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Abstract

Today, more than ever, we can observe the facilitation of trading provided by the ability of the

internet to connect - directly or indirectly - the distributor and the consumer. Many stores

have taken to the electronic side of things, and have set up e-shops, to more easily provide

their services to their buyers. As proven by the recent health crisis, the benefits of such stores

are many, and the business is growing to a degree that has started to overshadow its physical

counterpart, incentivising more and more businesses to set up their own electronic stores. This,

however poses a problem for the consumer. While the decision of where to obtain our goods

had been based on factors such as proximity to our homes, availability of certain products,

etc., now we have at our discretion a plethora of equally convenient options that make our

decision all the more difficult. To this end, a newer service model has been introduced. A

medium that collects data from multiple stores, provides the user with the available options

and helps them make the best decision based on their needs. In this thesis, we aim to create

such a model of service. MEREBO stands for Multi-source Entity REsolution and Basket

Optimization. This app model attempts to collect and store grocery store product data in a

database, compare and match the products between them, showcase those matches to the user

of the app, and provide them with an optimization option in their basket, so that they may

have the best shopping experience.
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Chapter 1

Introduction

1.1 Data Aggregation and its uses

The Information Age is characterized by a rapid shift from traditional industries, as established

during the Industrial Revolution, to an economy centered on information technology. Data has

arguably become the new currency of our century, because of the value that it provides for the

successful operation of a business. Put simply, organizations with superior data management

and the ability to use it more effectively, win in the market. This is also the reason why the

amount of accessible data is the biggest it’s ever been.

While the abundance of data available to us allows us to extract information and and use it in

ways we otherwise couldn’t, when examined in its most basic form, also known as atomic data,

the process can be extremely time consuming and tedious. Data aggregation is any process

whereby data is gathered and expressed in a summary form. When data is aggregated, atomic

data rows – typically gathered from multiple sources – are replaced with totals or summary

statistics. Aggregate data is typically found in a data warehouse, an enterprise system used

for the analysis of data from multiple sources, as it can provide answers to analytical questions

and also dramatically reduce the time to query large sets of data.

The collection of data needed to create those databases may be given by the websites that gather
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2 Chapter 1. Introduction

them, but when this is not the case, we often have to resort to ”crawling” or ”scrapping” those

pages for their data. Crawling, is the process of accessing the databases of all necessary pages,

collecting this data and storing it in our own database for processing. This can be achieved very

easily on static pages, meaning web pages that are delivered to the user’s web browser exactly

as stored, but in the case of dynamic web pages, that are generated by a web application, the

process becomes a bit more complex.

1.2 The problem of Entity Resolution

In recent years, several databases have been built to enable large-scale knowledge sharing, but

also an entity-centric Web search, mixing both structured data and text querying. These bases

offer machine-readable descriptions of real-world entities published on the Web as Linked Data.

It is often the case that a database of aggregated data includes tuples of a specific object.

While entities are usually readable by algorithms, the same object may possess differently

worded descriptions, that may seem obviously similar to humans, but indistinguishable to the

algorithm. Depending on the field of study, specialized entity resolution algorithms can be used

to identify such tuples, and allow for a more organized database.

Entity resolution is the problem of extracting, matching and resolving entity mentions in data.

For long it has posed a challenge in database management, information retrieval, machine

learning, natural language processing and statistics. Efficient entity resolution offers great

benefits in a variety of commercial, scientific and security domains. Especially now, in the age

of big data, the need for high quality entity resolution is more prevalent than ever, as we are

overwhelmed with more and more data, the utility of which cannot be fully extracted until it

has been integrated and matched.

In this thesis, the problem of entity resolution is rather complex. Our information is collected in

a non-cooperative way between our app and the product providers. The scrapped information

is semi-structured, in that it does not have a common schema between independent product

providers. It is this lack of synergy that poses an especially significant challenge.
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1.3 Apache Solr as a database and search engine

Solr is a search server built on top of Apache Lucene, an open source, Java-based, information

retrieval library. It is designed to drive powerful document retrieval applications. Solr is

highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-

balanced querying, automated failover and recovery, centralized configuration and more. Solr

powers the search and navigation features of many of the world’s largest internet sites, like

Macy’s, EBay, and Zappo’s. It can run both locally and using cloud technology, as a single

Solr server can only support so much data, and so many queries.

While Solr’s default UI is adequate for understanding its workings as a search engine, it is far

from user-friendly. Throughout the years, there have been many interfaces created by developers

to better achieve user satisfaction, although in this thesis we design our own interface for our

web app that connects to Solr to better suits our needs.

1.4 Basket Optimization and its importance

When it comes to choosing a product that’s available from various sources and for which we

have already performed all necessary entity matching procedures, many factors have to be taken

in mind. The obvious one that comes to mind is price. When faced with the decision between

two identical objects, most of us would chose the cheaper one. However, there are other things

to take into consideration. For example, when delivering products, most stores would require

a minimum price of items in the basket, otherwise they may refuse to offer delivery services.

While it is easy to distribute our items when they are few, it is often the case with grocery

shopping, that we end up buying tens of items, each with their unique price. Calculating

the optimal way of distribution of products into multiple baskets of separate stores in such

cases might prove impossible for the average person. This is why some stores have begun to

implement ”smart baskets”, algorithms that assist the user in choosing the most affordable

combination of items, in a way that fulfills any requirements that might be in place.
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1.5 Thesis Outline

This thesis has been organized into five chapters. This section outlines the description of each

chapter:

• In Chapter 2, we collect the data of three Greek grocery electronic stores: Sklavenitis, AB

Vasilopoulos, and Chalkiadakis. This will be achieved through the automated crawling

of their web-pages, which manifest in both static and dynamic forms.

• In Chapter 3, we develop an algorithm that can efficiently recognize and match identical

multi-source entities and provide us with aggregated data that can be used to create a

database for our application.

• In Chapter 4, we use Apache Solr as a database and a search engine, that we will use

to store our data and through queries obtain the products that we want. We will also

examine Solr’s UI, the existing, more user friendly alternatives, and finally develop our

own UI’s front-end that can be used in the application.

• In Chapter 5, we provide a basket optimization algorithm, that we use after adding

products to our cart, allowing us to get the best price across all possible sources.

• In Chapter 6, we showcase our conclusions and review the accomplishments of this thesis.



Chapter 2

Data Aggregation

This chapter has the objective to introduce the electronic shop pages from the grocery stores

which we chose in order to collect the data we used in this thesis, as well as the methods we

used to do so. We will showcase the differences in the structure of the pages and present ways

to collect item data most efficiently. Finally, we will show the database we created by the end

of this step.

2.1 The Stores and their Pages

In order to collect the necessary data we wanted to make up our database, we first had to make

a decision on which grocery stores to use as our ”supplier”. The stores we wanted had to at least

have branches in Chania, offer delivery services, and most importantly, own electronic stores.

We ended up with three candidates that fit these criteria: Sklavenitis, AB Vasilopoulos,

and Chalkiadakis.

5



6 Chapter 2. Data Aggregation

2.2 The process of Crawling

After deciding on which grocery stores to use, the first step we had to take was to collect the

data we wanted. This included the whole catalogue of items from each store, regardless of

category, including:

• Name and description

• Price before and after any sales that take place

• The image associated with the product

• The name of the grocery store

In the case the item was out of stock, we would still gather the appropriate data, but label it

as such.

We examined several ways and methods of crawling [18] in this step, with the most notable

being HTTrack, Python BeautifulSoup, and Python Selenium.

