
Technical University of Crete

School of Electrical and Computer Engineering

A Lightweight Haptic Glove for Enriched Tactile
Feedback, Including Normal Indentation, Lateral
Skin Stretch, and Precise Softness and Hardness

Kinesthetic Rendering in 3D Interactive Applications

Michail Roumeliotis

http://www.tuc.gr
http://www.ece.tuc.gr
http://www.yourWebsite.com

A thesis presented for the degree of Master of Science.

Chania, Crete , October 2023

Michail Roumeliotis
ii

October 2023

Declaration of Authorship

I, Michael Roumeliotis, declare that this thesis titled, ”A Lightweight Haptic Glove for

Enriched Tactile Feedback, Including Normal Indentation, Lateral Skin Stretch, and Precise

Softness and Hardness Kinesthetic Rendering in 3D Interactive Applications” and the work

presented in it are my own. I confirm that:

• This work was done wholly while in candidature for a research degree at this University.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Jury
3-member Committe

Professor Aikaterini Mania ECE, Technical University of Crete

Professor Konstantinos Balas ECE, Technical University of Crete

Professor Georgios Papagiannakis UOC, University of Crete

”The value of an idea lies in the using of it.”

Thomas Edison

Abstract

Current haptic devices typically rely solely on vibrations to provide tactile feedback, which

addresses just one aspect of cutaneous sensation. Moreover, existing devices for kinesthetic

feedback often involve bulky and cumbersome exoskeletons that limit users’ mobility. This

thesis introduces an innovative haptic glove that is lightweight, flexible, and easy to wear. It

offers realistic tactile feedback by incorporating normal indentation, lateral skin stretch, and

vibrations, along with high-fidelity kinesthetic feedback through strings manipulated by servo

motors.

Unlike current systems, this haptic glove is cost-effective, using small vibration motors em-

bedded in the fingertips to deliver tactile feedback. Additionally, it generates normal indentation

and shear forces by employing moving platforms to apply pressure to the skin. The kinesthetic

feedback is achieved through small strings attached to servo motors placed on the glove, simu-

lating both soft and hard virtual object manipulation. Controlled by a compact microcontroller,

the glove receives input from a computer, which sends commands to the motors and actuators.

To evaluate these features, three 3D interactive applications were created using the Unity

game engine, where the users performed different tasks and were able to interact and feel various

haptic cues. These interactive applications that have been developed can be seamlessly adapted

into a 3D or gaming application for Virtual Reality (VR) or Augmented Reality (AR) headsets,

as well as for mobile platforms, with minimal software adjustments required.

Study results suggest that users can better perceive directional information and surface

geometry when fingertip vibration is incorporated. Furthermore, users excel in distinguishing

softness levels when the differences in softness are distinct.

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor, Professor Katerina Mania,

for her invaluable guidance, support, and expertise throughout this research journey. Her

mentorship has been important in shaping this work.

I extend my thanks to the committee members, Professor George Papagiannakis and Pro-

fessor Konstantinos Balas, for their time and effort in reading and evaluating my work.

Furthermore, I would also like to extend my heartfelt appreciation to my friends and family

for their constant encouragement and understanding during the ups and downs of my academic

pursuit.

Publications

• M. Roumeliotis, K. Mania. A Lightweight Haptic Feedback Glove Employing

Normal Indentation, Lateral Skin Stretch and both Softness and Hardness

Rendering. 2023 IEEE International Symposium on Mixed and Augmented

Reality Adjunct (ISMAR-Adjunct). IEEE, 2023.

Michail Roumeliotis
viii

October 2023

Contents

1 Introduction 1

1.1 Brief Description . 1

1.2 Purpose of the Thesis . 2

1.3 Structure of the Thesis . 4

2 Research Overview 7

2.1 Introduction . 7

2.2 Dorsal-Based Haptic Devices . 7

2.3 Finger-Based Haptic Devices . 11

2.4 Handheld Controllers . 16

2.5 Haptic Devices used for Cultural Heritage . 19

2.6 Other Haptic Feedback Approaches . 21

3 Technological Background and Definitions 23

3.1 Haptic Feedback . 23

3.1.1 Types of Haptic Feedback . 23

3.1.2 Tactile Feedback . 23

3.1.3 Kinesthetic Feedback . 26

3.2 Tracking Technologies . 27

3.2.1 Ultrasonic Tracking . 27

3.2.2 Magnetic Tracking . 28

3.2.3 Inertial Measurement Unit . 29

3.2.4 Oculus Quest . 29

3.2.5 Leap Motion Controller . 30

3.3 CAD Software . 31

Michail Roumeliotis
ix

October 2023

CONTENTS

3.3.1 Graphics Area . 31

3.3.2 CommandManager . 32

3.3.3 FeatureManager Window . 32

3.3.4 PropertyManager Window . 33

3.3.5 ConfigurationManager Window . 33

3.4 Arduino IDE . 33

3.5 Unity . 35

3.5.1 Basic Structure of Unity . 36

3.5.2 Unity Architecture & Project Structure 37

4 Glove Design & Implementation 43

4.1 Hardware Assembly . 43

4.2 Design of the 3D parts . 44

4.2.1 Part on the top side of the fingertips . 44

4.2.2 Part on the bottom side of the fingertips 51

4.2.3 Parts responsible for driving cables . 56

4.2.4 Servo braking mechanism . 58

4.2.5 Softness Level Controller & Hard Object Controller 61

4.3 Components used for the Haptic Glove . 63

4.3.1 Arduino Micro . 63

4.3.2 Vibration Motors . 64

4.3.3 WS-MG90S Micro Servos . 65

4.3.4 PCA9685-Servo Driver . 66

4.3.5 Motor Driver Circuit . 68

4.4 Mechanical Design . 71

4.4.1 Tactile Feedback . 71

4.4.2 Kinesthetic Feedback . 73

4.5 Front-End Implementation . 74

4.5.1 Experiment 1: Softness/Hardness Perception 74

4.5.2 Experiment 2: Lateral Skin Stretch Perception 75

4.5.3 Experiment 3: Surface Geometry Perception 76

4.6 Back-End Implementation . 77

4.6.1 Experiment 1 Arduino Code . 77

Michail Roumeliotis
x

October 2023

CONTENTS

4.6.2 Experiment 2 Arduino Code . 81

4.6.3 Experiment 3 Arduino Code . 85

4.6.4 Experiment 1 Unity Code . 89

4.6.5 Experiment 2 Unity Code . 99

4.6.6 Experiment 3 Unity Code . 102

5 Evaluations & Results 107

5.1 Introduction . 107

5.1.1 Apparatus . 107

5.1.2 Participants . 108

5.2 Results and Discussion . 108

5.2.1 Performance Metrics: Softness/Hardness Perception 108

5.2.2 Performance Metrics: Lateral Skin Stretch Perception 109

5.2.3 Performance Metrics: Surface Geometry Perception 110

6 Conclusion, Limitations & Future Work 113

6.1 Limitations and Intuitions . 113

6.2 Future Work . 114

Michail Roumeliotis
xi

October 2023

CONTENTS

Michail Roumeliotis
xii

October 2023

List of Figures

1.1 Our Haptic Glove Implementation . 4

2.1 Dexmo Gloves. Source: https://www.dextarobotics.com/ 7

2.2 Haptx Gloves DK2. Source: [17] . 8

2.3 Exoten Glove. Source: [18] . 9

2.4 a) ”DextrES” capabilities overview, b) Mechanical representation of ”DextrES”

components. Source: [19] . 9

2.5 a) Implementation during the experiment, b) Implementation front view, c) Im-

plementation side view. Source: [20] . 10

2.6 a) Implementation during the experiment, b) Implementation front view. Source:

[21] . 11

2.7 a) Kinematics of the moving platform, b) Mechanical components used in this

implementation. Source: [22] . 12

2.8 a)Device bottom and side view, b)Experimental setup. Source: [23] 12

2.9 a) ”Haptigami” overview on finger, b) ”Haptigami” types of haptic rendering.

Source: [24] . 13

2.10 a) Wearable tactile interface for the finger, b) Application example. Source: [25] 14

2.11 a) Prototype device worn on the index, b) CAD sketch of the implementation.

Source: [26] . 14

2.12 a) ”Haptic Thimble” mounted on a finger, b) Scheme of the kinematics. Source:

[27] . 15

2.13 a) CAD view of the ”HapTip”, b) Experimental setup for ”HapTip”, Source: [28] 16

2.14 a) ”NormalTouch” implementation, b) Close-up of the tiltable and extrudable

platform, c) ”TextureTouch” implementation, d) Close-up of the 4×4 array of

pins. Source: [29] . 16

Michail Roumeliotis
xiii

October 2023

https://www.dextarobotics.com/

LIST OF FIGURES

2.15 Overview of the different shapes simulated with ”Wolverine”. Source: [30] . . . 17

2.16 Overview of ”Grabity” grasping motions. Source: [31] 18

2.17 Overview of ”CLAW” haptic rendering capabilities. Source: [32] 18

2.18 a) Experimental setup for the implementation, b) The simulated virtual object.

Source: [33] . 19

2.19 a) Experiment setup, b) The object the user interacts with. Source: [34] 20

2.20 a) The multitouch table, b) The physical rings that are used for the exhibition.

