
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Design and Implementation of an
Embedded System for Remote Access to a
Microcontroller for University Laboratory

Exercises.

Author:
Athanasios KALLIONTZIS

Thesis Committee:
Prof. Apostolos DOLLAS,THESIS SUPERVISOR

Assoc. Prof. Sotirios IOANNIDIS

Dr. Evripidis SOTIRIADIS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

September 9, 2023

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Design and Implementation of an Embedded System for Remote Access
to a Microcontroller for University Laboratory Exercises.

by Athanasios KALLIONTZIS

This thesis addresses the issue of accessibility and practical learning in em-
bedded systems education, particularly in the context of the COVID-19 pan-
demic. The growing use of online education platforms has highlighted the
importance of students being able to work with real hardware and code,
rather than relying solely on simulations. To address this challenge, a custom
remote lab system was developed specifically for embedded systems course
at the Technical University of Crete. This system, based on the AVR micro-
controller, enables students and faculty to remotely access equipment via the
internet, facilitating hands-on experiments and laboratory tasks. By leverag-
ing internet connectivity and the AVR microcontroller, the system provides
an immersive and authentic learning experience that transcends traditional
simulations. The successful implementation of this remote lab system at the
university contributes to the improvement of accessibility and the quality
of embedded systems education. It empowers students to develop practical
skills even in remote learning environments, supporting their proficiency in
embedded systems. This work aims to bridge the gap between theoretical
knowledge and practical application, enhancing the overall learning experi-
ence for students at the Technical University of Crete.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

Acknowledgements
First of all, I would like to express my deep appreciation to Professor Apos-
tolos Dollas, who served as the supervisor of this thesis, for his invaluable
help, guidance, and support. I am grateful for his unwavering assistance
throughout this process and the unique opportunity to work on this subject
under his supervision. I would also like to thank Mr. Sotirios Ioannidis and
Mr. Evripidis Sotiriadis for serving as members of the examination commit-
tee. I would like to extend my gratitude to Mr. Markos Kimionis, responsible
for the Microprocessors and Materials Laboratory, for his support in provid-
ing the necessary materials. Additionally, I would like to acknowledge all
my friends who have been by my side and supported me throughout these
years. Above all, I would like to express my heartfelt gratitude to my family
for their unwavering support and guidance in every decision I have made.
Thank you all.

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures ix

List of Tables xi

List of Algorithms xi

List of Abbreviations xiii

1 Introduction 1
1.1 Thesis Outline . 2

2 Theoretical Background 3
2.1 Methods and Associated Technology for Remote Access to a

Microcontroller of a Laboratory 3
2.2 Programming and Control of the Laboratory Microcontroller . 10

3 Related Work 13
3.1 Previous Implementations . 14

3.1.1 Design and Implementation of an Integrated System
for Logic Design exercises 14

3.1.2 FPGA e-Lab . 17
3.1.3 Wireless ATMEL AVR In-Circuit Serial Programmer based

on Wi-Fi and ZigBee . 20
3.1.4 Development and Application of Remote Laboratory

for Embedded Systems Design 25
3.1.5 Remote Programming and Reconfiguration System for

Embedded Devices . 26

viii

3.2 Thesis Approach . 28

4 Design and Implementation of the Platform 29
4.1 Component Selection and Integration in Implementation . . . 32

4.1.1 Microcontroller . 32
4.1.2 Wifi Module . 35
4.1.3 I2C EXPANDER 16BIT I/O - MCP23017 38
4.1.4 Target-Microcontroller 40

4.2 Remote Access to the Laboratory of the University 43
4.3 Programming and Control of the Laboratory Microcontroller 47

5 System Verification and Evaluation 53

6 Conclusions and Future Work 59
6.1 Conclusions . 59
6.2 Future Work . 59

References 62

A User Manual 67

B Javascript code 69

C Block Diagram 71

ix

List of Figures

2.1 The process diagram of Remote Desktop 5
2.2 Block diagram of an IoT module 7

3.1 The physical Interface "MHL Development Board" 15
3.2 The graphical interface "MHL Development Board Control" . 16
3.3 The flow of communication between the computer(GUI) and

the "MHL Development Board" 16
3.4 FPGA e-Lab GUI . 17
3.5 FPGA e-Lab schematic diagram 19
3.6 FPGA e-Lab Video Capture . 20
3.7 System Block Diagram of Wireless Programmer. 21
3.8 PCB Design Schematic of Wireless Programmer. 22
3.9 Wireless Programmer with Wifi. 23
3.10 Wireless Programmer with ZigBee. 24
3.11 An overview of RELDES. 26
3.12 RPD architecture (a) and RPD abstraction layers diagram (b). . 27
3.13 Communication flow of RPD system. 27

4.1 The flow diagram of the main process of the microcontroller. . 30
4.2 Schematic diagram of the Platform. 31
4.3 Schematic diagram of ATmega32A-PU pins. 35
4.4 Schematic diagram of ESP-12E Pins. 36
4.5 Connection between ESP-12E and ATmega32A-PU. 38
4.6 The MCP23017 integrated circuit. 39
4.7 Connection between I/O Expander and ATmega32A-PU. . . . 40
4.8 Schematic diagram of ATmega328p pins. 42
4.9 Connection between ATmega328p and ATmega32A-PU. . . . 43
4.10 Login web-page Developed in this Thesis. 45
4.11 Main Web Page Developed in this Thesis. 46
4.12 SPI interface. 48

5.1 Visual representation of programmer process logs. 55

x

5.2 Real-time Programming Image. 56
5.3 Webpage Interface during Programming Process. 57

C.1 Block diagram of the Platform. 71

xi

List of Tables

4.1 ISP commands(0) . 49
4.2 ISP commands(1) . 50
4.3 ISP commands(2) . 50

xiii

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory
USD United States Dollar

1

Chapter 1

Introduction

A problem that has become increasingly prevalent in laboratories, particu-
larly during the pandemic, is the accessibility of education platforms. To
effectively learn, students must be able to access and work with actual code
that is downloaded onto real hardware, and not just simply by simulation.
In light of this, a system was developed as part of this thesis to be used in
embedded systems courses. While there are already existing academic and
commercial systems available, the goal of this thesis is to develop our own
system, ensuring that the necessary expertise is available at the university. It
is worth noting that these types of systems are often referred to as Remote
Labs. Precisely, this thesis was based on the thesis of Emmanouil Lykos, who
implemented an embedded system for Logical Design exercises through a
graphical interface via computer, with the aim to implement a platform that
will enable an efficient integration in the laboratory of the Technical Uni-
versity of Crete and will utilize more efficiently the remote access of the plat-
form. The key alteration entailed integrating a WiFi module to facilitate com-
munication between the platform and the graphical interface, replacing the
earlier USB connection. This change significantly enhanced remote platform
access and fostered unrestricted future adaptations as well as its integration
and utilization within the laboratory.

2 Chapter 1. Introduction

1.1 Thesis Outline

The thesis consists of the following chapters:

• Chapter 2: Theoretical Background, which refers to current technology
and various approaches we can choose according to them.

• Chapter 3: Related Work, in which are presented similar implementa-
tions that have been carried out in the past.

• Chapter 4: Design and Implementation of the Platform, in which the
implementation of this thesis is described.

• Chapter 5: Results, which presents the verification of the correct func-
tioning of the implementation of this thesis.

• Chapter 6: Conclusions and Future Work, which analyses whether the
initial objectives have been achieved as well as future extensions of the
implementation that can be made.

3

Chapter 2

Theoretical Background

In this chapter, we’re going to explore the basic ideas that support the tech-
nology allowing us to access labs from far away. Being able to control labs
remotely is really important for modern research. It lets us control things,
collect data, and keep an eye on things, even if we’re not physically there.
Thanks to technology, we have many ways to do this, each with its own pros
and cons. Deciding on the best way to remotely access a lab involves think-
ing about things like what the lab needs, how much it costs, how secure it is,
if it’s easy to fix when things go wrong, and how well it works.

2.1 Methods and Associated Technology for Remote

Access to a Microcontroller of a Laboratory

Remote access to a laboratory is a crucial aspect in modern research and ex-
perimentation. It allows for remote monitoring, control, and data collection
from a laboratory setting, regardless of the physical location of the researcher.
However, with the advancement of technology, there are now several meth-
ods available for achieving remote access to a laboratory. These methods
have varying degrees of effectiveness and efficiency, and it is important to
choose the appropriate method based on the specific needs and requirements
of the laboratory.

The following factors should be considered when choosing a method
for remote access to a laboratory:

• The way a laboratory is conducted and the requirements it has. This
includes the tools that will be used, the time that each student will need
to practice, and the amount of time that the lab will be accessible. It is
also important to consider the level of technical expertise required for

4 Chapter 2. Theoretical Background

the method, as well as the compatibility with existing equipment and
infrastructure.

• The total cost, as a system in addition to its performance also depends
on how affordable it is in a lab budget. Therefore the combination of
efficiency and low cost is optimal. It is also important to consider the
long-term costs, such as maintenance and upgrades, as well as the po-
tential for cost savings through automation and streamlined processes.

• System security. Whether it is the physical space of the laboratory or
the protection of the system from unauthorized persons, security is an
important factor in evaluating a tool. This includes both the protection
of sensitive data and equipment, as well as the ability to detect and
respond to security breaches.

• Debug support. The ability of the engineer to debug the system is im-
portant. In the event of a subsystem failure, locating and repairing it is a
necessity as otherwise the entire system will need to be replaced, which
may not be possible or will affect the laboratory’s expenses. Also, the
ability to modify or extend the functionality is one of the features that
all systems must have. This includes the availability of diagnostic and
troubleshooting tools, as well as the level of technical support provided
by the vendor.

• System performance. Finally, system performance is one of the main
factors. When a real-time control is an initial goal, the speed with which
the communication with the laboratory takes place must be at the de-
sired limits as well as the control of the laboratory’s equipment. This
includes factors such as latency, bandwidth, and reliability, as well as
the ability to handle high volumes of data and concurrent users.

The main tools and techniques used to remotely access a laboratory
are analyzed below:

2.1. Methods and Associated Technology for Remote Access to a
Microcontroller of a Laboratory

5

PC + Remote Desktop: Remote access to a laboratory can be
achieved using a combination of PC and remote desktop software. This tech-
nique allows users to remotely control school, university, or district comput-
ers and virtual machines (VMs) in real-time from any device. The remote
desktop software provides a simple and secure way for users to access the
screen of the remote computer on their own device. This, combined with an
application that communicates with the development board controlling the
laboratory equipment, offers a solution for remote access to a lab. There are
many remote desktop applications[1][2] available online to choose from, de-
pending on the specific needs of the implementation. The process of how
remote desktop access is performed is illustrated in Figure 2.1 below. It is
important to note that remote desktop software is particularly useful when
dealing with educational institutions where it is not possible to transfer spe-
cific hardware and software tools to the cloud. Additionally, the remote desk-
top software provides a high level of security and allows for real-time control
and access to the laboratory equipment.

