the above, it can be proved that, if 𝑥(𝑘), 𝑣(𝑘), 𝑎(𝑘) are discrete points, then 𝑥(𝑘 + 1)

and 𝑣(𝑘 + 1) (resulting from Eq. (4.18)and(3.19)) are also discrete points. It is then assumed

that

 𝑥(𝑘) = 𝑛𝛥𝑥 (4.32)

 𝑣(𝑘) = 𝑚𝛥𝑣 = 𝑚𝛥 (4.33)

 𝑎(𝑘) = 𝑙𝛥𝑎 = 𝑙𝛥 (4.34)

where𝑛,𝑚, 𝑙 are positive integers. From Eq. (4.18)

𝑥(𝑘 + 1) = 𝑛𝛥𝑥 +𝑚𝛥 ∙ 𝛵 +
1

2
𝑙𝛥 ∙ 𝑇2

=
1

2
𝑛𝛥 ∙ 𝑇2 +𝑚 ∙ 𝛥 +

1

2
𝑙𝛥 ∙ 𝛵2

 =
1

2
𝛥 ∙ 𝑇2 (𝑛 +

2

𝑇
𝑚 + 𝑙) = 𝛥(𝑛 + 2𝑚 + 𝑙)

 (4.35)

which proves that 𝑥(𝑘 + 1) is indeed a discrete point, and the same holds trivially true for

𝑣(𝑘 + 1) also in view of Eq. (4.19).

It is now easy to apply the discrete SDP algorithm to obtain an optimal closed-loop

control law 𝑎(𝑘)∗ = 𝑅[𝒙(𝑘), 𝑘], which, for any specific vehicle state 𝒙(𝑘) and time 𝑘carries out

and delivers the optimal acceleration 𝑎(𝑘). A full vehicle trajectory can also be achieved by

beginning at an initial state and time and following the optimal encountered acceleration values,

and stop when the final state is reached.

The SDP algorithm is described as follows:

𝑉[𝒙(𝑘𝑚𝑎𝑥), 𝑘𝑚𝑎𝑥] = 0∀𝒙(𝑘𝑚𝑎𝑥) ∈ 𝑿

𝐟𝐨𝐫each𝑘 = 𝑘𝑚𝑎𝑥 − 1,… ,0𝐝𝐨

 𝐟𝐨𝐫eachdiscretestate𝒙(𝑘) ∈ 𝑿𝐝𝐨

 𝐟𝐨𝐫eachdiscretecontrol𝑎(𝑘) ∈ 𝑈𝐝𝐨

 Calculate𝑥(𝑘 + 1), 𝑣(𝑘 + 1)

 𝐢𝐟𝒙(𝑘 + 1) ∉ 𝑿

 𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘] ← ∞

41

 𝐜𝐨𝐧𝐭𝐢𝐧𝐮𝐞

 𝐞𝐧𝐝𝐢𝐟

 𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘] ←
1

2
𝑎(𝑘)2 + 𝑝(0|𝑘) ∙ 𝐽𝐷𝐺

∗ [𝒙(𝑘), 𝑎(𝑘), 𝑘] + [1 − 𝑝(0|𝑘)] ∙

𝑉[𝒙(𝑘 + 1), 𝑘 + 1]

 𝐞𝐧𝐝𝐟𝐨𝐫

 𝑉[𝒙(𝑘), 𝑘] = min{𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘]} ∀𝑎(𝑘) ∈ 𝑈

 𝑅[𝒙(𝑘), 𝑘] = 𝑎(𝑘)∗ = argmin
𝑎(𝑘)∈𝑈

{𝐽[𝒙(𝑘), 𝑎(𝑘), 𝑘]} , with𝑎(k)∗

theoptimalcontrolofpoint[𝒙(𝑘), 𝑘]

 𝐞𝐧𝐝𝐟𝐨𝐫

𝐞𝐧𝐝𝐟𝐨𝐫

In the above formulation, there is an implicit assumption that the red light is active when

the vehicle reaches for the first time on the link, at time 𝑡 = 0, like in the deterministic case. The

approach can of course be extended to an instance where the traffic light is green at the initial

time, and its time duration is uncertain, but probabilistic information is available regarding the

switching time from green to red. The generalized problem can be developed in a similar way as

in this chapter, while using a longer time horizon, which involves two periods of switching

uncertainty: one starting from red and then turning into green, and an earlier one, reflecting the

uncertain switching from green to red.

This algorithm (SDP) needs several minutes (as will be reported in the next chapter) for a

standard personal computer (AMD Ryzen 5 2400G 3.60 GHz processor, 8.00 GB RAM

memory) to execute and achieve the optimal trajectories for the given vehicle. That is the main

reason why this solution cannot be obtained in real time on the vehicle side. Nevertheless, the

solution that the SDP provides is comprehensive, because it feeds back optimal acceleration for

all feasible positions and speeds of a given vehicle. So, the SDP algorithm is being used as a

basis, and continuing by developing other methods and algorithms, that, combined, can provide

with those optimal results, in an affordable amount of time.

42

4.4: Discrete Differential Dynamic Programming

 Continuing from the above, the DDDP method introduced in chapter 3 is used, in order to

create an algorithm that can provide the results of the SDP, but in a substantial less amount of

time. The course of action that was followed is briefly presented in the following

paragraphs.Also, this section contains the way that the DDDP method was actually implemented.

As stated before, for application of the discrete SDP algorithm for numerical solution of the

problem, the state and control variables must be discretized. The level of discretization has a

significant impact on computational time and memory requirements, but also on the accuracy of

the computed solution. The trajectories (position and speed) for each optimal control are being

calculated according to Eq. (4.18)and(4.19), with the state and control variable being bounded

amid the feasible regions, described by Eq. (4.20)and(4.21). Also, the algorithm needs initial

trajectories in order to operate, due to the fact that, it creates around these trajectories a corridor.

These initial trajectories are taken from the deterministic GLOSA problem, by solving the

pessimistic case of the problem, which assumes that the traffic signal will switch at the latest

possible time.

Knowing that discretization in every iteration can be changed,the first thought was that after

every iteration of the algorithm, the discretization should be decreased. This approach worked

properly, but after consideration and tests, it was concluded that, it does not necessarilyneed to

downgrade the discretization variable of what it previously was in every iteration, because it

might be working, but it adds extra workload and computation time. Therefore, a constrain was

added, in which, if the cost of the previous iteration is equal to the cost of the current iteration,

then thediscretization for the next iteration is being reduced.

Also, considering the corridor 𝛥, there two ways that 𝛥 can be implemented, a fixed corridor,

and a dynamically changing corridor, and the dynamic approach was selected, and the reason

why will be justified in Chapter 5. The user chooses a length of 𝛥, which corresponds to the

allowed points, so the user indirectly chooses the number of the allowed points 𝛥𝑐.There is a

trade-off between computational time, number of iterations and this variable and the length of

corridor 𝛥.So,the user has the opportunity of choosing amidst more iterations within a small

amount of time, or less iterations but within a larger amount of time, by using a bigger corridor.

