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Abstract

The COVID-19 pandemic gave rise to an increase of research related to its epidemiology.
Simultaneously, e�orts were made to quantify data related to the epidemic.

This thesis is an attempt to model networks of populations as random graphs, with var-
ious epidemiological parameters, and try to calculate those parameters given the outcome
of the epidemic. The �rst part of the experiment consists of the implementation of the
model, while the second part is the attempt to calculate the parameters on arti�cial data
created by said network. Finally, the sensitivity of the methods is tested against added
noise.

Given a network of self-contained populations as nodes, the daily travel between the
nodes, and the progress of the epidemic on each node, we can estimate the epidemiological
parameters of the node. This shows that interference from travel of infected individuals to
nodes a�ects the estimation of epidemiological parameters of the node only for relatively
large values of such individuals.
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1 Introduction

The COVID-19 pandemic gave rise to an increase of research related to epidemiology [1].
From the mathematical and computing point of view, epidemic analysis aims at estimating
epidemiological variables such as infections, deaths, immunizations or other attributes of
interest on a daily basis or throughout the progress of the epidemic [2]. The aim of this
thesis is to model an epidemic on multiple populations on a network of populations, drawing
inspiration from the previous work of [3] and [4].

The approach that will be followed is a mathematical approach, also known as the
analytical approach. This is the compartmental model approach, which employs the use
of a system of ordinary di�erential equations, which, once solved, provide the solutions for
the populations that we are interested for. An extensive list of other approaches that can
be seen in [5].

The goal of this thesis is to measure at what extend the epidemiological parameters
can be estimated on a network, using the SIR model and a simple, yet hopefully useful,
random weighted directed graph model.

1.1 Thesis Outline

In the �rst section we analyze the compartmental models. These are models, initially pro-
posed by Kermak-McKendrick, that have been used thoroughly through the past century
and are still being used to model epidemics.

In the second sections, networks and their mathematical basis, graphs, are being pre-
sented to the reader.

The third section presents the simulation methods used to create the experiment.

In the fourth and the �nal sections we see how accurate and tolerant to statistical noise
the estimations are, and we discuss the results.
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2 The compartmental models

2.1 The Kermack-McKendrick model

One of the oldest approaches to modeling epidemic processes is that of the compartmental
models of Kermack and McKendrick [6, 7, 8].

These articles make some assumptions that must be noted:

1. Each individual is equally susceptible to the disease (regardless of age or other fac-
tors).

2. The epidemic is short-lived, meaning its duration is short compared to the individual's
lifespan.

3. A single infection leads to complete immunity, meaning that once a person is infected,
it cannot get infected again.

The paper begins by using a variable ut,θ to group individuals that have been infected at
time t for θ duration of time, with time being discrete. It is then shown that the population
can eventually be separated in three variables that denote the fraction of population that
belongs to one of three groups on moment t: xt for those who are not infected as of time
t, yt for those who are currently infected and zt for those who are removed due to recovery
or death.

Under the assumption that the population, as well as and infection and recovery rates
remain constant, the paper arrives at the model that later became the SIR model.

It is shown, in the same paper, that under these assumptions the epidemic begins only
if the population density is above a certain threshold value and that it terminates, as
will be shown in the following section, if a certain relation between population density
and other model parameters holds. The size of the epidemic, meaning the total infected
individuals and the peak of infections can also be calculated. We can see these calculations
and approximations in the later sections, regarding the SIR model.

2.2 The SIR model

In later years, the Kermack McKendrick model became known as the SIR model [9]. The
SIR model separates the population into three compartments, S for Susceptible, I for
infectious and R for removed individuals (either by death or immunization). The transition
of individuals between compartments is modeled as a set of ordinary di�erential equations
(O.D.E.s), describing the dynamic system of the epidemic. Individuals belonging to the
S compartment can get infected and therefore become infectious, individuals in the I
compartment transmit the disease to S, while R individuals cannot be infected, be it
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because of immunity or death.

The SIR model can be described by using the following system of equations:

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

Note that each compartment's population is normalized to the total population, which
remains constant. This means that S, I and R have values in the range [0, 1]. β and γ
represent the rate with which individuals transition respectively from the susceptible to
the infectious and the infectious to the removed compartments per individual, per day.