FIGURE 2.1: The process diagram of Remote Desktop.[Source:
CyberlinkASP. "Remote Desktop Work." CyberlinkASP In-

sights, [3]]

6 Chapter 2. Theoretical Background

PC + VCP: A virtual serial port (VCP) can be used to send and
receive serial data over a network such as a LAN or the Internet. When us-
ing a serial port emulator, data generated from a serial application or device
is converted from serial data to information that can be transferred over a
network. A virtual serial port provides all of the functionality of a physical
COM interface. Data is converted in both directions to allow network trans-
mission and then turned back to serial signals for interaction with devices
and programs. A network serial port server solves the problem of attaching
to serial peripheral equipment that is not within the range of a direct connec-
tion. Employing serial over IP network technology lets users access your se-
rial devices no matter where they are without being physically connected to
them. There are many software development platforms that take advantage
of virtual ports to achieve remote access to the laboratory. Implementations
based on this technology have been developed[4] [5] [6].

Wifi Module and IoT: Internet of Things (IoT) is a rapidly grow-
ing technology that enables devices to be connected to the internet and ex-
change data with each other. In the field of Remote Labs, IoT technology
is being used to create a connected environment of embedded systems that
allows for remote access to laboratory equipment over the web.

A traditional remote laboratory system typically involves a full-
scale computer system along with associated interfacing and web hosting
technologies. However, the initial commissioning and subsequent mainte-
nance of a remote laboratory system can be costly and time-consuming. To
address this issue, the implementation of a remote laboratory facility using
an embedded processor that is enabled to access wifi via IoT has been an area
of focus.

The IoT embedded processor performs the functions of both the
computer and server used in traditional remote laboratories. This allows
for a more cost-effective and efficient solution for remote laboratory access.
Each IoT module consists of a processing module that hosts the CPU and
RAM, a network module that hosts a wireless transceiver (Tx/Rx circuit and
a Tx power amplifier), and a function module that provides interfaces to a set
of supported sensors and actuators. The module also includes a power man-
agement unit, which controls the power supply and charging of the module.

One of the key advantages of using an IoT module for remote lab-
oratory access is its ability to support a wide range of sensors and actuators.

2.1. Methods and Associated Technology for Remote Access to a
Microcontroller of a Laboratory

7

This allows for a wide range of experiments to be performed remotely, in-
cluding those that involve temperature, humidity, pressure, and other types
of data. Additionally, the use of an IoT module allows for remote access to
laboratory equipment from any location, as long as there is an internet con-
nection.

In conclusion, the use of an IoT module for remote laboratory access
provides a cost-effective and efficient solution for remote laboratory access.
It allows for a wide range of experiments to be performed remotely and pro-
vides remote access to laboratory equipment from any location, as long as
there is an internet connection and actuators. There are several papers that
evaluate such technology [7], [8] , [9].

FIGURE 2.2: Block diagram of an IoT module. [Source: Energy
efficient service embedding in IoT networks [10]]

There are two main categories of WiFi modules for IoT: A “single”
solution where the MCU runs the WiFi stack and the host application in one
chip and a “host processor + WiFi module” solution where the wireless con-
nectivity solution contains the WiFi stack, and a separate processor runs the
host application. What you will need to consider to select the right wifi mod-
ule is shown below:

8 Chapter 2. Theoretical Background

• IoT architecture:An important decision you must make is whether the
solution should be a “single” or “host processor + WiFi module” so-
lution. In a “single” solution, the IoT MCU runs the WiFi stack and
the host application on a single chip. This configuration is an ideal fit
for embedded devices where physical layout size is a main priority as
it eliminates several external components that are now all integrated.
Since the components can be shared in the wireless MCU configura-
tion, this leads to fewer components, which helps to simplify PCB rout-
ing and layout considerations. However, this type of solution may not
be as flexible as a "host processor + WiFi module" solution in terms of
upgradability and future expansion. On the other hand, a “host proces-
sor + WiFi module” solution is where the wireless connectivity solution
contains the WiFi stack, and a separate processor runs the host applica-
tion. This architecture is ideal for well-defined and fully matured WiFi
technology that does not change frequently. It allows for minimal WiFi
overhead on the MCU and simplifies the code development effort since
developers can rely on the packaged WiFi stack. The separation of the
WiFi stack and the application layer allows the MCU to invest maxi-
mum hardware resources and bandwidth in the IoT application. Ad-
ditionally, this type of solution allows for easier upgradability and ex-
pansion in the future as the WiFi module can be replaced or upgraded
separately from the host processor.

• WiFi Protocol Support: The IEEE 802.11 represents the family of wire-
less LAN standards that operate mostly in the unlicensed frequency
bands. Today, there are many standards like 802.11 a/b/g/j/n/p/ac/ad/ah
in use, and each standard has different specification requirements. There
are three key factors to trade-off when selecting these protocols: data
rate, range, and power requirements. Protocols like 802.11n, 802.11ac
and 802.11ah have the advantage of a higher data rate for IoT multime-
dia applications such as streaming video and audio. Alternatively, pro-
tocols like 802.11b/g have the advantage in power requirements and
are more suitable for battery-powered IoT devices. Therefore, as per
the project requirements, the best IoT WiFI module for you depends on
the demands and uses of your IoT application. It’s also worth noting
that newer standards like 802.11ax (Wi-Fi 6) and 802.11ay (Wi-Fi 6E)
are becoming available and offer even higher data rates and improved
performance, but these may not be as widely supported by devices or
networks yet.

2.1. Methods and Associated Technology for Remote Access to a
Microcontroller of a Laboratory

9

• Operating Frequency: IEEE 802.11 standards operate in different spec-
ified frequency ranges and are divided into a multitude of channels.
Countries have their own rules and regulations to determine the allow-
able channels, users, and maximum power levels to use within these
frequency bands. These days, many WiFi modules come up with dual-
band support in 5GHz and 2.4GHz and provide flexibility in how mo-
bile IoT devices are deployed and managed. The 5GHz band gener-
ally provides a higher data rate and less interference, but the 2.4GHz
band may have a longer range and better penetration through walls
and other obstacles. When selecting a WiFi module, it’s important to
consider the operating frequency and regulations for the country or re-
gion where the device will be used.

• Secure WiFi Support: Today, the security of data transmission over the
internet is a major challenge. Therefore, before allowing IoT devices
to connect to a network using WiFi, it is important to make sure the
WiFi supports the required security standards. All the best IoT WiFi
modules support at least one of the various WiFi security standards
like WPA, WPA2, WPA3, WPS, or others. Each security standard has its
advantages and disadvantages, so it’s important to select the module
that best suits your security needs.

• Hardware Interfaces: Usually, WiFi modules are bundled with many
I/Os and peripheral interface support to suit different needs. The USB,
SPI, or SDIO interfaces are preferred to support high data throughput
applications. Otherwise, the typical interface is through a UART, I2C,
I2S and others.

• Countries have their own regulatory certifications and for IoT devices
to enter those markets, they need to comply with those regulations.
This can include certifications such as FCC (Federal Communications
Commission) in the United States, CE (Conformité Européene) in Eu-
rope, and others. It is important to research the certifications required
for the specific market that the IoT device will be sold in and ensure
that the WiFi module used in the device meets those requirements.

Finally, there are numerous WiFi IoT modules from various manu-
facturers available on the market. Every module has different specifications
and features. Therefore, it’s important to go through the datasheet of each
module before finalizing your decision.

10 Chapter 2. Theoretical Background

RAL(Remote Access Laboratories) Systems: They are on-
line environments for operating instruments and collecting measurement data
over the Internet. Such systems are often deployed by Universities to support
undergraduate students and generally follow the client-server paradigm. Dif-
ferent technologies and frameworks such as LabVIEW[11], Java, Asynchronous
JavaScript and XML (AJAX), LAN extension for Instrumentation (LXI), etc.,
have been used to connect users with the RAL systems. All of these follow
a client–server centric model. These systems aim to accommodate a higher
number of students with limited resources and remove the time and space-
related constraints. Such systems are widely used for teaching at universities,
including automation, electronics, and control systems.

2.2 Programming and Control of the Laboratory Mi-

crocontroller

Once we have access to the laboratory, a development board is required to
control the application located on the user’s remote computer. The develop-
ment board acts as the interface between the remote computer and the tar-
get microcontroller. Depending on the specific implementation, the user can
choose to use either web design or GUI design for the application. Both web
design and GUI design have their own benefits and drawbacks, but the main
focus should be on achieving a functional result. The choice of application
design should be based on what best fits the overall implementation.

The development board plays a crucial role in programming and
controlling the target microcontroller. It allows the user to program the mi-
crocontroller, control its functions, and receive real-time feedback from the
microcontroller. In essence, the development board acts as both a program-
mer and a debugger for the target microcontroller. Therefore, it is important
to select an appropriate microcontroller that meets the specific needs of the
implementation.

There is a wide range of microcontrollers available on the market,
each with its own set of features and capabilities. When choosing a micro-
controller, there are several factors to consider:

The development board has the function of programming the target
microcontroller, its complete control as well as the feedback it will send in

2.2. Programming and Control of the Laboratory Microcontroller 11

real time to the application. In essence, the development board has the func-
tion of a programmer and debugger for the target microcontroller. There-
fore, the appropriate microcontroller on which the development board will
be based must be selected. There is a huge range of microcontrollers on the
market that can meet the needs of any implementation. Factors to consider
when choosing a microcontroller are the following:

• Hardware and Software architecture: The architecture of the microcon-
troller can impact its performance and capabilities. It is important to
choose a microcontroller that has the appropriate architecture for the
specific implementation.

• Processing power: The processing power of the microcontroller deter-
mines how quickly it can execute instructions. A microcontroller with
higher processing power will be able to handle more complex tasks.

• Memory: The amount of memory available on the microcontroller can
affect its ability to store and access data. It is important to choose a
microcontroller that has enough memory to meet the needs of the im-
plementation.

• Cost: The cost of the microcontroller can vary widely depending on
its features and capabilities. It is important to choose a microcontroller
that fits within the budget for the implementation.

• Hardware interface: The microcontroller should have the appropriate
hardware interface to connect to the other devices and sensors in the
implementation.

• Security: The microcontroller should have built-in security features to
protect against unauthorized access and data breaches.

• Temperature tolerance: The microcontroller should be able to operate
within a wide range of temperatures to ensure reliable performance in
different environments.