Source: [35] . 20

2.21 a) Close-up to the dielectric elastomer actuator, b) Presentation of the haptic

feedback. Source: [36] . 21

2.22 Overview of the implementation that provides haptics through chemicals. Source:

[37] . 22

3.1 ERM Coin Vibration Motor . 24

3.2 LRA Coin Vibration Motor . 25

3.3 Servo Motor . 26

3.4 Ultrasonic tracking by Ultraleap’s STRATOS Explore. Source: https://www.ultraleap.com/ 28

3.5 a) Magnetic tracking device by Polhemus, b) Sensors that track fingers by Pol-

hemus. Source: https://polhemus.com/ . 28

3.6 Inertial Measurement Units . 29

3.7 a) Oculus Quest 2 Controllers, b) Oculus Quest 2 Setup 30

3.8 a) Setup for the Leap Motion Controller, b) Leap Motion Controller 30

3.9 SolidWorks Window . 31

3.10 Arduino IDE Window overview . 34

4.1 Top view of the haptic device . 44

4.2 Index fingertip top side part . 45

4.3 Step 1: Create a 2D Sketch . 46

4.4 Step 2: Extrude the 2D Sketch . 47

4.5 Step 3: Cut-Extrude the 3D object . 47

4.6 Step 4: Cut-Extrude two holes for the kinesthetic feedback strings 48

4.7 Step 5: Cut-Sweep four holes for the moving platform strings 49

4.8 Step 6: Create 2D sketch for the ”legs” . 50

4.9 Step 7: Extrude the 2D sketch for the ”legs” . 50

Michail Roumeliotis
xiv

October 2023

https://www.ultraleap.com/
https://polhemus.com/

LIST OF FIGURES

4.10 Step 8: Cut-Extrude hole on each ”leg” . 51

4.11 Step 9: Fillet edges to be smoother . 52

4.12 Middle and Fat fingertip top side . 52

4.13 Index fingertip bottom side . 53

4.14 Step 3: Create the vibration motor socket . 53

4.15 Step 4: Create a hole for the vibration motor cables 54

4.16 Step 5: Cut-Extrude holes for the haptics feedback strings 54

4.17 Step 6: Fillet the edges of the 3D model . 55

4.18 Rest of the fingertips bottom side part . 56

4.19 Driving cables part . 57

4.20 Step 1: Create the 2D sketch and Extrude it . 57

4.21 Step 2: Create holes for the finger and the cables/strings 57

4.22 Step 3: Fillet the edges of the 3D model . 58

4.23 Servo breaking mechanism part . 58

4.24 Step 1: Create a 2D sketch and Extrude it . 59

4.25 Step 2: Create a hole specific for the servo motor output shaft 59

4.26 Step 3: Create the blocking parts’ bases . 60

4.27 Step 4: Create the blocking parts . 60

4.28 Step 5: Create a part to support the side parts 61

4.29 Softness Level Controller & Hard Object Controller 61

4.30 Creality Ender 3 V2 3D printer . 62

4.31 Arduino Micro microcontroller . 64

4.32 The coin vibration motors . 65

4.33 The MG90S servo motor . 66

4.34 The PCA9685 16-Channel 12-bit PWM/Servo Driver 67

4.35 Bipolar Junction Transistor . 68

4.36 Metal Oxide Semiconductor Field Effect Transistor 69

4.37 N-type MOSFET . 69

4.38 P-type MOSFET . 69

4.39 The 2N7000 N-Channel MOSFET . 70

4.40 The Schottky Diode 1N5817 . 70

4.41 Mechatronic system block diagram with pinout information 71

4.42 The Motor Driver Circuit . 71

Michail Roumeliotis
xv

October 2023

LIST OF FIGURES

4.43 The strings that are pulled in each case to simulate location-based tactile feedback

to the index finger . 72

4.44 Flowchart of the kinesthetic feedback . 73

4.45 Experiment 1 Unity scene . 74

4.46 Experiment 2 Unity scene . 75

4.47 Experiment 3 Unity scene . 76

5.1 Experimental setup for our implementation . 107

5.2 The percentage of correct answers on each combination 108

5.3 Confusion matrices of 2nd experiment with and without vibration on fingertip . . 109

5.4 Confusion matrices of the simplified orientations with and without vibration . . . 110

5.5 Confusion matrices of the 3rd experiment with and without vibration on fingertip 111

Michail Roumeliotis
xvi

October 2023

Listings

4.1 The global section of the code . 78

4.2 The ”setup()” section of the first experiment’s code 79

4.3 The ”loop()” section of the first experiment’s code 80

4.4 The ”setup()” section of the second and third experiment’s code 81

4.5 The ”loop()” section of the second experiment’s code 83

4.6 The ”loop()” section of the third experiment’s code 86

4.7 Create a file to store experiment’s data and open serial communication for the

first experiment . 90

4.8 Create a list with all the possible combinations for the first experiment 90

4.9 Send commands via serial communication depending the object softness or hardness 92

4.10 The ”SetValues()” method for the first experiment 97

4.11 The ”OnButtonClick()” method for the first experiment 98

4.12 Initialization of variables, create a file to store experiment’s data and open serial

communication for the second experiment . 100

4.13 The ”OptionSelected()” method for the second experiment 100

4.14 The ”ShowRandomNumber()” method for the second experiment 101

4.15 The ”WaitAndEnableButton()” method for the second experiment 102

4.16 Initialization of variables, create a file to store experiment’s data and open serial

communication for the third experiment . 102

4.17 The ”OnTriggerEnter()” and OnTriggerExit()” methods in ”Cube.cs” script . . . 103

4.18 The ”Update()” method in the third experiment 104

4.19 The ”OptionSelected()” method for the third experiment 104

4.20 The ”ShowRandomNumber()” method for the third experiment 105

4.21 The ”WaitAndEnableButtons()” method for the third experiment 106

Michail Roumeliotis
xvii

October 2023

LISTINGS

Michail Roumeliotis
xviii

October 2023

Chapter 1

Introduction

1.1 Brief Description

Haptic technology has made remarkable progress in recent years. Its main goal is to recreate

the sense of touch, pressure, and other tactile sensations, making it possible for users to in-

teract with digital and remote environments in ways that feel tangible. This technology has

found applications across various domains, such as robotics, virtual reality (VR), teleoperation,

rehabilitation, and cultural heritage.

The haptic feedback in these domains is significant. In VR, for instance, it has the potential

to greatly enhance the user experience by providing a profound sense of immersion and realism

[1], [2]. When users can not only see and hear but also feel virtual objects and environments, the

boundary between the real and the virtual blurs. Similarly, in teleoperation, haptic feedback

gives the ability to users to engage with distant or hazardous environments with a degree of

sensitivity and precision that would be otherwise impossible. It allows operators to ”feel”

and manipulate objects in a remote setting as if they were physically present [3], [4], [5]. In

rehabilitation, haptic technology plays an important role in assisting patients to regain their

sensory and motor functions. The ability to simulate tactile and kinesthetic sensations aids in

the recovery process, making it more engaging and effective [6], [7].

However, despite these promising applications, several challenges persist in the realm of

haptics. One of the primary challenges is the design and implementation of wearable haptic

systems that have a balance between functionality and user comfort. Many existing devices

are cumbersome, heavy, and restrict users’ natural range of motion, diminishing the overall

user experience [8]. Furthermore, these devices often fail to truly replicate the sense of touch

Michail Roumeliotis
1

October 2023

1. INTRODUCTION

and force feedback as experienced in the real world, leading to a noticeable gap in simulation

fidelity [9]. Affordability is another hurdle because the majority of haptic devices available in

the market remain relatively expensive.

Haptic feedback can be categorized into two types: tactile and kinesthetic feedback. Tac-

tile feedback aims to replicate the sensations felt in the fingers, including vibrations, normal

indentation, and lateral skin stretch [10], [11]. More specifically, normal indentation refers to

the sense of pressure felt on the fingertip by pressing a button, lateral skin stretch is the shear

forces applied to the skin to simulate directional information, friction, and curvature display.

Kinesthetic feedback, on the other hand, involves replicating sensations related to muscle, joint,

and tendon movements through exoskeletons [12], pneumatic actuators [13], etc.

While many devices that provide tactile feedback, focus solely on vibrations, these repre-

sent only a small fraction of the sensations that human skin can perceive [14]. Also, existing

kinesthetic feedback systems have their own set of limitations, such as discomfort, weight, and

restrictions on users’ movements [15]. These systems struggle to provide an accurate perception

of soft and deformable objects, limiting their utility in various scenarios.

1.2 Purpose of the Thesis

To address these critical challenges and present an innovative solution, our work focuses on the

design and implementation of a custom haptic glove that is lightweight, flexible, and easy to

wear. Importantly, it offers both tactile and kinesthetic feedback, providing users with a more

realistic haptic experience. The tactile feedback includes not only vibrations but also normal

indentation and lateral skin stretch, simulating the sensations of interacting with objects of

varying textures and shapes. Another feature of our haptic glove is its ability to provide

kinesthetic feedback through a system that pulls strings and is attached to the glove. To

evaluate the effectiveness of our haptic glove, we have conducted a series of three comprehensive

experiments. The first experiment evaluates the capability of the glove to offer accurate feedback

on the softness/hardness level of objects. The second experiment was divided into two parts,

evaluating the perceived directional information, with and without vibration. Finally, the last

experiment focuses on measuring users’ perception of the surface geometry, with and without

vibrations. Our specific contributions include:

• A custom and flexible haptic device offering tactile feedback in the form of normal inden-

tation by pressing a moving platform against the fingertip. It provides lateral skin stretch

Michail Roumeliotis
2

October 2023

1.2 Purpose of the Thesis

(surface geometry) by applying shear forces to the fingertip and vibration by using an

Eccentric Rotating Mass (ERM) motor on each fingertip.

• Unlike previous systems, we present a haptic device providing kinesthetic feedback based

on strings attached to the glove which can be pulled to simulate both soft and hard

objects.

• We conduct three formal experimental protocols to investigate users’ perception of either

softness or hardness as well as directional information and surface geometry of virtual

objects.

• We determine the accuracy of the perceived haptic feedback and whether vibrations can

improve the feedback provided to the users related to directional information and surface

geometry.

Michail Roumeliotis
3

October 2023

1. INTRODUCTION

Figure 1.1: Our Haptic Glove Implementation

1.3 Structure of the Thesis

In the following chapters as well as in this one, the whole thesis is presented in full detail.

Chapter 1 provides a concise overview of the purpose and functionality of the haptics field. It

provides an analysis of the current state of haptics used in various fields along with its challenges

and limitations. Additionally, it offers a brief description of haptic feedback and its two types:

tactile and kinesthetic. The chapter also defines the methodology and the implementation used

in this thesis to address the research questions and limitations.

Chapter 2 offers a research overview of various haptic devices. It starts with explaining dif-

ferent dorsal-based haptic devices, then proceeds to analyze devices, where the grounding point

Michail Roumeliotis
4

October 2023

1.3 Structure of the Thesis

is moved on top of the fingertip(finger-based devices). Then, it analyzes implementations that

utilize custom handheld controllers and moves on to present devices used for cultural heritage.

Finally, it presents different approaches for haptic feedback, such as dielectric elastomers, chem-

ical haptics, etc. Overall, this chapter provides a comprehensive understanding of the research

topics and sets the stage for further exploration and development within the thesis.

