
Technical University of Crete
School of Electrical And Computer Engineering

Development of an Autonomous
Hexapod Robot

Dimosthenis Myrkos

Thesis committee
Professor Michail G. Lagoudakis (ECE)

Professor Michalis Zervakis (ECE)
Professor Panagiotis Partsinevelos (MRE)

Chania, July 2022

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://github.com/dmyrkos
https://www.tuc.gr/
https://www.tuc.gr/
https://www.tuc.gr/

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάπτυξη ενός Αυτόνομου

Εξάποδου Ρομπότ

Δημοσθένης Μύρκος

Εξεταστική Επιτροπή

Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)
Καθηγητής Μιχάλης Ζερβάκης (ΗΜΜΥ)

Καθηγητής Παναγιώτης Παρτσινέβελος (ΜΗΧΟΠ)

Χανιά, Ιούλιος 2022

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://github.com/dmyrkos
https://www.tuc.gr/
https://www.tuc.gr/
https://www.tuc.gr/

iii

Abstract

Nowadays, autonomous six-legged robots show great promise for use in appli-
cations, where rough, unstructured terrain has to be traversed. Legged robots
have advanced potential to navigate in complex environments compared with
their wheeled counterparts. The subject of this diploma thesis is the develop-
ment (hardware and software) of an autonomous hexapod (six-legged) robot for
safe navigation and exploration in unknown environments. This thesis presents
the design of the robot, the derivation of the kinematic chain of the joints and
the development of its gait planning algorithm. In particular, the design of the
robot consists of all the necessary components, such as sensors, 3D printing
parts, batteries and the integrated control system. In addition, Simultaneous
Localization and Mapping (SLAM) techniques are used, in order to produce
the map of the unknown environment and determine the location of the robot
within that map. Finally, the autonomous navigation system of the hexapod
robot for its movement in unknown environments is described in detail. The
entire project has been implemented in the Robot Operating System (ROS)
framework and is available as an open source package. The proposed robotic
system has been tested in indoor environments and in real-time conditions.

v

Περίληψη

Στις μέρες μας, τα αυτόνομα εξάποδα ρομπότ έχουν παρουσιάσει μεγάλη πρόοδο
σε εφαρμογές, όπου απαιτείται να διασχίσουν ανώμαλα και ανισόπεδα εδάφη. Τα
αρθρόποδα ρομπότ γενικά υπερτερούν στην πλοήγηση σε ιδιαίτερα πολύπλοκα πε-

ριβάλλοντα σε σύγκριση με τα αντίστοιχα τροχοφόρα ρομπότ. Αντικείμενο της
παρούσας διπλωματικής εργασίας είναι η ανάπτυξη (υλικό και λογισμικό) ενός αυ-
τόνομου εξάποδου ρομπότ για την ασφαλή πλοήγηση και εξερεύνηση άγνωστων

περιβαλλόντων. Η εργασία παρουσιάζει τον σχεδιασμό του ρομπότ, τον υπολο-
γισμό της κινηματικής αλυσίδας των αρθρώσεων και την ανάπτυξη του αλγορίθ-

μου βηματισμού του. Ειδικότερα, ο σχεδιασμός του ρομπότ αποτελείται από όλα
τα απαραίτητα στοιχεία, όπως αισθητήρες, εξαρτήματα τρισδιάστατης εκτύπωσης,
μπαταρίες και το ενσωματωμένο σύστημα ελέγχου. Επιπρόσθετα, γίνεται χρήση
τεχνικών Simultaneous Localization and Mapping (SLAM), προκειμένου να πα-
ραχθεί ο χάρτης του άγνωστου περιβάλλοντος και να προσδιοριστεί η θέση του

ρομπότ μέσα σε αυτόν. Τέλος, περιγράφεται λεπτομερώς το σύστημα αυτόνομης
πλοήγησης του εξάποδου ρομπότ με σκοπό την μετακίνησή του σε άγνωστα περι-

βάλλοντα. Η συνολική εργασία έχει υλοποιηθεί στο πλαίσιο του Robot Operating
System (ROS) και είναι διαθέσιμη ως πακέτο ανοιχτού κώδικα. Το προτεινόμενο
ρομποτικό σύστημα έχει δοκιμαστεί σε εσωτερικά περιβάλλοντα και σε συνθήκες

πραγματικού χρόνου.

vii

Acknowledgements

First of all, I would like to thank my professors Michail Lagoudakis and Pana-
giotis Partsinevelos for their guidance and support throughout this work. My
family, for their constant faith and support. My colleagues and friends in Sense-
Lab and especially, Angelos Antonopoulos for the incredible help that he has
given to me.

ix

Contents

Abstract iii

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xiii

List of Abbreviations xv

1 Introduction 1
1.1 Thesis Contribution . 2
1.2 Thesis Outline . 2

2 Theoretical Background 3
2.1 Robot Operating System . 3

2.1.1 Rviz . 4
2.2 Sensors . 5

2.2.1 LIDAR . 5
2.2.2 Inertia Measurement Unit 6
2.2.3 Ultrasonic Distance Sonar 7

2.3 Localization and Mapping . 8
2.3.1 Robot Localization . 8
2.3.2 Occupancy Grid Mapping 9
2.3.3 Simultaneous Localization and Mapping (SLAM) 10

2.4 Robot Locomotion . 11
2.4.1 Kinematics Analysis . 11

Forward and Inverse Kinematic Analysis of one Leg . . . 12

x

3 Problem Statement 17
3.1 Autonomous Navigation . 17
3.2 Gait management/Locomotion of a Legged Robot 17
3.3 Related Work . 17

4 Approach 19
4.1 Robot Construction / Hexapod 19

4.1.1 Hexapod frame . 19
4.1.2 Embedded System . 20
4.1.3 Servo Drivers and Servos 20
4.1.4 Sensors . 21
4.1.5 Power management . 22
4.1.6 3D printed parts . 23