We can schematically represent this process (transfer diagram), as such (Fig 1):

S I R
β γ

Figure 1: The SIR model.

Solutions to the model above yield results that look like Fig. 2.

A question that was mentioned in the previous section, is whether an epidemic can
happen given an initial population I0 of infected individuals. Only at the start of the
epidemic, if we assume that I0 > 0, S0 > 0, R(t = 0) = 0, we can deduce that, in order to
have an epidemic onset:

dI0
dt

> 0⇔ βS0I0 − γI0 > 0⇔ S0 >
γ

β
.

In the opposite case, where dI0
dt
< 0⇔ S0 <

γ
β
, the epidemic dies out. It is thus derived

that the onset of the epidemic depends on the relation between the initial percentage of
susceptible individuals, S0 and the ratio γ

β
. This is called a threshold phenomenon [10].

There is another useful metric, the ratio between β and γ, better known as R0 = β
γ
,

which expresses the rate of new infections for every new individual that enters the removed
compartment. This is also called the basic reproduction number.
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Figure 2: A sample solution to the SIR model. β = 0.4, γ = 0.2, R0 = 2.

It can be shown from equation (2) that the epidemic reaches this peak for:

dIm
dt

= 0⇔ βSmIm − γIm = 0⇔

Im(βSm − γ) = 0⇒ Im = 0 or Sm =
γ

β
=

1

R0

, (4)

where Im is the peak I value and Sm the value of S when I = Im.

We obviously keep the second solution, since we must assume that the epidemic( if it
happens) is at its peak (thus Im 6= 0). It is also shown in [11] that the peak infected
individuals population can be given as:

Im = −Sm + I0 + S0 + Smln(Sm/S0) (5)

where I0 and S0 denote the initially infected and susceptible population, respectively.
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Let's suppose we want to know how Im varies in relation to R0. We can take the partial
derivative of Im from Eq. (5) in relation to R0:

Im = I0 + S0 + Smln(Sm/S0)− Sm = I0 + S0 +
1

R0

ln
(
1/(S0R0)

)
− 1

R0

⇒

dIm
dR0

= − ln(1/R0S0)

R2
0

(6)

We also know that, for an epidemic to happen, S0 >
1
R0
. Thus:

S0 >
1

R0

⇒ 1/(S0R0) < 1⇒ ln
(
1/(S0R0)

)
< 0⇒ − ln(1/R0S0)

R2
0

> 0⇒

dIm
dR0

> 0. (7)

Thus, Im increases as R0 increases.

One approximation of the time when the epidemic reaches its maximum number of
infected individuals, given that the initial population of infected individuals is small (i0 <<
s0)[11], is:

tp =
1

γ

1

R0 − 1
ln
(
R0 + I−10 (R0 − 1)2

)
(8)

which, according to the same paper, is derived when one solves

t(S) =
1

β

∫ S

S0

1

S(S − Smln(S/S0)− I0 − S0)
dS (9)

for S = Sm.

More compartmentals can be seen in Appendix A.

2.3 Other methods

Apart from the compartmental models, other methods (mainly agent-based) are utilized
for the solution of epidemic systems [12]. The idea of two-level mixing, as can be seen in
[3], separates the study of the epidemic in two levels: This of the spread inside an isolated
population, and the spread between those isolated populations. The same idea can be seen
in the paper [13], which will be analyzed in the next chapter.
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So far we've seen how epidemic spreading has been modeled in a single, closed population
using the compartmental models. Before combining multiple SIR models in our simulations,
we �rst analyze the basics of graph theory. The main idea behind their employment is the
separation of populations in di�erent groups, be it islands, cities, countries etc..

AI advancements including multi-agent approaches to epidemics can also be seen in
senior Thesis works, such as the work of Mr. Voloudakis [14].
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3 Graph Theory

3.1 Graphs

A graph is a set of vertices V and edges E ⊆ {{i, j} : i, j ∈ V and i 6= j}. We denote the
graph G as G = (V,E). An example of a graph with 6 vertices and 7 edges can be seen in
Fig. 3.