Having fixed discrete points is also a way of reducing computational time, since the unnecessary

and quite large increase of those points after every iteration is being avoided, which gives us

nothing else but taken computer memory space, with no actual use.

Continuing, the algorithm’s termination criterion needs also to be analysed properly. The

algorithm should be working and keep doing the tasks that has to do in every iteration, until it

will converge to an optimal solution, and then stop. The termination criterion used, Eq. (3.23)

from [19], and it is the norm of the subtraction, of the control variables for the current iteration

43

and the previous one,which should be smaller or equal to a variable휀. As 휀 gets smaller values,

the accuracy that corresponds in the fuel consumption is increased, but after a certain point, the

better accuracy given is quite insignificant, since the reduction on the fuel consumption is

minor.Regarding the trade-offofabout the optimal selection of corridor 𝛥, further analysis and

investigation, with the proper justification and explanation will be present in the

followingChapter 5, with the form of figures and tables.

45

Chapter 5: Results

In this section are being presented the investigated scenarios, examinedwith the use of the

DDDP algorithm described in the above Chapters 3 and 4, along with the results of the

algorithm, for the different scenarios tested.

Firstly, the following variables used in each scenario are being clarified.

• 𝑥0: initial position of vehicle in meters,

• 𝑥𝑒: final position of vehicle in meters,

• 𝑣0: initial speed of vehicle in m/s,

• 𝑣𝑒:target (final) speed of vehicle in m/s

• 𝑥1: traffic signal position in meters.

• [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]: switching time range for the traffic light in seconds.

• [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]:position bounds in meters

• [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]:speed bounds in m/s

• [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]: control bounds in m/s2

Scenario 1: 𝑣0 = 5
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 0𝑚, 𝑥𝑒 = 220𝑚, 𝑥1 = 150𝑚, 𝑤 = 0.1

Scenario 2: 𝑣0 = 11
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 0𝑚, 𝑥𝑒 = 220𝑚, 𝑥1 = 150𝑚, 𝑤 = 0.1

Scenario 3: 𝑣0 = 11
𝑚

𝑠
, 𝑣𝑒 = 11

𝑚

𝑠
, 𝑥0 = 75𝑚, 𝑥𝑒 = 220𝑚, 𝑥1 = 150𝑚, 𝑤 = 0.1

5.1: Experimental results on known switching times

 This section contains results from Scenario 1 and 2, in the case of known signal switching

times, with the switching time of the traffic light 𝑡1, where 𝑡1 = 18𝑠.In these two scenarios, the

initial and final position, the traffic light’s position and switching time are the same, but the

initial speed of the vehicle is different.

Consequently, in Scenario 1 the vehicle’s optimal trajectory, resulting from UP (see

subsection 4.1.2), does not interfere with the red light constraint and the vehicle passes from the

traffic light through the green light phase, so there is no need of adjusting the vehicle trajectories

through the CP. However,in Scenario 2 the solution of UP violates the green light constraint, so

46

the vehicle’s trajectory,derived from CP(see subsection 4.1.2),guides it to pass through the traffic

light the exact moment that it turns from red to green.

Figure 6, a and b, demonstrates the vehicle’s optimal acceleration, speed and position

trajectories, for both Scenario 1 and 2.As far as Scenario 1 is concerned, the initial speed is less

than the final speed, as a result the vehicle accelerates in order to reach the final states. In this

case, as the UP solution leads the vehicle to reach the traffic signal during the green phase, no re-

adjustment of the trajectories, via solution of CP, is needed.On the other hand, inScenario 2,

since the initial and final speed of the vehicle is the same, the only reasons for a change are either

a possible case of wanting to reach the final position in a shorter amount of time, so the vehicle

would increase and the decrease its speed, or another possible case of crossing the traffic signal

during the red light phase, something that would demanded a decrease and then an increase in

the vehicle’s speed.

It can be observed in Figure 6 that the solution UP behaves according to the first reason,

but fails to satisfy the traffic light constraint.On the contrary, the CP seems to identify the second

reason (decrease and the increase of the vehicle’s speed) and guide the vehicle to, first,decelerate

with the purpose of passing the traffic light in the exact moment that it turns from red to green,

and then accelerate in order to satisfy the final conditions. In both scenarios the finalposition and

speed are both fulfilled at the final time 𝑡𝑒 as they should, and also without violation of the

traffic signal constraint.

Figure 6: Optimal vehicle trajectories (blue solid lines) for Scenario 1 (a) and Scenario 2 (b),

with the corresponding trajectories of the UP solution (red doted lines).Also, the straight red and

green solid lines represent the red and green light phases[4].

47

5.2: Experimental results on unknown switching times

In this section, the results of the proposed DDDP approach, for all three Scenarios 1-3,are

presented.In Scenario 1, the vehicle starts with a low initial velocity, which leads the vehicle to

mostly accelerateuntil it reaches the final destination point, and, in the meantime, it has to pass

through the traffic light at an optimal time and also minimize the cost criterion. In Scenario 2, the

vehicle has the same objective, but the initial velocityis larger than the one of Scenario 1, which

now leads the vehicle to, mostly, decelerate. Scenario 3has the same set up with Scenario 2 but

now the vehicle starts from a position closer to the traffic light, in order to investigate the case

where the vehicle is forcedto stop atthe red light, wait, and then accelerate after the traffic light

turns green from red. The states and control bounds are set to [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] = [0,150] m,

[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] = [0,16] m/s,[𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥] = [−3, 3] m/s2, respectively. The time step 𝑇 is 1 s,

which verifies the discretization properties mentioned in Chapter 4. The switching time range for

the traffic light is [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥] = [10, 30] with uniform a-priori probability distribution.For the

initial discretization, 𝛥𝑎 = 𝛥𝑣 = 0.5 is used, which leads to 𝛥𝑥 = 0.25 and the initial corridor

length is set to 𝛥 = 4.

Another thing worth mentioning is that, there are two dashed red lines in the figures

representing the vehicle’s velocity and position, among the lines that represent the initial and

optimal trajectories, which constitute the corridor that was mentioned above. This is actually the

corridor that the algorithm is forced to work under. So, the initial thought was that the algorithm

should be working under a fixed corridor [−𝛥,+𝛥]. But soon it was determined that this

approach increases the complexity and computational time in a not affordable scale, by making

the algorithm searching for the optimal in a much bigger area. So, the searching radius was

expanding vastly, but with nothing in return.