Chapter 3 provides an extensive exploration of the technological background and definitions

essential for this thesis. It presents different approaches for vibration, such as ERM, LRA, piezo

sensors, and shape memory alloys. It also shows how kinesthetic can be achieved. Moreover,

it provides an overview of different tracking technologies, such as ultrasonic tracking, magnetic

tracking, Inertial Measurement Unit(IMU), Leap Motion, etc. It includes an extensive presen-

tation of the CAD software, the Arduino IDE, and Unity3D that is used in this thesis. This

chapter provides a comprehensive understanding of the technical aspects and advancements

utilized throughout the thesis.

Chapter 4 offers an exploration of the glove design and implementation. It presents the

design procedure followed to design each 3D part placed on the hand. Then, it provides an

extensive presentation of the electronic devices used in our implementation. It also covers a

detailed analysis of the Unity scenes employed in the experiments. Finally, it provides an

insight into the code for each experiment for both Arduino and Unity. Overall, this chapter

offers a detailed account of the technical implementation aspects, serving as a foundation for

the subsequent chapters of the thesis.

Chapter 5 focuses on the evaluation of the implemented haptic glove, presenting the ex-

periments conducted and the results obtained. Overall, this chapter provides a comprehensive

overview of the evaluation process, offering insights into the perception of haptic feedback pro-

vided and the level of immersion, and contributing to the overall assessment of the implemented

haptic glove.

Chapter 6 provides a comprehensive summary and conclusion of the findings and contribu-

tions presented in this thesis. It acknowledges the limitations presented throughout the study.

Furthermore, it offers valuable insights and recommendations for future research and potential

areas of exploration.

Michail Roumeliotis
5

October 2023

1. INTRODUCTION

Michail Roumeliotis
6

October 2023

Chapter 2

Research Overview

2.1 Introduction

2.2 Dorsal-Based Haptic Devices

Past research has focused on moving the grounding point of the system on top of the hand

closer to the actuation point, developing exoskeletons, i.e., a robotic system blocking the hand’s

movement when there is contact between the virtual hand and a virtual object.

Figure 2.1: Dexmo Gloves. Source: https://www.dextarobotics.com/

Dexmo Gloves [16] are haptic feedback devices designed to provide users with realistic touch

and force feedback in virtual reality (VR) and augmented reality (AR) environments. Dexmo

gloves are equipped with small vibration motors, placed on the fingertips, that generate vi-

brations at different frequencies and intensities to replicate the sensation of touching different

surfaces and textures. The researchers also integrated pressure sensors, which adjust the vibra-

Michail Roumeliotis
7

October 2023

https://www.dextarobotics.com/

2. RESEARCH OVERVIEW

tion patterns of the actuators accordingly. The gloves can exert resistance against the user’s

fingers, simulating the sensation of touching and holding objects of varying weight and stiff-

ness. They are wireless with an overall latency of 20-50ms. However, there is no enriched tactile

feedback and they are quite heavy and cumbersome. In this thesis, we provide enriched tactile

feedback in the form of normal indentation, and lateral skin stretch, and our implementation is

lighter to Dexmo since we use strings instead of an exoskeleton.

Figure 2.2: Haptx Gloves DK2. Source: [17]

Haptx [17], created a haptic feedback glove that uses microfluidic technology to generate

precise tactile feedback on the user’s skin. By applying varying pressure and vibrations through

microfluidic actuators, the gloves simulate the sensations of touching different textures, surfaces,

and objects. For the kinesthetic feedback, they use pneumatic actuators that enable the exoten-

dons to apply up to eight pounds of force per finger. They use magnetic motion tracking with

6 DOF per finger. However, the system requires an air compressor to control the actuators,

which makes the interface heavy. Also, the precision of small objects is off. In this thesis, we

have implemented a lighter device since we use an actuation system based on strings instead of

pneumatic motors that require an external air compressor.

Hosseini et al. [18] introduced a wearable haptic glove called the ExoTen-Glove, which

employs a twisted string actuation (TSA) system. This system is designed to provide users with

force feedback, as they interact with virtual objects. The glove was designed to be lightweight.

The technology behind the ExoTen-Glove is the twisted string actuation system, which consists

of two independent actuators. These actuators are equipped with force sensors and small

DC motors, allowing them to dynamically adjust the tension in twisted strings. This tension

manipulation results in force feedback being transmitted to the user’s fingertips during virtual

Michail Roumeliotis
8

October 2023

2.2 Dorsal-Based Haptic Devices

Figure 2.3: Exoten Glove. Source: [18]

object-grasping scenarios. To validate the effectiveness of the ExoTen-Glove, the paper presents

preliminary results from experimental evaluations. In a virtual reality environment, participants

engaged in a specific task where they squeezed a physical spring using their thumb and index

finger. This real-world action was then compared to the experience of squeezing a simulated

spring with adjustable stiffness. The results of this comparison demonstrated the glove’s ability

to accurately convey force sensations and simulate varying levels of stiffness. However, the

device is quite cumbersome and limits finger motion. It also requires an external control box to

operate. In this thesis, we tackle the problem of weight by designing a state-of-the-art actuation

system and controlling it without the need for external components.

Figure 2.4: a) ”DextrES” capabilities overview, b) Mechanical representation of ”DextrES”

components. Source: [19]

Hinchet et al. [19] presented the ”DextrES” glove, a lightweight and flexible wearable that

integrates kinesthetic and cutaneous feedback in a compact form (weighing less than 8g). The

glove employed an electrostatic clutch system that can produce up to 20 N of holding force for

Michail Roumeliotis
9

October 2023

2. RESEARCH OVERVIEW

each finger. This force was generated by controlling the electrostatic attraction between flexible

elastic metal strips, resulting in an adjustable friction force that provides rapid kinesthetic

feedback. The glove placed the electrostatic brake on the index finger and thumb, utilizing 3D-

printed guides to ensure smooth movement of the metal strips. Additionally, piezo actuators on

the fingertips delivered cutaneous feedback. A controlled experiment showed that ”DextrES”

enhances the accuracy of grasping across a range of virtual objects. They also reported findings

from a psychophysical study that established the thresholds for different levels of holding force

discrimination. In this thesis, we provide enriched tactile feedback compared to only vibrations,

and kinesthetic feedback for objects with different softness levels.

Figure 2.5: a) Implementation during the experiment, b) Implementation front view, c) Imple-

mentation side view. Source: [20]

Roumeliotis et al. [20] created a wearable embedded system, designed to deliver both

tactile and kinesthetic haptic feedback for interactive 3D applications. By combining both

types of haptic feedback, the proposed system aims to create a more immersive and convincing

interactive experience. The authors developed a printed circuit board (PCB) to house the

necessary circuitry, and they opted for cost-effective components to make the system affordable

and accessible. For kinesthetic feedback, a 3D-printed exoskeleton is employed, which houses

five servo motors on the back of the glove. This setup allows users to experience motion-related

feedback. Tactile feedback is facilitated through fifteen coin vibration motors positioned on

the inner side of the hand, capable of producing vibrations at three different levels. However,

this implementation was cumbersome and fatiguing. The tactile feedback is provided only

through vibrations and the kinesthetic feedback does not offer varied levels of stiffness, unlike

our implementation.

Efraimidis et al. [21] proposed a wireless embedded system integrated into a glove, offering

both hand motion capture and tactile feedback for remote interaction in VR without the need

Michail Roumeliotis
10

October 2023

2.3 Finger-Based Haptic Devices

Figure 2.6: a) Implementation during the experiment, b) Implementation front view. Source:

[21]

for an additional finger-tracking device like the Leap Motion. The key components of the

system include an infrared filter pass camera that tracks the user’s hand movements. This

camera detects infrared LEDs attached to a 3D-printed base on the glove. This configuration

eliminates the need for a separate finger-tracking device. The wireless nature of the system

removes the restrictions imposed by wired connections, thereby enhancing user mobility and

engagement in VR experiences. An accelerometer/gyroscope for the pitch and roll was added

and tactile feedback was communicated through five vibration motors attached to the fingertips.

However, this implementation lacks kinesthetic feedback. In our work, kinesthetic feedback is

provided by strings instead of an exoskeleton, reducing weight. Also, we provide enriched tactile

feedback via vibration, normal indentation, and lateral skin stretch, instead of just vibration.

2.3 Finger-Based Haptic Devices

Another approach to haptic systems is to move the grounding point on top of the fingertip to

provide enriched tactile feedback, even closer to the actuation point.

Chinello et al. [22] presented a modular wearable finger interface designed to provide users

with both cutaneous (tactile) and kinesthetic (force-related) interactions. An embedded system

is developed that offers 3-DoF fingertip cutaneous feedback through a mobile platform providing

normal indentation and simulation of the curvature on the fingertip. It provides 1-DoF finger

kinesthetic feedback on the proximal and distal interphalangeal finger articulations through an

exoskeleton that employs a single servo motor anchored to the proximal phalanx. The results

from their experiments indicated that integrating cutaneous and kinesthetic feedback through

Michail Roumeliotis
11

October 2023

2. RESEARCH OVERVIEW

Figure 2.7: a) Kinematics of the moving platform, b) Mechanical components used in this

implementation. Source: [22]

the wearable interface significantly enhances the performance of all tasks. While cutaneous-only

feedback demonstrated promise, the addition of kinesthetic feedback yielded improvements in

most performance metrics. However, the interface is cumbersome, difficult to use, and provides

haptic feedback to only one finger. In this thesis, we move the actuation point to the dorsal

area of the hand to reduce the weight from the fingers, and we provide feedback to all fingers.

Figure 2.8: a)Device bottom and side view, b)Experimental setup. Source: [23]

Leonardis et al. [23] introduced a wearable haptic device designed to manipulate the sen-

sation of contact forces at the fingertips. By utilizing skin deformation across three different

directions, the device offered the ability to simulate both contact and non-contact scenarios.

This functionality is achieved through a rigid parallel kinematics system. The device stands

out due to its distinct three-revolute-spherical-revolute (3-RSR) configuration, which ensures a

compact design without compromising the hand’s range of motion. To effectively control the

device in real time, a unique differential method was introduced to solve the intricate challenge

of inverse kinematics. The paper outlined the results of three separate experiments aimed at

assessing the device’s performance and user interaction. The first experiment involved partici-

Michail Roumeliotis
12

October 2023

2.3 Finger-Based Haptic Devices

pants distinguishing between different directions of fingerpad stretching. The second experiment

engaged 19 participants in a virtual manipulation task to evaluate the quality of tactile feedback

provided by the device. In the third experiment, 10 participants engaged in a virtual task that

simulated lifting and holding objects. The experimental findings indicated that participants

exhibited better control over interaction forces when tactile feedback was active, as opposed to

relying solely on visual or visuo-haptic cues. In this thesis, we placed the actuation point on

the dorsal area of the hand to reduce unnecessary weight from the fingertips. Additionally, our

implementation offers kinesthetic feedback for different softness-level objects.