4.2 ROS coordinate system and tf2 library 25
4.3 Hector SLAM Algorithm . 28
4.4 Navigation . 29

4.4.1 Move Base Package . 30
4.5 Gait models . 32

4.5.1 Wave Gait . 33
4.5.2 Ripple Gait . 33
4.5.3 Tripod Gait . 34

5 Results 37
5.1 Final version of the robot . 37
5.2 Autonomous Navigation Experiments 38

6 Conclusion 43
6.1 Conclusions . 43
6.2 Future Work . 43

6.2.1 Machine Learning Gait Generation 43
6.2.2 Camera approach . 43

References 45

xi

List of Figures

2.1 ROS Communication diagram 4
2.2 ROS Rviz tool . 4
2.3 LiDAR pricipal of distance measure 6
2.4 LiDAR sample scan . 6
2.8 kinematics . 11
2.9 kinematics . 12

3.1 Boston Dynamics SPOT . 18

4.1 lobot-cr6 . 19
4.2 Raspberry Pi 4 . 20
4.3 Hiwonder servoLDX-218 . 20
4.4 Adafruit PCA968 . 21
4.5 SLAMTEC RPLIDAR A1 . 22
4.6 Ultrasonic range module, HC-SR04 22
4.7 BOSCH IMU , BNO055 . 22
4.8 Power Supply and DC-DC converter 23
4.9 3D printed Parts . 23
4.10 block diagram of the hexapod 24
4.11 Complete assembly of the robot 24
4.12 Complete assembly of the robot top view 25
4.13 rviz tf . 26
4.14 Hexapod system Tf tree . 27
4.16 move base package default navigation stack 31
4.17 Recovery Behavior . 31
4.18 navigation stack of the hexapod 32
4.19 Leg positions of the robot . 32
4.20 Diagram of Wave gait foot pattern 33
4.21 Diagram of Ripple gait foot pattern 33
4.22 From top left to right the steps of the ripple gait 34
4.23 Diagram of Tripod gait foot pattern 34
4.24 From top left to right the steps of the tripod gait 35

xii

5.1 final version hexapod robot . 37
5.2 final version hexapod robot static 38
5.3 SenseLab room experiment . 39
5.4 SenseLab room experiment . 39
5.5 Open corridor experiment . 40
5.6 Open corridor experiment with obstacles 40
5.7 Open corridor experiment with obstacles 41
5.8 Open corridor with obstacles Map 41

xiii

List of Tables

2.1 Denavit-Hartenberg parameters of 3 DoF hexapod leg 16

xv

List of Abbreviations

ROS Robot Operating System
IMU Inertia Measurement Unit
LIDAR Laser Imaging Detection And Ranging
KF Kalman Filter
EKF Extended Kalman Filter
SLAM Simultaneous Localization and Mapping
DoF Degrees Of Fredom
RVIZ ROS Visualization

1

Chapter 1

Introduction

Nowadays, a big step has been taken toward the study of legged robots, such as
the study of biped robot, quadruped robot, hexapod robot and octopod robot.
Legged hexapod robots are programmable robots with six legs attached to the
robot body. The legs are controlled with a degree of autonomy, so that the robot
can move within its environment to perform intended tasks. Hexapod robots can
be suitable for terrestrial and space applications and they can include features,
such as omnidirectional motion, variable geometry, good stability and access
to diverse terrain. Hexapod robots can have a wide spread use in exploration
of hostile environments and remote locations. For instance, space or planetary
exploration [1], seabed research [2], nuclear power stations applications [3] and
search and rescue operations [4].

In comparison to tracked and wheeled forms of transport legged locomotion is
not restricted to rough or uneven parts of terrain and is capable of choosing the
best placement for the foothold. Hexapod walking robots also benefit from a
lower impact on the terrain and have greater mobility in natural surroundings.
This type of locomotion with gait planning have the capabilities to climb over
obstacles larger than the equivalent sized wheeled or tracked vehicles.

Despite the above referenced aspects, legged locomotion have many disadvan-
tages such as energy consumption, complex kinematics, dynamic mechanisms
and difficult control algorithms. Due to active suspension of legged systems
which should support legs in continuous matter, the payload of these systems
is considerably lower than other two kinds of locomotion.

Autonomous mobile robots are intelligent machines capable of performing tasks
in the world by themselves, without explicit human control over their move-
ments[5]. They are programmed to act and make decisions based on sensory
feedback of their external and/or internal surroundings.

2 Chapter 1. Introduction

Autonomous navigation has always been an interesting and challenging problem
in robotics. For any mobile robot, the ability to autonomously navigate in
its environment is crucial to complete any kind of task. Being able to avoid
obstacles and/or find a safe route towards the target location in an unknown
environment is critical in many applications.

1.1 Thesis Contribution

This thesis describes the development of a six-legged robot to autonomously
navigate in an unknown environment. Implements different nature inspired
gait algorithms for its locomotion. Utilizes a plethora of sensors which provide
the system with the necessary information of its surrounding world. Incorpo-
rates a navigation system for autonomous transverse in the world. The entire
project has been implemented within the Robot Operating System (ROS) and
is supported for any six legged robot system, as long as proper adjustments and
sensors are acquired.

The proposed approach can be used in a variety of missions such as mapping
an unknown terrain where human intervention can be dangerous.

1.2 Thesis Outline

• Chapter 2 - Theoretical Background: We present all the background
information needed for this thesis.It contains explanation of the kinematic
analysis of the legs. It also contains basic knowledge about robot local-
ization and mapping. Moreover, there will be a sensor model explanation
as well as the usability of the ROS middleware in robotics.

• Chapter 3 - Problem Statement: We reference the basic problems of
the thesis and also similar robotic projects.

• Chapter 4 - Approach: We describe the approach and the steps we
took to accomplish the goal of this thesis. Starting, with the design and
assemble of the robot and finishing with gait algorithm implementation.