Consequently, the corridor is being implemented in a slightly different way, by

multiplying the discretization variable 𝛥𝑈 with the allowed points, because with this approach,

every time the discretization variable is being reduced, the corridor’s length is being reduced as

well. As far as speed is concerned, the corridor is [−(𝛥 ∗ 𝐷𝑈),+(𝛥 ∗ 𝐷𝑈)] , but for the position

of the vehicle there is a difference, since the range of values for the position of the vehicle is

[0,150], and speed between [0,16], so the interval [−(𝛥 ∗ 𝐷𝑈),+(𝛥 ∗ 𝐷𝑈)] satisfies speed, but

not the position, since a (𝛥 ∗ 𝐷𝑈) addition on the position’s corridor is not equivalent to a

similar addition to the speed’s corridor for example. So, after some tests and consideration the

corridor for the position of the vehicle was implemented as follows: [−(𝛥 ∗ 𝐷𝑈 ∗ 𝑒),+(𝛥 ∗ 𝐷𝑈 ∗

𝑒)], in order to have equivalent corridors for the vehicle’s trajectories (the control variable does

not have a corridor, since the bounds are fixed), where e is an integer, with values that the user

sets, according to his/her preferences.

48

Figures 8-10 represent the evolution of the optimal state and control trajectories over

each iteration of the DDDP for Scenarios 1-3. Specifically,in eachiteration we consider a

corridor 𝛥(𝑙) = [−𝛥 ⋅ 𝛥𝑈, 𝛥 ⋅ 𝛥𝑈] around the given initial state trajectories, which cannot of

course extend out of the state bounds. That means that the problem’s feasible region is reduced,

which means that the DDDP solves, in each iteration, a reduced problem in terms of state

space.Note that, the initial trajectory of the first iteration of the DDDP is the optimal solution of

the deterministic GLOSA problem, assuming that the traffic light will switch from red to green at

the latest possible time, that is, at 𝑡1 = 𝑘𝑚𝑎𝑥, so as to be on the safe side.

The dashed blue line represents the initial trajectory, the solid orange lines represents the

optimal trajectories and the red dashed lines posing as the corridor.Also note that the traffic light

phases are represented, in the position trajectories, as a straight line which is red for the red light

phase, yellow for the stochastic switching period and green for the rest.It can be observed from

Figures 8 - 10that, starting with the initial chosen discretization, in the first iterations the DDDP

manages to improvethe initial trajectories, leading in better solutions, up to a point (i.e. Iteration

3 of Scenario 1) where no further improvement can be achieved. Reducing the discretization, a

reduction in the corridors can be also observed, which is expected as its length depends on both

𝛥𝑈and the chosen length of corridor 𝛥. This reduction enables furtherimprovement of

thetrajectories, again up to the pointwhereno better solution can be achieved and the procedure

goes on until one ofthe terminal criterions is fulfilled.Following, the graphical representation of

the vehicle’s position, speed and acceleration for every iteration of the algorithm, considering

Scenario 1:

(a)

49

(b)

(c)

50

Figure 9: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle,

considering Scenario 1.

Continuing now to Scenario 2, in which the same as the above Scenario 1 apply for the

shown figures, with a difference in the nature of the scenario itself, since the initial speed (𝑣0 =

11𝑚/𝑠) is the same as the targeted final speed (𝑣𝑒 = 11
𝑚

𝑠
). Following, the graphical

representation of the vehicle’s position, speed and acceleration for every iteration of the

algorithm:

51

(a)

52

(b)

53

(c)

Figure 8: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle,

considering Scenario 2.

 Coming now to Scenario 3, which is a different scenario in relation with the other two,

because the vehicle initiates its course from a position quite closer to the traffic light, and so the

vehicle one accelerates, there is no deceleration or stopping for the vehicle in this scenario. Also,

in the figures considering the vehicle’s speed, it can be observed that the lower bound of the

corridor, as long as with some values of the trajectory itself are identical with the x-axis, which is

actually value 0, since zero is the lower bound of the vehicle’s speed.

(a)

54

(b)

(c)

Figure 10: Initial and Optimal position (a), speed (b) and acceleration (c) of the vehicle,

considering Scenario 3.

55

5.3: Comparison of the discretization variable 𝜟𝑼 in relation to cost

and computational time, considering the DDDP method

 In this section, the resulting cost and the overall computing time of the DDDP algorithm

are being presented, in relation to the discretization variable𝛥𝑈used in every iteration of each

algorithm,along with the length of the corridor for the vehicle’s trajectories,which constitutes an

important way of comparing the algorithm, in order to locate its strengths and weaknesses.

As far as the DDDP method is considered, different values of the corridor’s length𝛥,

which eventually correspond in the allowed points (𝛥𝑐) are being tested, in order to properly

compare, present and evaluate the trade-off between cost and computational time, and the

«golden section» that there is and should be followed as well.

Taking now into consideration the discretizationvariable 𝛥𝑈, initially is being set equal to

0.5, and as the algorithm progresses, 𝛥𝑈 decreases, until it reaches the value 0.125, or

beforethat, ifEq. (3.23) is satisfied. The choice of the discretization variable can be explained by

the results of the Table 1, Table 3 and Table 5.It can be observed that, as expected, as the

discretization interval is reduced, the obtained optimal cost is reducing as well.

5.3.1 Scenario 1 considering the DDDP method

The table below presents the differences between CPU-time, number of iterations and

cost for different 𝐷𝑈 values:

 𝜟𝑼 = 𝟏. 𝟎 𝜟𝑼 = 𝟎. 𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

2 19 1.6782 1.19993 20 1.9529 1.19331

3 19 3.6527 1.17698 8 1.6026 1.17517

4 15 4.4220 1.17517 6 1.8073 1.17517

5 12 5.3904 1.17517 6 2.7874 1.17517

6 10 6.1789 1.17517 6 3.8851 1.17517

7 10 8.1823 1.17517 6 5.2753 1.17517

8 8 7.7466 1.17517 6 6.2245 1.17517

9 8 9.2272 1.17517 8 10.2638 1.17517

 𝜟𝑼 = 𝟎. 𝟐𝟓 𝜟𝑼 = 𝟎. 𝟏𝟐𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

56

2 10 1.0061 1.19331 5 0.8835 1.19331

3 6 1.2317 1.17907 5 1.13924 1.17907

4 7 2.2774 1.17517 6 2.1347 1.17517

5 6 2.9560 1.17517 5 2.6782 1.17517

6 5 3.2154 1.17517 4 2.8837 1.17517

7 4 3.8502 1.17517 3 2.9937 1.17517

8 4 4.3872 1.17517 3 3.7152 1.17517

9 4 5.6701 1.17517 3 5.2839 1.17517

Table 3: Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 1,for the DDDP algorithm,for different values of 𝐷𝑈.

The following tables represent for different values of the corridor’s length (𝛥), the cost

and CPU-time for every iteration of the algorithm, considering Scenario 1.