Figure 2.9: a) ”Haptigami” overview on finger, b) ”Haptigami” types of haptic rendering.

Source: [24]

Giraud et al. [24] developed a wearable fingertip haptic device named ”Haptigami”, designed

to provide haptic feedback. The 36 x 25 x 26 mm device, which weighs 13g, can provide contact

and stiffness display via compression, shear, and curvature display via roll and pitch, as well as

texture via vibration. The device consists of an origami-based mechanism, which is powered by

two piezo motors each one controlling two embedded slider-crank transmissions. The current

prototype of ”Haptigami” can generate 678 mN of compression force. It can also produce

400 mN and 150 mN of shear force in the Y and X directions, respectively. However, it cannot

achieve compression and pitch simultaneously, since compression requires the use of two motors.

Their implementation is also designed for one finger only. In this thesis, we use different motors

for each action, and we are able to provide compression and pitch simultaneously.

Salazar et al. [25] explored the enhancement of haptic feedback in Virtual Reality (VR) and

Augmented Reality (AR) environments through the combination of passive tangible objects

and wearable haptic devices. To achieve this, they created a wearable cutaneous device for

Michail Roumeliotis
13

October 2023

2. RESEARCH OVERVIEW

Figure 2.10: a) Wearable tactile interface for the finger, b) Application example. Source: [25]

the fingertip providing pressure and skin stretch stimuli by two servo motors and a fabric belt.

When the motors rotate in the same direction, shear forces are applied to the finger. When

they rotate in a different direction, they provide force to the finger. However, simple passive

tangible objects were combined with this device to provide the perception of shape, stiffness,

and friction. They conducted three experiments to evaluate the effectiveness of their approach.

The results indicate that the compliance of a palpable object can be increased by conforming to

the pressure applied through the wearable device. Furthermore, the simulation of bumps and

holes is achieved by delivering appropriate pressure and skin stretch sensations. In this thesis,

we don’t use passive haptics to achieve enriched tactile cues.

Figure 2.11: a) Prototype device worn on the index, b) CAD sketch of the implementation.

Source: [26]

Prattichizzo et al. [26] developed a 3-DoF wearable device for tactile feedback that applies

normal and tangential shear forces to the fingertip by controlling three cables through three

actuators. The device is also composed of two platforms: a static one situated on the back of the

finger, and a mobile platform responsible for applying the forces to the finger pad. The wearable

haptic device can exert forces of up to 1.5 newtons, with a maximum platform inclination of

Michail Roumeliotis
14

October 2023

2.3 Finger-Based Haptic Devices

30 degrees. The authors conducted an experiment involving curvature discrimination. The

wearable device, when used in conjunction with a popular haptic interface, led to improved

performance compared to using the haptic interface alone. In this thesis, our implementation

provides both kinesthetic feedback and tactile feedback to all fingertips.

Figure 2.12: a) ”Haptic Thimble” mounted on a finger, b) Scheme of the kinematics. Source:

[27]

Gabardi et al. [27] developed the ”Haptic Thimble”, a novel wearable haptic device designed

for surface exploration. The ”Haptic Thimble” is capable of rendering surface orientation

and delivering tactile cues with a wide frequency bandwidth, enabling users to interact with

surfaces in virtual environments while receiving rich tactile feedback. The device’s features

allow it to simulate reactive contact, transitions between contact and no contact, collisions,

surface textures, and asperities, enhancing the user’s perception of the virtual environment.

The ”Haptic Thimble” achieves these capabilities through a unique serial kinematics design

that wraps around the finger. The implementation is actuated by a compact servo motor

for the orientation and a custom voice coil for the actuation of the plate in contact with the

fingerpad. The performance of the voice coil is evaluated in both static and dynamic conditions,

demonstrating its ability to reproduce wide-bandwidth (0-300 Hz) tactile cues. The usability

and effectiveness of the ”Haptic Thimble” are explored through various experiments. Within a

virtual environment, participants use the device to explore virtual surfaces, assessing its overall

usability. However, the actuators were placed on the finger, making the system cumbersome

and difficult to use for long. In this thesis, we move the placement of the actuators on the

dorsal area of the hand and reduce the weight by implementing a string-based system.

Michail Roumeliotis
15

October 2023

2. RESEARCH OVERVIEW

Figure 2.13: a) CAD view of the ”HapTip”, b) Experimental setup for ”HapTip”, Source: [28]

Girard et al. [28] introduced ”HapTip,” a compact wearable device capable of generating

two Degrees of Freedom (2 DoF) shear forces on the fingertip, allowing for movements within a

range of ±2 mm. The modularity of ”HapTip” enables multiple devices to collaborate, allowing

scenarios where multi-finger or bimanual interactions in virtual environments. The authors

present four use cases illustrating how ”HapTip” can facilitate interactions involving touching

or grasping virtual objects. The results from the experiments demonstrate that participants are

able to accurately discriminate the directions of the 2 DoF stimulation provided by the haptic

device. Additionally, participants are shown to effectively perceive different weights of virtual

objects simulated using two ”HapTip” devices. In this thesis, we add kinesthetic feedback and

enriched tactile feedback to every finger.

2.4 Handheld Controllers

Figure 2.14: a) ”NormalTouch” implementation, b) Close-up of the tiltable and extrudable

platform, c) ”TextureTouch” implementation, d) Close-up of the 4×4 array of pins. Source:

[29]

Benko et al. [29] designed mechanically-actuated handheld controllers to provide users with

Michail Roumeliotis
16

October 2023

2.4 Handheld Controllers

tactile perception of virtual object shapes, textures, and forces that align with their visual rep-

resentation. The authors introduce two controllers, ”NormalTouch” and ”TextureTouch,” both

capable of producing spatially-registered haptic feedback to the user’s finger while being tracked

in 3D space. ”NormalTouch” employs a tiltable and extrudable platform to haptically represent

object surfaces and deliver force feedback. On the other hand, ”TextureTouch” employs a 4x4

matrix of actuated pins to render the shape of virtual objects, including intricate surface struc-

tures. By manipulating these controllers while maintaining finger contact with the actuated

platform, users can perceive a more extensive 3D shape perception by integrating the tactile

sensations over time. The results from their experiments, demonstrate that haptic feedback

significantly enhances the accuracy of VR interaction, particularly when rendering high-fidelity

shape output, as demonstrated by the authors’ controllers. However, their implementations are

cumbersome, limiting users’ immersion, since they grab a controller, and the tactile feedback is

limited only to the index finger. In this thesis, we designed a wearable and easy-to-wear haptic

glove that allows users to grasp virtual objects like in the real world.

Figure 2.15: Overview of the different shapes simulated with ”Wolverine”. Source: [30]

Choi et al. [30], designed a wearable haptic device to simulate the haptic feedback provided

when users grasp rigid objects in virtual reality (VR). The focus was on creating an affordable

and lightweight solution. The ”Wolverine” creates forces between the thumb and three fingers

to simulate ”pad opposition” grasps. Using low-power brake-based locking sliders, the system

withstands significant forces (up to 100N) between fingers and thumb while consuming mini-

mal energy. The device incorporates sensors for feedback and input: time-of-flight sensors track

finger positions, and an IMU monitors orientation. To evaluate the effectiveness of the ”Wolver-

ine” interface, the authors conduct user studies comparing the interface’s haptic feedback to

other hand controllers. The results demonstrate that the ”Wolverine” interface significantly

improves the users’ perception of grasping and manipulating virtual objects, leading to a more

engaging and immersive VR experience. However, in this thesis, we provide tactile feedback to

all fingertips as well and our device is wearable and easy to use in different case scenarios.

Michail Roumeliotis
17

October 2023

2. RESEARCH OVERVIEW

Figure 2.16: Overview of ”Grabity” grasping motions. Source: [31]

In [31], the authors designed a wearable haptic device to simulate the sensation of grasped

virtual objects’ rigidity and weight within virtual reality (VR) applications. ”Grabity” is cre-

ated to provide users with a more immersive experience by simulating both the kinesthetic forces

associated with a pad opposition grip and the sensation of weight when interacting with virtual

objects. The device applies forces to the index finger and the thumb, allowing for a precision

grasp. A unidirectional brake mechanism generates the grasping force feedback, enabling tac-

tile sensations. The interface incorporates two voice coil actuators that produce virtual forces

tangential to each finger pad by inducing uneven skin deformation. These forces emulate the

gravitational and inertial sensations of virtual objects. The paper assesses ”Grabity’s” perfor-

mance through two separate user studies. In the first study, the authors explore the device’s

ability to convey varying levels of weight and force sensations. The second study focuses on

users’ capacity to differentiate between various weights in a VR environment using ”Grabity”.

However, their implementation hinders user immersion in virtual reality (VR) due to the design

not being wearable, unlike our haptic glove. Also, our implementation offers tactile feedback to

all fingertips and can be used in different scenarios.

Figure 2.17: Overview of ”CLAW” haptic rendering capabilities. Source: [32]

Michail Roumeliotis
18

October 2023

2.5 Haptic Devices used for Cultural Heritage

In [32], they created a handheld virtual reality (VR) controller that adds features such as

force feedback and actuated movement for the index finger. The primary innovation of ”CLAW”

is its ability to enable three distinct interactions: grasping virtual objects, touching virtual

surfaces, and triggering actions. The device incorporates a servo motor connected to a force

sensor to deliver controllable forces to the index finger, creating feedback during grasping and

touching interactions. Additionally, a voice coil actuator at the fingertip generates synchronized

vibrations corresponding to different textures, enhancing the sense of touch. The ”CLAW” also

provides haptic force feedback during trigger actions, as is common in scenarios involving virtual

guns. To assess the performance of the controller, the authors conducted two user studies. The

first study gathered qualitative feedback regarding the device’s naturalness, effectiveness, and

comfort. The second study focused on evaluating the ease of transitioning between grasping

and touching modes while using ”CLAW”. Users reported a heightened level of engagement and

satisfaction with their interactions in virtual environments when using the ”CLAW”. However,

this device is heavier than our implementation, not wearable, and limited to one finger.