• Power efficiency: The microcontroller should be designed to be energy-
efficient, to minimize power consumption and prolong battery life.

When selecting a microcontroller for a laboratory implementation,
it is important to take into consideration factors such as the hardware and
software architecture, processing power, memory, cost, hardware interface,
security, temperature tolerance and power efficiency. By carefully evaluating

12 Chapter 2. Theoretical Background

each of these factors and determining which ones are most critical to the suc-
cess of the implementation, you can select a microcontroller that will work ef-
fectively with the development board and meet the specific needs of the lab-
oratory environment. Additionally, by taking the time to research and com-
pare different microcontroller options, you can ensure that you are choosing
the most appropriate one for your specific implementation and budget, and
that the development board will be able to effectively program and control
it.

13

Chapter 3

Related Work

The field of remote access to laboratory environments has been an active area
of research for several years, as technology continues to advance at a rapid
pace. Researchers have been working to leverage these developments to cre-
ate a powerful tool for education, particularly in light of the challenges posed
by the COVID-19 pandemic. The goal of these efforts is to provide students
with the ability to remotely access laboratory equipment, in order to over-
come the limitations of time and space that traditional laboratory settings
impose.

In order to achieve this goal, researchers have had to adapt their
methods to the new technological tools that are being developed, and care-
fully evaluate the usefulness of each tool in different contexts. This chap-
ter presents an overview of past work in this area, highlighting the various
approaches that have been taken and the challenges that have been encoun-
tered. Additionally, it provides a perspective on the current state of the field
and the direction in which future research is likely to go, as well as how this
thesis is related to the current research.

14 Chapter 3. Related Work

3.1 Previous Implementations

3.1.1 Design and Implementation of an Integrated System

for Logic Design exercises

The M.Eng. thesis by Emmanouil Lykos at School of ECE, Technical Uni-
versity of Crete [6] presents the implementation of an embedded system to
facilitate students in the preparation of experimental exercises of the "Logic
Design" course laboratory. It was based on the way the experiments were
conducted as well as on a previous approach[5]. The platform consists of two
main parts: the physical interface “MHL Development Board "for the connec-
tion with the physical circuits of the laboratory and the graphical interface
"MHL Development Board Control" on the lab-PC, to control the physical
interface and debugging the laboratory circuits.

The physical interface presented in figure 3.1 is "responsible" for
controlling the physical circuits of the laboratory and setting the clock of
the synchronous circuits as well as their power supply. The platform with
which development, control, and verification of the system took place is
STM32F072B-DISCO of STMicroelectronic STM32F0 series which offers more
than enough features at a low cost. The choice of the platform was made due
to its STM32F0-72RB ARM microprocessor that provides USB Full-speed ca-
pability and contains all the necessary peripherals for communication. Also,
buffers - line drivers were added to protect the system and I/O Expanders so
that the number of I/O meets the needs of the system.

3.1. Previous Implementations 15

FIGURE 3.1: Implementation of the development board based
on STM32F072RB microprocessor. [Source: Thesis by Em-

manouil Lykos [6]]

The graphical interface presented in figure 3.2 provides the I/O in-
dications of the system and allows the user to control them in order to verify
the correct operation or to debug any errors. It was developed in C# pro-
gramming language. For the communication with the physical interface on
the computer, a VCP(virtual Com Port) has been implemented while on the
physical interface the STM USB Stack for the peripheral USB functionality
of the microcontroller. With the use of SerialPort Class of .NET Framework,
which was selected for its compatibility with the operating system as well
as for facilitating the access of the ports considering the use of drivers, the
graphical interface has access to the platform as shown in figure 3.3. Finally,
a communication protocol has been created between the GUI and the micro-
controller and it’s about an asynchronous bidirectional communication while
a real-time control is achieved.

16 Chapter 3. Related Work

FIGURE 3.2: The graphical interface "MHL Development Board
Control". [Source: Thesis by Emmanouil Lykos [6]]

FIGURE 3.3: The flow of communication between the com-
puter(GUI) and the "MHL Development Board" [Source: Thesis

by Emmanouil Lykos [6]]

3.1. Previous Implementations 17

3.1.2 FPGA e-Lab

This paper on Remote Lab [12] presents a technique to remote Access a lab-
oratory to design and test. It was created for educational purposes and the
target is a FPGA.

Access to the laboratory is been achieved through the Microsoft XP
Remote Desktop which gives you complete control of the laboratory PC. In
the laboratory, there is a FPGA development board whose hardware is inter-
faced through a GUI, an acquisition hardware as well as RS-232 serial and
USB ports. Figure 3.4 below shows the development board, the GUI and the
functions it provides.

FIGURE 3.4: The GUI showing the FPGA development board
and the I/O control and feedback panel. [Source: Reza

Hashemian et al. [12]]

18 Chapter 3. Related Work

The FPGA development board that has been chosen is the Xilinx
Spartan-3E Starter Kit. The Xilinx Spartan-3E Starter Kit is controlled using
custom control hardware that is interfaced to the NI PCI-6025E/CB-100 data
acquisition hardware and the LabView GUI. Laboratory Virtual Instrument
Engineering Workbench (LabVIEW) is a system-design platform and devel-
opment environment for a visual programming language from National In-
struments while NI PCI-6025E/CB-100 data acquisition hardware is involved
in aggregating signals that can be sent to the lab-PC. The student experiments
consist of 7 stages of which the first 5 should be performed before entering
the FPGA e-Lab environment and relate to design synthesis as well as all the
preparation of the students. For stages 6 and 7, students will be able to access
the FPGA e-Lab environment to program the FPGA development board, ex-
perimentally verify their designs and make modifications, resynthesize and
retest if needed. Figure 3.5 shows the process of communication between the
components of the system. Hewlett-Packard 5452 Oscilloscope and an Agi-
lent 33250A which are connected directly to the Starter Kit constitute the Lab
equipment.

3.1. Previous Implementations 19

FIGURE 3.5: Schematic diagram of a remote interface system.
[Source: Reza Hashemian et al. [12]]

For the verification and reliability of the system, a web cam has been
added which gives a good view of the Spartan-3E Starter Kit as we see in
figure 3.6.

20 Chapter 3. Related Work

FIGURE 3.6: An e-Lab with video Capture of the FPGA board.
[Source: Reza Hashemian et al. [12]]

3.1.3 Wireless ATMEL AVR In-Circuit Serial Programmer based

on Wi-Fi and ZigBee

The paper by Ahmed, Ahmed [13] presented at the International Computer
Engineering Conference (ICENCO) presents the need for a modern program-
mer to facilitate factories as modernized systems require wireless communi-
cations. Wireless communications can be achieved with Wi-Fi and ZigBee,
techniques which are used and analyzed below. The disadvantages of tra-
ditional programming methods are explained in the beginning, such as the
need for the programmer to be close to a computer and a new method FOTA
(Firmware Over-the-Air) is introduced.

The FOTA is one of the most modern embedded devices used by
manufacturers in the automotive, consumer electronics, healthcare indus-
tries, and generally in the field of embedded systems. Its functionality en-
ables manufacturers to fix bugs in software components of the existing sys-
tem and to install updates remotely. In this way, devices are always up-to-
date, even if new functions and features are only introduced after the pur-
chase of a device. According to this, an ICSP programmer is presented,

3.1. Previous Implementations 21

based on an AVR microcontroller, which with the addition of a wifi device
or a ZigbBee can program a microcontroller remotely from anywhere. Zig-
Bee is based on the IEEE’s 802.15.4 personal-area network standard. Zigbee
is widely considered an alternative to Wi-Fi and Bluetooth for some applica-
tions including low-powered devices that don’t require a lot of bandwidth
and can provide low-power wireless programming. The use of both chips
with the programmer will be presented and analyzed below. This wireless
programmer functionality is writing, reading, and verifying flash and EEP-
ROM memories as well as modifying fuse bits. Also, programmer focuses
on low cost and portability which are achieved with the small size of the em-
bedded system and the ability to be powered from an external power source
or a battery. This system consists of three components, a PC / Phone, a Wi-Fi
programmer and a target microcontroller as shown below in figure 3.7.

FIGURE 3.7: System Block Diagram of Wireless Programmer.
[Source: Ahmed A. et al. [13]]

As is shown in the diagram the PC / Phone consists of three sub-
systems, the compiler software, the burner software, and a Wi-Fi virtual
COM port converter software. The user uploads the hex file to an ATMEL
AVR burner which converts the COM ports to virtual Wi-Fi communication
through the Wi-Fi Virtual COM Port Converter software. The converter re-
quires an IP address, a port number, and a communication protocol which is

22 Chapter 3. Related Work

TCP or UDP and defined by the user. The burner software remotely sends
instructions to the programmer through the enabled communication channel
and respectively the remote programmer will execute the sent commands to
the target microcontroller and it will send feedback for all the activity sta-
tuses back to the burner software.

In terms of hardware figure 3.8, shows the PCB design schematic
which is composed of the power unit, the microcontroller unit, the Wi-Fi /
ZigBee module unit, and the ICSP unit.

FIGURE 3.8: PCB Design Schematic of Wireless Programmer.
[Source: Ahmed A. et al. [13]]

• The Power Unit provides the necessary power to the programmer via a
USB port or a DC socket.

• The Microcontroller Unit is based on ATMEL AVR ATmega328P, which
is loaded with the firmware that executes the ATMEL AVR program-
ming AVRISP STK500 protocol.

• The Wi-Fi / ZigBee Module Unit function is to handle all the wire-
less communication between the PC and the remote programmer. It
is based on the ESP8285 Wi-Fi chip of Espressif Systems family and
the ZigBee (DIGI S2C 6.5mW ZigBee XBee) Wireless RF module respec-
tively. This module is connected to both of the microcontroller serial
communication pins for providing wireless programming and to the

3.1. Previous Implementations 23

Wi-Fi transparent serial (Tx, Rx) pins for wireless target board debug-
ging.

• The ICSP Unit has an 8-pin header for wireless programming and de-
bugging and a two-pin header is included to control the power source
to the target board.

Finally, the last section of the paper provides two experimental works,
one with the wifi technology and one with the ZigBee technology to test and
verify those two designs. Wi-Fi Remote Programming: Figure 3.9 shows the
embedded system with the use of the wifi module. This method uses the
NB Virtual Comm Port Software as the Wi-Fi virtual COM port converter
software and the BASCOM-AVR Burner Software as the burner software.

FIGURE 3.9: Wireless Programmer with Wifi. [Source: Ahmed
A. et al. [13]]

24 Chapter 3. Related Work

ZigBee Remote Programming: The figure 3.10 shows the embed-
ded system with the use of the ZiBee module. Target board loaded with a
firmware image for blinking a led. The orange led on board proves that pro-
gramming has been completed successfully.