Δ=2 Δ=3 Δ=4

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)
1 1.54512 0.1059 1 1.53603 0.1960 1 1.35775 0.3019

2 1.53625 0.0677 2 1.35775 0.1770 2 1.35775 0.3198

3 1.53446 0.0671 3 1.35775 0.1487 3 1.22327 0.2936

4 1.53446 0.1000 4 1.23237 0.1873 4 1.22327 0.2443

5 1.35933 0.1052 5 1.22327 0.1469 5 1.17517 0.2970

6 1.31703 0.1114 6 1.22327 0.1582 6 1.17517 0.2972

7 1.30435 0.1047 7 1.17517 0.1694

8 1.28450 0.0950 8 1.17517 0.1652

9 1.28143 0.0761

10 1.27362 0.0812

11 1.26617 0.0906

12 1.26617 0.0871

13 1.22864 0.0916

14 1.22864 0.0962

15 1.21013 0.0847

16 1.20945 0.0820

17 1.19898 0.0982

18 1.19339 0.0983

19 1.19331 0.0743

20 1.19331 0.0844

(a)

Δ=5 Δ=6 Δ=7

Iteration Cost CPU-

time (in

Iteration Cost CPU-

time (in

Iteration Cost CPU-

time (in

57

s.) s.) s.)
1 1.35775 0.5514 1 1.35775 0.6466 1 1.35775 0.9426

2 1.35775 0.4883 2 1.35775 0.5310 2 1.35775 0.8020

3 1.22327 0.3988 3 1.22327 0.5636 3 1.22327 0.7956

4 1.22327 0.4312 4 1.22327 0.5653 4 1.22327 0.7632

5 1.17517 0.4658 5 1.17517 0.5966 5 1.17517 0.9038

6 1.17517 0.4471 6 1.17517 0.5613 6 1.17517 0.8712

(b)

Δ=8 Δ=9
Iteration Cost CPU-time (in

s.)
Iteration Cost CPU-time (in

s.)
1 1.35775 1.1894 1 1.35775 1.3973

2 1.35775 0.9249 2 1.27815 1.2454

3 1.22327 1.0600 3 1.27815 1.1488

4 1.22327 0.9523 4 1.22716 1.1881

5 1.17517 1.0219 5 1.22327 1.2635

6 1.17517 1.0247 6 1.22327 1.2105

 7 1.17517 1.3151

 8 1.17517 1.3633

(c)

Table 4: Number of iterations, cost and CPU-time per iteration, considering Scenario 1, for the

DDDP algorithm, for different values of 𝛥. Table 4 is constituted by (a), (b) and (c).

5.3.2 Scenario 2 considering the DDDP method

 The table below presents the differences between CPU-time, number of iterations and

cost for different 𝐷𝑈 values:

 𝜟𝑼 = 𝟏. 𝟎 𝜟𝑼 = 𝟎. 𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

2 30 2.8955 3.90985 18 1.6486 3.90985

3 22 3.9694 3.90683 14 2.5773 3.90683

4 14 4.0992 3.90683 10 3.0272 3.90683

5 11 4.6326 3.90683 7 3.1107 3.90683

6 14 7.8569 3.90683 10 5.8131 3.90683

7 13 9.5328 3.90683 9 6.8251 3.90683

8 11 9.8620 3.90683 8 7.8471 3.90683

58

9 11 11.9533 3.90683 8 10.0214 3.90683

 𝜟𝑼 = 𝟎. 𝟐𝟓 𝜟𝑼 = 𝟎. 𝟏𝟐𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

2 16 1.6298 3.90985 21 2.3273 3.90985

3 12 2.3428 3.90683 18 3.7644 3.90683

4 8 3.4996 3.90683 13 4.4034 3.90683

5 8 3.7985 3.90683 11 5.3552 3.90683

6 7 4.3817 3.90683 9 5.8370 3.90683

7 6 4.9782 3.90683 7 7.5078 3.90683

8 6 6.7829 3.90683 7 8.4172 3.90683

9 6 8.2920 3.90683 6 9.2536 3.90683

Table 1: Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 2, for the DDDP algorithm, for different values of 𝛥𝑈.

The following tables represent for a number of different number of allowed discrete

points (𝛥), the cost and CPU-time for every iteration of the algorithm, considering Scenario 2.

Δ=2 Δ=3 Δ=4

Iteration Cost CPU-

time(ins.)
Iteration Cost CPU-

time(in

s.)

Iteration Cost CPU-

time(in

s.)
1 4.33065 0.1134 1 4.32185 0.2067 1 4.30026 0.3122

2 4.31389 0.0740 2 4.23127 0.1614 2 4.23127 0.3215

3 4.23179 0.0872 3 4.23127 0.1626 3 4.23127 0.2753

4 4.23127 0.0833 4 4.01207 0.1772 4 4.01207 0.2759

5 4.23127 0.0865 5 3.99559 0.1625 5 3.98839 0.2486

6 4.03823 0.0849 6 3.98839 0.1490 6 3.95883 0.2782

7 4.01207 0.0729 7 3.96973 0.2034 7 3.94089 0.2866

8 3.99559 0.0694 8 3.95883 0.1627 8 3.94089 0.2686

9 3.98839 0.1020 9 3.95795 0.1552 9 3.90683 0.2604

10 3.96973 0.0801 10 3.94089 0.1609 10 3.90683 0.2947

11 3.96973 0.0908 11 3.94089 0.1635

12 3.93029 0.0851 12 3.90742 0.2159

13 3.92264 0.0837 13 3.90683 0.1721

14 3.91749 0.0853 14 3.90683 0.1773

15 3.91420 0.0834

16 3.91324 0.0733

17 3.90985 0.0895

59

18 3.90985 0.0960

(a)

Δ=5 Δ=6 Δ=7

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)
1 4.23127 0.5551 1 4.23127 0.7581 1 4.19245 0.8663

2 4.18934 0.3856 2 4.18934 0.5241 2 4.17807 0.6983

3 4.18934 0.3940 3 4.17807 0.5402 3 4.17807 0.7084

4 3.94089 0.4086 4 4.17807 0.5193 4 3.96989 0.7158

5 3.94089 0.4035 5 3.98414 0.5387 5 3.95101 0.7663

6 3.90683 0.3934 6 3.95176 0.5552 6 3.94089 0.7286

7 3.90683 0.3917 7 3.94089 0.5743 7 3.94089 0.7319

 8 3.94089 0.6760 8 3.90683 0.8348

 9 3.90683 0.6171 9 3.90683 0.7827

 10 3.90683 0.5571

(b)

Δ=8 Δ=9
Iteration Cost CPU-time(in

s.)
Iteration Cost CPU-time(in

s.)
1 4.18934 1.0430 1 4.18934 1.2102

2 4.17807 0.9024 2 4.17807 1.0632

3 4.17807 0.8494 3 4.17807 1.1143

4 3.95717 0.9979 4 3.95717 1.2115

5 3.94089 0.9719 5 3.94089 1.1760

6 3.94089 0.9531 6 3.94089 1.2845

7 3.90683 1.0161 7 3.90683 1.2803

8 3.90683 0.9751 8 3.90683 1.2844

(c)

Table 2: Number of iterations, cost and CPU-time per iteration, considering Scenario 2, for the

DDDP algorithm, for different values of 𝛥.Table 2 is constituted by (a), (b) and (c).