2.5 Haptic Devices used for Cultural Heritage

Figure 2.18: a) Experimental setup for the implementation, b) The simulated virtual object.

Source: [33]

Sreeni et al. [33] addressed the issue of virtual representation of cultural heritage objects

for haptic interaction. Their main goal is to provide haptic access to art objects at any scale for

people with disabilities. This is a low-cost system that, when combined with a stereoscopic visual

display, provides a better immersion experience even for people with vision. To achieve this,

they propose a simple, multi-layered method of haptic-optical rendering via a proxy for point

cloud data, which includes the highly desirable scalability that allows users to adaptively change

Michail Roumeliotis
19

October 2023

2. RESEARCH OVERVIEW

the scale of objects during haptic interaction. In the proposed haptic rendering technique, the

proxy update loop is executed 100 times faster than the required haptic update frequency of

1KHz. They found that this functionality contributes very well to the realism of the experience.

Figure 2.19: a) Experiment setup, b) The object the user interacts with. Source: [34]

Krumpen et al. [34] focused on enriching object inspection in VR with additional haptic

feedback to create a tangible heritage experience. To this end, they present an approach for

interactive and collaborative object inspection based on VR and annotation. Their system

supports high-quality 3D models with accurate reflective properties and additionally provides

haptic feedback on the shape of the object based on a 3D printed replica. The digital object

is stored in a compact and streamable representation on a central server, which transmits

the data to remotely connected users/clients. The latter can collectively perform an interactive

inspection of the object in VR with additional haptic feedback provided by the 3D-printed copy.

System performance evaluations, the visual quality of the models viewed, and findings from a

user study indicate improved interaction, evaluation, and experience of the viewed objects.

Figure 2.20: a) The multitouch table, b) The physical rings that are used for the exhibition.

Source: [35]

Ma et al. [35] presented a study comparing the behavior of museum visitors to an interactive

Michail Roumeliotis
20

October 2023

2.6 Other Haptic Feedback Approaches

exhibition that used physical and virtual objects to explore a large scientific dataset. The

exhibit depicts the distribution of phytoplankton in the world’s oceans on a multi-touch table.

In one version, visitors used physical rings to see the type and proportion of phytoplankton in

different regions of the oceans, while in the other version they used virtual rings. The findings

suggest that the physical rings allowed for more touching and manipulation and attracted

more people, who discussed and exchanged ideas. However, the comparison did not identify

measurable differences in the completeness of visitors’ interactions, the questions they asked,

or their discussions on the topic with others in the exhibition.

2.6 Other Haptic Feedback Approaches

Figure 2.21: a) Close-up to the dielectric elastomer actuator, b) Presentation of the haptic

feedback. Source: [36]

Ji et al. [36] introduced an innovative approach to wearable haptic interfaces, focusing

on ”feel-through” haptics using ultra-thin dielectric elastomer actuators (DEA) with an 18

µm thickness. This technology aims to provide tactile feedback for virtual and augmented

reality experiences while maintaining a soft and imperceptible feel when not in use. The paper

addresses the limitations of current wearable haptic devices, which are often bulky, tethered,

and lack high-fidelity feedback. The proposed solution involves ultra-thin DEA applied directly

to the skin, enabling users to perceive force and texture changes associated with virtual objects.

Experiments were conducted to assess the effectiveness of the approach. The 18 µm thick DEA

was found to generate rich vibrotactile feedback across a wide frequency range. Users were

able to accurately identify different frequency and sequence patterns when the devices were

applied to their fingertips, achieving success rates ranging from 73% to 97%. An untethered

version of the technology, weighing just 1.3 grams, allowed blindfolded users to recognize letters

by ”feeling” them through their fingers. The use of ultra-thin DEA offers a solution to the

Michail Roumeliotis
21

October 2023

2. RESEARCH OVERVIEW

challenges of bulky and tethered haptic devices. However, it requires a 500V-1kV power supply

to actuate the interface, unlike our proposed haptic glove that requires only 5V to operate.

Figure 2.22: Overview of the implementation that provides haptics through chemicals. Source:

[37]

Lu et al. [37] explored a novel approach to haptic feedback by using topical stimulants

to create tactile sensations. Unlike traditional methods that rely on mechanical actuators

or vibrations, this approach leverages chemicals to elicit haptic sensations in a non-invasive

manner. While traditional haptic technologies often involve mechanical components that can

be bulky or lack precision, the proposed ”chemical haptics” approach introduces a different

paradigm by using substances applied topically to the skin. By applying these substances to

the skin, users can experience haptic feedback that simulates different textures, forces, or even

temperature changes. They use Menthol to simulate the sense of cooling, Capsaicin for warming,

Sanshool for tingling, and Lidocaine for numbing. However, they do not transition from one

sensation to another and sensations do not last for a long time. In this thesis, haptic sensations

can last as long as required.

Michail Roumeliotis
22

October 2023

Chapter 3

Technological Background and

Definitions

3.1 Haptic Feedback

3.1.1 Types of Haptic Feedback

In order to implement haptic technology, researchers create special devices that provide the

appropriate feedback to the user. The type of feedback that can someone find in these devices

is kinesthetic and tactile. Tactile feedback refers to the things you feel in your fingers—

vibration, softness, hardness, warmth, while kinesthetic is associated with the things you feel

from sensors in your muscles, joints, and tendons—weight, stretch, shape, etc.

3.1.2 Tactile Feedback

Vibration Motors Due to their small size and enclosed vibration mechanism, coin vibration

motors are a popular choice for many applications. They are mainly used in applications

like smartwatches and other wearable devices to provide tactile feedback. These vibration

motors divide into two categories—ERM(Eccentric Rotating Mass) and LRA(Linear Resonant

Actuator).

Eccentric Rotating Mass Motors are small, compact, and lightweight and are mainly

found in a wide range of electronic devices, from smartphones and smartwatches to video game

controllers and remote controls. They consist of an off-center, non-symmetric mass that is

attached to the motor shaft. To activate these motors, an electrical voltage is applied across

the motor’s terminals. When the motor is powered, it generates a magnetic field inside its

Michail Roumeliotis
23

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Figure 3.1: ERM Coin Vibration Motor

coil making the armature rotate. As the armature moves, it turns the eccentric mass. The

centripetal force is asymmetric, which results in a centrifugal force that displaces the motor.

This displacement of the motor causes the vibration. The movement of the vibration could be

represented as a sinusoidal wave. The frequency of the wave is the frequency of the vibration

which results from the applied voltage. The equation for the centrifugal force is:

F = mω2r

From the centrifugal equation we could derive that if the voltage is increased, the vibration

frequency (ω) will increase along with the vibration amplitude(F).

Linear Resonant Actuators is a recently developed alternative to ERM. These motors

consist of a mass, permanent magnet, voice coil, and spring. These motors are also used

in various electronic devices, providing precise and customizable haptic feedback. The core

principle of LRA is resonance. Resonance happens when a system vibrates most effectively at

a specific frequency. The resonant frequency is determined by the mass, the spring stiffness,

etc. Additionally, LRA motors have to work on the resonant frequency because their efficiency

and performance drop instead. These motors are driven by alternating current (AC) voltage

sources. When voltage is applied to the voice coil, it generates an electromagnetic field. This

field interacts with the permanent magnet attached to the mass. This mass is allowed to be

moved back and forth by the spring. The movement of the spring is linear along the axis of

Michail Roumeliotis
24

October 2023

3.1 Haptic Feedback

Figure 3.2: LRA Coin Vibration Motor

the LRA. Operating at or near the resonant frequency, these motors consume minimal power.

Finally, LRA motors offer precise control over vibration amplitude, frequency, and duration.

Piezoelectric Motors Piezoelectric Actuators are devices that use the piezoelectric effect

to convert electrical energy to mechanical motion. Common piezoelectric materials are quartz,

lead zirconate titanate (PZT), etc. The piezo motors consist of one or more piezo materials

sandwiched between two electrodes. When voltage is applied to these electrodes, it creates an

electrical field within the piezoelectric material and it deforms/changes shape. This change is

subtle but precise. Moreover, piezoelectric actuators consume very little power when idle, which

makes them energy-efficient. Also, these motors don’t generate a magnetic field, thus magnetic

interference is not a concern. However, these motors require high-voltage electrical signals to

operate effectively. Also, piezo motors need complex control circuitry and are quite brittle.

Shape Memory Alloys Shape Memory Alloys(SMAs) are materials that can be used in

haptic devices to provide tactile feedback and simulate various sensations. SMAs are able to

”remember” and return to a predefined shape when are subjected to stimuli, typically changes

in temperature. These materials have two phases: austenite(high-temperature phase) and

martensite(low-temperature phase). The amount of force produced by the SMAs depends on

Michail Roumeliotis
25

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

the design of the actuator, the size of the SMA element, and the temperature change applied.

In haptics, SMAs are used to simulate sensations like pressing, squeezing, bending, or twisting.

These actuators can respond relatively quickly to temperature changes and are compact and

lightweight. However, it is challenging to control precisely the temperature in order to transi-

tion from one phase to the other. Also, the circuit to control these actuators is complex and

will add extra weight to the implementation. Finally, repeating cycles from the austenite to the

martensite phase will fatigue the SMAs and will cause degradation to the material.

This thesis used ERM motors to achieve tactile feedback through vibration because they

are more available in the market, they are powered with DC voltage, and the circuit to drive

them is not as complex as LRA’s, the piezo sensors’, and the SMAs’.

3.1.3 Kinesthetic Feedback

The haptic applications that use kinesthetic feedback, look to provide force to hands or fingers

to recreate the virtual object. The most popular ways that this is accomplished are with electric

motors(servos) or pneumatic systems among others.

Figure 3.3: Servo Motor

Servo Motors Servo Motors are small-sized and energy-efficient components that have been

around for a long time. The circuit of the servo is built inside the motor unit, which gives

motion to the shaft that is mounted on top of the motor. The basic components that the

servo consists of are a small DC motor, a potentiometer, and a control circuit. When the DC

Michail Roumeliotis
26

October 2023

3.2 Tracking Technologies

motor rotates, the potentiometer’s resistance changes. Then, the control circuit can regulate

the movement and its direction. Once the shaft reaches the desired position, the power supplied

to the motor is stopped. The control of servos is achieved by sending an electrical pulse and

the movement is limited to only 180o.

