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ABSTRACT

In a variety of fields, automation has enhanced production and reduced errors to a large ex-
tent. Automation in vehicular traffic using fully Connected and Automated Vehicles (CAVs)
is projected to provide similar outcomes. However, issues such as road safety, human-inspired
driving and related road rules result in reduced road usage and loss of traffic flow. Automated
vehicles, aided by vehicle-to-vehicle and vehicle-to-infrastructure communication, have the po-
tential to improve safety and traffic flow significantly, by relaxing the road rules designed for
human drivers.

According to a recently proposed novel traffic paradigm, called TrafficFluid, there is no need
to duplicate the human lane-based driving task. The future of road driving is moving towards
complete automation and cooperation among the CAVs. Advanced vehicle sensors and com-
munications, enable the CAVs to ”float” securely and efficiently, restoring lost capacity and
enhancing traffic safety on various types of roadways, based on appropriate movement tactics.

Alongside various strategies, a nonlinear Optimal Control Problem (OCP) for CAV path plan-
ning with nudging in a lane-free traffic environment, as well as, a feasible direction algorithm
for its computationally efficient numerical solution are considered. The OCP considers an ob-
jective function to minimize fuel consumption, improve passenger comfort, reach desired speeds
on both longitudinal and lateral directions, and avoid obstacles. State-dependent bounds on
control inputs are used to ensure that the vehicles stay within the road boundaries and prevent
crashes in emergency situations. The OCP is solved repeatedly for short time horizons within
a model predictive control framework, while the vehicle advances. The proposed approach is
shown to give good results in a traffic simulation with wide range of vehicle densities on a
lane-free ring-road and can be considered a contender for use in future advancements, linked
to lane-free CAV traffic.

Towards this direction, in this thesis, a lateral positioning stratery is developed for reaching the
desired lateral position according to the desired longitudinal speed. The strategy is aiming at
improving longitudinal vehicle speeds and thereby the traffic mean speed and flow, mainly at
under-critical traffic densities, where vehicle maneuvering is easier. This is to be achieved by
distributing laterally the vehicles based on their longitudinal desired speeds, so that vehicles
with higher desired speed tend to drive further left (and vice versa). Firstly, the desired lateral
position is selected based on the distribution of the desired longitudinal speeds. Afterward, the
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desired lateral speed of each vehicle is calculated and applied in real-time, as it depends on its
actual lateral position. The work leverages the OCP formulation to find an optimal and efficient
way to move the CAVs to a desired lateral position and remain there, avoiding crashes. Various
densities are being considered for two scenarios on a ring-road for comparative analysis. The
proposed strategy is being simulated in a lane-free environment using a custom-made extension,
namely TrafficFluid-Sim, which is built for SUMO (Simulation of Urban MObility) simulator.
Several quantities, like the average traffic flow and statistical measures of the error in the lateral
direction, are calculated for evaluation.

ii



ΠΕΡΙΛΗΨΗ

Σε διάφορους τομείς, ο αυτοματισμός έχει βελτιώσει την παραγωγή και έχει μειώσει τα σφάλματα
σε μεγάλο βαθμό. Η οδήγηση με πλήρως αυτοματοποιημένα οχήματα, προβλέπεται να παρέχει παρό-
μοια οφέλη. Ωστόσο, ζητήματα όπως η οδική ασφάλεια, οι περιορισμένες ανθρώπινες δυνατότητες
και κανόνες κυκλοφορίας έχουν ως αποτέλεσμα τη μειωμένη χρήση της χωρητικότητας του δρό-

μου. Τα αυτόματα οχήματα, με τη βοήθεια της επικοινωνίας όχημα-με-όχημα και όχημα-με-τις
οδικές υποδομές, έχουν τη δυνατότητα να βελτιώσουν σημαντικά την οδική ασφάλεια και τη ροή
της κυκλοφορίας, εξαιρώντας ή χαλαρώνοντας τους οδικούς κανόνες που έχουν σχεδιαστεί για
οδηγούς.

Σύμφωνα με ένα καινοτόμο μοντέλο κυκλοφορίας που προτάθηκε πρόσφατα και ονομάζεται Traf-
ficFluid, δεν υπάρχει ανάγκη να αντιγράψουμε την ανθρώπινη οδήγηση σε λωρίδες. Το μέλλον της
οδήγησης κινείται προς την πλήρη αυτοματοποίησή της με τη πλήρη συνεργασία των οχημάτων.
Οι προηγμένοι αισθητήρες οχημάτων και η ανάπτυξη των επικοινωνιών επιτρέπουν σε κάθε όχημα

να ελίσσεται με ασφάλεια και αποτελεσματικότητα μεταξύ των άλλων, αποκαθιστώντας τη χαμένη
χωρητικότητα και ενισχύοντας την ασφάλεια κυκλοφορίας σε διάφορους τύπους δρόμων, με βάση
τις κατάλληλες στρατηγικές κίνησης.

Μεταξύ άλλων προσεγγίσεων, η παρούσα εργασία ακολουθεί ένα μη γραμμικό Πρόβλημα Βέλτιστου
Ελέγχου (ΠΒΕ) για τον σχεδιασμό της διαδρομής ενός τέτοιου οχήματος σε δρόμο χωρίς λωρίδες.
Με αυτή την προσέγγιση, κάθε όχημα έχει τη δυνατότητα να ωθεί με ασφάλεια άλλα οχήματα
(nudging) προκειμένου να κινηθεί ταχύτερα. ΄Ενας αλγόριθμος εφικτής κατεύθυνσης χρησι-
μοποιείται για την αποδοτική αριθμητική επίλύση του προβλήματος. Το ΠΒΕ κάνει χρήση μιας
αντικειμενικής συνάρτησης που ελαχιστοποιεί την κατανάλωση καυσίμου, βελτιώνει την άνεση των
επιβατών, επιτυγχάνει επιθυμητές ταχύτητες καταμήκος και εγκάρσια, και αποφεύγει τα εμπόδια.
Γίνεται χρήση των μεταβλητών κατάστασης στους περιορισμούς στην είσοδο του ελέγχου για να

διασφαλιστεί ότι τα οχήματα παραμένουν εντός των ορίων του δρόμου και αποτρέπουν ατυχήματα

σε καταστάσεις έκτακτης ανάγκης. Το ΠΒΕ επιλύεται επαναληπτικά καθώς το όχημα κινείται,
στο πλαισίο του προβλεπτικού ελέγχου. Αποδεικνύεται οτι η προτεινόμενη προσέγγιση δίνει καλά
αποτελέσματα, σε προσομοίωση κυκλοφορίας, με μεγάλο εύρος τιμών πυκνότητας οχημάτων, σε
έναν περιφερειακό δρόμο χωρίς λωρίδες. Η μέθοδος αυτή μπορεί να θεωρηθεί υποψήφια για χρήση
- στο μέλλον - σε κυκλοφορία συνδεδεμένων αυτόματων οχημάτων σε δρόμο χωρίς λωρίδες.

Προς αυτή την κατεύθυνση, στην παρούσα διπλωματική εργασία, προτείνεται μια μέθοδος για την
επίτευξη της επιθυμητής εγκάρσιας θέσης θεωρώντας ως δεδομένο, την επιθυμητή ταχύτητα του

iii



οχήματος. Η μεθοδος στοχεύει στην αύξηση της ταχύτητας των οχημάτων και κατά συνέπεια
στη βελτίωση της κυκλοφοριακής ροής και της μέσης ταχύτητας αυτής. Η επίδραση της μεθό-
δου είναι εμφανέστερη, σε πυκνότητες κυκλοφορίας μικρότερες από την κρίσιμη, όπου ένα όχημα
κινείται ευκολότερα. Αυτό επιτυγχάνεται κατανέμοντας τα οχήματα - κατά το πλάτος του δρόμου
- μέ τέτοιο τρόπο, ώστε όσο μεγαλύτερη είναι η επιθυμητή τους ταχύτητα, τόσο αριστερότερα
του δρόμου να κινούνται. Αρχικά, η επιθυμητή εγκάρσια θέση επιλέγεται με βάση την κατανομή
των (διαμήκων) επιθυμητών ταχυτήτων. Στη συνέχεια, υπολογίζεται και εφαρμόζεται η επιθυμητή
εγκάρσια ταχύτητα του κάθε οχήματος σε πραγματικό χρόνο, καθώς εξαρτάται από την τρέχουσα
εγκάρσια θέση του. Η εργασία αξιοποιεί τη διατύπωση του ΠΒΕ για να βρεί ένα βέλτιστο και
αποδοτικό τρόπο να μετακινηθούν και να παραμείνουν τα οχήματα στην επιθυμητή εγκάρσια θέση

τους, αποφεύγοντας παράλληλα τις συγκρούσεις. Εξετάζονται διάφορες πυκνότητες κυκλοφορίας
για δύο σενάρια, σε μια περιφερειακή οδό για συγκριτική ανάλυση. Οι προτεινόμενες στρατηγικές
προσομειώνονται σε περιβάλλον χωρίς λωρίδες, χρησιμοποιώντας μια προσθήκη κώδικα σε C/C++
- το TrafficFluid-Sim - το οποίο δημιουργήθηκε για τον προσομοιωτή SUMO (Simulation of Ur-
ban Mobility). Τέλος, υπολογίζονται μεγέθη, όπως η ροή κυκλοφορίας και στατιστικές εκφράσεις
του σφάλματος στην εγκάρσια κατεύθυνση, προκειμένου να αξιολογηθεί η μέθοδος.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Connected and Automated Vehicles (CAVs) are predicted to populate the roads in the near
future, without the need for human driving. Similar to the automation in the manufactur-
ing sector, CAVs have the potential to revolutionise the transportation sector by using the
infrastructure very efficiently and overcoming the sensory limitation of human driving. Human
drivers generally compensate the limitations of sensory feedback by using intelligence and learn-
ing. With appropriate algorithms, CAVs can outperform the human drivers without the need
for the majority of traffic rules. For example, lanes were introduced to help the human drivers
by minimizing the lateral monitoring, however, they are designed to fit the widest vehicle, re-
sulting in reduced road utilization [5]. Lane changes and overtaking a slow moving vehicle are
still a cause for approximately 10% of the collisions. For making the driving task easier and
safer, there have been attempts to use modern automation technologies like vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) communication for appropriate message passing to the
drivers [6]-[7]. However, majority of the road accidents occur due to bad decisions, low percep-
tion, and limited driving skills of the human drivers [8]. According to the statistics, 1.3 million
people lose their lives every year [9] due to road accidents. Simultaneously, another significant
problem is the traffic congestion that requires radical solutions, especially in rush hours [10].

On the other hand, while we are moving on to an era of full automation, one possible solution
is the 100% penetration of CAVs, with the essential movement strategies in both lateral and
longitudinal direction. When there are no human drivers, the road rules can either be relaxed or
ignored. Also, CAVs have the potential of increasing safety, and traffic flow, reducting emissions,
as well as, to lead to the economic development. However, because of the the vehicular traffic
nature, complex algorithms like nonlinear feedback control, and artificial intelligence techniques
like reinforcement learning, are required in order to make decent decision [3].