The crawling process had to be specific to each grocery store depending on its e-shop page, with

the main concern being the model of the page, as static and dynamic pages have inherently

different structures that must be tackled appropriately.

2.2.1 Static Pages

For static web pages when a server receives a request for a web page, the server sends the

response to the client without doing any additional processing. Pages will remain the same

until someone changes it manually. The main way this manifests in our case, is that once we

have loaded a page, for example, the dairy category of the grocery store, the code of the page

we can observe through our web browser includes all the necessary information we want. As

such, it is a very simple and fast process to crawl a static page. Unfortunately, possibly because
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of its smaller size relatively to the other two stores, Chalkiadakis was the only one to have a

static page.

The most obvious option was to use HTTrack. HTTrack [3] is a free offline browser utility. It

allows you to download a World Wide Web site from the Internet to a local directory, recursively

building all directories, getting HTML, images, and other files from the server to a computer.

In about a day of waiting time, we had a complete, working mirror of the Chalkiadakis e-shop,

including all the files we needed to fill our database. From there, it is a matter of sorting those

files with the help of the HTML code we have downloaded.

To achieve this we used Python BeautifulSoup. BeautifulSoup [23] is a Python library for

pulling data out of HTML and XML, helping us parse through the HTML file [25]. With the

use of class names, we were able to isolate the data we wanted and store it.

2.2.2 Dynamic Pages

When the web server receives a user request for a dynamic page, it does not send the page

directly to the requesting browser as it would do with a static page. Instead, it passes the page

to the application server which then completes three activities:

• Read the code on the page

• Finish the page according to the code’s instructions

• Remove the code from the page

This results in a static page that’s passed back to the web server by the application server, and

then to the requesting browser for display.

The other two grocery stores used dynamic pages for their e-shops, making the process slightly

more complex. While in static pages we can simply download an HTML file and parse in

order to isolate the data that are useful for our purposes, here each iteration of server-user
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communication produces a different static page, so for example the HTML code of a page

showing the items of a category of products, would only include information on the items

shown, and not other items, like those of different categories, or even those in different pages of

the same category. This means that if we want to have a complete list of all the items included

in an e-shop, we would have to parse a whole compilation of static pages across all of the stores’

websites. In our case, this translates to each page of every item category included in either

store’s catalog.

In order to achieve this, we used Python Selenium [7]. Selenium is a library aimed at supporting

browser automation [22], and the goal was to create a script that would successfully browse

through the store’s e-shop website and methodically collect the required data.

For compatibility reasons, our browser of choice was Mozilla Firefox, so we had to use Gecko-

Driver and create a path to it for Selenium. GeckoDriver serves as a proxy between WebDriver

enabled clients and the Firefox browser. In other words, GeckoDriver is a link between Selenium

tests and Firefox.

Because we can no longer find our goal from the get-go, we will have to show the script how

to navigate through the e-shop, by using a simple algorithm that utilizes XPath expressions as

anchor points. An XPath expression can be used to search through a document, and extract

information from any part of the document, such as an element or attribute. For example, if

we know the XPath used for navigating to the main page of the store, we can teach our script

to return there after browsing each category.

To be able to easily see the XPath expressions we need, we used the extension XPath Finder,

which shows the XPath of an element with the click of the cursor. An example can be shown

on the image below, where by clicking on the contact button of the grocery store, we are given

its XPath expression.
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Clicking on the contact button shows the button’s XPath in the gray box below

Unfortunately, in some cases the information we need isn’t available through xPaths, or there

is simply a better way of getting the data we want without having to acquire a whole package

of elements. This was usually the case once we had navigated to the products themselves, and

needed specific information. In those cases we had to use class names to direct our script to

the goal. An example is shown in the images below.

We can find the product name under the class name ”product title”
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While a different product, the name is mentioned under the same class name

As we can see in both of these images, while the product names under examination are different,

they are both stored under the class name ”product title”. Knowing these facts, we can

explain how our selenium script works:

Once we are in the e-shop, we begin browsing through the categories one by one. Unlike

static pages, where the products are sorted in pages, here we are faced with an Infinite Scroll

mechanism, a JavaScript plugin that automatically adds the next page once the user scrolls

down, saving them from a full page load. Because the page is dynamic, every time we reach the

end of the page and we keep scrolling, a new HTML code is generated that includes all data

on previous products, on top of the new data. Once we reach the end of the Infinite Scroll,

we have an HTML code that includes all products of this particular category. We can then

proceed to catalog all of this data using the class names of the information we require. We

can then move on to another category using its xPath, and repeat this process until we have

cleared all available categories.

2.3 The Aggregated Data

Once we finished with the process of crawling, our database was filled with data for over 25,000

products gathered from the three stores, along with their names, descriptions, prices, and any

useful information we might need for our next step. After making sure that there were no

duplicate objects from the same source, this data was initially stored in an Excel file for easy
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reviewing and editing.

2.4 Conclusions & Future Work

Having worked with multiple ways of collecting data, we will give our opinion on the most

efficient ways of crawling, as well as any improvements that could be made on the existing

algorithm.

To start with, when it comes to static pages, it’s no surprise that HTTrack in combination

with Python BeautifulSoup is much simpler and more efficient in data aggregation than trying

to emulate user navigation on a web browser. For the sake of completeness, we tried utilizing

Python Selenium to aggregate data from Chalkiadakis’ static page, but the process was slower

and Selenium itself is more demanding when running, having to keep a browser open for hours

on end while collecting data. If, however, we wished to use Selenium for consistency with the

other two stores, it should be noted that it is entirely feasible, as that the data collected was

exactly the same as with the use of HTTrack and BeautifulSoup.

Another thing to take into consideration with Selenium is that the automation process has to

be specifically programmed for each e-shop, as the xPath expressions are different, and the

navigation process can be dissimilar enough to create issues. What’s more, depending on the

websites management, class names and xPath expressions can sometimes be changed, creating

the need for editing of the code in those areas.

In the future, the script could be taught to search for these changes by itself and account for

them, making it more functional without the programmer’s involvement.



Chapter 3

Entity Resolution

In this chapter, we will review our system for matching the entities within our database. Our

initial data has been in the form of isolated products, but in this step, we will try to create

three-way matches as our basis for entity matching data tuples. To achieve this we must train

our algorithm to differentiate between different products, and recognize similar ones. In our

final version of the database, we will want to have a 1 to 1 counterpart to our current database,

but along with each item’s description, price, image, etc, we want to include the best matching

item from each of the other two grocery stores, as well as its own relevant content.

3.1 The Data

As stated in the previous chapter, our database at this point contains over 25,000 entities

from 3 grocery stores. Through the process of entity resolution we will keep a close eye to the

quality of the results by manually verifying the matches in important nodes of the process, and

showcase important information regarding the degree of success of the match itself.

12
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3.2 TF-IDF

In order to determine whether two item descriptions accurately match each other, we need a

basis for the comparison. The two texts in question might be nearly identical word for word,

but still not refer to the same entity, or they might simply share a couple of common words

and actually refer to the same product [13]. To tackle this issue, the first step was to decide

on a way to determine word importance. We made the decision to use a standard process

in information retrieval, i.e., the construction of the inverted index and the computation of

TF-IDF [10] scores for each crawled product entity seeking for each top-1 (best) match in the

rest of the suppliers.

3.2.1 Introduction

TF-IDF is by a wide margin the most popular term-weighting method today. A survey con-

ducted in 2015 showed that 83% of text-based systems in digital libraries use TF-IDF.[11]

Variations of the TF-IDF weighting scheme are often used by search engines as a central tool in

scoring and ranking a document’s relevance given a user query. TF-IDF can also be successfully

used for stop-words (words irrelevant to the study) filtering in various subject fields, including

text summarization and classification.