FIGURE 3.10: Wireless Programmer with ZigBee. [Source:
Ahmed A. et al. [13]]

Both of these cases are functional without phasing any problems
and the paper concludes with the recommendation of the utilization in in-
dustrial systems, in educational and academic projects.

3.1. Previous Implementations 25

3.1.4 Development and Application of Remote Laboratory for

Embedded Systems Design

The paper by Parkhomenko and Anzhelika V. [14] presented at 12th Interna-
tional Conference on Remote Engineering and Virtual Instrumentation (REV)
presents the RELDES(Remote Laboratory for Embedded Systems Design), an
approach to remote access a laboratory based on using ready platforms. The
proposed approach intends to improve the current technology in the field of
embedded systems design with the possibility of accelerating the stages of
integration and hardware-software testing.

Regarding the implementation, a stand with experiments is con-
nected to the laboratory computer, via the serial interface. The computer with
Linux Debian OS acts as the server of the remote laboratory. The server pro-
vides access to programming and testing the components and video stream
of the laboratory experiments. Video stream is been achieved with the imple-
mentation of “ffmpeg”. It is a cross-platform solution to record, convert and
stream audio and video. The server receives and processes the web client
requests and performs the corresponding functions depending on the data
received:

• Compiling the received initial code (Arduino, with the use of the con-
sole utility Ino).

• Returning the compilation results (using the HTTP protocol, as well as
the sends request for compilation).

• Uploading binaries to the microcontroller (provided that the controller
is free).

• Client queuing (if an experiment is occupied).

26 Chapter 3. Related Work

FIGURE 3.11: An overview of RELDES. [Source: Parkhomenko
Anzhelika et al. [14]]

3.1.5 Remote Programming and Reconfiguration System for

Embedded Devices

The work [9] presents a concept of a system that can be used as a useful
remote management and control tool for a built-in device. It can be used on
wireless sensors and IoT nodes based on a microcontroller or a programmable
field gate chip (FPGA).

The system, which is shown in figure 3.12, consists of two separate
main parts: The hardware part called Remote Programming Device (RPD)
and the management part which is a user application for communicating
with one or more RPDs. The RPD is capable of remotely reprogramming in-
ternal memories of microcontrollers with provided binary firmware files and
optionally reconfiguring FPGA integrated circuits. Communication between
the two parts of the system is done using the LWM2M protocol. For the
management part, the Eclipse Leshan implementation of the LWM2M server
is chosen. It provides a Web-based user interface (UI) that allows interaction
with connected RPDs. The communication of the RPD with the target device
is done according to the protocol Joint Test Action Group IEEE 1149.1 (JTAG)
and specifically with Serial Wire Debug (SWD). The implementation of the
hardware is based on The Nucleo boards equipped with STM32F429ZI MCU
with ARM Cortex-M4 microprocessor core. This embedded system provides
an ethernet port from which to access the Internet.

3.1. Previous Implementations 27

FIGURE 3.12: RPD architecture (a) and RPD abstraction layers
diagram (b). [Source: Michalec et al. [9]]

The whole communication between the user and the built-in device
includes two parts: the management interface which is carried out through
the LWM2M server and the file download which is carried out through Hy-
pertext Transfer Protocol(HTTP) server. The following figure 3.13 shows in
more detail the communication process.

FIGURE 3.13: Communication flow of RPD system. [Source:
Michalec et al. [9]]

28 Chapter 3. Related Work

3.2 Thesis Approach

The approach of this thesis was based on the idea of the Internet of Things
(IoT), which is considered an interesting technology with new features and
a field of the future in embedded systems that continues to grow rapidly.
The main objective of this thesis was to provide a solution for remote access
to laboratory equipment and to take advantage of the rapid development of
technology in order to offer a useful tool in education.

To achieve this goal, the thesis focused on the implementation of
a microcontroller that runs the essential functions for the development sys-
tem, and a separate Wifi module that hosts the web server. Both the micro-
controller and the wifi module were selected based on the criteria presented
in the previous chapter, such as hardware and software architecture, process-
ing power, memory, cost, hardware interface, security, temperature tolerance,
and power efficiency.

The choice of using a web-based application instead of a GUI ap-
plication was more convenient and met the purposes of the implementation.
The web-based application allows for full functionality from the client side
without the use of any external application, except for a compiler that gives
the binary file that the client will upload to program the target microcon-
troller.

Furthermore, the approach of the thesis was to fully access the tar-
get microcontroller of the laboratory, its programming, and control. The
method proposed in this thesis not only satisfies the requirements but also
offers several advantages over traditional methods. For example, it allows
for real-time feedback, easy scalability, and flexibility in terms of access and
control. Additionally, it allows for the remote monitoring and control of labo-
ratory equipment, which is especially useful in situations such as the current
pandemic, where traditional in-person access to laboratory equipment may
be limited.

Overall, the approach of this thesis was to provide a solution for re-
mote access to laboratory equipment through the implementation of an IoT-
based system that utilizes a microcontroller and a wifi module. The system
is designed to be user-friendly and easy to use, while also providing a high
level of functionality and control over the laboratory equipment.

29

Chapter 4

Design and Implementation of the
Platform

In order to complete this thesis, a platform was developed that fulfills the
requirements of a Remote Laboratory. Although the platform is unique in
its implementation, it is based on the main concepts of previous implemen-
tations. The platform was created to be highly scalable and can be used in
a variety of different laboratory environments. The design and implemen-
tation of the platform were focused on achieving the goal of providing re-
mote access to the laboratory and programming and control of the target-
microcontroller in a cost-effective and efficient manner. The platform com-
prises of two main aspects, one related to achieving remote access to the lab-
oratory and the other related to programming and controlling the target mi-
crocontroller. Further details will be provided in the following sections as the
methods and main components used for implementation are described.

30 Chapter 4. Design and Implementation of the Platform

FIGURE 4.1: The flow diagram of the main process of the mi-
crocontroller of this thesis.

Above, the flow diagram shows the sequence of processes executed
by the system during initialization and at each iteration. First, the system
initializes the peripheral components that are needed. In the beginning, the
system initializes the peripheral components that are needed. Then it ini-
tializes the interrupts mainly related to the UART that enables the commu-
nication with the wifi module and the I2C for communication with the I/O
Expanders. Subsequently, the system sets the priorities and initializes the in-
terrupt handlers. Then the ESP12E web server is initialized as described in
section 4.2 and this is when the main iteration loop of the program starts.The

Chapter 4. Design and Implementation of the Platform 31

system checks if it has received a command from the remote user. In case it
has received a command, it first decodes the command and then executes it,
if the conditions are met. Before checking for the next command it updates
the Esp Web Page with a message about the progress of the command. At
any time if there is a change in any output the interrupt handler is activated
and the Esp Web Page is immediately updated with the new output values.

The schematic diagram presented in Figure 4.2 provides a visual
representation of the communication and interaction between the modules
and components within the platform. It serves as a key resource for un-
derstanding the implementation details and the flow of information in the
system.

FIGURE 4.2: Schematic diagram of the Platform.

32 Chapter 4. Design and Implementation of the Platform

4.1 Component Selection and Integration in Im-

plementation

Prior to the individual module presentations detailing their implementation,
it is crucial to introduce the block diagram, which serves as an overview
of the system’s design and functionality. This block diagram provides a vi-
sual representation of the architectural structure and interconnections of the
newly developed platform within this thesis.

The schematic diagram presented in Figure 4.2 provides a visual
representation of the communication and interaction between the modules
and components within the platform. It serves as a key resource for un-
derstanding the implementation details and the flow of information in the
system.

4.1.1 Microcontroller

The platform is based on the ATmega32A-PU microcontroller, which serves
as the main means of control and programming for my system. I chose this
microcontroller for its versatility and wide range of features that perfectly
met the requirements of my project. Furthermore, I selected the ATmega32A-
PU due to its excellent power efficiency. Its low power consumption allowed
for longer operation on battery power, extending the system’s runtime and
enhancing overall efficiency. In addition, my decision to use the ATmega32A-
PU was influenced by its large community base and extensive documenta-
tion. This ensured that I had access to a wealth of resources, code examples,
and support. The strong community backing provided valuable knowledge
and assistance during the development process.

Overall, the ATmega32A-PU’s combination of versatile features, power
efficiency, and strong community support made it the ideal choice for my sys-
tem. According to the above, I arrived at the conclusion that the ATmega32A-
PU possessed the necessary capability to consistently deliver reliable perfor-
mance and effectively streamline the development process.

The ATmega32A-PU microcontroller is part of Atmel’s AVR series,
which is known for its powerful processing capabilities and efficient use of
resources. This microcontroller is equipped with a variety of communication
interfaces, such as UART and I2C, that enable seamless communication with
other components of the system. Additionally, it has a rich set of peripheral

4.1. Component Selection and Integration in Implementation 33

systems that support the various functionalities of the system, such as timers,
interrupts, and other digital and analog inputs/outputs.

Another important factor in the selection of the ATmega32A-PU mi-
crocontroller was my familiarity with the AVR series, which made it easier
for me to program and debug the system. Overall, the ATmega32A-PU mi-
crocontroller serves as the backbone of the system, providing the necessary
resources and capabilities to enable the system to function as intended.

The ATmega32A-PU microcontroller has the following features:

• High-performance, Low-power AVR® 8-bit Microcontroller

• 40-pin PDIP

• 131 Powerful Instructions – Most Single-clock Cycle Execution

• 32 x 8 General Purpose Working Registers

• Up to 16 MIPS Throughput at 16 MHz

• On-chip 2-cycle Multiplier

• 32 Programmable I/O Lines

• 32K Bytes of In-System Self-programmable Flash program memory

• 1024 Bytes EEPROM

• 2K Byte Internal SRAM

• JTAG (IEEE std. 1149.1 Compliant) Interface

• Programmable Serial USART

• Master/Slave SPI Serial Interface

• On-chip Analog Comparator

• Four PWM Channels

• 8-channel, 10-bit ADC

• Two 8-bit Timer/Counters

• One 16-bit Timer/Counter

• Real Time Counter with Separate Oscillator

• Byte-oriented Two-wire Serial Interface

• Internal Calibrated RC Oscillator

34 Chapter 4. Design and Implementation of the Platform

• External and Internal Interrupt Sources

• Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down,
Standby and Extended Standby

• Speed Grades: 0 - 16 MHz

The platform that hosted the microcontroller and enabled the development,
testing, and verification of the system is the STK500. This development board
provides us with all the necessary tools we need to program and test our sys-
tem. The STK500 is equipped with a variety of peripherals such as LEDs,
buttons, and a serial port that we can use to interface with our microcon-
troller.

