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Εκτεταμένη περίληψη στα Ελληνικα |
Extensive abstract in Greek

Ο αυτοματισμός των οχημάτων έχει σημειώσει τεράστια πρόοδο τις τελευταίες δεκαετίες και η

πορεία προς την πλήρη αυτοματοποίηση φαίνεται αναπόφευκτη. ΄Ενα αρχικό στάδιο αυτοματισμού

του οχήματος είναι το σύστημα ελέγχου ταχύτητας που διατηρεί την ταχύτητα του οχήματος στην

επιθυμητή τιμή για να βοηθήσει τον οδηγό. ΄Επειτα αναπτύχθηκαν διάφορες καινοτομίες κατά τις

οποίες η ταχύτητα εξαρτάται από την απόσταση του οχήματος από το προπορευόμενο ή το επόμενο

όχημα. Ακόμη, πρόσφατες έρευνες έχουν αναδείξει τα πλεονεκτήματα της χρήσης συνδεδεμένων

οχημάτων όπου τα αυτοκίνητα έχουν την δυνατότητα να επικοινωνούν μεταξύ τους μειώνοντας την

κυκλοφοριακή συμφόρηση και αυξάνοντας παράλληλα την χωρητικότητα των δρόμων.

Οι περισσότερες εκ των νέων αυτών μεθοδολογιών υποθέτουν ότι τα οχήματα οφείλουν να εναρ-

μονίζονται με την οριζόντια σήμανση στους δρόμους όσον αφορά τις λωρίδες. Η αλλαγή λωρίδας

όμως αποτελεί σύμφωνα με μελέτες μια επικίνδυνη διαδικασία στην οποία αποδίδεται ένα σημαντικό

ποσοστό των ατυχημάτων στις μέρες μας.

Παρόλα αυτά, τα τελευταία χρόνια, υπήρξαν ακόμη πιο καινοτόμες έρευνες οι οποίες βασίστη-

καν σε δρόμους απαλλαγμένους από λωρίδες. Ως εκ τούτου, τα οχήματα σε αυτήν την περίπτωση

δεν οφείλουν να υπακούνε σε κανένα περιορισμό όσον αφορά τις λωρίδες επεκτείνοντας έτσι τις

δυνατότητες τους. ΄Ομως, οι προαναφερθείσες έρευνες, δεν εξασφαλίζουν 1) αποφυγή συγκρούσε-

ων μεταξύ των οχημάτων ή με το όριο του δρόμου, 2) ότι οι ταχύτητες παραμένουν πάντα θετικές

και 3) ότι οι ταχύτητες παραμένουν στα πλαίσια των επιτρεπόμενων ορίων. Πέρα όμως από την μη

ύπαρξη λωρίδων, μία ακόμη καινοτομία η οποία μπορεί να αυξήσει την κυκλοφοριακή ροή και την

κυκλοφορία στους δρόμους είναι αυτή της “εικονικής ώθησης” κατά την οποία τα οχήματα έχουν
την δυνατότητα να ασκούν μια εικονική δύναμη προς τα υπόλοιπα.

Σε αυτή τη διπλωματική εργασία μελετήθηκε ένα σύστημα ελέγχου ταχύτητας για αυτόνομα ο-

χήματα σε δρόμους απαλλαγμένους από λωρίδες υιοθετώντας παράλληλα την αρχή της εικονικής

ώθησης.

Αρχικά, στα προκαταρκτικά στο Κεφάλαιο 2 γίνεται αναφορά στο συνεχές ποδηλατικό μοντέλο και

αποδεικνύεται ο τρόπος με τον οποίο εξάγονται οι μη γραμμικές διαφορικές εξισώσεις οι οποίες το

προσδιορίζουν, όταν λαμβάνεται ως σημείο αναφοράς το πίσω μέρος του οχήματος. Ακόμα γίνεται

αναφορά, μέσω ενός γενικού παραδείγματος, στον τρόπο μετατροπής ενός συνεχούς μοντέλου σε

διακριτό, με την χρήση δειγματοληψίας.

Στο Κεφάλαιο 3 γίνεται αναπαράσταση του συνεχούς ποδηλατικού μοντέλου και των εξισώσε-

ων που το περιγράφουν. Ταυτόχρονα, εισάγονται σημαντικά στοιχεία προκειμένου να οριστεί το

πρόβλημα διακριτού χρόνου, όπως ο τρόπος υπολογισμού των αποστάσεων μεταξύ των οχημάτων,

οι περιορισμοί που υπάρχουν και το σύνολο όλων των δυνατών καταστάσεων του συστήματος.
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Επιπλέον, παρουσιάζονται τα χαρακτηριστικά των συναρτήσεων οι οποίες συνδράμουν στο φαι-

νόμενο της εικονικής ώθησης το οποίο λαμβάνει χώρα μεταξύ των αυτοκινήτων αυτών καθ’ αυτών

αλλά και μεταξύ των αυτοκινήτων με το σύνορο του δρόμου. Επίσης αναλύονται τα χαρακτηριστικά

της συνάρτησης η οποία καθορίζει την βαρύτητα που θα έχει στο σύστημα η προσμέτρηση της τα-

χύτητας των γειτονικών αυτοκινήτων. Συνεχίζοντας, στο Κεφάλαιο 3 παρουσιάζεται η συνάρτηση

η οποία προσδιορίζει την ενέργεια του συστήματος από την οποία εξάγονται οι ελεγκτές σύμφωνα

με την εργασία [9]. Η ενέργεια του συστήματος προσδιορίζει πόσο κοντά βρίσκεται το σύστημα

σε σύγκλιση. Ως εκ τούτου, μεγάλες τιμές τις αρχικής ενέργειας εκπροσωπούν αρχικές συνθήκες

με σημαντικές διαφορές από τις τιμές σύγκλισης του συστήματος, ενώ όταν παρατηρούνται με-

τριασμένες αποκλίσεις από τις τιμές σύγκλισης, τότε το σύστημα προσδιορίζεται από μικρές τιμές

αρχικής ενέργειας. Οι ελεγκτές είναι σχεδιασμένοι έτσι ώστε οι τιμές της συνάρτησης ενέργειας

να πλησιάζουν το μηδέν όσο εκτελείτε η εκάστοτε προσομοίωση. Αποτέλεσμα τούτου, είναι η

συνάρτηση ενέργειας να αποτελεί μία γνησίως φθίνουσα συνάρτηση. Τέλος, στο Κεφάλαιο 3 πα-

ρουσιάζονται η κατάσταση του προβλήματος και το Θεώρημα 1 μέσα από το οποίο επιβεβαιώνεται

η ύπαρξη λύσης στο πρόβλημα κάτω από συγκεκριμένες συνθήκες.

Στο Κεφάλαιο 4 πραγματοποιήθηκε η μετατροπή του μοντέλου συνεχούς χρόνου σε ένα σύστημα

διακριτού χρόνου με το επιπλέον χαρακτηριστικό ότι οι τιμές των σημάτων εισόδου είναι δια-

κριτοποιημένες μέσω δειγματοληψίας. Πιο συγκεκριμένα κατά την φάση της ολοκλήρωσης του

συνεχούς μοντέλου σε ένα αυθαίρετά επιλεγμένο διάστημα [0,Τ], υιοθετήθηκε η αρχή ότι οι είσο-

δοι του συστήματος είναι σταθερές. Τα αποτελέσματα αυτής της διακριτοποίησης παρουσιάζονται

στις σχέσεις (4.2) και (4.3), ενώ ο τρόπος με τον οποίο έλαβε χώρα παρουσιάζεται στο παράρτημα.

Στο ίδιο Κεφάλαιο φαίνονται συγκεκριμένα αποτελέσματα προσομοιώσεων οπού αναδεικνύεται η

σημαντικότητα της επιλογής της περιόδου δειγματοληψίας (η οπόια συμβολίζεται με Τ) και πως

αυτή μπορεί να επηρεάσει το σύστημα οδηγώντας το σε σύγκρουση.

Σε δεύτερη φάση χρησιμοποιούνται αποκεντρωμένοι ελεγκτές από την εργασία [9] τροποποιημένοι

με τέτοιο τρόπο ώστε να έχουν την δυνατότητα να προσμετρούν την ταχύτητα των γειτονικών

αμαξιών. ΄Εχοντας πλέον το διακριτό μοντέλο και του ελεγκτές, είμαστε σε θέση να εκτελέσουμε

προσομοιώσεις υιοθετώντας κατάλληλες συναρτήσεις οι οποίες χρησιμοποιούνται για την λειτουρ-

γία του φαινομένου εικονικής ώθησης, βλέπε (5.1), (5.2), (5.3), (5.4). Πέρα από τις συναρτήσεις

αυτές, παρουσιάζονται όλες εκείνες οι παράμετροι και οι μεταβλητές οι οποίες επιλέχτηκαν προ-

κειμένου να εξαχθούν αποτελέσματα από τις προσομοιώσεις.

΄Ενα σημαντικό χαρακτηριστικό όμως το οποίο εξαρτάται άμεσα από τις εκάστοτε αρχικές συν-

θήκες και κατ’ επέκταση από την αρχική ενέργεια του συστήματος είναι η κατάλληλη επιλογή της

περιόδου δειγματοληψίας Τ. Στο Κεφάλαιο 5, ερευνάται η μέγιστη επιτρεπτή χρονική περίοδος

Τ ανά αρχική ενέργεια, προκειμένου ο χρήστης να είναι σε θέση να επιλέξει με ασφάλεια το Τ

ανάλογα με τις αρχικές συνθήκες. Τα αποτελέσματα φαίνονται στο γράφημα 5.1 και παρατηρείται

ότι όταν η αρχική ενέργεια είναι μεγαλύτερη από 40, το Τ αναγκάζεται να πάρει τιμές εξαιρετικά

κοντά στο μηδέν.

΄Εχοντας τα δεδομένα του ανωτέρω διαγράμματος είμαστε σε θέση να εκτελούμε προσομοιώσεις

διαλέγοντας κατάλληλα και με ασφάλεια το Τ. Παρόλα αυτά, ένα σταθερό Τ κοινό για όλα τα α-

μάξια κατά την διάρκεια της εκάστοτε προσομοίωσης, αποτελεί ένα μη ρεαλιστικό χαρακτηριστικό

καθώς τα οχήματα θα πρέπει να δέχονται αλληλεπίδραση από τους ελεγκτές ταυτόχρονα. Επι-

πρόσθετα, ένα σταθερό Τ αναγκάζει τον υπολογιστή να καταναλώσει ίσως παραπάνω χρόνο στην

προσπάθεια του να ολοκληρώσει την προσομοίωση. Αυτό διότι το κατάλληλο Τ σύμφωνα με το

γράφημα 5.1, επιλέγεται σύμφωνα με την αρχική ενέργεια του συστήματος. ΄Ομως τις περισσότερες

φορές υπάρχουν αμάξια που δεν συμβάλουν σε μεγάλο ποσοστό στην τιμή της αρχικής ενέργειας.
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΄Αρα, αναλύοντας αυτά τα οχήματα μεμονωμένα, ίσως μπορούσαν να υιοθετήσουν σε πρώτο χρόνο

ένα μικρότερο Τ.