To properly understand the process of entity resolution applied to our problem, we first have

to comprehend the TF-IDF method. TF-IDF stands for Term Frequency–Inverse Document

Frequency and it is a numerical statistic that is intended to reflect how important a word is

to a document. It is usually applied to information retrieval, text mining, and user modeling

to assign weights to words that accurately represent their importance. The TF-IDF value

increases proportionally to the number of times a word appears in the document and inversely

proportionallly to the number of documents in the collection that contain the word, which

helps to adjust for the fact that some words appear more frequently in general. TF-IDF is

compromised of two statistics: Term Frequency and Inverse document frequency.
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3.2.2 Term Frequency

Term Frequency, according to Hans Peter Luhn, can be summarized as ”the weight of a term

that occurs in a document is simply proportional to the term frequency”.[19] In a collection of

text documents, like a library of books, we wish to rank by relevancy to a query of our choice,

let’s say ”the three musketeers”, a simple way to begin is by eliminating documents that do not

contain the words ”the”, ”three”, and ”musketeers”. This, however, leaves many documents

that still contain any of these terms. To further distinguish them, we might count the number of

times each term occurs in each document; the number of times a term occurs in a document is

called its term frequency. In the case where the length of documents varies greatly, adjustments

are often made, although, in our case, this does not concern us, as product descriptions are

always short.

In mathematical terms, Term frequency, tf(t,d), is the relative frequency of term t within

document d,

where ft,d is the raw count of a term in a document, i.e., the number of times that term t occurs

in document d. The denominator is the total number of terms in document d (counting each

occurrence of the same term separately).

3.2.3 Inverse document frequency

In the previous example of ”the three musketeers”, the term ”the” is so common, term frequency

will tend to overly emphasize documents which happen to use the word more frequently, without

giving enough weight to the more meaningful terms ”three” and ”musketeers”. The term ”the”

is not a good keyword to distinguish relevant and non-relevant documents and terms, unlike the

other two less-common words. Hence, an inverse document frequency factor is incorporated
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which diminishes the weight of terms that occur very frequently in the document set and

increases the weight of terms that occur rarely. Karen Spärck Jones conceived a statistical

interpretation of term-specificity called Inverse Document Frequency (IDF), which became a

cornerstone of term weighting.[16]. According to her, ”The specificity of a term can be quantified

as an inverse function of the number of documents in which it occurs”.

The inverse document frequency is a measure of how much information the word provides, i.e.,

if it is common or rare across all documents. It is obtained by dividing the total number of

documents by the number of documents containing the term, and then taking the logarithm of

that quotient,

where

• N is the total number of documents in the collection of documents D

• The denominator is the number of documents where the term t appears

3.2.4 Term Frequency - Inverse Document Frequency

Knowing these equations, tf–idf can be calculated by multiplicating the two statistics:

A high weight in TF-IDF is reached by a high term frequency (in the given document) and a low

document frequency of the term in the whole collection of documents; the weights hence tend

to filter out common terms. So a term commonly used in a specific document but rarely used
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in other documents is deemed as improtant. As a term appears in more documents, the ratio

inside the logarithm approaches 1, bringing the IDF and TF-IDF closer to 0. In our example,

the term ”the” would have a TF-IDF close to 0, as it appears in nearly every document, ”three”

would be of medium importance, as it is a term appearing relatively often, but probably not

in every document, and the term ”musketeers” would be deemed as high importance as it is a

more uncommon word.

3.2.5 Other Vectorizers

While TF-IDF is the most popular vectorizer, there are other notable mentions that could be

used, one in particular being the CLFD method and its variants, which provides better results

for machine learning methods, compared to the results provided by traditional vectorization

techniques for those methods. More specifically, comparing clfd-based vectorization to the

next best performing traditional vectorization technique, there is an approximately 1.5% to 2%

increase in performance across all metrics. [20]

3.2.6 Cosine Similarity

After assigning our data with TF-IDF vectors, we can start matching products to each other

in a rough process. To do this, we used cosine similarity as a metric for the degree to which

different entities’ TF-IDF vectors match with each other. The match with the highest Cosine

Similarity [17] would be considered a match.

3.3 Machine Learning Algorithms

Using TF-IDF we are able to match pairs of entities depending on how similar their feature

vectors are, but that similarity does not guarantee that the pair is matched correctly. There

might be a mistake, and a different item than the one that should have been matched has been

picked, or there might just not be a match between these two grocery stores, as the product
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might only exist in one of them. To distinguish between true and false matches made by TF-

IDF vector similarity, we utilized some machine learning algorithms. In this section we will

examine them, and see each one’s contributions to the results.

3.3.1 Support Vector Machine

Originally developed by Vladimir Vapnik, Support Vector Machines [14] [9], or SVMs, are

supervised learning models that analyze data for classification. In order to train an SVM

algorithm we have to give it a dataset of training examples, each belonging to one of two

categories. After being trained, the algorithm will attempt classifying any examples given as

part of the testing dataset to either of these two classes, making it a non-probabilistic binary

linear classifier. To accomplish this, SVM will create a plane and assign each example to a

point in space. Its ideal plane of choice, is one that will maximize the length of the distance,

called margin width, between the two distinct categories, each taking up part of the space with

no common points. In case of multiple features SVMs will create hyperplanes of N dimensions,

N being equal to the number of features.

We can see the different classes in distinct colors being seperated by the hyperplane
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When given a dataset including training samples, each tagged as belonging to one of two

categories, an SVM training algorithm builds a model that assigns new samples included in a

testing dataset to one category or the other. SVM maps training examples to points in space so

as to maximise the margin width between the two categories by using the hinge loss function.

New examples are then mapped into that same space and predicted to belong to a category

based on which side of the gap splitting the categories they fall.

3.3.2 Random Forest

While SVM significantly improved the match results when compared to simply matching entities

by their TF-IDF vector similarity, we still didn’t have the level of entity resolution that could

be used in a market environment. To improve our results even further, we tried using the

random forest method.

In a decision tree classifier [24] each node in the tree corresponds to a test on a feature, branching

out to the possible values of this feature. Data is continuously tested until it reaches its class,

in one of the final nodes of the tree.
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A Random Forest [12] [5] then, is a classification method where a multitude of decision trees

are created during training, which is why it’s categorised as an ensemble learning algorithm.

Depending on their depth, decision trees tend to overfit their data, often making them inac-

curate in their classifications. Random forest provide a welcome upgrade in the quality of the

results, by introducing some additional mechanisms in the training process.



20 Chapter 3. Entity Resolution

Random forests usually apply Bootstrap Aggregation, or Bagging. Bootstrapping is a test

method that uses random sampling with replacement. Without bootstrap, each decision tree

would include the whole dataset. With bootstrap, instead of training on the whole dataset,

each tree of the forest is trained on a subset of data, called the Bag. Multiple trees are trained

on different bags, and later the results from all the trees are aggregated.

In our thesis, we tested random forests with and without bootstrapping to see which version of

the algorithm yields the better results.

3.4 Transitive Closure

Because we possess in our database entitites from three different sources, we will have to perform

two different matches for each entity, one for each of the two remaining grocery stores, excluding

the one the item in question comes from. So assuming an item A from the first grocery store,

we will have to find its most successful match from the second grocery store, let’s call this item

B, and the most successful match from the third grocery store, C. It is then an interesting

question to ask ourselves, whether entities B and C should also match with each other. If

A = B and A = C, it is logical to assume that B = C as well. On the other hand, if our

algorithm decides that B and C do not match, we can take this as an indication that one or

both of the matches with A might be false, and use this knowledge to find matches that are

more likely to be true.