As a development environment, Microchip Studio was chosen for
developing and debugging the ATmega32A-PU. This is one of the most well-
known and reliable development environments for microcontrollers of the
AVR family. Microchip Studio offers a wide range of features such as a pow-
erful code editor, a project manager, and a built-in debugger that allows us
to easily write, test, and debug our code.

To ensure optimal performance, a 16MHz external crystal was used
as the system frequency for the microcontroller. This high-frequency crystal
allows the microcontroller to execute instructions at a faster rate, which in
turn improves the overall performance of the system. By using an external
crystal, we were able to achieve accurate and stable timing, which is essential
for many of the system’s functions.

Overall, the STK500 development board, Microchip Studio devel-
opment environment, and the 16MHz external crystal were all essential com-
ponents that enabled us to effectively program, test and verify our system
using the ATmega32A-PU microcontroller. The combination of these tools
and technologies allowed us to achieve our system’s goals and functionality.

4.1. Component Selection and Integration in Implementation 35

FIGURE 4.3: Schematic diagram of ATmega32A-PU pins.

4.1.2 Wifi Module

The whole process of communication with the laboratory was based on the
ESP12E module [15]. ESP-12E is a small-sized Wi-Fi module that is com-
monly used to create a wireless network connection for any microcontroller.
This module is a versatile and powerful solution for adding Wi-Fi capabilities
to systems or for functioning as an independent application. It was selected
for this project because it is one of the most widely used and reliable wifi
modules on the market, and it fully satisfies the system requirements. Addi-
tionally, it is a cost-effective solution for developing IoT applications.

In the implementation, only the wifi capabilities of the ESP-12E mod-
ule are utilized without taking advantage of its processing power, as that is
provided by the separate microcontroller that is used in the system. The
core processor of the ESP-12E module is the esp8266, which is produced by
Espressif Systems and comes with a full TCP/IP stack [16] and microcon-
troller capability. This allows the ESP-12E to serve as a Wi-Fi adapter to any
microcontroller that supports simple connectivity through a SPI or UART in-
terface.

The ESP-12E module operates at 3.3v DC and provides 22 pins as
shown in figure 4.4 which offer multiple types of communication options.
These include 11 I/O pins and pins for UART, SPI, I2C, I2S, PWM, ADC, IR

36 Chapter 4. Design and Implementation of the Platform

Interface, and Power and Control Pins. These various communication op-
tions allow for flexibility and customization in the system’s design and func-
tionality. The ESP-12E module is a reliable and efficient solution for adding
Wi-Fi capabilities to the system and facilitating communication with the lab-
oratory.l Pins.

FIGURE 4.4: Schematic diagram of ESP-12E Pins.

Provided that the wifi module in this implementation is used only
as a wifi adapter only the pins related to UART communication are used
while the other pins are available either for reprogramming of the wifi mod-
ule or for debugging or for the future possibility of extending the implemen-
tation. Other ESP-12E wifi modules features:

• 802.11 b/g/n support

• 802.11 n support (2.4 GHz), up to 72.2 Mbps

• Defragmentation

• 2 x virtual Wi-Fi interface

• Automatic beacon monitoring (hardware TSF)

• Support Infrastructure BSS Station mode/SoftAP mode/Promiscuous
mode

• Certification: Wi-Fi Alliance

• 2.4 GHz 2.5 GHz (2400 MHz 2483.5 MHz) Frequency Range

4.1. Component Selection and Integration in Implementation 37

• Antenna: PCB Trace, External, IPEX Connector, Ceramic Chip

• Tensilica L106 32-bit processor

• Operating Voltage 2.5 V 3.6 V

• Operating Current: Average value: 80 mA

• Wi-Fi Mode Station/SoftAP/SoftAP+Station

• Security WPA/WPA2

• Network Protocols: IPv4, TCP/UDP/HTTP

To program the ESP-12E, there are several options available. One
popular method is using the Flash Download Tool provided by Espressif,
which allows for flashing firmware onto the module. This can be done us-
ing Lua scripting language or with the Arduino IDE using libraries specif-
ically designed for the ESP-12E. Another option is using the AT command
firmware developed by Espressif, which provides a set of commands that
can be used to control and operate the module. This implementation uses
the AT command firmware, which can be easily flashed onto the ESP-12E
using the Flash Download Tool.

Once the firmware is in place, the AT commands of the ESP-12E can
be utilized to perform a variety of functions, such as restarting the module,
connecting to a WiFi network, changing the mode of operation, and more.
These commands are crucial for the proper functioning of the module and are
analyzed in detail during the development of this implementation. It’s also
important to note that the ESP-12E module has a wide range of configurable
options and settings, which can be accessed and modified through the AT
commands.

In addition to programming and configuring the ESP-12E, proper
wiring is also crucial for its proper functioning. The wiring diagram for
the ESP-12E is shown in the figure below. The pins related to UART com-
munication are used for programming and debugging, while the other pins
are available for reprogramming of the wifi module or for the future pos-
sibility of extending the implementation. It’s important to ensure that the
connections are secure and properly made to ensure proper communication
between the module and other devices

38 Chapter 4. Design and Implementation of the Platform

FIGURE 4.5: Connection between ESP-12E and ATmega32A-
PU.

4.1.3 I2C EXPANDER 16BIT I/O - MCP23017

The development platform for this project includes an integrated I/O ex-
pander, which is essential for expanding the available resources and increas-
ing the number of inputs and outputs for controlling and programming the
microcontroller. This allows for more flexibility and the potential for future
expansion of the functionality.

After careful consideration, the MCP23017 [17] was chosen for this
implementation. This device is considered sufficient as it offers the necessary
features required for the project. The MCP23017 is a 16-bit general purpose
parallel I/O extension that can be used for I2C or SPI bus applications. In this
project, the I2C interface is utilized to communicate with the Atmega32A mi-
crocontroller. Custom libraries were developed for the I2C protocol, facilitat-
ing efficient and reliable communication. This approach enables the release
of Atmega32A pins for other functions. Additionally, we leveraged the inter-
rupt mode feature of the MCP23017 I/O expander to enable real-time read-
ing of the outputs from the target microcontroller. This capability allowed
us to promptly capture and process the output data, ensuring accurate and
up-to-date information for our system.

4.1. Component Selection and Integration in Implementation 39

FIGURE 4.6: The MCP23017 integrated circuit.

The connection between the I/O expander and the microcontroller
is relatively simple and can be easily achieved through the use of simple
wiring. The MCP23017 is connected to the Atmega32A and the connections
can be seen in the figure provided. This allows for easy communication be-
tween the two devices and enables the MCP23017 to provide the necessary
resources for the project. With the use of this I/O expander, the development
platform is able to expand its capabilities, providing greater flexibility and
the potential for future expansion.

40 Chapter 4. Design and Implementation of the Platform

FIGURE 4.7: Connection between I/O Expander and
ATmega32A-PU.

4.1.4 Target-Microcontroller

The ATmega328p microcontroller offers a wide range of features and capa-
bilities that make it an ideal choice for students and hobbyists. It is a pow-
erful and versatile microcontroller that can be used to control a variety of
devices and systems. The ATmega328p is part of the megaAVR family of mi-
crocontrollers, which are known for their high performance and low power
consumption.

One of the key features of the ATmega328p is its wide range of in-
put and output pins. This allows for easy connection to a variety of sensors
and actuators, allowing students to experiment and test their code in a vari-
ety of different applications. Additionally, the ATmega328p offers a variety
of different communication interfaces, including UART, I2C, and SPI, which
allow for easy connection to other devices and systems.

When it comes to programming the ATmega328p, students should
refer to the official datasheet provided by Atmel. This document provides
detailed information about the microcontroller’s features and capabilities, as
well as instructions on how to write and program code for the device. The

4.1. Component Selection and Integration in Implementation 41

student can upload the code to the ESP-Webpage, which will be used to con-
trol the microcontroller.

• High-performance, Low-power AVR® 8-bit Microcontroller

• 28-pin PDIP

• 131 Powerful Instructions – Most Single-clock Cycle Execution

• 32 x 8 General Purpose Working Registers

• Up to 20 MIPS Throughput at 20 MHz

• On-chip 2-cycle Multiplier

• 23 Programmable I/O Lines

• 32K Bytes of In-System Self-Programmable Flash program memory

• 1K Bytes EEPROM

• 2K Bytes Internal SRAM

• Programmable Serial USART

• Master/Slave SPI Serial Interface

• On-chip Analog Comparator

• Six PWM Channels

• 6-channel 10-bit ADC

• Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

• One 16-bit Timer/Counter with Separate Prescaler, Compare Mode,
and Capture Mode

• Real Time Counter with Separate Oscillator

• Byte-oriented Two-wire Serial Interface

• Internal Calibrated Oscillator

• External and Internal Interrupt Sources

• Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down,
Standby and Extended Standby

• Speed Grades: 0 - 20 MHz on 4.5 - 5.5V

42 Chapter 4. Design and Implementation of the Platform

FIGURE 4.8: Schematic diagram of ATmega328p pins.

The ATmega328p is connected to the ATmega32APU, which is used
for programming the microcontroller. This connection is only necessary for
programming and is not used for controlling the ATmega328p. Instead, the
ATmega328p is controlled using the I/O Expander described above. This
allows for more flexibility and versatility in terms of the circuits that can be
added to the microcontroller for each experiment.

4.2. Remote Access to the Laboratory of the University 43

FIGURE 4.9: Connection between ATmega328p and
ATmega32A-PU.

4.2 Remote Access to the Laboratory of the Univer-

sity

In order to utilize the full capabilities of the ESP12 wifi module, it was pro-
grammed with firmware based on AT commands, provided by Espressif. Ac-
cording to this, I developed a set of libraries. These libraries were specifically
designed for use with the host microcontroller, ATmega32A-PU, and allow
for the sending and receiving of AT commands between the two devices.
The ATmega32A-PU sends the AT commands to the ESP-12E, which then
executes the corresponding command and sends back a response indicating
the success or failure of the request. These libraries contain a set of AT com-
mands that are specifically used for setting up a server based on the TCP/IP
protocol on the ESP-12E. The Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) is a widely used set of communication protocols that enable
devices to communicate over a network such as the internet. The use of these
AT commands in conjunction with the TCP/IP protocol allow for the creation
of a server on the ESP-12E, providing the ability to remotely access and con-
trol the device. The list of these AT commands is described in detail below.

1. Command: "AT", Response:"OK". Just a command to verify that

44 Chapter 4. Design and Implementation of the Platform

the communication between ATmega32A-PU AND ESP-12E is work-
ing properly.