Pneumatic Systems Pneumatic Systems can provide kinesthetic feedback in haptic appli-

cations by using controlled air pressure to create resistance or motion depending on the user’s

interaction. These systems typically use pneumatic actuators, which are devices that convert

compressed air into mechanical motion. These actuators could vary from pneumatic cylinders

to inflatable tubes. The key to providing accurate kinesthetic feedback with pneumatic motors

is precise pressure control. This requires a compressor. Similar to servo motors, pneumatic ac-

tuators operate within a closed-loop control system. However, designing and controlling these

systems is complex. Also, due to the usage of a compressor, they consume a significant amount

of power. Finally, the design of pneumatic systems often results in heavy and cumbersome

systems, which limits the user’s immersion.

In this thesis, we used servo motors, since they don’t require an external air compressor

that adds extra weight to the implementation.

3.2 Tracking Technologies

In haptic interfaces, a very important aspect is to detect the position and rotation of the user’s

hand in space. This could be accomplished in various ways like optical tracking solutions,

commercial solutions, IMU tracking systems, flex sensors, etc.

3.2.1 Ultrasonic Tracking

Ultrasonic tracking is achieved by ultrasonic waves, which are emitted from transmitters and

received by receivers, that measure distances and positions in the 3D space. The measurements

are done by calculating the time it takes for a signal to travel to an object and back. STRATOS

Explore by Ultraleap tracks the hands using the Leap Motion Controller and provides the user

with tactile feedback using ultrasonic. This tracking option provides touchless interactions,

works in occluded environments, and can enhance immersion by applying haptic sensations to

the hand tracking. However, the range of tracking is limited compared to other options, it

Michail Roumeliotis
27

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Figure 3.4: Ultrasonic tracking by Ultraleap’s STRATOS Explore. Source:

https://www.ultraleap.com/

requires precise positioning and calibration of ultrasonic sensors, and the accuracy is affected

by ambient noise.

3.2.2 Magnetic Tracking

Figure 3.5: a) Magnetic tracking device by Polhemus, b) Sensors that track fingers by Polhemus.

Source: https://polhemus.com/

Magnetic tracking is accomplished by using electromagnetic fields to track positions and

orientations in the 3D space. Polhemus LIBERTY uses a source that emits an electromagnetic

field. Then some sensor units are added to the fingers in order to be tracked. When the

sensor enters the electromagnetic field, it changes the field’s strength and direction at the

sensor location. These changes are collected from the sensors as data and then processed by

the system’s software to determine the positions and orientations of the sensors. This tracking

option offers advantages such as high accuracy and low latency tracking, minimal occlusion

compared to other optical systems, and sensors that can be hidden from view. However, these

sensors are sensitive to metal and magnetic materials in the environment, require calibration

for improved accuracy and the setup/configuration of this system is complex.

Michail Roumeliotis
28

October 2023

https://www.ultraleap.com/
https://polhemus.com/

3.2 Tracking Technologies

3.2.3 Inertial Measurement Unit

Figure 3.6: Inertial Measurement Units

IMUs are electronic devices, that measure a set of factors with the usage of some tools inside

them and offer up to 10 Degrees Of Freedom. These tools could be an accelerometer to measure

velocity and acceleration. Accelerometers contain MEMS devices that move in response to

acceleration forces. IMUs usually have three accelerometers, one on each axis(X, Y, Z). Another

tool used in IMUs is gyroscopes, which measure rotation and rotational rate. Gyroscopes

contain MEMS devices that move in response to rotational forces. IMUs usually have three

gyroscopes, one on each axis(X, Y, Z) aligned with the accelerometers. Sometimes IMUs contain

a magnetometer to establish the direction of the magnetic field. Tracking with IMUs comes

with the advantage that is a portable and wearable solution. These sensors also provide real-

time tracking with low latency and are suitable for both indoor and outdoor environments.

However, IMUs often drift over time, which causes accuracy issues. One additional issue is that

the magnetometers in the IMUs are affected by local magnetic interference.

3.2.4 Oculus Quest

Oculus Touch is a commercial solution and provides 3/5 Degrees Of Freedom for every hand.

Also, it consists of two handheld units, which have an analog stick, three buttons, and two

triggers. Each unit has a ring on the upper side of the device, that contains infrared LEDs.

Those LEDs are the ones responsible for the tracking of the controller’s position. However, the

Michail Roumeliotis
29

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Figure 3.7: a) Oculus Quest 2 Controllers, b) Oculus Quest 2 Setup

device focuses on tracking the position and orientation of the controller, thus lacking individual

finger-tracking. Also, Oculus Touch relies on cameras placed on the headset for tracking, which

could affect the accuracy if the controllers are outside the camera’s field of view.

3.2.5 Leap Motion Controller

Figure 3.8: a) Setup for the Leap Motion Controller, b) Leap Motion Controller

Leap Motion is an optical tracking solution, that can offer all 27 Degrees Of Freedom of the

hands. This device works with two cameras and three infrared LEDs, that track infrared light

with a wavelength of 850 nanometers. Also, the controller is capable of tracking hands up to

60cm above the device and within 140o field of view. Then, the data is sent via USB to the

Leap Motion Software, which processes the images and then reconstructs a 3D representation of

what the device sees. Although the device provides precise hand/finger tracking and eliminates

the need to hold controllers, it has limited tracking area and objects on top of the hand may

Michail Roumeliotis
30

October 2023

3.3 CAD Software

hinder the accuracy of the tracking of the hand.

3.3 CAD Software

Figure 3.9: SolidWorks Window

In this thesis to create the 3D parts for the kinesthetic feedback, we used SolidWorks.

SolidWorks is a Computer-Aided Design(CAD) software, that is used by engineers and designers

to create, simulate, and analyze how various types of digital objects fit together and interact.

These objects could be from simple 3D objects to a piece of industrial machinery.

3.3.1 Graphics Area

The Graphics Area is central in the SolidWorks window. There the user interacts with the

design in a dynamic manner. The Graphics Area shows a real-time visual representation of the

3D model, where the user can clearly view the model’s geometry, features, etc. By using the

mouse controls, such as rotating, zooming, and panning, the user is able to navigate through

the design and view it from different angles and perspectives. Also, the user can interact with

his model directly from the Graphics Area. When creating new sketches, the users typically

start by sketching in the graphics area.

Michail Roumeliotis
31

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

3.3.2 CommandManager

The CommandManager is located at the top of the SolidWorks window. In this section of the

software, the user is able to access a wide range of tools, commands, and functions to create

and modify 3D models. It is organized into different tabs, where each one corresponds to a

specific task. Some important tabs are the following:

Features Tab In the Features Tab, the user can create or modify features on his 3D models.

Some common features used are the following:

• Extrude, which creates a solid or a surface by extending a sketch in a direction.

• Revolve, which created a solid or a surface by revolving a sketch around an axis.

• Sweep, which creates a solid or a surface by sweeping a surface along a path.

• Loft, which creates a solid or a surface by blending two or more sketches along specified

curves.

Sketch Tab In the Sketch Tab, the user can create and edit 2D sketches that can be used

as a foundation for building 3D models. These 2D sketches are created by tools such as lines,

circles, rectangles, arcs, etc. In the Sketch tab, the user can also add dimensions to his sketch

in order to define distances and sizes.

Evaluate Tab In the Evaluate Tab, the user can evaluate and analyze different aspects of their

3D models. This tab offers tools to measure distances and angles, along with mass properties

tools to calculate mass volume and other physical properties of the 3D model.

3.3.3 FeatureManager Window

The FeatureManager Design Tree is located on the left side of the SolidWorks window. This

window provides a hierarchical representation of the different features of the design. This

representation allows users to see how each feature contributes to the final design. Through

the FeatureManager Window, the users are able to easily access and modify the sketches and

features. Also, the features can be reordered, suppressed, or unsuppressed and these changes

are applied immediately to the 3D model. The FeatureManager allows the users to control the

visibility of each feature or part when they work with complex models.

Michail Roumeliotis
32

October 2023

3.4 Arduino IDE

3.3.4 PropertyManager Window

The PropertyManager Window is located on the left side of the Solidworks window. It offers

options and settings specific to the currently selected item. For example, if the user selects a

sketch, the PropertyManager window will show settings related to the sketches. If the selection

is a feature, the window will show options for possible modifications of that feature. Through

the PropertyManager window, the user can adjust parameters and properties directly without

the need to search for them manually. These changes happen in real time on the 3D model.

3.3.5 ConfigurationManager Window

The ConfigurationManager Window is also located on the left side of the SolidWorks window.

It allows the user to manage different configurations of parts and assemblies. Configurations

are variations of a design that can have different dimensions, features, and other properties.

Through the ConfigurationManager the user can create multiple configurations and edit each

one independently.

3.4 Arduino IDE

The Arduino IDE is a software application designed for programming and developing projects

with Arduino microcontrollers. It is available for all operating systems i.e. Windows, Linux, and

MacOS. Before Arduino IDE, programming microcontrollers and embedded systems required

more specialized tools and a deeper understanding of hardware and low-level programming.

However, Arduino IDE introduced a more straightforward programming language based on

C++. Also, it integrated all the necessary tools, from coding to compiling and uploading,

together. Additionally, Arduino utilizes an open-source community, which encourages users to

develop custom libraries and other hardware/software components. The Arduino IDE consists

of four main sections. These sections are the following:

Menu Bar The bar that is placed on the top of the IDE window is called Menu Bar. The

Menu Bar contains 5 options, which are File, Edit, Sketch, Tools, and Help.

With the File option, the user is able to:

• press New to create a new file.

• press Open to open a saved file.

Michail Roumeliotis
33

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Figure 3.10: Arduino IDE Window overview

• press Examples to see default examples already stored in the IDE software.

• press Close to close a file.

• press Save to save a file.

• press Quit to quit the application.

With the Edit option, the user can copy and paste code and modify the font size.

With the Sketch option, the user can compile and upload the software to the board.

With the Tools option, the user can test his project or burn the bootloader to a new

microcontroller in a different port.

The Help option is mainly used for troubleshooting.

Toolbar The six buttons under the Menu Tab form the Toolbar. The first button, which is

a checkmark, is used to verify the code. The arrow key pointing to the right, is used to upload

Michail Roumeliotis
34

October 2023

3.5 Unity

and transfer the required code the the Arduino microcontroller. The third button is used to

create a new file, while the fourth one is used for opening an existing project. The next button

is used to save the current Arduino project and the last button, which is placed on the right

side of this section is called Serial Monitor. When the user presses the Serial Monitor, a new

window appears, which works as an independent terminal and is important for sending and

receiving the serial data. It is mainly used for debugging.