This property is called Transitive Closure, and is a transitive relation. A relation R on a set X

is transitive if, for all A,B,C in X, whenever ARB and BRC then ARC. In our example, the

relation would be an equation between matching entities.
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We tested this by inserting a requirement to the matching process, that the two matches of our

initial entity must match with each other to a certain degree, otherwise we would consider the

matches false and try to find the next most likely match.

3.5 Precision and Recall

Ideally, we would be able to manually confirm our matches correctness by going over them

and tagging them as true or false, then calculating the success percentage. While this was an

apporach that we tried during the training stages – we had to be sure about the data we feed

our models, after all – the testing part could prove to be extremely time consuming and tedious,

as we would repeatedly try different approaches, each with different outputs, and thousands of

matches to go over in total. This is why we ultimately chose a different approach, the Precision

and Recall method. Precision and Recall are metrics for performance of data classification, and

through them, a plethora of other important helpful metrics can be expressed.
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3.5.1 Basic Terms

Before we can start delving into the metrics that Precision and Recall offer us, we need to

define a few basic terms that will serve as the building blocks for the equations to follow:

• Positive: An entity pair that has been estimated to be positive for a match.

• True Positive: A positive estimation that has been confirmed as correct.

• False Positive: A positive estimation that has been confirmed as incorrect.

• Negative: An entity pair that has been estimated to be negative for a match.

• True Negative: A negative estimation that has been confirmed as correct.

• False Negative: A negative estimation that has been confirmed as incorrect.

A graphic representation can be shown bellow, where the filled in dots on the left half of the

image represent the Positives, and the hollow dots on the right represent the Negatives.
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3.5.2 Metrics

Now that we understand the basic terminology, we can start to focus on the metrics that the

Precision and Recall method offers for performance:

• Precision or Positive Predicted Value: Of the sum of matches that have been esti-

mated to be Positive, Precision refers to the subset of matches that are True Positives.

PPV =
TP

TP + FP

It is a good indication of what percentage of positives have been successfully classified.

• Recall or True Positive Rate: Of all of the matches that should have been classified

as positive, recall accounts for the ones that have been correctly classified.

TPR =
TP

TP + FN

It is a good indication of the success we have in making correct matches at all, and as

such is an important metric in this thesis.

• Negative Predictive Value: Opposite to Precision, NPV predicts the percentage of

negative matches that have been correctly classified.

NPV =
TN

TN + FN

• Specificity or True Negative Rate: Opposite to Recall, TNR is used to calculate our

success in classifying negative matches.

TNR =
TN

TPN + FP
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• Prevalence: The ratio of Positive matches to the sum of all matches.

P

P +N

• Accuracy: A very important metric as to the degree of success of our classification

model, it calculates the accuracy with which data is classified correctly

ACC =
TP + TN

P +N

• Balanced Accuracy: In imbalanced sets, accuracy can be misleading. A set of 99

negatives and 1 positive can be classified as all negatives and give an accuracy score of

99%. This is where Balanced Accuracy is prefered.

BACC =
TPR + TNR

2

In the previous example, TPR would be 0%, while TNR would be 100%, giving us a 50%

balanced accuracy.

• F1-Score: Also known as F-Score, or F-Measure, is the harmonic mean of Precision

and Recall, and is a metric that can be used to evaluate the overall performance of our

classifier.

F1 = 2× Precision×Recall

Precision+Recall
= 2× PPV × TPR

PPV + TPR

There are more metrics that emerge from these values, but the above are enough to get an

accurate idea of this thesis’ performance.

3.6 Dataset Balance

Before proceeding to the part of the chapter where we showcase our baselines for entity resolu-

tion, there is some merit in examining one last parameter that will prove to be an important

factor in the efficiency of our algorithm.
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When it comes to training machine learning models to recognize identical entities, the balance

of the training datasets plays a major role. A balanced dataset is one where an equal amount

of correct and incorrect matches occur, with the intention of avoiding any biases that could

appear in the model. Another school of thought is that an imbalanced training dataset might

be more effective, as it will show a more realistic image of what would really happen in a real-life

scenario. We approached this by working on a scale of balancing ratios, until we could decide

on the one that is optimal.
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3.7 Implementations

Now that we have explained the terminology and methods used in this part of the thesis, we

can start to showcase the implementations and results of our entity resolution algorithm. To

briefly recap the previous chapter, at this point we have in our possession a database of about

25,000 products, each from one of three distinct grocery stores. Along with its description, each

entity has been given a unique ID in our database to facilitate searching and a grocery store

ID that references its source. We have other information on each product, but for this chapter

these are all we are going to need. So for our first step, we edit our database to only include

this data. We can find more information about each item later by cross-referencing the ID of

each entity in the initial database.

In the example above, the columns represent from left to right:

1. Product name and description
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2. Source Grocery Store ID, with 1 being Sklavenitis, 2 being AB Vasilopoulos, and 3 being

Chalkiadakis

3. the Unique entity ID

3.7.1 Baseline 1

In the first iteration of our algorithm, we focused on achieving the basic requirements of entity

resolution. We started by applying a TF-IDF algorithm on the product descriptions. To do

this, we first had to transform our descriptions in a compatible form. We made each description

consist only of lower case letters, and used Canonical Decomposition, to adjust for the fact that

the original descriptions were in Greek. Canonical Decomposition, or NFD for short, is a way

of decomposing letters that are not in the default English language into smaller parts with the

intention of composing them again later. An example can be shown in the image below.

After this, we created a bag of words, and split each description into words by using the space

character ’ ’ as an indication of where each new word starts, then added the words into the

bag. When we had placed all of our words in the bag, we created a TF-IDF vector for each

description, and assigned it two variables with the intention of giving them cosine similarity

values of 0 to 1, 0 being a 0% match, and 1 being a 100% match, and initialized them at 0.

Then, for each vector we accessed every other vector in the whole list that wasn’t from the

same grocery store. In every loop we would check if the cosine similarity of the two vectors
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was higher than the assigned value of the corresponding grocery store, which at first was 0,

but would then be replaced with the first positive value. When we found a match with higher

similarity than the one we had, we would keep it in a temporary array, along with its other

information.

After going through the whole database, for each vector, we would have zero to two matches

for each entity, depending on whether we found matching products on the other grocery stores.

In the case there were zero matches, it was estimated by the algorithm that there were no other

similar products in the other two grocery stores, and in the case there were two matches, we

had found similar products in both other sources. In this case, we would also calculate those

products’ relative similarity, in order to have an idea of how well transitive closure would be

accounted for with this approach. An example of our new dataset can be seen below.
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Where assuming the initial entity is A, the match from one of the other stores is B and the

match from the last store is C, each column represents in order of left to right:

1. the Unique entity ID of A

2. grocery store ID of A

3. Product name and description of A

4. the Unique entity ID of B

5. grocery store ID of B

6. Product name and description of B

7. Cosine Similarity of A and B

8. the Unique entity ID of C

9. grocery store ID of C

10. Product name and description of C

11. Cosine Similarity of A and C

12. Cosine Similarity of B and C

When examining our new dataset we can see that some matches have really good cosine similar-

ity, some have really bad one, and the cases where no matches are found are particularly rare.