A directed graph is a graph in which an edge is an ordered set, i.e. given the set of
vertices V , the edges set is now de�ned as: E ⊆ {(i, j) : i, j ∈ V and i 6= j}. Note that
now the pair of vertices in the de�nition is wrapped inside parentheses, instead of brackets.

x1

x2

x3

x4

x5

x6

Figure 3: A graph with 6 vertices and 7 edges.

In an undirected graph, the degree of a node is the number of edges connected to it. In
directed graphs, we distinguish the in-degree as the number of edges pointed to the node,
versus the out-degree, which is the number of edges pointing from the node of reference to
other nodes.

The mean degree of a graph is the mean degree of its nodes, or

[k] =
∑
i∈[1,N ]

degi
N

.

The edges of a graph can also have attributes related to them. One such attribute is
the weight, which is a number describing something useful. In this thesis, the weight of
the edges is the number of people that travel between nodes.

A random graph G(n, p) is a graph with n nodes in which each possible edge between
two nodes exists with probability p. This graph can be created using a computer, with the
help of randomized processes.

According to [15], there are three di�erent types of random graphs when it comes to
connectivity, which depends on the value of [k]: Critical ([k] ≈ 1), where the graph is either
connected or not connected depending on the experiment run, sub-critical ([k] < 1) where
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the graph is not connected and super-critical ([k] > 1). This depends on the degree of the
random network, which can be calculated to be [k] = p(N − 1).

Figure 4: A random directed graph with n = 10 and p = 0.1
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3.2 Epidemics on networks

Networks are being used extensively in epidemiology [5].

One aspect of modeling epidemics on a network is the connection between human com-
munities. Those networks' description is no simple task and requires a cross-disciplinary
approach [16].

4 Multiple node simulation results

Following are experiments with other graph sizes and degrees:

The mean degree of the nodes varies and can be found on each �gure's title. For each
node: β = 0.5, γ = 0.05, I0 = 10idv, R0 = 0. The population of each node i is Ni = 107

#nodes

Figure 5: Epidemic progress on 5 nodes with mean degree 1. Critical region.
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Figure 6: Epidemic progress on 20 nodes with mean degree 0.5. Sub-critical region.
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Figure 7: Epidemic progress on 100 nodes with mean degree 1.
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Figure 8: Epidemic progress on 100 nodes with mean degree 2. Super-critical region.
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Figure 9: Epidemic progress on 200 nodes with mean degree 1.
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Figure 10: Epidemic progress on 200 nodes with mean degree 2.

18



Figure 11: Epidemic progress on 500 nodes with mean degree 1.2.

It is clear that high degrees of nodes lead to a steeper peak of the epidemic, while
sparser networks lead to waves, and a �atter curve. One can also observe the threshold
phenomenon, since for lower graph connectivity we have almost no epidemic, while for
higher values we have a full epidemic.

4.1 An SEIR example

In [4], the authors explore a network using the SEIR model, combined with population
migration between infected cities.

During the outbreak of the late 2019-early 2020 coronavirus epidemic in mainland China,
the Chinese government took measures such as quarantine and travel restrictions to min-
imize the spread of the epidemic. On this paper, the researchers evaluate the e�ect these
measures had in restricting the spread and total size of the epidemic, using two di�erent
methods: solving the epidemic numerically using an extended SEIR model and training a
Neural Network on the 2003 SARS epidemic and then using it to predict this epidemic's
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outcome. For the purpose of modeling the epidemic, the researchers use an extended SEIR
model which includes population migration between provinces. In the following equations,
the additional Sin/out(t) and Ein/out(t) variables model the in�ow and out�ow of migrant
workers from and to other provinces. The system is described as such:

S[t+ 1] = S[t] + Sin[t]− Sout −
β1 × r[t]× I[t]× S[t]

N [t]
− β2 × r[t]× E[t]× S[t]

N [t]

E[t+ 1] = E[t] + Ein[t]− Eout +
β1 × r[t]× I[t]× S[t]

N [t]
+
β2 × r[t]× E[t]× S[t]

N [t]
− σE[t]