Για τον λόγο αυτό στο Κεφάλαιο 6, παρουσιάζονται ικανές συνθήκες τέτοιες ώστε το εκάστο-

τε αμάξι να μπορεί να υπολογίζει αυτόνομα το Τ, σύμφωνα με την κατάσταση του συστήματος

εκείνη την χρονική στιγμή. Πιο συγκεκριμένα, το Λήμμα 6.1 παρέχει τις συνθήκες κάτω από τις

οποίες ένα αυθαίρετο όχημα i μπορεί να πραγματοποιήσει τον προαναφερθέντα υπολογισμό. Πα-
ράλληλα, το Λήμμα 6.2 εξηγεί ότι ο υπολογισμός του Τ μπορεί να εφαρμοστεί με την βοήθεια του

Λήμμα 6.1, έτσι ώστε σε κάθε δειγματοληψία να επιλέγεται Τ ανάλογα με την κατάσταση του συ-

στήματος. Για παράδειγμα σε μια αυθαίρετη δειγματοληψία, αν όλα τα οχήματα έχουν το ίδιο Τ και

ταυτόχρονα ικανοποιούνται οι προϋποθέσεις του Λήμμα 6.1 για όλα τα οχήματα για το συγκεκρι-

μένο Τ, τότε, μέχρι την επόμενη δειγματοληψία το σύστημα δεν πρόκειται να έχει καμία σύγκρουση.

Παίρνοντας ως δεδομένα τα δύο προηγούμενα Λήμματα, είμαστε σε θέση να σχεδιάσουμε 3 ξεχω-

ριστά σενάρια διαφορετικού υπολογισμού του Τ, τα οποία παρουσιάζονται στο Κεφάλαιο 7. Το

πρώτο σενάριο υποθέτει ότι το Τ είναι αμετάβλητο καθ’ όλη την διάρκεια της προσομοίωσης. Το

δεύτερο σενάριο αντιπροσωπεύει την περίπτωση όπου το Τ αλλάζει μη περιοδικά αλλά είναι ίδιο

για όλα τα οχήματα σε κάθε δειγματοληψία σύμφωνα με το Λήμμα 6.2. Τέλος, το σενάριο 3 α-

ναπαριστά την περίπτωση όπου κάθε όχημα υπολογίζει αυτόνομα και ξεχωριστά το δικό του Τ

ανάλογα με την εκάστοτε κατάσταση του συστήματος. Τα αποτελέσματα από τις προσομοιώσεις,

υπέδειξαν ότι τα σενάρια 2 και 3 βοηθήσαν σημαντικά στην μείωση του χρόνου εκτέλεσης των

προσομοιώσεων σε σύγκριση με το σενάριο 1. Πιο συγκεκριμένα στο σενάριο 2 παρουσιάστηκε

μικρότερος χρόνος εκτέλεσης των προσομοιώσεων με μικρή διαφορά από το σενάριο 3. Παρότι το

αναμενόμενο θα ήταν το σενάριο 3 να προσδιορίζεται από μικρότερους χρόνους εκτέλεσης, αυτό

δεν συνέβη καθώς το κάθε αμάξι όφειλε να υπολογίζει τις προσωρινές αποστάσεις των υπολοίπων

αυτοκινήτων τα οποία δεν διακριτοποιούνται ταυτόχρονα όπως στο σενάριο 2, προσθέτοντας ση-

μαντικό υπολογιστικό κόστος στον επεξεραστή. Η παραπάνω παρατήρηση φαίνεται περισσότερο

αξιοσημείωτη αναλογιζόμενοι ότι το μέσο Τ στο σενάριο 3 παρουσίασε σημαντικά χαμηλότερη τιμή

από το μέσο Τ στο σενάριο 2, όταν όλοι οι υπόλοιπες παράμετροι ήταν κοινοί, βλέπε Πίνακες 8.1,

8.2.

Επιπρόσθετα, κατά την διάρκεια των προηγούμενων προσομοιώσεων εξετάστηκε η περίπτωση κατά

την οποία τα οχήματα λαμβάνουν υπόψιν τις ταχύτητες των γειτονικών αυτοκινήτων. Σε αυτήν την

περίσταση παρατηρήθηκε η ικανότητα διατήρησης των επιταχύνσεων σε μικρότερα επίπεδα κάτι το

οποίο κρίνεται σημαντικό, καθώς βελτιώνει ενθαρρυντικά την εμπειρία οδήγησης. Πιο συγκεκρι-

μένα στο γράφημα 7.12α παρουσιάζεται ένα παράδειγμα όπου συγκρίνονται οι δύο περιπτώσεις. Η

πρώτη αφορά την περίπτωση οταν τα οχήματα προσμετράνε τις ταχύτητες των γειτονικών αμαξιών

και και η δεύτερη όταν τις αγνοούν. Φαίνεται ξεκάθαρα ότι το σύστημα τείνει να απορροφάει την

μεγάλη αύξηση των τιμών της επιτάχυνσης όταν οι ταχύτητες των γειτονικών αυτοκινήτων λαμ-

βάνονται υπόψη. Επιπλέον παρατηρήθηκε γρηγορότερη σύγκλιση των οχημάτων στις επιθυμητές

τιμές.

Στα προηγούμενα Κεφάλαια φάνηκε, ότι όταν η αρχική ενέργεια λαμβάνει τιμές μεγαλύτερες από

το 80, τα οχήματα τείνουν να αποκτούν κάτω από οποιεσδήποτε συνθήκες, σημαντικά μεγάλες

επιταχύνσεις που συχνά κρίνονται μη ρεαλιστικές. Για τον λόγο αυτό θεωρήθηκε απαραίτητη η

υιοθέτηση ορίων που ανταποκρίνονται σε φυσικά όρια όσον αφορά τις επιταχύνσεις. Στο Κεφάλαιο

8 παρουσιάζονται προσομοιώσεις χρησιμοποιώντας άνω και κάτω φράγματα στις επιταχύνσεις και

επιβραδύνσεις αντίστοιχα, τα οποία δεν αφήνουν τα οχήματα να κινούνται με απότομες μη ρεα-

λιστικές μεταβολές ταχύτητας. Σε πρώτη φάση τα αποτελέσματα φαίνονται άκρως ενθαρρυντικά

καθώς η συρρίκνωση των επιταχύνσεων στα δοσμένα πλαίσια δεν οδήγησε σε καμία σύγκρουση.
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Παρόλα αυτά, όπως είναι αναμενόμενο, όταν η διαφορά ανάμεσα στην δοθείσα από τους ελεγκτές

επιτάχυνση και στο υιοθετημένο όριο επιτάχυνσης είναι αρκετά μεγάλη, υπάρχει πιθανότητα συ-

γκρούσεων.

Ορμώμενοι από την προαναφερθείσα περίσταση, προκειμένου να αποφευχθεί η περίπτωση κατά

την οποία οι αρχικές συνθήκες οδηγούν σε άμεση σύγκρουση κατά τις πρώτες στιγμές των προ-

σομοιώσεων (δηλαδή η αρχική ενέργεια κατέχει πολύ μεγάλες τιμές οδηγώντας τους ελεγκτές να

παράγουν μη ρεαλιστικές επιταχύνσεις), δημιουργήθηκε ένας αλγόριθμος ο οποίος μας τροφοδο-

τεί με ρεαλιστικές αρχικές συνθήκες. Πιο συγκεκριμένα, ο εν λόγω αλγόριθμος αποτρέπει την

δημιουργία αρχικών συνθηκών κάτω από τις οποίες 1) τα οχήματα έχουν επικίνδυνη πορεία προς

το όριο του δρόμου και 2) τα οχήματα τείνουν να συγκρουστούν μεταξύ τους. Ο αλγόριθμος

παρουσιάζεται στο Κεφάλαιο 9.

Τέλος, στο παράρτημα, εκτός από την διαδικασία μετατροπής του συνεχούς μοντέλου σε δια-

κριτό, παρουσιάζεται ένα παράδειγμα το οποίο υποδεικνύει τον τρόπο με τον οποίο λειτουργεί το

σενάριο 3, το οποίο αναφέρθηκε νωρίτερα.

7



Abstract

Vehicle automation has made tremendous advances in recent decades and the path to full
automation of vehicles seems inevitable. In this dissertation, cruise control systems for au-
tonomous vehicles on lane-free roads will be studied. The model depicting the motion of such
vehicles is described by a large number of nonlinear continuous-time differential equations. The
application of such models in real systems requires conversion of the continuous-time system
into a discrete-time system with the additional feature that the values of the input signals are
sampled. The modeling and conversion of the continuous-time system into a sampled-data con-
trol system will be studied first in this diploma thesis. Next, appropriate design of controllers
with discrete sampling will be considered. The design of controllers for discrete sampling sys-
tems is performed using the simulation approach in which we first design a controller in the
continuous-time domain and then discretize the controller and apply it digitally. Since the
digital controller approach can only be successful if the sampling period is sufficiently short,
the selection of the sampling period that guarantees the stability of the system to the proposed
controllers by discrete sampling will be studied through simulations. At the same time, us-
ing appropriate proven Lemmas, it will be examined the occasion when the sampling period
changes non- periodically. Then a study will be made through simulations of the discrete-time
model when there are saturation effects on the input of the system. Finally, an algorithm will
be presented that creates realistic initial positions in order to avoid high initial energies which
can lead to a collision course.
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Chapter 1

Introduction

In the past few years, vehicle automation has been introduced into our lives, and it’s easily
observed that the way to full automation in the following decades seems possible. Firstly, the
companies related to vehicle automation dealt with developing systems like the cruise control
system, which maintains the vehicle speed to a standard point, assisting the driver. Following
that process, the industry techniques mentioned above were improved, so that vehicles could
take into account the distance from a front vehicle to maintain the desired speed (Adaptive
Cruise Control (ACC) systems). Further to this, recent research has indicated the advantages
of Cooperative ACC systems (CACC) where communication technologies have been established
lest vehicles are wirelessly connected and can communicate, maintaining shorter inter-vehicle
distances and increasing the capacity of the roads. Consequently, the safety has increased
while the accidents and the congestion have reduced, improving the traffic flow on highways,
([4],[12],[18]). Both ACC and CACC systems have been extensively studied in the literature
(see for instance [12], [8], [10], [16], [20], [22]).

A significant segment of research deals with vehicles that abide to a lane discipline, increas-
ing safety since manual driving is simplified. Notably, the control strategies mentioned earlier
(ACC, CACC) are developed based on information from the vehicle directly in front or behind
(only for CACC). In addition, it should be underlined that drivers in lane-based traffic models
must be accustomed to lane-changing, which is a riskier manoeuvre since the driver has to
estimate other vehicles’ speeds to find a gap to complete the lane-changing process. Modelling
lane changes and two-dimensional movement on lane-based roads is a complicated problem, and
various approaches have been considered, since lane changing is known to affect both capacity
and safety (see for instance [3],[15],[23]).

However, new research material has emerged in the last years that concerns vehicles which
operate on lane-free roads ([14],[1]). Thus, vehicles don’t have to obey to any restrictions re-
lated to lane changing as in conventional traffic since the road has no lanes and the vehicles
connect wirelessly or via sensors. Thus, connected and automated vehicles are suitable and
more efficient in a lane-free environment where they can use their capabilities to their full
extent. These approaches are based on linear systems theory and traditional longitudinal car-
following models, which, however, do not guarantee: (i) collision avoidance with other vehicles
or with the boundary of the road, (ii) positivity of speeds, and (iii) speeds within road speed
limits. Apart from the lane-free concept, the capacity and the traffic flow could increase via
the “nudging” effect. The term “nudging” describes a virtual force that can exert a vehicle to
another one, and it’s proved that nudging effect could increase the flow on a ring road and have
a strong stabilizing effect; see [11] and references therein.
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Considering identical autonomous vehicles described by the bicycle kinematic model and using
a family of decentralized controllers (see [9]) for the safe operation of the vehicles on lane-free
roads, we obtain the following features:

1. The proposed controllers are fully decentralized, and each vehicle only has access to the
distance from the boundaries of the road and the relative distances and relative speeds
from adjacent cars.