• Chapter 5 - Results: We present the results of the project in real world
environments.

• Chapter 6 - Conclusion Conclusions and future plans for extending our
approach are presented.

3

Chapter 2

Theoretical Background

2.1 Robot Operating System

The Robot Operating System (ROS) [6] is an open-source middleware frame-
work for modular use in robot applications. ROS, originally designed and devel-
oped by Willow Garage, is currently maintained by the Open Source Robotics
Foundation. The primary advantage of ROS is that allows multiple devices
to coexist and interacts with each other through a peer-to-peer network. ROS
uses the concepts of nodes, topics, transforms, publishers and subscribers among
many. This is a concept where nodes, which are processes that perform a par-
ticular computation or task, are combined together in a graph like structure.
These nodes talk to each other using message buses which carry messages from
one node to other. Nodes are separate entities and can be combined with
other nodes that subscribe messages from it or publish messages for it. The
publishing and subscribing mechanism are anonymous mechanisms where the
only information needed is the type of message being published or subscribed
without knowing the underlying idea of how those messages are generated or
communicated.

4 Chapter 2. Theoretical Background

Figure 2.1: ROS Communication diagram, source Erick Mejia
Uzeda Github

2.1.1 Rviz

Rviz, abbreviation for ROS visualization, is a 3D visualization tool for ROS
applications. It provides a view for our robot model, capture sensor information
from robot sensors, and replay captured data.Furthermore, it can display data
from camera, lasers and point clouds.Thus, this makes it ideal for representation
of our robot configuration and how it perceives its surroundings.

Figure 2.2: ROS Rviz tool

2.2. Sensors 5

2.2 Sensors

Sensors are essential for the robot to perceive its surroundings navigate with
safety and complete any objectives assigned.

2.2.1 LIDAR

LIDAR, which stands for Light Detection and Ranging primerly used in many
robotic application for navigation obstacle avoidance and general spatial infor-
mation. Lidar is a method in which the system emits a pulsed laser light and
captures the reflected light back to receiver utilizing the principle of time-of-
flight (2.1) in order to give distance measurements. There is a variety of lidar
sensors such as 1D, 2D, 3D.

d =
Speed of light ∗ Time of flight

2
(2.1)

The most common use is the 2D scanning lidar witch utilizes the same technical
concept . The sensor is mounted on a rotary motor making it possible to take
continuous samples as it is rotating. Scanning lidar sensors are also equipped
with rotary encoders to be able to map a laser sample to a rotary angle. By
doing this it is possible to acquire a point cloud of samples represented in the
plane. The angle between two consecutive samples is called azimuth or angular
resolution and can for some lidar sensors be tuned manually by adjusting the
sampling and rotational frequency of the device, as can be seen in equation
(2.2). Furthermore, the term sample will relate to a single point in a point
cloud and a sample frame will refer to a full point cloud.

azimuth =
fsampling

frotation ∗ 360
(2.2)

6 Chapter 2. Theoretical Background

Figure 2.3: LiDAR pricipal of distance measure

Figure 2.4: LiDAR sample scan

2.2.2 Inertia Measurement Unit

The inertial measurement unit (IMU) is an electronic device, a sensor that
measures and reports accelaration,orientation, angular rates and other gravi-
tational forces. It is comprise of three gyroscopes, three accelerometers and
depending of the heading requirement three magnetometers. This is to say, one
per axis for each of the robot axis(roll,pitch,yaw)(2.5).The data measured by
the inertial sensors usually have certain errors. One type of error is offset error,

2.2. Sensors 7

which means that accelerometers and gyroscopes have nonzero outputs even
when they are stationary. In the process of using the IMU, displacement data
is usually needed. Integrating the output of the accelerometer twice can get
linear displacement, and integrating the output of the gyroscope once can get
angular displacement. However, as time goes by, errors will accumulate so that
great errors will be produced. The background noise in the working environ-
ment will also interfere with the measurement results. Therefore, in actual use,
the data output by the IMU must be filtered and corrected, which can usually
be achieved by using a Kalman filter (KF). In fact, in many application fields,
it is difficult to obtain accurate results using the data output by the IMU alone,
so the IMU usually needs to perform data fusion with other sensors to obtain
better results. The KF can be also used for data fusion.

Figure 2.5: BNO055 coordinates system

2.2.3 Ultrasonic Distance Sonar

Another way to detect and avoid obstacles with low cost sensors is with ultra-
sonic distance sonars. The sensor sends an ultrasonic pulse out at 40kHz which
travels the air and if there is an obstacle or object, it will bounce back to the
receiver. By calculating the travel time and the speed of sound, the distance
can be calculated.Ultrasonic sensors are a great solution for the detection of
clear objects. Also, they can detect objects regardless of the color,surface or
material which that makes them quiet reliable.

Distance =
time of flight

speed of sound ∗ 2
(2.3)

8 Chapter 2. Theoretical Background

Figure 2.6: Ultrasonic sensor (hc-sr04)

2.3 Localization and Mapping

2.3.1 Robot Localization

The problem of robot localization consists of answering the question Where am
I? from a robots point of view. This means the robot has to find out is location
relatively to the environment, namely establish the correspondence of its local
coordinate system to the global (map coordinate system), in order to express
the location of any surrounding object or obstacle in relation to it. The general
localization problem has number increasingly difficult problem instances.

• Position tracking: In the position tracking, we assume that the initial
robot pose is known and we solve the localization problem through the
odometry information. By compensating the robot’s motion model uncer-
tainty, we update the local robot pose belied in relation with the initial
pose. Hence, this method rely on the assumption that the robot’s motion
model error is small and can be approximated.

• Global localization: The problem of the robot unawareness of its initial
position in a known map and the need of locating itself in it. The robot
must exploit various observation from its sensors, to infer its location in
the environment and then proceed with the position tracking approach.