I[t+ 1] = I[t] + σE[t]− γI[t]

R[t+ 1] = γI[t] +R[t]

Sin = In[t]× (1− Pout[t])
Sout = Out[t]× (1− Pout[t])

Ein[t] = In[t]× Pout[t]
Ein[t] = Out[t]× Pout[t]

Here, β denotes the frequency of transition from susceptible to exposed via contact with
exposed people (who can transmit the virus but do not have symptoms), γ the rate of illness
resolution (either death or recovery) and σ the incubation period. r(t) denotes the contacts
per person of each individual per day. With Pout[t] the authors denote the probability of
the out-�owing people being exposed. Thus, In[t] stands for the total incoming people,
while Out[t] for the total out-�owing people.

This model takes into consideration the movement between di�erent provinces. The
system is not "closed", i.e. the population on each province does not remain constant, but
the In and Out variables denote movement to and fro the province they reference.

Drawing inspiration from the aforementioned paper [4], we use computer assisted cal-
culations to generalize this model, using SIR for simplicity's sake, and examine how:

1. the connectivity of a network a�ects the progress of an epidemic, instead of the
parameters.

2. one can estimate the parameters on each population, without knowing the tra�c
between the populations.

In the next chapter, we explain how this model is setup using Python.

20



5 The simulation

For the needs of this thesis, a Python program was implemented that simulates the spread
of the epidemic on a network of populations. The network is simulated using a weighted,
directed graph. Each node of the graph simulates a population, with its respective param-
eters. The class diagram for this program is shown below:

Figure 12: The class diagram for the simulation's main classes.

A single population node is modeled using the system of equations mentioned in equa-
tions (1)-(3). The node is a Python class object with attributes Node(id,S,I,R,β,γ,Population).
S, I and R are decimal numbers in the range [0, 1] representing the quotient of the popula-
tion belonging to the respective compartment. By solving the equations (1)-(3), we update
the node's population up to a speci�ed date.

Running a single node with various R0s yields the following results. We can see that
as the R0 rises, the maximum simultaneously infected individuals rise, and the duration of
the epidemic is shorter, as per Eq. 5 and 8.

5.1 Simulating a single node

A single node is simulated using the Euler's method [17] on Eq. 1- 3:
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S[t] = S[t− h] + h
dS(t)

dt
(10)

I[t] = I[t− h] + h
dI(t)

dt
(11)

R[t] = R[t− h] + h
dR(t)

dt
(12)

The method's local truncation error (LTE) can be calculated as:

LTE =
1

2
h2y′′(t0) +O(h3) (13)

In order to apply(13) to (10)-(12) we must �rst calculate the second-order derivatives
in relation to time for S, I, and R:

1. For S:

d2S

dt2
=
d(−βSI)

dt
= −β(S ′I+I ′S) = β2SI2−β2S2I+βγSI = βSI(βI−βS+γ) (14)

2. For I:

d2I

dt2
=

d(βSI)

dt
− d(γI)

dt
= −βSI(βI − βS + γ)− γ(βSI − γI) =

= −βSI(I + S + 2γ) + γ2I (15)

3. For R:
d2R

dt2
=
d(γI)

dt
= γ(βSI − γI)

Thus, the LTE for each compartment's approximation becomes:

1.

LTES =
1

2
h2S ′′(t0) +O(h3) =

1

2
h2βSI(βI − βS + γ) +O(h3) (16)

2.

LTEI =
1

2
h2I ′′(t0) +O(h3) =

1

2
h2
(
− βSI(I + S + 2γ) + γ2I

)
+O(h3) (17)
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3.

LTER =
1

2
h2R′′(t0) +O(h3) =

1

2
h2γ(βSI − γI) +O(h3) (18)

Figure 13: Comparative progress of the epidemic for di�erent R0 values. S0 = 1. γ = 0.3
and β = R0γ.

5.2 Multiple nodes simulation

The graph contains multiple such nodes, as well as the edges (connections/links) between
them. Those edges connect two di�erent nodes with a probability p, resulting in a random
graph as seen in Ch. 3.