In general, the results are very inconsistent. While some good matches are made, they are lost

in a sea of irrelevant data that makes this first iteration not able to be used in a commercial

environment, as the user will only want to see relevant matches.

Before proceeding to the next step, we took a more careful look into this dataset in order to

confirm the degree of success that the TF-IDF and cosine similarity method had, as well as

maybe take notice of any interesting facts that come up. To do this, we created four groups of

randomly chosen samples, with each sample containing a random entity and its matches from
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the previous process. The groups differed in size and consisted of 50, 100, 150, and 200 samples,

making up for a total of 500 samples, or 1000 matches. We manually went over each match

and tagged it as True, in case the match was correct, or False, in case it wasn’t.

After tagging all of the randomly selected samples, we run a calculation on the tags we manually

input and found these results:

Matching success rate of sample groups in increasing order of size, ending with the sum of all groups

The graph above shows us that the sample groups had matching success of varying degrees,

from 20%, up to 31%. When put together, all 500 samples had an average matching success

of 26%, far too low for it to be considered reliable. Another interesting statistic that came

up through this process was the correlation between the degree of matching success and the

sources of the entities.
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Matching success rates between Sklavenitis-AB, Sklavenitis Chalkiadakis, AB-Chalkiadakis

A shown above, matches between Sklavenitis and AB Vasilopoulos, where 80% of our total

dataset originates, were considerably more successful than matches of either of those grocery

stores with Chalkiadakis. We attribute this to the fact that these two bigger grocery stores

have clearer and more machine-readable descriptions for their products.

Because manually verifying whether each of the matches is correct or not would become ex-

tremely time consuming as we continued testing more and more methods, some of them mul-

tiple times, we decided to create an ”artificial” dataset, which would comprise of 3086 random

matches, making up 7172 entities. These entities were made up from the original 500 checked

samples, about 500 matches of some of the falsely matched products with 9 other candidates

that weren’t picked in the first phase that had the highest cosine similarity, and an additional

set of samples that we’ll address in the next paragraphs.

After manually tagging each sample match, we ended up with 262 true matches, and 2824 false
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matches. This dataset would allow us to have a common testing ground for all following tests

made with different methods and algorithms, and have comparable results, while also saving

us the time of manually going over each one individually. To automate the process of testing,

we used the precision and recall method. When an algorithm makes a match between those

items, we will know whether this match is True or False, and classify it in one of 4 categories:

True Positive, False Positive, True Negative and False Negative.

There are some caveats in this method that should be taken into account. Mainly, while we

are aware that there are 262 true matches, meaning that there are 524 items with confirmed

matches in the dataset, the rest would not be confirmed true negatives. While we know that

the match they were part of wasn’t correct, there is no guarantee that there isn’t another item

in the dataset that would have matched correctly. So when a match is made that wasn’t in the

original dataset, we would only be able to classify it as true negative if we know that one of

its items was part of a true positive match, as an item can only match with one other product

from each store correctly. In any other case, we had to assume that a negative match was either

a true negative, or a false negative. And a positive match that wasn’t part of the original true

negatives, was either false positive or true positive. This would normally put us in a position

where we would be aware of true positive values but all the others would be considered relatively

unknown.

To account for this, we inserted 2000 confirmed true negative matches. We did this by using

our true positive pairs, and because each entity can only match with one other entity from a

separate store, we can assume that if we know what that match is, then all other matches with

those entities within those two stores must be wrong. What this allowed us to do, was have a

baseline for true positive and true negative matches, being 262 and 2000 each, with the other

737 matches being either false or true negatives.

An example of what a classification with this new method would look like for the simple TF-IDF

algorithm is shown in the image below.
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Where the algorithm correctly recognised all but one the true positive samples and matched

them, didn’t find matches for 2087 of the true negative samples, and found matches for 737 of

the entities that weren’t correct. We then assume that the number of false negatives is between

1 (the one true postiive sample that the algorithm didn’t recognise) and 737, the number of

false positives, because of how the wrongly matched false positives might have been correctly

matched otherwise.

The next thing we wanted to introduce to the algorithm was the transitive closure apporach.

The idea was to use the transitive properties in a way that would help us improve the quality

of the matches. If we are examining product A, and if it can only find one match through

cosine similarity, B, then if we can find a match for product B from the grocery store that’s

left, through transitive property that product, let’s call it C, should also match with A. If,

however, A finds matches with both stores with items B and C then we check which match has

the higher cosine similarity, if it’s B, we find its match from the store that’s left, let’s say item

C2, and use that product as a match with A as well. Again, because of the transitive property
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if A=B and B=C2, then A=C2.

Unfortunately, this apporach proved to be inefficient compared to its counterpart, and reduced

the quality of the results as shown below, so we did not examine it further.

We also had an additional 105 samples that we weren’t able to categorize correctly because of

how vast the initial dataset that we had to work with was. Still, it was clear that transitive

closure provided a downgrade.

3.7.2 Baseline 2

In the latter part of our entity resolution algorithm we mainly experimented with machine

learning in an attempt to see how it would affect the results from the TF-IDF and cosine

similarity matching. We will still use TF-IDF to create vectors of term importance, but using

the new artificial set we have created we will train and test machine learning algorithms. When
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it comes to the TF-IDF algorithm, we will still use a fit transform function on the initial dataset

that includes all 25,000 entities, but now we will use a transform function for the testing dataset,

which comprises of a subset of the artificial dataset, in order to assign predefined weights to

the terms.

The first machine learning model we examined was an One vs. One SVM model, but we then

followed it up with a random forest model, as well as a random forest model without bootstrap.

Training these models provided an interesting challenge in the form of the data we feed it. A

training function has two parameters, a vector of features of the data, and the label we classify

it as. When we train a model with multiple samples, we must provide it with lists of equal

length in both of those parameters. In our case, the labels would be a list of our tags, those

being either true or false. The model would then encode them as a binary decision, eg. 0

for True and 1 for False. The features however were a bit more complex. Normally, we feed

the sample parameter with a feature vector, but in our case we possess a pair of entities as a

match. Because adding an additional parameter for the second entity would prove problematic,

we used a different approach. By concatenating the two feature vectors of the matched items,

we now had a singular vector that we would be able to feed into the model for training.

Another factor we had to take into account was the ratio of the sizes if the training set and the

testing set. We decided to use a 20/80 split so that the testing set was still sizeable enough

to provide realistic results. The samples were split in a way that this ratio was also applied to

both the classes, so for example our 262 confirmed True matches were split into 2 groups of 52

and 210 for training and testing respectively.