For future traffic with only CAVs on roads, an unconventional concept, called TrafficFluid, has
been proposed. The general car-following models use lanes and also assume that the traffic
is anisotropic in nature, where the driver is influenced only by the downstream vehicles. The
movement strategies in TrafficFluid have two major differences compared to the conventional
car-following models. The first one is a road without lanes, where the vehicles can ”float” in
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CHAPTER 1. INTRODUCTION

a 2-D plane. The second one is vehicle nudging, whereby the vehicles apply some pressure on
the downstream vehicles, resulting in some form of isotropy in the traffic. In an era of CAVs,
there is no need to follow the traffic rules designed for human drivers. With appropriate design
of movement strategies, lanes, traffic signals and many other traffic rules can be removed or
relaxed for the CAVs. Furthermore, there are some advantages of a lane-free environment and
nudging, like increased capacity, and smoother movement [3].

Considering the principle, in which, vehicles have the appropriate ability to communicate among
each other, in the research so far, there have been contributions in the areas like, the internal
boundary control [11]-[12], and path planning. Assuming this, the present work, is based an
optimal path planning algorithm for CAVs. In [13], as well as in a recently submitted paper
[14] a nonlinear constrained Optimal Control Problem (OCP) for the movement of the CAVs in
the lane-free environment is proposed. A feasible direction algorithm (FDA) [15], [16] is used
to solve the OCP in a Model Predictive Control (MPC) framework [17], [18] in real time and
this approach is applied for each vehicle separately. Simulation results for different cases are
provided to demonstrate working of proposed methodology. All simulations have been done
using a lane-free environment based on a custommade extension, namely TrafficFluid-Sim [19],
which is built for the SUMO (Simulation of Urban MObility) simulator [20].

1.2 Thesis Objectives

The objective of the thesis is to improve the longitudinal speeds of the vehicles, mainly at
intermediate densities, by distributing laterally the vehicles based on their longitudinal desired
speeds. This is achieved by developing and implementing a lateral positioning strategy, which
leverage the existing optimal control formulation to move the CAVs to appropriate lateral
positions, while respecting other, higher-priority sub-objectives, such as avoiding crashes. First,
the longitudinal desired speed of each vehicle is mapped to a lateral desired position under the
premise ”faster vehicles drive farther left”. Then, the value of the desired lateral speed is
updated in real-time in dependence on the vehicle’s actual versus the desired lateral position,
letting the optimal control problem, with the given sub-objective priorities, decide on the actual
vehicle path. The proposed strategy is applied for different densities and comparative analysis
of the results is performed.

1.3 Τhesis Outline

This thesis is composed of six chapters. Chapter 1 gives an introduction which describes the
current work that relates to the optimal path planning of CAVs in a lane-free environment.
After that, Chapter 2 is a brief description of the background that it is required to understand
this diploma thesis. A short explanation about the vehicular traffic, the usefulness of CAVs and
their advantages is given. Moreover, there is a brief description about the novel paradigm called
TrafficFluid, as well as, its advantages compared to the lane-based model. Last but not least, an
extensive report is given on the basics of the concept of the discrete-time optimal control, like
the problem formulation and the optimality conditions. In Chapter3, the problem formulation
and more specifically the objective function, the state-dependent inequality constraints, as
well as, the new proposed lateral positioning strategy are presented. This methodology aims
to distribute the vehicles laterally based on their longitudinal desired speeds. In addition,
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the solution of the OCP is described. Chapter 4 gives a brief description of the extension
TrafficFluid-Sim in SUMO. Moreover, it describes the scenarios and the cases of each scenario
that have been used. Chapter 5 summarizes the results. Different kinds of vehicles have been
used, like small, normal or big cars, as well as trucks. The last chapter, refers to the conclusions
and gives a short summary of the strategy and the findings of this diploma thesis.
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CHAPTER 2

BACKGROUND

Chapter 2 presents the basic concept and ideas of traffic systems nowadays. Section 2.1 refers
to the concept of Vehicle Automation and Communication Systems. Section 2.2 gives a short
explanation about Connected and Automated Vehicles (CAVs) and their impact. Furthermore,
sections 2.3 & 2.4 explain the TrafficFluid paradigm and compare it with the conventional road
type. The last section 2.5, gives a brief explanation of the theory of discrete-time optimal
control.

2.1 Vehicular Traffic

Vehicular traffic plays an important role for the transport of persons and goods and enhances
the economic and social life of a modern society. However, even after decades of research,
issues like traffic congestion and accidents appear in everyday life, especially in urban areas
around the globe, and call for radical solutions. Some of the traffic congestion consequences are
travel delays, slow down of certain emergency services like fire and ambulance, and excessive
fuel consumption due to non-smooth movement of vehicles. Although the conventional traffic
management has valuable results, it cannot completely counter the heavy traffic congestion or
accidents. In the direction of resolving aforementioned issues, there has been an important
effort to develop a variety of both Vehicle Automation and Communication Systems (VACS)
and control strategies in the last few years, that are expected to improve the capabilities of the
individual vehicles [21].

2.1.1 VACS

VACS are systems that transform some of the vehicle functions at various levels of automation
ranging from basic driver assistance to full automation. Simultaneously, the mobile commu-
nication industry has achieved some of the most important innovations and has changed the
lifestyle. The use of the advanced mobile communication systems in vehicles is projected to
provide serious changes in transportation technology. Moreover, the communications systems
in VACS allow a varying levels of cooperation enabling vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication. Furthermore, a variety of companies and research in-
stitutions have been working on technological advances to improve the driving conditions for
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both driver and passenger. Recently, a lot of researchers and industries are working and test-
ing fully automated vehicles using methodologies such as Artificial Intelligence (AI), optimal
control, and reinforced learning in order to measure the decisions about the car-following and
lane changing [22], [3].

2.1.2 The Need for Traffic Control

As mentioned earlier, one of the biggest challenges for traffic control is managing congestion
phenomena. Control strategies have been developed in a lane environment in order to solve
problems like congestion and consequently to provide a safer, a more efficient and less polluting
transportation. The effectiveness of traffic control depends on the quality of the control strate-
gies, so the development of efficient traffic control methodologies has a major social impact and
requires great responsibility [23]. Figure 2.1 displays a general scheme of the feedback control
for a traffic system. The control inputs are calculated by the traffic controller and transferred
as input to the traffic system. The exogenous inputs such as types of vehicles affect the system,
however these exogenous inputs are measurable and detectable. The traffic controller includes
the control algorithm, which can be applied to the vehicles. Last but not least, the feedback
loop has the measurements, such as speeds, obstacles, and decision of the other vehicles [1].

Figure 2.1: Traffic controller, Source: [1]

2.2 Connected and Automated Vehicles

From nonmotorized transportation to a high-speed roadway network with modern vehicle tech-
nologies, the transportation sector has progressed. The goal is to transition from traditional
transportation engineering practices, to implementing emerging technologies, primarily because
these technologies have the potential to eliminate the human role in certain decision-making
situations and provide the necessary alerts and warnings to help drivers and road users to im-
prove their safety [24]. Modern type of transport vehicles like cars without drivers or standalone
vehicles are in the peak of technology. Control systems with a set of sensors and actuators,
as well as, the navigation process that combine several steps to obtain all the sufficient data
in order to generate a path without collisions, are the essential features of the modern trans-
portation systems. So, Automated Vehicles (AVs) steer, accelerate, and brake with little or no
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human intervention. Some vehicles still require human assistance to keep an eye on the road,
while others do not [25].

On the other hand, networking facilities such as communications devices of novel wireless
connections e.g 5G, allow vehicles to communicate and to transfer information among the
road elements like vehicles, traffic light etc. All these interconnected processing, sensing and
communication capabilities contribute to the control of the intelligent vehicles. The connected
vehicles communication systems are classified into the three following categories [2]:

• V2V: an architecture that allows a direct communication between the vehicles without
any fixed infrastructure support

• V2I: communication with the road infrastructure such as traffic lights, signs, and other
roadside objects

• Hybrid architecture: a combinations of both V2V and V2I solutions

Figure 2.2: (a) Vehicle to Vehicle, (b) Vehicle to Infrastructure, (c) Hybrid architecture,
Source: [2]

So, CAVs technology can be used to achieve the following objectives: [24]

Safety

According to the National Highway Traffic Safety Administration, 94 - 96% of traffic collisions
are caused by human error. For this reason, a drastic improvement in traffic safety is essential
to reduce the human error. CAVs can be a solution to the issue, where the human error is
completely eliminated. Although, a lot of vehicle-centric applications are in market like lane
departure warning system, speed updates, such technologies only help the human drivers to
some extent and we still have accidents due to human negligence. The research now is on the
introduction of CAVs on roads and further to use a lane-free environment in a traffic without
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human drivers. So, considering the potential of CAVs technologies in order to improve safety,
it is irrational not using them.

Mobility

In the near future, CAVs have the potential to change the way people travel. CAVs technologies
are able to detect incidents like rapid surge or increase in vehicular speeds or rising vehicular
volumes. However, the most important thing is that the communication between CAVs and
emergency technologies can help incident responders to reach their location not only quickly,
but also clear from the roadway traffic.

Environment

In United States the transportation is the primary source of carbon emissions. By saving
fuel and decreasing emissions, emerging and CAVs technologies can help to reduce the carbon
footprint and promote green transportation choices. On the other hand, the impact of CAVs
should also be evaluated because they also have the potential to increase fuel consumption due
to higher travel speeds and increased travel.

Economic Development

In the context of CAVs technologies, the society leads to an economic development. Increased
safety, better mobility and improved environmental quality lead to better public health and
sustainable productivity. Although, the impact of this technology in economic sector is not
direct and difficult to quantify, trustworthy transportation network plays an important role in
the financial welfare of the society, as well as, offers a better quality of life of all road users.