2.3. Localization and Mapping 9

• Kidnapped robot problem: An even harder problem to solve is the
kidnapped robot problem, the robot does exactly know where its is local-
ized, but all of sudden it is transferred, or ’kidnapped’ to another location
without the robot being aware of this.The problem for the robot is to
detect that it has been kidnapped and to find out what it is position in
the map.

• Dynamic environments A problem that can be found in the real world
where the environment can contain other moving objects, in this environ-
ments localization is significantly more difficult, since these other objects
might confuse the robot about its location by corrupting the information.

A mobile robot can solve the localization problem by using two different classes
of on-board sensors, proprioceptive sensors and extereoceptive sensors. Pro-
prioceptive sensors, such as encoders or inertial measure units ,measure the
motion of the robot, acquiring data that can be integrated to estimate relative
robot displacement. This method of localization is called odometry or dead
reckoning, and when used alone, the integrated error in global position grows
without bound over time. Extereoceptive sensors, such as laser range scan-
ners or cameras take measurements from the external environment. This data
can be correlated at subsequent robot positions to compute relative pose or
displacement estimates, which can improve and sometimes replace odometry.
Externally sensed data may also be correlated with data from a global map
giving a global position measurement and bounding the overall position error.
If a global map is not initially available , it is possible for the robot to build a
global map with the externally sensed data while using this map to localize this
approach is commonly called Simultaneous Localization and Mapping (SLAM).

2.3.2 Occupancy Grid Mapping

Occupancy Grid Mapping refers to a family of computer algorithms in proba-
bilistic robotics for mobile robots which address the problem of generating maps
from noisy and uncertain sensor measurement data, with the assumption that
the robot pose is known. The basic idea of the occupancy grid is to represent
a map of the environment as an evenly spaced field of uniformly-distributed
binary/ternary variables indicating the status of cells (occupied, free or unde-
tected). Besides, as a practical instrument for environmental understanding, the
occupancy grid map is very useful for integrating different sensor measurements
(radar, LiDAR, vision system) into a unified representation.

10 Chapter 2. Theoretical Background

Figure 2.7: Occupancy grid map in Mineral Resources Engi-
neering building in the Technical University of Crete

2.3.3 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is a process by which a mobile
robot can build a map of an environment and at the same time use this map
to deduce its location. In SLAM, both the trajectory of the platform and
the location of all landmarks are estimated online without the need of any a
priori knowledge of location. The SLAM problem can be define as the problem
of building a map of the environment while simultaneously determining the
robot’s position relative to this map given noisy data.

There are two main forms of SLAM problem , the full SLAM and the online
SLAM which are both of equal practical importance. In particular,

• The full SLAM it involves estimating the posterior over the entire robot
path together with the map

p(Xt,m|Zt, Ut). (2.4)

• The online SLAM seeks to recover the present robot location, instead of
the entire path and can be define via

p(xt,m|Zt, Ut). (2.5)

where xt is the location of the robot and Xt = (x0, x1, x2, ..., xT) the
sequence of locations or path. m refers to the map . Let ut denote the
odometry that characterized the motion between time t−1 and t and Ut =

2.4. Robot Locomotion 11

(u1, u2, u3, ..., uT) the sequence of this. Finally, the Zt = (z1, z2, z3, .., zT)

is the sequence of measurements between features in m and the robot
location xt

2.4 Robot Locomotion

The locomotion of a legged robot generally simulate a human or animal gait
in our case of a hexapod robot is inspired of insects.The first problem we have
to solve is the kinematics formula of each leg and finally the gait algorithm we
have to incorporate. Kinematics is the mathematical process of calculating the
variable joint parameters needed to place the end of a kinematic chain in a given
position and orientation relative to the start of the chain shown in Figure 2.8.
The hexapod robot, which we are working on has 3 Degrees of Freedom (DoF)
for each leg, totally 18 (DoF). Its a biologically inspired design based on spiders
anatomy. Each leg has three servomotors.

Figure 2.8: Inverse Kinematics of 3DoF model

2.4.1 Kinematics Analysis

First of all, we simplify the architecture of the robot in 7 modules, a rectangular
trunk and 6 limps between the trunk and the ground as shown in the Figure
2.9. Two coordinates frames are assigned. The first is (O) on the ground, and
the second on the trunk (O’). Forward motion is considered as in the direction
of X’ .

12 Chapter 2. Theoretical Background

Figure 2.9: Hexapod coordinate frame assignment ,ground
frame (O) and trunk frame (O’)

The main idea of solving inverse kinematics of this robot came from a modular
view of floating trunk and serial kinematics chain. To obtain the kinematic
chain and find out the joint variables, we define a homogeneous transformation
matrix to transform the Leg’s tips from the ground frame to trunk coordinate
frame. This transformation matrix can be written as below:

O′

O T =

[
Rz(θz)Ry(θy)Rx(θx) −OO′

0 1

]
(2.6)

Rz, Ry and Rx are rotational transformation matrices around Z,Y and X re-
spectively and OO’ is the distance from O’ to O. In coordinate frame O’,
Leg1..Legi..Leg6

Forward and Inverse Kinematic Analysis of one Leg

Each leg can be seen as a serial manipulator where its base is fixed on the
trunk and its end point on the ground. For forward kinematic analysis, using
Denavit-Hartenberg parameters of one leg [7][8], we can write transformation
matrix of each joint, based on frames shown in Figure 2.10 and Table 2.1. Three

2.4. Robot Locomotion 13

joints and five frames are defined from the initialized frame to the end point of
the leg. The homogeneous transformation matrices of leg links based on DH
parameters in table one are presented as below:

Figure 2.10: Leg frame points for finding Denavit-Hartenberg
parameters

14 Chapter 2. Theoretical Background

Figure 2.11: 3 DoF hexapod leg link assignment and parame-
ters for inverse kinematic analysis of one leg