The graph's edges simulate the travel between cities. Thus, an edge eij connects nodes
i and j with some weight, wij. This means that a total of w individuals will travel from
node i to node j [18]. (In the simulation, travel between the nodes is calculated using the
multivariate hyper-geometric distribution[19]. This happens because there are three groups
of individuals: S, I, R and we are drawing wi,j of them without replacement).

Let bCi,j the number of individuals belonging to compartment C that travel between
nodes i, j, from node i to node j. Additionally, let bCj be the sum of people belong-
ing in compartment C that arrive minus the people that leave node j, i.e. bCj(t) =∑

i∈N

(
bCi,j(t)− bCj,i(t)

)
(N is the set of nodes in the network).

Each node i has a set of variables, Si, Ii, Ri that correspond to the Susceptible, Infected
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and Removed compartments respectively. On the �rst step of the iterative algorithm, the
node solves the equations of (19)-(21) by the preset β and γ values and the sum of the
individuals that arrive to minus the individuals that travel from the node.

Thus, on each node i, the system of the epidemic is described by:

dSi
dt

= − βi
Ni

SiIi + bSi (19)

dIi
dt

=
βi
Ni

SiIi − γiIi + bIi (20)

dRi

dt
= γiIi + bRi (21)

In order to continue, we must �rst non-dimensionalize the previous equations. This is
done by setting new variables as such:

S∗t =
St
Ni

(22)

I∗t =
It
Ni

(23)

R∗t =
Rt

Ni

(24)

where N is the total population of the network, which remains constant (assuming no
births or deaths).

Then, equations (19) to (21) become:

dS∗i
dt

= −βiS∗i I∗i +
bSi
Ni

(25)

dI∗i
dt

= βiS
∗
i I
∗
i − γiI∗i +

bIi
Ni

(26)

dR∗i
dt

= γiI
∗
i +

bRi
Ni

(27)

Adding for each node i, and assuming populations are equal on each node and the graph
is bi-directional Eq. (25) (27) becomes:
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∑ dS∗i
dt

≈ −
∑

βiS
∗
i I
∗
i (28)∑ dI∗i

dt
≈

∑
βiS

∗
i I
∗
i −

∑
γiI
∗
i (29)∑ dR∗i

dt
≈

∑
γiI
∗
i (30)

or:

d

dt

∑
S∗i ≈ −

∑
βiS

∗
i I
∗
i (31)

d

dt

∑
I∗i ≈

∑
βiS

∗
i I
∗
i −

∑
γiI
∗
i (32)

d

dt

∑
R∗i ≈

∑
γiI
∗
i (33)

5.3 Euler's method on the whole network

By applying Euler's method on equations 25 to 27 we get:

S∗i [t+ h]− S∗i [t] = −hβiS∗i [t]I∗i [t] + h
bSi
Ni

I∗i [t+ h]− I∗i [t] = hβiS
∗
i [t]I

∗
i [t]− hγiI∗i [t] + h

bIi
Ni

R∗i [t+ h]−R∗i [t] = hγiI
∗
i [t] + h

bRi
Ni

or:

∆S∗i [t] = −hβiS∗i [t]I∗i [t] + h
bSi
Ni

∆I∗i [t] = hβiS
∗
i [t]I

∗
i [t]− hγiI∗i [t] + h

bIi
Ni

∆R∗i [t] = hγiI
∗
i [t] + h

bRi
Ni

Setting, for example h = 1, which was used in the simulations:
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∆S∗i [t] = S∗i [t+ 1]− S∗i [t] = −βiS∗i [t]I∗i [t] +
bSi
Ni

∆I∗i [t] = I∗i [t+ 1]− I∗i [t] = βiS
∗
i [t]I

∗
i [t]− γiI∗i [t] +

bIi
Ni

∆R∗i [t] = R∗i [t+ 1]−R∗i [t] = γiI
∗
i [t] +

bRi
Ni

Adding across all nodes, the resulting equations approximate the total change on the
whole graph:

∆S∗[t] =
∑

∆S∗i [t] = −
∑

βiS
∗
i [t]I

∗
i [t] (34)

∆I∗[t] =
∑

∆I∗i [t] =
∑

βiS
∗
i [t]I

∗
i [t]−

∑
γiI
∗
i [t] (35)

∆R∗[t] =
∑

∆R∗i [t] =
∑

γiI
∗
i [t] (36)

where ∆∗[·][t] denotes the change across the whole network on discrete time t.

