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YredOvvny Aniwon Zoyypogéar

Anloveo pntd 611, ovupova pe 1o dpbpo 8 tov N.1599/1986, n mapovoo epyacia amotelel
OTOKAEIGTIKA TPOIOV TPOCMOTIKNG MOV €pyaciag, dev TPooPariel KdOe pope1g dkoimporto
OLOVONTIKNG 1010KTNGI0C, TPOCHOTIKOTNTOS KOl TPOCOTIKMY OEGOUEVOV TPIT®V, OV TEPLEYEL
£pY0/elcopéc Tpitv Yo To. omoio amonteitor GOE TV ONUOLPYDV/dKaoV WV Kot Ogv givort
TPOTOV UEPIKNG M OAIKNG avVTIYpaeNS, ot TyES O mov ypnoomomdnkay meplopiloviot oTig

BpA0YpapiKég avapopEs Kot LOVOV Kol TAPOVY TOVG KAVOVES TNG ETICTNLOVIKNG TapAeong.






Multi-objective algorithms for optimal product line design

ABSTRACT

Introducing new products has an important role in sustainability and profitability of a firm.
Product Line Design (PLD) is a key decision area that product managers have to deal with in the
early stages of product development, to estimate the potential success of a product. Even though
several objectives may be simultaneously pursued during the product configuration process, most
reported studies have focused on single-objective optimization. In this research, the multi-
objective PLD (MOPLD) problem is addressed, by taking into account more than one objectives,
to provide product managers with a better tradeoff among them, using 23 variants of seven state-
of-the-art metaheuristics. The seven main multi-objective metaheuristics used in this research are
Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Firefly Algorithm (FA),
Differential Evolution (DE), Grey Wolf Optimizer (GWO), Teaching-Learning Based
Optimization (TLBO) and Mayfly Algorithm (MA). Those seven multi-objective algorithms are
fully adapted to the MOPLD problem, using popular diversity controlling operators, as well as
using an extended to multi-objective optimization Fuzzy-Self-Tuning (FST) process. The purpose
of the FST process, is to help the algorithms overcome specific difficulties when performing on
different datasets, using the same parameter settings, by calculating the settings of parameters
independently for each individual during the optimization process. The 23 variants are compared
with each other, through popular performance metrics when it comes to multi-objective
optimization, using two types of data sets, under five different MOPLD scenarios, without
knowing the specific number of products. Moreover, factors affecting the performance of
optimizers are investigated using statistical analysis. Finally, a multi-criteria decision analysis
method is used to rank solutions according to the needs of product managers, and an attempt to

estimate the possible moves of the competitors, is made.

Keywords: mathematical multi-objective optimization, multi-objective product line design,
many-objective product line design, genetic algorithms, particle swarm optimization, firefly
algorithm, differential evolution, grey wolf optimizer, teaching-learning based optimization,
mayfly algorithm, multi-criteria decision analysis, statistically significant differences of

algorithms






AlyoprOpor IHolvkprriprog PEATIOTOTOINGTS Y10 TO GYEOLO.GUO
YPOR]S TPOIOVTOV

HEPIAHYH

Ot TOKTIKEG TOL V10OETOVV Ol TOPAYOYIKES HOVAOES Y0 TNV EICAYMYN VEMV Kol KOWVOTOU®MV
TPOIOVTWOV GTNV 0yOPd, ATOTEAOVV GNULOVTIKO TOPEYOVTO OTKOVOULKTG OVATTUENG, KLPLapyiag, Kot
ev yével, Pacikd ouvieAeotn] PLOGIUOTNTOG TNG EMYEPNOIOKNG TOVS OPACTNPIOTNTAS. XTNV
Katevbvuvon avty, 0 oYXeSGHOG U0 YPOUUNG TPOTOVTOV amOTEAEL O KOIPlOL ETLXEPTOLOKTY
Aettovpyia, yro TV a priori EKTUNON TG TOAVNG TNG EMTLYING, LG KOl GUVOEETAL AUEGH TOGO
LE TNV KEPOOPOPIN TNG EMLXEIPNOTNG OGO KOl LE TN SAUOPPMCT TOV UEPLOIOV GE AVTOYMVIGTIKES
cuvinkeg ayopds. Ilapodio mov Ta Tpoidvta avTd UTopel vo KATACKEVAGTOOV GOUPOVO. LLE TOAAY
KPUTNPL0, Ol TEPIGGOTEPEG TPOCEYYIGEIS EMIKEVIPMOVOVIOL OTN PeATIoTonoinon &vog povayo
Kpttnpiov. Yo TNV ONTIKY 00T, 1 TOPOVGO, SIONKTOPIKY] LEAETT S0Py LatedETOL TO TPOPANLAL
TOV PBEATIOTOV GYEOGUOV YPUUU®DV TPOIOVI®V, AAUPAVOVTOG LIOWYT| TEPICCOTEPO ATMO £Vol
KpLTNploL, YPNOHLOTOImVTAG 23 TapadAayEs amd entd LeBELPETIKOVG TOAVKPLTIPLOVG aAYOopiBLLovg
padnpatikng Bertiotomoinongc. Ot entd awtol ToAvKpLTHPLoL olyop1BpoL BeATioTomoinoMg ivart ot
[evetkoi AdyopiBuot, o AlyopiBupog Bertiotonoinong Zunvovg Xopotdiov, o AAyopOpog
[Muyoraumidac, o AAyoplOupog Aapopwng EEEMENG, o alyopiBuog T'kpilov Adkov, n
Bektiotonoinon  Pdost  AwdoaokaAiog-MdéOnong kot o odyopiOuog  Peitictomoinong
Eopnuepontépwv. Avtol ov entd molvkpiriplor oiyopiBpor mpocappolovior TANP®G GTO
TOAVKPLTNPLO TPOPANUO TOV BEATIGTOV GYESIOGLOV, YPCILOTOUDVTOG ONUOPIAELS UNYOVIGHOVG
EALEYYOL TOIKIAOLOPPIOG UN-KVPLULPYOVUEVAOV AVGEMV, KOl UTOUOTNG TOPAUETPOTOINONG. ZKOTOG
NG OVTOUATNG TOPOUETPOTOINGNGS, EIVAL O VTOAOYIGUOG TOV TOPAUETP®V aveEApTNTa Yo KAOE
Ao, KoTd T ddpkela TG PeATioTomoinong, Yo va. Bondnocetl Tovg alyopBpovg va Eemepdcovy
GUYKEKPIUEVEG OVOKOAIEG KOTA TNV €KTEAEOT GE OPOPETIKA GOVOAN dedopévav. Ot 23
TOPOALOYEG OVTEC OLYKPIvOVTOL HETOED TOVG, HECH  ONUOPIADV UETPIKMOV  OITOO0CTG
TOAVKPLTNPLOV aAhyopiOuwv, ¥pNoHOTOIOVTAS 000 d1apopeTikd GUVOAL dedopévav péoa amd
TEVTE OL0POPETIKA GEVAPLO, YMPIS Va etvar YvooTd 0 akpiPng aptBpds tov tpoiovimy. Emmiéov,
o1 mopdyovteg Tov enNPedlovy TV amdd0cn T®V OAYOPIOU®V SEPELVOVTOL YPNCULOTOLDVTOS
oTatioTiKy avaivon. Télog, ypnopomoteitor pior pEB0d0g TOAVKPITNPING ANYNG OTOPACEDY e
oKomd TNV Katdtaln TV AVcEMV GOUE®VA LE TIG AVAYKES KOt YiveTal TpootdOeia ekTiumong tov

TOOVOV KIVIIGEDV TOV OVTAYOVIGTOV.



v

AEEELS - KAEWOWE: LoBNIaTIKY] TOAVKPIT PO BEATIGTOTOINGT), TOAVKPITPLOG GYEOUCUOG CEPAC
TPOIOVTWV, YEVETIKOT OAYOp1OLoL, aAyOpOoC PEATIOTOTOINGT) GUNVOVG GCOUATIOIWV, aAYOPIOOg
TUYOLOUTIONG, aAyOpOnog Stapopikng e£€MEng, adyopiBuog ykpilov Avkwv, Pertictomoinon
Baocel d1dacKkorag-pabnone, aAyopOpog PEATIGTONTOINGNG EPNUEPOTTEP®YV, TOAVKPITHPLO ANy

ATOPACEMYV, CTATICTIKA CNUOVTIKES O10(pOPES alyopiOumy
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EYXAPIXTIEX

Apycd, Bo nBelo va evyapotiom Tov AvamAnpwt) KaOnynt) g ZyoAng Mmnyovikov
[Mopaywync kot Atoiknong tov [ToAvteyveiov Kprtng, Ap. Ztého Toapapdkn, yio thv enifieyn,
v Pondeta, v vrootNPEN o€ OAN To GTAOLN TNG TOPEIOG QLTS TNG OTPIPNG, TO EVOLUPEPOV,
™ Sopkn evOEppLVGT, TV EUTIGTOCHVN KOL TIG YVAOGELS TOV OV TPOGEPEPE, OAOL AVTA TO XPOVIOL
mov cvvepyalopot pali Tov. ®EAm eniong va gvyapiotiom tov Kabnynt Mok Aovumo yia ta
TOAVTILOL GYOAA TOV.

Téhoc, o¢ mpdén evyvopoobvng, Ba NBeda va guyaplotio® PEGH amd TV Kapdld Hov, Tov
adepEKO pov @ilo, emotnuovikd cvvepydtng g A XITALT.E. ko tov IL.T.A.E. tov E.K.IL.A.,
Mootpobavaon Kovotavtivo, dwdktop tov ILTAE. tov IMavemomuiov Atyaiov, vy Tig
moAVTIHEG SLUPOVAES KkaBdg Kot Yoo TV NoK kol cvvosOnuotikn otmpién 6ilo avtd 1o

dloTN .
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Multi-objective algorithms for optimal product line design 1

Chapter 1 Introduction

The introduction of novel products and the modification of existing ones play a key role in the
sustainability, profitability, and success of a firm. By providing a larger product variety, the
increasingly diversified customer needs are satisfied, resulting the maximization of the total firm’s
market share, income, or profit (Tseng & Jiao, 2001). Before the product production process
begins, its potential success needs to be estimated by product managers. This can be accomplished
by addressing the Product Line Design (PLD) problem, which has been studied for over 40 years
by various researchers and is commonly formulated in the context of Conjoint Analysis (CA) or
Multi-Dimensional Scaling (MDS) (Baier & Gaul, 1998; Kotler & Armstrong, 2012).

1.1 Designing product lines

Designing products was originally introduced by Zufryden (1977), and some years later, Green
and Krieger (1985) addressed the PLD problem, to meet the diversity of the market. A product
line consists of several related products, distinguished by similar structures, but different
configurations. A set of attributes usually represents each product. Each attribute takes specific
values (levels). A TV, for instance, consists of the attribute of resolution, which can take the three
levels of Full HD, 4K Ultra HD or 8K Ultra HD, the attributes of Smart TV, Media player, HDR
and Curved Screen which can take Yes or No values and the attribute of screen size which can take
the values of 24, 32”7, 48" and 55 .

Since consumers purchase products according to their attributes and their levels that meet their
needs, product managers need to be aware of their preferences. CA is a widely known method to
measure consumer preferences (Luce & Tukey, 1964). Compared to MDS, not only CA, as an
approach, has better analytical capabilities, but also it has had thousands of commercial
applications (X. G. Luo & Kwong, 2010). Using CA, the perceived utility value of each level of a
product’s attributes (part-worths) for each consumer, is generated. Combining those values with
choice models, the possible success of a product line can be estimated, using optimization
techniques to search for the best configuration. To conduct the product search, the followings must
be included (Sawtooth Software, 2003):

a) attribute levels to be considered,

b) part-worths estimates,

c) attribute cost information,

d) the number of products to search for,
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2 Introduction

e) any competing products, and

f) size of the market.

1.2 Motivation and objectives

The PLD problem is reported to be a nondeterministic-polynomial (NP)-hard class combinatorial
optimization problem (Kohli & Krishnamurti, 1989). As a result, a complete enumeration of the
problem space is not feasible (Papadimitriou & Steiglitz, 1982). In an attempt to address the PLD
problem, researchers have used various optimization approaches in previous research, to provide
(near) optimal (Belloni et al., 2008; Pantourakis et al., 2021; Tsafarakis et al., 2013, 2020, 2021,
Tsafarakis & Matsatsinis, 2010) or guaranteed optimal solutions (Ak¢akus & Misic, 2021; Belloni
et al., 2008; Bertsimas & Misi¢, 2019), in acceptable time.

However, most of the existing approaches address the problem from a deterministic
perspective, optimizing only one criterion, such as profit, market share, income, or cost, even
though conflicting business objectives should be taken into account, by product managers. For
instance, profitability is provided no insight from market share. In a matter of fact, a market share
increase could be achieved by lowering product prices. On the contrary, total profit could be
increased by increasing product prices. However, this kind of price increase may have a negative
impact on market share (Ferguson & Foster, 2013).

To investigate and demonstrate the difference between optimizing different objectives, like
profit and market share, the data that Belloni et al., (2008) used in their research to optimize profit,
were used. Belloni et al., (2008) implemented a Lagrangian relaxation with branch and bound with
a computational time of one week, and detected the global optimum solution, which was a product
line of five bags with a $12,226 of predicted earnings. According to the literature, Genetic
Algorithm (GA), Simulated Annealing (SA) (Belloni et al., 2008), Particle Swarm Optimization
(PSO) (Tsafarakis et al., 2011, 2013), Fuzzy Self-Tuning Differential Evolution (FSTDE)
(Tsafarakis et al., 2020), Tabu Search (TS) (Tsafarakis et al., 2021) and Clonal Selection
Algorithms (CSAs) (Pantourakis et al., 2021) are some of the most successful metaheuristic
optimization approaches to reach the overall optimum of the problem, in acceptable time.

The predicted market share of the optimal solution provided by Belloni et al., (2008) was
calculated and it was found that the optimal solution, as regards the profit, has a market share of
89.81%, as presented in Table 1.1. In Table 1.1 the configuration of the optimal solution, as regards

profit is also demonstrated.
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Table 1.1: Optimal product line when maximizing profit

Profit: $12,226
Market share: 89.81 %
Product Configurations
Price Size  Color School Handle Gadget pﬁglr:e Mesh Velcro Reinforcing
Logo holder holder pocket  flap boot
$80 Normal Black No No Yes Yes Yes Yes Yes
$95 Normal Black No Yes No No No Yes Yes
$100 Normal Black Yes Yes Yes Yes Yes No No
$95 Large Red Yes Yes Yes Yes Yes Yes Yes
$100 Large Black Yes Yes No No Yes Yes Yes

By implementing a FSTDE to optimize market share, as proposed by Tsafarakis et al., (2020)
for the PLD problem, a predicted market share of 98.15% was detected. However, the predicted
profit of the specific solution has a value of $7,922.5 ($4,303.5 less than the optimum solution as
regards profit). Table 1.2 demonstrates the configuration of the optimal solution, as regards market
share, as well as its differences (colored attribute levels) between the optimal solution as regards
profit.

Table 1.2: Optimal product line when maximizing market share

Profit: $7,922.5
Market share: 98.15 %
Product Configurations
Price Size  Color School Handle Gadget (;ell Mesh Velcro Reinforcing
Logo holder holder pocket  flap boot
$70 Normal Black No No No No No Yes No
$70 Normal Black No Yes No No No No No
$75 Normal Black  No No Yes Yes Yes Yes Yes
$70 Large  Red Yes Yes Yes Yes Yes Yes Yes
$100 Large Black Yes Yes Yes Yes Yes Yes Yes

From Table 1.1 as well as Table 1.2, it is clear that in many cases profitability and market share
can be two conflicting objectives, that is, to increase one, a sacrifice must occur in the other.
Moreover, by running FSTDE for one more time, a solution with a market share of 98.15% and a
profit of $7,506 was detected. Particularly, even though the two solutions obtained using FSTDE
have the same market share (98.15%), the first solution presented in Table 1.2 with a profit of
$7,922.5 clearly constitutes a better strategy for product managers, compared to the one with a
profit of $7,506. It would therefore be ideal if the PLD problem could be modeled and solved as a
multi-objective optimization problem (e.g., maximizing market share, maximizing income,

minimizing development costs, etc.).
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Furthermore, existing methods address the problem using a certain number of products.
However, product managers, may intent to investigate the tradeoffs between dissimilar objectives
for product lines with a different number of products. Particularly, using the same dataset as before,
two market share values of 96.29 % and of 98.77 % were detected, when optimizing a product line
of four and six products, respectively. However, the latter would have a cost of development of
$17,652.50 which is bigger compared to the line of four products which have a predicted cost of
development of $16,096.00. As a result, even though a product line of more products may result
in a bigger percentage of market share, compared to one of less products (2.48% more), it may
result in a bigger cost of development, compared to second one ($1,556.50 more). As a result,
solving a Multi-objective Product Line Design (MOPLD) problem with the number of products
not known a priori, becomes even more computationally difficult, since its complexity increases.

In this research, a total of 23 variants of seven multi-objective optimization approaches are
used, for addressing the MOPLD problem using more than one criteria, under unknown number
of products. These multi-objective optimization algorithms consist of multi-objective
Evolutionary Algorithms (EAs) as well as multi-objective Swarm Intelligence (SI) algorithms

whose performance is evaluated using popular performance metrics.

1.3 Multi-objective Optimization

Multi-objective optimization refers to the optimization process of optimizing more than one
objective functions. It can be formulated as:

min f(x) = [1(X), f2(X), ..., fx X)] (1.1)
Subject to:
g:(x)<0,i=12,..,m (12)
hi(x)=0,j=12,..,p (1.3)
b, < x; <ub,l=12,..,n (1.4)

where f;: A — R refer to the objective functions to be optimized. The domain A is a subset of the
Euclidean space R™ and represents the search space, K is the number of the objectives to be
optimized, xs are the decision (problem) variables. n is the number of variables, m is the number
of inequality constraints, p is the number of equality constraints, and (b; and ub; correspond to the
lower the upper bound of the I variable (Zervoudakis & Tsafarakis, 2020; Zitzler et al., 2000).
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According to literature, optimization problems that involve four or more objectives, are called
as many-objective optimization problems (Deb & Jain, 2014; D. Guo et al., 2021).
1.3.1 Pareto Dominance

In a multi-objective optimization problem, the search space is generally ordered according to the
relation between two different solutions. Those solutions can be related in the two following
possible ways: either one dominates the other or neither dominates the other according to the
following definitions (Zitzler et al., 2000):

Definition 1.1: Pareto Dominance

Let us consider, without the loss of generality, a multi-objective optimization problem as
presented in Subsection 1.3 (equations 1.1 to 1.4). A decision vector a€A is said to dominate a

decision vector beA (also written as a<b) if and only if:
vke{1,.., K}: f,@) < fy(b)An3Ize{],..,K}: f,(a) < f,(b) (1.5)
Based on Definition 1.1 the Pareto-optimal solutions are now defined:

Definition 1.2: Pareto-optimal solutions

Let a€A be an arbitrary decision vector:
1. aisconsidered to be non-dominated regarding a set A" < A if and only if there is no vector

in A" which dominated a:
Aa'eA’:a’ < a (1.6)
2. The decision vector a is Pareto-optimal if and only if a is non-dominated regarding A.

Pareto-optimal solutions are not possible to be improved in any objective at the same time.
Similar to single-objective optimization problems, local optima points (a non-dominated set within
a certain neighbor-hood) may exist (Zitzler et al., 2000):

Definition 1.3: Local and Global Pareto-optimal solutions

Let us now consider for once again the decision vectors A" € A:

1. Theset A’ is considered to be a local Pareto-optimal one, if and only if:
va' e A:dac dra<a' A|la—-a'||<eA|f(@)—f@)|I <6 1.7

where ||-|| is a distance metric, e > 0 and § > 0.
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2. Theset A’ is considered to be a global Pareto-optimal one, if and only if:

Va'eA':Aa€ A:a < a’ (1.8)

Figure 1.1 demonstrates the Pareto front (red rhombus points) of the multi-objective
optimization T1, problem as presented by Zitzler et al., (2000), that minimizes two-objective
functions. This figure, also graphically explains which solutions dominate (light blue area) a
random solution (blue circle point), which ones are dominated by this random solution (grey area)

and which neither dominate nor are dominated (green area).

1 ‘ T T [ '
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0.8 “ (Incomparable)
~ ()
= % |
206 s
=
e “
S04 \
g Dominates w Non-Dominated
N’ (Incomparable)
0.2} “M |
Q~ ‘N
0 : ‘ | | *
0 0.2 0.4 0.6 0.8 1

Objective function: 1

Figure 1.1: Example of Pareto Dominance

1.3.2  Aim of multi-objective optimization algorithms

Numerous algorithms have been proposed in the literature to address the multi-objective
optimization problems. Their aim is to detect solutions that are as close to the optimal Pareto front
as possible. However, finding an optimal Pareto front as well as proving that it is indeed optimal,
especially when performing on complex real-world combinatorial optimization problems, is
practically impossible. For this reason, the optimization process is performed using approximation
approaches, capable of detecting an optimal set of non-dominated solutions, as close to the optimal
Pareto front as possible, in a very short time (Konak et al., 2006).

According to Coello Coello (2006) from those approximation algorithms, EAs like GAs are

expected to perform better in obtaining a Pareto front compared to heuristics like SA (Tsafarakis,
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2016) or TS (Tsafarakis et al., 2021), since GAs (in general) search for solutions from a number
of different points in the solution space, increasing the odds of finding near-optimal solutions.

According to Konak et al., (2006) the best-known Pareto front retrieved from multi-objective
optimization approaches should be a) a subset of the Pareto front as possible, or at least it should
be as close to it as possible, b) as uniformly distributed as possible, to give the decision maker a
complete picture of his/her choices, and c) extended to the full range of the Pareto front which
requires exploring the extreme solutions of the front (finding the optimal solutions of each
objective function) as best as possible.

Some of the most successful multi-objective optimization approaches are the Non-dominated
Sorting Genetic Algorithms (NSGA-I1 and NSGA-I11) (Deb etal., 2002; Deb & Jain, 2014) as well
as Multi-Objective Particle Swarm Optimization (MOPSQ) (Coello Coello et al., 2004). To further
investigate the most well-known multi-objective optimization algorithms presented in the
literature to date, one can refer to the work of Zouache et al., (2018), Afshari et al., (2019), Monsef
etal., (2019) and Liu et al., (2021).

1.4 Research innovation

The present study extends previous research in the following five important ways: First, 23 multi-
objective variants of seven state-of-the-art metaheuristic optimizers, are applied for designing
product lines without knowing the specific number of products for the first reported time in the
literature. Second, the fuzzy self-tuning method proposed by Nobile et al., (2018) and Tsafarakis
et al., (2020) for single objective optimization, is modified and extended to multi-objective
optimization for helping the algorithms that suffer from initial parameter settings overcome
problem-related difficulties. Third, five different scenarios are used in this research, each one using
a different number of objective functions, in order to investigate how the number of objectives
affects the results. For these experiments, two types of data sets were used. The first concerns
existing data from previous research, while the second is used for the first time in the product line
problem. Fourth, factors affecting the performance of optimizers are investigated using statistical
analysis, in contrast to existing research which simply compares algorithms without being
interested in their characteristics that make the difference in performance. Fifth and last, a multi-
criteria decision analysis method is used to rank solutions according to the needs of product

managers, and an attempt to estimate the possible moves of the competitors, is made.
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1.5 Structure of doctoral dissertation

This doctoral dissertation is structured through seven chapters as follows: Chapter 2 provides a
literature review regarding addressing the PLD problem using more than one objectives. In
Chapter 3, the full research methodology is presented, while in Chapter 4 the multi-objective
optimization algorithm to be used in this research as well as their adaptation to the problem, are
described in detail. In Chapter 5, the effectiveness of each algorithm is evaluated through their
comparison, using popular performance metrics, according to the literature. Furthermore, in
Chapter 6, the process of ranking the non-dominated solutions according to the decision maker’s
preferences as well as an approach to estimate the competitors’ next moves when it comes on
product development, are demonstrated. Finally, Chapter 7 provides an overview of the main

conclusions of the study and future research areas are suggested.
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Chapter 2 Literature Review on Product Line Design

In this chapter, the literature review on PLD when optimizing more than one criteria either by
optimizing a single compromised objective function or using multi-objective optimization, is
presented.

By reviewing the literature, it was found that not only a few researchers have addressed the
PLD problem when considering more than one criteria (either by optimizing each objective one
by one or by using a weighted sum of two or more individual conflicting objectives to transform
them into a compromised single objective function), but even fewer have addressed it using multi-
objective optimization.

Research on addressing the PLD problem when considering more than one criteria in terms of
both marketing and engineering perspectives, without using multi-objective optimization, can be
found in various research publications (D’Souza & Simpsonx, 2010; Farrell & Simpson, 2003;
Heese & Swaminathan, 2006). Some of the most important ones are the work of Besharati et al.,
(2004), who introduced an integrated approach considering variability (i.e., noise or uncertainty)
in both domains of engineering design and consumer preferences in marketing, to decrease a set
of design alternatives to a controllable size. In the same fashion, Michalek et al., (2006)
coordinated decision models from design, business, and manufacturing with one another, using
Analytical Target Cascading (ATC), to make tradeoffs with respect to a firm-level objective and
thus detect a reliable solution that is considered “optimal” for the firm, in terms of both marketing
and design perspectives. Furthermore, Michalek et al., (2011) proposed an extended to continuous
search spaces ATC-based methodology for PLD, that avoids both the combinatorial complexity of
binary or integer formulations and the need of assuming monotonic preferences, to coordinate
attribute selection for each desired products on a heterogeneous market while ensuring that they
can each be realized by a possible engineering design. Furthermore, L. Luo (2011) presented a
product line optimization approach that enables product managers to simultaneously consider
important factors from both marketing and engineering perspectives, taking into account the
strategic reactions from the incumbent manufacturers and the retailer, in the search for a profit-
maximizing product line.

Finally, in a more recently published research of Kwong et al., (2020) a nested bi-level GA
combined with Stackelberg game theory approach was adopted to formulate joint optimization
models that involve a manufacturer and a retailer considering various common types of contracts,

while T. Wang and Gutierrez (2021) found that both designs of maximization of the value of the
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worst outcome (MaxMin) and minimization of the maximum relative ex-post regret (MinMaxRR)
can decrease the downside risk, even though MaxMin may expose the firm to bigger upside ex-
post opportunity losses on average, after exploring the tradeoffs between MaxMin and MinMaxRR

on a PLD problem.

2.1 Previous research on multi-objective product line design

To detect previous research on multi-objective PLD as far as the use of multi-objective
optimization is concerned, a systematic literature review was conducted, which included the
definition of the criteria for inclusion or exclusion of a study, the research identification in
bibliographic databases, their evaluation, the acceptance of those that met the inclusion criteria,
and their findings recording.

The review was limited to international studies that were published in English language and
focused on exploring previous research regarding the applications of multi-objective optimization
on PLD using CA data sets. A search through numerous electronic databases provided 164 results
by searching the phrases of “product line design”, “optimizing product line design”, “optimization
algorithms for product line design”, “multi-objective optimization algorithms for product line
design”, “many-objective optimization algorithms for product line design” and “product
optimization”.

The sum of the 164 publications collected during the identification phase was reduced to 154
after removing the duplicates, those that were not considered relevant and those that did not come
from peer review journals, doctoral dissertations, book chapters, research reports and publications
in conference proceedings. The full texts were then searched, retrieved, archived, and studied in
order to clarify whether the predefined inclusion criteria were met. The findings revealed that
research on approaching the PLD problem using multi-objective optimization is very limited.

Particularly, Besharati et al., (2006) used a Multi-Objective Genetic Algorithm (MOGA)
(Narayanan & Azarm, 1999) with Kurpati et al.’s (2002) constraint handling technique as an
optimizer, to obtain a set of Pareto designs, for a single product (motor), from both engineering
design (output speed and mass removed), and marketing perspectives (market share variation and
market share) to assess the performance and feasibility robustness of a design, when several
uncontrollable parameters exist.

A few years later, X. G. Luo and Kwong, (2010) adopted Deb’s NSGA-I1I (Deb et al., 2002) to
optimize the total product demand in a multi-segment market as well as the total develop cost of a
product line of digital cameras. Moreover, Kwong et al., (2011) proposed a one-step NSGA-I11 to

address a PLD problem of digital cameras, using the three objectives of market share of a
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company’s products, total product development cost of a product line and total product
development cycle time. They also introduced a curve-fitting method into the part-worth utility
models so that the optimization model can be applied to products with all kinds of attributes. Both
studies mentioned above used the optimization process to also detect an optimal number of
products.

Williams et al., (2011) examined the broad issue of how retail channel structures impact a
manufacturer’s optimal new Power Tool products, by using an NSGA-I11 to optimize manufacturer
and retailer profits. The results showed that the multi-objective approach allows product managers
to detect the attributes of the designs that are considered “optimal” under specific channel structure
conditions, as well as the sensitivity of profits to different design variables. As a result, the multi-
objective optimization approach is very useful to managers who are concerned about the
acceptance of their new designs by the retail channel and getting shelf space.

Ferguson et al., (2012) synthesized advancements from market-based design and heuristic
optimization research, to strategically construct targeted initial populations capable of reducing
computational cost and improving the final solution quality of multi-objective GA, when
performing on MOPLD considering a feature packaging problem for an automobile product line.
The authors used profit and share of preference as objective functions. In this context, Foster and
Ferguson (2013) extended the creation of targeted initial populations of NSGA-II by using the
objectives of the problem, instead of product level utility, to identify candidate MP3 as well as
automobile designs, by optimizing profit and market share. Furthermore, Ferguson and Foster
(2013) demonstrated how multi-objective PLD can significantly influence and form a design
strategy, using an NSGA-I1 (Deb et al., 2002) to locate a Pareto set between profit, market share
and commonality associated with the design of an MP3 player product line.

Deng et al., (2014) adapted an NSGA-II (Deb et al., 2002) multi-objective optimization
algorithm for addressing the MOPLD problem, to optimize profit, quality and performance, and
cost of development of a product line of notebook. The authors also stated that companies could
consider introducing techniques to help select an optimal solution. Moreover, Aydin et al., (2014)
addressed the PLD problem with simultaneous consideration of remanufactured and new Tablet
PCs using an NSGA-II (Deb et al., 2002) to detect an optimal Pareto front of product line
alternatives, including specifications and prices of both remanufactured and new products, to
estimate profit, market share as well as the launching time of remanufactured products and to
investigate the tradeoffs among the objectives. Similarly, Aydin et al., (2015b) addressed various
research issues, like the competition between remanufactured and novel products in markets;
demand estimation of remanufactured products in markets; downgrading and upgrading their
features and the launching time of remanufactured products in the markets. An NSGA-I1I (Deb et
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al.,, 2002) was adopted to determine the Pareto optimal solutions of the multi-objective
optimization problem, when optimizing profit and market share for a PLD of tablet PCs. In the
same context, Aydin et al., (2015a, 2016) investigated the coordination of a manufacturer and
supply chain partners using a multi-objective optimization model based on Stackelberg game
theory to determine the product line solutions, pricing decisions of supply chain partners, and
product’s return rate for remanufacturing. An NSGA-II (Deb et al., 2002) was used to determine
the Pareto optimal solutions of the multi-objective optimization problem, when optimizing profit
and market share for a PLD of tablet PCs, with consideration of remanufactured tablet PCs, to
illustrate the applicability and effectiveness of their approach.

Finally, Shin and Ferguson (2016) specified the reliability and robustness of a tablet PC product
line, under uncertainty, when using discrete choice methods and integrating the objectives into a
multi-objective optimization framework using an NSGA-II. The researchers attempted to
maximize the average choice share of a product line and its robustness while minimizing the
probability of failure. The authors also suggested that a multi-criteria decision analysis method
could be adopted to help the decision maker choose the best design from the set of non-dominated
solutions.

Interestingly enough, all researchers mentioned above, used GAs and more specifically the
NSGA-II (Deb et al., 2002) to address the MOPLD problem. The reason behind this specific
adaption, might be that not only NSGA-II has obtained very good results in solving complex
optimization problems compared to the other approaches (Agarwal & Gupta, 2008), but also GAs
(in general) are expected to perform well in the PLD problem, because they search for solutions
from a number of different points in the solution space, increasing the odds of finding near-optimal
solutions (Belloni et al., 2008). However, more multi-objective optimization techniques need to

be tested when performing on the MOPLD problem.
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Chapter 3 Research Methodology

In this chapter, the research methodology that was used in this research, is discussed in detail. It
contains two main items, related to the research methodology, namely: Research questions and
Research approach. The latter is further divided into seven items concerning the Data colection,
the Data sets to be used, the Choice Models, the Objective Functions to be optimized, the Solution
representation, the Performance metrics to be used and the Data analysis techniques used in this

research. Each point is briefly elaborated in the following subsections:

3.1 Research questions

As mentioned in the Introduction, a key assumption of this research is that a multi-objective
approach is more efficient than a single-objective one, to simultaneously address the subproblems
of optimal design. Therefore, since multi-objective optimization is a more effective and more

profitable approach for a company to address the PLD problem, the following questions arise:

1) How can the problem of optimal PLD be modeled as a multi-objective optimization
problem?

2) Are the solutions to the problem (product lines) different depending on the optimized
objective?

3) Is the relationship of tradeoffs between the criteria linear?

4) Can the PLD problem be addressed without knowing the number of products to be
designed?

5) Which multi-objective optimization algorithms have the best performance in multi-
objective PLD?

6) What factors affect the effectiveness of each algorithm?

7) Can the non-dominated solutions be evaluated or ranked (according to the decision maker)?

8) Can the future moves of competitors be predicted?

3.2 Research approach

3.2.1 Data colection

In this research, two data sets are to be used. The first one concerns an existing data set of an actual
PLD problem faced by Timbuk2, a manufacturer of messenger bags. The company worked with a
group of academic researchers to conduct a conjoint study that focused on price and nine binary
product features. Additional details are reported in Toubia et al., (2003). The particular dataset has

been used as benchmark in numerous popular studies (Belloni et al., 2008; Bertsimas & Misic,
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2019; Pantourakis et al., 2021; Tsafarakis et al., 2020, 2021; Zervoudakis et al., 2020) on
evaluating the performance of optimization algorithms on the PLD problem and it is presented in
detail in Subsection 3.2.2.1.

The second data set which is used for the first time on the PLD problem, concerns olive oil
products. The Choice-Based Conjoint Analysis was used as a tool for interpreting and estimating
consumers’ purchase behavior.
3.2.1.1 Choice-Based Conjoint Analysis
Choice-Based Conjoint Analysis (CBCA) evaluates the preferences of consumers realistically,
compared to other methods, by observing a quantity of choice decisions (Green et al., 2001). It can
be described as a decomposition process where products are judged and part-worth utilities for
each attribute or attribute level, are generated (Meyerding et al., 2018).

According to Meyerding and Merz (2018) CBCA is distinguished by a few major advantages
over the rest of CA approaches. Initially, due to the involvement of a simulated purchase situation
CBCA constitutes a more realistic approach to data acquisition. Secondly, the generated part-worth
utilities of the different attributes reveal the choice of the consumers. Moreover, it allows the
researcher to include the None option.

A major limitation of CBCA is that it does not provide the researcher the information whether
a particular characteristic is not relevant for the consumer or if it does not catch his/her attention,
like all CA methods.

The CBCA questionnaire used in this research, is demonstrated in Appendix E.

3.2.2 Data sets

In this subsection, the datasets used in this research are described.

3.2.2.1 Timbuk2 data set

Regarding the first data set, after a CA market survey, the partworths (preferences) of 324
consumers on the 10 attributes that comprise each bag, are generated. The first attribute concerns
the price that can take seven different levels ($70, $75, $80, $85, $90, $95 or $100) while the
remaining nine binary attributes, get yes/no values (exists / does not exist). According to Tsafarakis
et al., (2021) by combining these attributes, 3,584 possible products (bags) can be designed, by
which 4.9-10% different product lines consisting of five products can be formed. Table 3.1 presents
the 10 attributes, along with their partworths and their marginal costs, while in Figure 3.1 the violin

plots of each feature’s partworths are demonstrated.
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Table 3.1: Partworths and Incremental marginal cost of each feature in the Timbuk2 data set

Feature Part worth details _ Inqremental
Max  Average Median Min SD marginal cost ($)
$5 Price increase 8.70 -7.58 -7.75 -31.50 6.03 -5.00
Large size 144.10 17.93 25.45 -141.50 57.71 3.50
Red color 141,60  -35.95 -42.20 -217.80  50.62 0.00
School logo 119.10 8.98 9.30 -115.40  39.57 2.00
Handle 175.90  37.67 36.70 -89.50 34.94 3.50
Gadget holder 100.70 5.15 3.50 -83.50  29.03 3.00
Cell phone holder ~ 140.50 5.45 3.35 -92.80  32.32 3.00
Mesh pocket 133.20 9.67 12.15 -9430  34.61 2.00
Velcro flap 146.60 18.21 17.00 -82.20 35.67 3.50
Reinforcing boot 133.60  24.36 26.90 -85.80  34.90 4.50

3.2.2.2 Olive oil data set

Regarding the second data set to be used, after a CBCA market survey on olive oil products, the
partworths (preferences) of 417 consumers on the five attributes that comprise each product, are
generated. Table 3.2 and Table 3.3 present the attributes and their levels, along with their
partworths and their marginal costs, Table 3.4 presents the olive oil usage statistics in liters per
month, while in Figure 3.2 the violin plots of each feature’s partworths, are demonstrated. By

combining these attributes, 8,000 possible products can be designed.

Table 3.2: Partworths and Incremental marginal cost of each feature in the olive oil data set

Feature Part worth details Cost (€)
Max Average Median Min SD
Olive oil _ Plain 11354 -6356 -7161 -17058 41.17 3.30
type ExtraVirgin 17658 9.81 1044 -133.14 2875 451
Organicextra 51637 2911 2647 5413 3382 5.49
virgin
POP 16252 1429  16.04 -129.65 29.74 4.73
Kolumpariou
Sustainable 11362 1035 1433  -133.63 29.69 4.40
Package  Plastic 10489 -1342 -1003 -11143 30.98
type Glass 198.20 22.30 16.71  -127.60 37.01
Metal 11254 089 141 9942 2617
Pouch 10140 978  -726 -193.09 32.78
Package  0.75It 109.10 -28.77 -35.62 -148.48 49.91  see: Table 3.3
size 11t 14636 -219  -120 -162.00 47.46
2lt 13089 7.78 633  -10525 38.79
3lt 14521 1258 1132  -11467 43.12
51t 21121 1059 359  -11432 54.89
Brand Super Market 98.60 -78.28 -87.78 -195.99 42.69 0.05
Altis 146.82 3007 3123 8213  30.39 0.15
ABEA 23230 3326 3390 -7695 3536 0.10
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MINERBA 221.37 14.95 19.09  -108.33 31.56 0.10
Price per  4.5€ 17532  30.13 24.24 0.60 26.31 -4.50
liter 5.3€ 132.09 14.80 10.27 -29.58  18.20 -5.30

6.2€ 66.86 -0.70 -0.29 -84.71  15.45 -6.20

7.0€ 37.15  -13.39 -9.26 -100.50 19.53 -7.00

7.9€ -0.51  -30.82 -25.69 -155.17 24.72 -7.90
None 292.55 46.78 48.52  -299.67 71.15

Table 3.3: Marginal cost of specific features in the olive oil data set

Feature/liter 0.75It 1t 2t 3lt 51t
Plastic 0.16 0.17 0.30 0.40 0.60
Glass 0.40 0.50 0.80 - -
Metal 0.08 0.10 0.20 0.30 0.50
Pouch - - 0.75 0.80 0.85

Table 3.4: Olive oil usage statistics in liters per month

Statistics Olive oil usage in liters
Maximum 7
Mean 1.97
Median 2
Minimum 1
Standard deviation 1.28
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Figure 3.2: Violin plots of partworths on the Olive oil data set

During the data collection through CBCA, a few prohibitions were defined, as presented in
Table 3.5. The same prohibitions were used during the optimization process. More specifically,

when a prohibited product line is defined, it is automatically rejected.

Table 3.5: CBCA Prohibitions

Prohibition

Prohibition 1 Glass with 51t
Prohibition 2 Glass with 3lt
Prohibition 3 Pouch with 0.75It
Prohibition 4 Pouch with 1t
Prohibition 5 Super-market with 7.9€
Prohibition 6 Sustainable with 4.5€
Prohibition 7 POP Kolumpariou with 4.5€

3.2.3 Choice Models

To simulate the consumer behavior, when it comes on product selection, a choice model must be
in place, which refers to the process of which a consumer integrates information to buy a product,
from a set of similar competing ones. Numerous choice models have been introduced with varying
assumptions and purposes, which differ in the underlying logic structure that derives them
(Manrai, 1995). Choice models, which can be either deterministic or probabilistic mathematical
models converting the product utilities assigned to the set of alternatives under consideration to
choice-probabilities, for each alternative per individual, represent the consumer’s purchasing
pattern by relating preference to choice.

The First Choice (or maximum utility) Model (FCM) is a deterministic one, which assumes that

a consumer always purchases the product with the highest sum of utility values. In such a case, a
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probability of choice equal to one is assigned to the highest sum of utility values alternative, while
zero probabilities are assigned to the rest. FCM’s major weakness is that it provides information
only for the maximum utility product, ignoring the rest of them. As a result, FCM may fail to
successfully simulate the actual human choice behavior, since a consumer does not necessarily
buy the highest utility alternative, due to buyer’s confusion, out of stock occasions, high search
costs, etc.

To overcome the FCM’s difficulty to simulate the actual consumer choice behavior,
probabilistic models, which are also known as share of preference models, may be used to assign
choice probabilities among all products, according to their utility values. These models are further
separated into constant utility models and random utility ones.

In contrast to models in the first category which assume that product utilities are constant and
capture the stochastic nature of human behavior, by assuming a level of uncertainty in the decision
model, models in the second category assume that the consumer always chooses the product with
the highest utility (U), which consists of a deterministic component (V) specified as a function of
the measured product attributes and individual preferences, and a stochastic term (e) representing

possible measurement errors, computed as (Baltas & Doyle, 2001):
U=V+e (3.2)
Bradley-Terry-Luce (BTL) (Bradley & Terry, 1952) is the most popular constant utility

probabilistic model, which is calculated as:

__ Yy
— yn
i1 Uij

Pij (3.2)
where pjj is the probability that consumer i selects product j, Ujj is the assigned by the consumer i
utility to product j, and n is the number of competing products. To uniformly control the choice
probabilities of BTL, BTL’s extensions have been introduced in the literature (Pessemier et al.,
1971).