2. The vehicles may also use relative speeds from adjacent vehicles

3. The vehicles do not collide with each other or with the boundary of the road;

4. The speeds of all vehicles are always positive and remain below a given speed limit;

5. All vehicle speeds converge to a given longitudinal speed set-point;

6. The accelerations, lateral speeds, and orientations of all vehicles tend to zero.

The bicycle kinematic model is selected because it can capture the non-holonomic constraints
of the actual vehicle (see [16]).

When calculating the distance between two vehicles, elliptic metrics are adopted, which ef-
fectively approach the actual dimensions of the vehicles. Consequently, in comparison to the
Euclidean distance, the capacity on the road can increase even more since the elliptic distance
assists in the determination of the minimum safety distance between vehicles to avoid collisions.
It is vital we select an appropriate “elliptical” distance as we can regulate both the safety dis-
tance and the number of vehicles that can be placed laterally on the road. Finally, potential
functions have been employed to avoid collisions between vehicles and the road boundary. Po-
tential functions have also been used in certain lane-changing and lane-keeping problems in
traffic control (, [7],[21]).

Simulation-wise, several issues emerge when trying to simulate a continuous-time system of
ordinary differential equations. Typical methods to approximate the solution of such systems
follow from numerical analysis and are known as Range-Kutta methods (see [2]). While for
numerical simulations, the solution of a control system can be approximated by the aforemen-
tioned methods, in practical applications, a control system acts as a hybrid system, where the
model is in continuous-time and the control inputs are discretized and applied in periodic in-
stances (sampled-data systems).

In this diploma thesis, firstly, we discretized the continuous-time bicycle model, which is de-
scribed in Chapter 3, using sampled-data inputs. This process is necessary since it allows us
to develop a code in a programming environment to run numerical simulations using piece-
wise constant inputs. Following that, we investigate the Maximum Allowable Sampling Period
(MASP) under various conditions of the system. Sampling period is specified as the time be-
tween two sampling instants and the higher it is, the less time each simulation take. It is
noteworthy, that when we discuss about MASP, we assume that the sampling period is con-
stant throughout the simulation. The usage of a constant sampling period for all the vehicles
during a simulation seems to be a bit unrealistic and cost prohibitive in terms of execution
time. For these reasons, considering appropriate proved conditions, we managed to find effi-
cient ways to calculate the sampling period non-periodically during the simulations in order to
reduce the CPU effort and consequently, the execution time. Particularly, we adopt two new
methods in which the sampling period can take higher values according to the positions of the
other vehicles and the distance from the road boundary. The first method indicates that the
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sampling period changes non-periodically, but it is the same for all the vehicles per sampling.
This approach is of substantial importance since it speeds-up the execution time considerably.
The second method allows the system to asynchronously calculate the sampling period of each
vehicle during the episode. In simple words, each vehicle can calculate its own sampling period
autonomously. The importance of the second method stems from the fact that in practice,
the internal clocks of vehicles are not synchronized and each vehicle updates its control input
independently from other vehicles. Execution time-wise the former methods has shown many
advantages and evidently they allow the system to increase the average sampling period. Simul-
taneously, we studied certain properties when the controller measures the speeds of the adjacent
vehicles. It was observed that from many perspectives, there exist substantial advantages when
the speed of the neighbouring vehicles is measured. Finally, an algorithm that generates ini-
tial positions with specific features is presented, which is used since we want to take realistic
initial positions when we run simulations. At every stage, simulations and results are displayed.

Notation

Throughout this thesis, we adopt the following notation.

* R+ := [0,+∞) denotes the set of non-negative real numbers.

* By |x| we denote both the Euclidean norm of a vector x ∈ ℜn and the absolute value
of a scalar x ∈ ℜ. By x′ we denote the transpose of a vector x ∈ ℜn. By |x|∞ =
max {|xi|, i = 1, ..., n} we denote the infinity norm of a vector x = (x1, x2, ..., xn)

′ ∈ ℜn.

* Let A ⊆ ℜn be an open set. By C0(A,Ω), we denote the class of continuous functions
on A ⊆ ℜn, which take values in Ω ⊆ ℜm. By Ck(A; Ω), where k ≥ 1 is an integer, we
denote the class of functions on A ⊆ ℜn with continuous derivatives of order k, which
take values in Ω ⊆ ℜm. When Ω = ℜ then we write C0(A) or Ck(A). For a function
V ∈ C1(A ; ℜ), the gradient of V at x ∈ A ⊆ ℜn, denoted by ∇V (x), is the row vector[
∂V
∂x1

(x) · · · ∂V
∂xn

(x)
]
. By ∇2V (x) we denote the Hessian matrix at x ∈ A ⊆ ℜn of a

function V ∈ C2(A ; ℜ).
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Chapter 2

Preliminaries

2.1 Sampled-data systems

Most models of real-life control processes are described by differential equations in continuous-
time ẋ = f(x, υ). However, due to digitalization, the control input cannot be applied in
continuous-time and thus, a sampled version of the input is applied through a conversion
known as Zero-Order-Hold (see [5]).

The idea of sampling consists of defining an exact discrete-time system such that the val-
ues of this discrete time system and the continuous time system coincide at the sampling times,
e.i. t0 < t1 < t2 < ... < tN .

Hereinafter, we use the symbol υ for the control function in order to emphasize the differ-
ence between the continuous time control function υ(•) and the discrete time control sequence
u(•). To illustrate the idea of sampled-data systems we consider the following simple continu-
ous time control system

ẋ(t) = υ(t) (2.1)

It is obvious that υ(t) constitutes a continuous input function. Let us transform the continuous
relation above into an exact discrete-time model. By letting x0 = x(0) denote the initial
condition, it is easily verified that the solutions of the system are given by

x(t) = x0 +

∫ t

0

υ(τ)dτ (2.2)

By considering the interval [0, T ], we obtain:

x(T ) = x0 +

∫ T

0

u(τ)dτ (2.3)

If we restrict ourselves to constant control functions u(t) ≡ u ∈ R on the time interval [0, T ]
(for ease of notation we use the same symbol u for the function and for its constant value), we
get

x(T ) = x0 + Tu (2.4)

This is the sampled-data model of the continues time system, where the input remains constant
between time intervals [kT, (k + 1)T ), k = 0, 1, 2, ...

In the next pages we will see that we use sampled data feedback for the actual implemen-
tation of our controllers. The whole integration of our continuous time model is presented in
Appendix while the results are shown in the Chapter 4.
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2.2 Bicycle kinematic model

The bicycle kinematic model has long been used as a suitable control-oriented model for rep-
resenting vehicles because of its simplicity and adherence to the nonholonomic constraints of
a car. In the next sentences we describe how it has been developed. The bicycle model we
deal with is called as “the front wheel steering model” since the front wheel orientation can
be controlled relative to the heading of the vehicle. We assume that the vehicle operates on a
2D plane denoted by the inertial frame FI. The front wheel represents the front right and left
wheels of the car and the rear wheel represents the rear right and left wheels of the car.

To analyze the kinematics of the bicycle model, we have to select a reference point X, Y on
the vehicle which can be placed at the center of the rear axle (see Figure 2.1), the center of
the front axle, or at the center of gravity (cg). The selection of the reference point changes
the kinematic equations that result, which in turn change the controller designs we use. In
this diploma thesis we assume that the reference point is placed at the center of the rear axle.
Following we analyse this assumption.

Figure 2.1: The reference point when considering the rear axle reference point model.

Rear axle reference point model

We denote the location of the rear axle reference point as Xr, Yr and the heading of the bicycle
as θ. We use σ for the length of the bicycle, measured between the two-wheel axes. The former
features constitute our main model states. In addition, we denote the steering angle δ which is
measured relative to the forward direction of the bicycle. Finally the velocity is denoted v and
points in the same direction as each wheel, see Figure 2.2. This is an assumption referred to as
the no slip condition, which requires that our wheel cannot move laterally or slip longitudinally
either.
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Figure 2.2: Analysis of the bicycle kinematic model.

Because of the no slip condition, we have that ω (e.g. the rotation rate of the bicycle θ̇), is
equal to the velocity over the instantaneous center of rotation radius R. More specifically,

θ̇ = ω =
v

R
(2.5)

From the similar triangles formed by L and R and v and δ we get,

tan(δ) =
σ

R
(2.6)

Finally considering (2.5) and (2.6) we get that,

θ̇ = ω =
v

R
=

v
σ

tan(δ)

=
v tan(δ)

σ
(2.7)

In simple words,
θ̇ = v tan(δ)σ−1 (2.8)

We can know form the complete kinematic bicycle model for the rear axle reference point. Based
on this model configuration, the velocity components of the reference point in the X and Y di-
rection are equal to the forward velocity v cos(θ) and v sin(θ), respectively. These two relations
are combined with the equation for rotation rate to form the rear axle bicycle model where,

ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇i = σ−1v tan(δ)
(2.9)

Here, the speed can be considered as a continues time signal. It is also possible to consider a
differential equation for the evolution of speed v̇ = F where F is the acceleration.
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Chapter 3

Continuous-time model

Consider n vehicles on a lane-free road of width 2a > 0, where the bicycle kinematic model
describes the movement of each vehicle

ẋi = vi cos(θi)
ẏi = vi sin(θi)

θ̇i = σ−1vi tan(δi)
v̇i = Fi

(3.1)

for i = 1, ..., n, where σ > 0 is the length of each vehicle. Where,

1. (xi, yi) ∈ ℜ × (−a, a) is the reference point of the ith vehicle in an inertial frame with
Cartesian coordinates (X, Y ), with i ∈ {1, ..., n} and is placed at the midpoint of the rear
axle of the vehicle.

2. with xi ∈ ℜ being the longitudinal position and y ∈ (−a, a) being the lateral position of
the vehicle.

3. vi is the speed of the ith vehicle at the point (xi, yi).

4. θi ∈
(
−π

2
, π
2

)
is the angular orientation of the ith vehicle.

5. δi is the steering angle of the front wheels relative to the orientation θi of the ith vehicle.

6. Fi is the acceleration of the ith vehicle.

Figure 3.1: Lane-free road of width 2a >a (left). Each vehicle is modelled by the bicycle kinematic model
(right).
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To simplify the subsequent analysis, we use the preliminary feedback:

ui = σ−1vi tan(δi), i = 1, ..., n (3.2)

Thus, the model (3.1) can be written in the form:

ẋi = vi cos(θi)
ẏi = vi sin(θi)

θ̇i = ui

v̇i = Fi

(3.3)

Let v∗ ∈ (0, vmax) be given (i.e. the speed set-point) and define the set:

S = ℜn × (−a, a)n × (−φ, φ)n × (0, vmax)
n (3.4)

where φ ∈
(
0, π

2

)
is an angle that satisfies,

cos(φ) >
v∗

vmax

(3.5)

The set S describes all possible states of the system of n vehicles. More specifically, each vehicle
should stay within the road, i.e., (xi, yi) ∈ R× (−α, α) for i = 1, ..., n, the vehicles should not
be able to turn perpendicular to the road, i.e., θi ∈

(
−π

2
, π
2

)
, for i = 1, ..., n and the speeds of

all vehicles should always be positive, i.e., no vehicle moves backwards; and respect the road
speed limits. The constant φ is a safety constraint, to restrict the movement of a vehicle, in
terms of orientation.