2. Command: "AT+RST", Response:"OK". Reset ESP-12E to properly
accept new commands.

3. Command: "AT+CWMODE=3", Response:"OK". Set the Wi-Fi mode
to Station+SoftAP. In Station mode, ESP-12E acts as a device and con-
nects to an existing Access point. In Access Point(SoftAP) mode ESP-
12E acts as AP and other devices can connect to it. In a TCP server both
modes are required to be activated.

4. Command: "AT+CWJAP_DEF=ssid,password", Response:"WIFI CON-
NECTED","WIFI GOT IP","OK". Connect ESP-12E station to a tar-
geted Access Point.

5. Command: "AT+CIPMODE=0", Response:"OK". Sets the transmis-
sion mode. By choosing 0, normal transmission mode is enabled.

6. Command: "AT+CIPMUX=1", Response:"OK". Set the connection
type. By choosing 1, multiple connections mode is enabled.

7. Command: "AT+CIPSERVER=1,80", Response:"OK". Creates a TCP
server on port 80.

8. Command: "AT+CIPSTO=0", Response:"OK". , The connection will
never time out.

When the commands mentioned above have been completed and
properly executed, a TCP server has been created and is ready to accept re-
quests from clients. Then the server waits for new requests from clients and
follows the process of serving the requests of the clients that is analyzed be-
low. Atmega32A has libraries to handle and serve all the requests it can ac-
cept. Once the server has been set up, in order to connect to the ESP12E web
server the user must enter the IP address of the ESP12E in a web browser. The
server receives a request from the user’s id and ESP12E sends the request
to Atmega32A respectively. Atmega32A then sends a page to the user, via
ESP12E, which requires a username and password as shown in figure 4.10.
In case of correct entry by the user a second page which is the main one
with which the user interacts throughout the duration of his experimenta-
tion is sent to the user which is shown below in figure 4.11 It should be noted
that the pages mentioned above are written in JavaScript[18], HTML[19], and

4.2. Remote Access to the Laboratory of the University 45

CSS[20]. In summary, HTML is the standard markup language for docu-
ments designed to be displayed in a web browser, CSS is used for describ-
ing and styling the presentation of the documents in a web browser and
JavaScript makes web pages more interactive and dynamic. The pages are
stored in the Atmega32A and sent to the user’s browser when required.
When the above steps are completed, ESP12E waits to receive and serve the
user’s requests which depend on the selection of the available options on the
page which are analyzed below.

FIGURE 4.10: Login Web Page Developed in this Thesis.

Below is the interface of the page with which the user interacts and
controls the target microcontroller, atmega328p. The user has 8 outputs avail-
able, all pins of Port D (PD0-PD7) as well as 5 inputs, specifically the first 5
pins of Port C (PC0- PC5). A basic prerequisite for using the application is
for the user to initialize the ports as indicated above in his own source code.

46 Chapter 4. Design and Implementation of the Platform

FIGURE 4.11: Main Web Page Developed in this Thesis.

The web page has the following options for the user:

• Erase chip: The user erases the target microcontroller, atmega328p.

• Program: The user with this option, after selecting the binary file first,
programs the target microcontroller, atmega328p.

• Verify: The user verifies the correct execution of the programming.

• log out: The user logs out of the page when the experiment is over.

• RESET: The user resets the target microcontroller, atmega328p.

In addition, during the execution of the program:

• The user can see the output values of ATmega328p (PD0-PD7). De-
pending on their color, their value is indicated. Green for logical 1 and
red for logical 0.

• The user can set the value of the ATmega328p inputs by pressing the
corresponding button.

• In the Response panel, the user is informed with a relevant message for
each function that performs.

From the above pages, the most interesting parts are the 2 interac-
tive elements of the page. These are the Response Panel and the color of
the outputs that indicate their value. You can refer to the JavaScript code in

4.3. Programming and Control of the Laboratory Microcontroller 47

the appendix to observe how the functions below achieve the synchronous
update of the aforementioned elements Appendix B.

To ensure the smooth and accurate operation of the process, various
AT commands were executed that were not previously discussed during the
preparation of the server and the student’s experimentation, but are still im-
portant. These commands play a vital role in providing information about
the correct operation of the connection and various other factors that are nec-
essary for a stable and reliable environment. These commands are used to
validate the operation and ensure that all necessary parameters have been
configured correctly.

4.3 Programming and Control of the Laboratory Mi-

crocontroller

In order for the target-microcontroller to be programmed, the ATmega32APU
serves as a programmer based on the AVR910-ISP method [21]. In-System
Programming (ISP) allows programming and reprogramming of any AVR
microcontroller. This method is particularly useful for the ATmega328p,
which is the target microcontroller used in this project. The ATmega328p
is equipped with paged flash memory, which means that data is first loaded
into a page buffer and then written to flash memory when the buffer is full.
This allows for efficient use of memory and reduces the risk of data loss dur-
ing programming.

The choice of using ISP and the AVR910-ISP method for program-
ming the ATmega328p was made for several reasons. One of the main rea-
sons is that ISP allows for in-system programming, meaning that the micro-
controller can be programmed and reprogrammed while still in the system,
without the need for a separate programmer. Additionally, ISP uses the Se-
rial Peripheral Interface (SPI) for synchronous serial communication between
the programmer and the target microcontroller. The SPI consists of three
wires: Serial Clock (SCK), Master In - Slave Out (MISO), and Master Out -
Slave In (MOSI). By adding the power supply Vcc, GND, as well as a pin
of ATmega32A-PU used to control the Reset of the target-microcontroller we
have a six-wire interface for the programming function.

48 Chapter 4. Design and Implementation of the Platform

SPI is a preferred protocol for programming microcontrollers be-
cause it offers several advantages over other protocols. One of the main ad-
vantages is its high-speed data transfer capabilities. The SPI can transfer data
at rates of up to several megabits per second, which makes it ideal for pro-
gramming large amounts of data quickly and efficiently. Additionally, SPI is
a simple and straightforward protocol that requires minimal setup and con-
figuration, making it easy to implement and use.

The ATmega32A-PU is the master and the ATmega328p is the slave
in this protocol. The protocol was designed specifically for the ATmega328p,
which is one of the reasons why a premade programmer was not used. This
resulted in a more small-sized, low-cost, and straightforward solution. The
use of paged flash memory and the choice of ISP and the AVR910-ISP method
for programming the ATmega328p allows for efficient use of memory, fast
data transfer and a reliable and easy-to-use programming solution for stu-
dents.

FIGURE 4.12: SPI interface.

The Serial Peripheral Interface (SPI) protocol is a widely-used method
for synchronous serial communication between devices. In this implementa-
tion, the ATmega32APU serves as the programmer, and the target microcon-
troller is the ATmega328p.

The programming process begins by pulling the reset low and wait-
ing at least 20ms before issuing the first commands. The first command, Pro-
gramming Enable, is the only instruction accepted by the SPI interface when
starting the process. The expected command must be received before the
process can continue.

4.3. Programming and Control of the Laboratory Microcontroller 49

The second command, Read Device Code, reads the code of the de-
vice of the slave. In the case of the ATmega328p, the device code is 0x1E.
This command is used to verify that the correct target device is being pro-
grammed.

The next two commands, Read Part Family and Read Part Number,
also relate to the identification of the target microcontroller. These commands
are used to ensure that the correct device family and part number are being
programmed.

The ATmega328p has paged flash memory, which means that the
data is first loaded into a page buffer and then written to flash memory when
the buffer is full. This feature is taken into account in the programming pro-
tocol and the proper commands are issued to handle the paged memory.

The rest of the commands in the programming protocol to be ex-
ecuted and described below are used for the standard operations such as
reading and writing data to the flash and EEPROM memory, as well as veri-
fying the data that has been written. These commands are well-documented
in the ATmega328p datasheet and are widely used in the programming of
AVR microcontrollers using the ISP method.

Action MOSI, sent to the tar-
get AVR

MISO, returned from
the target AVR

Programming Enable $AC 53 xx yy $zz AC 53 xx
Read Device Code $30 nn 00 mm $yy 30 nn 1E
Read Part Family and Flash
Size

$30 nn 01 mm $yy 30 nn (Read Part
Family and Flash Size)

Read Part Number $30 xx 02 yy $mm 30 xx (Part Num-
ber)

TABLE 4.1: ISP commands(0)

If the identification is correct the following command 4.2 erases the
target-microcontroller. The command 4.2, Erase, is a crucial step in the pro-
gramming process as it erases the existing data on the target-microcontroller
before programming it with new code. This ensures that the target-microcontroller
is in a clean state and ready to receive new data. It is important to note that
this command is done automatically during the programming process, but
it is also available as an option for the user to manually erase the target-
microcontroller at any time. This flexibility allows the user to erase the target-
microcontroller and start fresh whenever necessary, ensuring that the target-
microcontroller is in a known state before programming it.

50 Chapter 4. Design and Implementation of the Platform

Action MOSI, sent to the tar-
get AVR

MISO, returned from
the target AVR

Erase Chip $AC 8x yy nn $zz AC 8x yy
Wait N ms
Release RESET to end the
erase

TABLE 4.2: ISP commands(1)

Then, after the previous steps have been correctly executed, the
data is first loaded into a page buffer with the Load Program Memory Page
command. This command is executed until the page buffer is full. The
ATmega328P, being the target microcontroller used in this implementation,
has a page size of 256 bytes which means that the page buffer will be filled
with 256 bytes of data before being written to the flash memory. When the
page buffer is full, with the Write Program Memory Page command the page
buffer is written to the flash memory of the ATmega328P.

Finally, to ensure that the data has been written correctly and to ver-
ify the programming procedure, the Read Flash Program Memory command
is used to read the data from the flash memory at specific addresses. This
command reads a single byte from the flash memory at a time and compares
it to the data that was originally loaded into the page buffer. In this way,
the programming procedure is verified and any errors can be identified and
corrected.

Action MOSI, sent to the tar-
get AVR

MISO, returned from
the target AVR

Load Program Memory Page $48 xx address data -
Write Program Memory Page $4C (adr MSB)

(adr LSB) xx
-

Read Flash Program Memory $28 (adr MSB)
(adr LSB) xx

$xx yy zz (data)

TABLE 4.3: ISP commands(2)

The programming process described above is a crucial step in the
development of the target-microcontroller, in this case the ATmega328P. The
use of the SPI protocol for programming the microcontroller proves to be an
effective method as it allows for fast and efficient communication between
the master and the slave.

One of the benefits of using the SPI protocol is its simplicity. The
standard format for commands consisting of 4 bytes makes it easy for the

4.3. Programming and Control of the Laboratory Microcontroller 51

master to send commands and for the slave to respond. This results in a
streamlined programming process that minimizes the risk of errors.