2.3 TrafficFluid

A novel paradigm, called TrafficFluid, has been proposed in order to study movement control
strategies for various type of vehicles and sizes e.g. cars, vans, trucks etc in a new road
environment [3].The paradigm proposes the following two principles:

• Lane-free Traffic

• Nudging

2.3.1 Lane-Free Traffic

In lane-free traffic vehicles are not restricted to traffic lanes, as in traditional traffic, but may
drive wherever on the road’s 2-D surface, subject to the road’s borders and avoiding collisions.
According to the figure 2.3, the road has no lanes and the percentage ”%” on each vehicle
represents their actual speed as a percentage of their desired. Vehicles colored yellow have
actual speed less than their desired and vice-versa for the blue ones. In a lane-free environment,
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the CAVs can be considered as particles, which constitutes an artificial fluid. Here, vehicle
movement strategies may be influenced by the vehicles behind the ego, something which is
called ”nudging” and it is explained below. [3]

Figure 2.3: Lane free environment, Source: [3]

2.3.2 Nudging

The nudging effect accomplishes among vehicles which communicate, and its purpose is to
”push” the slower vehicles, which are in the way of ego, to pass. According to the figure 2.4,
the yellow vehicle has bigger longitudinal speed than the blue ones, and for this reason nudges
the slower vehicles aside to pass. [3]

Figure 2.4: Nudging effect, Source: [3]
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2.4 Lane-Based vs Lane-Free Traffic

The lane-based traffic was introduced in order to make the driving task easier for the human
drivers. Firstly, lane markings on roads and highways were needed to separate opposing traffic
directions to minimize the danger of head-on crashes, while the dashed lines are dividing parallel
lanes in the same traffic direction. In manual driving, parallel lanes improve traffic safety by
simplifying the driving task for the human driver; when driving in a lane, the driver just needs
to check the distance and speed of the front car, while there is little need to monitor the left,
the right, and the rear sides of his or her own vehicle. Generally, two primary considerations
control driving tasks [5]:

• maintaining desired speeds;

• staying in a lane or overtake slower vehicle

Due to the wide range of vehicle widths e.g cars, trucks, and motorcyclists, as well as the need
for safety margins, lane-based traffic must waste a portion of the available road width to fit the
widest vehicle, and hence the possible capacity. Furthermore, during the lane changing of a
vehicle, the freeway’s capacity and safety are reduced. In addition, one-tenth of all accidents are
caused by improper lane changes. For this reason, developing movement strategies in order to
avoid crashes during lane changes requires understanding human driver behavior, which differs
from person to person due to the limited perception of sense and the reaction time of decision-
making [3], [5]. In the lane-based environment, even CAVs face difficulties in lane changing due
to large trajectory calculations [26], [27]. However, some possible solutions have been proposed,
like complex algorithms and optimization techniques [28]. Moreover, there have been suggested
methods, like nonlinear feedback control for collision avoidance [29], and artificial intelligence
methods, like deep learning, where autonomous vehicles try to avoid obstacles and advance
smoothly [30].

Figure 2.5: Lane-changing in lane-based environment

On the other hand, in the era of full automation, there is no need to duplicate human driving
behavior. In the near future, the driving task on road will be completely automated, and with
the combination of high-level sensors and communications, the capabilities of driving will be
highly increased. All these capabilities in a lane-free environment will allow the CAVs to ”float”
safely on different types of roads like highways, motorways, and arterials. The lost capacity
will be regained, safety will be increased and of course, the movement strategies will be de-
signed easier and more efficiently due to 2-D vehicle movement. Figure 2.6 illustrates the most
important advantages of lane-free traffic. The movement strategies may differ according to
various characteristics of infrastructures and vehicles, but they will have an important impact
on efficiency. In the research done so far, various strategies have been proposed in a lane-free
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environment, in order to advance the vehicles securely, avoiding parallel collisions. Techniques,
like reinforcement learning [31], Optimal Control (OC) and Model Predictive Control (MPC)
solutions for an optimized path planning of CAVs have been proposed [13]. Towards this direc-
tion, the current work relates with [13], while trying to find an efficient method for the lateral
movement of the CAVs, so as to distribute the vehicles laterally based on their longitudinal
desired speeds. The solution to this problem comes across with a Feasible Direction Algorithm
(FDA) -which produces feasible trajectories for the CAVs- in an MPC framework in the general
context of an OCP.

Figure 2.6: Lane-free advantages
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2.5 The Theory of Discrete-Time Optimal Control

The optimal control theory was established around 1960s for both continue and discrete time
systems. A big variety of applications of optimal control in different technical areas were
reported, particularly in the area of space technology, robotics and transportation.

2.5.1 Problem Formulation

The discrete-time problem formulation uses the following cost criterion for minimization:

J = θ[x(K)] +
K−1∑
k=0

ϕ[x(k),u(k), k] (2.1)

subject to the constraints:

x(k + 1) = f [x(k),u(k), k], k = 0, ..., K − 1 (2.2)

x(0) = x0 (2.3)

h[x(k),u(k), k] ≤ 0, k = 0, ..., K − 1 (2.4)

and the final condition:
g[x(K)] = 0 (2.5)

Equation 2.2 refers to the state equation discribing the dynamic process, where x ∈Rn is the
system state variable vector, and u ∈Rn is the control variable vector. The f ∈Rn is a twice
continuous differentiable vector function. Furthermore, k is the discrete time index which is
connected with the continuous time with t = kT , where T is the sample time interval, and
K is the fixed time horizon. Equation 2.3 refers to the initial state, while equation 2.4 refers
to inequality constraints, where h, ϕ and θ ∈ Rq are twice continuous differentiable functions.
Last but not least, the final condition may be free or may be required to satisfy equation 2.5,
where g ∈ Rl, l ≤ n, is a twice continuous differentiable vector function.

To see this problem formulation from a more ”optimization” point of view, it is required to
define the vectors:

X = [x(1)T ...x(K)T ]T (2.6)

U = [u(1)T ...u(K)T ]T (2.7)

The discrete-time optimal control problem may be expressed in a more optimization way as:

Minimize Φ(X,U)

subject to

F (X,U)=0, H(X,U)≤ 0

where Φ is the cost function, H the inequality constraints and F the state equation for all
k ∈ [0, K − 1] and the terminal condition 2.5.
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2.5.2 Optimality Conditions

In order to derive the optimality conditions, the Lagrangian Function for this problem is con-
structed:

L[x(k),u(k),λ(k),µ(k),v, k] = θ[x(K)] +
K−1∑
k=0

ϕ[x(k),u(k), k]+

K−1∑
k=0

λ(k + 1)T [f [x(k),u(k), k] − x(k + 1)] + µ(k)Th[x(k),u(k), k] + vTg[x(K)] (2.8)

The Lagrangian Function consists of the cost function 2.1, the state equations 2.2 multiplied by
the Lagrange multipliers, λ(k+1) ∈ Rn, the inequalities 2.4 multiplied by the Kuhn-Tucker
multipliers, µ(k) ∈ Rq and the final condition 2.5 multiplied by the v ∈ Rn multipliers.

In more comprehensive form, equation 2.8 can be written:

L[x(k),u(k),λ(k),µ(k),v, k] = Φ(X,U) + ΛTF (X,U) + MTH(X,U) (2.9)

Applying the necessary conditions of optimality:

∂L

∂X
= 0 (2.10a)

∂L

∂U
= 0 (2.10b)

∂L

∂Λ
= 0 (2.10c)

H(X,U ) ≤ 0 (2.10d)

HTM = 0 (2.10e)

M ≥ 0 (2.10f)

derive the necessary conditions of optimality for the discrete-time optimal control problem.
These conditions are usually expressed in terms of the -extended- Hamiltonian Function as
it follows:

Ĥ[x(k),u(k),λ(k),µ(k), k] = ϕ[x(k),u(k), k]+λ(k+1)Tf [x(k),u(k), k]+µ(k)Th[x(k),u(k), k]
(2.11)

Then the necessary conditions of optimality for the optimal control problem are (notation
xy = ∂x/∂y):
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x(k + 1) =
∂Ĥ

∂λ(k + 1)
= f [x(k),u(k), k] (2.12a)

λ(k) =
∂Ĥ

∂x(k)
= ϕx(k) + fT

x(k)λ(k + 1) + hT
x(k)µ(k) (2.12b)

∂Ĥ

∂u(k)
= ϕu(k) + fT

u(k)λ(k + 1) + hT
u(k)µ(k) = 0 (2.12c)

µ(k)Th[x(k),u(k), k] = 0 (2.12d)

µ ≥ 0 (2.12e)

h[x(k),u(k), k] ≤ 0 (2.12f)

In addition, the boundary and transversality conditions must be satisfied:

x(0) = x0 (2.13)

g[x(K)] = 0 (2.14)

λ(K) = θx(K) + gT
x(K)v (2.15)

Equations 2.12a and 2.12b are called the state and costate difference equations respectively,
and together consist the system of canonical difference equations of the problem.

2.5.3 State-Dependent Control Bounds

The state-dependent control bounds are of the form:

umin(x(k), k) ≤ u(k) ≤ umax(x(k), k) (2.16)

where umin(x(k), k) and umax(x(k), k) are twice continuously differentiable functions. The
equations in the form of 2.4 may be reduced to 2.16 if the state equation is of the form of 2.2.
By replacing the x from the state equation in the inequality constraint and by resolving for u(k),
if possible, is obtaining the state-dependent control bound. However, the state dependence of
the bounds, needs some further measures in order to guarantee fulfillment of the necessary
optimality conditions. By writing the equation 2.16 as:

h[x(k),u(k), k] = [u(k) − umax(x(k), k)][u(k) − umin(x(k), k)] ≤ 0 (2.17)

occurs the following two equations:
∂h

∂x
̸= 0 (2.18)

∂h

∂u(k)
= 2u(k) − umax(x(k), k) − umin(x(k), k) (2.19)
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PATH PLANNING FOR CAVS

Chapter 3 presents the problem formulation with all the constraints, the objective function and
the solution of the OCP. The paragraph 3.2 describes the lateral positioning strategy that is
used in the problem, while the paragraph 3.3 represents the Optimal Control Problem, as well
as, the solution.

3.1 Problem formulation

3.1.1 Kinematics and Constraints

This thesis is based on a work by [13], which develops a nonlinear Optimal Control Problem
(OCP) with state-dependent constraints in a lane-free environment. At this point, it will be
presented from the ground up the methodology, as well as, the further extensions that are took
place in this thesis.

The problem consists of a dynamic model with an objective function that needs to be minimized
subject to some constraints, in order to achieve some specific features like to move smooth in
a lane-free environment without collisions. Each vehicle is described by four equations, two
in the longitudinal direction and two in the lateral direction. The equations are called state
equations and occur from the laws of kinematics. Firstly, the equations will be written with
variables according to classical physics and then will be replaced by other variables in order
to seem like an optimization problem. Considering a 2-D plane as well as, discrete time, the
following equations are obtained:

Sy = S0y + uyt +
1

2
t2ay (3.1)

uy = u0y + ayt (3.2)

Sx = S0x + uxt +
1

2
t2ax (3.3)

ux = u0x + axt (3.4)
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The equations 3.1-3.2 refer to the lateral direction, while the 3.3-3.4 refer to the longitudinal.
The state equations in optimization form for the qth vehicle are the following:

xq
1(k + 1) = xq

1(k) + Txq
3(k) +

1

2
T 2uq

1(k) (3.5a)

xq
3(k + 1) = xq

3(k) + Tuq
1(k) (3.5b)

xq
2(k + 1) = xq

2(k) + Txq
4(k) +

1

2
T 2uq

2(k) (3.5c)

xq
4(k + 1) = xq

4(k) + Tuq
2(k) (3.5d)

According to the state equation 3.5, the state variables xq
1, x

q
2, x

q
3, x

q
4, represent the longitudinal

position, the lateral position, the longitudinal speed and the lateral speed, respectively, while
the control inputs uq

1, u
q
2 correspond to the longitudinal and lateral accelerations, respectively.

Variable T is the time step, which relates with the time through t = kT , where k is the discrete-
time index. Figure 3.1 displays the variables of a vehicle in the 2-D plane. For each vehicle, at
every time horizon, a path generation is required. The path depends on future paths of near
vehicles, and this is feasible by the condition, that vehicles communicate among each other via
V2V communications.