0
4Ti =

cos1,2cos1 −sin1,2cos1 −sin1 cos1(l0 + l1cos2 + l2cos2,3

cos1,2sin1 −sin1,2sin1 cos1 sin1(l0 + l1cos2 + l2cos2,3

−sin2,3 −cos2,3 0 −l1sin2 + l2sin2,3

0 0 0 1

 (2.7)

where sin1, sin1,2, sin2,3, cos1, cos1,2, cos2,3 stands for sin θ1, sin (θ1 + θ2),

sin (θ2 + θ3), cos θ1, cos (θ1 + θ2) and cos (θ2 + θ3) respectively. 0
4Ti transforms

points from end point which is the leg’s tip to the base coordinate frame. The
position of the leg tip in X’Y’Z’ coordinate frame can be found using homoge-
neous transformation matrix from base coordinate frame to endpoint coordinate

2.4. Robot Locomotion 15

frame. The reason that O’ is defined adjacent to O is the vertical distance be-
tween the shaft of servomotors 1 and 2.

xtipi
ytipi
ztipi

1

 = 0
4Ti

0

0

0

1

 (2.8)

xtipi = cos θ1i(l0 + l1 cos θ2i + l2 cos(θ2i + θ3i)) (2.9)

ytipi = sin θ1i(l0 + l1 cos θ2i + l2 cos(θ2i + θ3i)) (2.10)

ztipi = −l1 sin θ2i + l2 sin(θ2i + θ3i) (2.11)

where xtipi ,ytipi and ztipi are the leg tip posiotion in O’ and θ1,θ2 and θ3 are the
joint angles. Based on Figure 2.9, Inverse Kinematics equations for one leg can
be written as :

θ1i = arctan 2(ytipi , xtipi) (2.12)

d1i =
√

(xtipi − l0 cos θ1)2 + (ytipi − l0 sin θ1)2 + z2tipi (2.13)

Bi = arccos(
d2i + l21 − l22

2l1di
) (2.14)

θ2i = arcsin(
−ztipi
di

)−Bi (2.15)

C1i = arccos(
li sinBi

l2
) (2.16)

C2i =
π

2
−Bi) (2.17)

16 Chapter 2. Theoretical Background

θ3i = π − C1i − C2i (2.18)

Link ai−1 ai−1 di θi

1 0 0 0 θ1

2 -π/2 l0 0 θ2

3 0 l1 0 θ3

4 0 l2 0 0

Table 2.1: Denavit-Hartenberg parameters of 3 DoF hexapod
leg

17

Chapter 3

Problem Statement

3.1 Autonomous Navigation

In order to achieve complete autonomy we are called to solve two main problems.
The primary problem we have to solve is how the robot need to be able to
construct the map of their surrounding environment and also localize themselves
in it. Secondly it must have the ability to explore unknown terrains while
maintain system stability and dynamically avoids obstacles, without human
interference.

3.2 Gait management/Locomotion of a Legged

Robot

A crucial problem is how a legged system can stand and move using the archi-
tecture of its legs efficiently. We have to consider a pattern of steps that can
maintain a balance between stability, power consumption and velocity. One
of the main challenges lies in the difficulty of controlling the multi-legs of the
robots with coordination to a complex dynamic environment.

3.3 Related Work

One of the industry leading legged robot is SPOT, the robot dog developed by
Boston Dynamics, shown in Figure 3.1. Spot is a compact, nibble four-legged
robot. Spot is designed to be rugged and customizable it’s well suited for un-
structured environments and is fully capable of climbing stairs and traversing
rough terrain. It has a 360 degrees perception that allows him to avoid ob-
stacles. Spot can be used in a wide variety of applications, in hazardous or
non-hazardous areas.

18 Chapter 3. Problem Statement

Figure 3.1: Boston Dynamics SPOT, source
www.therobotreport.com

19

Chapter 4

Approach

4.1 Robot Construction / Hexapod

4.1.1 Hexapod frame

The robot‘ s frame manufacturing company is Lobot shown in Figure (4.1). The
only parts that was retained from the original hexapod is the body frame and
the leg mechanisms. This implies the number of Degrees of Freedom (DOF) per
leg remains fixed to three. For our project purposes we had to add an embedded
system for brain like function, sensors, power management and servo drivers.

Figure 4.1: lobot-cr6

20 Chapter 4. Approach

4.1.2 Embedded System

Arguably, one of the most important part of the system. We decided to use
a raspberry pi 4 model, an embedded ARM architecture computer with ex-
ceptional capabilities for our intensive algorithms and ROS setup. Is equipped
with a quad-core Cortex-A72 64bit SoC at 1.5Ghz clock speed, 8GB LPDDR4
memory, 2.4Ghz and 5.0Ghz IEEE 802.11b/g/n/ac wire-less, LAN, Bluetooth
5.0, BLE, Gigabit Ethernet, 2 USB 3.0 ports, and 2 USB 2.0 ports. You can
see the model we used at Figure 4.2.

Figure 4.2: Raspberry Pi 4

4.1.3 Servo Drivers and Servos

The robot utilizes 18 servo motors for locomotion.The servos we used were the
LDX-218 Figure 4.3 with full metal gear and up to 17kg torque depended on
the voltage (15kg 6.6v - 17kg 7.4v). Control angle of 180 degrees. To drive
the servos we choose the Adafruit PCA9685 chip. The driver offers an onboard
PWM controller which has the capability of handling up to 16 servos with no
additional processing overhead from the raspberry. Our final product used two
drivers chained together. In Figure 4.4 is the aforementioned driver.