5.3.3 Scenario 3 considering the DDDP method

The table below presents the differences between CPU-time, number of iterations and

cost for different 𝐷𝑈 values:

60

 𝜟𝑼 = 𝟏. 𝟎 𝜟𝑼 = 𝟎. 𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

2 13 1.0205 7.91072 9 0.5784 7.91072

3 13 1.6152 7.91072 8 0.8797 7.91072

4 9 1.5052 7.91072 6 1.0955 7.91072

5 9 2.0637 7.91072 6 1.4627 7.91072

6 9 2.6626 7.91072 6 1.9729 7.91072

7 8 3.1769 7.91072 6 2.5854 7.91072

8 8 3.6823 7.91072 6 3.2006 7.91072

9 8 4.5075 7.91072 6 3.6189 7.91072

 𝜟𝑼 = 𝟎. 𝟐𝟓 𝜟𝑼 = 𝟎. 𝟏𝟐𝟓

𝜟 Iterations CPU-time

(in s.)

Cost Iterations CPU-time

(in s.)

Cost

2 8 0.6222 7.91072 9 1.5783 7.91072

3 7 0.9870 7.91072 6 1.5243 7.91072

4 5 1.0847 7.91072 5 1.3862 7.91072

5 5 1.4656 7.91072 4 1.5857 7.91072

6 4 1.5759 7.91072 4 1.9679 7.91072

7 4 1.9250 7.91072 4 2.5323 7.91072

8 4 2.3415 7.91072 3 2.3917 7.91072

9 4 3.1505 7.91072 3 3.2373 7.91072

Table 5: Number of iterations and CPU-time consumed, for every value of 𝛥, considering

Scenario 3, for the DDDP algorithm, for different values of 𝛥𝑈.

The following tables represent for a number of different values of 𝛥, the cost and CPU-

time for every iteration of the algorithm, considering Scenario 3.

Δ=2 Δ=3 Δ=4

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)
1 8.09149 0.0751 1 8.09149 0.1315 1 8.09149 0.1874

2 8.09149 0.0469 2 8.09149 0.0915 2 8.09149 0.1286

3 7.97288 0.0509 3 7.95554 0.1042 3 7.95198 0.1917

4 7.95198 0.0496 4 7.95198 0.0945 4 7.95198 0.1563

5 7.95198 0.0475 5 7.95198 0.0858 5 7.91072 0.1603

6 7.92050 0.0424 6 7.91526 0.0952 6 7.91072 0.1524

7 7.91526 0.0438 7 7.91072 0.1051

8 7.91072 0.0473 8 7.91072 0.1057

9 7.91072 0.0572

61

(a)

Δ=5 Δ=6 Δ=7

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)

Iteration Cost CPU-

time (in

s.)
1 8.09149 0.2420 1 8.09149 0.3073 1 8.09149 0.3905

2 8.09149 0.2247 2 8.09149 0.2683 2 8.09149 0.3497

3 7.95198 0.2409 3 7.95198 0.3216 3 7.95198 0.4618

4 7.95198 0.2387 4 7.95198 0.2490 4 7.95198 0.3372

5 7.91072 0.2184 5 7.91072 0.3212 5 7.91072 0.4309

6 7.91072 0.2721 6 7.91072 0.3412 6 7.91072 0.4348

(b)

Δ=8 Δ=9
Iteration Cost CPU-time(in

s.)
Iteration Cost CPU-time(in

s.)
1 8.09149 0.5114 1 8.09149 0.5665

2 8.09149 0.4788 2 8.09149 0.4773

3 7.95198 0.5085 3 7.95198 0.6212

4 7.95198 0.4377 4 7.95198 0.5722

5 7.91072 0.5191 5 7.91072 0.6041

6 7.91072 0.5118 6 7.91072 0.6346

(c)

Table 6: Number of iterations, cost and CPU-time per iteration, considering Scenario 3, for the

DDDP algorithm, for different values of 𝛥. Table 6 is constituted by (a), (b) and (c).

 Considering and studying the tables above, for every one of the scenarios investigated, it

can be observed that for small values of 𝛥 (e.g. 𝛥 = 2, or 𝛥 = 3), the cost does not converge

fully. Therefore, the choice of values of 𝛥is avoided, even if the CPU-time is significantly low.

As the values of 𝛥increases though, the cost seems to converging properly, so the choice of a

price for 𝛥between 4 or 5 allowed discrete points is the reasonable thing to do. Taking now into

consideration the fact that the computational time increases as the allowed points increase as

well, so the choice of 𝛥𝑐 between 5 − 9 isn’t preferred, due to the CPU-time increase. So, the

choice of 𝛥 = 4 is considered, as the best one, considering the above mentioned trade-off.

 It can also be concluded from Table 2, Table 4 and Table 6 that, the computational time

does not seem to be increasing from iteration to iteration, for any given values of 𝛥, due to the

fact that the discretization variable decreases, so the corresponding (to corridor 𝛥) allowed

points𝛥𝑐 become more after every decrease of variable𝛥𝑈, but in the same time the corridor is

62

reduced as well, so there is a balance that does not allow the increase of the CPU-time after

every iteration.

5.4: Investigating the use and the impact of thecorridor 𝜟(𝒍)(𝒌)

 As it was mentioned in section 4.4, that the corridor 𝛥(𝑙)(𝑘)(or 𝛥), is being implemented

in a slightly different waythan the initial implementation (which was a fixed interval [−𝛥,+𝛥]),

by multiplying the discretization variable 𝛥𝑈 with the length of the corridor. With this approach,

every time the discretization variable is being reduced, the corridor is being reduced as well,

making it particularly smaller, so the computational time is significantly diminished, since the

algorithm has a limited searching area, in which the optimal is included, but the redundant points

are not part of that area.

 In this section, the usefulness and the necessity of the dynamically implemented corridor

is going to be observed, through an example, in which two different cases are being

investigated.Considering for Scenario 2, the corridor’s length (𝛥 = 4) and the same

discretization variable (𝛥𝑈 = 0.5), the problem will be solved two times, one with a fixed

corridor, and the other one with the corridor being able to be reduced accordingly and

analogously with the discretization variable 𝛥𝑈. The following table presents those two cases:

Iteration 𝜟𝑼 Cost CPU-time

(in s.)

Total CPU-

time(in s.)

1 0.5 4.17807 1.8428 73.6321

2 0.5 4.17807 1.5150

3 0.25 3.94089 6.0468

4 0.25 3.94089 6.8988

5 0.125 3.90683 26.1620

6 0.125 3.90683 25.8061

Table 7: Fixed corridor and 𝛥 = 4.

Iteration 𝜟𝑼 Cost CPU-time

(in s.)