Additionally, the use of the paged memory flash in the ATmega328P
allows for efficient programming as it allows for data to be loaded into a
page buffer before being written to the flash memory. This ensures that the
programming process is done in a timely manner and minimizes the risk of
data loss.

Furthermore, the use of the Read Flash Program Memory command
allows for verification of the programming procedure. This ensures that the
data is correctly written to the flash memory and minimizes the risk of errors.

Overall, the use of the SPI protocol and the specific instructions im-
plemented in this case, proves to be an effective method for programming the
ATmega328P microcontroller. It allows for fast and efficient communication
between the master and the slave, minimizes the risk of errors, and ensures
that the programming process is done in a timely manner.

53

Chapter 5

System Verification and Evaluation

This chapter aims to provide a comprehensive analysis of the performance
and functionality of the programmer. This includes an examination of the
code used, the results obtained from testing, and any relevant observations
made during the programming process. The chapter will present and discuss
the data collected, including any graphical representations of the results, and
provide a thorough evaluation of the programmer’s capabilities and limita-
tions

The process of testing the programmer begins by connecting to the
IP provided by the ESP8266. I enter the IP address into a web browser. Once
connected, I am directed to the login page and prompted to enter the cre-
dentials that have been previously configured. These credentials ensure that
only authorized users have access to the programming interface. After en-
tering the credentials, I am redirected to the main page of the programming
interface.

On the main page, I upload the bin file that I need to program the
microcontroller with, which in this case is simple code that blinks a led. The
file is generated by the Microchip Studio, but as it does not provide the file in
the binary format needed for programming, I convert it from hex to binary. I
used the WInHex [22] converter tool to do this, as it is a powerful hex editor
that can also convert hex files to binary. However, there are other hex to
binary converters available as well, such as HxD, Hex Workshop, and more.

At this point, it should be noted that while the Arduino terminal
was used for convenience to monitor the programming process, any terminal
can be used and it ultimately depends on the developer’s preference. How-
ever, using the Arduino IDE terminal has the added benefit of being able to

54 Chapter 5. System Verification and Evaluation

easily connect to the ESP8266 UART, which is configured to a specific band-
width speed. The typical baud rate for ESP8266 is 115200 baud/s, but it can
be configured to other speeds as well, depending on the developer’s needs.

Subsequently,when I uploaded the file, it is noticed that the target
microcontroller’s LED was blinking at the rate that I had programmed into
the code. I also checked in the terminal, which I was using to monitor the
process, and confirmed that the process had been executed correctly. Addi-
tionally, I tweaked some inputs on the target microcontroller and observed
that the LED turned on and off depending on the inputs I had provided. I
also used the options, such as Erase Chip, Verify, Log Out, and Reset, which
were all successful and had a satisfactory response time. For a more in-depth
understanding of the target microcontroller programming process, I have in-
cluded a corresponding video that demonstrates the entire process and all
the steps taken in detail.

It is crucial to note that the code being used is specifically tailored
for the purpose of blinking an LED, and the inputs do not affect the out-
puts in this test scenario. Additionally, as an extra verification measure,
several pins on the I/O expander, which is responsible for reading the out-
puts of the programmer, were connected to buttons. Pressing these buttons
resulted in the corresponding outputs on the webpage turning green, and
releasing them turned the outputs red again.Furthermore, I have included
some screenshots that show the successful responses that I received as fur-
ther illustration of the process.

The following figure 5.1 provides a clear visual representation of the
sequence of events that occurred during the programming process. It illus-
trates the AT commands and the HTML pages that the ESP8266 transmitted
during the programming process, providing a comprehensive overview of
the steps taken during the programming process.

Chapter 5. System Verification and Evaluation 55

FIGURE 5.1: Visual representation of programmer process logs.

The following figure 5.2 provides a visual representation of the pro-
grammer in action. It captures a moment during the programming process
and allows the viewer to see the physical components and their arrange-
ment. This image provides valuable context and an understanding of the
setup used during programming.

56 Chapter 5. System Verification and Evaluation

FIGURE 5.2: Real-time Programming Image.

A visual representation of the webpage interface during the pro-
gramming process can be seen in figure 5.3.It illustrates a snapshot of the
webpage interface being utilized during the programming process. It cap-
tures a specific moment in time during the programming process, providing
a clear and detailed view of the interface and the information displayed. The
figure highlights the OUTPUT PINS section, where it can be observed that
when the LED is on, the color of the corresponding PIN is green, confirming
the correct indication of the outputs of the target microcontroller. Addition-
ally, the Response Panel is shown, displaying the messages received when
the PORTC4 and PORTC0 ports were set to 0 and 1, respectively.

Chapter 5. System Verification and Evaluation 57

FIGURE 5.3: Webpage Interface during Programming Process.

During the implementation of this program, I faced a range of is-
sues, from simple wiring problems to more significant ones. One of the chal-
lenges I encountered was the inconsistent behavior of the responses from the
ESP8266 when using different browsers and Wi-Fi networks. The speed of
each Wi-Fi network affected the way I was handling the responses, leading
to an unstable and unreliable system.

To address this issue, I delved deeper into the response handler and
discovered ways to optimize and improve its efficiency. I made changes to
the handler to ensure that it could handle the responses from the ESP8266
in a more consistent and stable manner, regardless of the speed of the Wi-Fi
network or the browser being used. These changes allowed me to create a
full, stable system that provided reliable and accurate responses every time.

59

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In conclusion, the remote programmer developed in this project serves as
a valuable tool for the remote programming of embedded systems over the
internet. Its user-friendly interface, ease of use, and reliability make it an
ideal solution for students and researchers at the University to access and
program embedded systems from any location. The remote access feature
of this programmer allows for the programming of embedded systems from
any location, making it more accessible for students and researchers, and
also eliminates the need for expensive dedicated programming equipment,
resulting in a cost-effective solution for the University. The remote program-
mer can greatly improve the workflow of embedded systems development
and testing by allowing for faster and more efficient debugging and upload-
ing of code. Additionally, it is worth mentioning that there are many useful li-
braries available that can be utilized to further enhance the functionality and
performance of the remote programmer. This technology has the potential to
streamline the process of embedded systems programming and development
within the University, making it more convenient and accessible for students
and researchers. It has the potential to revolutionize the way we approach
embedded systems programming and development within the University,
fostering a more innovative and productive learning environment.

6.2 Future Work

The development platform implemented in this thesis is intended to be widely
used in the laboratory of the Embedded Microprocessor Systems course. While
the graphical interface of the platform offers all the basic functions needed for

60 Chapter 6. Conclusions and Future Work

the implementation of laboratory experiments, there are a few minor modi-
fications that could be made in order to further optimize the system’s func-
tionality and usability.

Currently, the system relies on an STK500 as the main power supply
and development platform, which can be a limiting factor in terms of space
and accessibility within the lab. A more convenient and standalone solution
would be to create a custom PCB that could be used in place of the STK500,
which would save space and provide a more efficient, streamlined solution
for the lab. One of the main issues that arise when working with remote
programmers is the inability of users to access the system when they are
outside of the University’s network. To overcome this problem, there are
a few solutions that could be implemented:

• Port Forwarding: Port forwarding [23] is a method of making a device
on your home or business network accessible over the Internet. It in-
volves configuring your router to forward incoming connections on a
specific port to a specific device on your network. This would allow
the user to access the system remotely over the internet by forward-
ing incoming connections on the specific port to the device running the
remote programmer.

• VPN (Virtual Private Network): Another solution that could be imple-
mented is the use of a VPN [24] service. A VPN service allows the
user’s remote computer to access the system as if it were connected
to the University’s network. This is achieved by creating a secure, en-
crypted tunnel between the user’s computer and the University’s net-
work. This solution is considered to be more secure than port forward-
ing, as it encrypts all data passing through the tunnel, making it much
more difficult for anyone to intercept the data.

In conclusion, this thesis presents potential additions that are aimed
at enhancing the functionality and usability of our remote programmer in a
laboratory setting. These improvements are specifically designed to support
the development of embedded systems and the creation of a better experi-
ence for students and researchers using this platform.

One such addition is the integration of an LCD module on the PCB,
which would provide real-time information to the laboratory staff on the sta-
tus of the programming process. This would allow laboratory staff to moni-
tor the process of the student experiment and ensure its smooth running.

6.2. Future Work 61

Additionally, the addition of a camera that interacts with the web-
page would greatly enhance the debugging process for students. The cam-
era would provide a visual representation of the embedded system, allow-
ing students to see the results of their code in real-time. This would make it
easier for students to understand how their code is affecting the embedded
system and improve their ability to test and debug their code. Furthermore,
there are cost-effective solutions in the market that can be integrated into the
remote programmer, making it a more accessible tool for educational institu-
tions. This integration would allow students to benefit from the interactive
and hands-on experience provided by the camera and further aid in their
understanding and development of embedded systems

Another potential future addition would be the improvement of the
handler of the Wi-Fi module responses. This would not only add more func-
tionality to the remote programmer but also allow for more features to be
added to the web-page. The improved and adaptable handler would pro-
vide a more reliable and efficient connection between the remote program-
mer and the web-page. These modifications would not only make the re-
mote programmer a more powerful tool for the development of embedded
systems but also enhance the experience of students and researchers using
the platform by providing them with more options and features for testing
and debugging their code.

Finally, the current remote programmer only supports one student
to test their code at a time. A future addition with more target microcon-
trollers and the web-page being available to more students would allow mul-
tiple students to test their code simultaneously, and significantly improve the
remote programmer and its functionality. These modifications would make
the remote programmer a more powerful tool for the development of embed-
ded systems and further enhance the productivity and innovation of students
and researchers at the university.

63

References

[4] F. Yudi Limpraptono et al. “The design of embedded web server for re-
mote laboratories microcontroller system experiment”. In: (2011), pp. 1198–
1202. URL: https : / / ieeexplore . ieee . org / abstract / document /
6129302.

[5] Constantine-George Kottikas. “Design and Implementation of a Logic
Design Experiment Platform Based on AVR Microcontroller and JAVA
Graphics Application”. In: Technical University of Crete (2009). URL: https:
//dias.library.tuc.gr/view/12276.

[6] Lykos Emmanouil. “Design and Implementation of an Integrated Sys-
tem for Logic Design exercises”. In: Technical University of Crete (2020).
URL: http://purl.tuc.gr/dl/dias/C41217CF-87C0-4F90-B52B-
CBF035E966B5.

[7] Patrik Jacko, Milan Guzan, and Andrii Kalinov. “Remote Microcon-
troller Scanner Design for STM32 Microcontrollers Used to Distance
Education Form”. In: (2021), pp. 1–6. URL: https://ieeexplore.ieee.
org/abstract/document/9598723.