In what follows, we assume that the distance between vehicles is defined by

di,j :=
√

(xi − xj)2 + p(yi − yj)2 for i, j = 1, ..., n (3.6)

where p > 0 is a weighting factor. Note that for p = 1 we obtain the standard Euclidean
distance, while for larger values of p > 1, we have an “elliptical” metric which will allow to
approximate more accurately the dimensions of a vehicle.

Let the following notation:

w = (x1, ..., xn, y1, ..., yn, θ1, ..., θn, v1, ..., vn)
′
∈ ℜ4n (3.7)

Due to the various constraints that were explained above, the state space of the model is

Ω := {w ∈ S : di,j > L i, j = 1, ...., n, j ̸= i} (3.8)

where L is the minimum acceptable inter-vehicle distance.

As mentioned above, a virtual force called “nudging” is exerted from vehicles to other vehicles to
avoid collisions. We consider the potential functions V : (L,+∞) → R+ and U : (−a, a) → R+

that are both C2 functions and satisfy the following properties:
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lim
x→L+

(V (d)) = +∞
(3.9)

V (d) = 0, for all d ≥ λ (3.10)

lim
x→(−a)+

(U(y)) = +∞, lim
x→(a)−

(U(y)) = +∞ (3.11)

U(0) = 0 (3.12)

where λ is a constant that indicates the distance when two vehicles are not influenced by
nudging. The potential function V is designed to exert a repulsive force when two vehicles have
distance d ∈ (L, λ), and this repulsive force increases as the distance between vehicle decreases.
The potential function U deals with the repulsive force when a vehicle approaches the boundary
of the road. Also, a function κ will be used, to assist the derived controllers to take into account
the speed from the adjacent vehicles. The function has the following property:

κ(d) = 0, for all d ≥ λ (3.13)

which implies that when the distance between 2 vehicles is higher than λ, the function κ(d)
does not exert any influence on the vehicles.

3.1 Problem statement

For n vehicles operating on a lane free road of width 2α, a Lyapunov function methodology is
applied to design decentralized feedback for ui and Fi which ensure the following properties:

P1 For w(0) ∈ Ω, then w(t) ∈ Ω for all t ≥ 0. This implies that throughout a simulation all
the values xi, yi, vi, θi ∀i are a part of the state space of the model. Consequently, there are
not any collisions among the vehicles or with the boundary of the road and simultaneously
all the speeds remain positive and below the given speed limit. Finally, the orientation of
each vehicle is bounded by the given value φ ∈ (0, π

2
).

P2 The orientation of each vehicle will converge to zero and the speed of each vehicle will
converge to the given speed set point.

P3 The accelerations, angular speeds and lateral speed of all vehicles tend to zero.

More specifically,

1. di,j(t) > L for t ≥ 0 i, j = 1, ..., n, j ̸= i 2. yi(t) ∈ (−a, a) for t ≥ 0

3. vi(t) ∈ (0, vmax) for all t ≥ 0 4. θi(t) ∈ (−φ, φ) for t ≥ 0,

5. lim
t→∞

(θi(t)) = 0, i = 1, ..., n 6. lim
t→∞

(vi(t)) = v∗, i = 1, ..., n

7. lim
t→∞

(Fi(t)) = 0, i = 1, ..., n 8. lim
t→∞

(ẏi(t)) = 0, i = 1, ..., n

(3.14)
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We define the Control Lyapunov Function where the feedback laws are appropriately selected
to render the derivative of a Lyapunov function negative semi-definite, for all w ∈ Ω,

H(w) :=
1

2

n∑
i=1

(vi cos(θi)− v∗)2 +
1

2

n∑
i=1

v2i sin
2(θi) +

n∑
i=1

U(yi) +
1

2

n∑
i=1

∑
i ̸=j

V (di,j)

+ A

n∑
i=1

(
1

cos(θi)− cos(φ)
− 1

1− cosφ

) (3.15)

where A > 0 is a parameter of the controller and the Lyapunov function and v∗ ∈ (0, vmax) is
a given longitudinal speed set-point.

The function H indicates the total energy of the system of n vehicles and allows to be ex-
ploited certain properties of the state space Ω. The first two terms (1

2
(
∑n

i=1(vi cos(θi)− v∗)2 +
1
2

∑n
i=1 v

2
i sin

2(θi)) project the kinetic energy of the system penalizing the deviation of the lon-
gitudinal and lateral speed from their desired values v∗ and zero, respectively. The terms
(
∑n

i=1 U(yi) +
1
2

∑n
i=1

∑
i ̸=j V (di,j)) constitute the potential energy of the system which is pro-

duced from the functions V and U . Finally, the term
(
A
∑n

i=1

(
1

cos(θi)−cos(φ)
− 1

1−cos(φ)

))
is a

penalty term that blows up when θi → ±φ.

3.2 Controllers

The feedback laws for each vehicle i = 1, ..., n can be designed using the H function in terms of
their own speed and orientation and the gradient of the potential functions V and Umentioned
earlier.

ui =

(
Gi(w)− U ′(yi)− p

∑
j ̸=i

V ′(di,j)
(yi − yj)

di,j
− sin(θi)Fi

)(
v∗ +

A

vi(cos(θi)− cos(ϕ))2

)−1

(3.16)

Fi = − 1

cos(θi)
(ki(w)(vi cos(θi)− v∗) + Λi(w)) (3.17)

where,

Gi(w) = −µ1vi sin(θi) +
∑
j ̸=i

κ(di,j)(vj sin(θj)− vi sin(θi)) (3.18)

and

Λi(w) =
∑
j ̸=i

V ′(di,j)
(xi − xj)

di,j
−
∑
j ̸=i

κ(di,j)(vi cos(θj)− vi cos(θi)) (3.19)

and

ki(w) = µ2 +
Λi(w)

v∗
+

vmax cos(θi)

v∗(vmax cos(θi)− v∗)
f(−Λi(w)) (3.20)

where,
f ∈ C1(R) is any function that satisfies :

max(0, x) ≤ f(x) for all x ∈ R (3.21)
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The term ki(w) in the acceleration Fi(t) given by (3.17), is a state-dependent controller gain
which guarantees that the speed of each vehicle will remain positive and less than the speed
limit. The first term in Λi(w) given by (3.19), is the summation of the repulsive forces from
vehicles that are withing the nudging area of vehicle i and the second term constitutes the
summation of relative longitudinal speeds from vehicles that are in close proximity to vehicle i.
If V in (3.9), (3.10) is decreasing, then, the first term of (3.19) is negative if vehicle j is behind
vehicle i, i.e., (xi − xj) > 0. Indeed, in this case, we have that −V ′(di,j)(xi − xj)d

−1
i,j > 0 , and

this term represents the effect of nudging, since vehicles that are close and behind vehicle i will
also exert a “pushing” force towards it that will increase its acceleration.

Remark 1:

1. Properties (3.9) and (3.13) guarantee that the feedback laws (3.16) and (3.17) depend
only on information from adjacent vehicles, namely from vehicles that are located at a
distance less than λ > 0. Notice also that the control inputs (3.16), (3.17), (3.20) only
require the distance and the relative speeds from neighbouring vehicles and not additional
information, such as relative orientations (θi − θj) i, j = 1, ..., n, i ̸= j.

2. Any function f ∈ C1(ℜ) that satisfies (3.21) can be used in (3.20). For instance, the
function f(x) = ε

2
+ 1

2ε
x2 for every ε > 0 satisfies (3.21), since max(x, 0) ≤ |x| ≤ ε

2
+ 1

2ε
x2

for all x ∈ ℜ. Another function that satisfies (3.21) is the function

f(x) =
1

2ε

 0 , if x ≤ −ε
(x+ ε)2 , if −ε ≺ x ≺ 0
ε2 + 2εx , if x ≥ 0

(3.22)

for every ε > 0.

This generic design for all the function f will allow to regulate the longitudinal acceleration as
desired. For instance, in the first example above, f exhibits quadratic growth while in (3.22)
only linear growth for x ≥ 0.

3.3 Theorem 1

Suppose that there exist constants a > 0, λ > L > 0, p ≥ 1 and C2 functions V : (L,+∞) →
R+, U : (−α, α) → R+, that satisfy (3.9), (3.10) and (3.11), (3.12), respectively. Moreover,
for given constants vmax > 0, v∗ ∈ (0, vmax), and φ ∈

(
0, π

2

)
that satisfies (3.5), define function

H : Ω → R+ by means of (3.15) where Ω is given by (3.8). Then, for every w0 ∈ Ω there exists
a unique solution w(t) ∈ Ω of the initial-value problem (3.3), (3.16), (3.17), (3.20) with initial
condition w(0) = w0. The solution w(t) ∈ Ω is defined for all t ≥ 0 and satisfies for i = 1, ..., n

lim
t→∞

(vi(t)) = v∗, lim
t→∞

(θi(t)) = 0 lim
t→∞

(ui(t)) = 0, lim
t→∞

(Fi(t)) = 0 (3.23)

In addition, there exists a non-decreasing function Qk : R+ → R+(k = 1, 2) such that
|Fi(t)| ≤ Q1(H(w(0))), |ui(t)| ≤ Q2(H(w(0))), for all t ≥ 0, i = 1, ..., n and for every so-
lution w(t) ∈ Ω of (3.3), (3.16) and (3.17).
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Remark 2:

1. The results of Theorem 1 hold true globally, i.e., for any initial condition w0 ∈ Ω.

2. It is important to notice that due to technical constraints, an inequality of the form
|Fi(t)| ≤ K must be satisfied for all t ≥ 0, where K > 0 is a constant that depends on the
technical characteristics of the vehicles and the road. Inequality |Fi(t)| ≤ Q1(H(w(0)))
allows us to determine the set of initial conditions w0 ∈ Ω for which the inequality |Fi(t)| ≤
K holds: it includes the set of all w0 ∈ Ω with Q1(H(w0))vmax ≤ K.

3. Although we cannot predict the “ultimate” arrangement of the vehicles on the road
(and we cannot even show that a final configuration of the vehicles on the road is at-
tained; see remark below), the limits (3.23) and definitions (3.17) allow us to predict that

lim
t→+∞

(∑
j ̸=i V

′(di,j(t))
(xi(t)−xj(t))

di,j(t)

)
= lim

t→+∞

(
U ′(yi(t)) + p

∑
j ̸=i V

′(di,j(t))
(yi(t)−yj(t))

di,j(t)

)
= 0

for i = 1, ..., n. Consequently, the “ultimate” arrangement of the vehicles in the road (if

such a thing exists) must satisfy the following equation
∑

j ̸=i V
′(di,j)

(xi−xj)

di,j
= U ′(yi) +

p
∑

j ̸=i V
′(di,j)

(yi−yj)

di,j
= 0 for i = 1, ..., n as well as the constraints |yi| < a and di,j > L for

i, j = 1, ..., n , j ̸= i. Despite the fact that the constrained system of 2n equations has infi-
nite solutions, not every arrangement of vehicles satisfies the aforementioned constrained
system.

4. The proof of the Theorem 1 is presented in [9].

21



Chapter 4

Sampled-data model

For the actual implementation of the controllers, we used sampled-data feedback. Initially, we
designed the continuous-time controller that satisfies certain closed-loop control specifications
and then we transformed it into a digital controller. This technique is called “emulation” and
it has been widely used in the literature, see [13]. More specifically, the control inputs Fi and δi
are digitalized and produce a sequence of control values Fi(tk), δi(tk) using the sampled version
of the system’s state w(tk) at each sampling instant tk +1 = tk + T, k = 0, 1, 2, ..., T > 0, t0
being the initial time.