The MNL (McFadden, 1974) is a widely used random utility model, which is calculated as:

eVij

pij = T (3.3)

~yn
2]':19 Y

According to Brice (1997) share of preference models like BTL and MNL, provide a better
estimation of the actual market share, compared to the more extreme First Choice model.
Regarding the choice models used in this research, FCM was used when using the Timbuk2

data set, while BTL was used when using the olive oil data set.
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3.2.4 Objective Functions

The MOPLD problem addressed in this research, can be formulated as:

Let Z={1,2,...N} be the set of products that compose the market, Q = {1,2,...,K} denotes the
set of K attributes that compromise the products, &={1, 2,..., Jk} is the set of J levels of attribute
k, ¥={1, 2,...,M} is the set of products to be designed (¥cz), 6={1, 2,..., I} is the set of / customers
and wijk is the part-worth that customer i€ assigns to level je @y of attribute keQ. The Xjkm and Uim

decision variables are also used, where:

1, if the level of product’s m attribute k is j
Xjkem = { Op otherwise ], kel mevy (3.4)
and Uin is the utility that customer i assigns to product m (sum of its part-worths), as:
Uim = Xkea Zjea, WijkXjkm» M E Y (3.5)

In case the Timbik?2 data set is used and therefore the FCM is used, the sim decision variable is

also used, which reveals whether customer i buys product m according to the highest utility value,

as.
(1, ifUp, = max (U;z)
m { 0, otherwise ymew (3.6)
In this step, the Buyer’s welfare can be estimated, as:
BW = ZiEH Sim-Uimﬂ mevy (37)

The cm decision variable which calculates the number of customers to buy product m is

computed as:
Cm = Xieo Sim» ME Y (3.8)
The predicted Market Share (%) of the line can be estimated, as:
MS = 2100 (3.9)
The income of the product line to be designed can be calculated as:
Income = Y%, inc; - ¢; (3.10)

where inc; is the sale price of product i. The development cost of the product line to be designed

can be also calculated as:
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Cost =), cost; - ¢; (3.11)

where cost; is the development cost of product i.
In case the Olive oil data set is used and therefore the BTL is used, the probability c,, that
customer i will choose product m is estimated as follows using equation (3.2).

In this step, the Buyer’s welfare can be estimated, as:
BW = Zie@ Zmell’ Com " Uim (3-12)
and the predicted Market Share (%) of the line can be estimated, as:

MS = Zie@ Zmelll Cim (313)

Because in this data set each consumer has its own needs and therefore consumers can consume
a different amount of olive oil per month, their needs per liter have been used to calculate the final
values of the objective functions. For instance, if a consumer may buy a one-liter product even
though he consumes three liters per month, and therefore he/she needs two more products, then
the product income for that particular customer will triple. As a result, the income of the product

line to be designed can be calculated as:

Income = Y;co Ymew Clim * INCyy * Cim (3.14)

where incm is the sale price of product m and clim corresponds to the number of m products
consumer i needs. The development cost of the product line to be designed can be also calculated

as.
Cost = Yico Yomew Clim * COSty, * Cim (3.15)

where costm is the development cost of product m that is the cost of its attributes.

Furthermore, the profit of the particular product line on both data sets can be computed as:

Profit = Income — Cost (3.16)

Finally, the Commonality Index (Martin & Ishii, 1996, 1997) was used a sixth objective
function to measure unique parts, due to possible manufacturer interest as regards the commonality
associated with the product line solution. It can be calculated as:

u-max(k;)

Commonality Index = 1 — ST ki—max(kp)’

ken (3.17)

where u is the total number of distinct components, ki represents the number of components used

in product i. Cl ranges from O to 1 where a smaller value indicates more unique parts.

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 23

Regarding the competitive products used in this research, when using the Timbuk?2 data set, it
is considered that the work of Belloni et al., (2008) represents the choices of the competitors and
therefore, the optimal product line retrieved by Belloni et al., (2008), as presented in Table 1.1, is
used as the competitive product line, in order to investigate the choices of the competitors of
Belloni et al., (2008). As regards the competitive products used when using the olive oil data set,
they are presented in Table 3.6.

Table 3.6: Product line of competitors

Price per liter Olive oil type Package type Package size Brand

4.5€ Plain Pouch 2It Super Market
5.3€ Extra Virgin Plastic 3lt MINERBA
6.2€ POP Kolumpariou Metal 51t Altis
7.9€ Organic extra virgin Glass 11t ABEA

3.2.5 Solution representation

Binary and integer representation are two ways of presenting a solution in a PLD problem. In the
binary representation, a solution is presented as a table of number of products X
total number of attribute levels. A value of 1 is assigned to the level that corresponds to the
specific attribute, while the rest of the elements take a value of zero. In the integer representation,
a solution is presented as a table of number of products X total number of attributes. The
value of each attribute corresponds to its level. According to the literature, binary representation
has shown better performance in similar problems (Tsafarakis et al., 2011), even though integer
representation is reported to require smaller vector lengths and thus, less computational time.

Since in our approach the number of bags is not know in advance, one last attribute with a
no/yes value (0 or 1), was added. This attribute shows if the specific product is considered within
the line or not. A maximum number of bags as well as a minimum number of bags are given by the
user. As a result, a potential binary solution to the problem is represented as a table of maximum
number of products X total number of attribute levels. For instance, let a product line with a
maximum number of five products be distinguished by three attributes, each one taking three
levels. The potential solution would be presented as a table of 5x11. An example of a solution is
presented in Figure 3.3.

Instead of binary representation of a solution, a discrete one can be used, which is represented

as a table of maximum number of products x total number of attributes, as shown in Figure 3.4.
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Attributes A B C Considered
Levels 1 2 3 2 3 1 2 3 No Yes
Productl 1 0 0 0 1 01 0 O O 1
Product2 0 0 1 0 1 0 0 1 0 O 1

Product4 0 1 0 0 01 010 O 1
Product5 0 1 00 1 01 0 O O 1

Figure 3.3: Representation of a potential binary solution to the PLD problem

Attributes A B C Considered
Productl 1 2 1 1
Product2 3 2 2 1
Product3 1 3 3 0
Product4 2 3 2 1
Product5 2 2 1 1

Figure 3.4: Representation of a potential discrete solution to the PLD problem

Since the third product has a No value in the Considered attribute, the final line consists of the
rest four products. If the final line consists of less than the minimum number of products given by
the user, then a randomly chosen product from the ones that has a No value is altered until the
number of products within the line is equal to the minimum number of products given by the user.
If the minimum number of products given by the user is equal to the maximum number of products,

the line has a fixed number of products.

3.2.6 Performance metrics

In this subsection the performance metrics to be used are described. Those metrics are used
because in the case of multi-objective optimization, the evaluation of quality is significantly more
complex than for single-objective optimization problems (Zitzler et al., 2000).

The first metric to be used is the two-set coverage metric (C) proposed by Zitzler et al., (2000).
It maps the ordered pair (X', X'") to the interval [0,1] using the following equation:

{a"’ex"’;3 a’eX’:a’%a"H
Dl

cx', xy: =

(3.18)

where X', X" are two sets of decision vectors and ||+|| the Euclidean distance metric.

The value C(X', X"") = 1 means that all solutions in X"’ are dominated by or equal to solutions
in X'. The opposite, C(X',X"") = 0, represents the situation when none of the solutions in X'’ are
covered by the set X'. As Zitzler et al., (2000) mention in their research, both C(X',X") and
C(X",X") have to be considered, since C(X’,X'") is not necessarily equal to 1- C(X", X").
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The second metric is the M; metric, proposed by Zitzler et al., (2000), which considers the
average distance to the Pareto-optimal set X € X and is calculated as:

1

M (0= o

Yarex'min{lla’ —al;a € X} (3.19)
where ||-|| the Euclidean distance metric. Since the PLD problem is proved to be an NP-hard class
problem (Kohli & Krishnamurti, 1989) and therefore the Pareto-optimal front cannot be detected,
to calculate the M; metric, all the non-dominated solutions retrieved by all algorithms are
considered as the Pareto optimal front.

The third metric 4, measures the extent of spread achieved among the obtained solutions as:

_ df+dl+2§\’=_11|di—6_i|
- df+dl+(N—1)a

(3.20)

where d; and d; are two are the Euclidean distances between the extreme solutions and the

boundary solutions of the obtained non-dominated set and d is the average of all distances d;,i =
1,2, ..., (N — 1), assuming that there are N solutions on the best non-dominated front (Deb et al.,
2002). As Deb et al., (2002) mention in their research, for the most widely and uniformly spread
out set of non-dominated solutions, the metric would be zero. For any other distribution, it would
be greater than zero. More details can be found in the work of (Deb et al., 2002).

Finally, the fourth metric is the M3 metric proposed by Zitzler et al., (2000), which considers

the extent of the set of objective vectors that correspond to X’ and is calculated as:

M; (X):= Jzyzlmax{||a; —b|;a’,b’ € X'} (3.21)
where ||+|| the Euclidean distance metric.

3.2.7 Data analysis

The collected results of the multi-objective algorithms were imported in the Jamovi statistical
package (Sahin & Aybek, 2019) and analyzed quantitatively to assess the degree of effectiveness
of each algorithm, as well as to investigate possible factors that affect it.

As previous research suggests, non-parametric tests were used (Carrasco et al., 2020; Derrac et
al., 2011; Garcia et al., 2008). Furthermore, Pearson's correlation coefficient r was used to measure
possible statistically significant relationships between two continuous variables. The level of
statistical significance (p) was set at 5% while the findings with a value of p<0.05 were considered
statistically significant.
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Since statistically significant differences are more likely to occur when large samples are
utilized, practical significance was also calculated, since it addresses the magnitude of a treatment
effect without the complication of sample size. As a result, it provides more meaningful
information that has usefulness to researchers (Kirk, 2016). As far as the practical significance is
concerned, the effect sizes were calculated. More specifically, a Point Biserial Correlation r
(Kornbrot, 2014) is used when a Mann-Whitney U test is performed, which indicates a small effect
for r = 0.1, a medium effect for r ~ 0.3 and a large effect for r ~ 0.5. Moreover, the Epsilon square
(%) (Kelley, 1935) is used when a Kruskal-Wallis test is performed, which indicates a negligible
effect when 0.00 < &% < 0.01, a weak effect when 0.01 < 2 < 0.04, a moderate one when 0.04 < ¢?
<0.16, a relatively strong when 0.16 < &2 < 0.36, a strong when 0.36 < % < 0.64 and a very strong
when 0.64 < &% < 1.00.
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Chapter 4 Multi-objective optimization algorithms for product line design

In this Chapter, the description as well as the application of the multi-objective optimization

algorithms to the MOPLD problem, is demonstrated.

4.1 Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are powerful global search metaheuristics that imitate the natural
evolution process, based on the survival and reproduction of the fittest (Goldberg, 1989). GAs are
reported to have great performance in numerous real-world complex optimization problems and
continues to be successfully applied and further improved by researchers to this day (Katoch et al.,
2020). In GA, candidate solutions are mostly represented as binary or integer strings, known as
chromosomes, which are randomly generated and evolve over the algorithm’s iterations, through
genetic operations known as crossover and mutation. The new chromosomes (offspring) are
assessed using the predefined objective function. Should the offspring be better than the parents,
they will replace them in the next iteration. The iterative process continues until a stopping
criterion is met.

Various multi-objective GAs are reported in the literature for addressing complex multi-
objective optimization problems. The most important ones are the Multi-objective EA based on
Decomposition (MOEA/D) (Q. Zhang & Li, 2007), the Pareto Envelope region-based Selection
(PESA-II) (Corne et al., 2001), the Strength Pareto Evolutionary Algorithm Il (SPEA-I1I) (Zitzler
et al., 2001), the Non-dominated Sorting Genetic Algorithm Il (NSGA-II) (Deb et al., 2002) and
the Non-dominated Sorting Genetic Algorithm 111 (NSGA-III) (Deb & Jain, 2014; Jain & Deb,
2014). The multi-objective GAs mentioned above are all used in this research, to address the multi-
objective PLD problem.

Just like the single-objective GA, in multi-objective GAs, individuals perform genetic operators
to produce offspring. The non-dominated solutions are then archived and a diversity controlling
operator as presented in Appendix D, is applied, which constitutes the main difference between
the multi-objective GAs mentioned above.

For instance, NSGA-II uses a fast non-dominated sorting operator combined with CD as
described in Subsection D.1 of Appendix D, NSGA-III replaced the CD with the use of RP, while
PESA-II use an Adaptive Grid Technique (GT) as briefly described in Subsection D.3 and D.2 of
Appendix D, respectively. Furthermore, MOEA/D uses a decomposition process which means that
it decomposes the addressed multi-objective optimization problems to several single-objective
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sub-problems, each one having its own best solution ever found. Additional details can be found
in the work of Zhang et al., (2007). Finally, SPEA-II utilizes a process like k-Nearest Neighbor
(Silverman, 1986) and a specialized ranking system to sort the population members and select the

next iteration’s generation. Additional details can be found in the work of Zitzler et al., (2001).

4.1.1 Multi-Objective GAs for PLD

Since GAs operate in discrete/binary spaces, each solution is represented as described in
Subsection 3.2.5, which is the same GA formulation used in the research of Belloni et al., (2008),
with the only difference being the unknown number of products.

During the iterative process, crossover and mutation operators, as described in Appendix B, are
in place to produce new candidate solutions. The best non-dominated solutions are then selected
for the next generation.

A general pseudo-code for multi-objective GAs used in this research, is presented in Algorithm
4.1.

Algorithm 4.1: Multi-objective GAs for MOPLD

1. Initialization

2. Select the number of chromosomes

3. Generate the initial population

4. Evaluate each chromosome according to the objective functions
5. Main loop

6. Do until a stopping criterion is met

7 Produce new offspring through crossover operator

8 Mutate chromosomes

Q. Evaluate new solutions according to the objective functions
10.  Apply a diversity controlling operator and keep the nPop chromosomes
11. Return non-dominated solutions

As literature suggests, the initial population size (chromosomes) should be approximately 7-10
times the number of design variables being considered (Ferguson et al., 2012). As a result, in this
research all GAs use an initial population size of seven times the number of design variables to be
considered. Regarding the mutation probability, it was set to 5%, as literature suggests for the PLD
problem (Belloni et al., 2008; Ferguson & Foster, 2013; Kwong et al., 2011; X. G. Luo & Kwong,
2010).
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4.2 Particle Swarm Optimization (PSO)

PSO is a swarm intelligence optimization algorithm, inspired from the social behavior of social
organisms, such as birds and fish, and it was first introduced to address continuous optimization
problems (Kennedy & Eberhart, 1995). It has already been successfully applied to the PLD
problem, in previous research (Tsafarakis et al., 2011, 2013).

A potential solution to the problem is represented as the position of each particle in the search

space. During the iterative process, the position of i particle (xfj) is updated by adding a velocity

(u;5) as:

t+1 _ .t t+1
Xij =X U (4.1

where the velocity (u;;) represents the changes that will be made to move a particle from one
position to another and is updated so that each particle follows its previous best position (pbest;;)
and the best solution of the swarm (gbest;;) (Tsafarakis et al., 2011; Zervoudakis et al., 2019).

The velocity of a particle is updated using the following formula:

t+1 _

uff' = uf; + ¢, -rand, - (pbest;; — x{;) + ¢, - rand, - (gbest; — xitj) (4.2)

where t is the iteration counter, c;, c, are the acceleration coefficients and rand, rand, are two
random numbers in [0,1].

To control the convergence behavior of PSO, Shi and Eberhart (1998) proposed the use of an
inertia weight w to the updated formula that updates the particles' velocities, to prevent particles
from developing great speeds. The velocities of particles are now updated using the following

formula:

t+1

uff* =w-uf; + ¢, - rand, - (pbest;; — x{;) + ¢, - rand, - (gbest; — xf;) (4.3)

Zmax_Wmin . jtor ywo o W, are the maximum and minimum values that the

where w = wyqy — itermax

inertia weight can take, while iter and iter,,,, are the current iteration of the algorithm and the
maximum number of iterations, respectively.

Regarding the application of PSO on multi-objective optimization problems, multi-objective
Particle Swarm Optimization (MOPSO) was proposed by Coello Coello et al., (2004) to handle
multi-objective optimization problems and continues to be successfully applied and further
improved by researchers to this day (Feng et al., 2010; Gu et al., 2021; Habibollahzade, Houshfar,
et al., 2021; Habibollahzade, Kazemi Mehrabadi, et al., 2021; Kalogiannis et al., 2021; Pan et al.,
2018).
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Just like PSO, particles in MOPSO are sharing information. As a result, they move towards
global best particles and their own personal best memory. However, unlike single-objective PSO,
there are more than one criteria to determine and define the best (global or personal). All non-
dominated solutions are gathered into a repository, and every particle chooses its global best target,
among members of this repository. Since the size of the repository is limited, whenever it gets full,
a diversity controlling operator as presented in Appendix D, is applied, with those particles located
in less populated areas of the search space are given priority over those lying in highly populated
regions. For personal best, a domination-based rule combined with a probabilistic rule is utilized.
A special mutation operator is also used to enrich the exploratory capabilities of MOPSO (Coello
Coello et al., 2004).

4.2.1 Multi-Objective PSO for PLD

Since MOPSO operates in continuous spaces, the Smallest Position Value (SPV) rule, as presented
in Appendix A, is in place. As Tsafarakis et al., (2011) report in their research, PSO combined
with the SPV rule, has shown the best performance in the optimal PLD problem.

A secondary criterion for retention of the non-dominated solutions together with a continuous
mutation operator as presented in Appendix B maintain the diversity of non-dominated solutions.

Even though PSO has already been applied to the PLD problem when optimizing one objective
by Tsafarakis et al., (2011), who provide PSO’s parameter settings in their research, the
performance of PSO is not only highly dependent on its parameter settings, but also on the dataset
and the objectives to be optimized. For this reason, a fuzzy self-tuning method, as presented in
Appendix C is used to assist PSO in overcoming this particular difficulty.

To automatically determine the population size, MOPSO exploits the heuristic

N = [10 + 2\/maximum number of products - total number of attribute levels] (4.49)

which sets the value of population size according to the number of dimensions of the search space,
as suggested by Nobile et al., (2018) and Tsafarakis et al., (2020) for PLD.

To automatically determine the rest of MOPSO’s parameters a fuzzy self-tuning method, as
presented in Appendix C, is used. During each iteration, each solution computes independently its
own values for § and ¢, which are used to calculate the output variables according to the rules

reported in Table 4.1.
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Table 4.1: Fuzzy rules used by MOPSO

Parameter Rule definition
w if (o is Worse or § is Same) then (w is Low)
if (¢ is Same or ¢ is Near) then (w is Medium)
if (¢ is Better or 6 is Far) then (w is High)
o) if (¢ is Worse or § is Far) then (c, is Low)
if (o is Same or ¢ is Same or § is Near) then (c; is Medium)
if (¢ is Better) then (c, is High)
Cy if (¢ is Better or 6 is Near) then (c, is Low)
if (¢ is Same or 6 is Same) then (c, is Medium)
if (o is Worse or § is Far) then (c, is High)
10 mutation rate  if (¢ is Better or § is Near) then (mutation rate is Low)
11 if (o is Same or ¢ is Same) then (mutation rate is Medium)
12 if (¢ is Worse or § is Far) then (mutation rate is High)

Py
c
@
>
o
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In the consequent of these rules, the output variables are the MOPSO’s parameters, which
correspond to the respective settings of each solution. The final numerical value of this output
variable is calculated using the Sugeno method (Sugeno, 1985) as presented in equation C.3 of

Appendix C, according to Table 4.2.

Algorithm 4.2: Multi-objective PSO for MOPLD

1. Initialization

2. Select the number of particles

3. Generate the initial population and velocities of the particles
4. Evaluate each particle according to the objective functions
5. Keep the personal best of each particle

6. Store the non-dominated vectors found in an external Archive
7. Do until a stopping criterion is met

8. For every particle:

9. Select global best solution

10. Compute parameters

11. Compute the new velocity according to Eq. (4.3)

12. Calculate the new position according to Eq. (4.1)

13. Apply SPV rule

14. Evaluate according to the objective functions

15. If the new solution dominates its personal best

16. Replace personal best with the new solution

17. If no one dominates the other

18. Replace personal best with a probability of 0.5

19. Apply mutation

20. Apply SPV rule

21. Evaluate according to the objective functions

22. Insert all non-dominated solutions found in the external Archive
23. Apply a diversity controlling operator

24. Return non-dominated solutions
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Table 4.2: Output variables and their defuzzification

Output Variable Low Medium High
w 0.1 0.5 1

o) 0.1 15 3

Cy 1 2 3
Mutation rate 0.01 0.05 0.1

A general pseudo-code for the proposed MOPSO for MOPLD, is shown in Algorithm 4.2.

4.2.1.1 Leader selection

One of the most crucial factors that affect the performance of MOPSO is the global best selection
process which is also referred as Leader selection in the literature of MOPSO (Coello Coello et
al., 2004). As Pan et al., (2018) mention in their research, an inappropriate leader selection may
result to opposite convergence directions. Two possible conditions of moving direction are
demonstrated in Figure 4.1. The red rhombus points represent the non-dominated solutions, and
the blue circle point represents a random particle. To make the influence of leader selection clear,
the inertia direction of the particle is not considered in the following example. If the leaders are
selected according to Figure 4.1a, the potential moving direction of the selected particle lies in the
shadow area, which indicates an exploration in the uncultivated direction. Another possible
movement is demonstrated in Figure 4.1b, where the parallelogram boxed by the particle, pBest

and leader is in a reserve convergence direction resulting in slower convergence of the algorithm.
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Figure 4.1: Possibility analysis on particle’s moving direction

According to Castro et al., (2018) and Castro et al., (2012) best results were obtained by using
the Sigma (Mostaghim & Teich, 2003), the NWSum (Padhye et al., 2009) and the CD (Deb et al.,
2002) methods, even though the objective search space still seems to have the greatest impact. In

the first method, the Sigma vectors for all the solutions in the repository and all particles, are
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calculated. Each particle selects the solution with the smallest Sigma vector, considering the
Euclidean distance, as its leader (Mostaghim & Teich, 2003). In the second method, particles
choose as their leader, solutions with similar objective function values by maximizing a weighted
sum of the objective vector. This particular technique is reported to introduce convergence in the
algorithm (Padhye et al., 2009). In the third and last technique, for each individual, two different
random solutions are selected and the one with the highest CD value is chosen as the final leader
(Castro et al., 2018). More details about the selection leader methods mentioned, can be retrieved
from the work of Castro et al., (2012).

Even though the methods mentioned above report promising results in the literature, a novel
simple leader selection method is now introduced, in the context of this research. The objective of
this method is to introduce convergence in the algorithm as well as to help the algorithm extend
the non-dominated solutions in each objective.

To select a leader for each particle, a random number is generated in the range of (0,1). Should

1
nob+1'’

optimized, the particle choses its closest non-dominated solution as a leader, in terms of the

this random number be smaller than

where nob is the number of objective functions to be

Euclidean distance. In the opposite, the particle choses as its leader the closest best solution found
so far, out of all the objective functions to be optimized. At this point, it should be mentioned that
a particle cannot take as its leader a non-dominated solution from which it will have a zero
distance. More details about the distance of two particles can be found in Subsection C.1 of
Appendix C.

The Sigma method, the NWSum method, the CD method and the method proposed above
(Selection Leader Spreading - SLSPR) are now compared, to adopt a proper leader selection
strategy for the MOPLD problem. To make the comparisons, a MOPSO combined with CD was
used to detect the pareto front of a product line of bags with a minimum number of two bags and
a maximum number of 10 bags, using the Timbuk?2 data set. All six objective functions mentioned
in Subsection 3.2.4 are used in this comparison. Each method runs for 20 times until 100,000
function evaluations are reached. The leader selection methods were compared according to their

average Performance metrics values, as presented in Table 4.3.

Table 4.3: Comparison of different leader selection methods

Leader selection method M; A M3 (%)
Sigma 62.66 0.70 98.97
NWSum 47.47 0.68 99.15
CD 35.05 0.66 99.01
SLSPR 12.20 0.66 99.61
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Table 4.3 indicates that MOPSO combined with the proposed SLSPR method achieved the best
average performance metric values. As a result, SLSPR is used for the rest of this research to select
the leader of particles in MOPSO.

In this research, a fuzzy self-tuning MOPSO using the GT technique (FST-MOPSO-GT), a
fuzzy self-tuning MOPSO using the CD technique (FST-MOPSO-CD-SLSPR) and a fuzzy self-
tuning MOPSO using the RP technique (FST-MOPSO-RP), are applied. Previous research has
already proven high performance results of MOPSO combined with GT, CD and RP
(Allmendinger et al., 2008; Coello Coello et al., 2004; Feng et al., 2010; Figueiredo et al., 2016;
X. Li, 2003; Raquel & Naval, 2005; Santana et al., 2009; W. Yang et al., 2019; J. Zhang & LI,
2014).

4.3 Firefly Algorithm (FA)

Firefly Algorithm (FA) is a nature-inspired optimization algorithm proposed by X.-S. Yang (2008)
for optimizing continuous landscapes, based on the flashing patterns of fireflies. Even though FA
is not reported in the literature to be applied to the PLD problem, the facts that it has already been
used to advance the algorithmic structure of GA when applied to the PLD problem (Zervoudakis
et al., 2020) as well as its reported advantages over PSO when it comes to objective landscape
division and ability of dealing with multimodality, make it a promising swarm intelligence-based
approach.

In FA algorithm, it is assumed that each firefly is unisex and will be attracted by other ones.
The attractiveness is considered to be proportional to the brightness, which is determined
according to the objective function landscape. As a result, for two random fireflies, the less bright
one will move towards the brighter one, whilst the brighter one will move randomly. The light
intensity I(r) varies according to the inverse square of a distance, formulated as:

1(r) =% (4.5)

where Is is the intensity of the light source. For a fixed light absorption coefficient y, the light

intensity | varies according to the distance r, as:
[ =l "’ (4.6)

where lo is the original light intensity determined from the objective landscape. Since the
attractiveness of a firefly is proportional to the intensity of light seen by the others, the variation

of attractiveness f with the distance r, is defined as:

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 35
B =Boe™ (4.7)

where fo is the attractiveness when r=0. More details about the distance of two particles can be
found in Subsection C.1 of Appendix C.

Considering that firefly i is attracted by firefly j during iteration t+1, its position is determined
as:

2
xit+1 — xit + B, - e Vi . (xlf — xj?) +a;- gl-t (4.8)

where the second term is according to the attraction whilst the third one introduces a random
movement. o is a randomization parameter and &f is a vector of random numbers generated by a
Gaussian or uniform distribution. If fo = 0, a random walk is performed in contrast to the case of
y =0, where it corresponds to a PSO variant (X.-S. Yang, 2008; X.-S. Yang & He, 2013).

Since a: is used to introduce randomness and thus to control the solutions diversity, it can be

reduced over the iterations as:
a,=ay-6f 0<6<1 (4.9)

where ao is the randomness scaling factor set by the user, and ¢ is a number in the range of (0,1),
also set by the user. According to X.-S. Yang and He (2013) ao must be simulated to balance the
local exploitation without jumping too far, in a single step. The variable ao should therefore be
chosen wisely for each problem encountered, to help the algorithm perform as well as possible.

Regarding the application of FA in multi-objective optimization problems, multi-objective FA
(MOFA) was proposed by X.-S. Yang (2013) and continues to be successfully applied and further
improved by researchers to this day (Bajaj et al., 2021; G. Chen et al., 2018; Tsai et al., 2014; H.
Wang et al., 2018; J. Zhang et al., 2021; L. Zhu et al., 2018).

Just like MOPSO and GAs, all non-dominated solutions are gathered into a repository, which
whenever gets full, a diversity controlling operator, as demonstrated in Appendix D, is applied.

4.3.1 Multi-Objective FA for PLD

Like MOPSO, to convert the real values to discrete ones, MOFA uses the SPV rule. Moreover, to
overcome possible problem-related difficulties, the fuzzy self-tuning method, as presented in
Appendix C, is also used.

Similar to MOPSO, to automatically determine the population size, MOFA exploits the

heuristic:
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N = 10+2\/maximum number of products - total number of attribute levels (4.10)
= . .

which sets the value of population size according to the number of dimensions of the search space.
The division of the heuristic by the number 2, resulted from the fact that for a relatively large
population size, the algorithm complexity is reported to be increasing (X.-S. Yang & He, 2013).

To automatically determine the rest of MOFA’s parameters, a fuzzy self-tuning method, as
presented in Appendix C, is used. During each iteration, each solution computes its own values
for & and ¢, independently, which are then used to calculate the output variables according to the
rules reported in Table 4.4. Since the parameters are now calculated according to the distance
between two fireflies, the movement of firefly i is now altered to:

xftt=xf + B (xf - xf) +a; - gf (4.11)
because it was considered that the use of y is no longer needed.

Table 4.4: Fuzzy rules used by MOFA

Rule no. Parameter Rule definition

b if (¢ is Better or § is Near) then (8 is Low)

if (o is Same or § is Same) then (8 is Medium)
if (¢ is Worse or § is Far) then (5 is High)

if (¢ is Better or § is Near) then (a is Low)

if (¢ is Same or & is Same) then (a is Medium)
if (¢ is Worse or § is Far) then (a is High)

o Ol WDN B
[<})

In the consequent of these rules, the output variables are the MOFA’s parameters, which
correspond to the respective settings of each solution. The final numerical value of this output
variable is calculated using the Sugeno method (Sugeno, 1985), as presented in equation C.3 of

Appendix C, according to Table 4.5.

Table 4.5: Output variables and their defuzzification for MOFA

Output Variable Low Medium High
p 0.1 0.5 0.9
a 0.01 0.05 0.1

A general pseudo-code for the proposed MOFA, is demonstrated in Algorithm 4.3.

Regarding the reported sorting process at the end of each iteration (G. Chen et al., 2018), after
the application of several experiments, it was found that MOFA performs better with the sorting
process excluded. To make the comparisons, a MOFA combined with CD was used to detect the

pareto front of a product line of bags with a minimum number of two bags and a maximum number
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of 10 bags, using the Timbuk?2 data set. All six objective functions mentioned in Subsection 3.2.4
are used in this comparison. Each method runs for 20 times until 100,000 function evaluations are
reached. The sorting methods were compared according to their average Performance metrics

values, as presented in Table 4.6.

Algorithm 4.3: Multi-objective FA for MOPLD

1. Initialization

2. Select the number of fireflies nPop

3. Generate the initial population of fireflies

4. Evaluate each firefly according to the objective functions

5. Store the non-dominated vectors found in an external Archive

6. Main loop

7. Do until a stopping criterion is met

8. For i=1:nPop do

9. For j=1:nPop do

10. Compute parameters

11. if firefly j dominates firefly i

12. move firefly i towards j according to equation 4.11

13. else

14. move firefly i randomly by using a continuous mutation operator (Appendix B)
with a mutation rate of a.

15. Apply SPV rule

16. Evaluate according to the objective functions

17. if the new position dominates the old one

18. accept the new position

19. elseif no one dominates the other

20. if rand>0.5 (rand U(0,1))

21. accept the new solution

22. Insert the non-dominated solutions in the external Archive

23. Apply a diversity controlling operator

24. Return non-dominated solutions

Table 4.6: Comparison of MOFA with and without the sorting process

MOFA variant M; A M3 (%)
With sort 31.54 0.72 96.97
Without sort 12.35 0.71 98.31

In this research, a fuzzy self-tuning MOFA using the GT technique (FST-MOFA-GT), a fuzzy
self-tuning MOFA using the CD technique (FST-MOFA-CD) and a fuzzy self-tuning MOFA using
the RP technique (FST-MOFA-RP), are applied to address the MOPLD problem. Previous
research has already proven high performance results of MOFA combined with CD and RP (G.
Chen et al., 2018; H. Wang et al., 2019; L. Zhu et al., 2018).
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4.4 Differential Evolution (DE)

The Differential Evolution (DE) algorithm was first introduced by Storn and Price (1997) to
optimize continuous landscapes. Similar to GA, it is classified as an EA. Even though DE is a
continuous landscape optimizer, various attempts are reported in the literature, regarding its
modification and application on binary and combinatorial optimization problems (Ali et al., 2018,
2019; Baioletti et al., 2018; Santucci et al., 2019; Tsafarakis et al., 2020).

Similar to most EAs, in DE, a population of individuals is generated (most of the times
randomly to achieve a better diversity), each one representing a potential solution to the problem.
Those solutions are then evaluated using the predefined objective function. During DE’s iterative
process, evolutionary operators like mutation and crossover, are applied.

According to the literature, DE’s ability of handling complex objective functions as well as the
fact that it is easy to code, since it requires a small amount of control parameters (population size,
scale factor, and crossover probability), constitute its main advantages. According to Lampinen
and Storn (2004) DE is characterized by good convergence capabilities, and it has a high
probability of detecting optimal solutions. It has already been successfully applied to the PLD
problem, in the recent research (Tsafarakis et al., 2020).

During DE’s iterative process, a mutant vector is created, for each individual. The five most

widely used mutation strategies, according to Das et al., (2016) are formulated as:

DE/rand/1: vf = xf  +F (x,gzi - x,’;si) (4.12)

DE/best/1: vf = xt,,, + F (x,gli - x,gzi) (4.13)
DE/current-to-best/1: vf = x! + F(xf e — x5 + F (x};li — x,%zi) (4.14)
DE/best/2: v} = xf e + F (xf-‘,li — xfzzi) +F <x§3i — x§4i) (4.15)
DE/rand/2: v} = x,’{,li +F (x}';zi - x,";gi) +F (x,";4i — x,";si) (4.16)

where the vectors xz, to xz_ are randomly chosen different solution vectors from the current
population, which also differ from the current solution vector x;. F is a positive mutation control
parameter, used to scale the difference vectors and x,.; is the best solution detected so far. It is
worth noting that all mutation strategies mentioned above, differ from the genetic mutation
operator, described in Subsection B.2.
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The dither method constitutes one of the many attempts that have been made to improve DE’s
performance. In this method, F can be either randomized in each generation of the algorithm or
for each target vector of the population in a specific generation. According to Price et al., (2005),

in this method F is randomized as:

F = FlOW + rand * (Fhigh - Flow) (417)

where F,,, and Fy; 4, are the highest and lowest values of F respectively, and rand is a uniform
random number in the range of [0, 1].

According to Tsafarakis et al., (2020) strategies containing the best solution detected so far,
like DE/best/1, DE/best/2 and “DE/current-to-best/1,” normally are distinguished by fast
convergence speed. Consequently, even though they perform fine on unimodal objective functions,
they are expected to get stuck at local optima points when performing on multimodal ones. In
contrast, the DE/rand/1 strategy is mostly characterized by slow convergence speed and better
exploration capability. As a result, it is expected to perform better when addressing multimodal
problems compared to the strategies relying on the best solution found so far. The two-difference
mutation strategies, like DE/best/2, DE/rand/2 and DE/current-to-best/1, are reported to have a
higher performance, compared to the one-difference ones (Qin et al., 2009; Tsafarakis et al., 2020).

Moreover, in the work of Tsafarakis et al., (2020) for PLD, a novel promising mutation strategy

was introduced, formulated as:

FSTDE: vf = xf , +Fy (xh , — x};3i) + Fy (hese — 2k ,) (4.18)

According to Tsafarakis et al., (2020) the purpose of this combination is to take advantage of
the better exploration capability of DE/rand/1, along with the fast convergence speed of
DE/current-to-best/1, depending on the distance of each solution from the best solution found so
far, and the solution’s improvement with respect to the previous iteration.

After generating the mutation vector, a crossover operator is then in place. Using this operator,
which differs from the genetic crossover operator described in Subsection B.1, the mutant vector
mixes its elements with the original vector x{ to form an offspring vector uf = (uf,uf,, ..., uf4)
according to a predefined probability parameter Cr. As Das et al. (2016) mention in their research,
binomial crossover can be described as:

. {vf‘j, if j=korrand;; < Cr

Uu; t

=17 (4.19)
i,j

X; ;, otherwise
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where k is randomly selected in {1,2, ..., d}, rand, ; is a random number in the range [0,1]. The
j = k condition, guarantees that at least one component from v} is chosen by u?, to ensure that the
new solution is not a duplicate of the original one.

A selection operator is then in place, which determines whether the original vector or the
offspring survives for the following generation. This selection operation for minimization
problems is described as:

(4.20)

' x!, otherwise

fHL — {vit' if f(v)) < f(x)

where f(vf) and f(xf) are the function values of v{ and x}, respectively.

Regarding the application of DE on multi-objective optimization problems, Multi-Objective
Differential Evolution (DEMO) was proposed by Xue et al., (2003) and continues to be
successfully applied and further improved by researchers to this day (Cheng et al., 2016; Hancer,
2020; Kaur & Singh, 2020; Liang et al., 2019; Robi¢ & Filipi¢, 2005; Sreedhar & Rajan M .R,
2013; Tasgetiren et al., 2015; X. Wang & Tang, 2016; K. Yu et al., 2021; Yue et al., 2021).

Just like DE, individuals in DEMO are sharing information. As a result, offspring are generated
using the DE operators mentioned above. However, unlike single-objective DE, there is more than
one criteria to determine whether the original vector or the offspring survives for the next

generation. For that reason, equation 4.20 is altered as:

t et , t
t+1 _ Vi if v; dominates x;

X .
' {xf . otherwise

(4.21)
All non-dominated solutions are gathered into a limited-sized repository, and a diversity

controlling operator as presented in Appendix D, is applied, to ensure diversity.

4.4.1 Multi-Objective DE for PLD

Since DE is another optimization algorithm for continuous optimization, the SPV rule, as
presented in Appendix A, is in place for once again, to convert the real values to discrete ones.
Moreover, to overcome possible problem-related difficulties, the extended to multi-objective
optimization fuzzy self-tuning method of Tsafarakis et al., (2020), as presented in Appendix C, is
also used.

Since in this research more than one criteria are optimized, equation 4.18 is extended to multi-

objective optimization, as follows:
FSTDEMO: vf = xf  +Fy (xk , — xk )+ Fy (xk,, — 2k ) (4.22)
1l Zl 3l n 4l
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where x;, ., correspond to a random non-dominated solution.

To automatically determine the population size, MODE exploits the heuristic

N = [10 + 2 /maximum number of products - total number of attribute levels | (4.23)

which sets the value of population size according to the number of dimensions of the search space,
as suggested by Tsafarakis et al., (2020).

To automatically determine the rest of DEMO’s parameters, a fuzzy self-tuning method similar
to the one suggested by Tsafarakis et al., (2020) for single-objective optimization, as presented in
Appendix C, is used. During each iteration, each solution compute independently their own values
for & and ¢, which are used to calculate the output variables, according to the rules reported in
Table 4.7.

Table 4.7: Fuzzy rules used by DEMO

Rule no. Parameter Rule definition

1 Fiow,1 and if (6 is Far) then (Fjoy,1 and Fp;gp ; are Low)

2 Fhigh1 if (¢ is Same or & is Same or & is Near) then (F,,, 1 and Fp;gp 1 are
Medium)

3 if (¢ is Better) then (Fy,,, 1 and Fp;gp 1 are High)

4 Fiow2  and if (¢ is Better or & is Near) then (Fjoy,» and Fy; g » are Low)

5 Fhigh 2 if (¢ is Same or & is Same) then (F,,, > and Fy; 5 » are Medium)

6 if (6 is Far) then (Foy 2 and Fp;gp , are High)

7 Cr if (¢ is Same or ¢ is Better) then (Cr is Low)

8 if (& is Same or & is Near) then (Cr is Medium)

9 if (6 is Far) then (Cr is High)

In the consequent of these rules, the output variables are the DEMQO’s parameters, which
correspond to the respective settings of each solution. The final numerical value of this output
variable is calculated using the Sugeno method (Sugeno, 1985) as presented in equation C.3 of
Appendix C, according to Table 4.8.

Table 4.8: Output variables and their defuzzification for MODE

Output Variable Low Medium High
Frow 0.1 0.4 0.7
Fhign 0.4 0.7 0.9
Cr 0.01 0.1 0.5

A general pseudo-code for the proposed DEMO, is demonstrated in Algorithm 4.4,

In this research, a fuzzy self-tuning DEMO using the GT technique (FST-DEMO-GT), a fuzzy
self-tuning DEMO using the CD technique (FST- DEMO -CD) and a fuzzy self-tuning DEMO
using the RP technique (FST- DEMO -RP), are applied. Previous research has already proven high
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performance results of DEMO combined with GT, CD and RP (Bao et al., 2017; Cheng et al.,
2016; Reddy & Dulikravich, 2019; Yue et al., 2021).

Algorithm 4.4: Multi-objective DE for MOPLD

1. Initialization

2. Determine the number of individuals

3. Generate the initial population

4, Evaluate each one according to the objective functions

5. Store the non-dominated vectors found in an external Archive
6. Do until a stopping criterion is met

7. For every individual:

8. Compute parameters

9. Compute the new mutant according to Eq. (4.22)

10. Apply Crossover according to Eq. (4.19)

11. Apply SPV rule

12. Evaluate according to the objective functions

13. Apply Selection Operator according to Eq. (4.21)

14. Insert the non-dominated solutions found in the external Archive
15. Apply a diversity controlling operator

16. Return non-dominated solutions

45 Grey Wolf Optimizer (GWO)

Grey Wolf Optimizer (GWO) is another popular swarm intelligence algorithm, for solving
continuous optimization problems, introduced by Mirjalili et al., (2014). In contrast to various
metaheuristics that in order to perform well, the right parameter setting must be provided, GWO
is an optimization algorithm, with only a few parameters to adjust, that can be easily used for
global optimization (Long et al., 2019). Even though a reported study on applying GWO to the
PLD problem was not detected in the literature, its promising results have attracted researchers’
attention over the past years (Gupta & Deep, 2020; J. Hu et al., 2021; P. Hu et al., 2020; Komaki
& Kayvanfar, 2015; Nadimi-Shahraki et al., 2021).