Figure 3.1: Kinematics

The constraints of this problem are about preventing negative longitudinal speeds, avoiding
collisions in both directions, and preventing road departures. These constraints are given as
state-dependent equation in an inequality form on accelerations.

The general form for the qth constraint in the longitudinal direction is given by the following
equation:

uq
min1(k) ≤ uq

1(k) ≤ uq
max1(k) (3.6)

For the lower limit, it is assumed that, the longitudinal speed is non-negative in the time k+ 1,
i.e. xq

3(k + 1) ≥ 0. By replacing the equation 3.5d in 3.6, occurs the following equation:

uq
1(k) ≥ − 1

T
xq
3(k) (3.7)
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and hence the state-dependent lower limit is : U q
min1(k) = 1

T
xq
3(k). However, due to con-

strained deceleration capabilities of the vehicle, a constant lower limit is also assumed: U q
min1.

Consequently, the lower limit might takes values in:

uq
min1(k) = max [U q

min1(k), U q
min1] (3.8)

With respect to the upper limit for the longitudinal control bound, a constant upper bound
U q
max1 is defined, due to the constrained acceleration capabilities of the vehicle. On the other

hand, the state-dependent constraint for the upper limit is used only in seldom situations, which
are about when the OCP returns a collision. If a collision is detected, then the state-depend
bound activates. Therefore, a longitudinal position limit is defined, to avoid a crash with the
in front vehicle, i.e, the ego vehicle must not cross this limit at k+2 time step. The position
limit x̂q

1 has the same meaning as in equation 3.5, and can be written:

x̂q
1(k + 1) = x̂q

1(k) + T x̂q
3 +

1

2
T 2ûq

1 (3.9a)

x̂q
3(k + 1) = x̂q

3 + T ûq
1(k) (3.9b)

Hence, the condition of non-collision is given by the following equation:

xq
1(k + 2) ≤ x̂q

1(k + 2) (3.10)

If the constraint 3.10 is activated, then ego vehicle should have its longitudinal speed equals to
the moving boundary:

xq
3(k + 2) = x̂q

3(k + 2) (3.11)

By replacing in the 3.5a-3.5b and 3.9, where k = k + 2, we obtain:

xq
1(k + 2) = xq

1(k + 1) + Txq
3(k + 1) +

1

2
T 2uq

1(k + 1) (3.12)

x̂q
1(k + 2) = x̂q

1(k + 1) + T x̂q
3(k + 1) +

1

2
T 2ûq

1(k1 + 1) (3.13)

Substituting equations 3.12 and 3.13, we have the following rearrangements:

0 = xq
1(k + 1) + Txq

3(k + 1) +
1

2
T 2uq

1(k + 1) − x̂q
1(k + 1) − T x̂q

3(k + 1) − 1

2
T 2ûq

1(k1) (3.14)

By replacing, where xq
1(k+ 1) and x̂q

1(k+ 1), their formula from the state equation respectively,
the 3.14 can be reduced in:

0 = xq
1(k)− x̂q

1(k) + 2T [xq
3(k)− x̂q

3(k)] +
3

2
T 2[uq

1(k)− ûq
1(k)] +

1

2
T 2[uq

1(k+ 1)− ûq
1(k+ 1)] (3.15)

Finally, by using the equation 3.11 and resolving by uq
1(k) occurs:

uq
1(k) ≤ − 1

T 2
[xq

1(k) − ˆxq
1(k)] − 3

2T
[x13

q(k) − ˆxq
3(k)] + ˆuq

1(k) (3.16)

16



CHAPTER 3. PATH PLANNING FOR CAVS

The right hand of the equation 3.16 can be considered as a dead beat controller, which can lead
the vehicle in exactly two time steps to reach the moving boundaries. In order to avoid this
situation, the magnitude of the longitudinal acceleration can be chosen properly by some feed-
back gain, and then the 3.16 can be replaced by the maximum control input in the longitudinal
direction:

uq
max1(k) = −Klong1e

q
1(k) −Klong2e

q
2(k) + ˆuq

1(k) (3.17)

where, Klong1 ∈ (0, T
2

2
], Klong2 ∈ (0, 3

2T
] and eq1, e

q
2 are the tracking errors.

The gain values of Klong1 and Klong2 must be chosen, to result in aperiodic tracking, when the
limit is active. By using the 3.5a, 3.5c and 3.17, and after some arraignments, occurs in a
matrix form the following:

[
eq1(k + 1)
eq2(k + 1)

]
=

[
1 − 1

2
T 2Klong1 T − 1

2
T 2Klong2

TKlong1 1 − TKlong2

] [
eq1(k)
eq2(k)

]
(3.18)

The roots of the characteristic equation should be in a unit circle and also be non-negative
real, in order to have stability and aperiodic behavior, respectively. So, we choose Klong2 =
2
√

Klong1 − Klong1T/2, for keeping the design procedure simple, and for letting the roots be
non-negative and identical.

To sum up, the upper limit can take two values either uq
max1(k) = Umax1 or uq

max1(k) = Umax1(k)
for normal or collision situations, respectively.

According to the lateral constraints, the vehicle should stay within the lateral road boundaries or
drive on a road boundary. Moreover, an imaginary boundary is defined, as for the longitudinal
direction, in order to avoid collision in the lateral direction. Firstly, the ego vehicle should
stay within the road boundaries in the k+2 time step. The k+2 time step is used because the
acceleration becomes smoother, when we examine its behavior two time steps in front. So, the
lateral position is bounded from equation 3.19, where x̃q

2 refers to the half of the vehicle’s width
(Wv/2) and the x̂q

2 refers to the road width minus half of the ego vehicle’s width (Wr −Wv/2).

x̃q
2(k + 2) ≤ xq

2(k + 2) ≤ x̂q
2(k + 2) (3.19)

If the ego vehicle cross and stay on the left or on the right side of the road boundary, then the
lateral speed of the ego must be set equal to zero i.e. xq

4(k+2) = 0, and from the state equation
derives that xq

4(k + 1) + Tuq
2(k + 1) = 0. By replacing in 3.5c and 3.5d where k = k + 1, and

after some rearrangements, we obtain:

xq
2(k+1) = xq

2(k)+Txq
4(k)+

1

2
T 2uq

2(k) → xq
2(k+2) = xq

2(k+1)+Txq
4(k+1)+

1

2
T 2uq

2(k+1) (3.20)

xq
4(k + 1) = xq

4(k) + Tuq
2(k) → xq

4(k + 2) = xq
4(k + 1) + Tuq

2(k + 1) = 0 (3.21)

In 3.20 by replacing the xq
2(k + 1) with the state equation occurs:

xq
2(k + 2) = xq

2(k) + 2Txq
4(k) +

3

2
T 2uq

2(k) +
1

2
T 2uq

2(k + 1) (3.22)

17



CHAPTER 3. PATH PLANNING FOR CAVS

In the equation 3.22 by replacing the uq
2(k + 1) with the equation 3.21 derives that:

xq
2(k + 2) = xq

2(k) +
3

2
Txq

4(k)T 2uq
2(k) (3.23)

Finally, by replacing the above equation in the inequality 3.19, we obtain the state-dependent
constraint:

− 1

T 2
[xq

2(k) − x̃q
2(k + 2)] − 3

2T
xq
4(k) ≤ uq

2(k) ≤ − 1

T 2
[xq

2(k) − x̂q
2(k + 2)] − 3

2T
xq
4(k) (3.24)

Similar to the longitudinal direction, if 3.24 is considered as equality, then works like a dead-
beat controller and can lead the ego vehicle in exactly two time steps to the road boundary in
the lateral direction. Moreover, the magnitudes resulting from the lateral accelerations, may
cause passenger discomfort from high values. For this reason, by choosing the appropriate gains
i.e., Klat2 = 2

√
Klat1 −Klat1T/2, the lateral ”controller” remain smoother and get the vehicle

asymptotically in the road boundaries, and is given by the following equation:

U q
min2(x2(k), xq

4(k)) = −Klat1[x
q
2(k) − x̃q

2(k)] −Klat2x
q
4(k) (3.25a)

U q
max2(x

q
2(k), xq

4(k)) = −Klat1[x
q
2(k) − x̂q

2(k)] −Klat2x
q
4(k) (3.25b)

where Klat1 ∈ (0, 1
T 2 ] and Klat2 ∈ (0, 3

2T
].

Hence, equation 3.25 can be used either for staying in the road boundaries or in emergency
situations, where the ego vehicle and an obstacle is preventing to have a lateral crash.

As before, for consistency of notion it defined the lower and the upper limits as: uq
min2(k) =

U q
min2(k) and uq

max2(k) = U q
max2(k).

To sum up, the longitudinal and the lateral control bounds as the shown in 3.8, 3.17 and 3.25
can be expressed by the following state-dependent constraints:

hq
1 = [uq

1(k) − uq
max1(k)][uq

1(k) − uq
min1(k)] ≤ 0 (3.26a)

hq
2 = [uq

2(k) − uq
max2(k)][uq

2(k) − uq
min2(k)] ≤ 0 (3.26b)
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3.1.2 Objective Function

The objective function [13] that needs minimization, as showed in figure 3.2, is composed of
five sub-objective functions regarding the fuel consumption and the passenger comfort, reaching
desired speeds, the obstacle avoidance and the coupling of longitudinal and lateral speeds.

Figure 3.2: Objective function components

Fuel Consumption and Passenger Comfort

The first sub-objective function refers to fuel consumption and passenger comfort and it is given
by equation 3.27. The fuel consumption is reduced only if the acceleration in the longitudinal
direction become less severe. It has been proven that a quadratic term in each lateral (uq

2(k))2

and longitudinal (uq
1(k))2 direction is an excellent choice for minimizing fuel consumption,

something that leads to a smoother acceleration, which benefits to passenger comfort [32].

(uq
1(k))2 + (uq

2(k))2 (3.27)

Desired Speeds

The second sub-objective function refers to desired speeds and is given by equation 3.28. The
vehicles have a pre-specified desired speed on both longitudinal and lateral directions and try
to achieve this by minimizing the quadratic terms (xq

3(k)−uq
d1(k))2 and (xq

4(k)−uq
d2(k))2. The

uq
di with i=1,2, is the desired speed. In the work so far, the longitudinal desired speed has a

positive value, while the lateral desired speed equals to zero. In the current diploma thesis,
it will be considered that the lateral desired speed has a non-zero value. Of course,
the vehicle’s ability to advance depends on how close can drive to the longitudinal desired speed
as well the traffic conditions around it.