Text Editor The text editor is the interface, where the user writes and edits his Arduino code.

It is the central component in the IDE window. The editor uses syntax highlighting so that

different parts of the code have different colors to be easily identified. Also, each line of code is

numbered, which helps with debugging. The indentation happens automatically. Additionally,

the editor allows for multiple tabs, to work on different sketches in the same window.

Output Panel The bottom part of the window is called the Output Panel and it contains

the Status Bar, the Console Window, and the Board Information. The Status Bar shows the

uploading status. If everything is correct, the user will see a Done uploading message. The

Console Window shows the memory used by the code and any possible error that occurred in

the program. Finally, the Board Information shows information about the board that is used

and the port that is connected.

3.5 Unity

The implementation of the experience within the framework of the research project takes place

entirely within the Unity Game Engine. Unity is a cross-platform 3D application development

platform developed by Unity Technologies. As of 2018, Unity has expanded to support more

than 25 platforms. It can be used to create games and interactive applications with 3D or

2D graphics, Virtual Reality and Augmented Reality games, as well as simulations and other

experiences. Unity has been adopted by industries outside of game development, such as the

film industry, automotive, architecture, and construction. Unity offers an original scripting

API in C, both for Unity itself in the form of plugins and for game programming. Before C#

became the main programming language used it previously supported Boo, which was removed

in Unity 5, as well as a JavaScript version called Unity Script, which was removed in August

2017 after the release of Unity 2017. Unity has support for the following graphics APIs: Di-

rect3D on Windows and XboxOne. OpenGL on Linux, MacOS, and Windows, OpenGLES on

Michail Roumeliotis
35

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Android and iOS, WebGL on the web, core APIs on video game consoles as well as applications

for Augmented Reality masks such as the LuminOS of the Magic Leap Augmented Reality

mask. Additionally, Unity supports the low-level Metal APIs on iOS and macOS and Vulkan

on Android, Linux, and Windows, as well as Direct3D 12 on Windows and XboxOne. For 3D

games, Unity allows for defining image compression, creating mipmaps, and adjusting resolution

settings for each platform the game engine supports. It provides support for elevation map-

ping, reflection mapping, distortion mapping, Screen Space Ambient Occlusion (SSAO) maps,

dynamic shading, and shadow maps as well as rendering-to-texture and post-processing effects.

3.5.1 Basic Structure of Unity

This and the following sub-chapters of our master research thesis will take a close look at the

technological terminology regarding the development of the thesis in the Unity game Engine.

The following terminologies analyzed here will be greatly used in later Chapters. Unity’s work-

flow builds around the structure of components. Each component has its own specific job, and

can generally accomplish its task or purpose without the help of any outside sources. Each

game or application created in Unity is called a Project. Each Project consists of the used

Assets and one or more Scenes. The Scenes consist of GameObjects and Prefabs, each of which

has one or more Components and Scripts attached to it.

Assets Assets are all the building blocks of all Unity 3D projects. It refers to all the files that

one will use to create a game such as models, scripts, textures, sounds, etc. A good classification

from early on helps for the future of the project.

Scenes In Unity, the Scenes function as individual levels, or areas of the game, although some

developers create entire games in a single scene, such as puzzle games, loading dynamic content

through code. By building a game in many scenes, the developer is able to allocate loading

and testing times separately. At any time there is only one open Scene which is the one we are

working on, as it is not possible for two scenes to work at the same time.

GameObjects Each active object in the current open scene is called a GameObject. All

GameObjects contain at least one Component (Component) which is the Transform Compo-

nent. The transformation informs Unity about the position, rotation, and scaling of an object

through the Cartesian coordinates X, Y, and Z. Through code, the component can determine

Michail Roumeliotis
36

October 2023

3.5 Unity

the coordinates of the object. Thus, from this initial component, it is possible to add other

Components to the object by adding the required functionality that we desire.

Components Components come in many forms and are attached to GameObjects. They are

used to create behavior, determine appearance, and affect other aspects of the operation of an

object in the game. By placing Components in an object, one can immediately give them new

functions. Common components of the game production come integrated with Unity, such as

the Rigidbody component, lights, cameras, particle transmitters, and more. To build further

interactive elements of the game, we write Scripts, which are also treated as components that

extend or modify the existing available Unity functionality.

Scripts A scripting language is a programming language that allows us to control one or more

applications. Scripting is a key ingredient in all games. Even the simplest game will need scripts

to meet the participant’s input and take care of the gameplay events to take place when needed.

Beyond that, scripts can be used to create visual effects, control the physical behavior of objects,

or even implement a custom AI system for game characters or environment animals. At Unity,

Scripts are Components that extend or modify its existing available functionality. They are

created and placed as Components in the GameObjects we want by giving them functionality,

without any restrictions on how many Scripts can be used. It also offers a full-fledged scripting

code editor, MonoDevelop, allowing developers to program either JavaScript or C .

Prefabs Prefabs are prefabricated and stored versions of an object that can be reused in

various parts of our program. With the use of Prefabs, complex objects with different elements

and settings can be used at any time, allowing each one to be modified individually whenever

and however we wish.

3.5.2 Unity Architecture & Project Structure

Unity’s architecture is based on its Components. In order to be able to use the Components of

objects in the right way, it is necessary to understand the architecture on which this GameEngine

was built and the way it uses these Components. The first and most important Component is

the Transform, determining the either Local or World Space Coordinates. Then we have the

Mesh Component and Rigidbody Physics which approach the real world collisions and gravity.

In order to determine the way an Object is rendered we use Textures, Materials, and Shaders.

Michail Roumeliotis
37

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

In order to simulate sunlight and other lights we use the Lighting Components. For more

advanced simulations such as fog, fire, etc. we need the Particle System. For animating 3D

Objects we need the Animation Components. For having a Menu, we need the User Interface

(UI) Components. Lastly, to be able to render all these on the computer screen (or VR headset

in our case) we need the Camera Component and to accompany the image with sound, we need

the Audio Components.

Coordinates - Transform At a two-dimensional level, each point is uniquely determined by

a pair of numerical coordinates X (horizontal axis), and Y (vertical axis). In three dimensions

and consequently in all 3D applications of Unity, there is a third axis Z, which represents the

depth with the result that each point is represented by a trinity (X, Y, Z). Thus, a cube at

point (5,4,3) in the three-dimensional world means that it is 5 points away from point 0 on

the X axis, 4 points away from the Y axis, and 3 points away from the Z axis. This format is

known as the Cartesian coordinate system. Every object in a scene has a transform component.

It is used to store and treat the position, rotation, and scaling of an object. Each transform

component can have a parent, which allows the developers to move the object, rotate it, and

scale it hierarchically.

Local Space vs World Space Coordinates In any three-dimensional world, there is a

point of origin, often referred to as origin or world zero as it is represented in position (0.0.0).

All the positions of the objects in the three-dimensional worlds have zero as their reference

point. However, to make things simpler, we use local space to define object positions relative

to other objects.

Mesh Component 3D Meshes are the main graphics primitive of Unity. They define the

shape of an object as a polygon mesh consisting of vertices, edges, and faces. The vertices

are points that represent positions along with other information such as color and texture

coordinates. An edge is a connection between two vertices and a face is a closed set of edges.

Rigidbody Physics The Rigidbody component controls an object’s position through physics

simulation. Unity’s physics machine allows developers to simulate real-world responses to ob-

jects. Unity uses Nvidia’s PhysX engine, which is a popular and accurate physics machine.

In GameEngines there is no assumption that an object should be affected by gravity, firstly

Michail Roumeliotis
38

October 2023

3.5 Unity

because it requires a lot of processing power and secondly because there is no reason to do so.

The physics machine uses the Rigidbody dynamic system to create realistic motion. This means

that instead of objects being static, they can have properties such as mass, gravity, velocity,

and friction. As far as processing power increases, the Rigidbody physics system applies to

games, as it allows for more realistic simulations.

Materials, Textures & Shaders Materials define how a surface should be rendered, by

including references to the Textures it uses, tiling information, Color tints, and more. The

available options for a Material depend on which Shader the Material is using. Textures are

bitmap images. A Material can contain references to textures so that the Material’s Shader

can use the textures while calculating the surface color of a GameObject. In addition to the

basic Color (Albedo) of a GameObject’s surface, Textures can represent many other aspects of

a Material’s surface such as its reflectivity or roughness. Shaders are small scripts that contain

mathematical calculations and algorithms for calculating the Color of each pixel rendered, based

on the lighting input and the Material configuration.

Particle System In a three-dimensional game, most characters, sets, and elements are gen-

erally represented as Meshes. Mesh is the ideal way to depict close objects with a well-defined

shape. However, there are other entities that are fluid and intangible and therefore difficult to

represent with Meshes. For effects such as moving liquids, smoke, clouds, flames, and others,

a different approach is used to graphics, known as Particle System. A Particle System sim-

ulates and renders many small images or Meshes, called particles, to produce a visual effect.

Each particle in a system represents an individual graphical element in the effect. The system

simulates every particle collectively to create the impression of the complete effect.

Lighting To calculate the shading of an object, Unity needs to know the intensity, the address,

and the color of the light falling on it. These properties are provided by Light Objects. The

basic color and intensity are determined in the same way for all lights, but the direction depends

on the type of light we use. Also, the light can be reduced by the distance from the source.

The four types of light available in Unity are described below:

• Point Light: It is placed at a point in space and sends light in all directions evenly. The

direction of light that hits a surface is the line from the point of contact to the center

of the light source. The intensity decreases with distance from the light source, reaching

Michail Roumeliotis
39

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

zero after a certain range. This type of light is ideal for simulating lamps and other local

light sources.

• Spot Light: Like Point Light, it has a specific position and range, around which the

light intensity decreases. However, this light is limited to one corner resulting in the

illumination of a cone-shaped area. It is generally used for artificial light sources such as

lenses and headlights.

• Directional Light: Represents large, remote sources that come from a location outside the

game world. In realistic scenes, they can be used to simulate the sun or the moon. In

an abstract world of play, it can be a useful way to convincingly shadow objects without

determining exactly where the light is coming from.

• Area Light: Light is emitted in all directions, but only on one side of the rectangle and

decreases in a specified range. It can be used to create a realistic street light as well as

for indoor home lighting.