It is inspired from the social behavior of grey wolf packs when it comes to social hierarchy of
leadership and group hunting. Regarding the social hierarchy, the leader of a pack is referred to as
the alpha wolf, which is supported by beta wolfs in decision-making and replacement, in case of
death or illness. The rest of the hierarchy includes delta and omega wolfs. The best solution in a
population corresponds to the alpha wolf («), the following two best solutions are considered as
the beta (#) and the delta (0) wolfs, respectively. As a result, the remaining solutions in the
population are considered as omega wolves (w). As regards the group hunting process, tracking,
chasing, pursuing, encircling, harassing, and attacking the prey, are included (Faris et al., 2017,
Mirjalili et al., 2014). Wolves’ hunting behavior is modeled by randomly generating a set of grey
wolves. The position of the prey is predicted using the alpha, beta, and delta wolves. The potential
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solutions converge toward the prey, which assists in exploiting the search space, and diverge from
the prey, in cases where values of A are between —1 and 1, and larger than 1 or smaller than—1,
respectively. This can be modeled by the processes of encircling, hunting, attacking (exploitation)
and searching (exploration).

Equations 4.24-4.27 simulate the encircling process. Equation 4.24 represents the vector
calculated according to the position vector of the prey and the current position vector of the wolf,
whilst using equation 4.25, the next position of a wolf is calculated. Equations 4.26 and 4.27

correspond to the A and C vectors, respectively.

D=|C-X,(6) - X(®)| (4.24)
Xt+1)=X({t)—A-D (4.25)
C=21 (4.26)
A=2a'1—a (4.27)

where t is an iteration counter, X and X are the wolf and prey positions, respectively, r1 and r2 re
generated randomly between 0 and 1, and finally, « is a linearly decreasing vector from two to
zero.

By calculating the X1, X2 and X3 values, the position X of a wolf at iteration t+1 is estimated,

as.:
X1=Xq — A1 |C X, — X| (4.28)
X, =Xp— Ay |CoXp — X| (4.29)
X3 = X5 — Az - |CsXs — X (4.30)
X(t+ 1) = 2fetXs (4.31)

3

where the Xa, Xg and X, correspond to the position vectors of the alpha, beta and delta wolves. Ay
and Cy, A2and C; as well as Az and Cs correspond to the alpha, beta and delta wolves coefficients,
respectively.

According to Qaddoura et al., (2021) by decreasing the o value from two to zero results to a
consequent decrease of A value from 1 to —1. As a result, wolves move toward the prey to attack
it by the time its stops moving, which assists the exploitation capabilities of the algorithm. Finally,

grey wolves diverge from the prey when A values are less than —1 or larger than 1. Additionally,
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the random values of C between 0 and 2, offer different moves to the wolves. Consequently, both
techniques assist the algorithm on avoiding local optima as well as they enhance exploration
capabilities of the algorithm.

When it comes on addressing multi-objective optimization problems using GWO, multi-
objective GWO (MOGWO) was proposed by Mirjalili et al., (2016) and continues to be
successfully applied and further improved by researchers to this day, in order to solve complex
real-world multi-objective optimization problems (Al-Tashi et al., 2020; Lu et al., 2016; Y. Yang
et al., 2020; Yousri et al., 2020; Zapotecas-Martinez et al., 2019; Z. Zhu & Zhou, 2020).

To apply GWO to multi-objective optimization, two new components must be integrated,
similar to the ones used by Coello Coello et al., (2004) for MOPSO. The first one concerns a
diversity controlling operator, as presented in Appendix D, for ensuring diversity. The second one
concerns a leader selection strategy for choosing alpha, beta, and delta solutions as the leaders of
the hunting process, from the non-dominated archive, to guide the other wolves towards promising
regions of the search space. However, since in a multi-objective optimization problem, comparing
solutions is not an easy task due to the Pareto optimality, a leader selection mechanism is designed
to choose the least crowded regions of the objective landscape. Additional details can be retrieved
from the work of Mirjalili et al., (2016).

45.1 Multi-Objective GWO for PLD

Since GWO is another metaheuristic for continuous landscapes, the SPV rule, as presented in
Appendix A, is used to convert the real values to discrete ones.

Even though MOGWO has only population size, as a parameter to be adjusted, equation 4.4, as
proposed to determine the population size of MOPSO in Subsection 4.2.1, is adopted for once
again, to make the algorithm completely parameter-independent.

A general pseudo-code for the proposed MOGWO, is shown in Algorithm 4.5.

Regarding the Xa, Xz and X, selection, according to Mirjalili et al., (2016), MOGWO uses the
same technique that MOPSO uses to select a leader, when combined with GT (Coello Coello et
al., 2004), followed by a second criterion to ensure that alfa and beta wolves are selected from the
least crowded areas, as described by Mirjalili et al., (2016). For that reason, MOGWO’s
performance using the technique as suggested by Mirjalili et al., (2016), was compared to
MOGWO’s performance using the most successful leader selection method according to
Subsection 4.2.1.1. To make the comparisons, MOGWO combined with GT was used to detect
the pareto front of a product line of bags with a minimum number of two bags and a maximum

number of 10 bags, using the Timbuk2 data set. All six objective functions mentioned in
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Subsection 3.2.4 were used in this comparison. Each method run for 20 times until 100,000
function evaluations are reached. The leader selection methods were compared according to their

average Performance metrics values, as presented in Table 4.9.

Algorithm 4.5: Multi-objective GWO for MOPLD

1. Initialization

2. Select the number of grey wolves

3. Generate the initial population of grey wolves

4. Evaluate each grey wolf according to the objective functions

5. Store the non-dominated vectors found in an external Archive

6. Do until a stopping criterion is met

7. For every grey wolf:

8. Select Xa

9. Exclude alpha from the archive temporarily to avoid selecting the same leader
10. Select Xg

11. Exclude beta from the archive temporarily to avoid selecting the same leader
12. Select Xs

13. Add back alpha and beta to the archive

14. Update the position of the current search agent by equations 4.24-4.31

15. Apply SPV rule

16. Evaluate according to the objective functions

17. Find the non-dominated solutions

18. Insert the non-dominated solutions found in the external Archive

19. Apply a diversity controlling operator

20. Return non-dominated solutions

The results of Table 4.9 demonstrate that MOGWO performs better when combined with
SLSPR. For that reason, SLSPR is integrated in MOGWO for the rest of the experiments.

Table 4.9: Comparison of leader selection methods for MOGWO

Leader selection method M7 A M;
Default 12.98 1.17 98.97
SLSPR 9.65 1.19 99.01

In this research, a MOGWO using the GT technique (MOGWO-GT), a MOGWO using the CD
technique (MOGWO-CD) and a MOGWO using the RP technique (MOGWO-RP), are applied.
Previous research has already proven high performance results of MOGWO combined with GT
and CD (Jangir & Jangir, 2018; Mirjalili et al., 2016).

4.6 Teaching Learning Based Optimization (TLBO)

Teaching Learning Based Optimization (TLBO) is another population-based algorithm, for global
optimization problems (R. v. Rao et al., 2011). It is inspired by the influence of an educator on the

level of the students in a class. Even though a reported study on applying TLBO to the PLD

PhD Dissertation by Konstantinos Zervoudakis



46 Multi-objective optimization algorithms for product line design

problem was not detected, the algorithm reports very promising results when addressing other
complex optimization problems (Abdel-Basset et al., 2021; Z. Chen et al., 2021; Dong et al., 2021,
S. Lietal.,, 2020; Wei et al., 2021).

According to Abdel-Basset et al., (2021) TLBO is based on two phases. The first phase concerns
a class of N individuals, of which the fittest is considered as the teacher (x*) who tries to enhance
the mean value of students during the teaching process. Mathematically, the mean value of the

learners in the class is computed as:
1
Xmean = N Iiv—1Xi (4.32)

where X; correspond to each student.
During the teaching process, each student is updated as:

Xi,new =X +r- (x* —Tp - Xmean) (4-33)

where Xinew indicates the updated solution vector of i student, r is a random number in the range
(0,1) and Tr is a 1 or 2 value, expressing the teaching factor. After computing Xinew its objective
function value is computed. Should the new position be improved, the student accepts it.

The second phase of TLBO concerns the learner phase. In this phase students are improved by
communicating with each other. Each one selects another from the class to discuss, to improve

their knowledge, as:

X = {Xi +r- (X = X;), if (X)) < f(X)) (4.3

X+ 7 (X, — X,), otherwise

where i and j are two different students, and f(Xi) and f(Xj) correspond to their objective function
values, respectively. For once again, after computing Xinew its objective function value is
calculated. For once again, should the new position be improved, the student accepts it.

When it comes on addressing multi-objective optimization problems using TLBO, various
reported studies on addressing numerous complex multi-objective optimization problems were
found in the literature, using multi-objective TLBO (MOTLBO) (Chaves-Gonzalez et al., 2015;
Hajabdollahi et al., 2021; Natarajan et al., 2019; R. V. Rao, 2016; K. Yu et al., 2018; Zou et al.,
2013).

To apply MOTLBO to multi-objective optimization problems, a diversity controlling operator,
as presented in Appendix D, is integrated for ensuring diversity. Moreover, the centroid of the
non-dominated solutions from current archive, is selected as the Mean of the learners, while the

concept of dominance is used to decide when a candidate replaces the original solution. Finally,
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equation 4.34 is altered as:

X;+7r-(X;—X;), if X; dominates X;
Xi,new_{ l ( l ]) f l g (435)

a Xi+r- (Xj — Xl-), otherwise

4.6.1 Multi-Objective TBLO for PLD

MOTBLO is another algorithm built to perform in continuous landscapes. As a result, the SPV
rule, as presented in Appendix A, is used to convert its real values to discrete ones.

Similar to MOGWO, MOTBLO has only population size, as a parameter, to be adjusted. As a
result, equation 4.4, as presented in Subsection 4.2.1, is adopted for once again, to make the
algorithm completely parameter-independent.

A general pseudo-code for the proposed MOTBLO, similar to the one presented in the work of
Zou et al., (2013), is presented in Algorithm 4.6.

Algorithm 4.6: Multi-objective TBLO for MOPLD

1. Initialization

2. Select the number of solutions

3. Generate the initial population

4. Evaluate each solution

5. Store the non-dominated vectors found in an external Archive
6. Do until a stopping criterion is met

7. Select the centroid of the current on-dominated solutions as the Mean
8. for i=1:N (Teaching Phase)

9. Select randomly a non-dominated solution as Teacher
10. Generate a trial solution using equation 4.33

11. Apply SPV rule

12. Evaluate according to the objective functions

13. if the new solution dominates the old one

14. Accept it

15. elseif no one dominates the other

16. Select randomly one of them with a probability of 0.5
17. for i=1:N (Learning Phase)

18. Select randomly an individual out of the population

19. Generate a trial solution using equation 4.35

20. Apply SPV rule

21. Evaluate according to the objective functions

22. if the new solution dominates the old one

23. Accept it

24, elseif no one dominates the other

25. Select randomly one of them with a probability of 0.5
26. Find the non-dominated solutions

27. Insert the non-dominated solutions found in the external Archive
28. Apply a diversity controlling operator

29. Return non-dominated solutions
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In this research, a MOTLBO using the GT technique (MOTLBO -GT), a MOTLBO using the
CD technique (MOTLBO -CD) and a MOTLBO using the RP technique (MOTLBO -RP), are
applied. Previous reported research has already proven high performance results of MOTLBO
combined with CD (K. Yu et al., 2018; Zou et al., 2013) and a grid-based technique (Patel &
Savsani, 2016).

4.7 Mayfly Optimization Algorithm (MA)

Finally, the last optimization algorithm to be used in this research, is the Mayfly optimization
Algorithm (MA) (Zervoudakis & Tsafarakis, 2020). MA is a recently developed optimization
algorithm which has already been used by various researchers, to address their complex
optimization problems (Abd Elaziz et al., 2021; Bhattacharyya et al., 2020; Gao et al., 2020; X.
Guo etal., 2021; Liu et al., 2021; Majumdar et al., 2021; Ramasamy & Ravichandran, 2021; Yi et
al., 2021; Zhao & Gao, 2020a, 2020b, 2020c).

In this algorithm, the position of each mayfly represents a potential solution to the problem.
Initially, a set of female as well as a set of male mayflies, are randomly generated, as x =
(%1, ..., xq) for males, and y = (y3, ..., y4) for females. Their performance is then assessed on the
problem’s objective function f(x). Considering x} as the present position of mayfly i in the
objective space during step t, it is altered by summing it with a velocity v/**, similar to the
equation 4.1 for PSO.

The velocity v of a male mayfly i is computed as:

g-vi+ ale_ﬁrlg(pbestij - x5)+ aze_ﬁrgz(gbestj — xf;), if f(gbest) > f(x;)

t+1 _ 4.36
vij { vf; +d -, otherwise ( )
while for a female mayfly i, the velocity is computed as:
Lt ~Brimg (ot — vt ) i .
i+l — g vij + aze xl] yij ’ lf f(yl) > f(xl) (4 37)
Y vfj + fl-1, otherwise

where vitj is the velocity of mayfly i in dimension j = 1,...,n at time step t, a, and a, are positive
attraction constants. pbest;; is the best position mayfly i had ever gone and gbest is the overall
best solution, found so far. Moreover, g is a fixed visibility coefficient, 7, corresponds to the

Cartesian distance between two individuals, which is calculated as presented in Subsection C.1 of
Appendix C.
Finally, g is a constant in the range of (0, 1], d is a positive nuptial dance coefficient, r is a

random value in the range [-1, 1] and fl is a random number.
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The mating process between a male and a female mayfly is formulated through the continuous
(genetic) crossover operator as:

of fspringl = L -male+ (1 —L) - female

of fspring2 = L - female + (1 — L) - male (4.38)

where male is the male parent and female is the female one. L is a random value in the range (0,1).
Initial velocities of offspring are set to zero.

Regarding MA’s performance on multi-objective optimization problems, Multi-Objective MA
(MOMA) was first introduced by Zervoudakis and Tsafarakis (2020), followed by Liu et al.,
(2021) who proposed a multi-objective version of MA for ensemble forecasting of short-term wind
speed as well as Majumdar et al., (2021) who proposed a multi-objective chaotic MA for hydro-
thermal-solar-wind scheduling based on available transfer capability problem.

According to Zervoudakis and Tsafarakis (2020), to apply MOMA to multi-objective
optimization problems, a repository which maintains the best non-dominated solutions obtained
so far, during the optimization process, is integrated. When optimizing more than one objectives,
the movement of male mayflies works similarly to their movement when addressing single-
objective optimization problems. Since there is no single best solution in multi-objective problems,
the gbest solution is selected randomly from the repository of non-dominated solutions.

In MOMA, i male mayfly moves as:

_gr2 —pr2 . .
piH = g- vfj +ae P (pbesti}. - xf]) + a,e” s (gbestj - xfj), if gbest dominates x; (4.39)
J v +d-r, otherwise
while for a female mayfly i, the velocity is computed as:
g- vt +a, e_ﬁrglf (x? - y?.) if male dominates female
vff'l = Yy Y g’ (4.40)
vfj + fl-1, otherwise

Furthermore, equation (4.38) is then used for the mating process of MOMA, using the personal
best position of each mayfly. Finally, a diversity controlling operator, as presented in Appendix

D, for ensuring diversity, is applied.

4.7.1 Multi-Objective MA for PLD

MOMA is another optimization algorithm built to perform in continuous landscapes. As a result,
the SPV rule, as presented in Appendix A, is used to convert its real values to discrete ones, for

once again. Moreover, to overcome possible problem-related difficulties, the fuzzy self-tuning
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method, as presented in Appendix C, is also used. Finally, a; and a» were selected to have different
values according to the dimension, using a method close to the dither method as presented in

equation (4.17) of Subsection 4.4, as:

a = Qqp,y +rand - (ahigh - alow) (4.41)

where a,,,, and ay; 45, are the highest and lowest values of a1 and az, and rand is a uniform random
number in the range of (0, 1).

Even though Zervoudakis and Tsafarakis (2020) provided MOMA’s best parameter settings in
their research, the performance of MOMA is not only highly dependent on its parameter settings,
but also on the dataset and the objectives to be optimized like all parameter-dependent
metaheuristics. For this reason, a fuzzy self-tuning method, as presented in Appendix C is used to
overcome this particular difficulty.

Similar to MOFA, to automatically determine the population size, MOMA exploits the

heuristic:

10+2Jmaximum number of products - total number of attribute levels l
3

N =

(4.42)

which sets the value of population size of both males and females according to the number of
dimensions of the search space.

Similar to MOPSO, the SLSPR method presented in Subsection 4.2.1.1 is used for selecting the
leaders for each male mayfly, while the female mayflies follow their closest males with whom
they mate.

To automatically determine the rest of MOMA’s parameters a fuzzy self-tuning method, as
presented in Appendix C, is used. During each iteration, each solution compute independently
their own values for § and ¢, which are used to calculate the output variables according to the
rules reported in Table 4.10.

In the consequent of these rules, the output variables are the MOMA'’s parameters, which
correspond to the respective settings of each solution. The final numerical value of this output
variable is calculated using the Sugeno method (Sugeno, 1985) as presented in equation C.3 of

Appendix C, according to Table 4.11.
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Table 4.10: Fuzzy rules used by MOMA

Rule no. Parameter Rule definition

1 g if (¢ is Worse or § is Same) then (g is Low)

2 if (¢ is Same or & is Near) then (g is Medium)

3 if (¢ is Better or § is Far) then (g is High)

4 aiow,1 and anign1  if (¢ is Worse or § is Far) then (a;y,1 and ap;gp 1 is Low)

5 if (¢ is Same or § is Same or & is Near) then (a;oy,1 and apigp 1 is Medium)
6 if (¢ is Better) then (a;oy, 1 and apigp 1 is High)

7 alow,2 and anign2  if (¢ is Better or § is Near) then (a;o, 2 and ap;gp » is Low)

8 if (¢ is Same or § is Same) then (a;oy, 2 and ap;gp, 2 is Medium)
9 if (¢ is Worse or § is Far) then (a;o,,» and apigp » is High)

10 mutation rate  if (¢ is Better or § is Near) then (mutation rate is Low)

11 if (o is Same or ¢ is Same) then (mutation rate is Medium)

12 if (o is Worse or § is Far) then (mutation rate is High)

Table 4.11: Output variables and their defuzzification for MOMA

Output Variable Low Medium High
g 0.1 0.5 1
T 0.1 0.4 0.6
Ahigh 0.4 0.6 0.9
Mutation rate 0.01 0.05 0.09

Similar to MOFA, since the parameters are now calculated according to the distance between

two mayflies, the movement of male mayfly i is now calculated as:

b { g - vij + ai(pbest;; — x{;) + ay(gbest; — x{;), if gbest dominates x; (4.43)

Y Apply mutation as described in Subsection B. 2, otherwise

because it was considered that the use of the exponential term is no longer needed. The same holds

for the movement of female mayfly i which is now calculated as:

SEH { g- vfj +a; (xf] — yf]) , if male dominates female (4.44)
A

Y pply mutation as described in Subsection B. 2, otherwise

A general pseudo-code for the proposed MOMA for PLD, similar to the one presented in the
work of Zervoudakis and Tsafarakis (2020), is shown in Algorithm 4.7.

In this research, a MOMA using the GT technique (MOMA-GT), a MOMA using the CD
techniqgue (MOMA-CD) and a MOMA using the RP technique (MOMA-RP), are applied.
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Algorithm 4.7: Multi-objective MA for MOPLD

1. Initialization

2. Select the number of male and female mayflies

3. Generate the initial population

4. Evaluate each solution

5. Store the non-dominated vectors found in an external Archive
6. Do until a stopping criterion is met

7. For each male and female mayfly

8. Calculate parameters

9. Update velocities and positions of males and females (equations 4.43-4.44)
10. Apply SPV rule

11. Evaluate according to the objective functions

12. if a new mayfly dominates its personal best

13. Replace personal best with the new solution

14, elseif no one dominates the other

15. Select randomly one of them

16. Mate the mayflies using equation (4.38)

17. Apply SPV rule

18. Evaluate offspring according to the objective functions

19. Separate offspring to male and female randomly

20. it an offspring dominates its same-sex parent

21. Replace parent with the offspring

22. elseif no one dominates the other

23. Select randomly one of them

24. Apply mutation as described in Subsection B.2

25. Apply SPV rule

26. Evaluate solutions according to the objective functions

217. Find the non-dominated solutions

28. Insert the non-dominated solutions found in the external Archive
29. Apply a diversity controlling operator

30. Return non-dominated solutions
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Chapter 5 Results

In this Chapter, the comparison of the multi-objective optimizers mentioned in Chapter 4, is
demonstrated, when performing on the MOPLD problem. Five scenarios, as presented in Table
5.1, have been used to compare their performances, using the two datasets mentioned in Subsection
3.2.2.

Table 5.1: Five different scenarios used in this research

Optimization Objectives to be used per scenario Number of
Types Products

First Scenario Multi-objective minimize Cost of development 2-10
maximize Market Share (%)

Scenarios

maximize Profit 2-10
minimize Cost of development
maximize Market Share (%)

Second Scenario  Multi-objective

maximize Profit 2-10
minimize Cost of development

maximize Market Share (%)

maximize Income

Third Scenario Many-objective

maximize Profit 2-10
minimize Cost of development

maximize Market Share (%)

maximize Income

maximize Buyer’s welfare

Fourth Scenario  Many-objective

maximize Profit 2-10
minimize Cost of development

maximize Market Share (%)

maximize Income

maximize Buyer’s welfare

maximize Commonality Index

Fifth Scenario Many-objective

ouklrwNdE OO E RPODME WONMNE NME

5.1 First Scenario: Using two objective functions

In this Subsection the performance of the algorithms when using two objective functions is

assessed. The two objective functions involved in this comparison, are presented in Table 5.1.

5.1.1 Results on the Timbuk?2 data set when using two objectives

Regarding the performance of the comparing algorithms while performing on the Timbuk?2 data
set when using two objectives, in Figure 5.1, the sets of non-dominated solutions, provided from

each algorithm in a random run, are presented.

PhD Dissertation by Konstantinos Zervoudakis



54

Results

100 T T T T

80

T

70

* SPEA-Il
+  PESA-I
NSGA-II

60

50

Market Share (%)

40

* A v 4 >

30

e ¥ + O @

NSGA-III
20

10

vda4P»>Peon x

MOEA/D

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-MOPSO-CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD

FST-MOPSO-RP-SLSPR|
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

| 1 | 1 I I L

0
0 2000 4000 6000 8000 10000 12000 14000
Cost

16000 18000

Figure 5.1: Detected non-dominated sets when using two objectives on the Timbuk?2 data

Figure 5.1 illustrates that some optimizers like NSGA-II, FST-MOMA-CD and FST-MOPSO-

CD appear to converge faster towards the optimal Pareto front.

Tables 5.2 and 5.3 show the results of the average C metric values of the comparing algorithms.

Cells shaded in light blue, indicate whether there is a statistically significant difference between

C(A,B) and C(B,A), according to a Mann Whitney U Test.

Table 5.2: Comparison of methods according their average C metric values when using two

objectives on the Timbuk2 data (Part 1)

< < o o
o 2 2 3 3§
CAB) Z = 3 3 37
e} ok Ee EA
s Yo 2o 2o 20
MOEA/D 1.00

SPEA-II
PESA-II

o
N
~

FST-DEMO-

GT

FST-MOFA-
FST-MOFA-
CD

FST-DEMO-
GT

CD
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C(AB)

NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-MOPSO-CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD

NSGA-III
FST-MOPSO-RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Table 5.3: Comparison of methods according their average C metric values when using two
objectives on the Timbuk?2 data (Part 2)

C(A,B)

FST-DEMO-

FST-MOFA-
RP

MOPSO-RP-
RP
MOTLBO-

MOGWO-
RP

MOTLBO-
NSGA-III
MOMA-RP
RP

MOTLBO-
CD

MOGWO-
MOGWO-
CD
GT

GT
FST-
FST-

MOEA/D
SPEA-II

PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-MOPSO-CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

o
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As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.2 demonstrates the violin plots which show the distribution of the time in seconds, each method
needed. White circles as well as black squares within these plots, correspond to the median and

mean values, respectively.
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Figure 5.2: Violin plots of Time values when using two objectives on the Timbuk?2 data

A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,136, p<0.001, £2=0.99. Their Median values along with the rest of statistics are

demonstrated in Table 5.4.

Table 5.4: Statistics of Time when using two objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 349 266 294 119 230 68.10
SPEA-II 299 286 284 280 19 497
PESA-II 179 169 167 163 16 4.69
NSGA-II 252 245 243 241 11 3.69
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Method Max Mean Median Min Range SD
FST-MOMA-GT 274 261 259 251 23 6.16
FST-MOMA-CD 550 534 529 524 26 8.24
FST-MOPSO-GT 242 226 225 215 27 6.42
FST-MOPSO-CD-SLSPR 399 388 385 376 23 6.23
FST-DEMO-GT 444 420 418 399 45 10.80
FST-DEMO-CD 619 602 597 586 33 9.19
FST-MOFA-GT 149 141 141 129 20 4.10
FST-MOFA-CD 613 598 595 581 32 8.44
MOGWO-GT 499 483 483 472 27 6.64
MOGWO-CD 572 558 557 551 21 5.47
MOTLBO-GT 135 127 126 119 16 4.25
MOTLBO-CD 347 335 332 327 20 5.38
NSGA-I1II 329 304 301 298 31 5.33
FST-MOPSO-RP-SLSPR 541 515 508 504 37 10.90
FST-MOMA-RP 673 650 644 637 36 10.40
FST-MOFA-RP 655 634 629 619 36 9.65
FST-DEMO-RP 861 825 813 808 53 17.20
MOGWO-RP 781 747 744 736 45 8.98
MOTLBO-RP 407 390 386 380 27 6.94

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.5, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.5: Pairwise comparisons of Time when using two objectives on the Timbuk2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

MOEA/D
PESA-1I
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

CIFST-MOMA-GT

' OISPEA-II

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

o
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Figure 5.2 and Table 5.4 illustrate that MOTLBO-GT needs the least time, while FST-DEMO-

RP needs the most.
As regards the M; metric values of each algorithm, Figure 5.3 demonstrates the violin plots of

the M values of each method.
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Figure 5.3: Violin plots of M1" metric values when using two objectives on the Timbuk2 data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=562, p<0.001, £2=0.49.

Their Median values along with the rest of statistics are demonstrated in Table 5.6.

Table 5.6: Statistics of M:” values when using two objectives on Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 18.3 11.2 11.1 2.2 16.1 35
SPEA-II 32.2 17.9 17.7 51 27.1 6.7
PESA-II 33.8 26.1 25.7 17.5 16.3 3.9
NSGA-II 15.0 4.1 4.0 0.8 14.2 2.7
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Method Max Mean Median Min Range SD
FST-MOMA-GT 355 27.1 26.9 224 13.1 2.9
FST-MOMA-CD 27.4 21.5 22.1 12.7 14.7 35
FST-MOPSO-GT 48.3 27.1 26.8 18.1 30.2 4.2
FST-MOPSO-CD-SLSPR 37.0 24.1 23.9 16.0 21.0 4.2
FST-DEMO-GT 315 24.1 24.1 17.2 14.3 3.2
FST-DEMO-CD 29.4 23.6 235 18.4 11.0 2.8
FST-MOFA-GT 31.8 25.5 25.7 19.8 12.0 2.6
FST-MOFA-CD 30.3 24.3 24.4 19.9 10.4 2.5
MOGWO-GT 35.0 23.1 22.9 15.1 19.9 4.3
MOGWO-CD 24.2 18.8 19.0 12.4 11.8 2.6
MOTLBO-GT 31.6 25.4 25.7 19.8 11.8 2.8
MOTLBO-CD 29.7 25.0 25.0 20.8 8.9 2.2
NSGA-I1II 375 26.2 255 18.7 18.8 4.8
FST-MOPSO-RP-SLSPR 52.7 29.5 28.7 23.1 29.6 4.5
FST-MOMA-RP 43.7 29.6 30.2 21.0 22.7 4.5
FST-MOFA-RP 31.9 24.8 24.6 19.9 12.0 2.8
FST-DEMO-RP 30.6 24.1 24.0 17.8 12.8 34
MOGWO-RP 33.1 22.3 21.5 11.9 21.2 4.9
MOTLBO-RP 319 25.5 25.0 20.3 11.6 2.7

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.7, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.7: Pairwise comparisons of M1~ when using two objectives on the Timbuk2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.3 and Table 5.6 illustrate that NSGA-I1 provides the closest to the optimal pareto front
non-dominated solutions, while FST-MOMA-RP provides the farthest. Table 5.7 reveals that FST-
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MOMA-RP does not have statistically significant differences with FST-MOMA-GT, FST-
MOPSO-GT, NSGA-IIl and FST-MOPSO-RP-SLSPR.
As regards the 4 values of each algorithm, Figure 5.4 demonstrates the violin plots of the 4

metric values, of each method.
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Figure 5.4: Violin plots of 4 metric values when using two objectives on the Timbuk2 data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=1,103, p<0.001, £2=0.96. Their Median values along with the rest of

statistics are demonstrated in Table 5.8.

Table 5.8: Statistics of 4 metric values when using two objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 1.94 171 1.76 1.44 0.50 0.16
SPEA-II 0.75 0.55 0.56 0.37 0.38 0.08
PESA-II 0.95 0.83 0.83 0.71 0.24 0.06
NSGA-II 0.34 0.31 0.31 0.26 0.08 0.02
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Method Max Mean Median Min Range SD
FST-MOMA-GT 0.85 0.75 0.75 0.67 0.18 0.05
FST-MOMA-CD 0.36 0.31 0.32 0.27 0.09 0.02
FST-MOPSO-GT 0.82 0.69 0.68 0.60 0.23 0.05
FST-MOPSO-CD-SLSPR 0.32 0.28 0.28 0.24 0.09 0.02
FST-DEMO-GT 1.09 0.97 0.98 0.82 0.27 0.06
FST-DEMO-CD 0.48 0.36 0.36 0.27 0.20 0.04
FST-MOFA-GT 0.77 0.64 0.63 0.51 0.26 0.05
FST-MOFA-CD 0.52 0.43 0.43 0.38 0.15 0.04
MOGWO-GT 1.62 1.21 1.17 0.88 0.75 0.16
MOGWO-CD 0.60 0.42 0.41 0.28 0.33 0.06
MOTLBO-GT 0.73 0.65 0.65 0.54 0.19 0.04
MOTLBO-CD 0.46 0.38 0.38 0.30 0.16 0.04
NSGA-I1II 0.93 0.79 0.78 0.67 0.26 0.06
FST-MOPSO-RP-SLSPR 0.76 0.66 0.65 0.53 0.23 0.05
FST-MOMA-RP 1.00 0.84 0.84 0.70 0.31 0.07
FST-MOFA-RP 0.97 0.85 0.85 0.76 0.21 0.05
FST-DEMO-RP 1.09 0.96 0.98 0.83 0.26 0.07
MOGWO-RP 1.61 1.28 1.28 0.90 0.71 0.18
MOTLBO-RP 0.81 0.73 0.74 0.63 0.18 0.04

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.9, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.9: Pairwise comparisons of 4 metric when using two objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

PESA-II
NSGA-II
NSGA-III

[a)]
<
wi
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-111
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

I SPEA-II
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Figure 5.4 and Table 5.8 illustrate that FST-MOPSO-CD-SLSPR provides the best distribution
among the non-dominated solutions, while MOEA/D provides the worst.
Finally, as regards the M3 values of each algorithm, Figure 5.5 demonstrates the violin plots of

the M3 values of each method.
100 - ,
Q‘@j’ e
‘ ‘T W W i a iR '{\}\ ‘ AL i /
90 % + ‘ * ? I + e T 9 #/ " é !

80

T

70

T

60 M
50 - \‘ |

40 -

30 Pl

20 |

1 O | 1 | 1

Figure 5.5: Violin plots of M3" metric values when using two objectives on the Timbuk2 data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=994.69, p<0.001, £2=0.87. Their Median values along with the rest

of statistics are demonstrated in Table 5.10.

Table 5.10: Statistics of Ms™ metric values when using two objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 78.92 45.38 43.69 17.05 61.87 15.63
SPEA-II 76.80 69.42 69.07 62.12 14.69 3.70
PESA-II 95.00 90.21 90.46 83.56 11.43 2.68
NSGA-II 99.59 97.85 97.85 96.03 3.56 0.78
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Method Max Mean Median Min Range SD
FST-MOMA-GT 97.60 95.35 95.41 92.66 4.93 1.12
FST-MOMA-CD 100.00 98.05 98.04 96.24 3.76 0.86
FST-MOPSO-GT 98.57 94.88 94.93 91.77 6.80 1.68
FST-MOPSO-CD-SLSPR 99.78 98.44 98.48 96.83 2.95 0.62
FST-DEMO-GT 93.27 90.16 90.01 87.12 6.15 1.57
FST-DEMO-CD 94.61 91.72 91.73 89.49 5.12 1.24
FST-MOFA-GT 93.45 91.39 91.31 88.47 4.98 1.15
FST-MOFA-CD 94.89 91.88 92.12 87.57 7.32 1.47
MOGWO-GT 93.69 87.66 88.33 79.39 14.30 3.42
MOGWO-CD 93.24 89.18 89.13 85.15 8.09 1.99
MOTLBO-GT 95.45 92.66 92.51 90.33 5.12 1.46
MOTLBO-CD 95.59 93.17 93.40 88.65 6.94 1.47
NSGA-I1II 97.30 94.58 94.40 90.16 7.14 1.24
FST-MOPSO-RP-SLSPR 98.96 97.01 97.16 94.85 4.10 0.93
FST-MOMA-RP 98.87 97.04 97.04 95.29 3.57 0.80
FST-MOFA-RP 94.42 92.04 92.20 88.80 5.62 1.23
FST-DEMO-RP 93.77 90.86 91.18 84.96 8.81 1.78
MOGWO-RP 93.18 88.27 88.17 79.22 13.96 2.36
MOTLBO-RP 95.43 93.41 93.46 90.81 4.62 1.17

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.11, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.11: Pairwise comparisons of Ms" metric when using two objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

[a]
<
i
o
=

PESA-1I
NSGA-II

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP
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Figure 5.5 and Table 5.10 illustrate that FST-MOPSO-CD-SLSPR provides the best extend of
the non-dominated solutions, while MOEA/D provides the worst. Table 5.11 reveals that FST-
MOPSO-CD-SLSPR does not have statistically significant differences with FST-MOMA-CD.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.6.
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Figure 5.6: Average convergence characteristic curves when using two objectives on the
Timbuk2 data

5.1.2 Results on the Olive oil data set when using two objectives

Regarding the performance of the comparing algorithms while performing on the olive oil data set
when using two objectives, in Figure 5.7, the sets of non-dominated solutions, provided from each
algorithm in a random run, are presented.

Figure 5.7 illustrates that some optimizers like NSGA-1I, FST-MOMA-CD, FST-MOMA-RP
and FST-MOPSO-CD appear to converge faster towards the optimal Pareto front.

Tables 5.12 and 5.13 show the results of the average C metric values of the comparing
algorithms. Cells shaded in light blue, indicate whether there is a statistically significant difference
between C(A,B) and C(B,A), according to a Mann Whitney U Test.
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Figure 5.7: Detected non-dominated sets when using two objectives on the Olive oil data

Table 5.12: Comparison of methods according their average C metric values when using

two objectives on the Olive oil data (Part 1)

T 2 & & . . . .

. S 2 2 222 2 % f

C(AB) T I I 3 3 %8 2 528 8 5 8

w ) Q [ [ [ [ [ [ [
S g W 2 95 98 95 98 9ok 98 95 28
MOEA/D 1.00 0.00 000 0.00 0.00 000 0.00 0.00 0.02 0.02 0.04 0.05
SPEA-II 068 100 0.17 000 011 001 023 001 086 094 1.00 1.00
PESA-I1I 0.33 014 100 008 045 038 048 037 068 071 0.99 0.99
NSGA-II 0.38 026 054 100 061 053 064 057 075 077 1.00 1.00
FST-MOMA-GT 039 019 0.15 002 100 012 034 008 0.71 0.72 100 1.00
FST-MOMA-CD 044 028 032 009 046 100 053 0.28 0.78 0.79 1.00 1.00
FST-MOPSO-GT 0.37 0.17 0.11 002 020 0.10 100 006 0.71 072 1.00 1.00
FST-MOPSO-CD-SLSPR | 0.42 0.26 029 0.07 047 0.29 055 100 0.7/ 0.78 1.00 1.00
FST-DEMO-GT 0.37 003 001 000 002 000 004 000 2100 0.32 093 0.93
FST-DEMO-CD 041 004 001 000 003 001 004 001 041 100 096 094
FST-MOFA-GT 0.25 000 0.01 000 0.01 000 0.02 000 011 010 12100 0.31
FST-MOFA-CD 0.25 001 001 000 001 000 001 000 011 009 031 1.00
MOGWO-GT 0.44 014 0.08 001 0.13 0.08 0.17 0.07 057 057 095 0.95
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' ' o O : - ) ;
R _ 3 £ 2 2292 2 £ f£
CAB) S I I 3 5 % 2 328 8B g s
205 % 8 I o fLm n28, fon.n
S 3 4 2 2L 98 9L £8 26 28 £& #8
MOGWO-CD 051 012 010 002 011 005 014 0.04 062 0.62 098 0.97
MOTLBO-GT 033 002 001 000 001 000 001 000 018 0.15 061 0.58
MOTLBO-CD 030 001 001 000 001 0.00 001 0.00 018 0.16 056 0.5
NSGA-III 048 036 046 002 057 043 068 046 088 0.89 1.00 1.00
FST-MOPSO-RP-SLSPR | 0.45 0.30 026 0.01 037 013 047 014 081 083 1.00 1.00
FST-MOMA-RP 036 022 022 001 037 017 046 016 079 078 1.00 1.00
FST-MOFA-RP 026 001 001 000 001 0.00 001 000 012 010 032 0.33
FST-DEMO-RP 0.39 004 000 000 003 000 002 000 041 037 095 0.97
MOGWO-RP 049 0.17 009 000 015 0.09 020 0.7 065 0.68 0.99 0.99
MOTLBO-RP 0.36 002 000 000 001 0.00 001 0.00 019 0.18 064 0.64
Table 5.13: Comparison of methods according their average C metric values when using
two objectives on the Olive oil data (Part 2)
¢ ¢ 8 8 T & L B &9 Q
C(AB) S 3 2 £ s .2 |_.<§E .1 .S 5 £
Sh S8 35 38 2 ©S vs 93 28 3% S%
MOEA/D 0.04 000 003 002 001 0.00 000 006 002 003 0.02
SPEA-II 052 072 097 098 004 008 010 100 088 047 098
PESA-II 050 059 092 096 011 040 041 099 067 050 0.93
NSGA-II 058 072 095 096 038 058 058 100 073 059 0.95
FST-MOMA-GT 049 059 094 096 006 020 022 099 070 051 094
FST-MOMA-CD 054 072 095 096 018 040 041 099 075 055 095
FST-MOPSO-GT 049 058 092 096 0.05 018 018 099 069 049 0.94
FST-MOPSO-CD-SLSPR | 055 0.70 095 096 016 040 041 100 0.76 055 0.95
FST-DEMO-GT 032 038 073 075 001 002 002 093 033 033 073
FST-DEMO-CD 029 036 078 075 001 003 003 093 038 029 0.73
FST-MOFA-GT 009 010 021 022 001 001 001 029 011 0.09 0.20
FST-MOFA-CD 010 010 021 022 001 001 001 029 012 010 0.1
MOGWO-GT 100 040 084 085 005 012 012 094 056 036 083
MOGWO-CD 028 100 087 087 006 009 013 097 061 026 0.86
MOTLBO-GT 043 017 100 041 0.01 001 002 057 017 013 035
MOTLBO-CD 014 016 038 1.00 0.01 001 001 056 018 0.11 0.36
NSGA-III 072 079 098 098 1.00 057 057 100 088 073 0.98
FST-MOPSO-RP-SLSPR 065 073 097 099 0.08 1.00 028 100 081 065 0.98
FST-MOMA-RP 061 070 096 097 006 033 100 099 076 060 0.96
FST-MOFA-RP 010 041 021 022 001 001 002 100 011 011 0.21
FST-DEMO-RP 033 039 080 078 000 0.02 002 095 100 030 0.77
MOGWO-RP 044 054 091 093 002 011 011 099 066 1.00 0.90
MOTLBO-RP 013 016 045 045 0.00 001 001 064 019 0.13 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure

5.8 demonstrates the violin plots which show the distribution of time each method needed.
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Figure 5.8: Violin plots of Time values when using two objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the time needed,
H(22)=1,129.97, p<0.001, £2=0.98. Their Median values along with the rest of statistics are
demonstrated in Table 5.14.

Table 5.14: Statistics of Time when using two objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 339.9 289.3 318.0 117.5 222.4 59.1
SPEA-II 365.5 318.5 315.9 298.0 67.5 14.4
PESA-II 225.9 195.8 192.1 187.9 38.0 9.3
NSGA-II 348.2 302.1 296.1 290.2 58.0 13.0
FST-MOMA-GT 206.7 175.6 173.6 163.4 43.3 9.1
FST-MOMA-CD 713.9 544.0 530.6 521.0 192.9 38.6
FST-MOPSO-GT 227.7 185.4 182.1 173.4 54.2 10.8
FST-MOPSO-CD-SLSPR 401.9 3415 338.7 328.6 73.4 11.7
FST-DEMO-GT 307.3 267.0 265.7 245.4 62.0 11.9
FST-DEMO-CD 554.9 490.8 486.9 469.0 85.8 17.8
FST-MOFA-GT 117.7 95.8 94.1 90.6 27.1 4.8
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Method Max Mean Median Min Range SD
FST-MOFA-CD 261.2 203.0 199.4 189.5 71.7 13.0
MOGWO-GT 533.6 441.9 438.2 394.8 138.8 23.9
MOGWO-CD 649.1 527.8 518.5 489.4 159.7 28.2
MOTLBO-GT 115.8 84.1 82.2 76.5 39.3 6.8
MOTLBO-CD 1375 110.3 108.9 99.2 38.3 7.5
NSGA-III 446.1 357.1 352.9 342.2 103.8 16.1
FST-MOPSO-RP-SLSPR 496.1 440.5 436.2 422.0 74.2 15.3
FST-MOMA-RP 698.8 631.2 625.2 603.6 95.3 20.4
FST-MOFA-RP 266.9 220.1 218.7 203.0 63.9 10.9
FST-DEMO-RP 782.8 673.3 670.1 636.1 146.7 245
MOGWO-RP 802.6 691.2 684.3 665.5 137.1 24.3
MOTLBO-RP 166.7 140.0 137.7 115.9 50.8 13.7

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.15, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.15: Pairwise comparisons of Time when using two objectives on the Olive oil data

Method

[a)]
<
w
o
=

' ©ISPEA-II

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

FST-MOPSO-CD-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT

FST-DEMO-GT

FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD

FST-MOPSO-RP-SLSPR

FST-MOMA-RP

FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

Figure 5.8 and Table 5.14 illustrate that MOTLBO-GT needs the least time, while MOGWO-

RP needs the most.