Running the simulation with 3 nodes, yields the following result:

Figure 14: Cumulative progress of the epidemic on 3 population nodes. The mean degree
of the nodes is 1. For each node: β = 0.5, γ = 0.1, I0 = 10idv, R0 = 5. The population of
each node i is Ni = 107/3
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5.4 Simulation Results

An interesting result is that while the compartmental model simulations create two main
outcomes (no epidemic, the curves are mainly �at) or an epidemic (the outcomes are the
classical SIR style curves), this model creates a curve with waves of di�erent amplitudes.
Sub-critical graphs create localized epidemics, while super-critical (or highly connected)
graphs create epidemics that resemble the SIR model (let's remind the reader that the SIR
model is a model derived from the assumption that physical human communication is a
chemical reaction). The middle case (critical models) create the wave-like curves.

As it is shown in section 6.1, when a graph is sub-critical no epidemic happens, while
where a graph is critical an epidemic may or may not happen (this is a random event).
When the graph is super-critical the epidemic always happens. It is also shown that the
connectivity of the graph a�ects the outlook of the epidemic regarding the peaks. The more
connected a graph is, the less peaks there are (more concentrated transmission). These
results can be shown in 4.

We can observe two local maxima in the infected population. Node 0 gets infected in
the beginning of the simulation. Nodes 1 and 2 get infected on the days that can be seen
from the lines on the graph. The �rst peak in time is the result of the peak of the epidemic
on node 0, and the other peak is caused by the almost simultaneous peak of the epidemic
on nodes 1 and 2. If a node gets infected on day ti, the peak will happen in day ti + tp,
for tp the time seen in Eq. 8, with the equation having the parameters of node i. E.g., if
two di�erent nodes i and j receive an infected individual on day t, and their peak infected
populations are Im1 and Im2 respectively, the amount of infected individuals owed to these
two nodes on time t+ tp will be Im1 + Im2. Since all nodes (for simplicity's sake) have the
same parameters, this results in the peaks of nodes 1 and 2 coinciding, resulting in a peak
infected population of Sm1 + Sm2.

The parameters associated with this process are:

� The number of individuals traveling between the nodes.

� The existence (or not) of an edge between two nodes.

� The epidemiological parameters of each node.
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6 Estimation Methods

Following are some methods that can be used to derive the epidemiological parameters
simply by having measurements of the compartmental populations. These are algebraic
methods, are derived from the Euler's method equations, solving for the parameters in
question [20].

Since the simulation is discrete, assuming a time step of one day. There is, of course,
error in these methods, since the Euler's method is an approximation. The following
estimation approximates every node's population Ni ≈ N , and the graph is bidirectional.

6.1 Multiple nodes estimation

In order to estimate the β and γ values for each node, we can utilize the equations seen in
section 5.3. Speci�cally, one can rewrite Eq. 34 as such:

∆S∗[tj] = −
−→
β ·
−−→
S∗I∗[tj] (37)

where
−→
β is the 1× (# Nodes) matrix containing βi values for each node i, and

−−→
S∗I∗[tj]

the vector containing the products S∗i I
∗
i of the susceptible and infected individuals of all

nodes i at time tj. N denotes the total population of the graph, across all nodes, which
remains constant.

If we create m measurements on many tjs, where j is the incremental number of the
measurement on all nodes simultaneously (i.e. the j-th 'day'), and change the notion of
the vectors to a bold font, we get:

∆S∗t1 = −β · (S∗I∗)t1
∆S∗t2 = −β · (S∗I∗)t2

·
·
·

∆S∗tm = −β · (S∗I∗)tm
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Or, in matrix form:

Mβ = ∆S ⇔
−S∗1 [t1]I

∗
1 [t1] · · · −S∗n[t1]I

∗
n[t1]

−S∗1 [t2]I
∗
1 [t2] · · · −S∗n[t2]I

∗
n[t2]

·
·
·

−S∗1 [tm]I∗1 [tm] · · · −S∗n[tm]I∗n[tm]




β1
β2
·
·
·
βn

 =


∆S∗[t1]
∆S∗[t2]
·
·
·

∆S∗[tm]


Each measurement we make, adds a row on the matrix M .