Total CPU-

time(in s.)

1 0.5 4.30026 0.3166 2.9176

2 0.5 4.23127 0.3267

3 0.5 4.23127 0.2592

63

4 0.25 4.01207 0.2787

5 0.25 3.98839 0.2632

6 0.25 3.95883 0.2502

7 0.25 3.94089 0.2809

8 0.25 3.94089 0.2715

9 0.125 3.90683 0.2593

10 0.125 3.90683 0.2582

Table 8:Dynamically changing corridor and 𝛥 = 4.

 It can be observed from Table 7 and Table 8that the existence of the dynamically

changing corridor is a necessity, since the differences considering the computational time are

quite remarkable, something that can be observed from the CPU-times per iteration, but also

from the total times. In Table 7, the total CPU-time is equal to 73.6 seconds, almost one and a

half minute, and on the contrary, in Table 8, the total CPU-time drops to 2.9 seconds, due to the

fact that the corridor changes and becomes smaller every time the discretization variable is

reduced.

5.5: Comparison of the DDDP algorithm with the SDP algorithm

 In this section, the DDDP algorithm that was implemented as a part of this thesis, is being

compared with the Stochastic Dynamic Programming algorithm developed in[4], considering the

CPU-times of each one, and also the optimal trajectories that each algorithm found. Continuing,

for every scenario investigated, Figure 11, Figure 12 and Figure 13present the optimal

trajectories of each algorithm, and also,Table 9, Table 10 and Table 11 present the CPU-time

that each algorithm needs in order to reach the same cost value.

Below, the following figures present the optimal derived trajectories and the control

variable, considering Scenario 1, for each one of the two algorithms.

64

Figure 12: Control comparison, between the SDP and the DDDP algorithms.

 Following, the tables mentioned above, comparing the computational time between the

two methods:

 Cost CPU-time (in seconds)

SDP algorithm 1.1752 613.8641

DDDP algorithm 1.1752 1.8073

Table 10: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost

reached, considering Scenario 2.

65

 Below, the following figures present the optimal derived trajectories and the control

variable, considering Scenario 2, for each one of the two algorithms. As it can be observed, the

trajectories in the first iteration of the algorithm are quite different from the optimal ones (the

SDP algorithm’s), during the fifth iteration they seem to be closing up to one another and finally

in the last iteration (the 10th) they are completely identical, which is the wanted outcome, due

the fact that this indicates that the two algorithms have the exact same outcome, with the only

differences in the operation and the CPU-time needed for each one.

Figure 11: Trajectory and control comparison, between the SDP and the DDDP algorithms.

Following, the table mentioned above, comparing the computational time between the

two algorithms:

66

 Cost CPU-time (in seconds)

SDP algorithm 3.9068 617.5173

DDDP algorithm 3.9068 2.9176

Table 9: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost

reached, considering Scenario 1.

Below, the following figures present the optimal derived trajectories and the control

variable, considering Scenario 3, for each one of the two algorithms.

Figure 13: Control comparison, between the SDP and the DDDP algorithms.

67

Following, the tables mentioned above, comparing the computational time between the

two methods:

 Cost CPU-time (in seconds)

SDP algorithm 7.9107 610.5573

DDDP algorithm 7.9107 1.0955

Table 11: Comparing the SDP and the DDDP algorithms, considering CPU-time and cost

reached, considering Scenario 3.

 Summarizing, it can be noticed from the figures and tables above that, the two algorithms

converge to the optimal, and the final trajectories are identical in both cases, meaning that the

DDDP algorithm is doing the exact same assignment, and with the same accuracy, as the SDP

algorithm, only within a substantial less amount of time, as it can be clarified from Table 9,

Table 10 and Table 11, making the DDDP algorithm capable of being used in an online vehicle

trajectory specification algorithm.

67

Chapter 6: Conclusions and Future Steps

6.1: Conclusions

 A stochastic GLOSA approach was developed, being basically the extension of the

deterministic and stochastic GLOSA methodologies of Typaldos et. al. [4]. This particular

method is the Discrete Differential Dynamic Programming Method. The GLOSA problem was

formulated as an optimal control problem and solved firstly numerically through the DDDP

method for the case of uncertain switching time of the traffic light. In both cases, the traffic

light’s switching time is assumed to be stochastic, with a given a-priori probability distribution

between a known time interval[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥], which is properly updated as time advances. Also,

the algorithm introduced in [4], is used to compare with the algorithms implemented in this

work, in order to get a clearer view of what the suggested methods can accomplish.

Regarding the DDDP method, eachiteration of the corresponding algorithm solvesa

stochastic problem in a reduced state space, which is formed around the last solution trajectory.

The initial trajectory to start the iterations is the analytic solution of the pessimistic case,which

assumes that the traffic signal will switch at the latest possible time.With this approach, the work

load and computation cost is significantly reduced, making the method applicable and realtime

orientated, i.e. capable of processing the given data to obtain the solution of the stochastic

problem in few seconds.The DDDP algorithm has a considerable advantage over other methods,

as it solves areduced problem in terms of state space. With this approach, it is consequent that

the amount of computational time and the workload that the algorithm has to overcome, is

reduced significantly, something that save a lot of time, examining trajectories that cannot be

part of the problems solution.

6.2 Future Steps

 As far as it concerns any future work and extensions of what is done in this work, here

are some of the ideas that stand out, due to the fact that they are applicable in the imminent

future, and also will probably elevate the quality of the work that has already been done.

 To begin with, the adaptation of the DDDP algorithm implemented in this work into a

usable application is considered, since these algorithms are developedin a way that makes them

able to fulfil their tasks under the barrier of one second, meaning that the online trajectory

68

specification is viable. For example, a cell-phone application that would be able to give online

speed advices to a vehicle’s driver, or a pre-installed application in the vehicle’s electronics

systems, or even a modified GPS (Global Position System) version with an installed speed

advisor algorithm.This is one of the next steps, consisting another challenge (and the word

"another" is being used, because of theobstacles and the roller-coaster troubleshooting process

regarding the formulation of the algorithm, considering that building and deploying an

application needs further actions and knowledge. With each algorithm’s code been written, a

number of steps have already been completed, leaving operations like creating mock-ups for the

application (a rough sketch of the application’s layout, also describing the flow and the

interactions), making a graphic design (which contains graphic effects, image assets, even

motion and animation design), building a landing page for the application (that explains what the

application does, why it might provide useful for someone and generally giving a briefly

explanation of its purpose, giving the opportunity to discover from early on potential users and

people who are willing to test it and give back their opinion), yet to be done.