As regards the M; metric values of each algorithm, Figure 5.9 demonstrates the violin plots of

the M7 values of each method.
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Figure 5.9: Violin plots of M:" metric values when using two objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=469.58, p<0.001,
£2=0.41. Their Median values along with the rest of statistics are demonstrated in Table 5.16.

Table 5.16: Statistics of M:” values when using two objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 35.0 13.5 12.2 3.4 316 6.8
SPEA-II 235 10.7 11.6 0.7 22.8 5.8
PESA-II 178.8 26.3 15.9 6.2 172.6 30.4
NSGA-II 295 3.3 0.3 0.0 295 5.9
FST-MOMA-GT 130.3 25.2 18.8 8.3 122.0 21.3
FST-MOMA-CD 82.9 145 11.9 6.1 76.9 115
FST-MOPSO-GT 57.6 21.2 17.1 9.2 48.4 115
FST-MOPSO-CD-SLSPR 124.6 215 15.6 8.0 116.6 19.1
FST-DEMO-GT 45.4 19.6 18.2 8.5 36.9 6.1
FST-DEMO-CD 42.2 17.7 16.6 9.6 32.6 5.4
FST-MOFA-GT 126.3 28.4 21.9 11.0 115.3 21.3
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Method Max Mean Median Min Range SD
FST-MOFA-CD 127.4 31.0 23.7 10.3 117.2 22.9
MOGWO-GT 51.5 15.2 12.7 4.8 46.7 8.6
MOGWO-CD 73.5 13.1 10.6 5.7 67.8 10.9
MOTLBO-GT 79.7 22.8 20.2 12.8 66.9 104
MOTLBO-CD 75.1 27.2 225 11.8 63.3 13.9
NSGA-III 14.4 9.5 9.3 4.4 10.0 2.3
FST-MOPSO-RP-SLSPR 324 15.7 14.8 7.0 255 4.8
FST-MOMA-RP 83.9 18.7 15.9 7.4 76.4 11.8
FST-MOFA-RP 102.5 28.9 21.4 11.8 90.7 20.5
FST-DEMO-RP 36.7 19.1 17.9 11.6 25.1 5.4
MOGWO-RP 39.5 15.6 14.2 6.8 32.7 6.5
MOTLBO-RP 59.8 25.6 21.9 11.6 48.3 11.1

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.17, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.17: Pairwise comparisons of M:" when using two objectives on the Olive oil data

Method

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
MOTLBO-CD

©|FST-MOPSO-RP-SLSPR
S|FST-MOMA-RP

[a)]
<
w
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

' ©ISPEA-II
S ©MOGWO-CD
S ©INSGA-1II

© © 2 MOGWO-GT
© © 2 MOGWO-RP

Figure 5.9 and Table 5.16 illustrate that NSGA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-CD provides the farthest ones. Table 5.17
reveals that FST-MOFA-CD does not have statistically significant differences with PESA-II, FST-
MOMA-GT, FST-MOPSO-GT, FST-MOPSO-CD-SLSPR, FST-DEMO-GT, FST-DEMO-CD,

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 71

FST-MOFA-GT, MOTLBO-GT, MOTLBO-CD, FST-MOFA-RP, FST-DEMO-RP, MOTLBO-
RP.
As regards the 4 values of each algorithm, Figure 5.10 demonstrates the violin plots of the 4

metric values, of each method.
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Figure 5.10: Violin plots of 4 metric values when using two objectives on the Olive oil data

A Kruskal-Wallis test revealed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=809.37, p<0.001, £2=0.71. Their Median values along with the rest of

statistics are demonstrated in Table 5.18.

Table 5.18: Statistics of 4 metric values when using two objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 1.98 1.80 1.86 1.48 0.50 0.16
SPEA-II 1.28 0.97 0.95 0.71 0.57 0.13
PESA-II 1.39 1.28 1.28 1.13 0.26 0.06
NSGA-II 1.00 0.88 0.89 0.74 0.25 0.06
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Method Max Mean Median Min Range SD
FST-MOMA-GT 1.39 1.17 1.16 1.03 0.35 0.07
FST-MOMA-CD 1.20 1.01 1.02 0.67 0.53 0.10
FST-MOPSO-GT 1.33 1.13 1.12 0.96 0.36 0.07
FST-MOPSO-CD-SLSPR 1.14 0.97 0.98 0.78 0.36 0.08
FST-DEMO-GT 1.46 1.32 1.33 1.10 0.36 0.07
FST-DEMO-CD 1.30 1.05 1.04 0.89 0.41 0.10
FST-MOFA-GT 1.28 1.10 1.11 0.91 0.37 0.07
FST-MOFA-CD 1.26 1.10 1.09 0.94 0.32 0.08
MOGWO-GT 1.73 1.50 1.50 1.28 0.45 0.10
MOGWO-CD 1.36 1.15 1.16 0.80 0.56 0.11
MOTLBO-GT 1.27 1.08 1.10 0.85 0.42 0.10
MOTLBO-CD 1.26 1.11 1.12 0.93 0.33 0.09
NSGA-III 1.35 1.17 1.17 1.04 0.31 0.07
FST-MOPSO-RP-SLSPR 1.34 1.15 1.14 0.90 0.44 0.09
FST-MOMA-RP 1.28 1.13 1.13 0.99 0.29 0.07
FST-MOFA-RP 1.33 1.10 1.10 0.94 0.39 0.08
FST-DEMO-RP 1.50 1.27 1.27 1.06 0.43 0.08
MOGWO-RP 1.68 1.43 1.43 1.19 0.49 0.09
MOTLBO-RP 1.25 1.11 1.12 0.88 0.38 0.09

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.19, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.19: Pairwise comparisons of 4 metric when using two objectives on the Olive oil
data

Method

FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

PESA-1I
NSGA-II
NSGA-I11
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MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP
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Figure 5.10 and Table 5.18 illustrate that NSGA-II provides the best distribution among the
non-dominated solutions, while MOEA/D provides the worst.
Finally, as regards the M3 values of each algorithm, Figure 5.11 demonstrates the violin plots

of the M3 values of each method.
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Figure 5.11: Violin plots of Ms" metric values when using two objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=606.62, p<0.001, £2=0.53. Their Median values along with the rest

of statistics, are demonstrated in Table 5.20.

Table 5.20: Statistics of M3~ metric values when using two objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 58.90 28.82 28.27 0.00 58.90 12.50
SPEA-II 51.55 28.74 27.53 20.10 31.45 6.59
PESA-II 93.09 80.47 81.32 68.55 24.54 4,74
NSGA-II 88.41 81.43 81.79 72.13 16.28 4.30
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Method Max Mean Median Min Range SD
FST-MOMA-GT 93.97 77.45 77.50 64.55 29.41 7.01
FST-MOMA-CD 93.05 76.40 76.59 60.04 33.01 6.70
FST-MOPSO-GT 90.92 75.48 75.57 58.93 31.99 7.93
FST-MOPSO-CD-SLSPR 94.96 79.81 79.82 68.09 26.88 6.52
FST-DEMO-GT 80.12 67.89 68.06 55.38 24.74 5.65
FST-DEMO-CD 94.93 68.77 67.67 56.32 38.60 8.32
FST-MOFA-GT 100.00 79.94 79.51 60.04 39.96 8.25
FST-MOFA-CD 99.37 80.14 79.34 64.16 35.21 9.34
MOGWO-GT 90.70 68.23 67.27 52.81 37.89 8.96
MOGWO-CD 98.58 74.30 74.29 58.76 39.82 8.62
MOTLBO-GT 93.27 75.64 75.73 54.93 38.34 8.20
MOTLBO-CD 98.35 79.47 78.60 59.45 38.90 9.00
NSGA-III 72.88 57.70 57.78 50.65 22.23 5.16
FST-MOPSO-RP-SLSPR 87.42 72.30 71.09 61.03 26.39 6.31
FST-MOMA-RP 86.41 71.08 69.40 57.54 28.87 6.79
FST-MOFA-RP 97.72 79.60 79.75 63.24 34.48 8.00
FST-DEMO-RP 82.41 65.51 67.02 48.52 33.88 7.67
MOGWO-RP 89.66 69.36 70.27 49.03 40.63 10.17
MOTLBO-RP 98.64 78.78 78.13 57.52 41.12 8.03

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.21, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.21: Pairwise comparisons of Ms" metric when using two objectives on the Olive oil

data

Method

[a)]
<
wi
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

' ©SPEA-II
PESA

FST-MOPSO-CD-SLSPR

FST-MOPSO-GT

FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT

FST-MOFA-CD

NSGA-III
FST-MOPSO-RP-SLSPR
FST-MOMA-RP

FST-MOFA-RP

FST-DEMO-RP
MOGWO-RP
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Figure 5.11 and Table 5.20 illustrate that NSGA-II provides the best extend of the non-
dominated solutions, while SPEA-II provides the worst. Table 5.21 reveals that SPEA-I1 does not
have statistically significant differences with MOEA/D, as well as that NSGA-II does not have
statistically significant differences with PESA-Il, FST-MOMA-GT, FST-MOPSO-CD-SLSPR,
FST-MOFA-GT, FST-MOFA-CD, MOTLBO-CD, FST-MOFA-RP and MOTLBO-RP.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.12.

1400 T T T 78

| MOEAD
-~~~ SPEA

PESAII = s
- NSGA-Il e /
| ——FsT-MOMA-GT b 3
| FST-MOMA-CD > 4
| ===~ FST-MOPSO-GT
L|+++ase FST-MOPSO-CD-SLSPR
| st FST-DEMO-GT
‘ FST-DEMO-CD
e = FST-MOFA-GT
[ |+ e = FST-MOFA-CD
MOGWO-GT
| nOGWO-CD
| IOTLBO-GT
|» =@« pOTLBO-CD
Il NSGA-II
| == FST-MOPSO-RP-SLSPR
= FST-MOMA-RP
| FST-MOFA-RP
68 | mmfm FST-DEMO-RP
@ MOGWO-RP
| sl nMOTLBO-RP

4
1200

~
&

——— MOEA/D

-~ - - SPEAIl

1000 PESA-II

»»»» NSGA-II

~——— FST-MOMA-GT
FST-MOMA-CD

800 |= === FST-MOPSO-GT

seese FST-MOPSO-CD-SLSPR

s FST-DEMO-GT
FST-DEMO-CD

==t = FST-MOFA-GT

== = FST-MOFA-CD
MOGWO-GT

= MOGWO-CD

== MOTLBO-GT

400 |4 ww » MOTLEO-CD
NSGA-IIl

=== FST-MOPSO-RP-SLSPR

= FST-MOMA-RP

200 | = = | FST-MOFA-RP

s FST-DEMO-RP

= MOGWO-RP
MOTLBO-RP

0 e il ifih i i il 4 b AR I

10° 10! 10% 10° 10* 10° 10° 10’ 107 10% 104 10°

Function Evaluations Function Evaluations

~
2

~
N

Cost
Market Share (%)

600

~
=]

Figure 5.12: Average convergence characteristic curves when using two objectives on the Olive

oil data

5.2 Second Scenario: Using three objective functions

In this Subsection the performance of the algorithms when using three objective functions is
assessed. Three objective functions are involved in the first comparison, as presented in Table 5.1.

5.2.1 Results on the Timbuk2 data set when using three objectives

Regarding the performance of the comparing algorithms while performing on the Timbuk2 data
set when using three objectives, in Figure 5.13, the sets of non-dominated solutions, provided from
each algorithm in a random run, are presented.

Tables 5.22-5.23 show the results of the average C metric values of the comparing algorithms.
Cells shaded in light blue, indicate whether there is a statistically significant difference between
C(A,B) and C(B,A), according to a Mann Whitney U test.
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Figure 5.13: Detected non-dominated sets when using three objectives on the Timbuk?2 data

Table 5.22: Comparison of methods according their average C metric values when using

three objectives on the Timbuk?2 data (Part 1)

- U

R S 2 2 222 2 & ¢

CAB) T I I I £ &8 g g2y B 8 8

T S S L S
S 5 W 2 95 98 95 98 2% 28 ?5 28
MOEA/D 1.00 0.01 0.14 0.03 0.11 006 0.24 0.09 002 0.03 036 0.30
SPEA-II 0.17 100 055 012 066 056 081 0.62 053 055 094 0.93
PESA-II 0.06 001 100 0.02 024 0.12 035 0.16 0.15 0.16 053 0.50
NSGA-II 0.20 0.08 037 100 0.46 044 058 053 0.27 032 0.65 0.69
FST-MOMA-GT 0.06 000 0.08 001 100 0.05 0.23 0.10 0.09 0.08 0.50 0.46
FST-MOMA-CD 0.09 000 0.16 0.04 022 100 034 0.22 012 0.14 053 054
FST-MOPSO-GT 0.04 000 0.05 0.00 010 0.04 1.00 0.07 0.07 0.07 041 0.37
FST-MOPSO-CD-SLSPR | 0.09 ' 000 0.13 004 019 014 028 100 0.10 0.11 0.48 0.49
FST-DEMO-GT 0.13 0.00 0.20 0.03 025 015 042 0.22 100 0.12 0.70 0.67
FST-DEMO-CD 0.15 001 021 0.05 027 017 042 0.24 0.16 100 0.71 0.71
FST-MOFA-GT 0.02 0.00 0.02 0.00 002 001 0.07 0.02 0.00 0.00 100 0.13
FST-MOFA-CD 0.03 0.00 0.03 001 0.02 0.01 009 0.03 001 001 025 1.00
MOGWO-GT 0.11 0.02 027 004 034 022 051 030 021 0.20 0.75 0.70
MOGWO-CD 0.18 0.03 030 0.07 038 030 053 035 025 0.27 0.76 0.75
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T T oI O' ! ! 1 1

R S 2 2 222 2 § ¢

C(AB) g I T z 2 ¢ ¢ g w g ¢

g 3 5 F T E f2Q2 2oz 0F
S g W 2 95 9383 95 928 95 28 95 923
MOTLBO-GT 0.04 000 0.04 000 0.04 001 0.10 004 0.02 001 0.29 0.23
MOTLBO-CD 0.05 000 0.06 001 0.06 003 0.17 007 0.04 0.03 0.40 0.36
NSGA-III 0.04 002 0.17 006 028 029 037 032 015 0.18 0.44 0.45
FST-MOPSO-RP-SLSPR 0.02 000 0.05 001 0.13 0.07 0.17 0.10 0.09 0.11 0.33 0.33
FST-MOMA-RP 0.03 001 010 003 021 0.15 0.27 0.17 0411 0.15 042 043
FST-MOFA-RP 0.02 000 0.02 001 002 001 004 002 001 001 026 017
FST-DEMO-RP 011 001 0.17 1003 025 0.13 039 020 0.18 ' 014 0.72 0.70
MOGWO-RP 0.09 001 0.18 0.02 024 014 041 0.18 0.18 0.17 0.67 0.64
MOTLBO-RP 0.02 000 0.03 000 0.03 001 0.08 003 0.04 002 0.36 0.28

Table 5.23: Comparison of methods according their average C metric values when using
three objectives on the Timbuk?2 data (Part 2)

o
- o ! | o o
e S 9 9 3. ¢ 4 o &
C(AB) g g 2 8 = 0% o S & 2 g
40 1 ¢ 39 3 S A -
8 8 b b g g2 e 3 b
S =S = 3 zZ 2 g 2 @ s =
MOEA/D 005 002 024 020 018 031 004 008 004 004 014
SPEA-II 035 031 089 084 049 077 052 061 049 029 073
PESA-II 009 010 046 038 012 033 016 042 015 009 043
NSGA-II 017 024 061 060 036 060 035 043 027 017 050
FST-MOMA-GT 005 006 040 030 009 027 008 038 007 006 036
FST-MOMA-CD 007 010 046 042 016 039 016 038 012 009 0.40
FST-MOPSO-GT 004 005 031 024 005 020 006 033 006 004 031
FST-MOPSO-CD-SLSPR | 0.07 0.09 040 037 015 035 013 034 010 007 035
FST-DEMO-GT 010 008 058 047 020 045 017 042 016 011 045
FST-DEMO-CD 011 013 059 051 022 046 019 044 016 012 048
FST-MOFA-GT 001 000 009 005 003 012 002 010 001 001 0.09
FST-MOFA-CD 001 002 014 009 005 015 002 018 001 002 0.14
MOGWO-GT 100 009 064 053 026 052 023 038 018 012 048
MOGWO-CD 016 100 068 062 034 056 026 042 023 017 050
MOTLBO-GT 002 002 100 011 005 018 003 020 002 002 017
MOTLBO-CD 003 005 027 1.00 008 024 005 028 004 003 026
NSGA-III 009 012 040 038 100 053 036 039 018 011 041
FST-MOPSO-RP-SLSPR | 0.05 0.09 029 026 003 1.00 008 036 011 006 033
FST-MOMA-RP 006 011 038 033 006 036 1.00 042 015 009 0.41
FST-MOFA-RP 002 003 014 007 003 007 002 100 001 002 0.14
FST-DEMO-RP 011 010 060 048 017 041 020 056 100 012 055
MOGWO-RP 011 011 053 048 019 042 019 050 019 1.00 0.49
MOTLBO-RP 003 004 023 011 003 011 003 036 003 003 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.14 demonstrates the violin plots which show the distribution of time each method needed. A
Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,144.26, p<0.001, £2=1.00. Their Median values along with the rest of statistics are
demonstrated in Table 5.24.
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Figure 5.14: Violin plots of Time values when using three objectives on the Timbuk2 data

Table 5.24: Statistics of Time when using three objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 319.78 288.00 287.87 227.94 91.85 17.70
SPEA-II 295.06 292.07 292.17 289.55 5.52 1.18
PESA-II 213.29 210.18 210.20 206.86 6.42 1.43
NSGA-II 247.43 245.72 245.60 244.73 2.71 0.63
FST-MOMA-GT 405.16 388.09 389.53 374.11 31.05 6.02
FST-MOMA-CD 548.22 537.27 536.38 532.93 15.30 2.58
FST-MOPSO-GT 281.79 275.87 275.81 271.49 10.30 1.99
FST-MOPSO-CD-SLSPR 396.45 392.54 392.29 389.86 6.59 1.45
FST-DEMO-GT 501.66 483.26 483.35 467.49 34.17 7.27
FST-DEMO-CD 611.62 606.01 605.80 602.61 9.01 1.95
FST-MOFA-GT 217.93 211.73 211.97 205.86 12.07 2.80
FST-MOFA-CD 613.96 608.61 608.61 604.72 9.24 2.35
MOGWO-GT 507.74 497.92 497.76 491.02 16.72 3.50
MOGWO-CD 580.89 563.65 563.10 560.05 20.84 3.12
MOTLBO-GT 181.59 175.12 175.77 167.43 14.16 3.07
MOTLBO-CD 349.55 341.19 340.99 338.19 11.37 1.95
NSGA-III 327.04 324.81 324.78 323.37 3.67 0.74
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 558.54 548.93 548.52 545.27 13.27 2.30
FST-MOMA-RP 682.76 675.83 675.37 672.43 10.33 2.18
FST-MOFA-RP 662.70 657.67 657.76 652.28 10.42 2.08
FST-DEMO-RP 895.16 888.01 887.59 883.41 11.75 2.43
MOGWO-RP 800.29 794.22 794.44 788.70 11.59 2.27
MOTLBO-RP 418.94 413.83 413.99 411.42 7.52 1.44

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.25, 0 indicates that there were not statistically significant differences between
groups, while 1 indicates that there were statistically significant differences between them.

Table 5.25: Pairwise comparisons of Time when using three objectives on the Timbuk?2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

NSGA-11

[a)]
<
w
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

' ©ISPEA-II

Figure 5.14 and Table 5.24 illustrate that MOTLBO-GT needs the least time, while FST-
DEMO-RP needs the most.

As regards the M; metric values of each algorithm, Figure 5.15 demonstrates the violin plots of
the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distance of the obtained non-dominated solutions from the optimal Pareto
front, H(22)=909.31, p<0.001, £2=0.79. Their Median values along with the rest of statistics are
demonstrated in Table 5.26.
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Figure 5.15: Violin plots of M:" metric values when using three objectives on the Timbuk2 data

Table 5.26: Statistics of M1” values when using three objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 182.56 70.57 70.10 0.00 182.56 46.92
SPEA-II 95.44 25.13 17.43 0.00 95.44 23.04
PESA-II 390.61 251.58 259.29 117.36 273.24 73.16
NSGA-II 113.08 33.62 28.58 3.57 109.52 22.34
FST-MOMA-GT 429.56 271.46 262.15 173.64 255.92 52.31
FST-MOMA-CD 236.36 163.06 164.20 101.97 134.39 35.56
FST-MOPSO-GT 476.17 307.13 299.73 233.15 243.02 53.52
FST-MOPSO-CD-SLSPR 300.75 176.94 172.74 93.42 207.32 45.47
FST-DEMO-GT 277.84 180.35 177.46 112.88 164.95 35.25
FST-DEMO-CD 258.34 159.32 152.03 79.16 179.19 36.15
FST-MOFA-GT 591.82 371.26 368.97 265.12 326.70 65.07
FST-MOFA-CD 462.99 309.87 309.41 217.16 245.83 52.19
MOGWO-GT 470.72 160.68 143.17 33.35 437.37 87.89
MOGWO-CD 223.57 104.00 100.19 33.64 189.93 32.85
MOTLBO-GT 468.67 324.90 323.53 207.32 261.35 53.81
MOTLBO-CD 367.69 253.00 249.96 163.90 203.79 42.85
NSGA-III 193.14 119.20 107.97 66.05 127.09 31.99
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 564.10 286.64 274.76 196.32 367.78 64.55
FST-MOMA-RP 531.39 243.09 224.21 130.14 401.25 81.95
FST-MOFA-RP 825.75 426.45 408.99 280.02 545.73 98.64
FST-DEMO-RP 521.58 231.86 230.90 122.87 398.71 62.80
MOGWO-RP 545.43 211.14 196.70 43.09 502.33 117.66
MOTLBO-RP 565.26 397.59 384.18 237.21 328.05 81.67

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.27, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.27: Pairwise comparisons of M1~ when using three objectives on the Timbuk?2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

NSGA-III

[a)]
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MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.15 and Table 5.26 illustrate that SPEA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-RP provides the farthest ones. Table 5.27
reveals that SPEA-11 does not have statistically significant differences with NSGA-II, while FST-
MOFA-RP does not have statistically significant differences with FST-MOFA-GT and MOTLBO-
RP.

As regards the 4 values of each algorithm, Figure 5.16 demonstrates the violin plots of the 4
metric values, of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distribution of the solutions, H(22)=901.23, p<0.001, £2=0.78. Their
Median values along with the rest of statistics are demonstrated in Table 5.28.
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Figure 5.16: Violin plots of 4 metric values when using three objectives on the Timbuk2 data

Table 5.28: Statistics of 4 metric values when using three objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 154 1.29 1.30 1.04 0.49 0.12
SPEA-II 0.73 0.60 0.60 0.49 0.24 0.06
PESA-II 0.88 0.77 0.77 0.67 0.21 0.05
NSGA-II 0.87 0.75 0.75 0.60 0.27 0.06
FST-MOMA-GT 0.92 0.77 0.78 0.68 0.24 0.05
FST-MOMA-CD 0.87 0.71 0.71 0.61 0.27 0.05
FST-MOPSO-GT 0.80 0.70 0.71 0.61 0.20 0.05
FST-MOPSO-CD-SLSPR 0.84 0.71 0.70 0.59 0.25 0.04
FST-DEMO-GT 0.99 0.86 0.86 0.74 0.24 0.05
FST-DEMO-CD 0.83 0.71 0.71 0.58 0.24 0.05
FST-MOFA-GT 0.78 0.69 0.69 0.57 0.21 0.04
FST-MOFA-CD 0.77 0.68 0.68 0.60 0.17 0.04
MOGWO-GT 1.33 1.15 1.15 0.91 0.42 0.11
MOGWO-CD 0.94 0.80 0.80 0.66 0.28 0.06
MOTLBO-GT 0.85 0.71 0.70 0.60 0.24 0.05
MOTLBO-CD 0.83 0.69 0.71 0.57 0.26 0.06
NSGA-III 1.08 0.86 0.85 0.73 0.35 0.08
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 0.90 0.78 0.79 0.66 0.23 0.06
FST-MOMA-RP 1.11 0.89 0.89 0.71 0.40 0.08
FST-MOFA-RP 0.99 0.88 0.87 0.78 0.21 0.05
FST-DEMO-RP 1.07 0.93 0.93 0.76 0.31 0.06
MOGWO-RP 1.73 1.28 1.27 1.00 0.73 0.17
MOTLBO-RP 0.93 0.81 0.82 0.67 0.26 0.07

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.29, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.29: Pairwise comparisons of 4 metric when using three objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

=MOGWO-RP
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MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.16 and Table 5.28 illustrate that SPEA-II provides the best distribution among the non-
dominated solutions, while MOEA/D provides the worst. According to Table 5.29, MOEA/D does
not have statistically significant differences with MOGWO-RP.

Finally, as regards the M3 values of each algorithm, Figure 5.17 demonstrates the violin plots
of the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the extent of the obtained Pareto front, H(22)=1,023.45, p<0.001, ¢2=0.89.

Their Median values along with the rest of statistics, are demonstrated in Table 5.30.
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Figure 5.17: Violin plots of Ms™ metric values when using three objectives on the Timbuk?2 data

Table 5.30: Statistics of Ms™ metric values when using three objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 78.49 67.59 68.00 57.51 20.98 5.17
SPEA-II 76.64 69.16 69.51 60.81 15.83 3.33
PESA-II 93.91 89.84 89.96 85.01 8.89 1.89
NSGA-II 100.00 98.87 98.96 97.48 2.52 0.67
FST-MOMA-GT 93.71 89.80 90.00 85.38 8.33 1.82
FST-MOMA-CD 98.59 97.25 97.30 95.31 3.28 0.73
FST-MOPSO-GT 95.14 89.93 90.07 85.53 9.60 2.22
FST-MOPSO-CD-SLSPR 99.24 97.71 97.80 95.86 3.39 0.73
FST-DEMO-GT 87.32 84.66 84.99 79.77 7.56 1.57
FST-DEMO-CD 90.62 87.56 87.46 85.56 5.06 1.18
FST-MOFA-GT 87.62 83.33 83.19 80.01 7.61 1.66
FST-MOFA-CD 88.48 86.54 86.46 84.65 3.83 0.82
MOGWO-GT 88.45 80.19 80.96 65.51 22.94 4.74
MOGWO-CD 88.92 86.22 86.33 83.80 5.11 1.35
MOTLBO-GT 88.80 86.29 86.19 83.46 5.34 1.33
MOTLBO-CD 91.30 87.95 88.06 85.30 5.99 111
NSGA-III 96.66 92.62 92.89 84.80 11.85 2.08
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 95.29 92.60 92.60 90.27 5.01 1.19
FST-MOMA-RP 95.84 92.26 93.03 73.70 22.13 3.87
FST-MOFA-RP 88.77 85.27 85.06 82.86 5.91 1.16
FST-DEMO-RP 88.20 84.57 84.44 81.70 6.50 1.50
MOGWO-RP 88.44 82.37 82.57 75.62 12.82 2.89
MOTLBO-RP 90.24 85.99 85.83 79.08 11.15 1.55

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.31, 0 indicates that there were not statistically significant differences between
groups, while 1 indicates that there were statistically significant differences between them.

Table 5.31: Pairwise comparisons of Ms" metric when using three objectives on the
Timbuk?2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

MOEA/D
FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

' OISPEA-II

o

Figure 5.17 and Table 5.30 illustrate that NSGA-II provides the best extend of the non-
dominated solutions, while MOEA/D provides the worst. Table 5.31 reveals that MOEA/D does
not have statistically significant differences with SPEA-II.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.18.
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Figure 5.18: Average convergence characteristic curves when using three objectives on the
Timbuk2 data

5.2.2 Results on the Olive oil data set when using three objectives

Regarding the performance of the comparing algorithms while performing on the olive oil data set
when using three objectives, in Figure 5.19, the sets of non-dominated solutions, provided from
each algorithm in a random run, are presented.

Tables 5.32-5.33 show the results of the average C metric values of the comparing algorithms.
Cells shaded in light blue, indicate whether there is a statistically significant difference between
C(A,B) and C(B,A), according to a Mann Whitney U Test.
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Figure 5.19: Detected non-dominated sets when using three objectives on the Olive oil data

Table 5.32: Comparison of methods according their average C metric values when using

three objectives on the Olive oil data (Part 1)

1 1 CI) CI) ! ! 1 1

R % 2 92292 2 & ¢

C(AB) T T T I 2 & & g4 ¥ g g

g g5 £ S I O Z fp2 2 F Z
S o L 2 95 98 95 28 25 28 25 28
MOEA/D 1.00 0.00 0.02 0.03 0.07 0.02 006 0.04 019 0.14 0.26 0.26
SPEA-II 056 100 054 042 072 059 071 065 090 089 095 0.9
PESA-II 0.10 000 100 0.15 022 018 025 024 031 034 048 0.49
NSGA-II 0.12 001 018 100 025 021 026 025 0.27 030 0.38 0.40
FST-MOMA-GT 0.12 000 0.10 0.13 100 0.13 020 0.19 0.33 0.33 050 0.51
FST-MOMA-CD 0.09 000 0.13 010 022 100 024 021 026 030 041 o0.43
FST-MOPSO-GT 0.11 000 0.08 0.11 0.14 011 100 0.16 0.29 030 0.46 047
FST-MOPSO-CD-SLSPR | 0.09 000 0.11 0.09 0.18 1 0.14 0.19 100 0.23 0.26 0.36 0.38
FST-DEMO-GT 0.09 000 0.07 017 010 011 0.14 019 100 0.18 0.40 0.39
FST-DEMO-CD 0.08 0.00 006 0.13 0.10 0.10 0.13 0.17 0.23 100 042 042
FST-MOFA-GT 0.04 000 0.03 009 0.04 005 0.07 011 0.10 007 100 0.19
FST-MOFA-CD 0.04 000 0.02 008 0.04 005 0.07 010 0.10 0.09 0.21 1.00
MOGWO-GT 030 001 034 036 049 040 051 050 066 063 082 0.78
MOGWO-CD 029 002 030 027 043 036 047 042 065 067 077 0.77
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' ' o O : . ) ;
. _$ £ 2 2292 2 § &
C(A,B) <\( = = = (@] O O (@] 9 w w (@) (@]
i3 3 3z 2.2 zd¢8 ¢ = ¢z
S 5 4 2 2L 28 9L £8 26 28 ©& #8
MOTLBO-GT 0.07 000 003 011 005 006 009 013 015 012 029 0.28
MOTLBO-CD 0.06 0.0 0.04 010 005 006 009 012 015 012 030 0.30
NSGA-11I 0.09 000 027 021 034 029 037 034 030 032 047 049
FST-MOPSO-RP-SLSPR | 0.06 ' 0.00 0.17 013 024 016 026 021 021 025 039 041
FST-MOMA-RP 0.04 0.00 021 014 028 019 029 025 020 024 036 040
FST-MOFA-RP 0.03 0.00 004 010 004 006 008 0.12 009 008 023 0.8
FST-DEMO-RP 0.07 0.00 0.07 014 0.09 010 014 017 023 019 040 0.38
MOGWO-RP 020 001 026 023 034 029 039 034 062 058 075 0.74
MOTLBO-RP 0.05 000 004 010 005 0.06 008 012 014 011 028 0.26
Table 5.33: Comparison of methods according their average C metric values when using
three objectives on the Olive oil data (Part 2)
6 o o o = & §g& 8 4 o
C(AB) = = 9 3 Z g <«£8 & = %
8. 80 61 0n 9 EO Ed E. L. 0. O
S0 350 30 30 2 ®3 93 P&k L& 3% &
MOEA/D 0.04 000 021 015 001 010 006 024 017 003 0.21
SPEA-II 038 029 094 092 035 067 052 091 087 033 094
PESA-II 0.06 007 043 043 007 020 015 047 031 006 043
NSGA-II 0.06 005 034 037 009 021 018 038 027 007 0.36
FST-MOMA-GT 0.07 004 045 043 006 018 014 049 032 005 045
FST-MOMA-CD 0.05 004 036 038 005 018 014 042 028 006 0.38
FST-MOPSO-GT 0.06 004 040 040 005 016 011 047 029 005 041
FST-MOPSO-CD-SLSPR | 0.05 0.04 032 035 005 016 012 038 024 006 0.34
FST-DEMO-GT 0.04 003 033 029 004 014 010 038 021 003 031
FST-DEMO-CD 0.04 003 035 030 003 013 010 039 020 002 0.33
FST-MOFA-GT 002 002 016 012 0.02 006 004 021 008 001 0.14
FST-MOFA-CD 001 002 015 014 001 005 004 021 009 002 0.15
MOGWO-GT 100 016 0.76 075 018 044 030 075 062 015 073
MOGWO-CD 018 100 074 074 018 042 032 071 063 017 0.72
MOTLBO-GT 0.02 001 100 018 0.02 009 006 028 012 002 020
MOTLBO-CD 0.03 002 024 100 002 009 006 030 013 001 022
NSGA-11I 0.06 006 042 047 100 030 029 050 035 008 046
FST-MOPSO-RP-SLSPR 0.04 004 034 037 009 1.00 015 043 024 006 0.38
FST-MOMA-RP 0.04 004 033 037 010 020 100 042 024 006 0.38
FST-MOFA-RP 001 002 017 014 0.02 005 005 100 010 002 0.15
FST-DEMO-RP 003 003 033 029 003 013 011 040 100 003 0.33
MOGWO-RP 0.16 013 069 068 020 037 029 075 058 1.00  0.72
MOTLBO-RP 003 002 023 019 0.2 0.07 006 030 013 0.02 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.20 demonstrates the violin plots which show the distribution of time each method needed.

A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,133.10, p<0.001, £2=0.99. Their Median values along with the rest of statistics are
demonstrated in Table 5.34.
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Figure 5.20: Violin plots of Time values when using three objectives on the Olive oil data

Table 5.34: Statistics of Time when using three objectives on the Olive oil data

89

Method Max Mean Median Min Range SD
MOEA/D 408.78 349.47 348.58 283.81 124.96 23.90
SPEA-II 417.99 373.59 372.01 348.70 69.29 13.79
PESA-II 323.79 290.28 288.45 279.93 43.86 8.09
NSGA-II 480.47 348.64 343.64 336.33 144.14 20.51
FST-MOMA-GT 393.37 264.09 260.22 241.43 151.93 21.64
FST-MOMA-CD 800.60 575.54 560.76 547.58 253.02 47.07
FST-MOPSO-GT 272.57 242.77 240.38 233.05 39.52 8.56
FST-MOPSO-CD-SLSPR 452.42 372.82 367.41 359.84 92.59 15.11
FST-DEMO-GT 402.04 350.71 348.20 321.44 80.60 14.64
FST-DEMO-CD 686.11 510.10 502.06 486.45 199.66 29.78
FST-MOFA-GT 173.82 146.74 145.20 140.96 32.86 5.98
FST-MOFA-CD 345.26 270.94 267.45 258.51 86.75 13.27
MOGWO-GT 593.53 528.45 526.80 506.36 87.17 18.04
MOGWO-CD 715.97 594.80 586.27 570.93 145.04 28.01
MOTLBO-GT 151.22 128.89 127.47 123.22 28.00 5.23
MOTLBO-CD 204.19 172.63 170.66 165.61 38.58 6.99
NSGA-III 531.16 421.89 417.88 398.71 132.45 20.25
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 530.04 493.48 487.92 482.83 47.22 12.78
FST-MOMA-RP 717.78 671.31 667.09 646.13 71.64 18.73
FST-MOFA-RP 314.19 286.93 284.84 275.47 38.72 9.05
FST-DEMO-RP 790.80 729.01 723.88 695.74 95.06 22.65
MOGWO-RP 942.32 792.79 776.62 758.75 183.57 40.37
MOTLBO-RP 245.79 213.39 213.18 197.01 48.78 7.94

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.35, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.35: Pairwise comparisons of Time when using three objectives on the Olive oil data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

1l
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP

PESA-II
NSGA-III

[a)]
<
wi
o
=

ENSGA

MOEA/D
SPEA-II
PESA-1I
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

I ISPEA

Figure 5.20 and Table 5.34 illustrate that MOTLBO-GT needs the least time, while MOGWO-
RP needs the most.

As regards the M; metric values of each algorithm, Figure 5.21 demonstrates the violin plots of
the M7 values of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=845.42, p<0.001,
£2=0.74. Their Median values along with the rest of statistics are demonstrated in Table 5.36.
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Figure 5.21: Violin plots of M:" metric values when using three objectives on the Olive oil data

Table 5.36: Statistics of M:" values when using three objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 275.57 122.17 119.59 3.66 271.91 57.75
SPEA-II 37.46 2.91 0.77 0.00 37.46 6.16
PESA-II 247.78 121.16 113.77 60.11 187.67 37.30
NSGA-II 326.14 84.62 74.98 34.06 292.08 44.44
FST-MOMA-GT 190.55 141.22 141.34 105.28 85.27 18.42
FST-MOMA-CD 227.26 131.38 128.80 66.90 160.36 32.85
FST-MOPSO-GT 260.37 155.79 150.46 99.71 160.66 26.01
FST-MOPSO-CD-SLSPR 331.44 147.32 136.18 56.62 274.82 49.57
FST-DEMO-GT 224.14 163.27 163.87 102.14 122.00 26.84
FST-DEMO-CD 236.52 174.74 171.60 135.88 100.64 23.05
FST-MOFA-GT 252.37 205.82 204.42 150.77 101.60 23.57
FST-MOFA-CD 248.14 205.77 205.68 156.78 91.36 22.56
MOGWO-GT 143.16 48.34 48.90 2.14 141.02 29.87
MOGWO-CD 136.87 62.99 62.34 18.54 118.33 30.64
MOTLBO-GT 235.78 190.97 192.26 149.38 86.41 22.99
MOTLBO-CD 232.00 192.24 190.82 141.54 90.46 21.06
NSGA-III 166.73 76.46 80.69 2.15 164.58 38.07
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 226.50 124.43 127.84 14.51 211.99 36.10
FST-MOMA-RP 392.01 116.94 116.21 19.50 372.51 53.55
FST-MOFA-RP 248.34 196.56 196.44 138.96 109.38 27.22
FST-DEMO-RP 226.51 170.60 171.34 119.70 106.80 24.41
MOGWO-RP 240.30 86.41 85.03 0.00 240.30 47.43
MOTLBO-RP 259.81 193.43 189.44 130.82 128.99 28.58

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.37, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.37: Pairwise comparisons of M1~ when using three objectives on the Olive oil data

Method

FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

<
Q
%]
=z

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.21 and Table 5.36 illustrate that SPEA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-CD provides the farthest ones. Table 5.37
reveals that FST-MOFA-CD does not have statistically significant differences with FST-MOFA-
GT, MOTLBO-GT, MOTLBO-CD, FST-MOFA-RP and MOTLBO-RP.

As regards the 4 values of each algorithm, Figure 5.22 demonstrates the violin plots of the 4

metric values, of each method.
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Figure 5.22: Violin plots of 4 metric values when using three objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=773.08, p<0.001, £2=0.67. Their Median values along with the rest of

statistics are demonstrated in Table 5.38.

Table 5.38: Statistics of 4 metric values when using three objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 1.88 1.65 1.64 1.29 0.59 0.13
SPEA-II 0.97 0.76 0.75 0.59 0.38 0.08
PESA-II 0.93 0.80 0.80 0.69 0.23 0.06
NSGA-II 0.93 0.82 0.82 0.69 0.24 0.05
FST-MOMA-GT 0.89 0.78 0.78 0.68 0.21 0.05
FST-MOMA-CD 0.90 0.79 0.78 0.69 0.21 0.05
FST-MOPSO-GT 0.88 0.76 0.76 0.68 0.20 0.05
FST-MOPSO-CD-SLSPR 0.88 0.77 0.76 0.69 0.20 0.05
FST-DEMO-GT 1.05 0.88 0.88 0.75 0.30 0.07
FST-DEMO-CD 0.87 0.73 0.73 0.62 0.24 0.05
FST-MOFA-GT 0.78 0.71 0.72 0.62 0.16 0.04
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Method Max Mean Median Min Range SD
FST-MOFA-CD 0.82 0.71 0.70 0.56 0.26 0.05
MOGWO-GT 1.30 1.08 1.07 0.78 0.52 0.13
MOGWO-CD 1.09 0.88 0.87 0.71 0.38 0.08
MOTLBO-GT 0.84 0.72 0.72 0.58 0.26 0.05
MOTLBO-CD 0.83 0.72 0.73 0.54 0.30 0.05
NSGA-III 1.46 0.95 0.91 0.79 0.67 0.14
FST-MOPSO-RP-SLSPR 1.21 0.82 0.80 0.68 0.52 0.10
FST-MOMA-RP 1.30 0.89 0.86 0.70 0.60 0.12
FST-MOFA-RP 0.96 0.77 0.77 0.64 0.32 0.06
FST-DEMO-RP 1.27 0.92 0.88 0.67 0.60 0.14
MOGWO-RP 1.84 1.26 1.18 0.82 1.02 0.25
MOTLBO-RP 0.87 0.73 0.72 0.60 0.27 0.06

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.39, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.39: Pairwise comparisons of 4 metric when using three objectives on the Olive oil
data

Method

FST-MOPSO-CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
MOTLBO-CD

NSGA-III
FST-MOPSO-RP-SLSPR
FST-MOMA-RP
FST-DEMO-RP

[a)]
<
w
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.22 and Table 5.38 illustrate that FST-MOFA-CD provides the best distribution among
the non-dominated solutions, while MOEA/D provides the worst. Table 5.39 reveals that FST-
MOFA-CD does not have statistically significant differences with FST-DEMO-CD, FST-MOFA-
GT, MOTLBO-GT, MOTLBO-CD and MOTLBO-RP.
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Finally, as regards the M3 values of each algorithm, Figure 5.23 demonstrates the violin plots

of the M3 values of each method.
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Figure 5.23: Violin plots of M3s" metric values when using three objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=982.31, p<0.001, £2=0.85. Their Median values along with the rest
of statistics are demonstrated in Table 5.40.