By replacing Eq. 22 and 23 above, we get:
−S1[t1]I1[t1] · · · −Sn[t1]In[t1]
−S1[t2]I1[t2] · · · −Sn[t2]In[t2]

·
·
·

−S1[tm]I1[tm] · · · −Sn[tm]In[tm]




β1
β2
·
·
·
βn

 =


∆S[t1]N
∆S[t2]N
·
·
·

∆S[tm]N


In order to calculate the betas one can either use the formula β = M+∆S, if the

system is solvable, or minimize the expression ||Mβ−∆S||2 subject to β >= 0. Here, M+

denotes the Moore-Penrose pseudo-inverse matrix of M [21].

For this reason, the scipy python library's nnls (which stands for non-negative least
squares solver) function was used [22]. Here we must also note that the Moore-Penrose
pseudoinverse provides a least squares solution to a system of linear equations. The issue
with the solution it can have negative values, which is impossible given that we need to
estimate a non-negative β.

The �rst method results in negative βs, while the second forces some to zero.

6.2 Calculating γ's

In order to estimate the γ's of the network, we use equation 36. In a same manner as the
previous subsection, we can model the equation as:

∆R∗[tj] = −→γ ·
−→
I∗ [tj] (38)
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Taking many measurements on di�erent tjs:

∆R∗t1 = γ · I∗t1
∆R∗t2 = γ · I∗t2

·
·
·

∆R∗tm = γ · I∗tm

or:
I∗1 [t1] · · · I∗n[t1]
I∗1 [t2] · · · I∗n[t2]
·
·
·

I∗1 [tm] · · · I∗n[tm]




γ1
γ2
·
·
·
γn

 =


∆R∗[t1]
∆R∗[t2]
·
·
·

∆R∗[tm]


Since I∗ = I

N
and R∗ = R

N
the above matrix becomes:

I1[t1] · · · In[t1]
I1[t2] · · · In[t2]
·
·
·

I1[tm] · · · In[tm]




γ1
γ2
·
·
·
γn

 =


∆R[t1]
∆R[t2]
·
·
·

∆R[tm]


Finding the γs again becomes a minimization problem, as seen in the previous subsec-

tion.
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7 Estimation Results

Following are some results for di�erent total nodes. The simulated β and γ are randomly
generated following the uniform distribution. Note that the populations are equal on every
node. β values range in [0.1, 0.2] while γ in [0.01, 0.05], yielding an R0 range of [2, 10]. The
scipy.nnls()method is used on each iteration. The graph is on the critical region, meaning
that each node is at average connected to 1 other node. The graph's horizontal axis denotes
the number of nodes that got eventually infected, regardless of the initial network node
number. Not all nodes get infected on every run of the experiment. The vertical lines
denote the maximum error.

Figure 15: NNLS β error for 1 to 43 nodes. Duration < 2000 days. mean degree = 1
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Figure 16: NNLS γ error for 1 to 43 nodes. Duration < 2000 days. mean degree = 1

We can see that the algorithm is more precise when calculating β than γ.

7.1 Adding noise

In order to model uncertainty in our measurements of the compartments, we added random
noise on a single node. The noise was generated drawing samples from the exponential
distribution [23]:

Pr{sample = x} = λe−λx (39)

where e is the physical constant and λ is a parameter.

The mean value of x given a set λ is: E[x|λ] = 1
λ
. This means that E[error] = 1

λ
I(t).

The samples that were created were then added to the I compartment for each day of
the simulation. The rationale behind this choice was the fact that the detected individuals
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in the I compartment are always fewer than or equal to the population of the truly infected
individuals.