(xq
3(k) − uq

d1(k))2 + (xq
4(k) − uq

d2(k))2 (3.28)
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Avoidance of Obstacles

The third sub-objective function refers to the avoidance of obstacles for safety reasons. An
interaction zone is defined, and all vehicles which are inside this zone are considered as obstacles.
The length of the interaction zone in both directions upstream and downstream is same and
equal to the product of the longitudinal desired speed times the duration of the planning horizon.
In the lane-based model, the constant time-gap (CTG) is used for keeping safe distances among
the vehicles, using a linear function of the follower’s speed multiplied by a coefficient, called
time gap. For this work, an imaginary, and symmetric, in both directions longitudinal and
lateral, ellipsoid hemisphere is considered around the obstacles. The ellipsoid’s general form is
shown in equation 3.29 and its role is to repel the vehicle to located inside the ellipsoid. Time
gap parameters (ωx1, ωx2), the position and the speed of the ith obstacle among n obstacles in
both directions are considered, respectively.(

x1

long

)P1

+

(
x2

width

)P2

(3.29)

Longitudinal Direction

Begging with defining the length and the center of the ellipsoid in the longitudinal direction,
the dimensions of both vehicles and obstacles should be covered by the ellipsoid. We define the
augmented total length as Li = µx(le + loi), where le and loi are the length of the ego vehicle
and the obstacle, respectively, and µx is a coefficient. Furthermore, is considered the following
two-way function, which implements practically the CTG.

Safety Gap =

{
ωx1x

q
3, if the ego is behind the obstacle

ωx1oi3, if the ego is in front of the obstacle
(3.30)

By positioning the center in the longitudinal direction, it is observed that, it depends on the
speed difference of the ego vehicle and the obstacle. The center of the ellipsoid coincides with
the center of the obstacle if the two vehicles has the same speed but, it is shifted longitudinally
to cover the previous safety gap requirements, when the ego and the obstacle have different
speeds. So, for the ellipsoid, the longitudinal axis is set and the longitudinal center is position
as following respectively:

sd1 = Li + ωx1x
q
3 + ωx1oi3 (3.31)

δoi = oi1 −
ωx1(x

q
3 − oi3)

2
(3.32)

Lateral Direction

In the lateral direction, there is a problem only when the vehicles approaching each other
laterally. In order to avoid the collision in the lateral direction, a safety gap towards this
direction is set as it shown in the following equation:

Safety Gap =

{
ωx2|xq

4 − oi4|, if the vehicles approach each other
0, otherwise

(3.33)
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In the lateral direction the midpoint of the ellipsis coincides with the center of the obstacle,
however the positioning of the center in the lateral direction should be defined, accounting the
mentioned features, as:

dd2 = Wi + ωx2[tanh(oi2 − xq
2)(x

q
4 − oi4) +

√
[tanh(oi2 − xq

2)(x
q
4 − oi4)]2 + ϵw

]
(3.34)

where Wi = µy(we + woi) with the ww and woi being the widths of ego vehicles and obstacles,
ϵw being a small number, and µy being a coefficient -greater than 1- which ensures that the
corner of the obstacle are covered.

The aim of the ellipsoid function is to penalize the approach among the vehicles, and to act as
a crash avoidance term in the objective function. Moreover, the ellipsoid function should fulfill
two more important requirements. Firstly, the form of the ellipsoid should covers the corners
of the obstacle and be sufficient curvy in order to let the fast ego vehicles to slide around the
slower obstacles in front of them. Parallel, the ellipsoid in 3-D plane should be steep in order
its gradient be sufficient far the zero. Regarding this additional requirements the form of the
ellipsoid is:

ci(x,oi) =

{
1 − tanh

[(
xq
1 − δo1
0.5d1

)P2
(
xq
2 − oi2
0.5d2

)P2
]}

+

{
1[(

xq
1−δo1
0.25d1

)P3

+

(
xq
2−oi2
0.25d2

)P4
]P5

+ 1

}

(3.35)

The first term of the above equation fulfills the first additional criterion, while the second term
fulfills the second additional criterion, respectively. Moreover, the ellipsis takes values in the
interval of [0, 1] and its general form for all obstacles is:

n∑
i=1

[ci(x, oi)] (3.36)

Coupling of Longitudinal and Lateral Speeds

The fourth sub-objective function refers to the coupling of longitudinal and lateral speeds and
is given by equation 3.37. This equation is used in cases like low longitudinal speeds, where the
model of equations of motion could lead to unrealistic and infeasible maneuvers, e.g moving
only in the lateral direction.

fc =

{ (βx3(k)q − xq
4(k))2, xq

4(k) > βxq
3(k)

(βxq
3(k) + xq

4(k))2, xq
4(k) < −βxq

3(k)
0 otherwise

(3.37)

Deviation of Longitudinal Acceleration Between Planning Horizon

The fifth sub-objective function refers to the deviation of longitudinal acceleration between
planning horizon and is given by equation 3.38. Each finite time planning horizon can start
with any acceleration. This could results in discontinuities of the acceleration between the
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planning horizons, due to the difference of the last applied and first applied acceleration in
the longitudinal direction. These discontinuities can be minimized by penalizing the deviation
between the starting acceleration uq

1(0) of a planning horizon and the final value of acceleration
of the previous planning horizon uq

1prev(K − 1).

f q
d =

[
uq
1(0) − uq

1prev(K − 1)
]2

(3.38)
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3.2 Lateral positioning strategy (LPS)

In this section, a lateral positioning strategy (LPS) is proposed for reaching the vehicle’s desired
lateral position according to its desired longitudinal speed, dependent on the penetration rate of
each type of vehicles. This strategy aims to improve the traffic flow, by distributing the vehicles
within the road according to their desired longitudinal speeds, under the premise ”faster vehicles
move farther left” and vice versa. In the research done so far by [13], the movement strategy
in the lateral direction is using a desired lateral speed that is set to zero. The main idea of the
new LPS is shown in figure 3.3.

Figure 3.3: Basic idea

Continuous Distribution

The proposed methodology can be applied for both continuous and discrete distributions of the
longitudinal desired speed. At this point the continuous distribution analysis will be presented.
Firstly, the longitudinal desired speeds follow any distribution with a probability density func-
tion (f). The cumulative distribution function (CDF) of a random variable X, at point x, is
the probability (in our case the percentage) that X will take a value less than or equal to that
point and is given by the following equation:

F (x) =

∫ x

−∞
f(t)dt (3.39)

Considering a penetration rate (pri) of each type (i) of vehicles, we can calculate the desired
position as a percentage (”new variable”) of the available lateral space.

”new variable” =
∑
i

priF (xq
3des) (3.40)

where xq
3des is the desired longitudinal speed of the qth vehicle that needs to be mapped into

a lateral desired position. Formula 3.40 finds the percentage of the road in which a vehicle
has a longitudinal desired speed greater than all the vehicles below it. By multiplying this
percentage with the width of the road that a vehicle is allowed to move, the lateral desired
position is found.
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Implementation

Initially, a vehicle is placed randomly within the road and is allowed to move laterally within
the range of [Wv

2
,Wr − Wv

2
] resulting from the geometry shown in the figure 3.4, where Wv is

the width of the vehicle, while the Wr is the width of the road.

Figure 3.4: Lateral road boundaries

In our case, where two types of vehicles are used, trucks and regular cars, the penetration rate
of each type is a and 1− a, respectively. The desired longitudinal speed ranges are overlapping
and equal to [v1, v2] and [v3, v4] respectively. Also, the desired longitudinal speed is assigned
with a uniform distribution and its CDF is given by the following equation:

F (xq
3des) =

{ 0, xq
3des < vi

xq
3des−vi
vj−vi

, vi ≤ xq
3des < vj

1, xq
3des ≥ vj

(3.41)

where vi and vj with i ̸= j are the maximum and the minimum values of the desired longitudinal
speed.

By combing the equation 3.40 with 3.41, equation 3.42 is obtained, that can map the longitu-
dinal desired speed (xq

3des) that is set to [vi, vj] m/s to a lateral desired position (xq
2des). Figure

3.5 illustrates the three calculation zones of this function.

xq
2des =

{ a
(xq

3des−v1)

(v2−v1)
(Wr −Wv) + Wv

2
, v1 ≤ xq

3des < v3

(a
(xq

3des−v1)

(v2−v1)
+ (1 − a)

(xq
3des−v3)

(v4−v3)
)(Wr −Wv) + Wv

2
, v3 ≤ xq

3des < v2

(a + (1 − a)
(xq

3des−v3)

(v4−v3)
)(Wr −Wv), v2 ≤ xq

3des ≤ v4

(3.42)
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Figure 3.5: Graphical representation of equation 3.42

For our case, if a is equal to 0, i.e. the penetration rate for cars is equal to 1, and that means
that only one type of a vehicle is used, then equation 3.42 is transformed into the following:

xq
2des =

(
Wr −Wv

)(
xq
3des − v3
v4 − v3

)
+

Wv

2
, ∀xq

3des ∈ [v3, v4] (3.43)

as [v3, v4] → [Wv

2
,Wr − Wv

2
].

Moreover, after the lateral desired position’s calculation, a lateral desired speed that needs to be
applied for the vehicle to lead it to its desired lateral position in a specified time (S) is derived
by the equation of motion in the lateral direction, and is given by the following equation:

xq
4des =

xq
2des − xq

2(0)

S
(3.44)

Figure 3.6, illustrates this new strategy. The vehicle is placed in its initial position xq
2 and tries

to reach its desired position xq
2des in exactly S sec, by applying the constant lateral speed xq

4des.

Figure 3.6: lateral positioning strategy
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Example

Assuming two types of vehicles with penetration rate 10% and 90% respectively, we choose a
vehicle with width Wv = 1.6m. A road with width Wr = 10.2m is considered, and the lateral
desired position range derives to be equal to [0.8,9.4]. The longitudinal speed range for the first
type of vehicles is selected to be [20, 27] , while for the second is selected to be equal to [23, 35].
Also, the longitudinal desired speed is considered to be equal to 25 m/s. It is very clear, that
the xq

3des = 25 is in the second zone, so, the second branch of equation 3.42 is used, and the
desired lateral position is:

xq
2des = (0.1

25 − 20

27 − 20
+ 0.9

35 − 23

35 − 23
)(10.2 − 1.6) + 0.8 = 2.70 (3.45)

This value of the lateral desired position is used in equation 3.44 in order to find the lateral
desired speed, assuming that the achieved position and the time S are known.

Discrete Distribution

Up to this point, the LPS has been explained for continuous distributions, however this strategy
can be implemented also with a discrete distributions of the longitudinal desired speeds i.e.,
{v1, ..., vn} with respective probabilities {p1, ..., pn}. In order to calculate the lateral desired
position, the allowable width of the road (W ), i.e., W = Wr −Wv, needs to be spilt in corre-
sponding parts {w1, ..., wn}, where wi = pi×W and hence

∑
i wi = W . Therefore, each vehicle

with longitudinal desired speed equal to vi can be assigned in the wi part of the road, in a
homogeneously random way.

Example

We assume that we have a set with three different longitudinal desired speeds i.e. {25, 30, 35}
and some probabilities {0.2, 0.6, 0.2} respectively. Then vehicles with longitudinal desired speed
equal to 25 can be distributed randomly in the 0.2W part of the road, vehicles with speed equal
to 30 can be distributed randomly in the 0.6W part of the road, and the rest vehicles to the
rest of the road. Figure 3.7 shows the zones that the vehicles can be distributed according to
their longitudinal desired speeds.