Table 5.40: Statistics of Ms™ metric values when using three objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 60.16 49.25 48.19 32.53 27.63 6.00
SPEA-II 71.79 60.77 60.05 51.47 20.31 4.37
PESA-II 90.55 85.73 86.09 80.92 9.63 2.30
NSGA-II 100.00 96.21 95.95 93.22 6.78 1.51
FST-MOMA-GT 87.53 81.22 81.53 74.90 12.64 2.44
FST-MOMA-CD 93.68 89.90 89.54 87.10 6.58 1.81
FST-MOPSO-GT 86.70 81.81 81.83 78.34 8.36 1.88
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Method Max Mean Median Min Range SD
FST-MOPSO-CD-SLSPR 96.43 91.78 92.29 85.31 11.13 2.45
FST-DEMO-GT 74.09 68.22 67.77 62.53 11.57 2.86
FST-DEMO-CD 78.07 72.43 72.34 67.05 11.03 2.30
FST-MOFA-GT 76.22 72.50 72.35 68.71 7.51 1.83
FST-MOFA-CD 78.69 74.49 74.46 71.31 7.38 1.65
MOGWO-GT 74.41 60.58 60.85 47.95 26.46 6.66
MOGWO-CD 82.46 72.05 72.27 66.63 15.83 2.99
MOTLBO-GT 75.67 71.47 71.28 65.81 9.86 2.49
MOTLBO-CD 76.98 73.61 73.81 69.25 7.73 1.72
NSGA-III 90.48 81.27 83.89 56.54 33.94 7.21
FST-MOPSO-RP-SLSPR 89.72 82.86 84.37 65.29 24.43 5.27
FST-MOMA-RP 88.97 83.14 85.56 63.82 25.16 5.92
FST-MOFA-RP 77.46 73.56 73.58 67.76 9.70 2.03
FST-DEMO-RP 75.16 69.38 70.21 55.68 19.48 3.89
MOGWO-RP 75.77 64.34 66.89 31.15 44.62 10.48
MOTLBO-RP 80.67 72.60 72.89 64.82 15.85 2.94

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.41, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.41: Pairwise comparisons of Ms" metric when using three objectives on the Olive

oil data

Method

FST-MOPSO-CD-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
MOTLBO-CD

[a)]
<
wi
o
=

PESA-1I
NSGA-II

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

= MOGWO-GT

NSGA-III
FST-MOPSO-RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP

FST-DEMO-RP

MOGWO-RP

Figure 5.23 and Table 5.40 illustrate that NSGA-II provides the best extend of the non-

dominated solutions, while MOEA/D provides the worst.

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 97

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,
are demonstrated in Figure 5.24.
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Figure 5.24: Average convergence characteristic curves when using three objectives on the Olive

oil data

5.3 Third Scenario: Using four objective functions

In this Subsection the performance of the algorithms when using four objective functions, as
presented in Table 5.1, is assessed.

5.3.1 Results on the Timbuk2 data set when using four objectives

Regarding the performance of the comparing algorithms while performing on the Timbuk2 data
set when using four objectives, in Tables 5.42 and 5.43 the results of the average C metric values
of the comparing algorithms, are presented. Cells shaded in light blue, indicate whether there is a
statistically significant difference between C(A,B) and C(B,A), according to a Mann Whitney U
test.
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Results

Table 5.42: Comparison of methods according their average C metric values when using

four objectives on the Timbuk?2 data (Part 1)

' ' o o : - . .
R _ 5 £ 2 222 2 £ f
C(AB) g I I I £ & g g2y ¥ g ¢
s £ £ 5 Z F OF FRga 0 5 9
S 5 4 2 25 98 9% £8 25 28 95 £8
MOEA/D 1.00 0.00 0.03 0.00 0.05 0.03 010 0.06 0.02 0.02 0.27 0.19
SPEA-II 055 100 047 013 066 051 077 057 052 051 091 0.88
PESA-II 018 001 1.00 002 027 012 036 016 014 017 053 0.53
NSGA-II 0.36 0.05 027 100 041 043 051 050 025 0.30 060 0.65
FST-MOMA-GT 0.14 000 005 001 100 006 020 010 006 0.07 044 0.42
FST-MOMA-CD 0.18 0.00 0.09 004 020 1.00 029 020 010 0.13 047 051
FST-MOPSO-GT 0.11 0.00 0.04 000 011 004 100 0.07 005 0.06 039 0.36
FST-MOPSO-CD-SLSPR | 0.18 0.01 0.09 0.04 0.17 0.3 025 1.00 0.08 0.1 043 045
FST-DEMO-GT 026 001 013 004 024 015 035 021 1.00 011 0.64 0.59
FST-DEMO-CD 024 001 014 005 025 017 035 023 016 1.00 0.63 0.64
FST-MOFA-GT 0.05 0.00 001 000 001 001 006 003 001 000 1.00 0.11
FST-MOFA-CD 0.06 0.00 0.01 000 002 001 007 003 001 001 021 1.00
MOGWO-GT 0.42 004 025 006 042 030 053 034 027 025 079 0.71
MOGWO-CD 041 003 024 008 039 030 049 037 026 027 072 0.72
MOTLBO-GT 0.09 000 002 001 004 002 009 004 002 001 026 0.22
MOTLBO-CD 0.10 0.00 0.3 001 006 003 013 007 004 003 036 0.34
NSGA-III 0.14 002 018 019 029 051 037 051 011 017 034 0.39
FST-MOPSO-RP-SLSPR | 0.10 0.00 0.06 002 014 008 021 011 006 0.08 028 0.30
FST-MOMA-RP 0.12 0.00 0.09 004 020 015 027 020 0.08 010 0.38 0.40
FST-MOFA-RP 0.06 0.00 0.01 000 002 001 005 002 001 000 016 0.13
FST-DEMO-RP 026 0.00 015 006 028 016 037 025 016 012 0.66 0.61
MOGWO-RP 065 0.09 050 013 064 053 074 059 049 044 091 0.85
MOTLBO-RP 041 0.00 0.2 0.00 0.04 002 010 0.05 0.02 001 0.27 0.23
Table 5.43: Comparison of methods according their average C metric values when using
four objectives on the Timbuk?2 data (Part 2)
= ! ) o
© O S o 2. 3 o g i iy
o o = o o
C(AB) = = 3 3 Z 8498 8 4§ = 1§
8 8 & Gn B B2 Ea Be Be O 6
S = = 30 2 9% 2& 2% 2& = =
MOEA/D 001 001 016 010 0.2 018 004 023 002 000 0.16
SPEA-II 026 029 087 080 015 059 043 066 043 004 0.73
PESA-II 006 011 044 040 0.04 026 013 040 010 001 0.36
NSGA-II 010 020 056 056 017 047 031 048 020 002 048
FST-MOMA-GT 003 005 033 025 002 022 007 036 005 001 0.29
FST-MOMA-CD 0.04 009 040 037 004 028 012 039 008 001 0.33
FST-MOPSO-GT 002 005 028 024 002 017 005 030 004 001 0.24
FST-MOPSO-CD-SLSPR | 0.03 008 036 032 005 027 010 037 007 001 031
FST-DEMO-GT 0.05 007 052 040 005 038 018 051 012 001 046
FST-DEMO-CD 0.06 010 054 046 0.06 037 018 052 013 001 047
FST-MOFA-GT 0.00 000 009 005 001 010 001 015 001 0.0 0.09
FST-MOFA-CD 001 002 014 007 001 011 002 020 001 000 0.14
MOGWO-GT 100 010 068 057 011 050 028 056 023 002 058
MOGWO-CD 011 100 064 058 0.11 047 027 057 023 002 056
MOTLBO-GT 001 001 100 009 001 015 003 024 002 000 0.16
MOTLBO-CD 002 004 024 100 002 018 006 031 003 000 0.22
NSGA-III 004 011 032 034 1.00 035 028 026 008 002 0.25
FST-MOPSO-RP-SLSPR 002 006 022 023 002 100 006 030 005 002 024
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2 ¢ 2 2.5 & ¢ % %

@) o = a @)

C(AB) = = 3 3 I 8498 g 4 = 3

8 & 6 8a § £ Ba Fa Ba 8 0

S = = 30 2 9% 2& 2% 2& = =

FST-MOMA-RP 0.02 0.07 030 030 003 031 100 040 0.07 0.02 0.33
FST-MOFA-RP 000 0.01 010 005 001 0.09 001 100 0.01 0.00 0.09
FST-DEMO-RP 0.05 010 054 043 006 037 019 059 1.00 0.01 0.50
MOGWO-RP 021 019 08 080 013 067 035 076 034 100 0.77
MOTLBO-RP 001 0.02 018 010 0.01 013 003 029 0.02 0.00 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.25 demonstrates the violin plots which show the distribution of time each method needed. A
Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,144.79, p<0.001, £2=1.00. Their Median values along with the rest of statistics are
demonstrated in Table 5.44.

1000 -
900 :
800 - A
700 -
s Ll
&
600 - -
I .
-
500 - ® .
w
400 - - i
"
i E 2
300 - e - Ul
L
‘ .
200 - ®
100 | | | | L | | | L | | | | | | | | | | | | | 1
PRPRO R OL AR 6 DG DS DL RR KR KL
(S PN KD AN O ¥ OO ¢ o o F s D (¥ OO o0
R N A ORI WIS IE A S SN2
NS KN RN e@,ﬁ?ﬁ,\,o%oo S
& @({é\é{oo EEEE YN OQgO@ SN
& &
< <

Figure 5.25: Violin plots of Time values when using four objectives on the Timbuk2 data
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Table 5.44: Statistics of Time when using four objectives on the Timbuk2 data
Method Max Mean Median Min Range SD
MOEA/D 328.79 286.90 286.52 251.82 76.97 17.79
SPEA-II 298.02 205.94 295.94 293.17 4.85 1.32
PESA-II 226.88 222.61 222.62 219.03 7.85 1.58
NSGA-II 251.67 247.69 247.63 246.16 5.51 0.83
FST-MOMA-GT 421.91 406.01 405.58 386.34 35.57 6.66
FST-MOMA-CD 544.83 540.34 540.35 537.88 6.95 1.23
FST-MOPSO-GT 291.49 287.04 287.23 280.78 10.71 2.15
FST-MOPSO-CD-SLSPR 399.72 396.62 396.33 394.64 5.08 1.08
FST-DEMO-GT 512.66 495.32 496.05 475.82 36.84 7.41
FST-DEMO-CD 616.98 612.55 612.56 609.74 7.25 1.57
FST-MOFA-GT 244.35 236.01 236.09 228.41 15.94 2.75
FST-MOFA-CD 627.64 617.77 617.80 610.85 16.80 2.62
MOGWO-GT 508.34 503.14 503.27 494.72 13.62 2.69
MOGWO-CD 572.66 565.97 565.39 561.80 10.86 2.35
MOTLBO-GT 200.30 192.34 192.26 184.33 15.97 3.95
MOTLBO-CD 355.68 350.67 350.60 348.56 7.12 1.24
NSGA-III 330.38 327.10 326.80 324.85 5.53 1.37
FST-MOPSO-RP-SLSPR 563.70 555.17 553.95 550.34 13.36 351
FST-MOMA-RP 691.55 683.39 681.24 677.83 13.72 4.65
FST-MOFA-RP 675.24 668.16 667.89 663.80 11.44 2.40
FST-DEMO-RP 924.08 905.38 901.12 892.60 31.48 10.75
MOGWO-RP 827.38 807.73 804.89 794.81 32,57 10.12
MOTLBO-RP 430.33 425.72 425.16 420.66 9.67 2.55

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.45, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.45: Pairwise comparisons of Time when using four objectives on the Timbuk2 data

Method

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP

' ©ISPEA-II

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT

NSGA-11

FST-MOPSO-CD-SLSPR

FST-DEMO-GT

FST-DEMO-CD

FST-MOFA-GT
FST-MOFA-CD

FST-MOPSO-RP-SLSPR

FST-MOMA-RP

FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP
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Figure 5.25 and Table 5.44 illustrate that MOTLBO-GT needs the least time, while FST-
DEMO-RP needs the most.

As regards the M; metric values of each algorithm, Figure 5.26 demonstrates the violin plots of
the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distance of the obtained non-dominated solutions from the optimal Pareto
front, H(22)=885.04, p<0.001, £2=0.77. Their Median values along with the rest of statistics are

demonstrated in Table 5.46.
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Figure 5.26: Violin plots of M:" metric values when using four objectives on the Timbuk2 data
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Table 5.46: Statistics of M1" values when using four objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 443.29 223.56 212.47 37.00 406.29 80.89
SPEA-II 101.92 27.95 24.98 0.00 101.92 23.05
PESA-II 453.39 262.21 262.03 109.68 343.71 67.92
NSGA-II 189.57 55.40 50.79 18.25 171.32 31.45
FST-MOMA-GT 482.39 336.66 338.72 217.10 265.30 62.01
FST-MOMA-CD 367.66 236.67 239.69 120.05 247.61 55.74
FST-MOPSO-GT 645.31 409.96 406.44 24472 400.59 82.08
FST-MOPSO-CD-SLSPR 395.38 241.06 235.36 132.50 262.88 67.42
FST-DEMO-GT 319.91 215.53 213.56 131.93 187.98 47.04
FST-DEMO-CD 303.28 192.43 190.37 120.92 182.36 34.10
FST-MOFA-GT 607.31 447.10 435.54 292.67 314.64 78.09
FST-MOFA-CD 503.06 384.55 386.12 263.38 239.68 55.46
MOGWO-GT 342.55 157.06 154.98 9.45 333.10 79.78
MOGWO-CD 218.08 119.56 106.44 42.06 176.01 45.76
MOTLBO-GT 546.85 385.21 376.27 240.55 306.29 67.27
MOTLBO-CD 500.23 328.53 322.66 208.51 291.72 59.73
NSGA-III 184.72 65.41 54.35 0.00 184.72 52.41
FST-MOPSO-RP-SLSPR 423.23 279.73 295.90 96.84 326.39 81.80
FST-MOMA-RP 402.06 226.14 229.21 40.16 361.91 61.02
FST-MOFA-RP 649.09 376.71 381.14 101.65 547.44 118.10
FST-DEMO-RP 313.53 180.46 173.39 68.68 244.86 63.03
MOGWO-RP 367.59 51.31 2.60 0.00 367.59 79.98
MOTLBO-RP 601.36 323.60 313.65 116.56 484.80 99.84

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.47, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.47: Pairwise comparisons of M:” when using four objectives on the Timbuk?2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

<
Q
%)
Z

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
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Method

FST-DEMO-RP 0 0 |
MOGWO-RP 0 BN o 0 | [ - |
MOTLBO-RP 0 N o | 0 N o F4 0 | -

Figure 5.26 and Table 5.46 illustrate that MOGWO-RP provides the closest to the optimal

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

MOEA/D
SPEA-II
PESA-11
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-I11
EFST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

EMOGWO-GT

o

pareto front non-dominated solutions, while FST-MOFA-GT provides the farthest ones. Table
5.47 reveals that MOGWO-RP does not have statistically significant differences with PESA-II,
NSGA-11 and NSGA-III, while FST-MOFA-GT does not have statistically significant differences
with FST-MOPSO-GT and FST-MOFA-RP.

As regards the 4 values of each algorithm, Figure 5.27 demonstrates the violin plots of the 4

metric values, of each method.
2 o

1.8

14

1.2

0.8

0.6

0.4

Figure 5.27: Violin plots of 4 metric values when using four objectives on the Timbuk?2 data
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A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=837.59, p<0.001, £2=0.74. Their Median values along with the rest of

statistics are demonstrated in Table 5.48.

Table 5.48: Statistics of 4 metric values when using four objectives on the Timbuk2 data

Method Max Mean Median Min Range SD
MOEA/D 1.43 1.25 1.24 1.07 0.35 0.08
SPEA-II 0.77 0.66 0.67 0.55 0.22 0.05
PESA-II 0.91 0.79 0.80 0.63 0.28 0.06
NSGA-II 0.87 0.77 0.78 0.51 0.35 0.06
FST-MOMA-GT 0.90 0.79 0.79 0.67 0.23 0.06
FST-MOMA-CD 0.83 0.73 0.73 0.60 0.23 0.04
FST-MOPSO-GT 0.88 0.75 0.75 0.57 0.31 0.06
FST-MOPSO-CD-SLSPR 0.89 0.73 0.72 0.64 0.25 0.05
FST-DEMO-GT 0.98 0.88 0.87 0.77 0.22 0.05
FST-DEMO-CD 0.80 0.73 0.73 0.64 0.16 0.04
FST-MOFA-GT 0.88 0.74 0.74 0.61 0.27 0.06
FST-MOFA-CD 0.84 0.72 0.72 0.53 0.30 0.06
MOGWO-GT 1.31 1.14 1.14 0.99 0.32 0.08
MOGWO-CD 0.94 0.80 0.80 0.49 0.45 0.07
MOTLBO-GT 0.89 0.75 0.75 0.64 0.26 0.06
MOTLBO-CD 0.82 0.72 0.72 0.65 0.17 0.04
NSGA-III 1.51 1.09 1.05 0.78 0.72 0.15
FST-MOPSO-RP-SLSPR 1.10 0.87 0.86 0.65 0.45 0.10
FST-MOMA-RP 1.21 0.95 0.93 0.71 0.50 0.12
FST-MOFA-RP 1.00 0.84 0.83 0.70 0.30 0.07
FST-DEMO-RP 1.26 1.02 1.04 0.74 0.52 0.10
MOGWO-RP 1.96 1.68 1.80 1.08 0.88 0.28
MOTLBO-RP 1.01 0.81 0.80 0.65 0.36 0.08

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.49, 0 indicates that there were not statistically significant differences between
groups, while 1 indicates that there were statistically significant differences between groups.
Figure 5.27 and Table 5.48 illustrate that SPEA-11 provides the best distribution among the non-
dominated solutions, while MOEA/D provides the worst.

Table 5.49: Pairwise comparisons of 4 metric when using four objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

[a)]
<
w
o
=

MOEA/D
SPEA-II

PESA-1I
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
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Finally, as regards the M3 values of each algorithm, Figure 5.28 demonstrates the violin plots
of the M3 values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the extent of the obtained Pareto front, H(22)=887.17, p<0.001, £2=0.77. Their
Median values along with the rest of statistics are demonstrated in Table 5.50. Figure 5.28 and
Table 5.50 illustrate that NSGA-II provides the best extend of the non-dominated solutions, while
MOGWO-RP provides the worst. Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons
were used to compare all pairs of groups. In Table 5.51, 0 indicates that there were not statistically
significant differences between groups, while 1 indicates that there were statistically significant
differences between them.

To check how each algorithm converges towards each objective functions’ optima, their

average convergence characteristic curves, are demonstrated in Figure 5.29.

Table 5.50: Statistics of M3~ metric values when using four objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 80.78 72.69 72.05 63.87 16.91 4.28
SPEA-II 76.42 68.85 68.89 59.55 16.88 3.89
PESA-II 93.34 87.77 87.62 82.23 11.11 2.05
NSGA-II 100.00 98.69 98.78 97.01 2.99 0.75
FST-MOMA-GT 90.92 87.36 87.80 83.40 7.52 1.80
FST-MOMA-CD 98.86 96.81 96.77 95.04 3.82 0.67
FST-MOPSO-GT 90.20 87.23 87.10 81.90 8.30 1.71
FST-MOPSO-CD-SLSPR 99.73 97.25 97.22 92.52 7.21 1.09
FST-DEMO-GT 85.61 82.26 82.50 78.42 7.19 151
FST-DEMO-CD 87.83 85.86 85.80 83.79 4.04 1.10
FST-MOFA-GT 83.81 81.13 81.17 75.24 8.57 1.66
FST-MOFA-CD 87.34 84.87 84.70 82.88 4.46 1.05
MOGWO-GT 82.17 72.24 73.35 59.15 23.02 6.01
MOGWO-CD 90.33 84.71 84.36 82.78 7.55 1.45
MOTLBO-GT 85.99 83.06 82.96 80.15 5.84 1.52
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Method Max Mean Median Min Range SD
MOTLBO-CD 88.60 86.27 86.28 83.99 4.61 1.12
NSGA-III 95.15 78.36 86.58 42.77 52.38 17.38
FST-MOPSO-RP-SLSPR 95.51 84.43 85.99 73.25 22.26 7.58
FST-MOMA-RP 96.71 82.86 80.36 64.08 32.63 7.69
FST-MOFA-RP 86.93 77.52 78.28 64.58 22.35 5.07
FST-DEMO-RP 86.77 79.66 79.34 73.55 13.22 3.28
MOGWO-RP 81.55 41.04 53.05 0.00 81.55 29.45
MOTLBO-RP 85.71 78.77 79.37 69.12 16.59 4.32
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Figure 5.28: Violin plots of Ms" metric values when using four objectives on the Timbuk?2 data

Table 5.51: Pairwise comparisons of M3" metric when using four objectives on the Timbuk2
data
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Figure 5.29: Average convergence characteristic curves when using four objectives on the
Timbuk2 data
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5.3.2 Results on the Olive oil data set when using four objectives

Regarding the performance of the comparing algorithms while performing on the olive oil data set
when using four objectives, Tables 5.52-5.53 show the results of the average C metric values of
the comparing algorithms. Cells shaded in light blue, indicate whether there is a statistically

significant difference between C(A,B) and C(B,A), according to a Mann Whitney U Test.

Table 5.52: Comparison of methods according their average C metric values when using

four objectives on the Olive oil data (Part 1)

< < — a ¢ ' : :

o - - - 3 35 % %z 2 & %

CAB) I z § = 3 .2.28 8 = 3

L wn = = - = = - - =
S g W 2 ob 93 92 »S 9ok 28 95 28

MOEA/D 1.00 0.00 001 0.01 004 0.05 005 005 025 022 035 031
SPEA-II 0.69 100 043 034 067 062 070 062 092 088 096 0.93
PESA-I1I 0.21 000 1.00 0.13 024 019 0.27 023 044 046 0.60 0.59
NSGA-II 0.16 001 0.13 100 0.23 023 025 025 029 034 0.39 042
FST-MOMA-GT 0.19 0.00 0.07 0.10 1.00 0.14 0.18 0.16 0.42 039 054 054
FST-MOMA-CD 0.14 0.00 0.10 0.10 0.20 100 0.22 020 0.28 0.33 0.42 044
FST-MOPSO-GT 0.18 0.00 0.07 009 0.14 0.13 100 0.16 0.39 0.37 053 0.52
FST-MOPSO-CD-SLSPR | 0.13 0.00 0.09 0.09 0.17 1 0.14 0.19 1.00 0.27 030 0.38 0.40
FST-DEMO-GT 0.10 000 0.04 009 0.06 009 0.07 011 100 014 0.32 031
FST-DEMO-CD 0.10 0.00 0.03 0.08 0.07 009 0.07 012 024 100 0.37 034
FST-MOFA-GT 0.05 000 0.01 006 0.03 004 0.03 008 0.10 007 100 0.16
FST-MOFA-CD 0.05 000 0.01 006 0.03 004 0.04 008 012 010 0.22 1.00
MOGWO-GT 0.42 001 025 025 039 040 042 046 0.74 065 0.84 0.79
MOGWO-CD 0.37 003 0.22 0.22 040 037 041 039 0.66 067 0.76 0.73
MOTLBO-GT 0.08 0.00 0.02 0.07 0.04 007 0.05 009 0.16 011 0.27 0.24
MOTLBO-CD 0.08 0.00 0.02 0.07 0.04 006 0.04 008 0.18 0.13 0.29 0.25
NSGA-III 0.09 000 0.32 026 043 048 0.46 054 019 034 045 054
FST-MOPSO-RP-SLSPR 0.08 1 0.00 0.15 0.13 0.24 0.21 0.27 028 0.23 1032 0.37 0.43
FST-MOMA-RP 0.07 1000 0.19 014 0251025 029 031 0.22 032 035 043
FST-MOFA-RP 0.05 000 0.02 007 0.03 004 0.04 010 011 0.08 0.21 017
FST-DEMO-RP 0.11 000 0.04 011 0.05 008 0.06 014 025 016 0.38 0.31
MOGWO-RP 0.31 000 021 023 034 035 046 031 066 062 0.75 0.76
MOTLBO-RP 0.09 000 0.02 007 0.04 006 0.05 011 0.17 011 0.29 0.24

Table 5.53: Comparison of methods according their average C metric values when using

four objectives on the Olive oil data (Part 2)

= [a) ! 1 o

e 808 9 _ 8.5 g ¢ & B

C(AB) S & o a@ 3 2% 9 o wm 2 g

o o — — < > = = &) —

8 38 6 6 9 E?E_ E_ E 3 b5

S =S = s z P& Rz Q22 2z = =

MOEA/D 001 00l 025 022 00l 012 011 023 018 001 021
SPEA-II 023 024 092 090 026 064 051 075 074 012 086
PESA-II 003 008 050 054 007 026 020 051 035 004 0.49
NSGA-II 003 007 033 038 008 023 019 036 025 004 032
FST-MOMA-GT 002 004 046 046 005 023 018 045 033 003 044
FST-MOMA-CD 002 006 034 039 006 020 017 038 024 003 034
FST-MOPSO-GT 002 005 044 046 005 022 017 044 031 003 043
FST-MOPSO-CD-SLSPR | 001 005 032 036 005 018 014 035 024 003 030
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e 808 2 _ 8.5 g ¢ & B

(@] (@) = o (@]
C(AB) = £ 5 3 2 333 8 B 2 3
8 8 6 6 9 E? L. E_ E 3 b5
S =S = s z P& Rz P2 2z = =
FST-DEMO-GT 000 001 025 021 002 015 011 026 019 001 025
FST-DEMO-CD 000 001 030 026 002 015 012 031 020 001 0.29
FST-MOFA-GT 000 000 013 010 001 009 008 017 008 000 0.13
FST-MOFA-CD 000 001 016 013 001 008 007 020 010 001 0.16
MOGWO-GT 100 008 079 074 014 048 036 064 058 005 0.71
MOGWO-CD 011 100 072 071 013 039 032 062 053 007 0.65
MOTLBO-GT 000 000 1.00 016 002 012 010 024 013 001 0.19
MOTLBO-CD 000 001 020 100 002 011 008 026 014 001 021
NSGA-III 001 007 027 047 100 037 034 045 022 004 035
FST-MOPSO-RP-SLSPR | 0.01 003 028 037 006 100 020 | 045 024 002 035
FST-MOMA-RP 001 003 028 037 007 020 100 044 025 002 0.34
FST-MOFA-RP 000 001 016 012 001 007 006 100 013 001 015
FST-DEMO-RP 000 001 031 022 002 015 012 031 100 002 028
MOGWO-RP 006 007 072 073 006 040 031 067 062 1.00 | 0.71
MOTLBO-RP 000 001 020 017 001 011 009 027 016 001 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure

5.30 demonstrates the violin plots which show the distribution of time each method needed.
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Figure 5.30: Violin plots of Time values when using four objectives on the Olive oil data
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A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,134.28, p<0.001, £2=0.99. Their Median values along with the rest of statistics are
demonstrated in Table 5.54.

Table 5.54: Statistics of Time when using four objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 423.62 368.40 372.85 307.92 115.70 23.65
SPEA-II 465.66 394.24 390.80 375.91 89.75 14.37
PESA-II 370.16 319.68 316.37 308.48 61.68 9.34
NSGA-II 491.95 371.20 364.56 356.33 135.62 21.49
FST-MOMA-GT 339.06 287.82 285.36 266.66 72.40 13.45
FST-MOMA-CD 753.35 582.75 576.03 558.73 194.62 29.08
FST-MOPSO-GT 329.14 265.88 263.01 255.70 73.44 11.18
FST-MOPSO-CD-SLSPR 445.92 387.57 383.55 377.28 68.64 12.33
FST-DEMO-GT 420.36 377.30 376.17 346.78 73.59 14.19
FST-DEMO-CD 620.35 509.07 508.84 486.39 133.96 19.35
FST-MOFA-GT 180.74 168.99 168.50 160.91 19.83 4.12
FST-MOFA-CD 302.67 284.09 283.43 273.69 28.98 6.02
MOGWO-GT 622.03 547.44 541.47 532.42 89.62 16.55
MOGWO-CD 689.35 610.85 602.54 591.64 97.72 23.64
MOTLBO-GT 183.31 147.99 146.99 140.62 42.69 6.48
MOTLBO-CD 220.42 182.17 181.19 173.03 47.39 7.12
NSGA-III 558.35 459.10 458.06 418.12 140.23 22.34
FST-MOPSO-RP-SLSPR 653.12 516.41 511.61 497.42 155.71 21.96
FST-MOMA-RP 870.73 690.16 681.10 662.26 208.47 31.31
FST-MOFA-RP 368.76 302.29 299.08 291.49 77.27 13.08
FST-DEMO-RP 838.53 745.66 741.82 704.18 134.35 22.61
MOGWO-RP 1000.69 830.34 817.84 798.02 202.68 34.71
MOTLBO-RP 284.59 228.52 226.88 215.80 68.79 10.07

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.55, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.55: Pairwise comparisons of Time when using four objectives on the Olive oil data

Method

FST-MOPSO-CD-SLSPR
GT
CD
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

PESA-II

[a]
<
i
o
=

MOEA/D
SPEA-II

PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT

I SPEA-II
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Figure 5.30 and Table 5.54 illustrate that MOTLBO-GT needs the least time, while MOGWO-
RP needs the most.
As regards the M7 metric values of each algorithm, Figure 5.31 demonstrates the violin plots of

the M values of each method.
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Figure 5.31: Violin plots of M:" metric values when using four objectives on the Olive oil data
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A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=853.43, p<0.001,

£2=0.74. Their Median values along with the rest of statistics are demonstrated in Table 5.56.

Table 5.56: Statistics of M1 values when using four objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 396.63 230.10 234.02 50.55 346.09 79.80
SPEA-II 95.76 7.68 2.00 0.00 95.76 14.73
PESA-II 231.96 146.40 145.67 79.11 152.86 36.48
NSGA-II 256.36 113.99 111.36 39.94 216.42 37.16
FST-MOMA-GT 265.01 195.84 199.29 136.38 128.63 28.66
FST-MOMA-CD 236.84 174.61 176.35 121.58 115.26 30.17
FST-MOPSO-GT 285.36 201.39 192.04 121.93 163.44 38.14
FST-MOPSO-CD-SLSPR 271.13 182.64 180.08 122.74 148.39 32.99
FST-DEMO-GT 328.28 234.80 232.81 162.65 165.63 31.22
FST-DEMO-CD 326.72 236.49 227.81 187.05 139.66 32.40
FST-MOFA-GT 338.72 273.27 278.49 201.30 137.41 28.77
FST-MOFA-CD 346.32 278.18 271.76 213.06 133.26 33.64
MOGWO-GT 156.06 65.07 44.63 2.79 153.28 48.88
MOGWO-CD 139.07 70.45 69.57 13.74 125.33 33.30
MOTLBO-GT 334.45 261.07 258.54 220.97 113.47 24.17
MOTLBO-CD 345.45 263.42 258.68 213.61 131.84 28.68
NSGA-III 232.54 72.80 56.47 0.00 232.54 60.03
FST-MOPSO-RP-SLSPR 286.44 181.87 195.70 51.97 234.47 54.90
FST-MOMA-RP 274.85 158.96 154.46 75.36 199.49 50.94
FST-MOFA-RP 405.25 275.83 271.84 135.14 270.11 46.25
FST-DEMO-RP 365.64 245.07 240.51 150.60 215.04 46.95
MOGWO-RP 323.08 100.02 81.93 0.00 323.08 92.82
MOTLBO-RP 354.85 262.78 265.14 196.93 157.92 37.23

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.57, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.57: Pairwise comparisons of M1~ when using four objectives on the Olive oil data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

PESA-11
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
MOTLBO-GT
MOTLBO-CD
NSGA-I11
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

S|FST-DEMO-CD

o
S|FST-MOFA-GT
S|FST-MOFA-CD

“MOTLBO-RP

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II

FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
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Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOPSO-GT
FST-DEMO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

E O
Q Q
< <
> =
o ©
z 3
o
v un
LL LL

FST-DEMO-GT

©[FST-MOFA-GT
' [FST-MOFA-CD
S[MOTLBO-GT
SMOTLBO-CD
S[MOTLBO-RP

FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-111
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.31 and Table 5.56 illustrate that SPEA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-GT provides the farthest ones. Table 5.57
reveals that FST-MOFA-GT does not have statistically significant differences with MOEA/D,
FST-MOFA-CD, MOTLBO-GT, MOTLBO-CD, FST-MOFA-RP and MOTLBO-RP.

As regards the 4 values of each algorithm, Figure 5.32 demonstrates the violin plots of the 4
metric values, of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=864.48, p<0.001, £2=0.75. Their Median values along with the rest of

statistics are demonstrated in Table 5.58.

Table 5.58: Statistics of 4 metric values when using four objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 1.74 1.49 1.48 1.20 0.54 0.11
SPEA-II 0.99 0.78 0.78 0.60 0.39 0.09
PESA-II 0.89 0.78 0.78 0.67 0.22 0.04
NSGA-II 0.89 0.80 0.79 0.70 0.19 0.04
FST-MOMA-GT 0.89 0.77 0.77 0.64 0.25 0.05
FST-MOMA-CD 0.88 0.74 0.74 0.62 0.26 0.06
FST-MOPSO-GT 0.87 0.74 0.74 0.62 0.24 0.06
FST-MOPSO-CD-SLSPR 0.84 0.75 0.75 0.62 0.22 0.05
FST-DEMO-GT 0.91 0.83 0.83 0.72 0.20 0.05
FST-DEMO-CD 0.81 0.71 0.72 0.55 0.25 0.05
FST-MOFA-GT 0.83 0.72 0.71 0.60 0.23 0.05
FST-MOFA-CD 0.83 0.69 0.69 0.60 0.24 0.05
MOGWO-GT 1.24 1.08 1.08 0.82 0.42 0.09
MOGWO-CD 1.01 0.87 0.89 0.67 0.34 0.08
MOTLBO-GT 0.82 0.70 0.70 0.57 0.25 0.06
MOTLBO-CD 0.82 0.70 0.69 0.62 0.21 0.05
NSGA-III 1.70 1.12 1.08 0.86 0.84 0.19
FST-MOPSO-RP-SLSPR 1.11 0.90 0.90 0.66 0.45 0.08
FST-MOMA-RP 1.20 0.94 0.94 0.75 0.45 0.09
FST-MOFA-RP 0.96 0.81 0.80 0.65 0.31 0.07
FST-DEMO-RP 1.29 1.06 1.09 0.70 0.59 0.13
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Method Max Mean Median Min Range SD
MOGWO-RP 1.98 1.67 1.68 0.90 1.08 0.20
MOTLBO-RP 0.98 0.77 0.75 0.63 0.34 0.07
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Figure 5.32: Violin plots of 4 metric values when using four objectives on the Olive oil data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.59, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.
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Table 5.59: Pairwise comparisons of 4 metric when using four objectives on the Olive oil

data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

o
<
w
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.32 and Table 5.58 illustrate that FST-MOFA-CD provides the best distribution among
the non-dominated solutions, while MOGWO-RP provides the worst. Table 5.59 reveals that FST-
MOFA-CD does not have statistically significant differences with FST-MOPSO-GT, FST-
DEMO-CD, FST-MOFA-GT, MOTLBO-GT and MOTLBO-CD.

Finally, as regards the M3 values of each algorithm, Figure 5.33 demonstrates the violin plots
of the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the extent of the obtained Pareto front, H(22)=921.64, p<0.001, £2=0.80. Their

Median values along with the rest of statistics are demonstrated in Table 5.60.
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Figure 5.33: Violin plots of Ms" metric values when using four objectives on the Olive oil data

Table 5.60: Statistics of Ms™ metric values when using four objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 72.68 58.28 58.59 39.97 32.71 7.06
SPEA-II 72.27 66.39 67.04 57.65 14.61 401
PESA-II 90.51 85.87 86.01 79.87 10.64 2.47
NSGA-II 100.00 98.86 99.03 96.09 3.91 0.87
FST-MOMA-GT 86.10 81.96 81.95 76.59 9.51 2.17
FST-MOMA-CD 95.12 93.46 93.63 91.08 4.04 0.92
FST-MOPSO-GT 86.11 82.44 82.10 78.33 7.78 1.93
FST-MOPSO-CD-SLSPR 96.60 94.55 94.54 92.44 4.16 0.96
FST-DEMO-GT 76.75 69.37 69.25 63.98 12.77 2.70
FST-DEMO-CD 80.78 76.57 76.60 71.84 8.95 1.78
FST-MOFA-GT 78.46 73.43 73.08 69.40 9.06 2.21
FST-MOFA-CD 82.61 77.99 77.93 75.46 7.15 1.47
MOGWO-GT 75.27 61.95 62.35 48.10 27.17 6.45
MOGWO-CD 80.83 76.17 76.02 70.90 9.93 2.31
MOTLBO-GT 77.05 72.27 72.30 67.39 9.67 2.29
MOTLBO-CD 79.95 77.16 77.19 73.22 6.74 1.60
NSGA-III 90.00 74.60 79.43 23.15 66.85 17.03
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Method Max Mean Median Min Range SD
FST-MOPSO-RP-SLSPR 92.49 83.39 87.38 56.93 35.57 9.25
FST-MOMA-RP 91.43 82.34 86.68 53.86 37.57 9.44
FST-MOFA-RP 79.85 73.82 75.53 61.31 18.53 4.65
FST-DEMO-RP 78.12 69.94 71.57 59.63 18.49 4.84
MOGWO-RP 76.15 53.06 56.58 0.00 76.15 18.03
MOTLBO-RP 80.24 72.61 73.30 63.17 17.07 3.92

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.61, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.61: Pairwise comparisons of M3s" metric when using four objectives on the Olive oil
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

PESA-II
NSGA-II
NSGA-III

HMOGWO-GT
=MOGWO-RP

[a)]
<
wi
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.33 and Table 5.60 illustrate that NSGA-II provides the best extend of the non-
dominated solutions, while MOGWO-RP provides the worst. Table 5.61 reveals that MOGWO-
RP does not have statistically significant differences with MOEA/D and MOGWO-GT.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.34.
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Figure 5.34: Average convergence characteristic curves when using four objectives on the Olive

oil data

5.4 Fourth Scenario: Using five objective functions

In this Subsection the performance of the algorithms when using five objective functions, as
presented in Table 5.1, is assessed.

5.4.1 Results on the Timbuk?2 data set when using five objectives

Regarding the performance of the comparing algorithms while performing on the Timbuk2 data
set when using five objectives, in Tables 5.62 and 5.63 the results of the average C metric values
of the comparing algorithms, are presented. Cells shaded in light blue, indicate whether there is a
statistically significant difference between C(A,B) and C(B,A), according to a Mann Whitney U
test.
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Table 5.62: Comparison of methods according their average C metric values when using

five objectives on the Timbuk2 data (Part 1)

l_
¢ & 02 2.0 o 2 4
A _ =2 = a Qg S S LW
C(A,B) g = = = o o o Ow w w O ©O
T 0« 2 2 %2 2 22 @ =2 =2
L n = = = = A = = = =
S 5 4 2 95 98 9L #8 26 8 £ 28
MOEA/D 1.00 005 0.05 002 0.05 002 0.08 004 001 000 007 0.06
SPEA-II 0.01 1.00 004 (002 003 001 004 0.03 000 0.00 004 0.05
PESA-II 0.01 004 100 002 (002 002 005 0.04 000 0.00 004 0.04
NSGA-II 0.01 | 0.04 004 100 002 003 004 004 000 0.00 003 0.05
FST-MOMA-GT 0.02 005 004 003 100 002 007 005 001 001 005 0.04
FST-MOMA-CD 0.02 1005 004 004 003 1.00 005 005 001 0.01 003 0.05
FST-MOPSO-GT 0.01 003 003 002 002 001 100 0.03 000 000 004 0.03
FST-MOPSO-CD-SLSPR | 0.01 0.04 0.03 ' 0.02 0.02 0.02 0.05 1.00 0.00 0.00 0.03 0.05
FST-DEMO-GT 0.07 010 011 008 014 009 015 013 100 028 014 0.11
FST-DEMO-CD 0.06 0.09 009 008 013 009 014 012 025 1.00 013 0.11
FST-MOFA-GT 001 003 003 002 002 001 004 003 000 000 100 0.02
FST-MOFA-CD 0.01 004 004 002 002 002 005 005 000 000 004 1.00
MOGWO-GT 0.02 1005 004 003 003 002 007 006 001 0.01 007 0.05
MOGWO-CD 0.01 006 005 003 003 002 005 0.07 000 0.00 0.04 0.07
MOTLBO-GT 0.01 003 003 003 (002 002 006 0.04 000 0.0 005 0.03
MOTLBO-CD 0.02 005 005 003 003 002 006 006 000 0.1 0.06 0.08
NSGA-III 0.01 0.07 007 007 002 006 003 007 000 0.00 0.03 0.06
FST-MOPSO-RP-SLSPR | 0.01 0.03 0.03 0.02 0.02 0.01 0.04 0.04 0.00 0.00 0.03 0.05
FST-MOMA-RP 0.02 006 006 005 003 005 004 007 000 001 003 0.07
FST-MOFA-RP 0.01 003 003 002 003 001 005 004 000 000 005 0.06
FST-DEMO-RP 0.07 010 011 0.07 0415 011 015 015 025 028 013 0.11
MOGWO-RP 001 004 005 001 003 001 006 005 000 000 004 0.06
MOTLBO-RP 0.02 0.04 004 002 004 001 006 005 000 000 0.05 0.07
Table 5.63: Comparison of methods according their average C metric values when using
five objectives on the Timbuk2 data (Part 2)
! ' o
9 09 6 o - 2xE £ ¢ B %
— o
C(A.B) = = 9 9 F 848 ¢ W = 93
8 8 6, 6o 8 EP e, £, E 8 &
S S 30 30 2 2% 2& 2% & = =
MOEA/D 0.02 0.02 (006 004 0.3 007 002 0.09 001 001 0.06
SPEA-II 002 0.02 004 003 002 004 001 005 000 001 0.04
PESA-II 0.02 (002 003 003 0.01 004 001 004 000 001 0.04
NSGA-II 0.02 002 002 004 001 004 002 004 000 001 0.03
FST-MOMA-GT 0.03 003 (005 003 001 005 001 004 001 001 0.04
FST-MOMA-CD 0.02 003 003 004 001 004 002 003 001 001 0.03
FST-MOPSO-GT 0.02 003 003 002 001 003 001 003 000 001 0.02
FST-MOPSO-CD-SLSPR | 0.02 0.03 003 004 001 004 001 004 000 001 0.03
FST-DEMO-GT 0.07 008 013 011 004 012 006 010 023 0.03 0.09
FST-DEMO-CD 0.07 007 011 009 0.04 010 005 009 024 002 0.08
FST-MOFA-GT 0.02 002 003 002 001 003 001 002 000 001 001
FST-MOFA-CD 0.02 1 0.02 004 004 0.02 005 001 006 000 0.01 0.05
MOGWO-GT 1.00 0.02 005 0.04 001 005 001 005 001 001 004
MOGWO-CD 0.03 100 004 005 0.02 006 001 006 000 001 0.05
MOTLBO-GT 0.03 003 100 003 0.01 003 (001 003 000 001 0.03
MOTLBO-CD 0.03 003 004 100 0.2 006 001 006 000 001 0.05
NSGA-III 001 004 002 005 1.00 0.09 008 006 000 001 0.05
FST-MOPSO-RP-SLSPR 0.02 002 003 003 003 100 (001 007 000 001 0.05
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o) : : . . o
S 9 4 g 2.3 & ¢ & ¢

O O = o O
C(AB) = = 3 3 F 848 g & = 3
8 8 bLbpn 8§ E2 k. k. 2. 8 b
S = 35 =8 ¢ %5 9% 95 9% = =
FST-MOMA-RP 0.01 006 003 006 006 010 100 0.09 0.01 0.02 0.08
FST-MOFA-RP 0.02 002 003 003 002 007 002 100 001 001 o0.08
FST-DEMO-RP 0.07 0.07 012 0.10 0.08 0.15 007 0.16 1.00 0.04 0.4
MOGWO-RP 0.02 002 004 005 003 0120 001 012 0.00 1.00 0.09
MOTLBO-RP 0.03 002 004 004 004 009 002 011 0.01 0.02 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.35 demonstrates the violin plots which show the distribution of time each method needed.
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Figure 5.35: Violin plots of Time values when using five objectives on the Timbuk?2 data
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A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,141.88, p<0.001, £2=0.99. Their Median values along with the rest of statistics are
demonstrated in Table 5.64.