Figure 4.1 shows how we have to consider the values of the input Fi when we integrate the
continuous model. As mentioned before, the input Fi is digitalized and therefore maintains its
value between two sampling time. As a result, when doing the relative integration, we assume
that the input is a constant.

Figure 4.1: The way we consider the values of the input Fi when integrating the continuous model.

4.1 Exact discrete model

For brevity and conciseness, let

ωi := σ−1 tan(δi), for i = 1, . . . , n (4.1)
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The exact discrete model of (3.3) under constant inputs Fi and ui is given by

If ωi = 0

xi(t+ s) = xi(t) + vi(t) cos(θi(t))s+ Fi cos(θi(t))
s2

2

yi(t+ s) = yi(t) + vi(t) sin(θi(t))s+ Fi sin(θi(t))
s2

2

θi(t+ s) = θi(t)
vi(t+ s) = vi(t) + sFi

(4.2)

for all s ∈ [0, T ]; and if ωi ̸= 0

xi(t+ s) = xi(t) +
1
ωi

(
sin
(
θi(t) + ωi

(
vi(t) +

1
2sFi

)
s
)
− sin(θi(t))

)
yi(t+ s) = yi(t) +

1
ωi

(
cos(θi(t))− cos

(
θi(t) + ωi

(
vi(t) +

1
2sFi

)
s
))

θi(t+ s) = θi(t) + ωi

(
vi(t) +

1
2sFi

)
s

vi(t+ s) = vi(t) + sFi

(4.3)

for all s ∈ [0, T ].

In Appendix, there exists the whole procedure of integration with which we get the exact
discrete model mentioned above.

4.2 Influence of sampling period

The exact discrete model will be used in the numerical simulations of the following Chapters.
While the parameters and gains (e.g., A, p, µ1, µ2, etc.) greatly influence the behaviour of
our system (such as convergence rate and the magnitude of the acceleration) a decisive factor
is the sampling period T. As depicted in the following pages, the sampling period constitutes
the most significant value from the perspective of the simulation time. However, an arbitrarily
high value of the sampling period will lead to collisions since the vehicles will not have time
to renew their control input according to the feedback laws. This feature illustrated in the
following examples. The first example illustrates a case where a crash was avoided thanks to
the small sampling period whereas in the second example the car collided with the boundary
of the road, due to the high sampling period.

As we can see in Figure 4.2, there exists a small enough sampling period (T=0.1), and therefore
at the 3rd sampling, the vehicle starts to turn as the feedback laws prevent a crash with the
boundary of the road. It should be underlined that the small value of the sampling period plays
a significant role here since the vehicle has enough time to renew its values.

In Figure 4.3, the sampling period was too high (T=0.5 sec), and consequently, the vehicle
had no time to re-evaluate its control input according to the feedback laws. Between the two
sampling times, the vehicle went towards the road boundary, and the subsequent sampling
did not take place as the vehicle crashed. It is easily realized that although high values of the
sampling period lead to faster simulation times, sampling period selection is vital since collisions
can occur. In the following pages, we will see different and alternative ways to calculate the
sampling period efficiently with the guarantee that there will not be any collisions.
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Figure 4.2: An example where a crash is detected thanks to the small sampling period.

Figure 4.3: An example where a crash took place due to the high sampling period.
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4.3 Influence of initial energy

While the sampling period constitutes a decisive factor which can lead to collisions, the initial
energy of the system can influence it, accordingly. Initial energy is the energy produced by the
Lyapunov function H in (3.15) that obtains the system from the initial positions. High initial
energy means that the system is far away from convergence. Conversely, small initial energy
indicates that the system may converges faster. Next, we will study two examples in which the
sampling periods are the same and the only value that changes is the initial energy (e.g. the
initial positions, speed, and orientation).

In the snapshots in Figure 4.4 , where the initial energy H(0) = 18.32 and the sampling
period T = 0.1 , there is not any collision neither among vehicles nor with the boundary of the
road.

Figure 4.4: A real example with initial energy H(0)=18.32 and sampling period T=0.1.
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On the contrary, when observing the snapshots in Figure 4.5, where the initial energy increased
to 39.10, a collision between two vehicles is presented. It is noteworthy that although the
sampling period did not change, a crash took place.

Figure 4.5: A real example with initial energy H(0)=39.10 and sampling period T=0.1.

We can realize that for specific potential functions, parameters, gains and constants, the only
factors that can lead to a collision, are the initial energy and the sampling period. In Figure
4.6, we will see the same example as in Figure 4.5 adopting a smaller sampling period T = 0.05.
We can observe that thanks to the smaller sampling period T, the orange vehicle managed to
avoid the red one, so any collision took place. All parameters, gains, constants and potential
function we used are presented in section 5.1.
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Figure 4.6: A real example with initial energy H(0)=39.10 and sampling period T=0.05.
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Chapter 5

Numerical investigation of Maximum
Allowable Sampling Period (MASP)

5.1 Selection of potential functions, parameters and gains

Taking the occasions above as an example, we can see in the following pages how the initial
energy of the system can influence the Maximum Allowable Sampling Period (MASP). Namely,
it is investigated the maximum T > 0 for which w(t) ∈ Ω, t ≥ 0 for all w(0) ∈ Ω. In all
simulations in this thesis, unless otherwise stated, the following functions will be used,

V (d) =

{
q1

(λ−d)3

d−L
L < d ≤ λ

0 d > λ
(5.1)

U(y) =


(

1
α2−y2

− c
α2

)4
−α < y < −α

√
c−1√
c

or α
√
c−1√
c

< y < α

0 −α
√
c−1√
c

< y < α
√
c−1√
c

(5.2)

κ(d) =

{
q2(λ− d)2 L < d ≤ λ
0 d > λ

(5.3)

f(x) =
1

2ε

 0 x ≤ −ε
(x+ ε)2 −ε < x < 0
ε2 + 2εx x ≥ 0

(5.4)

where c ≥ 1, q > 0 are design parameters.

Notice that V and U above, satisfy (3.9), (3.10) and (3.11), (3.12), respectively. Simulta-
neously, κ and f satisfy (3.13) and (3.21), respectively. By appropriately selecting the constant
q1, we can adjust the repulsion force of the potential V in (3.9) and, consequently, the magni-
tude of the acceleration Fi, see (3.17). In particular, for small values of q1, the values of V (and
consequently the acceleration Fi) will be smaller away from L, but will increase more sharply
as d approaches close to L. The constant c ≥ 1 affects the final configuration of the vehicles
relative to the boundary of the road. More specifically, for c = 1 we have that U(y) = 0 if
y = 0, which will force the vehicles to form a single platoon in the middle of the road. For
c > 1, we have that U(y) = 0 in a neighborhood around y = 0, and the vehicles’ converged

lateral positions in this case will be within the strip −a
√
c−1√
c

≤ y ≤ a
√
c−1√
c

. More details can

be found in [9].
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In table 5.1, all the parameters and gains that we use in the simulations are presented.

Table 5.1: The parameters and gains for all the simulations

The selection of these values was based on [9], which also includes a general description on the
selection of appropriate gains.

5.2 MASP per initial energy

To study the MASP of the model numerically, we consider initial conditions w(0) ∈ Ω which
satisfy H(w(0)) = l ∈ R+ for specific values of l > 0, where H is defined in (3.15). Finally, it
is investigated both the case where the vehicles only measure the distance from neighbouring
vehicles (q2 = 0) and the case where the vehicles take into account the relative speeds of adjacent
vehicles (q2 ̸= 0). When the parameter q2 ̸= 0, the function κ(d) contributes to our system and
consequently, the vehicles measure the neighbouring speeds apart from the distances.

Figure 5.1: The sampling times T for increasing values of H, for different values of q2.

Observing Figure 5.1, we realize that while the initial energy increases, the maximum allowable
sampling period tends to have minimal values. However, it is noteworthy that as the parameter
q2 takes greater values, the MASP is higher in comparison to smaller values of q2. More
specifically, it is presented that for small values of the initial energy, the MASP is approximately
0.01 higher when q2 = 0.1. This feature seems to be a substantial advantage on the controller
since we can run simulations in less time. Finally, it should be noted that the approximation
of the MASP above corresponds to the specific selection of the potential functions V, U, and
the various constants associated with them. For a different selection, it is possible to obtain
higher values for the MASP.
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Chapter 6

State-dependent sampling period

In the previous Chapters, we considered that all the vehicles shared the same sampling period
which is constant during the whole simulation. So, at each simulation we had to select a
sampling period accordingly. Safety wise, the only guarantee we had when we selected the
sampling period was the results of the Figure 5.1 that indicates the MASP per initial energy.
Therefore, before the selection of the sampling period, we ought to find the initial energy related
to the initial positions as a way to exploit the former results in terms of safety. However, while
a constant sampling period for all the vehicles does not seem realistic, the computer needs more
effort to complete the simulations. For these reasons, we are interested in alternative ways of
sampling period calculation. The subsequent lemmas allow every vehicle to obtain its own
sampling period according to:

- Its distance from the other vehicles.

- Its distance from the boundary of the road.

- Its orientation.

6.1 Lemma 1

Let T > 0 and consider model (4.2), (4.3) with Fi(t) ≡ Fi, ωi(t) ≡ ωi for all, t ∈ [0, T ], k =
1, ..., n. Let w(0) ∈ Ω be given, where Ω is defined by means of (3.8). Let also an arbi-
trary index i ∈ {1, ..., n} be given and suppose that for each j = 1, ..., n j ̸= i it holds that
vj(T ) ∈ (0, vmax) and θj(T ) ∈ (−φ, φ). Moreover, assume that the following inequalities hold

T < min

 a− |yi(0)
vmax sin(φ)

,
min
j ̸=i

{di,j(0)− L}

δ

 (6.1)

− vi(0)

T
< Fi(0) <

vmax − vi(0)

T
(6.2)

−φ− θi(0)

vi(0)T + 1
2
FiT 2

< ωi(0) <
φ− θi(0)

vi(0)T + 1
2
FiT 2

(6.3)

where δ =
√
2vmax

√
1 + (2p− 1) sin2(φ). Then, vi(t) ∈ (0, vmax), θi(t) ∈ (−φ, φ), yi(t) ∈

(−α, α) and di,j(t) > L, for all t ∈ [0, T ], j = 1, ..., n j ̸= i. So, it is confirmed that when all
the conditions mentioned above hold, then for the vehicle i, there is not any crash neither with
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other vehicles nor with the boundaries of the road. This holds only until the very next
sampling. Lemma 1 provides an upper bound on the sampling period for a vehicle i to satisfy
property P1. In practice, each vehicle has its own internal clock and may also have its own
sampling period, even in the case of identical vehicles. So, lemma 1 can be exploited for each
vehicle autonomously. In simple words, each vehicle will be able to choose its own sampling
period based on the distance of the other vehicles and the road boundaries. In the next pages,
simulations will be projected according to this method.

6.2 Lemma 2

Let w(0) ∈ Ω be given, where Ω is defined by means of (3.8) and consider model (4.2), (4.3)
with Fi(t) ≡ Fi, ωi(t) ≡ ωi ∈ R, i = 1, ..., n being constant for all t ∈ [0, T ] . Suppose also
that (6.1), (6.2) and (6.3) hold for all i = 1, ..., n. Then w(t) ∈ Ω for all t ∈ [0, T ].

Lemma 2 suggests that if T is the same for all vehicles and satisfies (6.1), (6.2) and (6.3) for
all i = 1, ..., n then the following implication holds: w(0) ∈ Ω ⇒ w(t) ∈ Ω for all t ∈ [0, T ].
So, the lemma 2 can be exploited for non-periodic sampling with all vehicles having the same
sampling period T. More specifically, at each sampling every vehicle calculates its own sampling
period. After this calculation all the vehicles adopt the smallest sampling period so the lemma
2 can be applied.