We denote the signal of the infected individuals as

I t−1 = It−1 + nI(t− 1) (40)

and the noisy S signal with S. Since we know that N = S + I + R, S can then be
derived from:

S(t) = N(t)− I(t)−R(t) = N −
(
I(t) + nI(t)

)
−R(t) = S(t)− nI(t) (41)

The error on every point is calculated as:

error =
βest − βtrue

βtrue
(42)
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Figure 17: Estimation error vs. λ value.
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We see that even for a single node and relatively small values of λ there is some consid-
erable error.

Following are the errors for di�erent values of λ:

1. λ = 100

Figure 18: β estimation error for λ = 100.
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Figure 19: γ estimation error for λ = 100.

2. λ = 50
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Figure 20: β estimation error for λ = 50.

37



Figure 21: γ estimation error for λ = 50.

3. λ = 10
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Figure 22: β estimation error for λ = 10.
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Figure 23: γ estimation error for λ = 10.

4. λ = 5
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Figure 24: β estimation error for λ = 10.
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Figure 25: γ estimation error for λ = 5.

For lambdas less than 10, the error gets signi�cant even for small numbers of nodes.

8 Future Work

The following topics are of interest, in order to measure the model's e�ectiveness and
compare it to real world phenomena:

1. Using a Machine Learning algorithm to estimate parameters on these networks. That
is, extending and comparing the algorithm used in [13] to the model presented here.

2. How does the topology of the network can a�ect outcomes? In this thesis, the network
used was mainly a random graph of mean degree 1. One could examine how di�erent
graph topologies a�ect the accuracy of the model.

3. How Can we control the epidemic by changing the tra�c between the nodes by
scheduling the biases of the edges?
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4. In the algorithm used in this thesis, the approach was the Euler method. Runge-
Kutta method, which is generally more accurate but more computationally complex,
could be used to possibly improve the accuracy of the model and algorithm.
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A Additional compartmental models

Apart from the SIR model, which was the basic model, other models have since been
developed [24]. Following is a brief explanation of some of the most widely spread.

A.1 The SI model

The SI model assumes permanent infection (e.g. as seen in the HIV virus). Here, the
compartments are reduced to just two (Susceptible and Infected). The equations that
describe them are seen in the following equations and Fig. 26.

dS

dt
= −rβS I

N
dI

dt
= rβS

I

N

Here, β denotes the probability of disease transmission per contact and r denotes the
contact rate, or the number of contacts per unit time. N is the total population, or S + I.

S I

−rβ I
N

Figure 26: The SI transfer diagram.

A.2 The SIS model

In the SIR model, we assumed that the Removed compartment implies some form of
permanent immunity. The SIS model assumes no immunity, while the SIRS model assumes
temporary immunity. Thus, individuals move only from the S to the I compartment, and
after some time return to the S compartment. This is a model resembling the common
cold or, as some could argue, a simpli�ed description of the current pandemic (COVID-19).
The equations and the transfer diagram can be seen in equations 43 and 44, as well as in
Fig. 27.

dS

dt
= −rβS I

N
(43)

dI

dt
= rβS

I

N
(44)
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S I

−rβ

rβ

Figure 27: The SIS transfer diagram.

A.3 The SEIR model

A new idea is introduced in the SEIR model, which assumes a new compartment, the
exposed (E). This compartment includes the individuals that were exposed to the disease,
but are in the incubation period. The incubation period is the period during which the
individual is infected but not infectious [25].

dS

dt
= Λ− rβS I

N
− µS

dE

dt
= rβS

I

N
− εE

dI

dt
= εE − γI − µI

dR

dt
= γI − µR

S E I R
rβ I

N ε γ

Figure 28: The SEIR transfer diagram.

Here, µ denotes the death rate for each compartment.

47


	Introduction
	Thesis Outline

	The compartmental models
	The Kermack-McKendrick model
	The SIR model
	Other methods

	Graph Theory
	Graphs
	Epidemics on networks

	Multiple node simulation results
	An SEIR example

	The simulation
	Simulating a single node
	Multiple nodes simulation
	Euler's method on the whole network
	Simulation Results

	Estimation Methods
	Multiple nodes estimation
	Calculating 's

	Estimation Results
	Adding noise

	Future Work
	Additional compartmental models
	The SI model
	The SIS model
	The SEIR model