Figure 4.3: Hiwonder servo LDX-218

4.1. Robot Construction / Hexapod 21

Figure 4.4: Adafruit PCA9685

4.1.4 Sensors

For our robot to be able to perceive it’s surroundings and to autonomous nav-
igate in the them we implemented different sensors in the design. Firstly, the
Rplidar A1, which is a low cost 360 degree 2d laser scanner (LIDAR) developed
by SLAMTEC Figure 4.5. The system can perform 360 degree scan within 6
meter range. The produced 2D point cloud data were used in mapping and
localization. Rplidar A1 has scanning frequency of 5.5hz when sampling 360
points each round and can be configured up to 10hz. Additionally, we imple-
mented four ultrasonic ranging modules in the sheen of the legs(two forward
and two backward) to achieve better coverage in lower obstacles than of the LI-
DAR’s height. The modules were the HC-SR04 Figure 4.6, which have low cost
and provides a working range of 2cm-400cm and working angle < 15 degrees.
Finally, the use of an IMU was necessary for safely navigating and calculate the
location and path of the robot. We choose the bosch BNO055 sensor Figure
4.7, because it provides a triaxial 14-bit accelerometer, an accurate close-loop
triaxial 16-bit gyroscope, a triaxial geomagnetic sensor and a 32-bit microcon-
troller running the Bosch Sensortec sensor fusion software. The on-board fusion
facilitates the computations needed by the raspberry pi and make a more robust
end product.

22 Chapter 4. Approach

Figure 4.5: SLAMTEC RPLIDAR A1

Figure 4.6: Ultrasonic range module, HC-SR04

Figure 4.7: BOSCH IMU , BNO055

4.1.5 Power management

In order for our robot to be autonomous and capable of covering large areas,
the use of a battery was essential. The size of the frame was limited so two
batteries were fitted in parallel. The batteries we choose was Gen ace high
discharge rechargeable 7.4V Lipo 5.300mAh. The raspberry has a 5V input
limitation, thus we used a step down DC-DC converter.

4.1. Robot Construction / Hexapod 23

Figure 4.8: Left: Li-po rechargeable battery. Right: DC-DC
converter

4.1.6 3D printed parts

For the housing of certain sensors we needed to 3D print some parts to assure
stability and optimal position.In Figure 4.9 we present the final designs.

Figure 4.9: Left: Case for HC-SR04 ultrasonic sensor. Right:
Rplidar A1 mount

Finally, we present the block diagram of the robot system as shown in Figure
4.10 and the final product after assembling the aforementioned parts is shown
in Figures 4.11, 4.12.

24 Chapter 4. Approach

Figure 4.10: block diagram of the hexapod

Figure 4.11: Complete assembly of the robot

4.2. ROS coordinate system and tf2 library 25

Figure 4.12: Complete assembly of the robot top view

4.2 ROS coordinate system and tf2 library

Robots consists of many parts, joints and sensors. Thus, is essential for the
robot to know where it is itself as well where the rest of the world is in relation
to itself.With the use of ROS integrated transform library, the tf2, which can
maintain the relationship between coordinate frames in a tree structure buffered
in time, and lets the user transform points, vectors, etc between any two coor-
dinate frames at any desired point in time.[9] We created a dedicated ROS node
(appendix ??) to provide the hexapod static transforms,including the various
sensor frames. We precisely measured the sensor position in reference to hexa-
pod body point (assumed the base frame origin) and included the resulted real
world positions into the tf tree. By this way, the tf tree contains frame transfor-
mations described in real world units, and hence, any processed measurement
and extracted results will be spatially described in the same way. The hexapod
tf tree node is illustrated in Figure 4.13 and its structure visualization in the
RViz plug-in, shown in Figure 4.14.

26 Chapter 4. Approach

Figure 4.13: Views of tf tree in Rviz

4.2. ROS coordinate system and tf2 library 27

Figure 4.14: Hexapod system Tf tree

In robotics applications, many different coordinate systems can be used to define
where robots, sensors, and other objects are located. In general, the location of
an object in 3-D space can be specified by position and orientation values.

28 Chapter 4. Approach

4.3 Hector SLAM Algorithm

During the navigation, the LiDAR system might exhibit 6DoF motion, so its
laser scans are transformed through hexapod pose estimation and the tf tree
information, into the hexapod’s stabilized base frame coordinate system. Every
laser scan is converted into a point cloud of scan endpoints, expressed in the
base frame coordinate system. The implemented LiDAR data node transforms
laser scans data into point cloud form, hence, we filter the outliers to enhance
SLAM procedure.

We chose Hector SLAM algorithm because of the low error estimation and that it
doesn’t require odometry data. Hector SLAM is a 2D SLAM system dependent
on laser scans. Like many other SLAM systems, hector SLAM uses occupancy
grid map approach to perform SLAM. It also utilizes scan matching process to
align laser scans with an existing map. The first laser scan is written to the
map and subsequent scans are matched with that map. It uses a Gauss-Newton
approach explained in to find transformations that gives the best alignment
of laser scans with the map. LIDAR scans are written to the map depending
on criterions of minimum displacement in translation or rotation relative to
the location of the previous map writing. Hector SLAM uses a Gauss-Newton
approach and presents optimized rigid transformations as

ξ∗ = argminξ

n∑
i=1

[1−M(Si(ξ)]
2 (4.1)

Where ξ = (px, py, φ)T is the rigid transformation needed and Si(ξ) denotes the
world coordinates of the scan end point si = (si,x, si,y)

T . Solving for ∆ξ yields
the Gauss-Newton equation for the minimization problem,

∆ξ = H−1
n∑
i=1

[∇M(Si(ξ))
∂Si(ξ)

∂ξ
]T [1−M(Si(ξ))] (4.2)

with Hessian matrix ,

H = [∇M(Si(ξ))
∂Si(ξ)

∂ξ
]T [∇M(Si(ξ))

∂Si(ξ)

∂ξ
] (4.3)

the previous two equations 4.2, 4.3 depend on the gradient of the map ∇M(Pm)

at coordinate PM which is calculated by using a bi-linear filtering. The gradient
∇M(Pm) can be approximated by using the four closest integer coordinates

4.4. Navigation 29

P00..P11 as depicted in Figure 4.15. The derivatives can be approximated by :