The proofs of the Lemma 1 and Lemma 2 are presented in [17].

Remark 3: Classical sampled-data control is based on performing sensing and actuation
periodically rather than when the system needs attention, see Chapter 2.1 . Self-triggered
control, on the other hand, is proactive and computes the next sampling or actuation instance
ahead of time. The term self-triggered control was coined by [19] in the context of real-time
systems. A self-triggered implementation of the feedback control laws (3.16), (3.17) has for ob-
jective the computation of the actuator values as well as the computation of the next instant of
time at which the control law should be recomputed. The state-dependent bounds of Lemma
1, essentially imply that the considered approach is based on self-triggered control. This is
illustrated on Chapter 7.

31



Chapter 7

Applications of state-dependent
sampling-period

From now on, we can exploit the lemmas of the previous Chapter to create alternative methods
to calculate the sampling period(s) during the simulations. More specifically, these lemmas
allow non-periodic and state-dependent sampling periods to be calculated, reducing the simu-
lation time significantly. In the following pages, we investigate three scenarios to calculate the
sampling period, observing the simulation time contextually. In addition, we examine some
noteworthy features in both cases when q2 = 0 and q2 ̸= 0.

7.1 Scenario 1

In this scenario, the sampling period T does not change during the simulation. This implies
that all the vehicles have the same constant T. Particularly, in Figure 7.1 we can see a flow
chart which describes in short how the algorithm operates in Scenario 1. As we can see, the
sampling period T is constant until the end of the simulation. The episode ends when a crash
occurs or when the simulation time is complete.

We run simulations with the same design parameters, constants, gains and potential functions
as in Chapter 5 adopting the initial positions which are presented in table 7.1:

Table 7.1: Initial positions for Scenarios 1, 2 and 3.
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Figure 7.1: Description of scenario 1 calculation method.

Figure 7.2: Vehicles’ trajectories for q2=0 and T=0.01.
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Figure 7.2 shows the trajectories of the vehicles when q2 = 0 and T = 0.01. It is verified that
the vehicles remain within the boundaries of the road. Notice that the intersection of the
trajectories does not imply collision between vehicle, since the minimum inter-vehicle distance
is greater than L, see Figure 7.3. Properties like the nudging effect and the lane free principle
are easily observed. For clarity, the trajectories of 2 vehicles are not shown in the Figure.

Figure 7.3: Minimum inter-vehicle distance for q2=0 and T=0.01.

Figure 7.4: Vehicles’ trajectories for q2=0 and T=0.03.

Figure 7.4 shows the occasion when q2 = 0 and T = 0.03. We can see that the 6th vehicle was
forced to turn dangerously, taking a perpendicular orientation higher than the safety limit.
This condition can more than likely lead to a crash either on other vehicles or on the road
boundary. On this occasion, a collision with the road boundary occurred after some seconds.
We can realize that the high sampling period T = 0.03 was the main reason this occurred since
the 6th vehicle was late to do its subsequent sampling, and consequently, it was forced to obtain
high values in terms of orientation while approaching the road. The same effect is mentioned
in the example in Chapter 4.
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In Figure 7.5, we can see how the orientation θ changes in both cases when T = 0.1 and T = 0.03.
When T = 0.1 the blue line is smoother because more samplings take place per second. When
T = 0.3 the line changes more abruptly because the sampling period lasts more. As we dis-
cussed before, this is the reason why the orientation took extremely high values, leading the
vehicle to crash.

Figure 7.5: Orientation of the 6th vehicle for q2=0.

Let us investigate the occasion when q2 ̸= 0 assuming q2 = 0.001. In Figure 7.6, where
T = 0.044, we can realize that there is not any collision with the road boundary. Moreover,
there is not any crash nor among the vehicles, too. Consequently we realize that while q2
became higher, the sampling period T (for the same conditions as the previous example for
q2 = 0) had margin to be higher, as well. In addition, the vehicles’ trajectories are smoother
compared to Figure 7.2. This feature illustrates a substantial advantage when the controller
measures the speed of the adjacent vehicles. Apart from the sampling period, in the next pages
we will see that when q2 ̸= 0 we take more efficient results in terms of vehicles’ acceleration.

Figure 7.6: Vehicles’ trajectories for q2=0.001 and T=0.044.
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In Figure 7.7, when q2 = 0.001 and T = 0.048, it is projected the same issue as in Figure
7.4. The sampling period was too high, so the 6th vehicle was forced to obtain a dangerous
orientation, more extensive than the safety limit. In this case, a crash on the road boundary
occurred some seconds later, like before.

Figure 7.7: Vehicles’ trajectories for q2=0.001 and T=0.048.

To understand better the properties and the differences when q2 = 0 and q2 ̸= 0 we run a
simulation where the sampling period is the same, letting only the parameter q2 to do the
difference. Assume T = 0.01. As we can see in Figure 7.8a, the existence of the value q2
efficiently helps the systems to maintain small accelerations. Although the initial maximum
acceleration is larger when q2=0.001, by taking into account the speeds of neighboring vehicles,
the system can maintain its maximum acceleration at lower values, in general. This feature
seems extremely important since it improves the driving experience. Evidently, the former
feature would influence the value of the ui.In Figure 7.8b it is presented that the values of ui

take much lower values when q2 ̸= 0. Particularly, when q2 ̸= 0, the maximum ui = 1.3144,
whereas when q2 = 0, the maximum ui= 3.7539. This means that the orientation of each
vehicle converges to the desired value smoother when the system measures the speeds of the
adjacent vehicles. that the values of ui take much lower values when q2 ̸= 0. Particularly, when
q2 ̸= 0, the maximum ui = 1.3144, whereas when q2 = 0, the maximum ui= 3.7539. This means
that the orientation of each vehicle converges to the desired value smoother when the system
measures the speeds of the adjacent vehicles.

(a) Vehicles’ max |Fi| for T=0.01. (b) Vehicles’ max |ui| for T=0.01.

Figure 7.8: Max |Fi| and |ui| for T=0.01.
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7.2 Scenario 2

In this Scenario, the sampling period T in not constant as in Scenario 1 but is dynamically
calculated on the basis of Lemma 2. Lemma 2 illustrates that if all the vehicles have the same
sampling period T, and (6.1), (6.2), (6.3) are applied for all the vehicles, then until the very next
sampling there is not any collision to take place neither among vehicles nor with the boundary
of the road. More specifically, T is calculated according to the formula:

Tk = max

α, β min
i=1,...,n

a− |yi(tk)|
vmax sin(φ)

,
min
j ̸=i

{di.j(tk)− L}

δ




where tk+1 = tk + Tk, k = 0, 1, ..., α > 0, β ∈ (0, 1). The constant α > 0 provides a lower
bound on the sampling period, and β adjusts the sampling period in order for (6.1) to hold.
We set α as a value which is slightly smaller than the relative MASP and β = 0.9. We use
the constant α since we want to avoid computational errors. Let’s describe an example how

the algorithm works. Initially, the formula calculates, the value min

{
a−|yi(tk)|
vmax sin(φ)

,
min
j ̸=i

{di.j(tk)−L}

δ

}
,

for each vehicle, per sampling. Then, it keeps the lowest of all values among the vehicles and
multiplies it with the parameter β. Finally, compares this product with the constant α and
adopt the highest of these two values. Then, the algorithm has found the sampling period until
the next sampling. In the next sampling the same process will take place. In the following
snapshots the former procedure is presented.

S1 We assume 4 vehicles with random initial positions.

S2 We consider the value m(i) = min

{
a−|yi(tk)|
vmax sin(φ)

,
min
j ̸=i

{di.j(tk)−L}

δ

}
for i = 1, ..., n.

S3 We multiply the smallest value of vector m with the parameter b and we get the sampling
period T for all the vehicles.

S4 We go to the next sampling.

Figure 7.9: Sampling period calculation in Scenario 2.
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Flow chart in Figure 7.10 describes how Scenario 2 works in general. It should be under-
lined that the algorithm terminates with a different method in comparison to Scenario 1 since
the system is not aware of how many loops are needed. Now, using the same system features
as in Scenario 1 and the same initial positions, we are in position to present the following results.

Observing Figure 7.11, we can realize how the sampling period changes throughout the simula-
tion. Initially, we see the that the dotted lines concern the occasion when the sampling period
is calculated periodically. The red dotted line describes the case where we do not measure the
speed of the neighbouring vehicles (q2 = 0), whereas the blue one indicates the case where we
take into account the speeds of the adjacent vehicles (q2 ̸= 0). Conversely, the continuous lines
depict the occasion when the sampling period changes non-periodically. The red line concerns
the case where q2 = 0 and the blue line the occasion where q2 ̸= 0. In the first 40 seconds, we
observe that when q2 ̸= 0, the sampling period tends to note intense fluctuations. This occurs
since the energy of the system obtains its highest values at the beginning of the simulation.
While the episode is taking place, the energy approaches minimal values and the system tends
to convergence. So, the distances among the vehicles and from the road boundary do not have
substantial changes. So according to (6.1), we expected this phenomenon as the sampling pe-
riod in Scenario 2 is influenced by these distances. Besides that, a quite noteworthy feature is
that in both cases when q2 ̸= 0 and q2 = 0 the sampling periods exceed the relative values of
Scenario 1. Moreover, when q2 ̸= 0 the sampling periods tend to higher values.

Figure 7.10: Description of scenario 2 calculation method.
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Figure 7.11: The sampling periods during simulations in both scenarios 1 and 2 when q2 = 0 and q2 = 0.001.

Table 7.2, shows that for the time-interval [0, 300s], the execution’s runtime for Scenario 2
was 47s for q2 = 0 and 41s for q2 ̸= 0. Particularly, as execution time, we mean the real
time that the computer needs to run an episode, whereas simulation time is a variable which
indicates how long the simulation is, in the programming enviroment. It is evident that for
higher simulation times, we obtain higher execution times when all the system features are the
same. We used a machine powered by Intel Core i5-6200, 2.30 Ghz, with Matlab. For Scenario
1, the execution runtime was 204s for q2 = 0 and 80s for q2 ̸= 0. These results depict how the
non-periodic sampling assisted the computer to run simulations in much less time. However,
note that the computation of Tk calls for data from all vehicles, hence this handling of sample
time may be valuable to speed up the simulation, but it is not for use by real vehicles. In
Scenario 3, we consider state-dependent sample times, which are different for each vehicle and
can be computed based on decentralized data.

Table 7.2: Execution times when the simulation time equals to 300s.

Figure 7.12a shows that the existence of q2 can assist the system to maintain lower and more
realistic accelerations. We observed the same feature in the Figure 7.8a in Scenario 1. More
specifically, when q2 = 0, the maximum acceleration tends to obtain values close to 6 m/s2

whereas when q2 ̸= 0, the maximum acceleration marginally exceeds 4 m/s2. In addition, it is
observed that the system converges faster when q2 ̸= 0. It should be mentioned that this char-
acteristic sometimes can be considered as a disadvantage since the vehicles will probably have
sharper movements in order to reach a faster convergence. At the same time, faster convergence
of the system in terms of velocity is presented when measuring the speed of the neighbouring
vehicles, see Figure 7.12b. Particularly, when q2 ̸= 0, we can see that the absolute values of the
quantity |vi(t)− v∗| tend to zero more quickly, during the episode.
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(a) Max |Fi| when q2 ̸= 0 and q2 = 0. (b) Max |vi(t)− v∗| when q2 ̸= 0 and q2 = 0.