Table 5.64: Statistics of Time when using five objectives on the Timbuk2 data

Method Max Mean Median Min Range SD
MOEA/D 336.44 318.71 324.49 261.02 75.42 15.78
SPEA-II 304.96 298.44 301.04 288.60 16.36 5.10
PESA-II 281.82 276.63 276.01 272.54 9.28 2.11
NSGA-II 249.30 245.87 247.44 240.70 8.60 2.93
FST-MOMA-GT 589.82 575.91 575.41 557.43 32.39 6.48
FST-MOMA-CD 557.12 546.00 551.01 531.00 26.12 9.10
FST-MOPSO-GT 252.21 248.36 248.80 237.40 14.82 2.48
FST-MOPSO-CD-SLSPR 278.89 268.20 270.79 251.10 27.79 5.11
FST-DEMO-GT 383.32 374.88 375.12 367.47 15.85 3.05
FST-DEMO-CD 414.37 400.41 404.22 380.35 34.02 7.23
FST-MOFA-GT 800.09 778.21 778.33 756.05 44.04 7.45
FST-MOFA-CD 668.61 648.94 656.20 623.38 45.23 14.49
MOGWO-GT 540.85 533.23 533.95 522.67 18.18 3.84
MOGWO-CD 574.32 566.64 567.12 559.26 15.06 3.82
MOTLBO-GT 316.46 312.13 312.19 307.21 9.25 2.57
MOTLBO-CD 367.90 359.81 364.93 340.96 26.93 8.46
NSGA-III 365.55 360.65 361.54 354.37 11.18 3.06
FST-MOPSO-RP-SLSPR 461.82 449.52 451.98 437.30 24.52 6.33
FST-MOMA-RP 748.32 728.66 733.53 708.10 40.22 11.10
FST-MOFA-RP 768.57 726.83 733.92 702.55 66.02 15.73
FST-DEMO-RP 756.49 727.95 729.41 707.75 48.74 11.78
MOGWO-RP 900.79 870.67 870.32 854.41 46.38 11.52
MOTLBO-RP 483.36 468.69 472.60 453.20 30.16 8.84

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.65, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.65: Pairwise comparisons of Time when using five objectives on the Timbuk2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

NSGA-II

[a)]
<
w
o
=

MOEA/D
SPEA-II

PESA-II
NSGA-1I
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
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Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.35 and Table 5.64 illustrate that NSGA-1I needs the least time, while MOGWO-RP

needs the most.

As regards the M7 metric values of each algorithm, Figure 5.36 demonstrates the violin plots of
the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distance of the obtained non-dominated solutions from the optimal Pareto
front, H(22)=497.49, p<0.001, £2=0.43. Their Median values along with the rest of statistics are
demonstrated in Table 5.66.

Table 5.66: Statistics of M1 values when using five objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 278.86 132.40 126.63 8.94 269.91 72.31
SPEA-II 344.01 173.77 174.51 57.21 286.79 67.43
PESA-II 275.02 178.13 170.89 82.43 192.59 46.90
NSGA-II 173.86 114.42 111.63 49.56 124.30 26.70
FST-MOMA-GT 216.96 141.01 140.36 65.53 151.43 34.18
FST-MOMA-CD 190.36 99.51 97.98 35.84 154.52 32.11
FST-MOPSO-GT 336.70 205.82 200.13 75.26 261.45 60.36
FST-MOPSO-CD-SLSPR 256.74 174.92 174.00 111.92 144.81 31.52
FST-DEMO-GT 167.93 101.64 106.13 23.01 144.92 34.10
FST-DEMO-CD 156.16 96.74 95.19 39.13 117.04 28.60
FST-MOFA-GT 247.59 173.38 169.59 110.05 137.55 35.51
FST-MOFA-CD 299.82 201.17 194.80 111.62 188.20 42.25
MOGWO-GT 430.81 172.72 143.56 18.44 412.37 117.83
MOGWO-CD 250.03 121.28 114.82 16.26 233.76 59.62
MOTLBO-GT 242.49 148.54 144.30 88.65 153.84 38.63
MOTLBO-CD 222.58 154.89 156.99 87.30 135.28 31.52
NSGA-III 203.34 85.47 81.20 5.68 197.66 51.33
FST-MOPSO-RP-SLSPR 320.66 222.64 223.57 143.18 177.48 4401
FST-MOMA-RP 196.05 86.38 79.40 7.87 188.18 45.20
FST-MOFA-RP 361.77 233.73 238.13 91.47 270.30 58.53
FST-DEMO-RP 282.60 110.97 105.90 27.13 255.47 48.31
MOGWO-RP 1,117.83 176.15 153.54 0.00 1,117.83 186.30
MOTLBO-RP 299.32 193.27 194.24 90.97 208.35 50.79
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Figure 5.36: Violin plots of M:" metric values when using five objectives on the Timbuk?2 data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.67, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.67: Pairwise comparisons of M:" when using five objectives on the Timbuk2 data

o o
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MOEA/D - 0 0 0 0 0 0 0 0 oo 0 0 0 0 0 | 0 0
SPEA-II 0 - o0 0 0 0 0 O 0 0 0
PESA-II 0 0 - 0 0 0 0 0 0 0
NSGA-II 0 0 0
FST-MOMA-GT | 0 0 0
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Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOMA-RP
FST-MOFA-RP

SMOGWO-GT
S|MOGWO-CD
S|FST-DEMO-RP
SIMOGWO-RP

FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-11I
FST-MOPSO-
RP-SLSPR
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Figure 5.36 and Table 5.66 illustrate that FST-MOMA-RP provides the closest to the optimal
pareto front non-dominated solutions, while FST-MOFA-RP provides the farthest ones. Table 5.67
reveals that FST-MOMA-RP does not have statistically significant differences with MOEA/D,
FST-MOMA-CD, FST-DEMO-GT, FST-DEMO-CD, MOGWO-CD, NSGA-IIl, FST-DEMO-RP
and MOGWO-RP, while FST-MOFA-RP does not have statistically significant differences with
FST-MOPSO-GT, FST-MOFA-CD, FST-MOPSO-RP-SLSPR, MOGWO-RP and MOTLBO-RP.

As regards the 4 values of each algorithm, Figure 5.37 demonstrates the violin plots of the 4
metric values, of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=988.39, p<0.001, £2=0.86. Their Median values along with the rest of

statistics are demonstrated in Table 5.68.

Table 5.68: Statistics of 4 metric values when using five objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 1.47 1.23 1.23 1.11 0.36 0.07
SPEA-II 0.66 0.56 0.57 0.44 0.22 0.05
PESA-II 0.71 0.62 0.63 0.52 0.19 0.04
NSGA-II 0.74 0.67 0.66 0.58 0.16 0.04
FST-MOMA-GT 0.84 0.69 0.68 0.60 0.24 0.05
FST-MOMA-CD 0.76 0.65 0.65 0.56 0.19 0.04
FST-MOPSO-GT 0.79 0.66 0.66 0.58 0.21 0.04
FST-MOPSO-CD-SLSPR 0.76 0.64 0.64 0.54 0.22 0.05
FST-DEMO-GT 1.37 1.29 1.30 1.19 0.18 0.04
FST-DEMO-CD 1.32 1.25 1.24 1.20 0.12 0.03
FST-MOFA-GT 0.76 0.63 0.63 0.52 0.24 0.06
FST-MOFA-CD 0.83 0.74 0.74 0.63 0.19 0.05
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Method Max Mean Median Min Range SD
MOGWO-GT 1.28 1.15 1.16 0.97 0.31 0.06
MOGWO-CD 0.81 0.72 0.72 0.58 0.23 0.05
MOTLBO-GT 0.81 0.63 0.64 0.51 0.30 0.06
MOTLBO-CD 0.78 0.66 0.67 0.57 0.21 0.04
NSGA-III 1.41 0.99 0.97 0.76 0.65 0.13
FST-MOPSO-RP-SLSPR 1.00 0.78 0.77 0.62 0.38 0.08
FST-MOMA-RP 1.13 0.91 0.89 0.75 0.38 0.09
FST-MOFA-RP 0.95 0.78 0.78 0.61 0.34 0.09
FST-DEMO-RP 1.49 1.35 1.34 1.22 0.28 0.06
MOGWO-RP 1.98 1.63 1.62 1.18 0.79 0.21
MOTLBO-RP 1.05 0.80 0.81 0.64 0.41 0.10

Figure 5.37: Violin plots of 4 metric values when using five objectives on the Timbuk2 data
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Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.69, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.69: Pairwise comparisons of 4 metric when using five objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
CD
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

HFST-DEMO-CD

[a)]
<
w
o
=

MOEA/D
SPEA-II
PESA-1I
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.37 and Table 5.68 illustrate that SPEA-II provides the best distribution among the non-
dominated solutions, while MOGWO-RP provides the worst.

Finally, as regards the M3 values of each algorithm, Figure 5.38 demonstrates the violin plots
of the M3 values of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=881.35, p<0.001, £2=0.77. Their Median values along with the rest
of statistics are demonstrated in Table 5.70.
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Figure 5.38: Violin plots of Ms" metric values when using five objectives on the Timbuk?2 data

Table 5.70: Statistics of M3~ metric values when using five objectives on the Timbuk2 data

Method Max Mean Median Min Range sD
MOEA/D 84.20 73.08 73.59 63.05 21.15 5.18
SPEA-II 92.49 86.54 86.92 76.77 15.72 3.26
PESA-II 92.35 89.25 89.39 85.26 7.10 1.85
NSGA-II 98.73 97.48 97.42 95.97 2.76 0.67
FST-MOMA-GT 89.50 85.67 85.93 81.77 7.74 1.78
FST-MOMA-CD 100.00 99.13 99.12 98.00 2.00 0.41
FST-MOPSO-GT 88.12 83.97 84.03 80.12 7.99 1.73
FST-MOPSO-CD-SLSPR 93.07 90.64 90.64 88.52 4.55 1.18
FST-DEMO-GT 83.65 79.08 79.04 74.31 9.34 2.26
FST-DEMO-CD 83.61 79.18 79.18 74.97 8.64 2.07
FST-MOFA-GT 85.85 81.69 81.48 77.57 8.28 1.89
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Method Max Mean Median Min Range SD
FST-MOFA-CD 90.55 88.33 88.36 86.33 4.22 0.80
MOGWO-GT 82.97 74.68 75.88 58.66 24.31 5.91
MOGWO-CD 96.86 92.19 92.07 89.51 7.35 1.42
MOTLBO-GT 86.41 83.51 83.52 80.57 5.83 1.38
MOTLBO-CD 91.58 89.03 88.90 87.31 4.26 0.71
NSGA-III 94.72 85.50 89.53 47.13 47.60 11.19
FST-MOPSO-RP-SLSPR 90.51 85.47 85.62 72.01 18.50 3.84
FST-MOMA-RP 95.04 83.06 87.44 58.76 36.27 10.48
FST-MOFA-RP 88.23 74.92 80.39 49.49 38.74 11.86
FST-DEMO-RP 83.58 78.90 79.16 74.02 9.55 2.19
MOGWO-RP 87.97 69.09 75.97 0.00 87.97 19.94
MOTLBO-RP 88.01 81.67 83.94 61.70 26.31 6.04

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.71, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.71: Pairwise comparisons of Ms™ metric when using five objectives on the Timbuk2

data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

PESA-II
NSGA-II

=MOGWO-RP

[a)]
<
wi
o
=

MOEA/D
SPEA-II

PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT 0 |

MOTLBO-CD 0
NSGA-III 0 0
FST-MOPSO-

RP-SLSPR 0
FST-MOMA-RP 0 0

FST-MOFA-RP | 0 |
FST-DEMO-RP
MOGWO-RP | 0 |
MOTLBO-RP

Figure 5.38 and Table 5.70 illustrate that FST-MOMA-CD provides the best extend of the non-
dominated solutions, while MOEA/D provides the worst. Table 5.71 reveals that MOEA/D does
not have statistically significant differences with MOGWO-GT, FST-MOFA-RP and MOGWO-
RP.
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To further check the way each algorithm converges towards the optimum values of each

objective function, their average convergence characteristic curves through function evaluations,
are demonstrated in Figure 5.39.
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Figure 5.39: Average convergence characteristic curves when using five objectives on the
Timbuk2 data
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5.4.2 Results on the Olive oil data set when using five objectives

Regarding the performance of the comparing algorithms while performing on the olive oil data set
when using five objectives, Tables 5.72 and 5.73 show the results of the average C metric values
of the comparing algorithms. Cells shaded in light blue, indicate whether there is a statistically

significant difference between C(A,B) and C(B,A), according to a Mann Whitney U Test.

Table 5.72: Comparison of methods according their average C metric values when using

five objectives on the Olive oil data (Part 1)

A U
. % 2 92292 2 § ¢

C(A,B) = = = = ©] o o Owm W w o ©)

P 3 §if.z 2l 2% %

L [9p) !

S o W 2 95 98 95 28 25 28 25 28

MOEA/D 1.00 0.00 006 023 014 023 0.16 040 024 0.14 037 031
SPEA-II 0.13 100 0.28 037 053 055 058 062 081 080 0.89 0.88
PESA-II 0.08 0.01 1.00 0.18 0.25 0.27 029 034 046 049 0.60 0.62
NSGA-II 0.01 001 0.06 100 0.12 0.16 0.14 020 0.15 0.22 0.21 0.28
FST-MOMA-GT 0.05 001 0.05 012 100 0.18 0.16 026 035 0.33 0.46 0.46
FST-MOMA-CD 0.01 001 0.05 008 0.10 100 0.12 017 0.14 019 0.21 0.27
FST-MOPSO-GT 0.05 000 0.04 010 0.12 017 100 0212 0.33 032 0.43 0.44
FST-MOPSO-CD-SLSPR | 0.01 001 005 0.08 008 0.10 0.11 100 0.122 0.18 0.19 0.24
FST-DEMO-GT 0.04 000 0.01 008 0.06 012 0.06 019 1.00 0.15 0.28 0.25
FST-DEMO-CD 0.03 000 0.01 007 0.06 010 0.06 016 0.19 1.00 0.27 0.25
FST-MOFA-GT 0.02 000 0.01 005 0.03 006 0.03 012 0.10 0.07 100 0.14
FST-MOFA-CD 0.01 000 0.01 004 0.02 005 0.03 009 0.08 008 0.15 1.00
MOGWO-GT 0.21 004 0.19 033 041 048 044 054 0.74 068 0.82 0.79
MOGWO-CD 0.07 003 0.11 019 029 032 031 038 052 053 061 0.61
MOTLBO-GT 0.02 000 0.01 007 0.04 008 005 015 014 011 0.21 0.19
MOTLBO-CD 0.02 000 0.01 005 0.04 008 005 013 0.13 011 0.20 0.20
NSGA-III 0.03 0.00 010 028 012 034 017 038 013 022 023 031
FST-MOPSO-RP-SLSPR 0.02 000 0.07 014 0.09 019 0.13 025 0.13 019 0.23 0.28
FST-MOMA-RP 0.03 0.00 0.07 014 0.08 0.21 0.12 026 0.11 019 0.21 0.27
FST-MOFA-RP 0.02 000 0.01 005 0.03 007 0.04 013 0.08 0.08 0.17 0.5
FST-DEMO-RP 0.06 000 0.02 0.08 0.07 013 0.08 020 0.22 0.16 0.30 0.26
MOGWO-RP 0.20 0.02 0.16 020 034 035 035 045 062 059 0.72 0.72
MOTLBO-RP 0.03 000 0.01 006 0.03 009 005 015 0.11 0.10 0.19 0.20

Table 5.73: Comparison of methods according their average C metric values when using

five objectives on the Olive oil data (Part 2)

- o ! 1 [a
5 8 8 9 _ g% g o tE

(@] (@] = o (@)
C(A,B) = £ 3 3 3 v 2 g i = 3
o e} 5 5 8 H 2 H o H o b a 9 5
= = = = b Pr P 22 22 = =
MOEA/D 000 002 038 025 007 022 014 025 014 0.00 0.31
SPEA-II 0.11 020 084 085 0.17 049 034 063 064 010 0.77
PESA-II 003 009 055 055 008 028 020 045 0.37 0.05 0.50
NSGA-II 0.01 004 019 025 004 024 012 021 0.15 0.02 0.20
FST-MOMA-GT 0.02 004 041 039 004 021 024 032 027 003 0.37
FST-MOMA-CD 0.01 004 018 024 003 0.13 0.09 020 0.14 0.02 0.20
FST-MOPSO-GT 0.01 004 038 038 004 018 011 031 024 0.03 034
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(@] (@) = o (@]
CAB) = £ 2 2 gz s2% 5 &8 % 2
8 8 6 6 9 E? L. E_ E S b
S =S = s z P& Rz P 2z = =
FST-MOPSO-CD-SLSPR | 0.01 003 0.5 020 003 012 009 018 012 002 017
FST-DEMO-GT 000 001 022 019 002 014 008 019 014 001 021
FST-DEMO-CD 000 001 023 018 002 011 007 019 013 001 020
FST-MOFA-GT 000 000 013 009 001 008 004 011 006 000 011
FST-MOFA-CD 000 001 012 010 001 006 004 012 007 000 011
MOGWO-GT 100 014 076 073 013 042 031 057 053 004 0.63
MOGWO-CD 004 100 057 058 008 027 020 043 039 004 050
MOTLBO-GT 000 001 100 013 002 010 006 013 009 001 0.15
MOTLBO-CD 000 001 018 100 001 008 005 015 010 001 0.15
NSGA-III 000 003 019 029 1.00 026 021 025 017 003 025
FST-MOPSO-RP-SLSPR | 0.00 003 019 025 005 100 012 030 016 003 0.26
FST-MOMA-RP 000 004 017 024 006 019 100 029 016 003 025
FST-MOFA-RP 000 001 015 011 002 008 004 100 011 001 0.14
FST-DEMO-RP 000 001 026 019 004 014 009 027 100 002 026
MOGWO-RP 004 009 066 061 013 038 032 063 048 100  0.67
MOTLBO-RP 000 001 017 013 002 009 006 018 012 001 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure
5.40 demonstrates the violin plots which show the distribution of time each method needed.

A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,116.39, p<0.001, £2=0.97. Their Median values along with the rest of statistics are
demonstrated in Table 5.74.

Table 5.74: Statistics of Time when using five objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 649.74 471.29 470.91 380.86 268.88 39.81
SPEA-II 730.63 440.90 431.59 410.49 320.14 46.38
PESA-II 600.55 362.76 353.21 346.24 254.32 39.05
NSGA-II 557.40 394.00 387.70 379.36 178.05 28.08
FST-MOMA-GT 602.71 335.83 327.54 306.50 296.21 41.23
FST-MOMA-CD 888.55 609.83 599.98 586.65 301.90 45.64
FST-MOPSO-GT 402.59 303.63 300.04 292.16 110.44 16.99
FST-MOPSO-CD-SLSPR 524.87 420.95 416.72 409.51 115.36 18.25
FST-DEMO-GT 600.25 433.25 428.79 397.66 202.59 29.16
FST-DEMO-CD 798.31 548.52 541.35 515.76 282.56 38.49
FST-MOFA-GT 338.18 205.97 201.06 194.76 143.42 2391
FST-MOFA-CD 541.75 309.41 300.44 292.04 249.71 39.78
MOGWO-GT 773.48 606.84 587.85 571.86 201.61 48.73
MOGWO-CD 777.76 650.14 637.79 628.51 149.25 33.13
MOTLBO-GT 203.54 172.57 171.24 163.02 40.53 8.24
MOTLBO-CD 234.76 204.53 202.52 193.19 41.57 9.41
NSGA-III 581.22 517.92 512.18 479.07 102.14 24.52
FST-MOPSO-RP-SLSPR 788.50 585.13 572.41 558.36 230.14 40.31
FST-MOMA-RP 999.60 753.27 734.95 715.98 283.62 54.43
FST-MOFA-RP 485.47 341.64 333.81 324.78 160.69 28.49
FST-DEMO-RP 1,173.21 852.22 834.90 803.26 369.95 66.66
MOGWO-RP 1,241.95 931.21 903.72 887.31 354.64 69.20
MOTLBO-RP 361.68 266.59 262.59 251.69 109.99 19.69
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Figure 5.40: Violin plots of Time values when using five objectives on the Olive oil data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.75, 0 indicates that there were not statistically significant differences between
groups, while 1 indicates that there were statistically significant differences between them.
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Table 5.75: Pairwise comparisons of Time when using five objectives on the Olive oil data
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MOEA/D
SPEA-II
PESA-II
NSGA-1I
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-111
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.40 and Table 5.74 illustrate that MOTLBO-GT needs the least time, while MOGWO-
RP needs the most.

As regards the M7 metric values of each algorithm, Figure 5.41 demonstrates the violin plots of
the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distance of the obtained non-dominated solutions from the optimal Pareto
front, H(22)=932.28, p<0.001, £2=0.81. Their Median values along with the rest of statistics are
demonstrated in Table 5.76.

Table 5.76: Statistics of M1" values when using five objectives on the Olive oil data

Method Max Mean Median Min Range SD

MOEA/D 1,727.50 597.17 631.73 9.94 1,717.56 408.69
SPEA-II 384.28 86.52 53.48 0.00 384.28 88.45

PESA-II 816.65 474.66 465.79 190.94 625.71 134.45
NSGA-II 745.42 455.04 441.43 321.42 424.00 99.38

FST-MOMA-GT 1,019.33 752.42 734.46 323.58 695.75 142.55
FST-MOMA-CD 1,105.98 700.27 691.54 429.52 676.46 130.67
FST-MOPSO-GT 1,447.89 879.77 868.44 597.61 850.28 177.01
FST-MOPSO-CD-SLSPR 1,159.70 810.79 811.65 535.96 623.73 143.54
FST-DEMO-GT 1,426.75 1,106.07 1,109.44 818.57 608.18 132.16
FST-DEMO-CD 1,361.77 1,061.94 1,057.82 821.26 540.50 112.85
FST-MOFA-GT 1,503.13 1,305.33 1,299.41 1,139.44 363.69 89.33

FST-MOFA-CD 1,486.91 1,290.59 1,293.69 1,037.61 449.30 115.37
MOGWO-GT 681.88 202.69 140.44 0.00 681.88 204.28
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Method Max Mean Median Min Range SD

MOGWO-CD 677.52 343.64 313.21 99.77 577.75 142.53
MOTLBO-GT 1,493.24 1,210.70 1,200.97 949.03 544.21 146.32
MOTLBO-CD 1,402.74 1,184.31 1,188.55 877.69 525.06 116.62
NSGA-III 1,078.09 293.41 286.21 12.36 1,065.73 213.57
FST-MOPSO-RP-SLSPR 1,248.13 782.55 794.06 315.81 932.32 217.88
FST-MOMA-RP 1,126.01 620.61 597.45 159.27 966.74 201.64
FST-MOFA-RP 1,625.93 1,203.02 1,213.19 730.18 895.75 221.17
FST-DEMO-RP 2,532.42 1,133.06 1,068.35 785.40 1,747.02 302.21
MOGWO-RP 1,074.20 428.07 384.36 0.00 1,074.20 294.00
MOTLBO-RP 1,676.69 1,203.41 1,193.80 610.47 1,066.22 203.87
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Figure 5.41: Violin plots of M:" metric values when using five objectives on the Olive oil data

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 135

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.77, 0 indicates that there were not statistically significant differences between
groups, while 1 indicates that there were statistically significant differences between them.

Table 5.77: Pairwise comparisons of M:" when using five objectives on the Olive oil data

Method

FST-MOPSO-RP-SLSPR

FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

NSGA-I11

o
<
w
o
=

SIFST-MOMA-GT
S|FST-MOMA-CD
HFST-MOPSO-CD-SLSPR

CIPESA-II
SINSGA-II

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.41 and Table 5.76 illustrate that SPEA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-GT provides the farthest ones. Table 5.77
reveals that SPEA-II does not have statistically significant differences with MOGWO-GT, while
FST-MOFA-GT does not have statistically significant differences with FST-MOFA-CD,
MOTLBO-GT, FST-MOFA-RP and MOTLBO-RP.

As regards the 4 values of each algorithm, Figure 5.42 demonstrates the violin plots of the 4
metric values, of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=869.22, p<0.001, £2=0.76. Their Median values along with the rest of

statistics are demonstrated in Table 5.78.
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Figure 5.42: Violin plots of 4 metric values when using five objectives on the Olive oil data

Table 5.78: Statistics of 4 metric values when using five objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 1.58 1.21 1.20 0.98 0.60 0.13
SPEA-II 0.75 0.64 0.64 0.53 0.22 0.05
PESA-II 0.78 0.66 0.65 0.56 0.23 0.05
NSGA-II 0.77 0.66 0.66 0.56 0.21 0.05
FST-MOMA-GT 0.77 0.64 0.64 0.56 0.21 0.04
FST-MOMA-CD 0.76 0.63 0.63 0.49 0.26 0.05
FST-MOPSO-GT 0.83 0.65 0.65 0.54 0.29 0.06
FST-MOPSO-CD-SLSPR 0.78 0.64 0.62 0.54 0.23 0.06
FST-DEMO-GT 0.89 0.78 0.78 0.68 0.22 0.05
FST-DEMO-CD 0.80 0.65 0.64 0.53 0.27 0.05
FST-MOFA-GT 0.80 0.66 0.67 0.54 0.26 0.06
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Method Max Mean Median Min Range SD
FST-MOFA-CD 0.75 0.63 0.63 0.55 0.19 0.05
MOGWO-GT 1.18 0.97 0.99 0.65 0.53 0.13
MOGWO-CD 0.78 0.67 0.67 0.55 0.23 0.05
MOTLBO-GT 0.81 0.66 0.65 0.51 0.30 0.06
MOTLBO-CD 0.78 0.63 0.63 0.54 0.24 0.05
NSGA-I1II 1.24 0.96 0.96 0.71 0.54 0.12
FST-MOPSO-RP-SLSPR 1.08 0.86 0.85 0.68 0.41 0.08
FST-MOMA-RP 1.11 0.89 0.87 0.76 0.35 0.08
FST-MOFA-RP 0.95 0.77 0.77 0.64 0.31 0.07
FST-DEMO-RP 1.44 1.02 0.99 0.73 0.70 0.14
MOGWO-RP 1.85 1.60 1.63 1.07 0.78 0.21
MOTLBO-RP 0.92 0.74 0.75 0.59 0.33 0.06

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.79, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.79: Pairwise comparisons of 4 metric when using five objectives on the Olive oil
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOPSO-GT
FST-DEMO-GT
MOGWO-GT
MOGWO-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

[a)]
<
wi
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.42 and Table 5.78 illustrate that FST-MOPSO-CD-SLSPR provides the best
distribution among the non-dominated solutions, while MOGWO-RP provides the worst. Table
5.79 reveals that FST-MOPSO-CD-SLSPR does not have statistically significant differences with
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SPEA-II, PESA-II, NSGA-II, FST-MOMA-GT, FST-MOMA-CD, FST-MOPSO-GT, FST-
DEMO-CD, FST-MOFA-GT, FST-MOFA-CD, MOTLBO-GT and MOTLBO-CD.

Finally, as regards the M3 values of each algorithm, Figure 5.43 demonstrates the violin plots
of the M3 values of each method.
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Figure 5.43: Violin plots of Ms" metric values when using five objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=953.76, p<0.001, £2=0.83. Their Median values along with the rest

of statistics are demonstrated in Table 5.80.
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Table 5.80: Statistics of M3~ metric values when using five objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 65.17 50.39 50.54 35.60 29.57 6.31
SPEA-II 75.03 67.53 66.99 58.24 16.79 3.51
PESA-II 85.60 80.08 79.90 75.15 10.44 2.45
NSGA-II 100.00 99.21 99.38 97.43 2.57 0.60
FST-MOMA-GT 86.22 79.73 79.52 74.97 11.25 2.14
FST-MOMA-CD 97.69 95.16 95.35 92.12 5.57 1.27
FST-MOPSO-GT 88.05 80.78 80.47 76.75 11.31 2.58
FST-MOPSO-CD-SLSPR 97.89 96.25 96.35 94.36 3.53 0.85
FST-DEMO-GT 80.82 75.81 75.46 70.10 10.72 2.58
FST-DEMO-CD 86.75 83.76 83.71 79.95 6.79 1.70
FST-MOFA-GT 83.41 78.51 78.46 73.90 9.51 2.01
FST-MOFA-CD 88.54 85.69 85.60 82.53 6.01 1.03
MOGWO-GT 74.59 61.53 66.76 32.05 42.54 12.69
MOGWO-CD 88.52 83.95 83.97 81.49 7.03 1.35
MOTLBO-GT 82.09 77.54 77.59 73.88 8.21 1.82
MOTLBO-CD 88.83 84.32 84.22 81.42 7.41 1.52
NSGA-III 85.56 71.09 70.89 52.64 32.93 8.86
FST-MOPSO-RP-SLSPR 88.05 78.97 78.92 66.04 22.00 4.54
FST-MOMA-RP 88.83 79.37 80.85 53.92 34.91 6.06
FST-MOFA-RP 86.98 79.24 79.59 64.92 22.06 3.36
FST-DEMO-RP 83.79 76.66 77.14 66.59 17.20 3.99
MOGWO-RP 79.29 67.13 69.04 41.32 37.97 8.48
MOTLBO-RP 84.44 79.09 79.64 71.65 12.79 2.77

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.81, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.81: Pairwise comparisons of Ms" metric when using five objectives on the Olive oil
data

Method

FST-MOPSO-CD-SLSPR
CD
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP

NSGA-11
NSGA-I11

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-1I
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-111
FST-MOPSO-
RP-SLSPR
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Method

FST-MOPSO-CD-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-MOFA-GT
FST-MOFA-CD
FST-DEMO-RP

FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

© © O[FST-MOPSO-RP-SLSPR
© ' [FST-MOMA-RP
' ©|FST-MOFA-RP

© © 2|MOTLBO-RP

Figure 5.43 and Table 5.80 illustrate that NSGA-II provides the best extend of the non-
dominated solutions, while MOEA/D provides the worst.
To further check the way each algorithm converges towards the optimum values of each

objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.44.
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Figure 5.44: Average convergence characteristic curves when using five objectives on the Olive

oil data

5.5 Fifth Scenario: Using six objective functions

In this Subsection the performance of the algorithms when using six objective functions, as

presented in Table 5.1, is assessed.

5.5.1 Results on the Timbuk2 data set when using six objectives

Regarding the performance of the comparing algorithms while performing on the Timbuk2 data
set when using six objectives, in Figure 5.45 the non-dominated solutions obtained from each

algorithm are graphically demonstrated.
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Figure 5.45: Detected non-dominated solutions when using five objectives on the Olive oil data

In Tables 5.82 and 5.83 the results of the average C metric values of the comparing algorithms,

are presented. Cells shaded in light blue, indicate whether there is a statistically significant
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difference between C(A,B) and C(B,A), according to a Mann Whitney U test.

Table 5.82: Comparison of methods according their average C metric values when using six
objectives on the Timbuk?2 data (Part 1)

5 8 ¢ 9 5 8 5 8

C(A,B) o a S 3 2 9 g 2 g £

= = = - O (@] (@) (@] w i (@) (@]

T 0« « 3 F T F 2§ @ = =

o w @ Q — — — Ea = = = =

S & a 2z 2 2 ? Pgpr £ R @
MOEA/D 1.00 0.16 0.07 0.03 0.04 0.02 0.05 006 001 0.01 0.06 0.07
SPEA-II 0.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PESA-II 0.00 0.0/ 1.00 0.02 | 0.02 0.01 0.03 0.03 0.00 0.00 0.02 0.01
NSGA-II 0.01 0.06 0.02 100 001 0.03 002 0.03 0.00 000 0.02 0.04
FST-MOMA-GT 0.01 010 0.05 0.02 100 0.02 005 0.04 0.02 0.02 0.05 0.03
FST-MOMA-CD 0.01 ' 0.0/ 0.03 0.03 002 1.00 0.03 003 0.01 0.01 0.02 0.03
FST-MOPSO-GT 0.01 0.07 003 001 002 001 100 0.3 0.00 000 0.02 0.02
FST-MOPSO-CD-SLSPR | 0.01 0.08 0.03 0.02 001 001 004 100 0.00 0.00 0.02 0.04
FST-DEMO-GT 0.06 0.19 0.11 0.07 0.16 0.10 013 0.11 100 0.28 0.11 0.09
FST-DEMO-CD 0.06 0.17 0.11 0.06 0.15 0.11 011 0.09 0.27 100 0.11 0.08
FST-MOFA-GT 0.01 0.07 003 001 001 001 004 003 000 000 100 0.01
FST-MOFA-CD 0.01 0.09 0.03 002 002 001 003 004 000 000 0.03 100
MOGWO-GT 0.01 ' 0.10 0.04 0.02 0.03 0.02 0.07 0.04 0.00 0.00 0.04 0.02
MOGWO-CD 0.01 0.08 0.03 0.03 002 0.02 0.04 005 0.00 0.00 0.02 0.05
MOTLBO-GT 0.01 0.08 0.04 002 002 0.01 004 003 0.00 0.00 0.03 0.02
MOTLBO-CD 0.01 0.10 0.04 003 002 0.02 0.04 004 0.00 001 0.04 0.06
NSGA-III 0.01 0.08 0.02 009 001 0.08 0.02 007 0.00 000 0.02 0.08
FST-MOPSO-RP-SLSPR | 0.01 0.08 0.03 0.02 001 0.01 0.03 0.03 0.00 000 0.03 0.04
FST-MOMA-RP 001 0.09 003 004 002 003 003 006 001 001 0.02 0.08
FST-MOFA-RP 0.01 0.10 003 002 001 001 003 003 0.00 0.00 0.03 0.04
FST-DEMO-RP 006 021 0.12 006 0.17 012 014 011 025 029 0.11 0.12
MOGWO-RP 0.03 ' 011 0.08 001 003 0.02 003 004 0.00 0.00 0.04 0.07
MOTLBO-RP 001 0.11 0.04 002 002 001 003 004 0.00 0.00 0.03 0.05

Table 5.83: Comparison of methods according their average C metric values when using six
objectives on the Timbuk2 data (Part 2)
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MOEA/D 0.02 1003 0.05 003 0.02 0.06 001 0.06 0.00 0.00 0.06
SPEA-II 0.00 000 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 o0.00
PESA-II 0.01 002 0.02 001 000 0.02 000 0.01 0.00 000 o0.01
NSGA-II 0.01 003 0.02 003 001 0.03 001 0.02 0.00 000 0.02
FST-MOMA-GT 0.01 004 004 0.02 0.01 003 001 002 002 0.01 0.02
FST-MOMA-CD 001 003 002 002 001 0.03 001 0.03 0.01 000 0.02
FST-MOPSO-GT 0.01 002 002 001 000 0.02 000 0.01 0.00 000 o0.01
FST-MOPSO-CD-SLSPR 001 003 (002 0.03 0.01 0.03 001 0.03 [000 0.00 0.03
FST-DEMO-GT 0.04 009 0210 0.08 0.02 0.09 006 0.07 025 002 0.08
FST-DEMO-CD 0.03 009 010 0.08 0.02 0.09 0.07 007 025 0.01 o0.07
FST-MOFA-GT 0.01 003 002 001 001 0.02 0.00 001 0.00 0.00 0.01
FST-MOFA-CD 0.01 ' 003 002 003 001 0.04 001 0.04 000 000 0.03
MOGWO-GT 1.00 0.05 003 0.02 0.00 003 001 0.01 000 0.00 0.02
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MOGWO-CD 0.01 100 0.03 004 001 0.04 001 0.03 000 001 o0.03
MOTLBO-GT 001 003 1.00 ' 002 000 0.03 001 0.01 0.00 000 0.02
MOTLBO-CD 001 004 003 100 001 004 001 0.04 0.00 001 0.04
NSGA-I1II 0.00 ' 006 0.02 006 100 010 008 0.09 0.00 0.01 @0.07
FST-MOPSO-RP-SLSPR 0.01 002 002 002 001 100 001 0.06 000 0.00 0.04
FST-MOMA-RP 001 /005 002 006 002 011 100 0210 001 0.01 0.09
FST-MOFA-RP 001 003 003 002 001 006 001 100 000 0.01 0.06
FST-DEMO-RP 0.04 009 011 010 003 013 009 0413 100 0.01 021
MOGWO-RP 0.02 005 0.03 003 005 (009 002 0.06 000 100 0.05
MOTLBO-RP 0.01 003 0.02 003 002 007 002 0.09 000 001 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure

5.46 demonstrates the violin plots which show the distribution of time each method needed.
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Figure 5.46: Violin plots of Time values when using six objectives on the Timbuk?2 data
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A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,144.55, p<0.001, £2=1.00. Their Median values along with the rest of statistics are
demonstrated in Table 5.84.

Table 5.84: Statistics of Time when using six objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 357.13 340.39 344.54 288.39 15.42 68.74
SPEA-II 311.89 309.75 309.73 308.15 0.93 3.74
PESA-II 304.67 302.90 302.88 301.39 0.84 3.28
NSGA-II 267.22 259.90 259.71 258.55 1.25 8.67
FST-MOMA-GT 623.51 610.06 609.59 598.36 5.62 25.15
FST-MOMA-CD 555.54 552.59 552.57 550.02 1.21 5.52
FST-MOPSO-GT 274.14 271.82 271.76 270.36 0.78 3.79
FST-MOPSO-CD-SLSPR 285.75 283.72 283.72 281.93 0.93 3.81
FST-DEMO-GT 405.35 402.35 402.73 396.15 1.95 9.19
FST-DEMO-CD 420.01 414.12 414.05 411.00 1.61 9.01
FST-MOFA-GT 911.53 895.24 895.38 874.05 6.80 37.48
FST-MOFA-CD 671.10 658.78 658.69 652.63 3.05 18.47
MOGWO-GT 561.72 556.70 556.26 549.89 2.80 11.83
MOGWO-CD 599.98 588.04 587.65 584.26 2.87 15.72
MOTLBO-GT 343.07 338.39 338.49 333.56 2.33 9.51
MOTLBO-CD 369.89 367.40 367.25 366.00 0.83 3.89
NSGA-III 356.95 353.33 353.31 350.45 1.35 6.50
FST-MOPSO-RP-SLSPR 467.05 444.77 443.49 439.68 4.60 27.37
FST-MOMA-RP 727.73 712.72 710.98 704.98 5.52 22.75
FST-MOFA-RP 728.21 720.95 720.89 716.44 2.86 11.77
FST-DEMO-RP 718.93 699.33 696.02 689.75 8.21 29.18
MOGWO-RP 874.75 844.99 842.20 833.34 10.80 41.42
MOTLBO-RP 469.87 458.11 457.01 453.94 4.10 15.93

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.85, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.85: Pairwise comparisons of Time when using six objectives on the Timbuk?2 data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP

PESA-1I
NSGA-II
NSGA-III

HMOTLBO-GT

[a)]
<
w
o
=

MOEA/D
SPEA-II

PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
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Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOPSO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
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FST-DEMO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD

MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.46 and Table 5.84 illustrate that NSGA-11 needs the least time, while FST-MOFA-GT
needs the most.

As regards the M7 metric values of each algorithm, Figure 5.47 demonstrates the violin plots of
the M7 values of each method.

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=489.09, p<0.001,

£2=0.43. Their Median values along with the rest of statistics are demonstrated in Table 5.86.