Figure 3.7: Graphical representation of the discrete distribution of the vehicles
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3.3 Optimal Control Problem Formulation

According to section 2.5 the optimal path planning problem could be formulated as an optimal
control problem (OCP). The objective function that needs minimization, can be written in the
OCP form as:

J =
K−1∑
k=0

{
w1(u

q
1(k))2 + w2(u

q
2(k))2 + w3(x

q
3(k) − uq

d1(k))2 + w4(x
q
4(k) − xq

4des(k))2

+ w5

n∑
i=1

[ci(x,oi)] + w6f
q
c

}
+ w7f

q
d (3.46)

The difference from equation 2.1 is that equation 3.41 has not the term referring to the last
step and it is independent from k. The equality constraints refer to the state equation 3.5,
while the inequality constraints refers to equation 3.26.

The Hamiltonian function of this problem is defined as:

Ĥ[x(k),u(k),λ(k),µ(k)] = Φ[x(k),u(k)] + λ(k + 1)Tf [x(k),u(k)] + µ(k)Th[x(k),u(k)]
(3.47)

Based on this, the necessary conditions of optimality 2.12 are satisfied. Finnaly, the boundary
conditions are given by:

x(0) = x0 (3.48)

λ(K) = 0 (3.49)

3.3.1 Solution

A Feasible Direction Algorithm (FDA) has been designed and applied for the solution of the
OCP. The FDA for the discrete-time optimal control problems is practically an iterative al-
gorithm, which attempts to find a local minimum in the mK-dimensional space of control
variables. The OCP can be mapped in a Nonlinear Programming (NLP) problem in the re-
duced space of control variables, due to the explicit structure of the state equations, as well as,
takes advantage of the necessary conditions of optimality. Moreover, FDA exploits the fact that
g(k) = [∂f/∂u(k)]Tλ(k + 1) + ∂Φ/∂u(k) equals to reduced gradient. The multipliers of the
inequality constraints that define bounds can be calculated by 2.12c. Figure 3.8 (a), displays
the flow diagram of the FDA.

The FDA splits into four steps. Firstly, an initial guess for the control variables -initial
trajectory- is required to begin the algorithm. Afterwards, the state variables, the Lagrange
multipliers, the Kuhn-Tucker multipliers, and the reduced gradient are calculated in order to
begin the first iteration. As next step, is the specification of a search descent direction. By
using this search direction, the Line Optimization can begin to find the scalar step a, in order to
compute the next state variables, the Lagrange multipliers, the Kuhn-Tucker multipliers, and
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(a) (b)

Figure 3.8: (a) Feasible Direction Algorithm (b) Schematic representation of algorithmic
steps

the reduced gradient. Figure 3.8 (b), illustrates the schematic explanation of the algorithmic
steps in the U-space, so far. Finally, through a convergence criterion is examined, if the reduced
gradient converge to the zero. If it does then the optimal control problem satisfies all the nec-
essary conditions of optimality and the problem is solved. If the criterion is not satisfied, then
the improved control trajectory is the starting point of the next iteration, and the algorithm
attempts to find a new search direction. It is remarkable that, a lot of algorithms can be used
in order to find a search direction, like Polak-Ribiere, but for this problem the Fletcher-Reeves
method was found the most efficient.

3.3.2 Model Predictive Control (MPC)

Model predictive control, also known as moving horizon control, is one of the most popular
advanced control methods. MPC is based on a repeated real-time optimization of a mathemat-
ical system model The key point of MPC is to predict the future behavior of the system over a
finite time horizon and to compute an optimal control input u. The optimal control input can
be found through an optimization procedure, considering some given system constraints, and
a cost function. The optimal control trajectory, can be calculated within a finite rolling hori-
zon. Afterwards, the optimal input trajectory is applied to the system until the next sampling
instant, at which the horizon is shifted and the whole procedure is repeated again [4].

In this problem, the event trigger MPC scheme is applied to all vehicles independently, while
the FDA produces numerical solutions in real time for the optimization part. The time horizon
for this problem is 8 sec, but the application period of the produced trajectories is 4 sec, because
it is required to have smoother accelerations. Therefore, only the half of a trajectory is applied,
while the rest is used as a initial value in the next iteration of FDA. These partial trajectories
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Figure 3.9: Model Predictive Control loop, Source: [4]

are supposed to cover the whole time horizon (8sec) by considering zero accelerations for the
rest 4 sec.

However, there are some cases which the FDA is activated to produce new trajectories for the
following reasons [33]:

• the vehicle has applied the last trajectory

• there is a substantial deviation in the path of the obstacles

• a new obstacle appears in the interaction zone

• a collision has predicted in the returning trajectory

Moreover, due to there is no guarantee to have a collision free trajectory, there have been some
collisions detection and prevention in order to avoid this situations. The checks are about to
detect a collision in both directions, lateral and longitudinal respectively. For the longitudinal
direction, three conditions must be true at the same time in order to detect a crash.

• the initial position of the ego vehicle longitudinally, should be behind the obstacles center:
xq
1(0) < oqi1(0)

• overlap check of length and emergency time gap from front and rear sides: (oqi1(k)−eql /2−
oqil/2 − ωq

1emx
q
3(0)) < xq

1(k) < (oqi1(k) + eql /2 + oqil/2 + ωq
1emx

q
3(0)), where ω1em = 0.5ω1

• lateral overlap checked of the width between the vehicle and the obstacle: (oqi2(k)−eqw/2−
oqw2/2 − ϵ) < xq

2(k) < (oqi2(k) + eqw/2 + oqw/2 + ϵ), where is a small safety margin

If a collision is detected, then the OCP is re-formulated with new upper limit in the state-
dependent bound and tries to follow the obstacle. On the other hand, and similar to the
longitudinal direction, a lateral collision can be detected when the following three conditions
are parallel true:

• lateral alignment check: (oqi1(k) − eql /2 − oqil/2 − ϵ < xq
2(0) < (oqi1(k) + eql /2 + oqil/2 + ϵ
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• longitudinal overlap checked of the width between the vehicle and the obstacle: (oqi2(k)−
eqw/2 − oqw2/2 − ϵ) < xq

1(k) < (oqi2(k) + eqw/2 + oqw/2 + ϵ), where is a small safety margin

• overlap lateral check: (oqi2(k) − eqw/2 − oqw2/2 − ϵ) < xq
2(k) < (oqi2(k) + eqw/2 + oqw/2 + ϵ),

where is a small safety margin

If a collision is detected, then the OCP is re-formulated with new upper and lower limits in the
state-dependent bounds, which restrict the movement laterally within ±0.15 m of the initial
lateral position.

Furthermore, it is required a longitudinal speed adaption due to two issues. Firstly, it might be
a big difference between the longitudinal desired speed V q

desand the initial longitudinal speed,
something that may result in high acceleration values, and thus passenger discomfort. Secondly,
due to high densities, the vehicles tend to move in groups with similar longitudinal speed,
that are enough smaller than the desired one. In order to avoid this two issues, the desired
longitudinal speed in the objective function should be adapted as it follows. According to 3.45,
the adaptive longitudinal speed is limited between the real desired speed and the initial speed
incremented by a positive value V q

incr1. To address the second issue, the adaptive longitudinal
speed is additionally limited by the actual average downstream longitudinal speed incremented
by a positive value Vincr2, if the current density is above a threshold.

uq
d1 =

{
min{xq

3(0) + V q
incr1, V

q
des}, Dd ≤ Dbar

min{xq
3(0) + V q

incr1, Du + Vincr2, V
q
des} otherwise

(3.50)
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CHAPTER 4

SIMULATION SET-UP

Chapter 4 presents the simulation environment and the two main scenarios that used for the
validation and the effectiveness on the proposed strategy. Section 4.1 provides information
about the custom made extension that is used for the simulation environment. Section 4.2.1
describes the first scenario, that uses regular passenger vehicles with different dimensions,
while section 4.2.2 presents, the second scenario, that uses both trucks and vehicles in different
dimensions. In both scenarios, two cases are examined, the Base Case (BC) and the LPS case.

4.1 Simulation Environment

4.1.1 TrafficFluid-Sim

The traffic simulations took place in a lane-free environment, via a custom made extension
called TrafficFluid-Sim [19] for the Simulation of Urban MObility (SUMO) simulator [20].
TrafficFluid-Sim is a microscopic simulator which aims to V2V and/or V2I communication.
The development of this extension was based on the two principles of the novel paradigm called
TrafficFluid. Firstly, the environment where a vehicle can move has no lanes, and hence the
vehicles can be located any where in the road. Secondly, the vehicles use the nudging effect
to other vehicles which are located in their interaction zone. The purpose of this simulator
is to provide the ability to use various -custom made- movement strategies for a lane-free
environment, including the nudging effect. In lane-based SUMO, vehicle strategies are often
organized using two types of models: a ”Car-Following” model and a ”Lane-Changing” model.
These models control the longitudinal speed and lane placement appropriately. The use of
lane-free vehicle controllers with this type of architecture is obviously inappropriate.

Therefore, the extension provides a dynamic library for lane-free vehicles movement control, as
well as, some functionalities between FDA and SUMO, like, the option of setting the lateral
position of the vehicles and their desired speed in the longitudinal direction, via an applica-
tion programming interface (API). Moreover, the dynamic library, allows coding development
in C/C++, which provides the ability of creating a coding structure which contains both a
initialization and finalization functions. The user can develop control strategies through pro-
gramming, and test them via the SUMO. At the end, the API offers a wide range of information
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regarding: the properties of the vehicle, like width or length, or the actual status such as, the
position or the speed, and their own control through their unique ID. Also, the API provides
information about the road, where the vehicles are operating, like the length, and the width.

Figure 4.1: Simulation Environment

4.2 Scenarios

Two traffic scenarios have been tested, with different parameters. For each scenario, two
simulations have been run, one without the LPS (called base case), and one simulation applying
the proposed strategy.

4.2.1 Scenario 1

In this scenario, only regular passenger vehicles with different dimensions are used in a lane-free
unfolded ring road, which has length and width equal to 1 km and 10.2 m respectively. Table
4.1 represents the 8 classes of vehicles based on their the dimensions.

Class I II III VI V VI VII VIII

Length (m) 3.2 3.4 3.9 4.25 4.55 4.6 5.15 5.2
Width (m) 1.6 1.7 1.7 1.8 1.82 1.77 1.84 1.88

Table 4.1: Regular passenger vehicle dimensions

For the vehicles placement, the road is separated into four pseudo-lanes laterally and in n/4
sections longitudinally, where n is the number of vehicles. The four pseudo-lanes with the n/4
sections develop n exactly cells in which the vehicles are placed randomly. Figure 4.2 illustrates
the cells where the vehicles are placed for n = 8.
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Figure 4.2: Initial placement for regular passenger vehicles

The longitudinal desired speed is set in the range of [25, 35] m/s, and is assigned randomly to
each vehicle using a uniform distribution.