Figure 7.12: Max |Fi | and |vi(t)− v∗| when q2 ̸= 0 and q2 = 0.

7.3 Scenario 3

In this scenario, we assume that each vehicle has its own sampling period Ti which changes
dynamically at each sampling instant. Specifically, each sampling period is computed according
to Lemma 1 and depends only on the distance from the neighbouring vehicles and the distance
from the boundary of the road. We can see the formula how each sampling period is calculated
below:

T i
k = max

α, βmin

a− |yi(tik)|
vmax sin(φ)

,
min
j ̸=i

{di.j(tik)− L}

δ




where,
tik+1 = tik + T i

k, k = 0, 1, ..., α > 0, β ∈ (0, 1)

The parameters α and β exist for the same reasons as in scenario 2. Since the sampling period
of each vehicle depends on the distance from adjacent vehicles, it is evident that each vehicle has
to estimate the position of the other vehicles. However, the vehicles have separate sampling
periods and consequently different sum of samplings. In the former scenarios, the sampling
period of all the vehicles was calculated simultaneously and it was easy for each vehicle to
compute the other vehicles’ position. Now, when a vehicle calculates its sampling period, the
other vehicles don’t probably calculate their own ones. As a result, each vehicle has to do extra
calculations to compute the positions of the other vehicles. Flow chart in Figure 7.13 presents
the method how this estimation takes place in short. Besides, an specific example how this
procedure takes place is presented in Appendix.

Following the this algorithm, we run simulations with the same features as in the previous
scenarios in both cases when q2 ̸= 0 and q2 = 0. Initially, in Figures 7.14 and 7.18, we can
observe the trajectory of each vehicle and the inter-vehicle minimum distance, respectively. As
it is obvious any collision takes place with neither with the boundary of the road nor among
the vehciles. Figures 7.15a and 7.15b show that when the vehicles take into account the speeds
of the adjacent vehicles, the maximum acceleration reduces and the convergence of the system
succeeds faster, as well. When realizing that we noticed exactly the same feature in the previ-
ous scenarios, we are in position to say that the method of sampling period calculation cannot
change the properties of the existence of q2, in terms of acceleration and convergence time.
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Figure 7.13: Description of scenario 3 calculation method.

Figure 7.14: Vehicles’ trajectories when q2=0.001.
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(a) Vehicles’ max |Fi| for T=0.01 when q2 ̸= 0 and q2 = 0. (b) Max |vi(t)− v∗| when q2 ̸= 0 and q2 = 0.

Figure 7.15: Max |Fi| and |vi(t)− v∗| when q2 ̸= 0 and q2 = 0.

Figures 7.16 and 7.17 depict the sampling period of 4 vehicles during the simulation when
q2 = 0 and q2 ̸= 0, respectively. In these Figures, we can see that each vehicle autonomously
and separately calculates its sampling period. It is noteworthy to focus on the sampling periods
of the 10th vehicle. As we can see, the sampling periods do not exceed 0.05 since the vehicle
is forced to be near to the road boundary since an other vehicle is moving closely to it. As we
observed in (6.1) the sampling period of each vehicle is exclusively influenced from its distance
from the other vehicles and from the boundary of the road, see Figure 7.14.

Figure 7.16: The sampling periods of 4 of the vehicles during the episode for q2 = 0.

Figure 7.17: The sampling periods of 4 of the vehicles during the episode for q2 = 0.001.
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Figure 7.18: The minimum inter-vehicle distance when q2 ̸= 0 and q2 = 0.

Finally in tables 7.3 and 7.4 we can compare the execution times and the average sampling
periods for all the scenarios when the simulation time was 300s. We can observe that the
Taverage for the 2nd scenario increased from 0.051 when q2 = 0 to 0.054 when q2 ̸= 0. This is
the reason why the execution time is lower when q2 ̸= 0, as we observed in the 2nd scenario.
The most remarkable feature is that despite the 3rd Scenario obtains the highest Taverage by
far, the execution time is not the shortest. This phenomenon occurs because in Scenario 3, in
each sampling, the computer must calculate the temporary position of the other vehicles. This
procedure forces the computer to spend more time to complete the episode. Consequently, al-
though the 3rd scenario seems the most realistic, it obtains lower execution times in comparison
to the scenario 2.

Table 7.3: Execution times when the simulation time equals to 300s.

Table 7.4: Average sampling periods when the simulation time=300s.
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Chapter 8

Saturated control input

Saturation effects occur when any part of a feedback control system reaches a natural limit
since every physical actuator is subject to saturation, see [6]. In such cases, the performance
of the closed-loop system designed without considering actuator saturation may deteriorate
or even lose its stability properties. In control systems, every physical actuator or sensor
is subject to saturation owing to its maximum and minimum limits. A saturation function
sat : R → [a, b] ⊂ R can be symmetrical or asymmetric as below

sat(x) =

 b x ≥ b
x x ∈ (a, b)
a a ≤ x

(8.1)

where a, b ∈ R.

As already discussed in the previous Chapters, the initial energy of the system H(w(0)) plays
a crucial role in the values of the acceleration (see Remark 2) and also in the sampling period
T. High initial energy implies that the initial speed of the vehicles are away from the desired
speed set-point, or that the distances between vehicles or between vehicles and the boundary
of the road is very small. In such cases, the acceleration Fi may take high values for vehicles to
avoid collision and remain within the road. In practical applications however, there are physical
limitations. We study below the performance of the system due to saturations on the control
inputs of the system.

In the following examples, we examine two occasions. The first example illustrates a case
in which the system adopts saturations and the initial energy of the system equals to 81.6431.
Conversely, in the second occasion we changed the initial positions and the initial energy in-
creased to 89.7691. The initial positions are shown in tables 8.1 and 8.2 respectively:

Table 8.1: Initial positions with initial energy H(0)=81.6431.
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Table 8.2: Initial positions with initial energy H(0)=89.7691.

To run the following simulations, we used periodic sampling with q2 = 0 and T = 0.01. We used
q2 = 0 since higher accelerations can take place and the effects of saturation usage can be shown
easier. However we can use saturations either when the sampling is periodic or non-periodic.
Hereinafter, we use the saturation function sat : ℜ → [−6, 3.5] ⊂ ℜ:

sat(x) =

 3.5 x ≥ 3.5
x x ∈ (−6, 3.5)
−6 x ≤ −6

(8.2)

We will see that when the acceleration takes values that exceed 3.5 m/s2, then the relative
vehicle will maintain its acceleration to 3.5 m/s2. On the other hand, when the acceleration
will be lower than −6 m/s2, the relative vehicle will keep this value.

In Figure 8.1 is shown that when H(w(0)) = 81.6431 the vehicles obey the boundaries re-
lated to acceleration as mentioned before. Especially two vehicles tend to reach the saturation
limits but the system does not allow them to exceed the relative values, as discussed before.

Figure 8.1: Accelerations adopting saturations when initial energy H(0)=81.6431.

At the same time, in Figures 8.2 and 8.3, we can see that no collision took place either with
boundary of the road or among the vehicles, respectively. In Figure 8.4 we can see that there
no issues occurred from the perspective of orientation, too.
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Figure 8.2: Trajectories with initial energy H(0)=81.6431.

Figure 8.3: Minimum inter-vehicle distance with initial energy H(0)=81.6431.

However, in the next example, where the initial positions has changed and simultaneously the
initial energy has increased, we can observe a crash. This phenomenon was expected since the
system needed even higher acceleration values. In Figure 8.5 is observed that the controllers,
obviously do not allow the vehicles to obtain accelerations higher or lower than the saturation
limits. In this occasion collision avoidance did not succeed. In Figure 8.6 we can see that a
crash between two vehicles took place in the 4th second.
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Figure 8.4: Max orientation |θi|w ith initial energy H(0)=81.6431.

Figure 8.5: Accelerations adopting saturations when initial energy H(0)=89.7691.

This example makes more understandable that the existence of saturations sometimes can lead
to collisions. Especially when the initial energy obtains high values. This means that vehicles
are initialized in a collision course, with very small distances between them or with the boundary
of the road. In practice, since the controllers already guarantee that such case will not occur,
it is expected that there would be no collisions. It should be noticed that in the next Chapter
we have included an algorithm that allow us to obtain realistic initial conditions, which is not
the case in this example. In Figures 8.7a and 8.7b, we can see the behaviour of our vehicles
in terms of acceleration without saturations when initial energy equals to 81.6431 and 89.7691,
respectively. In the second case the vehicles developed twice the values of acceleration, so
it was evident that the systems had more possibilities for a crash when the saturations were
adopted. The dotted lines show the saturations we used earlier in order to be realized better
the differences in both cases.
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Figure 8.6: Minimum-inter vehicle distance when initial energy H(0)=89.7691.

(a) Accelerations without saturations when initial energy
H(0)=81.6431.

(b) Accelerations without saturations when initial energy
H(0)=89.7691.

Figure 8.7: Accelerations without saturations.

More specifically, if we examine the 8.1 and 8.2, we will understand that in both cases the
initial positions of the vehicles did not change in terms of x, y and θ. Only the speed of the
1st vehicle increased from 33.0623 m/s to 35.0623 m/s. Meanwhile, the 2nd vehicle was only
15.93 m in front of the 1st vehicle with speed 25.7188 m/s. Consequently, the change in the 1st

car in terms of speed played a significant role in the initial energy. This is the reason why the
two vehicles obtained high accelerations that exceeded 10 m/s2. In simple words, the initial
positions in the second occasion were unrealistic since the vehicles were forced to crash in the
very next second.
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Chapter 9

Initial positions generator

The initial conditions (position, speed, orientation) heavily influence the transient behavior of
the system. As it has been observed in the previous Chapters, through the initial conditions
we obtain the initial energy of the system which directly affects the acceleration of the vehicles,
the MASP as well as the sampling period T. Besides that, we observed in the latter Chapter
that sometimes the initial positions can be unrealistic, as vehicles may be initialized in a colli-
sion course which however will not happen in practice since the proposed controllers guarantee
safety. For these reasons in this Chapter an algorithm is presented that generates initial posi-
tions with several features that are presented below. Initially the system generates arbitrary
initial positions and next checks whether these features are satisfied. To simplify exposition,
we divide the algorithm into three parts.

9.1 Examination if each vehicle is moving dangerously towards the
boundary of the road.

In the event of a vehicle is moving towards the boundary of the road, the algorithm calculates
the distance between the vehicle and the boundary. If this distance is smaller than db m (e.g.
db = 2.5m), the algorithm computes the lateral speed of the vehicle. If the lateral speed of
the vehicle (vi sin(θi)) is higher than ls m/s2 (e.g. ls = 1 m/s2), then the initial positions are
rejected. This implies that the vehicle has direction towards the boundary of the road, with
high lateral speed. The constants db and ls are chosen from the operator. The flow chart in
Figure 9.1 that describes the method.
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Figure 9.1: Examination if each vehicle is moving dangerously towards the boundary of the road.

9.2 Examination if each vehicle has in front of it or behind it, an-
other vehicle at a dangerously close distance.

Consider two vehicles, one behind the other, and let the constants S > 0 and Th > 0. The
constant S indicates a safe distance when the vehicles are stationary, whereas the constant
Th constitutes the time-headway that concerns the time when the two vehicles cross the same
point on the road. In addition, we assume V is the speed of the rear vehicle. When the distance
between these two vehicles is smaller than the value S+V ∗Th, the initial positions are rejected.