∂M

∂x
(Pm) ≈ y − yo

y1 − y0
(M(P11)− (M(P01)) +

y1 − y
y1 − y0

(M(P10)− (M(P00)) (4.4)

∂M

∂y
(Pm) ≈ x− xo

x1 − x0
(M(P11)− (M(P01)) +

x1 − x
x1 − x0

(M(P10)− (M(P00)) (4.5)

Where x0, x1, y0, y1 are coordinates of P as shown in figure 4.15. Finally, the
scan match uncertainty can be calculated as the inverse Hessian times some
scaling constant σ whitch depends on the properties of the laser scanner

R = V ar[ξ] = σ2H−1 (4.6)

Figure 4.15: (a) Bilinear filtering of the occupancy grid map.
Point Pm is the point whose value shall be interpolated. (b)

Occupancy grid map and spatial derivatives. [10]

4.4 Navigation

For the navigation of the robot we chose to take two approaches. First, with
way point approach meaning that we give a single point in the map that the
robot has to reach. Second, to just explore the environment until there is no
more to explore.

30 Chapter 4. Approach

4.4.1 Move Base Package

For the autonomous navigation we utilized the move_base package [11] pro-
vided by ROS ecosystem. The package comprises of five main parts. These
are the global and local costmaps,the global and local planners and the recover
behaviors. The global costmap takes in the map of the hexapod’s environment
and inflates any objects on that map by a user specified radius. This inflated
area is used as a buffer zone around objects that the path cannot intersect with
in order to prevent a collision. The local costmap is used to inflate objects de-
tected by the sensors in a small area around the robot. Both costmaps use the
costmap_2d package [12] and feed into the recovery behaviors, which is used
to determine the robots action in case is stuck. The global planner is used to
plan a path from the robots start location to the goal location. It uses the global
costmap to ensure that the path does not intersect with any obstacle. There
are multiple global planners in ROS. We decided to use the global_planner
package [13].

The global planner utilizes different algorithms for finding the shortest path. We
decided to use the A* algorithm because of its better performance compare to
Dijkstra’s algorithm by taking advantage heuristics to guide its search. Finally,
for the local planner we had to chose between the base_ local_ planner and
the dwa_local_planner (dynamic window approach). Both were tested and
it was determined that dwa_local_planner was more suitable for our project
based on the limited acceleration the system outputs[14]. The dwa_ local_
planner package provides a controller that drives a mobile base in the plane.
This controller serves to connect the path planner to the robot. Using a map,
the planner creates a kinematic trajectory for the robot to get from a start to
a goal location. Along the way, the planner creates, at least locally around the
robot, a value function, represented as a grid map. This value function encodes
the costs of traversing through the grid cells. The controller’s job is to use this
value function to determine dx,dy,dtheta velocities to send to the robot.[15]

Additionally, the move base node provides a recovery behavior which is crucial
for the robot to get unstuck or engage in a different route. By default, the move
base node will take the following actions to attempt to clear out space: First,
obstacles outside of a user-specified region will be cleared from the robot’s map.
Next, if possible, the robot will perform an in-place rotation to clear out space.
If this too fails, the robot will more aggressively clear its map, removing all
obstacles outside of the rectangular region in which it can rotate in place. This
will be followed by another in-place rotation. If all this fails, the robot will

4.4. Navigation 31

consider its goal infeasible and notify the user that it has aborted as shown in
Figure 4.17.

Figure 4.16: move base package default navigation stack[11]

Figure 4.17: Move Base Recovery Behavior [11]

32 Chapter 4. Approach

Figure 4.18: implementation of navigation stack on the hexa-
pod

4.5 Gait models

Gait is a periodic pattern of motion which defines the locomotion of the system
through a sequence of steps, where each step comprise of return stroke and power
stroke of the legs. Power stroke is when the leg is on the ground, supporting the
body and return stroke is when the leg lifts of moving forward from the body.

We have examined and implemented three known gait archetypes, the wave
gait, tripod gait and ripple gait each with certain pros and drawback. At any
instance, the system should ensure that at least three legs are in contact with
the ground for stability.

Figure 4.19: Leg positions of the robot

4.5. Gait models 33

4.5.1 Wave Gait

The wave gait is the slowest of all three gaits as it requires only one leg to swing
at a time. This gait has a cyclic pattern of six steps, where in each step one leg
lifts off the ground to swing forward while the other five legs keep contact with
the ground and provide propulsion for the system.

The only advantage of the wave gait is the stability of the system. However, in
the real world application even when the terrain requires stability,the gait is so
slow and energy inefficient that renders it impracticable.

Figure 4.20: Diagram of Wave gait foot pattern

4.5.2 Ripple Gait

The ripple gait follows a cyclic pattern of six steps, where the mechanics of
the gait are move one leg while the moving leg is on the power phase, the
diametrically opposite starts its return phase in order to remain stable.

Although, the ripple gait is little faster than the wave gait and retains the
stability factor, remains inefficient as it still transverses really slowly the terrain.

Figure 4.21: Diagram of Ripple gait foot pattern

34 Chapter 4. Approach

Figure 4.22: From top left to right the steps of the ripple gait

4.5.3 Tripod Gait

The tripod gait of a hexapod robot comprises of two step cycle. In the first
step, three legs of the system which are not all on one side of the robot, lift up
and begin to swing forward, while the other three legs keep contact with the
ground and help propel the robot. In the next step the three legs make ground
contact and the other set of three legs begin to swing forward.

After we experimented with all three gaits we came to the conclusion that the
tripod gait is the better of the three, because it provides stability while improves
the velocity of the system.

Figure 4.23: Diagram of Tripod gait foot pattern

4.5. Gait models 35

Figure 4.24: From top left to right the steps of the tripod gait

37

Chapter 5

Results

5.1 Final version of the robot

After numerous changes in the design of the robot, we conclude at the final
version of the robot as shown in Figures 5.1, 5.2. The final product has the
lowest possible weight and the possible best weight distribution.