The last thing we tested was the most efficient ratio of true to false matches used in the training

process. In a balanced iteration we used 262 true and 262 false matches, so as to avoid over

fitting. On the opposite side, when going for an unbalanced approach we used the whole dataset,

that being 262 true matches and 2864 false matches. We experimented with various values in

between in an attempt to demonstrate a trend in this ratio’s optimacy.
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Our first test was an SVM model that was trained with a subset of the artificial test and then

tested on a subset of the remaining artificial test. These two subsets were always distinct so as

to avoid bias.
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• Precision:

1. 262:262 : 0.26

2. 262:350 : 0.20

3. 262:500 : 0.10

4. 262:1000 : 0.14

5. 262:2864 : 0.33

• Recall:

1. 262:262 : 0.77

2. 262:350 : 0.43

3. 262:500 : 0.09

4. 262:1000 : 0.02

5. 262:2864 : 0.01

• F1-Score:

1. 262:262 : 0.39

2. 262:350 : 0.27

3. 262:500 : 0.09

4. 262:1000 : 0.04

5. 262:2864 : 0.02

Then we tested a Random Forest model using the same training and testing datasets.
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• Precision:

1. 262:262 : 0.27

2. 262:350 : 0.18

3. 262:500 : 0.11

4. 262:1000 : 0.07

5. 262:2864 : 0.03

• Recall:

1. 262:262 : 0.80

2. 262:350 : 0.50

3. 262:500 : 0.21

4. 262:1000 : 0.13

5. 262:2864 : 0.04

• F1-Score:

1. 262:262 : 0.40

2. 262:350 : 0.26

3. 262:500 : 0.14

4. 262:1000 : 0.09

5. 262:2864 : 0.03

And lastly we modified that Random Forest model to not include the bootstrap mechanic.
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• Precision:

1. 262:262 : 0.25

2. 262:350 : 0.18

3. 262:500 : 0.11

4. 262:1000 : 0.06

5. 262:2864 : 0.07

• Recall:

1. 262:262 : 0.73

2. 262:350 : 0.51

3. 262:500 : 0.22

4. 262:1000 : 0.12

5. 262:2864 : 0.06

• F1-Score:

1. 262:262 : 0.37

2. 262:350 : 0.27

3. 262:500 : 0.15

4. 262:1000 : 0.08

5. 262:2864 : 0.06

From the statistics and graphs above we see some trends:

1. The more balanced the training set, the better the model becomes at recognizing matches,

but the worse it becomes at recognizing non matches

2. The more unbalanced the training set, the better it becomes at recognizing non matches,

but the worse it becomes in recognizing matches because of overfitting
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3. Balanced datasets tend to do better at F1-Score values than unbalanced datasets

4. Random Forest with Bootstrap fares a little better than its counterparts when a balanced

dataset is used for training

5. Random Forest without Bootstrap is the worst of the three in its F1-Score when a balanced

dataset is used, but maintains the relative best F1-Score when an unbalanced dataset is

used

If we were to put all of these models in a single graph that compares their F1-score, it would

look like the following image:

F-scores of all combinations of machine learning methods and dataset balances, results remain inconsistent
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At this point we have managed to create an algorithm that is somewhat competent in entity

resolution, but not enough for commercial use. This is why we had to introduce two additional

mechanisms that worked in tandem in the algorithm in order to improve its performance.

The first mechanism was a cutoff threshold in the cosine similarity. Before now, it has been

possible for the machine learning model to categorize a match with very little cosine similarity

as true. That will result in two drastically different items being matched together. To avoid

this we introduced a floor to how low cosine similarity could be before we decide that it’s not

even worth to test it on a machine learning model, and instead conclude that the entity has no

match. After various tests, we concluded that a threshold of 0.5 cosine similarity is optimal.

So for example, if an item has many candidates for a match above 0.5 similarity this change

would not affect it. But if all of an item’s candidates were below 0.5 similarity, this change

would make it so we would instead determine that this item doesn’t have a match.

The second mechanism was a penalty to the cosine similarity of matches when the machine

learning algorithm determined that the match was false. The machine learning models would

sometimes falsely determine that very similar items were different. We needed to introduce a

penalty to the similarity value that would be significant enough to alter the order of the most

probable candidates for matching with our product, but also forgiving enough to not exclude

a candidate if it were the only good one. After multiple tests, the penalty was fixed at 10%

of the similarity value. So for example a match with similarity of 0.9 that was categorised as

false by the Random Forest model would have its similarity altered to 0.81. If there were any

candidates above that similarity that the model categorized as true, they would take its place

as the prime candidate, otherwise the match would remain as the most probable one.

The results of this new and final iteration of Baseline 2 can be seen below:
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• Precision:

1. 262:262 : 0.78

2. 262:350 : 0.70

3. 262:500 : 0.75

4. 262:1000 : 0.57

5. 262:2864 : 0.16

• Recall:

1. 262:262 : 0.87

2. 262:350 : 0.70

3. 262:500 : 0.71

4. 262:1000 : 0.74

5. 262:2864 : 0.58

• F1-Score:

1. 262:262 : 0.82

2. 262:350 : 0.70

3. 262:500 : 0.73

4. 262:1000 : 0.65

5. 262:2864 : 0.25

It is apparent from these figures that this new iteration is not only significantly better than

its predecessors, but also competent enough to be used in a commercial environment. Unlike

previous iterations, we do not have to chose between a good True Positive Rate and a good

True Negative Rate, as we can achieve both at the same time. The error rate is relatively

small, and even when two items are falsely matched, they are very similar in nature, such as

two version of the same product that only differ in quantity, or size.
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To showcase the results better, below we show the previous graph including all tested methods,

this time including the new baseline 2 with decreased cosine and similarity cutoff.

F-scores of our new method compared to the previous scores, showing success rate of over 80%

3.8 Code Presentation

In this section we will present the entity resolution algorithm we developed in pseudo code, so

as to better explain the process.
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f unc t i on randomforestapproves ( item , dataset , model )

f l a g l i s t = p r ed i c t match between item and each item in datase t

re turn f l a g l i s t

// t h i s f unc t i on p r ed i c t s match c o r r e c t n e s s between an item and other

// items in a database based on t r a i n i n g

c u t o f f = 0 .5

//below t h i s po int o f s im i l a r i t y we dec ide that the re i s no match

decrease marg in = 0 .9

// the f a c t o r we mult ip ly s im i l a r i t y as a pena l ty i f the machine

// l e a rn i ng model makes a negat ive p r ed i c t i o n

f o r each item in f u l l d a t a s e t

add de s c r i p t i on word s in t o t a l bag o f wo rd s

t o t a l ma t r i x = t f i d f f i t t r a n s f o rm ( t o t a l bag o f wo rd s )

// we f i t trans form our t f i d f v e c t o r i z e r on the t o t a l datase t

f o r each item in t r a i n i n g d a t a s e t

add de s c r i p t i on word s in t r a i n i ng bag o f wo rd s

tags = match tags

// these are the tags we manually a s s i gned to matches

t r a i n i ng mat r i x = t f i d f t r a n s f o rm ( t r a i n i ng bag o f wo rd s )

//we then trans form on the t r a i n i n g datase t
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model = RandomForestClass i f ierWithBootstrap

// the model with the best r e s u t l s was a random

// f o r e s t c l a s s i f i e r with boots t rap

model . f i t ( t r a in ing mat r i x , tags )

f o r each item in t e s t i n g d a t a s e t

f l a g l i s t = randomforestapproves ( item , t e s t i n g da t a s e t , model )

c a l c u l a t e co s i n e s im i l a r i t y with a l l i tems in t e s t i n g d a t a s e t

i f f l a g = f a l s e

s im i l a r i t y = s im i l a r i t y ∗ decrease marg in

f o r each grocery s t o r e other than the item source

f i nd product with h i ghe s t c o s i n e s im i l a r i t y with item

i f s im i l a r i t y < c u t o f f

no match with that s t o r e

e l s e

found match with t h i s s t o r e

c r e a t e a match o f item with i t s matches from the other s t o r e s

save matches in database
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3.9 Conclusions & Future Work

In conclusion, with a combination of information retrieval and machine learning we have created

an entity resolution algorithm that we can use for our application. We have seen which models

work best in which cases, what changes have to be made for them to adapt to our specific

problem, and we have showcased all of these results using metrics that determine not only

surface level performance, but also account for all aspects of a stable classification algorithm.

In future implementations of this work, there could be some alternative options that might

be chosen and tested for results. In this implementation we concluded that the prices of the

pairs even when the match was false, were similar enough to not warrant much afterthought,

but an additional filtering of the products’ prices may yield some improvement to the resutls.