We can determine how safe the system is by appropriately choosing the constants S and Th

values. It must be mentioned that the method above should apply even when two vehicles are
not exactly the one behind the other. Notably, a wider tolerance margin could offer a better
drive experience since high accelerations or crashes will be avoided. To make it more under-
standable, we can observe Figure 9.2.

50



Figure 9.2: : The two vehicles are in close proximity and at the same time they are not one behind the other.

The distance between the vehicles is small enough and at the same time the two vehicles are
not one behind the other. However, a possible overtaking due to nudging forces could lead to
negative results since the vehicles will obtain extremely high accelerations. To avoid that, we
adopt a constant width that demonstrates a lateral margin.

Finally, when observing Figure 9.3, it is easily understandable that each vehicle according to its
speed, obtains a virtual safety parallelogram (taking into account the margin width) in which
no other vehicle must be included.

Figure 9.3: The safety parallelogram according to the value S+VTh.

As we can see, the vehicle 1 has a virtual space that is designed according to its speed at each
moment. Vehicles 2 and 4 are rejected since they are included in this space. The flow chart in
Figure 9.4 describes the method of this algorithm.
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Figure 9.4: Examination whether each vehicle has in front of it or behind it, another vehicle at a dangerously
close distance.

9.3 Examination if a vehicle has an adjacent vehicle with opposite
orientation.

Sometimes, although all the conditions mentioned above are satisfied, the orientation of two
vehicles can lead to negative effects. Let’s observe Figure 9.5:

Figure 9.5: Two nearby vehicles with opposite orientation.
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The vehicles neither approach the boundary of the road nor are included in any safety paral-
lelogram. However, it seems that in the next seconds extremely high accelerations or crash are
going to take place. To avoid that, we use the following methodology:

1. For each vehicle, it is checked if there is any adjacent vehicle. To characterize two vehicles
“adjacent” we use the area bounded by the largest ellipse which indicates the area where
the nudging effect occurs.

2. To inspect if a vehicle i is within the area bounded by the ellipse of a vehicle j we check
if their distance is smaller than λ :

Then the algorithm checks whether two vehicles are adjacent. If they are, it is calculated:

1. The multiplication of the angles (in terms of θ) of the two vehicles. If this value is negative
(especially, smaller than a parameter lmtheta), then we assume that the two vehicles have
dangerously opposite orientation.

2. The lateral speeds of the two vehicles. If the relative speed of the two vehicles (absolute
value of the sum of each lateral speed) is higher than a constant lmv, then we assume that
each vehicle dangerously approaches the other one.

If the values of the former calculations exceed the given limits then the initial positions of
the vehicles are rejected. Let’s see Figure 9.6 to realize better how the ellipses work if the
orientation and the lateral speeds exceed the limits.

Figure 9.6: Two vehicles which are concerned adjacent according to their big ellipses.

We observe that one vehicle is within the area bounded from the ellipse of the other vehicle. So
the vehicles are adjacent. Since the vehicles have the same length, it is obvious that each vehicle
will be inside the other’s vehicle ellipse. Finally, it should be mentioned, that this specific
condition is checked only if the first two conditions do not hold. For example, two vehicles
may be the one behind the other (and simultaneously they may be adjacent). However, this
condition has been checked earlier, so the algorithm will never check if the vehicles are adjacent.
Following, we can see in Figure 9.7 a flow chart that describes the method.
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Figure 9.7: Examination whether a vehicle has an adjacent vehicle with opposite orientation.

As discussed before the initial positions generator must satisfy all the aforementioned conditions
in order to create appropriate data. A flow chart which contains all the three parts was avoided
since the comprehension of the information would be quite difficult and confusing.
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Chapter 10

Conclusions

In this diploma thesis, we examined several issues from the perspectives of sampling-data
controllers, sampling period, saturated inputs, and initial positions. Initially, we analyzed the
continuous model provided by the bicycle kinematic model which we transformed into a discrete
one using sampling data. We considered that the inputs were fixed between two sampling times
during this transformation. Following this process, we found actual results for the Maximum
Allowable Sampling Period per initial energy to select appropriate constant and periodical
sampling periods. More specifically, we observed that while the initial energy related to the
contextual initial positions increases and exceeds 40, the MASP has to take values that tend to
zero. Since a constant sampling period throughout the simulations does not seem realistic, we
found alternative ways to calculate the sampling period during the simulations; non-periodically
and state-dependently according to the distance of each vehicle from the other vehicles and the
boundary of the road. Firstly, we noticed that the execution time was significantly reduced by
adopting a non-periodical sampling period (same for all the vehicles per sampling). However,
when adopting a state-dependent sampling period, the execution time was reduced too but it
did not take smaller values compared to the non-periodical sampling period. As discussed, this
occurred because each vehicle has to calculate the temporary positions of the other vehicles
while calculating the relative state since the samplings do not take place synchronously. At
the same time, we examined the case in which the controllers take into account the speeds of
the adjacent vehicles. We saw that when the vehicles measure the speeds of the neighboring
vehicles, their trajectories seem smoother, and their maximum acceleration is retained in more
natural values. Besides that, a faster convergence was observed. After extracting these results,
we noticed that when the initial energy tends to obtain high values, the maximum acceleration of
the vehicles sometimes develops unrealistic values. For these reasons, saturations were adopted
in order to retain the accelerations in natural values. Evidently, if the difference between
the maximum acceleration produced from the controllers and the adopted saturation is high,
there exist possibilities for collisions. It should be mentioned that the former condition is
importantly influenced by the initial energy of the system. Finally, in order to avoid unrealistic
initial positions with extremely high values of acceleration, which probably lead the vehicles to
a collision course, we created an algorithm that creates initial positions. These initial positions
guarantee that the vehicles 1) will not go towards the road boundary dangerously, and 2) will
not have a collision with each other at the very first seconds.
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Appendix

Integration of continuous model (3.3)

We consider first the case ωi = 0 .

Using (3.1) and since the input Fi is constant on the interval [0, T ], i.e., Fi(t) = Fi(0) = Fi, we
get

v̇i = Fi ⇒
∫ T

0

v̇i ds =

∫ T

0

Fi ds ⇒ vi(T ) = vi(0) + TFi (A1)

Since ωi = 0, it follows that θ̇i = 0, and therefore, θi(t) = θi(0) for t ∈ [0, T ].

Using again (3.1) model and (A1) we get

ẋi(s) = vi(s) cos(θi(s)) ⇒
∫ T

0

ẋi(s) dt =

∫ T

0

vi(s) cos(θi(s)) dt ⇒

∫ T

0

ẋi(s)ds =

∫ T

0

(vi(0) + sFi) cos(θi(s)) ds

The latter implies that

xi(T ) = xi(0) + Tvi(0) cos(θi(0)) +
T 2

2
Fi cos(θi(0))

With similar arguments, we finally get

ẏi = vi sin(θi) ⇒
∫ T

0

ẏi ds =

∫ T

0

vi sin(θi) ds ⇒∫ T

0

ẏi ds =

∫ T

0

(vi(0) + sFi) sin(θi) ds ⇒ yi(T ) = yi(0) + Tvi(0) sin(θi(0)) +
T 2

2
Fi sin(θi(0))

We consider now the case ωi ̸= 0

vi(T ) = vi(0) + TFi by (A1)

Since ωi ̸= 0, it follows that θ̇i ̸= 0,

In addition we assume that ωi is constant on the time interval [0, T ] i.e., ωi(t) = ωi(0) = ωi.
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Since ωi = σ−1 tan(δi), we get that δi is constant on the time interval [0, T ], too. Namely,
δi(t) = δi(0) = δi.

Using (3.1) model and (A1) we get

θ̇i(s) = σ−1(vi(s) tan(δi)) ⇒∫ T

0

θ̇i(s) ds =

∫ T

0

σ−1(vi(s) tan(δi)) ds ⇒∫ T

0

θ̇i(s) ds =

∫ T

0

σ−1((vi(0) + sFi) tan(δi)) ds ⇒∫ T

0

θ̇i(s) ds = σ−1

∫ T

0

vi(0) tan(δi) + sFi tan(δi) ds ⇒

The latter implies that

θi(T ) = θi(0) + σ−1

(
Tvi(0) tan(δi) +

T 2

2
Fi tan(δi)

)
Using again (3.1) model and (A1) we get

ẋi(s) = vi(s) cos(θi(s)) ⇒∫ T

0

ẋi(s) ds =

∫ T

0

vi(s) cos(θi(s)) ds ⇒∫ T

0

ẋi(s) ds =

∫ T

0

(vi(0) + sFi) cos

(
θi(0) + σ−1

(
svi(0) tan (δi)+

s2

2
Fi tan(δi)

))
ds ⇒∫ T

0

ẋi(s) ds =
σ

tan(δi)

∫ T

0

tan(δi)

σ
(vi(0)+sFi) cos

(
θi(0) + σ−1

(
svi(0) tan (δi)+

s2

2
Fi tan(δi)

))
ds

Which implies that

xi(T ) = xi(0) +
1

ωi

(
sin

(
θi(0) + ωi

(
vi(0) +

T

2
Fi

)
T

)
− sin(θi(0))

)
Following the same process using (3.1) model and (A1), we get

yi(T ) = yi(0) +
1

ωi

(
cos(θi(0))− cos

(
θi(0) + ωi

(
vi(0) +

T

2
Fi

)
T

))
This completes the integration procedure.

Scenario 3 | An example

Let us assume an arbitrary vehicle i. Using,

1. the ODEs of model (3.1),

2. the sampling time of the vehicle i,

3. the latter sampling times of the other vehicles

4. the values x, y, θ, vof the other vehicles at their latter sampling time,
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the vehicle i can estimate the temporary positions of the other vehicles in order to calculate its
sampling period.

Firstly, all the vehicles have to initialize their values related to sampling period. Let us assume:

1. T last(i)= the time when the last sampling of the vehicle i took place.

2. T(i)= the exact sampling period of the vehicle i.

3. T next(i)= the time when the next sampling of the vehicle i takes place.

4. TIME= the time we are in each loop.

Figure 1: Vehicles’ initial values related sampling period.

At the first loop in Figure 1, it is obvious that the variables T next and T are the same for all
the vehicles since the variable TIME=0. Only for the first loop applies that T next=T+TIME
for all the vehicles. Now, the system has to find the vehicle which is going to be sampled sooner.
Namely, it has to find the smallest value of the vector T next and the vehicle which possesses
this value. As we can see, it is the 3rd vehicle with T next=0.1. At this time, observing Figure
2, the system changes the variable TIME to 0.1 and starts the sampling process of the 3rd

vehicle. As the other vehicles have not been sampled yet, the estimation of their position will
take place via the following Euler’s formula:

xtemporary(j) = xj + vj cos(θj)(TIME− Tlast)

ytemporary(j) = yj + vj sin(θj)(TIME− Tlast)
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Actually, this formula considering known the position of the other vehicle at its latter sampling,
estimates its temporary position using the ODEs of model (3.1). Particularly, it calculates the
difference between the variables TIME and T last and multiplies this difference with the relative
ODE of model (3.1). The product of the multiplication is added to the last known position.
The previous process is done for j = 1, ..., n , i ̸= j.

Figure 2: Autonomous sampling.

NOTE! The vehicles 1 and 2 have not been sampled yet! Their temporary positions have been
estimated just to be calculated the sampling period of the 3rd vehicle. Besides that, the vehicle
3 needed the positions of the other vehicles to compute the nudging forces that are exerted to
it. Now the system has to find again the vehicle which is going to be sampled sooner. It is the
1st vehicle with T next=0.15. The system will do the same process as before. One noteworthy
feature at the 2nd loop is that the variable T last is not equal to zero as the vehicle 3 has been
sampled.
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