Table 4.2 summarizes all the parameters referring to the objective function (3.41), safety pa-
rameters (3.30), crash avoidance and detection (3.45) etc. The parameters have been selected
after various simulations. The big value of w5 = 7.0 refers to the weight of the ellipsoid and
its role is to enforce the obstacle avoidance. The simulation duration is half an hour, while the
flow values are recorded for the last 10 min. Moreover, various densities of vehicles starting
from 25 and end up 350 in different numbers of replications have been used.

w1 w2 w3 w4 w5 w6 w7 ω1 ω2 ϵ1 p1 p1 p2 p3 p4 β Dbar(veh/km) T (ms) K

0.01 0.01 0.03 different values 7.0 0.01 0.2 0.35 0.5 0.1 6 2 2 2 2 0.03 150 250 32

Table 4.2: Parameters set up for scenarios 1 and 2

Base Case (BC)

In the research done so far by [13], the lateral desired speed was set equal to zero. This case is
considered to be the Base Case (BC) for comparison reasons. In the BC the weight parameter
for the lateral desired speed is equal to 0.01. The weight in this case is small because it is
less important to achieve the lateral position, compared to the goal to achieve the desired
longitudinal speed.

LPS Case

The lateral desired position is selected based on the distribution of the longitudinal desired
speed. With regard to LPS, the lateral desired speed is applied to each vehicles in real-time to
reach their desired lateral position. Furthermore, in order to asses the impact of the weight w4,
three different values (w4 = 1, 3, 5) for a specific density, in this case at 150 veh/km, have been
used. After the vehicles have been placed randomly within the road, they must try to reach
their desired longitudinal speed, and their lateral desired position. They start from zero speed
and gradually speed up until the goal is satisfied. Simultaneously, the vehicles try to avoid any
collisions with obstacles within their interaction zone.
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4.2.2 Scenario 2

In this scenario both trucks and regular vehicles with different dimensions are considered, while
the same road parameters are used. The penetration rate for trucks is 10%, while for cars is
the rest (90%). Table 4.3 represents the dimensions of the vehicles, which are divided into 5
classes. The first class describes the trucks (blue), the second and the third describes the big
size cars (red), while the two last class describes the small ones (yellow).

Class I II III VI V

Length (m) 12.5 5.5 5.0 3.5 3.8
Width (m) 2.5 1.90 1.80 1.60 1.70

Table 4.3: Trucks and regular passenger vehicle dimensions

As in the scenario 1, the hypothetical lanes and cells in the road are used again for the initial
placement of the vehicles. However, in this scenario, the trucks are placed randomly in the first
pseudo-lane, while the rest of the vehicles are placed randomly in the other three. Figure 4.3
represents the initial placement of the vehicles, again for n = 8.

Figure 4.3: Initial placement for trucks and regular passenger vehicles

The speed range for the trucks is different from the regular vehicles and equal to [20, 27] m/s,
while the speed range for the rest of the vehicles is equal to [23, 35] m/s. The speed ranges in this
scenario are overlapping, while the longitudinal desired speeds are set to each vehicle according
to the uniform distribution. The speed range separation has been done due to the different
truck’s capabilities in comparison to the regular vehicles. Moreover, a different value of truck
deceleration is used due to the hypothesis that trucks have different deceleration capabilities,
when they carry cargo. In that case, the deceleration decreases. So, the deceleration is picked
to be equal to -4 m/s2.

Table 4.2 for scenario 1 summarizes all the parameters referring to the objective function etc,
also for this scenario. The simulation duration is again half an hour, and the flows achieved are
recorded for the last 10 min. In addition, various densities of vehicles starting from 110 and
end up 240 in different numbers of replications have been used.
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Base Case (BC)

The BC in this scenario is basically the same as in scenario 1, simply adding trucks. The lateral
desired speed is set again equal to zero, and the weight parameter w4 = 0.01, due to the fact
that also in this case, the goal of reaching the lateral desired position is less important than
reaching the lateral desired speed.

LPS Case

Also, the LPS case for this scenario is basically the same as in scenario 1. Beside adding trucks,
smaller weight values for the lateral speeds have been used i.e. w4 = 0.01, 0.1, 1, for a density
at 130 veh/km, as the presence of the trucks increases the possibility of collisions.
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RESULTS

Chapter 5 presents the statistical evaluation, as well as, the results (tables, diagrams) of the
scenarios that were described in Chapter 4. Section 5.1 describes the statistical tools such as
Average-MAE which try to give a mathematical assessment of the applicable lateral desired
position. On the other hand, section 5.2 gives the traffic and the vehicle level results for two
scenarios.

5.1 Statistical Evaluation

The evaluation of the various scenarios is achieved by the calculation of several quantities,
such as, the average flow and some statistical quantities of the error in the lateral direction.
Statistical evaluation helps to confirm weather the proposed methodology is efficient or not.

Calculated quantities

Flow (veh/h)

Flow (q) is the number of vehicles passing a reference point per unit time and it is calculated
over the last 10 min of half an hour simulation, to make sure that the readings are taken after
the traffic reaches some steady state.

Metrics

The average Mean Absolute Error (Average MAE) in the lateral position is calculated between
the actual and desired position for all time steps, and for all vehicles, using the formula below:

Average MAE =

∑n
q=1

[∑tnss
i=1 |xq

2(i)−xq
2des(i)|

tnss

]
n

(5.1)

where tnss is the total number of simulation steps. The standard deviation of MAE (stdvMAE)
is calculated using the following formula:
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stdvMAE =

√√√√√√√
∑n

q=1

[∑tnss
i=1 [|x

q
2(i)−xq

2des(i)|−AverageMAE]2

]
tnss

n
(5.2)

The average Mean Error (Average-ME) in the lateral position is calculated for all time steps
and for all vehicles and it is expressed by the following formula:

Average-ME =

∑n
q=1

[∑tnss
i=1 xq

2(i)−xq
2des(i)

tnss

]
n

(5.3)

5.2 Traffic and Vehicle Level Results

Traffic level simulations are run in a lane-free setup using a custom-made API called as
TrafficFluid-Sim, developed within Simulation of Urban Mobility (SUMO) simulator as de-
scribed in section 4.1. To test the proposed scheme, the approach is applied independently to
all the vehicles driving on on ring-road of length 1 km and width 10.2 m, which is unfolded as
discussed in Chapter 4. To evaluate the scenarios, the average flows achieved during the last
ten minutes of half-hour simulations are measured.

5.2.1 Results for Scenario 1

First, an investigation has been done using three different values for the weight w4 to asses
the impact on the flow and on the metrics, using a density at 150 (veh/km). Tables 5.1 - 5.3
summarize the results of the flows and of the metrics.

Density: 150 (veh/km) BC LPS with weight: 1
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 14745 15732 1.432 2.627
2 14811 15409 1.395 2.688
3 14965 15518 1.389 2.519
4 15051 15494 1.543 2.694
5 14816 15543 1.507 3.065

Average 14878 15539 1.453 2.719
stdv 112.71 106.42

Flow improvement 4.45%

Table 5.1: Flows for the BC, flows and metrics for LPS (weight equal to 1) and density of
150 veh/km
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Density: 150 (veh/km) BC LPS with weight: 3
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 14745 15655 1.085 2.235
2 14811 15481 1.013 2.192
3 14965 15688 1.045 1.911
4 15051 15644 1.078 2.362
5 14816 15442 1.068 1.929

Average 14878 15582 1.058 2.126
stdv 112.71 100.21

Flow improvement 4.73%

Table 5.2: Flows for the BC, flows and metrics for LPS (weight equal to 3) and density of
150 veh/km

Density: 150 (veh/km) BC LPS with weight: 5
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 14745 15722 1.023 2.217
2 14811 15379 0.896 2.193
3 14965 15826 0.893 2.097
4 15051 15597 0.960 2.275
5 14816 15504 0.929 2.078

Average 14878 15606 0.940 2.172
stdv 112.71 157.40

Flow improvement 4.89%

Table 5.3: Flows for the BC, flows and metrics for LPS (weight equal to 5) and density of
150 veh/km

Figures 5.1 and 5.2 give a more comprehensive view of the above tabulated results. As it was
expected, as the weight is increasing the Average-MAE decreases. This is shown in figure 5.2
(a), which illustrates the average-MAE for the 5 replications over the three different weights.
Figure 5.2 (b) illustrates the standard deviation for the three different weights. In all cases, the
flow achieved with the new LPS is improved. The bars in all figures reflect the range of values
over the 5 different replications. Given that the stdv-MAE is smallest for the weight equal to 3
and this gives similar flow improvement, compared to the weight equal to 5, this value (w4 = 3)
was selected for further investigation of this scenario.
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Figure 5.1: Average flow for the BC and the LPS for three different values of the weight

(a) (b)

Figure 5.2: (a) Average-MAE for three different values of the weight (b) stdv-MAE for three
different values of the weight

The average flows for both BC ad LPS cases of this scenario, were measured during the last ten
minutes of a half-hour simulation for different densities and 5 replications per density. Figure 5.3
displays the fundamental diagram i.e. the measured average flows against the various densities
for both, BC and LPS. The bars reflect the range of values over the 5 different replications.
Note that the proposed strategy has virtually no effect for very low and overcritical densities.
For the very low densities there is no improvement of the flow, since, the vehicles have the
appropriate space to overtake the slower vehicles and reach their desired longitudinal speed.

The critical density is reached at 200 (veh/km). For densities below and near to the critical,
the LPS helps the vehicles to move in their speed zone, avoiding the slow ones. For densities
beyond the critical, there is little space for maneuvers, hence the new strategy does not offer any
visible advantage. Finally, for very high densities, a flow decrease is observed when using the
proposed strategy. This is due to a high number of emergency situations, i.e. avoiding collision,
occurring in higher densities, probably due to the additional lateral movements caused by the
new sub-objective. Thus, one may consider applying proposed strategy only around the critical
density, where improvements are pronounced.
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Figure 5.3: Fundamental Diagram

Table 5.4 presents the improvement on average of each flow that occurs from the fundamental
diagram. The best improvement (7.47%) is achieved at the critical density, while the worst
(-26.60%) at the 350 veh/km.

Density (veh/km) 25 50 100 150 200 250 300 350

Flow Improvement -0.04% 0.27% 3.65% 4.73% 7.47% 0.81% 0.47% -26.60%

Table 5.4: Flow Improvement over the BC per density

The Average-ME shows the deviation between the lateral desired position and the achieved posi-
tion of the vehicles. Basically, Average-ME shows if the vehicles are above or below their lateral
desired position. According to figure 5.4, which illustrates the distribution of the Average-ME
(for the average and the range of values achieved over 5 replications), the majority of the vehi-
cles are below their lateral desired position, while τhe bars reflect the range of values over the
5 different replications.

Figure 5.4: Average-ME for weight equal to 3 per density
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Figures 5.5 - 5.7 illustrate some typical plots for the lateral desired speed for the three different
penalties. The green dashed line represents the target lateral position, while the red one,
represents the achieved position of the vehicle at each time step. It is observed that while
the penalty term is increased the deviation between the desired lateral position and achieved
position is getting smaller.