Moreover, because of restrictions of the testing hardware we were not able to capitalize on the

fact that we had the product images in our possession. With better equipment or more time

to spare, an algorithm for image matching might also significantly improve the results.



Chapter 4

Using Apache Solr

In this chapter we examine Apache Solr [2] in its use as a database and search engine. We take a

look in the existing UIs that are available for users online, and, finally, our own implementation

of the Merebo Web App, an application that allows the user to interact with the results of our

work.

4.1 Using Solr as a Database

So far we have been storing our entities in excel sheets. We chose this method because while in

the experimenting phase multiple rounds of editing and interaction with the data was necces-

sary. However, after finishing our entity resolution algorithm and using it on a sizeable sample

dataset, we finally have the final form of our dataset. We have each item comprising of 1-3

products depending on how many matches were found, along with their descriptions, prices, ID

of the store they originate from, and finally a local path to their images. An example of one

sample of data in our database is the following:

• Store 1 ID: 1

• Product 1 Name: PAPADOPOULOU Cookies with Chocolate pieces Cocoa 2x180gr
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• Price 1: 1,59 €

• Image 1:

• Store 2 ID: 2

• Product 2 Name: PAPADOPOULOU COOKIES WITH CHOCOLATE PIECES 180 GR

BREAKFAST - snacking and refreshments

• Price 2: €1,37

• Image 2:

• Store 3 ID: 2

• Product 3 Name: BREAKFAST REFRESHMENTS SNACKS PAPADOPOULOU Pa-

padopoulou Cookies Cookies with Chocolate Pieces Cocoa 2 x 180 gr -0 65€

• Price 3: 1.48€
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• Image 3:

In this example, we can see a case where an item has a correct match from one store and an

incorrect match with the other one, although even then the products were relatively similar.

Now that we have the finished form of our data, we can input it in a more appropriate database,

for which purpose we decided to use Apache Solr. Although Solr is predominately a search

engine, it can also be utilized as a database. To use it as such, we need to download a version

of Solr, run it through command line or terminal, create a core (or collection if running in cloud

mode), and use the post command to upload a compatible file, like Json, CSV and others. In

our case, we chose to use the CSV format to upload to our database. After this, more files can

be added or even removed from a specific core, allowing us to keep our database up to date.

The form in which the previous example will be logged into our Solr Database can be shown

in the image below:
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Once we have run Solr, a locally hosted server will be created that will support our database,

by using references to local files. That is to say, we can’t upload an image to our Solr database

directly, but we can give it a path to the image from a local directory, like we did in the example

above.

4.2 Using Solr as a Search Engine

After successfully uploading our database to a Solr core, we can use its search engine algorithm

to query the data. The querying mechanism is usable for a person who understands basic

database querying, but very unintuitive for the average user. Where most of us are used to

simply typing terms we are searching for in the search bar, the Solr seach engine also requires

us to define the source of the term. So for example, if we are looking for a specific category of

products, like products from the brand PAPADOPOULOU, we would have to clarify that we

are looking for them in the product name field of the data. So in this example our query would

have to be:

Where ProdName1 is the field of the data for the item which is matched with the other two

from different stores.

This query will give us for search results every primary item that has in its description the term

we searched for. To show a few results:
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A thing that quickly becomes apparent in this example is the number of shortcomings in the Solr

search engine. We notice that Solr is sensitive to factors like accentuation and capitalization.

All of the items shown in the images include only the term we searched for letter for letter, and

exclude search results that have alternative versions of the word, either with accentuation, or

lowercase use.
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4.3 Solr UIs

While Solr does provide a default UI to use its functions without having to resort to using the

command line/terminal every time we want to do anything, its UI is not user friendly enough

for us to use as is. Especially its search engine, as shown in the previous section can be a bit

confusing if the user isn’t familiar with queries. Because our goal is for the MEREBO App to

be useable by everyone, we wanted to refine it and make it more approachable and user friendly.

As we wern’t satisfied with the default interface, we tried to browse the web for any existing

UIs for Solr created from users for similar applications. Some of the more noteable ones, which

can also be found in the Anant Github repository [1], were the following:

1. Blacklight

2. AJAX Solr

3. Apache Solr Search Drupal Plugin

4. Solr PHP UI

5. Spyglass

6. Splainer

Among many others. Unfortunately, we decided against using any of these options for several

reasons. Some repositories were deprecated, others were not ideal for our particular case, and

some we just couldn’t support because of software limitations.

Therefore, we concluded that the best way to give MEREBO a deserving interface would be

by creating one from scratch so that it matches our needs for the application.
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4.4 MEREBO Web App

The MEREBO Webb App is built mainly using React [6], a JavaScript library for building

user interfaces. It offers the user the basic features required of an e-commerce website, while

maintaining a simple structure.

4.4.1 Solr Connection

The app is connected to the Solr Core where we uploaded our database and for all intents and

purposes is a more user friendly version of its default UI, with some additional features.

4.4.2 Navigation Bar

The first thing that we observe when browsing the app is the navigation bar. Typing anything

in the bar, for example the term ”water” will translate the search into a query of Prod-

Name1:”water” and use the Solr search engine to find matching terms in the respective fields

of the database we have uploaded. This way anything typed in the navigation bar will be

searched in the catalogue of item descriptions of every first item in a match. Because every

match has up to 3 different versions in the database, depending on how many similar products

were found where each item takes turns in being the first item, there is no risk of leaving any

items out.
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4.4.3 Item List

Once we have typed a term in the navigation bar, a search takes place and a list of items found

is presented to the user. The items are color coded depending on their store of origin, with

Yellow for Sklavenitis, Orange for AB and red for Chalkiadakis. With each item we also are

presented with a price, image, description and buying options. An important thing to note, is

that as previously stated each item match can be presented up to 3 times, which is not desirable.

To avoid this, we placed each item match in a javascript Set, a list made up of unique items,

so when a duplicate match is found, just in shuffled order, it is recognized and excluded.

A search of the term ”cookies” gives us the following results:
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4.4.4 Buying Options

Each item is accompanied by two buying options, ”Add to Cart” and ”Auto Choose”.

The former places an item in the basket in a way that prohibits the optimization algorithm

from changing its source. This option is useful in the case where a match is false, and only one

of the items matches the user’s search. In that case, the user can choose to place that specific

item in his basket.

The latter is the option that allows the algorithm to optimize the products placed in the basket.

When first clicked, the algorithm will initially place the cheapest option in the basket. Items

placed this way are kept in a different list than items placed in the previous way.
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4.4.5 Basket
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The Basket is the final part of the Webb App interface, and provides a list with all bought items

for review and editing. First off, the user is shown the total sum of the amount he has spent,

both in each individual store, and in total. This allows him to keep an eye on his expended

amount while being able to take note of the minimum delivery costs for each store.

Bellow these values, we are met with a list of all items placed in the basket. Each item has

two values, each with a different set of buttons attached to it. The Green buttons are for

the amount of the item placed in the basket using the Auto Choose option, while the Gray

ones are for the amount placed with the Add to Cart option. For example, an item that was

placed once with Auto Choose and once with Add to Cart, will have a value of two in total,

but two different instances in the cart, a ”1” that can be edited with the Green buttons and a

”1” that can be edited with the Gray buttons. It should be noted that reducing an items price

to 0 using a button will remove that items from the basket from this specific option only. In

the above example, if we pressed the Gray - button, the item would still have one instance in

the basket, as if it were only placed with the Auto Choose option.