Table 5.86: Statistics of M1 values when using six objectives on the Timbuk2 data

Method Max Mean Median Min Range SD
MOEA/D 415.21 95.89 82.11 0.00 415.21 76.79
SPEA-II 393.56 232.78 222.99 116.64 276.92 75.58
PESA-II 211.98 139.32 133.81 80.18 131.80 29.69
NSGA-II 223.19 99.11 91.04 48.49 174.71 36.97
FST-MOMA-GT 159.55 97.77 97.50 42.89 116.66 24.54
FST-MOMA-CD 178.80 88.34 82.85 31.71 147.09 32.84
FST-MOPSO-GT 272.75 150.55 147.27 66.19 206.56 38.03
FST-MOPSO-CD-SLSPR 220.67 148.12 149.80 58.87 161.80 37.34
FST-DEMO-GT 182.84 81.43 78.50 37.77 145.07 30.12
FST-DEMO-CD 175.92 84.44 79.45 42.54 133.38 26.38
FST-MOFA-GT 207.00 128.07 123.18 76.66 130.33 30.83
FST-MOFA-CD 242.18 157.95 153.95 68.37 173.81 37.60
MOGWO-GT 532.48 100.15 67.31 0.00 532.48 98.62
MOGWO-CD 428.97 125.80 101.66 4.62 424.35 86.70
MOTLBO-GT 216.00 119.21 118.35 52.69 163.31 32.72
MOTLBO-CD 177.63 124.14 120.12 76.88 100.75 25.87
NSGA-III 129.89 51.83 48.75 0.00 129.89 35.45
FST-MOPSO-RP-SLSPR 310.70 180.71 167.90 72.90 237.80 58.08
FST-MOMA-RP 171.15 74.18 67.86 5.64 165.50 36.31
FST-MOFA-RP 313.49 176.91 167.68 63.92 249.58 68.60
FST-DEMO-RP 245.00 95.26 89.69 20.16 224.84 46.01
MOGWO-RP 406.75 98.95 66.35 0.00 406.75 105.63
MOTLBO-RP 275.87 156.60 147.36 62.52 213.35 60.75
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Figure 5.47: Violin plots of M1" metric values when using six objectives on the Timbuk?2 data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.87, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.87: Pairwise comparisons of M:~ when using six objectives on the Timbuk?2 data
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Figure 5.47 and Table 5.86 illustrate that NSGA-III provides the closest to the optimal pareto
front non-dominated solutions, while SPEA-II provides the farthest ones. Table 5.87 reveals that
NSGA-11I does not have statistically significant differences with MOEA/D, MOGWO-GT, FST-
MOMA-RP and MOGWO-RP, while SPEA-II does not have statistically significant differences
with FST-MOPSO-RP-SLSPR and FST-MOFA-RP.

As regards the 4 values of each algorithm, Figure 5.48 demonstrates the violin plots of the 4
metric values, of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the distribution of the solutions, H(22)=910.21, p<0.001, £2=0.80. Their

Median values along with the rest of statistics are demonstrated in Table 5.88.

Table 5.88: Statistics of 4 metric values when using six objectives on the Timbuk?2 data

Method Max Mean Median Min Range SD
MOEA/D 1.40 1.22 1.22 1.06 0.34 0.08
SPEA-II 0.72 0.62 0.61 0.52 0.20 0.05
PESA-II 0.76 0.67 0.67 0.57 0.19 0.05
NSGA-II 0.80 0.68 0.68 0.57 0.23 0.05
FST-MOMA-GT 0.83 0.71 0.71 0.53 0.30 0.06
FST-MOMA-CD 0.79 0.68 0.68 0.57 0.23 0.05
FST-MOPSO-GT 0.82 0.70 0.71 0.58 0.24 0.06
FST-MOPSO-CD-SLSPR 0.77 0.64 0.63 0.54 0.23 0.05
FST-DEMO-GT 1.32 1.26 1.26 1.21 0.11 0.03
FST-DEMO-CD 1.32 1.24 1.24 1.20 0.13 0.03
FST-MOFA-GT 0.82 0.66 0.65 0.55 0.28 0.06
FST-MOFA-CD 0.80 0.70 0.70 0.61 0.20 0.05
MOGWO-GT 1.38 1.19 1.18 1.00 0.38 0.08
MOGWO-CD 0.86 0.71 0.70 0.58 0.28 0.05
MOTLBO-GT 0.83 0.67 0.65 0.54 0.28 0.06
MOTLBO-CD 0.76 0.66 0.67 0.52 0.24 0.05
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Method Max Mean Median Min Range SD
NSGA-III 1.86 1.04 1.00 0.70 1.16 0.20
FST-MOPSO-RP-SLSPR 0.97 0.78 0.77 0.65 0.32 0.07
FST-MOMA-RP 1.12 0.90 0.90 0.62 0.49 0.10
FST-MOFA-RP 1.05 0.79 0.79 0.55 0.50 0.10
FST-DEMO-RP 1.54 1.32 1.30 1.21 0.32 0.07
MOGWO-RP 1.98 1.68 1.66 1.33 0.65 0.16
MOTLBO-RP 1.02 0.77 0.76 0.54 0.48 0.10
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Figure 5.48: Violin plots of 4 metric values when using six objectives on the Timbuk2 data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.89, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between groups.
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Table 5.89: Pairwise comparisons of 4 metric when using six objectives on the Timbuk2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
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MOEA/D
SPEA-II
PESA-II
NSGA-1I
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-111
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

Figure 5.48 and Table 5.88 illustrate that SPEA-II provides the best distribution among the non-
dominated solutions, while MOGWO-RP provides the worst. According to Table 5.89, SPEA-I1I
does not have statistically significant differences with FST-MOPSO-CD-SLSPR and FST-MOFA-
GT.

Finally, as regards the M3 values of each algorithm, Figure 5.49 demonstrates the violin plots
of the M; values of each method. A Kruskal-Wallis test showed that the optimizer selection
significantly affects the extent of the obtained Pareto front, H(22)=831.62, p<0.001, £2=0.72. Their

Median values along with the rest of statistics are demonstrated in Table 5.90.

Table 5.90: Statistics of M3" metric values when using six objectives on the Timbuk2 data

Method Max Mean Median Min Range SD
MOEA/D 83.15 72.68 72.57 63.53 19.62 4.31
SPEA-II 87.17 82.12 82.18 75.26 11.91 2.60
PESA-II 85.38 81.25 81.33 76.77 8.61 1.92
NSGA-II 98.48 97.34 97.37 96.31 2.17 0.64
FST-MOMA-GT 85.15 82.20 82.19 78.68 6.48 1.66
FST-MOMA-CD 100.00 98.88 98.96 97.53 2.47 0.50
FST-MOPSO-GT 84.13 79.91 79.99 74.37 9.76 2.33
FST-MOPSO-CD-SLSPR 93.14 90.47 90.54 87.38 5.75 1.44
FST-DEMO-GT 83.14 79.23 79.06 72.81 10.33 2.63
FST-DEMO-CD 83.28 79.15 78.90 73.45 9.83 2.55
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Method Max Mean Median Min Range SD
FST-MOFA-GT 84.78 80.21 80.22 75.97 8.81 2.02
FST-MOFA-CD 89.78 87.88 87.79 86.83 2.96 0.63
MOGWO-GT 75.92 64.14 64.80 42.63 33.28 7.34
MOGWO-CD 94.38 91.98 92.06 89.34 5.04 111
MOTLBO-GT 85.70 81.47 81.51 76.71 8.99 1.92
MOTLBO-CD 91.10 89.05 89.11 86.73 4.38 0.93
NSGA-III 93.26 78.83 86.48 26.29 66.98 15.91
FST-MOPSO-RP-SLSPR 89.91 84.19 85.20 73.55 16.36 3.97
FST-MOMA-RP 93.30 82.11 87.42 39.75 53.55 11.74
FST-MOFA-RP 86.33 76.04 79.99 47.96 38.36 9.89
FST-DEMO-RP 82.57 78.90 78.79 74.15 8.42 2.55
MOGWO-RP 83.72 61.01 72.93 0.00 83.72 26.49
MOTLBO-RP 88.93 78.76 82.18 46.77 42.16 9.10
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Figure 5.49: Violin plots of Ms" metric values when using six objectives on the Timbuk?2 data

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.91, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.
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Table 5.91: Pairwise comparisons of Ms" metric when using six objectives on the Timbuk?2
data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
FST-MOMA-RP
FST-DEMO-RP
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MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP
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Figure 5.49 and Table 5.90 illustrate that FST-MOMA-CD provides the best extend of the non-
dominated solutions, while MOGWO-GT provides the worst. Table 5.91 reveals that MOGWO-
GT does not have statistically significant differences with MOGWO-RP.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,

are demonstrated in Figure 5.50.
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Figure 5.50: Average convergence characteristic curves when using six objectives on the
Timbuk2 data

5.5.2 Results on the Olive oil data set when using six objectives

Regarding the performance of the comparing algorithms while performing on the olive oil data set

when using six objectives, in Figure 5.51 the non-dominated solutions obtained from each

algorithm are graphically demonstrated, while Tables 5.92 and 5.93 show the results of the average

C metric values of the comparing algorithms. Cells shaded in light blue, indicate whether there is

a statistically significant difference between C(A,B) and C(B,A), according to a Mann Whitney U

Test.
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Figure 5.51: Detected non-dominated solutions when using five objectives on the Olive oil data

Table 5.92: Comparison of methods according their average C metric values when using six

objectives on the Olive oil data (Part 1)

5 8 & 9 5 8 5 8

C(AB) ; _ £ = 2 2 g2 2 £ f

= = = = (@] (@] O O w w (@] (@]

T 0« <« & 2 =2 = 2x Q2 o = =

o w %) 2 — — = ol Z Il — = =

S & & =z R R R PRy 2 2 2

MOEA/D 1.00 001 0.07 029 0.09 022 015 030 011 0.11 036 0.32
SPEA-II 0.05 1.00 0.19 044 030 043 034 046 030 031 0.73 0.67
PESA-II 0.04 004 100 032 018 031 022 032 023 023 055 0.51
NSGA-II 0.01 0.00 0.04 100 0.03 012 005 012 0.03 0.03 013 0.21
FST-MOMA-GT 0.06 002 0.09 029 100 027 017 029 022 021 050 0.44
FST-MOMA-CD 0.01 0.01 0.04 0.10 0.04 100 005 012 0.03 003 015 0.21
FST-MOPSO-GT 0.05 0.02 0.06 024 0.09 021 100 024 017 0.17 044 0.39
FST-MOPSO-CD-SLSPR | 0.01 0.00 0.04 0.09 004 0.09 005 100 0.03 0.3 0.15 0.21
FST-DEMO-GT 0.06 0.00 0.04 020 0.06 016 0.09 020 1.00 029 032 0.29
FST-DEMO-CD 0.05 0.01 0.04 019 005 0.15 0.09 0.19 031 100 0.34 0.27
FST-MOFA-GT 0.01 0.00 0.01 0.08 0.01 0.06 0.02 0.07 004 004 100 0.10
FST-MOFA-CD 0.02 0.00 0.02 006 0.02 0.05 002 006 003 003 0.12 1.00
MOGWO-GT 0.07 002 007 027 008 025 015 028 0.19 0.19 045 0.40
MOGWO-CD 0.04 001 006 019 008 014 010 0.17 013 0.12 0.34 0.33
MOTLBO-GT 0.02 0.00 0.02 0.11 [ 0.02 0.09 0.03 0.10 0.07 0.06 0.20 0.16
MOTLBO-CD 0.02 0.00 0.02 0.09 0.03 0.07 003 0.08 0.05 005 017 0.15
NSGA-III 0.03 0.02 0.09 022 0.07 027 0.10 031 0.05 0.05 018 0.32
FST-MOPSO-RP-SLSPR | 0.02 0.01 0.04 0.13 005 0.12 0.08 0.15 0.05 0.05 0.19 0.26
FST-MOMA-RP 002 001 005 016 0.06 0.17 0.08 | 018 0.05 0.05  0.18 0.24
FST-MOFA-RP 0.01 0.00 0.02 0.08 0.02 0.06 003 0.07 0.03 004 014 0.12
FST-DEMO-RP 0.06 0.00 0.04 017 0.09 0.16 0.09 0.16 028 030 0.34 0.26
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- A
G S 2 9 5 8 5 8
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= = — = O (@] (@) (@] w w O @)
T 4 <« £ =2 =2 2 29 qQ = =2
e W @ 8 L L L AL 5 55
= ) o z L L L Lo L L s
MOGWO-RP 0.06 0.01 004 0.16 0.03 0.13 | 0.09 0.16 0.09 0.08 0.29 0.27
MOTLBO-RP 0.02 000 0.03 0.11 0.03 0.08 0.05 010 0.05 0.05 0.18 0.15

Table 5.93: Comparison of methods according their average C metric values when using six
objectives on the Olive oil data (Part 2)

- a E & &
' ; o
© O © O 2, & & ¢ ¥ =
C(AB) S 2 8 & = %63 53 & & 2 8
= = — — < S > > [a) = —
Q] (O] = = ) (7)) [ [ T (O] -
O O @) @) d Hda 5K E £ O O
= = = = prd Lo o L L = =
MOEA/D 005 013 030 022 011 0.19 0.11 0.28 0.11 0.08 ' 0.26
SPEA-II 019 036 064 064 014 029 019 048 030 0.16 0.56
PESA-II 013 025 048 046 012 022 0.13 036 021 0.12 042
NSGA-II 0.01 007 010 0.16 0.04 0.09 0.08 016 0.02 0.03 0.14
FST-MOMA-GT 012 020 043 038 011 020 0.11 0.30 0.20 0.09 0.35
FST-MOMA-CD 001 008 011 016 004 0.10 009 0.15 0.03 0.03 0.15
FST-MOPSO-GT 008 015 038 034 009 017 0.10 0.26 0.16 0.08 0.31
FST-MOPSO-CD-SLSPR 001 008 011 016 004 0.10 0.07 0.15 0.03 0.03 0.15
FST-DEMO-GT 005 011 025 021 0.07 0.16 0.07 019 0.26 0.04 @ 0.22
FST-DEMO-CD 005 011 027 019 005 0.15 0.06 017 0.27 0.07 @ 0.22
FST-MOFA-GT 001 003 0.09 0.08 0.02 004 003 008 004 0.02 0.09
FST-MOFA-CD 001 004 009 0.09 0.02 005 0.02 009 003 0.03 0.09
MOGWO-GT 1.00 011 039 035 011 018 0.11 0.23 0.18 0.07 0.30
MOGWO-CD 006 100 (029 028 0.06 013 0.08 023 0.11 0.07  0.26
MOTLBO-GT 003 005 100 0.12 004 0.07 0.04 010 (005 0.03 0.12
MOTLBO-CD 0.02 006 014 100 003 0.07 0.04 0.11 (004 0.03 0.13
NSGA-III 001 013 014 026 100 027 022 025 0.05 0.05 0.28
FST-MOPSO-RP-SLSPR 002 010 014 021 005 100 009 025 0.05 0.04 0.25
FST-MOMA-RP 001 009 015 021 007 020 100 024 0.05 0.04 0.24
FST-MOFA-RP 001 005 012 0411 003 007 004 100 003 0.05 0.12
FST-DEMO-RP 003 0.10 027 020 0.07 013 0.07 021 100 0.08 '0.22
MOGWO-RP 005 012 029 021 005 0.13 0.05 022 0.10 1.00 ' 0.23
MOTLBO-RP 0.02 005 015 013 0.04 008 005 015 0.05 0.05 1.00

As regards the time each algorithm needed to complete 100,000 function evaluations, Figure

5.52 demonstrates the violin plots which show the distribution of time each method needed.

Technical University of Crete: School of Production Engineering and Management



Multi-objective algorithms for optimal product line design 155

1100 -
1000 -
|
900 - « ’ '
P 8
800 - : T
[ J
l !
700 - ' ‘1‘ Q \
600 4 | \# |
| ! !
\ K- | \~
!’ ‘ ‘ ' ‘
500 - W | : i ’ eé
i ‘): i ’ l‘," ¢+ :
! 4 $ 4 - |
400 Y é ; $ |
1 ! . g
1 A - | ¢ |
300 - |
¢ | | -
200 - + $ v
100 | 1\ \\ [\ J& | /\& | | | 'l& | /I& | 'lﬁ | !\ | | | 1 | |
.3 S84 o A0 A Q N R R R R
S T T T A GO PP a0 O o O RN S T O S
O’ KON N2 N P LKL 709 W LN 9
Y 9 O TR IOELEL LR R NP O L O Y
NT N T I LOO S FUNLLLO
CEGLEEEE € CE
& &
< <

Figure 5.52: Violin plots of Time values when using six objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects time needed,
H(22)=1,121.71, p<0.001, £2=0.98. Their Median values along with the rest of statistics are
demonstrated in Table 5.94.

Table 5.94: Statistics of Time when using six objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 662.36 497.25 495.87 417.71 244.65 43.72
SPEA-II 505.41 422.83 418.59 392.84 112.57 20.31
PESA-II 372.05 294.66 291.68 276.46 95.59 15.92
NSGA-II 485.84 410.44 407.72 386.25 99.59 17.35
FST-MOMA-GT 452.66 360.93 358.31 329.66 123.00 23.49
FST-MOMA-CD 764.51 633.80 624.31 606.51 158.01 29.65
FST-MOPSO-GT 386.09 306.55 302.02 284.15 101.94 18.98
FST-MOPSO-CD-SLSPR 450.17 368.13 361.61 346.76 103.41 22.39
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Method Max Mean Median Min Range SD
FST-DEMO-GT 630.95 458.79 457.10 392.93 238.02 40.87
FST-DEMO-CD 716.64 553.80 562.75 452.43 264.21 51.89
FST-MOFA-GT 302.32 230.59 228.63 203.31 99.02 16.87
FST-MOFA-CD 366.33 322.75 318.87 302.58 63.75 14.51
MOGWO-GT 710.26 617.84 616.05 536.56 173.70 30.08
MOGWO-CD 905.34 674.49 658.87 641.95 263.39 47.78
MOTLBO-GT 352.76 190.77 187.33 163.17 189.59 25.22
MOTLBO-CD 325.55 220.33 216.10 200.60 124.95 22.08
NSGA-III 676.75 510.48 507.92 468.25 208.51 33.94
FST-MOPSO-RP-SLSPR 752.52 519.36 509.67 487.89 264.64 39.80
FST-MOMA-RP 915.33 763.77 750.26 725.31 190.03 41.41
FST-MOFA-RP 438.61 351.93 348.87 321.99 116.62 20.95
FST-DEMO-RP 952.69 816.40 823.46 701.11 251.58 55.38
MOGWO-RP 1,075.51 921.75 899.18 859.00 216.51 51.00
MOTLBO-RP 334.66 273.04 269.11 242.71 91.95 17.24

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.95, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between groups.

Table 5.95: Pairwise comparisons of Time when using six objectives on the Olive oil data

Method

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

FST-MOPSO-CD-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT

PESA-II
NSGA-II

FST-DEMO-GT

FST-DEMO-CD

FST-MOFA-GT
FST-MOFA-CD

NSGA-111
FST-MOPSO-RP-SLSPR
FST-MOMA-RP

FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

Figure 5.52 and Table 5.94 illustrate that MOTLBO-GT needs the least time, while MOGWO-

RP needs the most.

As regards the M7 metric values of each algorithm, Figure 5.53 demonstrates the violin plots of

the M7 values of each method.
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Figure 5.53: Violin plots of M:" metric values when using six objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distance of
the obtained non-dominated solutions from the optimal Pareto front, H(22)=700.92, p<0.001,

£2=0.61. Their Median values along with the rest of statistics are demonstrated in Table 5.96.

Table 5.96: Statistics of M:” values when using six objectives on the Olive oil data

Method Max Mean Median Min Range SD
MOEA/D 1,199.87 371.16 267.29 0.00 1,199.87 350.78
SPEA-II 569.56 82.08 61.94 0.00 569.56 100.97
PESA-II 711.51 344.72 334.35 129.21 582.30 132.97
NSGA-II 796.88 561.25 563.35 217.16 579.71 132.37
FST-MOMA-GT 704.69 437.70 430.13 163.75 540.94 115.58
FST-MOMA-CD 773.76 575.40 592.22 325.47 448.29 116.02
FST-MOPSO-GT 909.45 594.85 590.13 260.67 648.79 139.04
FST-MOPSO-CD-SLSPR 1,017.98 701.37 692.86 396.24 621.74 142.33
FST-DEMO-GT 1,082.76 806.40 798.96 537.71 545.04 137.80
FST-DEMO-CD 1,093.47 799.96 826.03 486.14 607.32 146.03
FST-MOFA-GT 1,334.67 1,056.35 1,054.64 782.63 552.04 112.65
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Method Max Mean Median Min Range SD
FST-MOFA-CD 1,367.97 1,026.86 1,020.03 732.00 635.97 133.48
MOGWO-GT 1,582.88 640.93 627.60 45.47 1,537.40 301.66
MOGWO-CD 1,304.12 626.28 599.87 175.12 1,129.00 221.03
MOTLBO-GT 1,233.51 935.85 931.74 620.54 612.96 140.77
MOTLBO-CD 1,139.04 919.90 898.52 702.42 436.62 101.46
NSGA-III 796.78 274.28 254.37 8.97 787.80 175.96
FST-MOPSO-RP-SLSPR 1,240.58 726.07 744.27 224.14 1,016.44 242.88
FST-MOMA-RP 1,139.54 507.33 494,58 48.14 1,091.41 235.04
FST-MOFA-RP 1,537.58 980.03 971.65 522.01 1,015.58 258.02
FST-DEMO-RP 1,220.43 798.22 800.82 408.78 811.65 224.44
MOGWO-RP 2,342.27 830.82 873.85 12.83 2,329.44 489.17
MOTLBO-RP 1,314.43 923.83 933.37 475.76 838.68 196.15

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.97, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.97: Pairwise comparisons of M1" when using six objectives on the Olive oil data

Method

FST-MOPSO-CD-SLSPR
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
FST-MOFA-RP
FST-DEMO-RP

=FST-MOMA-RP

MOEA/D
SPEA-II

PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP | 0 |
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

[eNeoNololoNoNoNeNa) o o =

Figure 5.53 and Table 5.96 illustrate that SPEA-II provides the closest to the optimal pareto
front non-dominated solutions, while FST-MOFA-GT provides the farthest ones. Table 5.97
reveals that FST-MOFA-GT does not have statistically significant differences with FST-MOFA-
CD, FST-MOFA-RP and MOGWO-RP.
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As regards the 4 values of each algorithm, Figure 5.54 demonstrates the violin plots of the 4

metric values, of each method.
2 e

1.5
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Figure 5.54: Violin plots of 4 metric values when using six objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the distribution
of the solutions, H(22)=943.01, p<0.001, £2=0.82. Their Median values along with the rest of
statistics are demonstrated in Table 5.98.

Table 5.98: Statistics of 4 metric values when using six objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 1.50 1.24 1.22 1.01 0.49 0.13
SPEA-II 0.78 0.67 0.67 0.53 0.25 0.06
PESA-II 0.78 0.66 0.66 0.52 0.26 0.06
NSGA-II 0.81 0.63 0.63 0.54 0.27 0.05
FST-MOMA-GT 0.78 0.68 0.68 0.57 0.21 0.05
FST-MOMA-CD 0.75 0.62 0.62 0.54 0.21 0.05
FST-MOPSO-GT 0.81 0.67 0.67 0.57 0.24 0.06
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Method Max Mean Median Min Range SD
FST-MOPSO-CD-SLSPR 0.74 0.60 0.60 0.50 0.24 0.05
FST-DEMO-GT 1.58 1.41 1.41 1.29 0.28 0.05
FST-DEMO-CD 1.58 1.40 1.41 1.29 0.29 0.05
FST-MOFA-GT 0.82 0.67 0.68 0.55 0.27 0.06
FST-MOFA-CD 0.82 0.63 0.63 0.52 0.30 0.06
MOGWO-GT 1.42 1.28 1.29 1.09 0.33 0.07
MOGWO-CD 0.80 0.67 0.68 0.57 0.24 0.05
MOTLBO-GT 0.80 0.68 0.69 0.55 0.25 0.06
MOTLBO-CD 0.74 0.64 0.64 0.56 0.18 0.04
NSGA-III 1.36 0.98 0.93 0.79 0.58 0.15
FST-MOPSO-RP-SLSPR 1.08 0.83 0.82 0.71 0.36 0.08
FST-MOMA-RP 1.14 0.86 0.85 0.68 0.46 0.09
FST-MOFA-RP 0.92 0.76 0.76 0.61 0.30 0.07
FST-DEMO-RP 1.59 1.46 1.45 1.33 0.27 0.07
MOGWO-RP 1.98 1.69 1.72 1.22 0.76 0.18
MOTLBO-RP 0.89 0.72 0.73 0.59 0.30 0.06

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs

of groups. In Table 5.99, 0 indicates that there were not statistically significant differences between

groups, while 1 indicates that there were statistically significant differences between them.

Table 5.99: Pairwise comparisons of 4 metric when using six objectives on the Olive oil

data

Method

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

FST-MOPSO-CD-SLSPR

FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT

FST-MOFA-CD

MOGWO-GT

FST-MOPSO-RP-SLSPR

MOTLBO-GT

FST-MOMA-RP

FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

Figure 5.54 and Table 5.98 illustrate that FST-MOPSO-CD-SLSPR provides the best

distribution among the non-dominated solutions, while MOGWO-RP provides the worst. Table
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5.99 reveals that FST-MOPSO-CD-SLSPR does not have statistically significant differences with
NSGA-IIl, FST-MOMA-CD, FST-MOFA-CD and MOTLBO-CD.
Finally, as regards the M3 values of each algorithm, Figure 5.55 demonstrates the violin plots

of the M3 values of each method.
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Figure 5.55: Violin plots of M3s" metric values when using six objectives on the Olive oil data

A Kruskal-Wallis test showed that the optimizer selection significantly affects the extent of the
obtained Pareto front, H(22)=969.75, p<0.001, £2=0.84. Their Median values along with the rest
of statistics are demonstrated in Table 5.100.

Table 5.100: Statistics of Ms™ metric values when using six objectives on the Olive oil data

Method Max Mean Median Min Range sD
MOEA/D 72.54 53.28 53.05 36.50 36.04 8.41
SPEA-II 78.87 70.37 70.39 59.08 19.79 3.88
PESA-II 82.63 77.66 77.05 71.87 10.75 2.64
NSGA-II 99.56 97.62 97.52 95.67 3.89 0.86
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Method Max Mean Median Min Range SD
FST-MOMA-GT 84.15 78.59 78.31 74.49 9.66 2.37
FST-MOMA-CD 100.00 97.21 97.18 94.81 5.19 1.12
FST-MOPSO-GT 82.51 77.00 77.25 67.30 15.21 3.33
FST-MOPSO-CD-SLSPR 97.65 94.60 94.35 92.04 5.61 1.42
FST-DEMO-GT 79.06 70.52 70.88 63.27 15.79 3.06
FST-DEMO-CD 74.78 69.69 69.90 61.79 12.99 2.99
FST-MOFA-GT 85.14 78.83 78.56 73.03 12.12 2.41
FST-MOFA-CD 90.29 88.27 88.28 84.08 6.22 1.30
MOGWO-GT 75.49 65.95 66.37 49.43 26.07 4.68
MOGWO-CD 89.10 85.22 85.24 81.21 7.90 1.86
MOTLBO-GT 83.12 77.69 77.41 73.80 9.32 1.98
MOTLBO-CD 90.10 86.86 86.80 84.44 5.66 1.23
NSGA-III 87.82 76.20 78.15 38.17 49.65 9.35
FST-MOPSO-RP-SLSPR 89.65 78.00 78.12 69.08 20.57 4.77
FST-MOMA-RP 88.85 79.31 81.14 64.74 24.11 5.87
FST-MOFA-RP 86.15 78.73 80.27 63.75 22.40 5.58
FST-DEMO-RP 75.53 69.75 70.37 62.97 12.56 3.34
MOGWO-RP 77.50 64.39 65.00 17.93 59.57 9.63
MOTLBO-RP 85.46 79.91 79.67 73.01 12.45 2.96

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.101, O indicates that there were not statistically significant differences
between groups, while 1 indicates that there were statistically significant differences between

them.

Table 5.101: Pairwise comparisons of Ms" metric when using six objectives on the Olive oil
data

Method

FST-MOPSO-CD-SLSPR
CD
FST-MOPSO-RP-SLSPR

FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-GT
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOTLBO-GT
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOTLBO-RP

[a]
<
i
o
=

MOEA/D
SPEA-II
PESA-II
NSGA-II
FST-MOMA-GT
FST-MOMA-CD
FST-MOPSO-
GT
FST-MOPSO-
CD-SLSPR
FST-DEMO-GT
FST-DEMO-CD
FST-MOFA-GT
FST-MOFA-CD
MOGWO-GT
MOGWO-CD
MOTLBO-GT
MOTLBO-CD
NSGA-III
FST-MOPSO-
RP-SLSPR
FST-MOMA-RP
FST-MOFA-RP
FST-DEMO-RP
MOGWO-RP
MOTLBO-RP

o oo o I
1
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Figure 5.55 and Table 5.100 illustrate that NSGA-II provides the best extend of the non-
dominated solutions, while MOEA/D provides the worst. Table 5.101 reveals that NSGA-I1 does
not have statistically significant differences with FST-MOMA-CD.

To further check the way each algorithm converges towards the optimum values of each
objective function, their average convergence characteristic curves through function evaluations,
are demonstrated in Figure 5.56.
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Figure 5.56: Average convergence characteristic curves when using six objectives on the Olive

oil data
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5.6 Investigating the factors that affect the results of algorithms

In this subsection, possible factors that have a statistically significant effect on the results of the
algorithms, are investigated, using statistical analyses.

Initially, the relationships between the number of objectives to be optimized and the time each
algorithm needed, the M; values, the 4 values, as well as the M3 values, were assessed. The
Pearson correlation tests revealed that there was a small possitive correlation between the number
of objectives to be optimized and the time needed (r=0.18, p<0.001), a medium possitive
correlation between the number of objectives to be optimized and the M7 values (r=0.48, p<0.001)
and a small negative correlation between the number of objectives to be optimized and the 4 metric
values (r=-0.07, p<0.001). Finally, there was no significant correlation between the number of
objectives to be optimized and the M3 values (r<-0.01, p=0.746).

Furthermore, the impact of the algorithmic structure on performance metrics was assessed.
Particularly, the impact of using GA, MA, PSO, DE, FA, GWO and TLBO was assessed. A
Kruskal-Wallis test showed that the algorithmic structure selection significantly affects the
distance of the obtained non-dominated solutions from the optimal Pareto front, H(6)=1260.92,
p<0.001, £2=0.11. Their Median values along with the rest of statistics are demonstrated in Table
5.102.

Table 5.102: Statistics of M:" values according to the algorithmic structure

Method Max Mean Median Min Range SD

GA 1,727.50 142.11 87.68 0.00 1,727.50 178.14
MA 1,139.54 223.79 149.45 5.64 1,133.90 223.81
PSO 1,447.89 280.40 190.13 6.96 1,440.93 269.98
DE 2,532.42 292.97 165.36 8.47 2,523.95 354.40
FA 1,625.93 394.92 248.06 10.25 1,615.68 406.39
GWO 2,342.27 173.75 86.88 0.00 2,342.27 248.27
TLBO 1,676.69 360.10 226.27 11.57 1,665.12 380.30

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.103, 1 indicates that there were statistically significant differences between

groups, while 0 indicates that there were not.

Table 5.103: Pairwise comparisons of M:" values according to the algorithmic structure

Method GA MA PSO DE FA GWO TLBO

GA
MA
PSO
DE
FA
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Method GA MA PSO DE FA GWO TLBO

GWO 0
TLBO -

Table 5.102 illustrates that GWO-based structures provide the closest to the optimal pareto front
non-dominated solutions, while FA-based structures provide the farthest ones. Table 5.103 reveals
that there were not statistically significant differences between GWO-based and GA-based
structures.

As regards the 4 values, a Kruskal-Wallis test showed that the algorithmic structure selection
significantly affects the distribution of the solutions, H(6)=2,347.74, p<0.001, £2=0.20. Their

Median values along with the rest of statistics are demonstrated in Table 5.104.

Table 5.104: Statistics of 4 metric values according to the algorithmic structure

Method Max Mean Median Min Range SD
GA 1.98 0.91 0.81 0.26 1.72 0.33
MA 1.39 0.79 0.77 0.27 1.12 0.18
PSO 1.34 0.75 0.73 0.24 1.10 0.17
DE 1.59 1.02 0.99 0.27 1.32 0.28
FA 1.33 0.75 0.73 0.37 0.95 0.15
GWO 1.98 1.15 1.14 0.28 1.70 0.37
TLBO 1.27 0.74 0.71 0.30 0.97 0.16

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.105, 1 indicates that there were statistically significant differences between
groups, while 0 indicates that there were not.

Table 5.105: Pairwise comparisons of 4 metric values according to the algorithmic structure

Method GA MA PSO DE FA GWO TLBO

GA
MA
PSO
DE
FA
GWO
TLBO

Table 5.104 illustrates that TLBO-based algorithms provide the best distribution among the
non-dominated solutions, while GWO-based ones provide the worst.

Finally, as regards the M; values, a Kruskal-Wallis test showed that the algorithmic structure
selection significantly affects the extent of the obtained Pareto front, H(6)=1,537.00, p<0.001,

£2=0.13. Their Median values along with the rest of statistics are demonstrated in Table 5.106.
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Table 5.106: Statistics of Ms™ metric values according to the algorithmic structure

Method Max Mean Median Min Range SD
GA 100.00 76.87 80.64 0.00 100.00 18.43
MA 100.00 87.14 88.06 39.75 60.25 9.31
PSO 99.78 86.81 87.64 56.93 42.85 8.33
DE 94.93 77.53 77.85 48.52 46.40 8.20
FA 100.00 81.26 81.74 47.96 52.04 7.22
GWO 98.58 73.10 75.08 0.00 98.58 16.07
TLBO 98.64 81.67 82.59 46.77 51.86 7.36

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.107, 1 indicates that there were statistically significant differences between

groups, while 0 indicates that there were not.

Table 5.107: Pairwise comparisons of Ms" metric values according to the algorithmic

structure

Method GA MA PSO DE FA GWO TLBO

GA
MA
PSO
DE
FA
GWO
TLBO

Table 5.106 illustrates that MA-based algorithms provide the best extend of the non-dominated
solutions, while GWO-based ones provide the worst. Table 5.107 reveals that there were not
statistically significant differences between MA-based and PSO-based structures.

The third investigated possible factor on affecting the results of the algorithms concerns the
data set. As regards the M7 metric values obtained in each data set, algorithms’ non-dominated
solutions retrieved from the Timbuk2 data set (Mdn=130.43) were closer to the optimal Pareto
front compared to the non-dominated solutions retrieved from the Olive oil data set (Mdn=194.74).
A Mann-Whitney U test indicated that this difference was statistically significant,
U(NTimbuk2=5,750, Noiive 0ii=5,750)=1.30e+7, p<0.05, r=0.22.

Moreover, regarding the 4 metric values obtained in each data set, algorithms’ non-dominated
solutions retrieved from the Timbuk2 data set (Mdn=0.76) had a better distribution compared to
the non-dominated solutions retrieved from the Olive oil data set (Mdn=0.82). A Mann-Whitney
U test indicated that this difference was statistically significant, U(NTimbuk2=5,729, Noiive
0il=5,745)=1.37e+7, p<0.05, r=0.17.
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Finally, as regards the M3 metric values obtained in each data set, algorithms’ non-dominated
solutions retrieved from the Timbuk2 data set (Mdn=86.56) achieved a better extent compared to
the non-dominated solutions retrieved from the Olive oil data set (Mdn=76.78). A Mann-Whitney
U test indicated that this difference was statistically significant, U(Ntimbuk2=5,750, Noiive
0il=5,750)=8.54+6, p<0.05, r=0.48. The rest of statistics are demonstrated in Table 5.108.

Table 5.108: Statistics of metric values on both data sets

Dataset M7 A M3
Mean Timbuk?2 151.68 0.83 84.86
Olive oil 360.35 0.92 75.74
Median Timbuk?2 130.43 0.76 86.56
Olive oil 194.74 0.82 76.78
Range Timbuk2 1117.83 1.74 100
Olive oil 2532.42 1.49 100
Minimum Timbuk2 0 0.24 0
Olive oil 0 0.49 0
Maximum Timbuk?2 1117.83 1.98 100
Olive oil 2532.42 1.98 100

The statistically significant differences mentioned above were expected, since the second data
set consists of more product characteristics and is therefore characterized by larger objective
landscapes.

The fourth investigated possible factor on affecting the results of the algorithms concerns the
nature of the algorithm when it comes on operating using Discrete or Continuous values. As
regards the M; metric values obtained from both types of algorithms, algorithms’ non-dominated
solutions retrieved from discrete optimization algorithms (Mdn=87.68) were closer to the optimal
Pareto front compared to the non-dominated solutions retrieved from the continuous ones
(Mdn=176.25). A Mann-Whitney U test indicated that this difference was statistically significant,
U(Npiscrete=2,500, Ncontinous=9,000)=7.60e+6, p<0.05, r=0.32. Moreover, regarding the A4 metric
values obtained from both types of algorithms, algorithms’ non-dominated solutions retrieved
from continuous optimization algorithms (Mdn=0.78) had a better distribution compared to the
non-dominated solutions retrieved from the discrete ones (Mdn=0.81). A Mann-Whitney U test
indicated that this  difference was statistically  significant,  U(Npiscrete=2,497,
Ncontinous=8,977)=1.06e+7, p<0.05, r=0.06. Finally, as regards the M3 metric values obtained from
both types of algorithms, algorithms’ non-dominated solutions retrieved from continuous
optimization algorithms (Mdn=82.30) achieved a better extent compared to the non-dominated
solutions retrieved from the discrete ones (Mdn=80.64). A Mann-Whitney U test indicated that
this difference was statistically significant, U(Npiscrete=2,500, Ncontinous=9,000)=1.03+7, p<0.05,
r=0.08. The rest of statistics are demonstrated in Table 5.109.
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Table 5.109: Statistics of metric values on discrete and continous algorithms

Algorithm Type M3 A M3
Mean Discrete 142.11 0.91 76.87
Continuous 287.66 0.87 81.25
Median Discrete 87.68 0.81 80.64
Continuous 176.250 0.78 82.30
Range Discrete 1727.50 1.72 100
Continuous 2532.42 1.74 100
Minimum Discrete 0 0.26 0
Continuous 0 0.24 0
Maximum Discrete 1727.50 1.98 100
Continuous 2532.42 1.98 100

The fifth investigated possible factor on affecting the results of the algorithms concerns the use
of the Crossover technique. As regards the M; metric values obtained from both types of
algorithms, algorithms’ non-dominated solutions retrieved from optimization algorithms using
crossover (Mdn=111.67) were closer to the optimal Pareto front compared to the ones that did not
(Mdn=182.24). A Mann-Whitney U test indicated that this difference was statistically significant,
U(Ncrossover=4,000, NNo crossover=7,500)=1.14e+7, p<0.05, r=0.24. Moreover, regarding the 4 metric
values obtained from both types of algorithms, algorithms’ non-dominated solutions retrieved
from optimization algorithms not using crossover (Mdn=0.78) had a better distribution compared
to the ones that did not (Mdn=0.79). A Mann-Whitney U test indicated that this difference was not
statistically significant, U(Ncrossover=3,997, Nno crossover =7,477)=1.48e+7, p=0.32. Finally, as
regards the M3 metric values obtained from both types of algorithms, algorithms’ non-dominated
solutions retrieved from optimization algorithms using crossover (Mdn=83.94) achieved a better
extent compared to the ones that did not (Mdn=81.42). A Mann-Whitney U test indicated that this
difference was statistically significant, U(Ncrossover=4,000, NNo crossover=7,500)=1.31+7, p<0.05,

r=0.13. The rest of statistics are demonstrated in Table 5.110.

Table 5.110: Statistics of metric values on using the crossover technique

Crossover M7 Y| M3
Mean No 300.43 0.88 80.07
Yes 172.74 0.87 80.72
Median No 182.24 0.78 81.42
Yes 111.67 0.79 83.94
Range No 2532.42 1.74 100
Yes 1727.5 1.72 100
Minimum No 0 0.24 0
Yes 0 0.26 0
Maximum No 2532.42 1.98 100
Yes 1727.5 1.98 100
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The sixth investigated possible factor on affecting the results of the algorithms concerns the use
mutation as a local search technique. As regards the M; metric values obtained from both types of
algorithms, algorithms’ non-dominated solutions retrieved from optimization algorithms not using
mutation (Mdn=151.24) were closer to the optimal Pareto front compared to the ones that did
(Mdn=157.97). A Mann-Whitney U test indicated that this difference was not statistically
significant, U(Nmutation=3,000, NNo Mutation=8,500)=1.27e+7, p=0.60. Moreover, regarding the 4
metric values obtained from both types of algorithms, algorithms’ non-dominated solutions
retrieved from optimization algorithms using mutation (Mdn=0.78) had a better distribution
compared to the ones that did not (Mdn=0.80). A Mann-Whitney U test indicated that this
difference was statistically significant, U(Nmutation =2,977, Nno mutation=8,497)=1.15e+7, p<0.05,
r=0.09. Finally, as regards the M3 metric values obtained from both types of algorithms,
algorithms’ non-dominated solutions retrieved from optimization algorithms using mutation
(Mdn=82.66) achieved a better extent compared to the ones that did not (Mdn=79.74). A Mann-
Whitney U test indicated that this difference was statistically significant, U(Nmutation=3,000, Nno
Mutation=8,500)=1.03+7, p<0.05, r=0.19. The rest of statistics are demonstrated in Table 5.111.