Figure 5.5: Lateral desired position behavior for a vehicle with weight equal to 1

Figure 5.6: Lateral desired position behavior for a vehicle with weight equal to 3

Figure 5.7: Lateral desired position behavior for a vehicle with weight equal to 5

Figures 5.8 and 5.9 display the longitudinal desired speed for a low and a high density respec-
tively. For low densities the longitudinal desired speed converges quickly to the desired due to
the fact that there is enough space for vehicle’s movement. This is why, a vehicle in the density
of 25 veh/km presents its convergence around 100 sec at a desired longitudinal speed equal to
30 m/s (see figure 5.8). On the other hand, in densities especially over critical, the longitudinal
desired speed is not achieved because of the reason that there is no free space enough for the
vehicle’s movement to achieve the desired longitudinal speed, but it converges to a speed below
the desired value. Therefor a vehicle in density of 300 veh/km, can not reach its desired speed,
but it converges after 500 sec to a speed around 11 m/s (see figure 5.9).

Furthermore, there are cases where a vehicle has a constant deviation between its lateral desired
position and its achieved position. Figure 5.10 displays this case, and the constant deviation
is shown in the following time slot approximately: [300, 570]. The simulation has shown that,
this happens due to there is another vehicle next to it, and it does not let the ego to reach its
target position laterally.
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Figure 5.8: Longitudinal speed representation for a in density of 25 with weight equal to 3

Figure 5.9: Longitudinal speed representation for a density of 300 with weight equal to 3

Figure 5.10: Lateral desired position behavior for a vehicle with weight equal to 3

From figure 5.10, it can be observed that between 300 s and 850 s, the vehicle stays on the right
side of the desired lateral position. As a result of this, the desired lateral speed during the same
period is greater than the actual lateral speed. The vice-versa happens during the brief time
where the vehicle goes left of the desired lateral position. The behaviour is in accordance with
equation 3.44, which generate both positive and negative values according to the requirement
and this further observed from figure 5.11.

Figure 5.11: Lateral desired speed behavior for a vehicle with weight equal to 3
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5.2.2 Results for Scenario 2

Also for this scenario, three different values for the weight are used to investigate the impact on
the flow and metrics, using a density at 130 (veh/km). Tables 5.5 - 5.7 summarize the results
of the flows and of the metrics.

Density: 130 (veh/km) BC LPS with weight: 0.01
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 11691 12009 3.262 2.367
2 12088 11853 3.665 2.315
3 11536 11878 3.600 3.064
4 12373 12159 3.367 3.006
5 12002 11934 3.367 3.200

Average 11938 11967 3.294 2.790
stdv 296.12 110.12

Flow improvement 0.24%

Table 5.5: Flows for the BC, flows and metrics for LPS (weight equal to 0.01) and density of
130 veh/km

Density: 130 (veh/km) BC LPS with weight: 0.1
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 11691 12195 2.578 2.494
2 12088 12142 3.017 2.081
3 11536 11670 2.241 2.995
4 12373 12638 2.534 2.323
5 12002 12174 2.657 3.080

Average 11938 12164 2.605 2.605
stdv 296.12 306.68

Flow improvement 1.89%

Table 5.6: Flows for the BC, flows and metrics for LPS (weight equal to 0.1) and density of
130 veh/km
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Density: 130 (veh/km) BC LPS with weight: 1
Replications Flow (veh/km) Average MAE (m) Stdv MAE (m)

1 1 11691 12205 1.630 2.462
2 12088 12469 1.661 1.975
3 11536 12228 1.528 1.838
4 12373 12883 1.611 1.504
5 12002 12429 1.571 1.511

Average 11938 12443 1.600 1.858
stdv 296.12 243.86

Flow improvement 4.23%

Table 5.7: Flows for the BC, flows and metrics for LPS (weight equal to 1) and density of
130 veh/km

Also for this scenario, figures 5.12 and 5.13 give a more comprehensive representation of the
tabulated values. As was expected, when the weight is increasing, the Average-MAE decreases.
This is shown in figure 5.13 (a), which illustrates the average-MAE for the 5 replications over
the three different weights we used. Figure 5.13 (b) illustrates the standard deviation for the
three different weights. In all cases, the flow achieved with the new LPS is improved. The
improvement for this scenario is more significant than in the previous scenario. The bars in all
figures reflect again the range of values over the 5 different replications. Given that the stdv-
MAE is smallest for the weight equal to 1 and this gives the best flow improvement, compared
to other weights, this value (w4 = 1) was selected, for further investigation of this scenario.

Figure 5.12: Average flow for the BC and the LPS for three different values of the weight
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(a) (b)

Figure 5.13: (a) Average-MAE for three different values of the weight (b) stdv-MAE for three
different values of the weight

Similar to the previous scenario, the average flow values for both BC and LPS cases were mea-
sured based on 5 replications per density, during the last ten minutes of a half-hour simulation
for different densities. Figure 5.14 shows the fundamental diagram i.e. the measured average
flows over the the various densities for both BC and LPS. The bars, also in this case, reflect
the range of values for the 5 different replications. Note that the proposed LPS results always
in a flow improvement per density. For densities below the critical the improvement in the flow
is small, but significant, because there is enough space for overtaking slower vehicles.

The critical density is obtained at 180 (veh/km). The new strategy achieved the goal in every
density. It is observed that in every density there is an improvement in the traffic flow. For high
and very high densities, a significant flow increase is observed when using the proposed strategy.
This is due to the appropriate distribution of the vehicles laterally in the road. Another reason
is that in BC, the big trucks may occupy more than half of the road especially when a truck
overtakes another truck. Taking into account that the longitudinal speeds for the trucks are
smaller than the car’s speeds, all the upstream vehicles slow down significantly. On the contrary,
during the simulations with LPS, it was observed that the trucks remained at the bottom of
the road, for the majority of the simulation time, allowing higher traffic flows. Hence, one may
consider that by applying this new strategy for different penetration rates, an improvement is
observed over a wide range of densities.
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Figure 5.14: Fundamental Diagram

Table 5.8 presents the improvement on average of each flow that occurs from the fundamental
diagram. The best improvement (15%) is achieved at density equal to 240 veh/km, while the
worst (2.64%) at the critical density 180 veh/km.

Density (veh/km) 110 130 150 180 200 220 240

Flow Improvement 6.03% 4.23% 4.46% 2.64% 8.92% 11.35% 15%

Table 5.8: Flow Improvement over the BC per density

In this scenario, and according to figure 5.15, which illustrates the distribution of the Average-
ME (for the average and the range of values achieved over 5 different replications), there are
vehicles observed in both below and above their lateral desired position. Furthermore, the bars
reflect the range of values over the 5 different replications.

Figure 5.15: Average-ME for weight equal to 1 per density

Figures 5.16 - 5.18 illustrate some typical plots for the lateral desired position for the three
penalties over the time. The green dashed line represents the lateral desired position, while the
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red, represents the actual lateral position. It is obvious, that while the weight for the lateral
desired speed is increased, then the vehicle is forced to reach and to remain to its target lateral
position. There are time slots in which the target position is achieved exactly, but sometimes
there is a fluctuation around the target position, because the vehicle maneuvers to avoid a
collision or overtake a slower vehicle.

Figure 5.16: Lateral desired position behavior for a vehicle with weight equal to 0.01

Figure 5.17: Lateral desired position behavior for a vehicle with weight equal to 0.1

Figure 5.18: Lateral desired position behavior for a vehicle with weight equal to 1

Again in this scenario, it is confirmed that in lower densities vehicles are converging to their
longitudinal desired speed quickly, while in higher densities they are not. Therefore, a vehicle
in density of 130 veh/km converge to its desired longitudinal speed which is approximately
27 m/s, in around 100 s and this is given in figure 5.19. On the other hand, for over critical
densities, the desired longitudinal speed is not achieved. A vehicle in density of 240 veh/km,
can not reach its target speed, but it converges after 800 sec to a speed around 15m/s (see
figure 5.20).

Also in this scenario, there are cases where a vehicle has a constant deviation between its lateral
desired position and its achieved position. Figure 5.21 displays this case, and the constant
deviation is shown in the following time slots approximately: [50, 680], [920, 1020] and [1220,
1390] in seconds. As it is explained before in scenario 1, another vehicle is next to it, and it
does not let the ego to reach its target position laterally.
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Figure 5.19: Longitudinal speeds representation for a density of 130 with weight equal to 1

Figure 5.20: Longitudinal speeds representation for a density of 240 with weight equal to 1

Figure 5.21: Lateral desired position behavior for a vehicle with weight equal to 1

From figure 5.21, it can be observed that between 50 s and 680 s, the vehicle stays on the right
side of the desired lateral position, as a result of this, the desired lateral speed during the same
period, is greater than the actual lateral speed. The vice-versa happens during the brief time
where the vehicle goes left of the desired lateral position and can be easily seen from figure
5.22.

Figure 5.22: Lateral desired speed behavior for a vehicle with weight equal to 1
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CONCLUSION

The objective of this diploma thesis was the development of an LPS which is based on the
premise ”faster vehicles drive farther left”. In the research done so far, the control strategy
applied by [13] was setting the lateral desired speed equal to zero, to mitigate the unnecessary
lateral movement. On the other hand, in this work, the LPS aims to distribute the vehicles
in speed zones based on their longitudinal desired speed. First, the desired lateral position is
defined linearly, based on the distribution of the longitudinal desired speeds. Afterwards, the
desired lateral speed of each vehicle is calculated and applied in real-time, as it depends on its
actual lateral position.

The main goal of this LPS is to improve the traffic flow for various traffic densities, while avoid-
ing collisions. The proposed strategy was simulated for various densities and sufficient number
of replications, in a lane-free environment using a custom-made extension, namely TrafficFluid-
Sim, which is built for the Simulation of Urban MObility (SUMO) simulator, considering a 1
km ring-road.

For the investigation of the proposed strategy, two main scenarios were considered, one with
only regular passenger vehicles, and one with both trucks and passenger vehicles. A base case
set up in each scenario was considered for comparative analysis. In both scenarios a variety of
densities have been tested, while different values of the weight for the lateral desired speed have
been used. Moreover, several quantities, like the average traffic flow and statistical measures of
the error in the lateral direction, are calculated for the evaluation of this method.

The results for the first scenario have shown, that the proposed LPS improves the traffic flow,
mainly at densities around the critical density (200 veh/km), with the improvement at critical
value reaching 7.47%. In low densities the vehicles have anyhow the essential space to move
and to reach the longitudinal desired speeds, while for densities over the critical the traffic flow
improvement is getting smaller, due to unavailability of enough space for maneuvers.

The results from the second scenario show, that the proposed LPS improves traffic flow in every
density, with the best result of 15% achieved at the density of 240 veh/km. The improvement
is attributed to the fact that the slow moving trucks are confined to the right-most part of
the road, allowing the passenger cars to move with improved average speeds compared to base
case. Whereas, in the base case, the trucks try more frequenty to overtake other slow moving
trucks, and ultimately slow down the upstream passenger vehicles.
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For both scenarios a variety of results in the form of tables and figures are presented for better
illustration. Of course, in both cases, as the weight is increased, the vehicles are getting closer
to their desired lateral position, something that is confirmed also by the statistical tools.
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