Lastly, there is the Optimize button. This button uses an optimization algorithm to find the

optimal combination of products with the restrictions placed indirectly by the user, to find

the minimum price while taking into account the minimum delivery costs of each store. This

process will freely change the ammount of items placed with the Auto Choose option, but will

not make any changes to the items placed with the Add to Cart option. When this option is

chosen, one of three outcomes will occur:

1. in the case where the minimum delivery costs cannot be met to fulfil the delivery, an error

message will pop up.

2. if the items placed in the basket are already in the optimal combination the user will be

let to know

3. if optimization can take place, the items will be placed in the optimal combination, the

total sums will be changed for each grocery store, and in total, and the new item list will

be shown
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4.5 CORS

Before concluding this section of the thesis we must address an important detail that makes

this application useable. Cross-origin resource sharing (CORS) is a mechanism that allows

restricted resources on a web page to be requested from another domain outside the domain

from which the first resource was served. In its current form, the application will refuse to

return information to the user’s requests unless CORS is enabled. To do this we downloaded

the Moesif CORS extention for Chrome, which allows for CORS to be enabled in the click of

a button.

4.6 Conclusions & Future Work

In conclusion, we have used Solr Apache as a Database to store our entity data, and a search

engine to navigate through our matches. We have examined the preexisting UIs, and developed

our own web application that best fits our needs. We feel that the end result is a decent

application for commercial use.

In the future, the application could be further refined, and made to to work for android and

IOS, as it currently only works for web browsing. It can also be made to work together with

other applications that provide grocery shopping delivery services, in order to lessen delivery

times.
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Basket Optimization

In this final chapter, we will look into our method for basket optimization. We have examined

the basic features of our web application, and have made it functional enough to be used by a

user. We will now introduce a mechanism wherein we will assist the user in finding the best

combination when it comes to the source of the products he’s looking for, in a way that we will

optimize both the price and the feasibility of their orders.

5.1 The Basket

To recap what we have already shown about the basket, our working features are:

1. The sets of + and - buttons for our hardset and softset items

2. Total price and amount

3. Sum for each individual Store

4. Optimization button

In this chapter we will focus on the Optimization option and the algorithm we use to optimize

our basket.
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With the rest of the features in place we can utilize the hardset (placed with Add to Cart

option) items in our basket, but we still don’t take advantage of the options that the Auto

Choose button offers us with the softset items. Ideally, we would like to offer an optimization

algorithm to the user that will take into account the items they have noted they want as-is,

and optimize the other part of the bought items, the ones the user is willing to have optimized.

The former can be ignored for the most part, as the only contribution to the final basket is

their impact on the minimum delivery costs. We still need to take them into account however,

as in the case where even one item is hardset from a store source we must fulfill the minimum

delivery cost for that store, otherwise the order will not go through.

The latter is the part of the basket where most of the optimization will happen.

5.2 The Simplex Algorithm

The algorithm we used to for basket optimization is the Simplex algorithm[15] [21] [4], an

algorithm used for linear programming problems. It has three inputs:

1. The target for optimization, along with optimization type

2. The variables

3. Restrictions, or constraints

In other words, the algorithm checks which values should be used for the variables in order to

optimize the target, which making sure that those values are within the constraints we have set.

In our case, the target for optimization would be the cost of the sum of items the user purchases

and the optimization type would be minimization. The variables would be the amount of each

item in the basket as well as the amount of alternative options. Finally, the constraints would

include two parts:
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1. The amount of items must be equal to the number the user has defined for each type of

item. If the user has chosen the auto choose option for 3 of the same coockies, we are

allowed to try combinations between the items that have matched that search, but only

up to a quantity of 3, and not outside of those options.

2. Each store must have a sum of bought item costs equal to or larger than its minimum

delivery cost. These costs are adjusted by taking into account the prices of the items the

user has manually put in the basket with the ”Add to Cart” option.

While not technically a constraint, another thing that should be taken into account is that if

the user has placed one item manually from any store in his basket, we are obligated to try

and fulfill that store’s delivery cost, even if it means increasing the price. If, on the other

hand, a store doesn’t have any items placed manually in the basket from it, we are free to even

completely exclude it from the final selection of items if it means reducing the cost.

5.3 Results

Below we show examples of the algorithm working as intended, and we review the process, but

first a reminder that minimum costs for the grocery stores are:

• 15 euros for Sklavenitis

• 30 euros for AB Vasilopoulos

• 45 euros for Chalkiadakis
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5.3.1 Example 1

In the first example we have purchased 2 matching products. The products are exactly the

same with the exceptions of their store of origin, and the way they were added to the cart.

The first product was added manually with the ”Add to cart” option, and was from AB, while

the second one was purchased automatically using the ”Auto Choose” option, and was from

Sklavenitis.

Because we do not meet the minimum delivery costs for both stores, delivery would be im-

possible as is. Based on what we have explained so far, using the optimization button should

reorganize our basket in a way that will fulfill any requirements if possible. Because we have

manually added the product from AB, we expect the algorithm to transfer the product from

Sklavenitis to AB, which would take us over the minimum delivery cost. Indeed after we

optimize the basket, this is the result:
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5.3.2 Example 2

In the second example we present a more realistic scenario, that more accurately represents a

shopping cart. We have randomly added 66 products with the ”Auto Choose” button, most

multiple times, and added a twist: one of those products was only available from Chalkiadakis.

We can see the total price for these items comes to 86.46 euros. Before optimization, the ”Auto

Choose” option finds the cheapest option for each product, so this is the best price we can get

for each individual product. We can also see, however, that we do not meet the requirement

for delivery for Chalkiadakis, so we have to use the optimization option. Because one item has

to be purchased from Chalkiadakis, we expect the basket to be reorganized in a way that items

are taken from the other two stores and added there. These are the optimization results:
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We can see that the new price adds up to 94.83 euros, which is 8.37 euros more than the

previous one, but this time all requirements for delivery are met. The algorithm found cheaper

option in the first two stores, so it tries to maintain as many options from them, while also

fulfilling the requirements for Chalkiadakis. With 66 products in their basket, it is most likely

that the user would not have been able to reach this combination without assistance.

5.4 Conclusions

To conclude, using the simplex algorithm we are able to find the cheapest combination of items

to offer to the user, while also taking into account any constraints we may have. It is efficient in

both accuracy and time, as the user needs to quickly access their basket and optimize it, maybe

even multiple times. All in all, it offers a great way for assisting the use in their shopping.
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Conclusion

This chapter presents the conclusions of this thesis, along with a brief review of what we

have shown, some facts about the thesis process, and related work that we found during its

development.

6.1 Summary of Thesis Achievements

In this thesis, we collected data from 3 different e-shops. We experimented with both static

crawling with beautiful soup, and using an automated browser crawler with selenium.

We used entity resolution to find multiple instances of the same objects from different sources

and match them together using a combination of natural language processing and machine

learning, until we reached results that were satisfying in their accuracy.

We then utilized Apache Solr as a database to store our newly edited data, and a search engine

to navigate through all our matched entities.

We Created a user interface using React Javascript to offer a user friendly environment and

add options to facilitate the user in their shopping.

Finally, we introduced a basket optimization algorithm with the simplex method to find the

73



74 Chapter 6. Conclusion

optimal combination of products for the user’s needs while also meeting the stores’ requirements

for delivery.

Although the final product is much more compact, this thesis took about 8,000 lines of code in

total during its development.

6.2 Related Work

During our research and development of this project we came across other similar ideas that

have been implemented commercially [8].
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