[8] Wael Badawy et al. “On Flashing Over The Air “FOTA” for IoT Ap-
pliances – An ATMEL Prototype”. In: (2020), pp. 1–5. URL: https://
ieeexplore.ieee.org/abstract/document/9352203.

[9] Tomasz Michalec et al. “Remote Programming and Reconfiguration
System for Embedded Devices”. In: (2019), pp. 467–470. URL: https:
//ieeexplore.ieee.org/abstract/document/8859983.

[12] Reza Hashemian and Jason Riddley. “FPGA e-Lab, a technique to re-
mote access a laboratory to design and test”. In: 2007 IEEE Interna-
tional Conference on Microelectronic Systems Education (MSE’07) (2007),
pp. 139–140. URL: https://ieeexplore.ieee.org/abstract/document/
4231487.

[13] Ahmed A. et al. “Wireless ATMEL AVR In-Circuit Serial Programmer
based on Wi-Fi and ZigBee”. In: 2020 16th International Computer Engi-
neering Conference (ICENCO) (2020). URL: https://ieeexplore.ieee.
org/document/9357392.

https://ieeexplore.ieee.org/abstract/document/6129302
https://ieeexplore.ieee.org/abstract/document/6129302
https://dias.library.tuc.gr/view/12276
https://dias.library.tuc.gr/view/12276
http://purl.tuc.gr/dl/dias/C41217CF-87C0-4F90-B52B-CBF035E966B5
http://purl.tuc.gr/dl/dias/C41217CF-87C0-4F90-B52B-CBF035E966B5
https://ieeexplore.ieee.org/abstract/document/9598723
https://ieeexplore.ieee.org/abstract/document/9598723
https://ieeexplore.ieee.org/abstract/document/9352203
https://ieeexplore.ieee.org/abstract/document/9352203
https://ieeexplore.ieee.org/abstract/document/8859983
https://ieeexplore.ieee.org/abstract/document/8859983
https://ieeexplore.ieee.org/abstract/document/4231487
https://ieeexplore.ieee.org/abstract/document/4231487
https://ieeexplore.ieee.org/document/9357392
https://ieeexplore.ieee.org/document/9357392

64 References

[14] Parkhomenko Anzhelika et al. “Development and Application of Re-
mote Laboratory for Embedded Systems Design.” In: Proceedings of 2015
12th International Conference on Remote Engineering and Virtual Instru-
mentation (REV). IEEE (2015). URL: https://ieeexplore.ieee.org/
abstract/document/7087265.

[15] “ESP-12E WiFi Module”. In: (2015). URL: https://components101.
com/sites/default/files/component_datasheet/ESP12E%20Datasheet.

pdf.
[17] “I/O EXPANDER MCP23017 Module”. In: (2006). URL: https://ww1.

microchip.com/downloads/en/devicedoc/20001952c.pdf.
[21] “AVR910: In-System Programming”. In: (2016). URL: http : / / ww1 .

microchip.com/downloads/en/appnotes/atmel-0943-in-system-

programming_applicationnote_avr910.pdf.

https://ieeexplore.ieee.org/abstract/document/7087265
https://ieeexplore.ieee.org/abstract/document/7087265
https://components101.com/sites/default/files/component_datasheet/ESP12E%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/ESP12E%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/ESP12E%20Datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/20001952c.pdf
https://ww1.microchip.com/downloads/en/devicedoc/20001952c.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-0943-in-system-programming_applicationnote_avr910.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-0943-in-system-programming_applicationnote_avr910.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-0943-in-system-programming_applicationnote_avr910.pdf

65

External Links

[1] labster. URL: https://www.labster.com/.
[2] digi. URL: https://www.digi.com/products/iot-software-services/

digi-remote-manager.
[3] Remote Desktop. URL: https : / / www . cyberlinkasp . com / insights /

remote-desktop-work/.
[10] Haider Al-Shammari et al. Energy efficient service embedding in IoT net-

works. Apr. 2018. URL: https : / / www . researchgate . net / figure /
Block-diagram-of-IoT-Node_fig2_325638412.

[11] labview. URL: https://www.ni.com/en-us/shop/software/products/
labview.html.

[16] Transmission Control Protocol. URL: https://en.wikipedia.org/wiki/
Transmission_Control_Protocol.

[18] JavaScript. URL: https://el.wikipedia.org/wiki/JavaScript.
[19] HTML. URL: https://el.wikipedia.org/wiki/HTML.
[20] CSS. URL: https://el.wikipedia.org/wiki/CSS.
[22] WinHex. URL: https://www.x-ways.net/winhex/.
[23] PortForward. URL: https://en.wikipedia.org/wiki/Port_forwarding.
[24] VPN. URL: https://en.wikipedia.org/wiki/Virtual_private_

network.

https://www.labster.com/
https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.digi.com/products/iot-software-services/digi-remote-manager
https://www.cyberlinkasp.com/insights/remote-desktop-work/
https://www.cyberlinkasp.com/insights/remote-desktop-work/
https://www.researchgate.net/figure/Block-diagram-of-IoT-Node_fig2_325638412
https://www.researchgate.net/figure/Block-diagram-of-IoT-Node_fig2_325638412
https://www.ni.com/en-us/shop/software/products/labview.html
https://www.ni.com/en-us/shop/software/products/labview.html
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://el.wikipedia.org/wiki/JavaScript
https://el.wikipedia.org/wiki/HTML
https://el.wikipedia.org/wiki/CSS
https://www.x-ways.net/winhex/
https://en.wikipedia.org/wiki/Port_forwarding
https://en.wikipedia.org/wiki/Virtual_private_network
https://en.wikipedia.org/wiki/Virtual_private_network

67

Appendix A

User Manual

This appendix serves as a user manual for the developed platform, offering
step-by-step instructions and guidelines on how to effectively utilize the sys-
tem’s features and functionalities. The manual is designed to assist students
in accessing the remote laboratory and performing programming and control
operations on the target microcontroller.

User Manual:

Before beginning the experiment, it is important to note the avail-
able outputs and inputs of the ATmega328p microcontroller. The outputs
include PD0-PD7, while the inputs are PC0-PC5. Additionally, ensure that
you have the necessary file in BIN format for programming the microcon-
troller. If you have a hex file, you can use tools like WinHex to convert it to
BIN.

Follow the steps below to program the microcontroller using the
Remote Programmer page:

1. Log in to the Remote Programmer page using the provided link (cre-
dentials will be provided by the lab).

2. Enter the login credentials on the displayed page to access the main
page.

3. Once successfully logged in, you will be directed to the main page.

4. Click on the "Program" button and select the BIN file you want to pro-
gram.

5. Check the "Response Panel" for a message indicating successful pro-
gramming.

68 Appendix A. User Manual

6. The "OUTPUT PINS" section displays the outputs of the programmed
microcontroller.

7. At this stage, you can perform various actions:

• Set inputs to the microcontroller by pressing the corresponding
"INPUT" buttons on the main page.

• Reset the microcontroller

• Erase the microcontroller

• Reprogram the microcontroller with another code by pressing "Pro-
gram" again and selecting another BIN file

8. Once you have completed your experiment, press "Log Out" to end
your session. Note that the system currently does not support multiple
users simultaneously.

The Response Panel serves as a real-time feedback mechanism, alerting you
to any issues that may arise during the experiment. If you have any questions
or encounter any difficulties, contact the laboratory staff.

Additionally, a tutorial video is provided to guide you through the
experimental procedure. This video allows you to visualize each step and
gain a better understanding of the process. Ensure that you follow these
instructions carefully to make the most out of the platform’s programming
and control capabilities.

69

Appendix B

Javascript code

Below is the Javascript code which provides the synchronous update of the
elements of the main web page:

<script>
function colorGreen(id) {

var el = document.getElementById(id);
el.setAttribute(’class’, ’classB’);

}

function colorRed(id) {
var el = document.getElementById(id);
el.setAttribute(’class’, ’classA’);

}
//Updates Response Panel
function getData(x) {

var xhttp = new XMLHttpRequest();
xhttp.open(’GET’, x, true);
xhttp.send();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById(’R’).innerHTML = this.responseText;

}
};

}
//Updates Color of Output Pins
function getPINS() {

var xhttp = new XMLHttpRequest();
xhttp.open(’GET’, ’OUTPINS’, true);
xhttp.send();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
if (this.responseText[1] == ’1’) {

colorGreen(’d0’);
} else if (this.responseText[1] == ’0’) {

70 Appendix B. Javascript code

colorRed(’d0’);
}
if (this.responseText[2] == ’1’) {

colorGreen(’d1’);
} else if (this.responseText[2] == ’0’) {

colorRed(’d1’);
}
if (this.responseText[3] == ’1’) {

colorGreen(’d2’);
} else if (this.responseText[3] == ’0’) {

colorRed(’d2’);
}
if (this.responseText[4] == ’1’) {

colorGreen(’d3’);
} else if (this.responseText[4] == ’0’) {

colorRed(’d3’);
}
if (this.responseText[5] == ’1’) {

colorGreen(’d4’);
} else if (this.responseText[5] == ’0’) {

colorRed(’d4’);
}
if (this.responseText[6] == ’1’) {

colorGreen(’d5’);
} else if (this.responseText[6] == ’0’) {

colorRed(’d5’);
}
if (this.responseText[7] == ’1’) {

colorGreen(’d6’);
} else if (this.responseText[7] == ’0’) {

colorRed(’d6’);
}
if (this.responseText[8] == ’1’) {

colorGreen(’d7’);
} else if (this.responseText[8] == ’0’) {

colorRed(’d7’);
}
getPINS();

}
};

}
setTimeout(getPINS, 1000);

</script>

71

Appendix C

Block Diagram

Below is the block diagram of the platform implemented in this thesis:

FIGURE C.1: Block diagram of the Platform.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Thesis Outline

	Theoretical Background
	Methods and Associated Technology for Remote Access to a Microcontroller of a Laboratory
	Programming and Control of the Laboratory Microcontroller

	Related Work
	Previous Implementations
	Design and Implementation of an Integrated System for Logic Design exercises
	FPGA e-Lab
	Wireless ATMEL AVR In-Circuit Serial Programmer based on Wi-Fi and ZigBee
	Development and Application of Remote Laboratory for Embedded Systems Design
	Remote Programming and Reconfiguration System for Embedded Devices

	Thesis Approach

	Design and Implementation of the Platform
	Component Selection and Integration in Implementation
	Microcontroller
	Wifi Module
	I2C EXPANDER 16BIT I/O - MCP23017
	Target-Microcontroller

	Remote Access to the Laboratory of the University
	Programming and Control of the Laboratory Microcontroller

	System Verification and Evaluation
	Conclusions and Future Work
	Conclusions
	Future Work

	References
	User Manual
	Javascript code
	Block Diagram