 Furthermore, appliance of the method examined and used in this work in a multi-vehicle

control system is contemplated. This endeavour is important due to the fact that, the optimization

of a vehicle’s trajectory towards a traffic light would be viable for a number of vehicles, along

with the aspect that this implementation can obtain further use, e.g. safer and less pollutive urban

and highway transportation profile. As a result, an even higher level of fuel consumption and less

gas (CO2 mostly) emissions could be achieved, as well as a safer transportation environment

prospect. A multi-vehicle control system presupposes the use of other methods and approaches,

and it is a really demanding endeavour, so the implementation and the adaptation of the

examined methods in such systems could be puzzling, but not impossible to happen. Also, the

addition of scenarios with other vehicles or obstacles along the way is another important step, so

the vehicle examined can either surpass the other vehicles from the second (speeding) lane, or

stay behind them and adjust its velocity and acceleration accordingly.

 Continuing, a complete overview of the DDP method is an also important step, since the

investigation of the method has already started, but the completion of an overview and a

thorough examination of this method is yet to be done.

 Last but not least, a different and also interesting problem formulation is being examined,

where a traffic signal exist along the course of the vehicle, and that particular traffic light when

the vehicle approaches is under its green phase and gradually proceeding to the red phase.

69

References

[1] Stahlmann, R., Möller, M., Brauer, A., German, R., &Eckhoff, D. (2016,

December). Technical evaluation of glosa systems and results from the field.

In 2016 IEEE Vehicular Networking Conference (VNC) (pp. 1-8). IEEE.

[2] Richter, A. (2005). Geschwindigkeitsvorgabe an

lichtsignalanlagen. DeutscherUniversitatsverlag.

[3] Fogarty, T. C., & Bull, L. (1995). Optimising individual control rules and

multiple communicating rule-based control systems with parallel distributed

genetic algorithms. IEE Proceedings-Control Theory and Applications, 142(3),

211-215.

[4] Typaldos, P., Kalogianni, I., Mountakis, K. S., Papamichail, I., &Papageorgiou,

M. (2020). Vehicle trajectory specification in presence of traffic lights with

known or uncertain switching times. Transportation research record, 2674(8),

53-66.

[5] Koukoumidis, E., Peh, L. S., &Martonosi, M. R. (2011, June). Signalguru:

leveraging mobile phones for collaborative traffic signal schedule advisory.

In Proceedings of the 9th international conference on Mobile systems,

applications, and services (pp. 127-140).

[6] Jamshidnejad, A., Papamichail, I., Papageorgiou, M., & De Schutter, B. (2017).

Sustainable model-predictive control in urban traffic networks: Efficient solution

based on general smoothening methods. IEEE Transactions on Control Systems

Technology, 26(3), 813-827.

[7] Sanchez, M., Cano, J. C., & Kim, D. (2006, June). Predicting traffic lights to

improve urban traffic fuel consumption. In 2006 6th International Conference on

ITS Telecommunications (pp. 331-336). IEEE.

[8] Van Leersum, J. (1985). Implementation of an advisory speed algorithm in

transyt. Transportation Research Part A: General, 19(3), 207-217.

[9] Borkar, P., Welekar, A., Jenekar, S., &Karmore, S. (2012). Predictive traffic light

control system: Existing systems and proposed plan for next intersection

prediction. International Technology Research Letters, 1(1), 107-111.

70

[10] Asadi, B., &Vahidi, A. (2009). Predictive use of traffic signal state for fuel

saving. IFAC Proceedings Volumes, 42(15), 484-489.

[11] Hounsell, N. B., & McDonald, M. (2001). Urban network traffic

control. Proceedings of the Institution of Mechanical Engineers, Part I: Journal

of Systems and Control Engineering, 215(4), 325-334.

[12] Wang, Y., Yang, X., Liang, H., & Liu, Y. (2018). A review of the self-adaptive

traffic signal control system based on future traffic environment. Journal of

Advanced Transportation, 2018.

[13] Stahlmann, R., Möller, M., Brauer, A., German, R., &Eckhoff, D. (2018).

Exploring GLOSA systems in the field: Technical evaluation and

results. Computer Communications, 120, 112-124.

[14] Tielert, T., Killat, M., Hartenstein, H., Luz, R., Hausberger, S., & Benz, T. (2010,

November). The impact of traffic-light-to-vehicle communication on fuel

consumption and emissions. In 2010 Internet of Things (IOT) (pp. 1-8). IEEE.

[15] Katsaros, K., Kernchen, R., Dianati, M., &Rieck, D. (2011, July). Performance

study of a Green Light Optimized Speed Advisory (GLOSA) application using an

integrated cooperative ITS simulation platform. In 2011 7th International

Wireless Communications and Mobile Computing Conference (pp. 918-923).

IEEE.

[16] Seredynski, M., Dorronsoro, B., &Khadraoui, D. (2013, October). Comparison of

green light optimal speed advisory approaches. In 16th International IEEE

Conference on Intelligent Transportation Systems (ITSC 2013) (pp. 2187-2192).

IEEE.

[17] Stevanovic, A., Stevanovic, J., &Kergaye, C. (2013). Green light optimized speed

advisory systems: Impact of signal phasing information accuracy. Transportation

research record, 2390(1), 53-59.

[18] Benavides, P. T., &Diwekar, U. M. (2012). Studying various optimal control

problems in biodiesel production in a batch reactor under uncertainty.

In Computer Aided Chemical Engineering (Vol. 31, pp. 385-389). Elsevier.

[19] Papageorgiou, M., Leibold, M., & Buss, M. (1991). Optimierung, Statische,

Dynamische, StochastischeVerfahren f ur die Anwendung..

[20] Papageorgiou, M., "Dynamic Programming," Technical University of Crete, 2011.

[21] Bellman, R. (1954). The theory of dynamic programming (No. RAND-P-550).

Rand Corp Santa Monica CA.

71

[22] Bellman, R. E. (1957). Dynamic programming, ser. Cambridge Studies in Speech

Science and Communication. Princeton University Press, Princeton.

[23] Feng, Z. K., Niu, W. J., Cheng, C. T., & Liao, S. L. (2017). Hydropower system

operation optimization by discrete differential dynamic programming based on

orthogonal experiment design. Energy, 126, 720-732.

[24] Heidari, M., Chow, V. T., Kokotović, P. V., & Meredith, D. D. (1971). Discrete

differential dynamic programing approach to water resources systems

optimization. Water Resources Research, 7(2), 273-282.

[25] Tassa, Y., Mansard, N., & Todorov, E. (2014, May). Control-limited differential

dynamic programming. In 2014 IEEE International Conference on Robotics and

Automation (ICRA) (pp. 1168-1175). IEEE.

[26] Levine, S., &Koltun, V. (2013). Variational policy search via trajectory

optimization. In Advances in neural information processing systems (pp. 207-

215).

 [27] Pan, Y., &Theodorou, E. (2014). Probabilistic differential dynamic programming.

In Advances in Neural Information Processing Systems.

[28] Levine, S., &Koltun, V. (2013, February). Guided policy search. In International

Conference on Machine Learning (pp. 1-9).