Figure 5.1: final version hexapod robot

38 Chapter 5. Results

Figure 5.2: final version hexapod robot static

5.2 Autonomous Navigation Experiments

Our system was tested in two different environments. The first environment, was
a populated room with various in height and length objects (Figures 5.3,5.4).
The second was a more open corridor with makeshift obstacles and ledges (Fig-
ures 5.6,5.7,5.8). In both environments the hexapod navigate without any col-
lision and creating the optimum path.

5.2. Autonomous Navigation Experiments 39

Figure 5.3: SenseLab room experiment

Figure 5.4: SenseLab room experiment

40 Chapter 5. Results

Figure 5.5: Open corridor experiment

Figure 5.6: Open corridor with obstacles

5.2. Autonomous Navigation Experiments 41

Figure 5.7: Open corridor with obstacles

Figure 5.8: Open corridor with obstacles Map

43

Chapter 6

Conclusion

6.1 Conclusions

This thesis undertakes a difficult task of developing a hexapod robot and au-
tonomously navigate in an unknown environment. At first, we had to imple-
mented bio-mechanical and nature inspired gait algorithms for the locomotion of
the robot. Utilizing the laser scan data and imu the robot was able to perform
SLAM in order to create a map of the environment and localize in it. Fi-
nally, a custom implementation of a navigation stack was performed to achieve
autonomous navigation and exploration of the terrain. Each system part is pre-
sented in detail and the entire system is validated with real-world experiments.
The entire project has been implemented within the Robot Operating System
(ROS) and is available as an open source package.

6.2 Future Work

6.2.1 Machine Learning Gait Generation

In our approach, we implemented three different gait algorithms each one with
its own pros and cons. By utilizing the machine learning techniques, we can
create a Reinforcement learning algorithm in order to discover a new gait pattern
that minimizes the disadvantages that the gait may have.

6.2.2 Camera approach

A 3D camera can be added in the robot for object detection and human recog-
nition. This way the system can be developed for search and rescue scenarios.
On of the main advantage the hexapod robot has over the wheeled counterpart
is that it can transverse uneven terrains that makes it suitable for scenarios

44 Chapter 6. Conclusion

such as caves or debris of buildings. The camera module except the recognition
also can give feed of the place for better reconnaissance.

45

References

[1] M Pavone, P Arena, and L Patané. “An innovative mechanical and con-
trol architecture for a biomimetic hexapod for planetary exploration”. In:
Space Technology-Abingdon 26.1-2 (2006), pp. 13–24.

[2] Bong-Huan Jun et al. “Development of seabed walking robot CR200”. In:
2013 MTS/IEEE OCEANS-Bergen. IEEE. 2013, pp. 1–5.

[3] T G Bartholet. “Robot applications for nuclear power plant maintenance”.
In: (Mar. 1985). url: https://www.osti.gov/biblio/5705520.

[4] Jia Uddin. “An Intelligent Hexapod Rescue Robot”. In: 2018.
[5] George A Bekey. Autonomous robots: from biological inspiration to imple-

mentation and control. MIT press, 2005.
[6] ROS. url: https://www.ros.org/.
[7] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “A kinematic nota-

tion for lower-pair mechanisms based on matrices”. In: Journal of Applied
Mechanics 22.2 (1955), 215––221.

[8] Richard P Paul. Robot manipulators: mathematics, programming, and
control: the computer control of robot manipulators. Richard Paul, 1981.

[9] Wim Meeussen Tully Foote Eitan Marder-Eppstein. Tf2. url: http://
wiki.ros.org/tf2.

[10] Stefan Kohlbrecher et al. “A flexible and scalable SLAM system with full
3D motion estimation”. In: 2011 IEEE international symposium on safety,
security, and rescue robotics. IEEE. 2011, pp. 155–160.

[11] Eitan Marder-Eppstein. move base. url: http://wiki.ros.org/move_
base.

[12] Dave Hershberger Eitan Marder-Eppstein David V. Lu!! costmap-2d. url:
http://wiki.ros.org/costmap_2d.

[13] Author: David Lu!! global-planner. url: http://wiki.ros.org/global_
planner.

[14] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “The dynamic win-
dow approach to collision avoidance”. In: IEEE Robotics & Automation
Magazine 4.1 (1997), pp. 23–33.

https://www.osti.gov/biblio/5705520
https://www.ros.org/
http://wiki.ros.org/tf2
http://wiki.ros.org/tf2
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/global_planner
http://wiki.ros.org/global_planner

46 References

[15] Eitan Marder-Eppstein. dwa-local-planner. url: http://wiki.ros.org/
dwa_local_planner.

http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/dwa_local_planner

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Thesis Contribution
	Thesis Outline

	Theoretical Background
	Robot Operating System
	Rviz

	Sensors
	LIDAR
	Inertia Measurement Unit
	Ultrasonic Distance Sonar

	Localization and Mapping
	Robot Localization
	Occupancy Grid Mapping
	Simultaneous Localization and Mapping (SLAM)

	Robot Locomotion
	Kinematics Analysis
	Forward and Inverse Kinematic Analysis of one Leg

	Problem Statement
	Autonomous Navigation
	Gait management/Locomotion of a Legged Robot
	Related Work

	 Approach
	Robot Construction / Hexapod
	Hexapod frame
	Embedded System
	Servo Drivers and Servos
	Sensors
	Power management
	3D printed parts

	ROS coordinate system and tf2 library
	Hector SLAM Algorithm
	Navigation
	Move Base Package

	Gait models
	 Wave Gait
	 Ripple Gait
	 Tripod Gait

	Results
	Final version of the robot
	Autonomous Navigation Experiments

	Conclusion
	Conclusions
	Future Work
	Machine Learning Gait Generation
	Camera approach

	References