Table 5.111: Statistics of metric values on using mutation as a local search technique

Mutation M3 A M;
Mean No 266.93 0.94 77.39
Yes 252.16 0.85 81.33
Median No 151.24 0.8 79.74
Yes 157.97 0.78 82.66
Range No 2342.27 1.7 98.64
Yes 2532.42 1.74 100
Minimum No 0 0.28 0
Yes 0 0.24 0
Maximum No 2342.27 1.98 98.64
Yes 2532.42 1.98 100

Finally, the impact of diversity controlling operator was assessed as the seventh investigated
factor affecting the results. Particularly, the impact of using decomposition (DCMP),
environmental selection (ENSL), GT, CD and RP, was assessed. A Kruskal-Wallis test showed
that the diversity controlling operator selection significantly affects the distance of the obtained
non-dominated solutions from the optimal Pareto front, H(4)=539.65, p<0.001, £2=0.05. Their
Median values along with the rest of statistics are demonstrated in Table 5.112.
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Table 5.112: Statistics of M:" values according to the diversity controlling operator

Results

Method Max Mean Median Min Range SD
DCMP 1,727.50 186.77  115.44 0.00 1,727.50  246.97
ENSL 569.56 66.74 22.13 0.00 569.56 92.32
GT 1,582.88 278.70  175.16 0.00 1,582.88 311.82
CD 1,486.91 259.93  154.29 0.02 1,486.89  309.56
RP 253242 266.35  162.97 0.00 2,5632.42  324.40

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.113, O indicates that there were not statistically significant differences
between groups, while 1 indicates that there were statistically significant differences between

them.

Table 5.113: Pairwise comparisons of M1~ values according to the diversity controlling

operator

ENSL GT CD RP

Method DCMP
DCMP
ENSL
GT
CD

RP

Table 5.112 illustrates that SPEA-I1 which use ENSL, provides the closest to the optimal pareto
front non-dominated solutions, while the algorithms using GT provide the farthest ones.

As regards the 4 values, a Kruskal-Wallis test showed that the diversity controlling operator
selection significantly affects the distribution of the solutions, H(4)=3,396.97, p<0.001, £2=0.30.

Their Median values along with the rest of statistics are demonstrated in Table 5.114.

Table 5.114: Statistics of 4 metric values according to the diversity controlling operator

Method Max Mean Median Min Range SD
DCMP 1.98 1.41 1.33 0.98 1.00 0.25
ENSL 1.28 0.68 0.65 0.37 0.91 0.14
GT 1.73 0.85 0.76 0.51 1.22 0.24
CD 1.58 0.73 0.71 0.24 1.34 0.21
RP 1.98 1.00 0.91 0.53 1.45 0.29

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.115, 0 indicates that there were not statistically significant differences
between groups, while 1 indicates that there were statistically significant differences between

groups.
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Table 5.115: Pairwise comparisons of 4 metric values according to the diversity controlling

operator

Method DCMP ENSL GT CD RP
DCMP
ENSL
GT
CD
RP -

Table 5.114 illustrates that the algorithms using ENSL provide the best distribution among the
non-dominated solutions, while algorithms using DCMP provide the worst.

Finally, as regards the M3 values, a Kruskal-Wallis test showed that the diversity controlling
operator selection significantly affects the extent of the obtained Pareto front, H(4)=3073.61,
p<0.001, £2=0.27. Their Median values along with the rest of statistics are demonstrated in Table
5.116.

Table 5.116: Statistics of Ms” metric values according to the diversity controlling operator

Method Max Mean Median Min Range SD
DCMP 84.20 57.14 59.25 0.00 84.20 16.09
ENSL 92.49 66.99 69.07 20.10 72.39 15.18
GT 100.00 79.82 80.95 32.05 67.95 8.75
CD 100.00 88.01 88.77 56.32 43.68 8.93
RP 98.96 78.27 80.09 0.00 98.96 13.26

Post-hoc Dwass-Steel-Critchlow-Fligner pairwise comparisons were used to compare all pairs
of groups. In Table 5.117, 1 indicates that there were statistically significant differences between

groups, while 0 indicates that there were not.

Table 5.117: Pairwise comparisons of Ms™ metric values according to the diversity

controlling operator

Method DCMP ENSL GT CD RP
DCMP
ENSL
GT
CD
RP

Table 5.116 illustrates that the algorithms using CD provide the best extend of the non-

dominated solutions, while algorithms using DCMP provide the worst.
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Chapter 6 Decision maker’s next moves

In real life, after extracting a Pareto front, the decision maker is called upon to make some
important decisions. For instance, product managers may intent to choose one final solution from
the non-dominated solution set. Moreover, they may intent to estimate their competitors’ possible

future moves. The purpose of this chapter it to briefly demonstrate each of those cases.

6.1 Solution ranking using Multi-Criteria Decision Making

Once a Pareto front is extracted, the decision maker is asked to choose which one of the non-
dominated solutions is the best choice to be selected. The purpose of this subsection is to
demonstrate how an Elimination and Choice Translating Priority 111 (ELECTRE-II1) method (Roy,
1978) can be applied to help product managers in ranking the non-dominated solutions, as
demonstrated in the work of Z. Wang and Rangaiah (2017), and therefore, in making their final
choice, following Deng et al., (2014) and Shin and Ferguson (2016) who stated that companies
should consider introducing novel techniques or adapting new ones to help on selecting a single
final solution, when it comes on multi-objective PLD.

By reviewing the literature, various techniques were detected, when it comes on choosing a
single solution out of a non-dominated set (Grierson, 2008; Ishibuchi et al., 2014; N. Wang et al.,
2017). For instance, detecting a knee point, is a simple efficient way for the decision maker to
conclude in a final choice (Branke et al., 2004). It refers to the closest point to the utopian point,
in terms of the Euclidean distance, which can be used as an ideal point for the objective values, to
pick the best solution from the non-dominated set. A utopian point has coordinates that minimize
all objectives at the same time, as depicted in Figure 6.1. In Figure 6.1, blue rhombus represents
the utopian point while the blue circle represents the closest non-dominated solution. Even though
knee-point-based methods have been widely used in the past, the particular method does not take
into account possible importances or preferences of the decision maker, for each criterion.

Another example which is widely used by researchers, is the application of a clustering process
to reduce the number of the non-dominated solutions (Faceli et al., 2008). However, this method
does not provide the decision maker with a single final solution, nor a proposed ranking order. As
a result, the decision maker has to further investigate the non-dominated solutions left, to make his
final choice.

To overcome possible disadvantages of the approaches mentioned above, the ELECTRE-III

method was adopted in this research, as an outranking method to assist on evaluating non-
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dominated alternatives and therefore, to provide product managers with a non-dominated solutions

ranking.
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Figure 6.1: Example of utopian and knee points

In Multi-Criteria Decision Making (MCDM), the ELECTRE methods refer to the concept of
outranking relationship. For instance, the outranking relationship of Ax— A; means that, despite
the fact that the two alternatives k and | do not mathematically dominate each other, the decision
maker takes the risk of considering Ax as almost surely better than A,. The introduction of the first
method known as ELECTRE | (Gal et al., 1999) was followed by other widely used improved
versions, like ELECTRE Il (Roy & Bertier, 1971), ELECTRE-III (Roy, 1978), ELECTRE IV
(Roy & Hugonnard, 1982) and ELECTRE TRI (W. Yu, 1992).

Even though being based on the same concept, all methods mentioned above differ with each
other. Particularly, ELECTRE I was introduced for selection problems, ELECTRE II, Il and IV
for ranking problems and ELECTRE TRI for assignment problems. When it is possible to quantify
the criteria relative importances, ELECTRE-III is in place, while ELECTRE 1V is applied when

quantification is not feasible.
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6.1.1 The ELECTRE-III method

Comparing to ELEWCTRE Il, in ELECTRE-III (Roy, 1978), a procedure is used to obtain the
relationship between alternatives. According to Hashemi et al., (2016) ELECTRE-III’s biggest
advantage, as an interaction method, is that the decision maker participates directly in the decision
process. Furthermore, the indifference and preference thresholds constitute another advantage of
ELECTRE-III. In cases of equal and similarly weighted data, the alternatives are also accounted
equally. Due to lower accuracy, the indifference and preference thresholds are defined to
demonstrate their preference or indifference compared to the rest of alternatives. As a result, when
the performance of two alternatives is inferior to the determined quantity in a specific criterion,
both are considered to be indifferent in the given criterion. Finally, the particular method supports
the decision maker on analyzing both the qualitative and quantitative criteria at different levels of
uncertainty.

Considering a MCDM problem with a set of alternatives A=(a, b, c, ...,n) and a set of criteria
(01,92, ...,Om). gj(a;) corresponds to the evaluation (performance) of an alternative a€&A for the g;
criterion. Depending on whether the objective is to maximize or minimize the gj(a;) criterion, the
higher or lower it is, respectively, the better the alternative meets the specific criterion. As a result,
the vector g(a)=(g1(a), g2(a), ....gm(a)) represents the multi-criteria evaluation of the alternative
aeA.

According to Tzeng and Huang (2011) ELECTRE-III’s evaluation procedures contain the
establishment of a threshold function, disclosure of concordance and discordance indices,
determination of credibility degree, as well as the alternatives ranking. Let q(g) and p(g) be the
indifference and preference thresholds, respectively:

If g(a)>g(b), then:

aPb & g(a) > g(b) +p(g(b)) (6.1)
aQb & g(b) + q(g(b)) < g(a) < g(b) +p(g (b)) (6.2)
alb & g(b) < g(a) < g(b) + q(g(b)) (6.3)

where P denotes a strong preference, Q denotes a weak preference, | denotes indifference, and
g(a) is the criterion value of the alternative a.

The algorithmic structure of ELECTRE-IIlI as well as all calculations it contains, are
demonstrated in Algorithm 6.1, as presented in previous work (Hashemi et al., 2016; Marzouk,
2011; Papadopoulos & Karagiannidis, 2008).
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Algorithm 6.1: ELECTRE-III steps

1. For each pair of alternatives, compute the concordance index C(a,b)

Ca,b) = w (6.4)

i=1Wi

where Ci(a,b)€[0,1] is the outranking degree of the alternatives a and b under the criterion
I, defined as:

(0, if g;(b) — gi(a) > pi(g:(@)

ci(a,b) = {1 if gi(B) = gi(a) < q:i(g:(a)) (6.5)
pi+gi(a)—gi(b)
Pi—d

, otherwise

The veto threshold vi(gi(b)) is defined for each criterion as:

vi(9:(b)) = ay + Bygi(a) (6.6)

It allows for the possibility of aSb to be refused totally if, for any criterion j,
gi(b)>gi(a)+vi. As a result, the case in which a is not preferred over b, is modeled as:

a-b < gi(b) > gi(a) + vi (6.7)

The statement aSb means that option a outranks option b, when a is at least as good
as b in most of the criteria and never significantly worse in the rest of them.

2. For each criterion, the discordance index d(a,b)€[0,1] is calculated as:

0, if g;(b) — gi(a) < pi(g:(@))
di(a,b) =41 if g:(B) = gi(a) > vi(g:(a)) (6.8)
gi(b)—gi(a)-p;
Vi—Di

, otherwise

3. Finally, the degree of outranking is defined by S(a,b):

C(a,b), if di(a,b) < C(ab), Vj €]

S(a,b) = 1-d;(a,b)

(6.9)
Cla,b) x jes@am Toan)

otherwise

where J(a,b) is the set of criteria for which dj(a,b)>C(a,b).

4.  To obtain the final alternatives ranking, a structured algorithm via two intermediate
ranking procedures is used: The first one contains the classification of the alternatives
from the best to the worst (descending distillation), while the second contains the
classification of the alternatives from the worst to the best (ascending distillation).

6.1.2 Ranking of non-dominated solutions

In this subsection, ELECTRE-III is used to assist product managers in their final choice when it

comes on the product line selection.
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To perform the experiment, an FST-MOMA-CD was applied on the Timbuk?2 data set when
using six objectives on optimizing a product line of five products. The retrieved non-dominated
solutions are demonstrated in Figure 6.2. To apply the ELECTRE-III method, arbitrary criteria
threshold values per objective function, as presented in Table 6.1, were used.
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Figure 6.2: Detected non-dominated solutions to be used in the ELECTRE-III method

Table 6.1: ELECTRE-III’s criteria threshold values per objective function

Criteriathreshold values/ Profit Cost Market Income  Buyer’s Commonality

Obijectives Share (%) Welfare Index
Weights 0.26 0.09 0.24 0.21 0.18 0.03
Preference (p) 100 100 10 250 5,000 0.30
Indifference (q) 50 30 5 100 1,000 0.50
Veto (v) 120 150 5 1,000 2,000 0.50

Some of the top alternatives resulting from ELECTRE-III’s ranking process, are demonstrated
in Table 6.2.

Table 6.2: ELECTRE-III’s ranking results

Profit Cost Market Income Buyer’s Commonality
Share (%) Welfare Index
11,719.50 16,930.50 98.15 28,650.00 45,596.10 0.89
12,112.00 16,758.00 98.15 28,870.00 45,124.50 0.89
12,062.50 16,857.50 97.84 28,920.00 44,776.40 0.89
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Table 6.2 demonstrates that ELECTRE-III is capable of providing product managers a variety
of product line alternatives.

6.2 Estimating Competitors’ next moves

After selecting a final solution from the Pareto front, product managers may attempt to model
competitive responses. The purpose of this subsection is to estimate competitors’ objective weights
in order to predict their future product choices.

By reviewing the literature, previous research on modeling the competitive responses was
detected. For example, in the work of Green and Krieger (1997) who was the first study to apply
game theory to single-product line design, the Nash equilibrium concept with the use of a divide
and conquer metaheuristics was employed. In the same concept, Tsafarakis et al., (2011) also used
the Nash equilibrium with the use of a PSO algorithm.

According to Tsafarakis et al., (2011) in game theory, a Nash equilibrium, if it actually exists,
is a situation in which none of the competitors that participate in the game, can make any further
improvements (when it comes on a specific objective function) by changing their position in the
market (changing products or attribute levels). However, as Tsafarakis et al., (2011) mention, a
detected Nash equilibrium cannot be proved to be unique. In addition, predicting competitors'
movements is an even more complex process when more than one objective functions are taken
into account, since an equilibrium in one objective does not necessarily imply the existence of
equilibriums in the rest. For this reason, an attempt to calculate the objective weights of
competitors' product managers, was made, using their previous movement, which can later be used
ina MCDM method like ELECTRE or TOPSIS (Muhsen et al., 2019), to estimate the next product
line choice of the competitors.

The followed method is based on previous methods as far as the calculation of weights using
information from the objective functions, is concerned (Ridha, Gomes, Hizam, & Ahmadipour,
2020; Ridha, Gomes, Hizam, Ahmadipour, et al., 2020). Initially, using an FST-MOMA-CD multi-
objective optimization algorithm, competitors’ previous Pareto front is generated, when using their
optimization settings (competitors’ competitive products are used). For instance, considering that
the work of Belloni et al., (2008) reflects the optimization problem addressed from the competitors,
and that they used a multi-objective optimization algorithm to detect a Pareto front, as depicted in

Figure 6.3, by knowing the solution selected by them, their objective weights will be estimated.
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Figure 6.3: Pareto front of competitor and optimal values of each criterion

Even though it is known that Belloni et al., (2008) optimized as regards profit, it is now
considered that the objectives used by them are now unknown. As a result, all six objectives used
in this research are considered. To estimate the objective weights, the maximum f™%* and
minimum f™™ values of all objectives are initially detected. For the objectives to be maximized,

the objective weights fw; are then calculated as:

fWi = [ i (6.10)

fimax_ fiminl
while for the objectives to be minimized (Cost), the objective weights fw; are calculated as:

e 6.11
fWi - | e fiminl ( . )
i

where fi corresponds to the selected value in objective i.
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The final adjusted weights faw, so that all have a sum of one, are computed as:

faw, = =LY (6.12)

z:nOb Jj fw j
Table 6.3 demonstrates the generated competitor’s final weights

Table 6.3: Competitor’s weights per objective function

Objective name  Profit  Cost Market Share (%) Income BW Cl
Weight  0.22 0.02 0.20 0.22 0.16 0.17

As a result, by knowing the objective weights of competitors, firms can estimate a choice of
their next product line. To do this, firms will have to use their own product line as the competing
line in the optimization process to generate a Pareto front. After generating the non-dominated
solutions, they can use the calculated objective weights on a MCDM method, to estimate
competitors’ preference.

To demonstrate this statement, the results presented in Subsection 6.1.1 were used, and an FST-
MOMA-CD run for once again, using the first ranking product line as the competitive one.
Supposing that the competitor’s weights are now known, after generating the non-dominated
solutions, an ELECTRE-3 was used, to estimate competitors’ preference, as presented in Figure

6.4. p, g and v were chosen arbitrary.
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Figure 6.4: Competitor’s Preference
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Chapter 7 Conclusions and future research suggestions

The main purpose of this research was to address the Product Line Design (PLD) problem, using
more than one objectives (Multi-Objective Product Line Design - MOPLD), since PLD is a key
decision area that product managers have to deal with in the early stages of product development,
to estimate the potential success of a product.

To do that, at a first stage, the need and value of using multi-objective approaches instead of
single-objective ones as well as the lack of relevant literature on addressing the MOPLD problem,
were demonstrated.

At a second stage, the methodology of the current research was presented. Particularly, the 23
variants of the main seven state-of-the-art metaheuristics that were applied in this research were
described, along with the data sets and the used objective functions. The seven main multi-
objective metaheuristics used in this research were Genetic Algorithms (GAs), Particle Swarm
Optimization (PSO), Firefly Algorithm (FA), Differential Evolution (DE), Grey Wolf Optimizer
(GWO), Teaching-Learning Based Optimization (TLBO) and Mayfly Algorithm (MA). Those
seven multi-objective algorithms were fully adapted to the MOPLD problem, using popular
diversity controlling operators, like Crowding Distance (CD), adaptive Grid Technique (GT) and
Reference Points (RP). As a result, three variants of each one, were used in this research.
Moreover, other state-of-the-art multi-objective optimizers like MOEA/D (Q. Zhang & Li, 2007)
and SPEA-II were used.

Furthermore, the proposed approaches that suffer from initial parameter settings were fully
adapted to the problem using an extended to multi-objective optimization fuzzy-self-tuning
process, which calculates the settings of parameters independently for each individual, during the
optimization process. The main idea of auto tuning process was to help the algorithms overcome
specific difficulties when performing on different datasets using the same parameter settings.

At a third stage, the performance of the proposed methods was compared, using statistical
analysis, on the values retrieved from popular performance metrics when it comes on multi-
objective optimization. Furthermore, possible factors that have a statistically significant effect on
the results of the algorithms, were investigated. Finally, a simple novel way of selecting global
best particles as well as a new way of mutating design solution vectors for MOPLD, were

introduced.
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At a fourth and final stage, the adaptation of an ELECTRE-III method was demonstrated,
through which the decision maker can rank the retrieved non-dominated solutions, according to
his/her preferences. Moreover, an attempt to estimate the weights of competitors’ objectives, in
order to predict their future moves, was briefly presented.

This research extended previous research in several important ways and provides rich results
capable of answering the research questions mentioned in Subsection 3.1. Particularly, considering
the first question regarding the proper formulation of the MOPLD problem, Chapter 3
demonstrates how the MOPLD can be modeled successfully, which is verified through the results
on Chapter 5. As a result, this research verified the statement of Williams et al., (2011) who showed
that the multi-objective optimization approach is very useful to product managers.

Considering the second research question about whether the solutions to the problem (product
lines) differ depending on the optimized objective, Table 1.1 and Table 1.2 prove that each
criterion has its own overall optimum solution, while considering the third one regarding tradeoffs
between the criteria being linear, Figure 5.45, Figure 5.51, Figure 6.2 and Figure 6.3 reveal that
tradeoffs not only are not linear, but also are problem-dependent.

When it comes on the fourth research question about addressing the MOPLD without knowing
the number of products to be designed, this research revealed that by addressing the MOPLD
problem without knowing the specific number of products, product managers, are able to
investigate the tradeoffs between different objectives for product lines with different number of
products. The impact of this method is demonstrated in Figure 7.1, where the non-dominated
solutions obtained when using a fixed number of five products are compared to the non-dominated
solutions obtained when using unknown number of products. To obtain Figure 7.1, an FST-
MOMA-CD run until 100,000 function evaluations are reached, when performing on the Timbuk?2
data set.

According to the C metric, values of C(Unknown number of bags, 5 bags)=0.65, C(5 bags,
Unknown number of bags)=0.04, were found. As a result, the non-dominated solutions obtained
when using unknown number of products dominate the ones obtained when using a fixed number

of five products, in a wide area of the decision space.
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Figure 7.1: Comparison of non-dominated solutions when using unknown and fixed number of

products

As far as the fifth research question is concerned, regarding which multi-objective optimization
algorithm have the best performance in multi-objective PLD, Subsections 5.1-5.5 reveal that there
is no ideal multi-objective optimization algorithm, which perfectly addresses the MOPLD
problem, in terms of all metrics. More specifically, it turned out that the performance of the
algorithms is directly dependent on the number of objective functions as well as the data set.
However, results in Subsection 5.6 revealed that GWO-based and GA-based algorithms detect
non-dominated solutions faster, as well as that TLBO-based algorithms provide the best
distribution among the non-dominated solutions. Finally, MA-based as well as PSO-based
algorithms provide the best extend of the non-dominated solutions.

Regarding the sixth research question about factors affecting the effectiveness of each
algorithm, results in Subsection 5.6 revealed that the number of objective functions affects the
time each algorithm needs, the M7 values and therefore the distance from the optimal Pareto front,
as well as the 4 values and therefore the distribution of solutions. Furthermore, it was shown that
the dataset to be used affects all three of the M;, 4 and M3 metric values as well as that discrete
algorithms detect non-dominated solutions faster, even though they appeared to have a worse
distribution as well as a worse non-dominated solution extension, compared to the continous ones.

Similarly, the crossover technique appeared to assist both the detection of the non-dominated
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solutions and the non-dominated set extension, while the mutation technique appeared to assist
non-dominated solution distribution as well as pareto extension. Finally, diversity controlling
operators were proved to affect all M7, 4 and M3 metric values.

Regarding the seventh research question about using a MCDM method to evaluate or rank the
non-dominated solutions, Subsection 6.1.2 verified the findings of Z. Wang and Rangaiah (2017),
when it comes on using an ELECTRE-I1II for sorting the non-dominated solutions.

Finally, an attempt to estimate competitors’ objective weights, using their previous product
development selection, in order to predict their future product choices, was made to answer the
eighth research question about predicting the future moves of competitors. However, even though
the objective weights were successfully retrieved, as Masrah et al., (2011) mention in their
research, this process needs to be repeated more than once, taking into account possible occurring
errors, which will be reduced more and more, during the repetitions. As a result, an interesting
area for future research is to use the method proposed by Masrah et al., (2011) to reduce possible
prediction errors, by repeating the prediction process as many times as possible.

Another interesting area for future research is to test the performance of more multi-objective
optimization methods or to create hybrid methods of the most successful characteristics, according
to the Subsection 5.6. Moreover, researchers can extend the work of T. Wang and Gutierrez (2021)
by applying multi-objective optimization approaches to maximize the value of the worst outcome
(MaxMin) while minimizing the maximum relative ex-post regret (MinMaxRR). The technique of
targeted initial population that Ferguson et al., (2012) and Foster and Ferguson (2013) proposed
to advance the convergence behavior of NSGA-II can also be used in future research, to advance
the performance of multi-objective optimizers when performing on the MOPLD problem, as well
as to reduce the time each algorithm needs.

Finally, researchers are encouraged to test the variants used in this research when performing
in other multi-objective engineering problems, like multi-objective vehicle routing problem
(Rapanaki et al., 2020; Yan et al., 2019) or multi-objective knapsack problem (Mizobe et al.,
2019), as well as they are encouraged to test the performance of algorithms by evaluating the effect
of their characteristics on results, as was done in this research, in order to create powerful hybrid

algorithmic structures.
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Appendix A Conversion of real values to discrete ones

One of the most critical issues when developing a continuous optimization algorithm to a
combinatorial problem like the PLD, is the solution representation. As already mentioned in
Chapter 4, various multi-objective optimization algorithms operate in continuous spaces like PSO,
FA and MA.

Considering the dataset of Timbuk2, as presented in Subsection 3.2.2.1, a representation of a
potential solution vector, rounded at two-decimal points, for a single product could be as:

y =[0.66 1.30 2.33 -0.54 -1.41 0.76 1.62 -0.72 0.10 -1.11 -1.68 -0.04 1.33 -0.95 0.61 0.68 -1.58
-0.83 0.45-0.150.50 -0.07 0.66 -0.44 1.13 0.31 0.11].

A required binary representation is then needed for a solution to be evaluated. Consequently, a
rule is needed to convert a real solution vector to a discrete one. In this research, the Smallest
Position Value (SPV) rule is in place. As Tsafarakis et al., (2011) report in their research, PSO
combined with the SPV rule, has shown the best performance in the optimal PLD problem.
However, it was reported, the SPV rule is the most time-consuming method.

According to SPV, the level with the smallest value on each attribute takes a value of 1, with
the rest taking a value of 0. By applying the SPV rule in the case of vector y mentioned above, we
have:

y =[0.66 1.30 2.33-0.54 -1.41 0.76 1.62 | -0.72 0.10 | -1.11 -1.68 | -0.04 1.33 | -0.95 0.61 | 0.68
-1.581-0.83 0.45|-0.150.50 | -0.07 0.66 | -0.44 1.13 | 0.31 0.11],
which is then converted to:
y =[0000100|10|01|10]10]01|10|10|10|10]01].

A great advantage of the SPV rule is that it allows an algorithm to search in continuous spaces,
without setting any boundaries, or using any rounding off procedures (Tsafarakis et al., 2011,
2020).
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Appendix B Crossover and Mutation operator for PLD

As already mentioned, each solution vector is presented as an integer representation same as the
solution vectors that Belloni et al., (2008) used in their research for GA. In this Appendix the
crossover and mutation operators used in this research are described.

B.1 Crossover operator

As regards the crossover operator, the same crossover method that Belloni et al., (2008) used in
their research for PLD, was used.

During crossover, new offspring are generated by combining the genetic information of two
parents. A crossover point is picked randomly and values before and after of that point are swapped
between the chromosomes of two parent (single-point crossover) (Belloni et al., 2008). As a result,
two new offspring, each carrying some genetic information from both parents, are generated.
Figure B.1 demonstrates an example of crossover, as it was described in the work of Zervoudakis
etal., (2020).

Parent 1 Parent 2
Offspring 1 Offspring 2

Figure B.1: Example of crossover, using the 3 x 6 cell as a crossover point

Continuous optimization algorithms that use the crossover technique, like the Mayfly

Algorithm (MA) (Zervoudakis & Tsafarakis, 2020) use the same crossover technique, as described
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in Figure B.1, since this technique combined with the SPV rule had the best results on the PLD

problem, compared to the continuous crossover (Goldberg, 1989).

B.2 Mutation operator

As regards the mutation process, the same mutation method that Belloni et al., (2008) used in their
research for PLD, with a mutation rate of 0.05, was used.
Mutation can introduce traits not in the original population. It alters one or more elements from

its initial state, as demonstrated in Figure B.2.

Random solution Solution after mutation
0o 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 .
5 1. 0 1 0 0 1 0 0 1 5 1 0 1 0 1 0 0 1
4 1 0 1 0 O O 1 0 O 4 1 0 1 .! 0 1 0 O
2 1.0 1 1.0 0 1 1 O . 10 1 1 0 0 1 1 .
1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1

Figure B.2: Example of mutating a solution vector

What is equally important is the fact that the mutation process can change the number of

products in a hypothetical product line as demonstrated in Figure B.3.

Products Line before mutation Mutated Attribute Line after mutation
™
Bag 1 = Color
L
M M
i i - i i
Bag 4 - Considered
Bag 5 - - -

Figure B.3: Hypothetical bag line, before and after the mutation process
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Since numerous of the optimization algorithms used in this research operate in continuous
spaces, the mutation process could be accomplished by adding a random term generated in a
specific range to an element of an attribute. However, since the algorithms search without setting
any boundaries because of the use of the SPV rule, resulting in possible great position values,
adding a random term may not change a solution at all.

To be sure that the mutation process keeps changing a solution, the way it works was modified
as follows:

First, attributes to be changed are selected based on a probability. Subsequently, all the elements
of the selected attributes are circularly shifted by K positions, where K is a random integer number
in the range of [1, M], where M is the number of the specific attribute’s level -1. For instance,
suppose mutation is applied to the solution y presented in Appendix A and that the third and fifth
attributes are mutated. The solution is altered as: y = [0.66 1.30 2.33 -0.54 -1.41 0.76 1.62 | -0.72
0.10]-1.68-1.11|-0.04 1.33]0.61 -0.95| 0.68 -1.58 | -0.83 0.45 | -0.15 0.50 | -0.07 0.66 | -0.44
1.13|0.310.11]. As aresult, using this method, it is ensured that the levels of the particular features
always change.






205

Appendix C Fuzzy self-tuning method

Since the performance of various algorithms is not only highly dependent on its parameter settings,
but also on the dataset and the objectives to be optimized, an automatic parameter tuning method
is used to help the algorithms overcome this particular difficulty.

Numerous studies regarding automatic parameter tuning methods for metaheuristics are
reported in the literature (Huang et al., 2019; Nobile et al., 2018; Tatsis & Parsopoulos, 2019;
Tsafarakis et al., 2020; Zervoudakis & Tsafarakis, 2022). In this research, the fuzzy self-tuning
method that Nobile et al., (2018), Tsafarakis et al., (2020) and Zervoudakis and Tsafarakis (2022)
proposed for single-objective optimization is extended to multi-objective optimization, where the
values of multi-objective algorithms are dynamically controlled by means of Fuzzy Logic (FL).
According to literature, FL is already applied to various metaheuristics that suffer from parameter
tuning, which is considerably dependent on the problem (Noorbin & Alfi, 2018; Olivas et al.,
2018).

To dynamically determine the parameter values in an automatic way, independently for each
individual, a Fuzzy Rule-Based System (FRBS) consisting of fuzzy rules is used, as reported in
the work of Nobile et al., (2018) and Tsafarakis et al., (2020). These rules are based on the distance
of each individual from the chosen leader (o) solution, and a function measuring the fitness
improvement of each solution with respect to the previous iteration (¢).

The main purpose of &, is to characterize the proximity to the chosen global best (leader)
solution, while the purpose of ¢ is to characterize the improvement of a solution with respect to

the fitness values it assumed in the previous iteration.

C.1 Distance between two solutions

As Nobile et al., (2018) mention in their research, the distance between two solutions is calculated

by computing the Euclidean distance between them as:

(6 x) =[xt ~x{]| = S (et — 25)° €

where x{, and x/, denote the k-th component of the position vectors x} and x;, respectively.
According to Nobile et al., (2018), the variable of § corresponds to the interval [0, g&max],

where gé,,q 1S the Euclidean distance between the two vectors of best and the worst values of

each objective located so far. The term set of this variable is composed by three linguistic values,

Same, Near and Far.
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The membership function of Same is:
a) 1,if0<d8 <4y,

(62-6)
(62-81)

c) 0,ifd, <6 < gdmax-

b) if 6 <6 < 63, and

The membership function of Near is:
a) 0,if0 <4 <6y,

(6-61) .
b) m, |f51 < o< 62,
(63-8)

R
d) 0,if85 <8 < g8pmax-

if 6, <6 < 83, and

The membership function of Far is:
a) 0,if0 <6 <6y,

(6-63)
(63-62)

c) 1,if63 <6 < gomax-

b) if 6, < § < 63, and

The values of §;, §, and &5 are set according to the size of the search space as:
51 =0.2- g5max’ 62 =04- g6max and 63 =0.6"- g5max

As Nobile et al. (Nobile et al. 2018) mention in their research, the general-purpose multipliers
are created to avoid any overfitting to the benchmark function and implement a general and fuzzy

concept of distance from the best solution found so far.

C.2 Solution Improvement

As Nobile et al., (2018) mention in their research, the normalized fitness incremental factor
@:RM x RM - [—1,1], considers the positions of solution i at the current and previous iterations:

m=1 M ax

sy (L me ™))

(C.2)

Nob

where §,,,, IS the length of the diagonal of the hyper-rectangle corresponding to the search space
of each objective, and n,, is the number of the objective functions used.

According to Nobile et al., (2018), the variable of ¢ corresponds to the interval [—1,1]. The
term set of this variable is composed by three linguistic values, Better, Same and Worse.
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The membership function of Better is:
a) 1,ifp=-1,
b) —¢,if—1< ¢ <0,and
c) 0,if0<¢<1.

The membership function of Same is: 1 — ||

The membership function of Worse is:
a) 0,if—1<¢ <0,
b) ¢,if0 < ¢ <1,and
c) 1,ifp=1.

C.3 Final numerical value

Given a set of a specific number of R rules having the same output variable in their consequent
(e.g., rules 1, 2, 3in Table 4.1 for w, the final numerical value of this output variable is calculated
using the Sugeno method (Sugeno, 1985) as:

R
output = % (C.3)

where p, denotes the membership degree of the input variable of the r-th rule, and z, represents

the output crisp value for the r-th rule (e.g., as given in Table 4.2).
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Appendix D Diversity controlling operators

By reviewing the literature on multi-objective optimization, it was found that researchers have
proposed various techniques to maintain diversity within the final set of non-dominated solutions
of each algorithm (Coello Coello et al., 2004; Deb et al., 2002; Deb & Jain, 2014; Parsopoulos &
Vrahatis, 2002; Q. Zhang & Li, 2007). A briefly description of the most important ones is given

below.

D.1 Non-dominated sorting combined with Crowding Distance (CD)

The non-dominated sorting process is a fast and simple approach to compare individuals in a
population (Hajiabadi & Zarghami, 2014) according to Definition 1.1. All individuals are ranked
into fronts (F1, Fo,..., etc.) in ascending order according to their fitness function values. Front 1
(F1) is the front with the best solutions in terms of dominance (Dai et al., 2017).

The Crowding Distance (CD) value provides an estimation of the density of solutions
surrounding a specific solution, that is the largest cuboid enclosing a solution without including
any other solution (Deb et al., 2002). To perform CD, the population has to be first ranked
according to the non-dominated sorting process.

The main core of the CD is to calculate the Euclidian distance of i individual between its
neighbor ones. The boundary solutions which have the lowest and highest objective function
values are given an infinite CD value so that they are always selected in the final non-dominated
population. This process is repeated for each objective function separately. The final CD value of
a solution is computed by summing up the CD values of each objective function as:

i+1 i—1
K |fk ~J |
k=1 flgnax_flgnm

crowding distance(i) = (D.4)
where f"** and fi™" are the maximum and the minimum values of the k objective function,
respectively, and fi** and £¢~1 are i individual’s neighbor solutions, according to the ranking
process as presented in the work of Deb et al., (2002). The idea of non-dominated sorting with CD

is demonstrated in Figure D.4.
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Non-dominated Final
Population sorting Population

Pt
Generate new

population >
Calculate
CD
Rejected

Figure D.4: Non-dominated sorting with CD process

Previous research has already proven high performance results of multi-objective optimization
algorithms when combined with non-dominated sorting and CD (Tsai et al., 2014; Yueetal., 2021;
Zervoudakis & Tsafarakis, 2020; J. Zhang & Li, 2014).

D.2 Adaptive Grid Technique (GT)

Another widely used diversity controlling operator is the adaptive Grid Technique (GT) (Corne et
al., 2001; Knowles & Corne, 2007). According to Coello Coello et al., (2004) its main purpose is
to create an external archive for storing all the non-dominated solutions by dividing the objective
function space into regions.

The adaptive grid used in this technique is basically a hypercube-formed space. Each hypercube
can be considered as a region of the search space that contains a specific number of candidate
solutions. The main advantage of GT is that it is distinguished by low computational cost (Knowles
& Corne, 2000) in cases where the grid does not need to be updated at each generation. To
distribute the largest possible amount of non-dominated solutions in a uniform way, certain
information is necessary to be provided which is problem dependent, like the number of grid
subdivisions.

Additional details about GT can be found in previous research that has reported high
performance results of multi-objective optimization algorithms when combined with GT (Agrawal
et al., 2008; Cheng et al., 2016; Coello Coello et al., 2004; Corne et al., 2001; Knowles & Corne,
2007, 2000).



211

D.3 Non-dominated sorting combined with Reference Points (RP)

According to literature, even though CD has reported high performance, it becomes a
computationally expensive operation as the number of objective functions grows, especially when
addressing many-objective optimization problems (Deb & Jain, 2014). For that reason, Deb and
Jain (2014) replaced the CD operator in NSGA-II with the use of a predefined set of Reference
Points (RP) placed on a normalized hyperplane, with a similar implicit principle to the hyper-grid-
based techniques, such as GT (Corne et al., 2001; J. Knowles & Corne, 2007), to ensure diversity
in obtained solutions (I. Das & Dennis, 1998). Additional details about generating and using the
RP technique can be found in the work of Deb and Jain (2014).

Following Deb and Jain (2014), the CD operator was replaced with the use of RP to test its
performance on multi-objective PLD, when combined with multi-objective optimization

algorithms.
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Appendix E Questionnaire

In this appendix, the questionnaire of desirable characteristics for olive oil is demonstrated

Table E.1: Questionnaire of desirable characteristics for olive oil

Question 1: Gender o Male o Female
Question 2: Age 0 15-24 0 25-34 0 35-44 0 45-54

0 55-64 o 65+
Question 3: Educational o Junior High o High School o Bachelor’s o MS¢/PhD
Level School Degree
Question 4: Occupation o Household o State employee o Private o Freelance

employee

o Rentier o Retired o Unemployed o Student
Question 5: Monthly 0 0-500 € 0 501-1000 € 0 1001-2000 € 0 2001-3000 €
income

0 3000 €+

Question 6: Below are some types of offers. Which do you prefer? Please rate them from the most attractive
(value 1) to the least attractive (value 6)

o Gift packaging (product of the same or another category)

o Package with free product

o Gift packaging (no product)

o Discounted packaging (in product)

o Package with discount from brochure

o Participation in a competition

Question 7: What amount of olive oil do you consume per month

o Upto 1 liter o 2 to 3 liters o 41to 6 liters o More than 7
liters
Question 8: To what extent do you want each of the following types of olive oil?
Not at all A little Absolutely I have no opinion
Plain o o o o
Extra Virgin o o o o
Organic extra virgin o o o o
POP Kolumpariou o o o o
Sustainable o o o o
Question 9: To what extent do you want each of the following package types?
Not at all A little Absolutely I have no opinion
Plastic o o o o
Glass o o o o
Metal o o o o
Pouch o ) o o

Question 10: To what extent do you want each of the following package sizes?

Not at all A little Absolutely I have no opinion
0.75lt o o o o
1lt o o o o
2t o o o o
3lt o o o o
5lt o) o o o
Question 11: To what extent do you want each of the following brands?
Not at all A little Absolutely I have no opinion
Super Market o o o) o
Altis o o o o

ABEA o o o o
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MINERBA o o o o
Question 12: If these were your choices, which product would you choose? o None
Olive oil type POP Kolumpariou  Plain Organic extra Extra Virgin
virgin

Package type Pouch Glass Plastic Metal
Package size 3lt 2lt 51t 3lt
Brand Altis MINERBA ABEA ABEA
Price per liter 7.0€ 5.3€ 4.5€ 5.3€

o O O o
Question 13: If these were your choices, which product would you choose? o None
Olive oil type Extra Virgin Plain POP Kolumpariou  Organic extra

virgin

Package type Plastic Glass Pouch Plastic
Package size 1t 0.75It 2lt 1lt
Brand ABEA Super Market MINERBA Super Market
Price per liter 7.9€ 4.5€ 5.3€ 7.0€

o o O O
Question 14: If these were your choices, which product would you choose? o None

Olive oil type Extra Virgin POP Kolumpariou  Sustainable POP Kolumpariou
Package type Plastic Glass Pouch Metal
Package size 21t 0.75It 51t 1lt
Brand Altis ABEA Super Market Altis
Price per liter 4.5€ 6.2€ 5.3€ 7.9€

o) O O O
Question 15: If these were your choices, which product would you choose? o None
Olive oil type Extra Virgin Extra Virgin POP Kolumpariou  Plain
Package type Metal Glass Pouch Plastic
Package size 3lt 1t 51t 51t
Brand Super Market MINERBA ABEA Altis
Price per liter 4.5€ 5.3€ 7.9€ 5.3€

o o O O
Question 16: If these were your choices, which product would you choose? o None
Olive oil type Sustainable POP Kolumpariou Plain Organic extra

virgin

Package type Glass Plastic Metal Metal
Package size 0.75It 3lt 1lt 0.75It
Brand Altis MINERBA Super Market Super Market
Price per liter 7.9€ 6.2€ 7.0€ 5.3€

o o O O
Question 17: If these were your choices, which product would you choose? o None
Olive oil type POP Kolumpariou  Sustainable Plain Extra Virgin
Package type Pouch Plastic Metal Glass
Package size 2t 1t 51t 0.75It
Brand Super Market Altis MINERBA ABEA
Price per liter 6.2€ 5.3€ 4.5€ 7.0€

o o O o
Question 18: If these were your choices, which product would you choose? o None
Olive oil type Extra Virgin Sustainable POP Kolumpariou  Organic extra

virgin

Package type Glass Plastic Glass Pouch
Package size 2It 3lt 1lt 3lt
Brand Altis Super Market MINERBA ABEA
Price per liter 6.2€ 6.2€ 7.0€ 5.3€

o o O O
Question 19: If these were your choices, which product would you choose? o None
Olive oil type Plain Plain Sustainable Sustainable
Package type Pouch Plastic Metal Pouch
Package size 2It 0.751t 5t 3lt




215

Brand ABEA MINERBA MINERBA Altis
Price per liter 7.9€ 6.2€ 7.0€ 7.0€
o o o o
Question 20: If these were your choices, which product would you choose? o None
Olive oil type Plain Sustainable Extra Virgin Organic extra
virgin
Package type Glass Metal Pouch Metal
Package size 1lt 0.75lt 5lt 2lt
Brand ABEA MINERBA Super Market Altis
Price per liter 4.5€ 7.9€ 6.2€ 7.0€
o o o o
Question 21: If these were your choices, which product would you choose? o None
Olive oil type Organic extra Plain Extra Virgin Sustainable
virgin
Package type Glass Pouch Plastic Metal
Package size 2It 3lt 5It 1t
Brand Super Market Altis MINERBA ABEA
Price per liter 4.5€ 4.5€ 7.9€ 6.2€
o o o O
Question 22: If these were your choices, which product would you choose? o None
Olive oil type POP Kolumpariou  Organic extra Sustainable Organic extra
virgin virgin
Package type Plastic Pouch Glass Metal
Package size 0.751t 3lt 2It 51t
Brand Super Market MINERBA ABEA Altis
Price per liter 5.3€ 7.9€ 7.0€ 6.2€

o o o

O
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