[29] Morin, D. (2008). The Hamiltonian Method. In Cambridge University Press,

Draft Version 2.

[30] Ntousakis, I. A., Nikolos, I. K., &Papageorgiou, M. (2016). Optimal vehicle

trajectory planning in the context of cooperative merging on

highways. Transportation research part C: emerging technologies, 71, 464-488.

[31] Rios-Torres, J., &Malikopoulos, A. A. (2016). Automated and cooperative

vehicle merging at highway on-ramps. IEEE Transactions on Intelligent

Transportation Systems, 18(4), 780-789.

[32] Version, M. (2017). 11.2. Wolfram Research. Inc. Champaign.

[33] Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., &Bertsekas, D. P.

(1995). Dynamic programming and optimal control (Vol. 1, No. 2, p. 4).

Belmont, MA: Athena scientific.

[34] Lawitzky, A., Wollherr, D., & Buss, M. (2013, November). Energy optimal

control to approach traffic lights. In 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (pp. 4382-4387). IEEE.

72

[35] Bellman, R. (1966). Dynamic programming. In Science, vol. 153, no. 3731, pp.

34-37.

[36] Dasgupta, P. B. (2015). An Analytical Evaluation of Matricizing Least-Square-

Errors Curve Fitting to Support High Performance Computation on Large

Datasets. arXiv preprint arXiv:1512.08017.

[37] Bickel, P. J. K. A. (1977). K. A. Doksum, Mathematical Statistics. Holden-Day

Inc, 181, 611-617.

[38] Polynomial Regression Computations. Retrieved from

http://www.public.asu.edu/~gwaissi/ASM-e-book/module403.html.

[39] Tospornsampan, J., Kita, I., Ishii, M., & Kitamura, Y. (2005). Optimization of a

multiple reservoir system operation using a combination of genetic algorithm and

discrete differential dynamic programming: a case study in Mae Klong system,

Thailand. Paddy and Water Environment, 3(1), 29-38.

[40] Liao, L. Z., & Shoemaker, C. A. (1992). Advantages of differential dynamic

programming over Newton's method for discrete-time optimal control problems.

Cornell University.

[41] Kalogianni, I. (2018). Fuel-minimizing vehicle trajectory specification in the

presence of traffic lights with certain or stochastic switching times. In Technical

University of Crete.

 [42] Bodenheimer, R., Eckhoff, D., & German, R. (2015, October). GLOSA for

adaptive traffic lights: Methods and evaluation. In 2015 7th International

Workshop on Reliable Networks Design and Modeling (RNDM) (pp. 320-328).

IEEE.

[43] Larson, R. E. (1978). Principles of Dynamic Programming: Basic Analytical and

Computational Methods. Marcel Dekker, Inc..

[44] Larson, R. E,Casti, J. L. (1982). Principles of Dynamic Programming - Part II:

Advanced Theory and Applications. In Dekker, New York.

[45] Kobilarov, M., Ta, D. N., &Dellaert, F. (2015, May). Differential dynamic

programming for optimal estimation. In 2015 IEEE International Conference on

Robotics and Automation (ICRA) (pp. 863-869). IEEE.

[46] Ho, Y. C. (1975). Applied optimal control: optimization, estimation, and control.

Hemisphere Publishing Corporation, distributed by Halsted Press.

http://www.public.asu.edu/~gwaissi/ASM-e-book/module403.html

73

[47] McReynolds, S. R. (1967). The successive sweep method and dynamic

programming. Journal of Mathematical Analysis and Applications, 19(3), 565-

598.

[48] Lantoine, G., & Russell, R. P. (2012). A hybrid differential dynamic

programming algorithm for constrained optimal control problems. part 1:

Theory. Journal of Optimization Theory and Applications, 154(2), 382-417.

[49] Lantoine, G., & Russell, R. P. (2012). A hybrid differential dynamic

programming algorithm for constrained optimal control problems. part 2:

Application. Journal of Optimization Theory and Applications, 154(2), 418-442.

[50] Jacobson, D. H. (1967). Differential dynamic programming methods for

determining optimal control of non-linear systems.

[51] Jacobson, D. H. (1968). New second-order and first-order algorithms for

determining optimal control: A differential dynamic programming

approach. Journal of Optimization Theory and Applications, 2(6), 411-440.

[52] Rosenbrock, H. (1972). Differential Dynamic Programming. By D. H. Jacobson

and D. Q. Mayne. Pp. viii, 208. 1970.(Elsevier.). The Mathematical

Gazette, 56(395), 78-78.

[53] Sato, N. (1969). Differential Dynamic Programming: An Optimization Technique

for Nonlinear Systems.

[54] Plancher, B., &Kuindersma, S. (2018, December). A performance analysis of

parallel differential dynamic programming on a GPU. In International Workshop

on the Algorithmic Foundations of Robotics (pp. 656-672). Springer, Cham.

[55] DE O. PANTOJA, J. F. A. (1988). Differential dynamic programming and

Newton's method. International Journal of Control, 47(5), 1539-1553.

[56] Cheng, C., Wang, S., Chau, K. W., & Wu, X. (2014). Parallel discrete differential

dynamic programming for multireservoir operation. Environmental modelling &

software, 57, 152-164.

[57] Press, W. H., Teukolsky, S. A., Flannery, B. P., &Vetterling, W. T.

(1992). Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran

numerical recipes: the art of scientific computing. Cambridge University Press.

[58] Todorov, E. (2006). Optimal control theory. Bayesian brain: probabilistic

approaches to neural coding, 269-298.

74

Chapter 7: Appendix

In this appendix are being presented the figures that represent the vehicle’s position, in

each time-step of the DDDP algorithm implemented, for every one of the three scenarios

examined, from the initial position 𝑥0 = 0𝑚 until the final target 𝑥𝑒 = 220𝑚. The algorithm

solves the problem with the DDDP method from 𝑥0 = 0𝑚 to 𝑥1 = 150𝑚 where the traffic light

is located, and from 𝑥1 until 𝑥𝑒 the algorithm solves the analytical constrained problem (CP). So,

in the following figures the trajectory that the analytical solution provides is being shown, along

with the trajectory from 𝑥0 to 𝑥1 which the DDDP method provides. It can be observed that the

corridor (red dashed lines) stops on 𝑥1 and does not continue further, which is logical, since an

analytical problem is being solved from there and on.

7.1 Appendix A

 Considering Scenario 1:

Figure 14: Initial and Optimal position of the vehicle, along with the analytical problem solution

from 𝑥1 to 𝑥𝑒, considering Scenario 1.

75

Continuing now with Scenario 2:

Figure 15: Initial and Optimal position of the vehicle, along with the analytical problem solution

from 𝑥1 to 𝑥𝑒, considering Scenario 2.

76

Closing with Scenario 3:

Figure 16: Initial and Optimal position of the vehicle, along with the analytical problem solution

from 𝑥1 to 𝑥𝑒, considering Scenario 3.