Camera The camera is one of the most important elements in a 3D game. It acts as the

participant’s eyes. Cameras are devices that capture and display the world to the participant.

By customizing and manipulating cameras, you can make the presentation of your game truly

unique. You can have an unlimited number of cameras in a scene. They can be set to render in

any order, at any place on the screen, or only certain parts of the screen letting the participants

see the game world from different points of view.

Audio The sound in Unity consists of two basic components which are described below:

• Audio Source: It is the source of the sound and reproduces a sound clip which can be

either two-dimensional, three-dimensional, or a mixture (SpatialBlend). This component

contains settings for volume, repeatability, tone, priority over other sources, and a variety

of other settings and effects.

• Audio Listener: It basically works like a microphone device, receiving input from the

audio sources of the scene and playing sound from the computer speakers or headphones.

There must always be a Listener activated at a given time during the game. It is usually

placed on the main camera as the participant hears and sees from there.

Michail Roumeliotis
40

October 2023

3.5 Unity

User Interface (UI) Unity provides the User Interface (UI) system that allows the developers

to create intuitively and quickly presentable graphical interfaces. The User Interface system

consists of a canvas (Canvas), in which all (UI) elements are placed. These elements can be

texts, images, etc., as well as more interactive elements such as buttons and sliders.

Animations Unity’s Animation enables the developers to create and shape their own ani-

mated designs to create creative behaviors. In addition, Unity allows the developers to import

animations from other graphics design programs such as Blender3D, which is used in this dis-

sertation. So when an object is inserted, it needs an Animation Controller component, which

allows the animation to be managed.

Michail Roumeliotis
41

October 2023

3. TECHNOLOGICAL BACKGROUND AND DEFINITIONS

Michail Roumeliotis
42

October 2023

Chapter 4

Glove Design & Implementation

4.1 Hardware Assembly

The haptic feedback device is presented in Figure 4.1 and its components are explained below:

• In Figure 4.1, the purple dots are the moving platforms for each finger, which were 3D

printed and connected through strings with the servo motors.

• In Figure 4.1, the blue dots indicate the softness level controllers for each finger. These

are 3D-printed and provide variable softness.

• In Figure 4.1, the green dots are the hard object controllers for each finger. These 3D-

printed parts control the hardness rendering of virtual objects.

• In Figure 4.1, the yellow dots are the servo motors that are responsible for controlling

which tactile cue the user will feel. More specifically, if the object is soft it rotates to the

left, otherwise to the right.

• In Figure 4.1, the red dots indicate the 4 servo motors that are controlling the moving

platform on the index finger

• In Figure 4.1, the box presents the PCA9685 and the circuit board, which consists of the

Arduino Micro(which is powered with 5V from the USB port), five n-type MOSFETs,

five 100pF capacitors, five 50KOhm resistors, and five Schottky diodes. This board is

connected with the pair of cables of every vibration motor, the PWM pins, the 5V, and

GND from Arduino. Furthermore, the PCA9685 is connected with the 7 servo motors.

In order to power these motors, an external power of 5V and 2.5A was used.

Michail Roumeliotis
43

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.1: Top view of the haptic device

4.2 Design of the 3D parts

4.2.1 Part on the top side of the fingertips

Index Finger To design the part placed at the top side of the index fingertip, which drives

the strings for the kinesthetic feedback and the strings connected with the moving platform, we

followed these steps:

• Step 1: Create a 2D Sketch

Open a 2D sketch by going to the CommandManager and selecting ”Sketch”. In this

sketch, we drew a 20mm straight line as our initial reference.

We added a perpendicular line on both edges of the initial 20mm line, each measuring

6.5mm long.

We set a reference point located 20mm away from the middle of the initial straight line.

This point is used for positioning and aligning a curved spline.

To create a curved shape, we drew a spline starting from one perpendicular line, passing

through the reference point, and ending on the other perpendicular line.

• Step 2: Extrude the 2D Sketch

Michail Roumeliotis
44

October 2023

4.2 Design of the 3D parts

Figure 4.2: Index fingertip top side part

The next step was to extrude the 2D sketch we’ve created to give it depth and turn it

into a 3D object. First, we selected the 2D sketch from the FeatureManager window on

the left.

Once the sketch was selected, we went to the ”Features” tab in the Command Manager

and clicked the ”Extrude Boss/Base” command. In the PropertyManager window on the

left, we set the depth at 6mm.

• Step 3: Cut-Extrude the 3D object

The following step was to extrude the 3D object so that it matches the user’s fingertip

shape. Before we started the extrude-cut, it was necessary to design the 2D sketch on the

3D object’s side we wanted to extrude-cut.

We drew a 16mm straight line, as shown in Figure 4.5. Then, we set a reference point

located 3mm away from the middle of the initial straight line. This point is used for

positioning and aligning a curved spline.

To create a curved shape, we drew a spline starting from one edge of the initial straight

line, passing through the reference point, and ending on the other end of the straight line.

In the ”Features” tab in the Command Manager, we clicked on the ”Extruded-Cut”

command, and in the PropertyManager window, we set the depth at 20mm.

• Step 4: Cut-Extrude two holes for the kinesthetic feedback strings

Michail Roumeliotis
45

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.3: Step 1: Create a 2D Sketch

The next step was to create two holes, that are used to drive the kinesthetic feedback

strings. We designed two circles with a 0.7mm radius on one side of the 3D object using

the ”Sketch” command in the Command Manager.

Then we selected the ”Extruded-Cut” command in the ”Features” tab to create the two

holes, each measuring 20mm in length.

• Step 5: Cut-Sweep four holes for the moving platform strings

Then, we needed to create holes that have a curved path to drive the strings to the sides

of the 3D model. This is achieved by creating cut-sweeps.

First, we needed to sketch the profile that we wanted to use for the cut. The profile

represents the shape we want to cut. By selecting the ”Sketch” command in the Command

Manager, we drew a circle with a 0.7mm radius.

Then, we defined the path for the sweep-cut. We drew a straight line perpendicular to

the center of the circle. After the line, we created an arc, that reaches the side of the 3D

model. We did this process twice on each side. The straight line measures 1mm for the

holes closer to the back side of the 3D model and 6.5mm for the further ones. Similarly,

the arc radius for the holes closer to the back side of the 3D model is 2.75mm and 5.59

for the further ones.

Michail Roumeliotis
46

October 2023

4.2 Design of the 3D parts

Figure 4.4: Step 2: Extrude the 2D Sketch

Figure 4.5: Step 3: Cut-Extrude the 3D object

Finally, we went to the ”Features” tab in the Command Manager and clicked on the

”Sweep-Cut” command. By selecting the profile and path we designed, a curved hole is

created.

• Step 6: Create 2D sketch for the ”legs”

The next step was to create four ”legs”, one on each corner, to drive the strings smoother

to the moving platform and change the direction of the strings from horizontal to vertical.

Through the ”Sketch” command in the Command Manager, we designed a 2D sketch

whose shape is rectangular. This sketch extends from the side of the 3D model by 3mm.

The width of the rectangle is 3.41mm.

• Step 7: Extrude the 2D sketch for the ”legs”

Michail Roumeliotis
47

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.6: Step 4: Cut-Extrude two holes for the kinesthetic feedback strings

After creating the 2D sketch, we needed to extrude it. First, we selected the 2D sketch

from the FeatureManager window and clicked on the option ”Features” in the Command

Manager. Then, we chose the Extruded Boss/Base command and extruded the design by

11mm.

• Step 8: Cut-Extrude hole on each ”leg”

After extruding the 2D sketch, we created a hole, so that strings were able to pass through

to reach the moving platform. These holes are created by the ”Extruded Cut” command

in the ”Features” tab.

We repeat the process from step 6 to step 8 for each ”leg”.

• Step 9: Fillet edges to be smoother

The final step was to fillet the edges through the ”Fillet” command in the ”Features”

tab in the Command Manager window. In the PropertyManager on the left side of the

window, we entered the desired fillet radius on each fillet. This radius is the radius of the

fillet radius. We could either type in a value or use the drag handles to visually adjust

the radius.

Middle Finger & Thumb To design the part placed at the top of the thumb and middle

fingertip, which drives the strings for the kinesthetic feedback, we followed the same steps as

for the index fingertip. However, there were some minor modifications. We didn’t create ”legs”

for these fingers because we don’t move these fingers’ platforms in many directions like in the

index fingertip part.

Michail Roumeliotis
48

October 2023

4.2 Design of the 3D parts

Figure 4.7: Step 5: Cut-Sweep four holes for the moving platform strings

Ring Finger To design the part placed at the top of the ring fingertip, which drives the

strings for the kinesthetic feedback, we followed the same steps as for the index fingertip. For

this finger, however, we didn’t create ”legs” because we don’t move these fingers’ platforms in

many directions like in the index fingertip part. Also, since this fingertip is smaller, in Step 1

Michail Roumeliotis
49

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.8: Step 6: Create 2D sketch for the ”legs”

Figure 4.9: Step 7: Extrude the 2D sketch for the ”legs”

we reduced the initial straight line from 20mm to 18mm.

Pinky Finger Similarly to the ring finger, we followed the same steps and modifications.

More specifically, we also didn’t create ”legs” and we reduced the initial straight line to 17mm

Michail Roumeliotis
50

October 2023

4.2 Design of the 3D parts

Figure 4.10: Step 8: Cut-Extrude hole on each ”leg”

since the pinky finger is even smaller than the ring finger.

4.2.2 Part on the bottom side of the fingertips

Index Finger To design the part placed at the bottom side of the index fingertip, which is

the moving platform, we followed these steps:

• Step 1: Create a 2D Sketch

We created a 2D sketch by selecting the ”Sketch” command found in CommandManager.

This sketch is the same as the one shown in Figure 4.3.

• Step 2: Extrude the 2D Sketch

Michail Roumeliotis
51

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.11: Step 9: Fillet edges to be smoother

Figure 4.12: Middle and Fat fingertip top side

The next step after creating the 2D sketch was to extrude it. By extruding the sketch

by 7.5mm, we created a 3D model. The extrusion of the model was done by selecting

the 2D sketch from the FeatureManager window, clicking on the ”Features” tab in the

CommandManager, and pressing the ”Extruded Boss/Base” button.

• Step 3: Create the vibration motor socket

After extruding the 2D sketch and creating a 3D model, the next step was to create a

Michail Roumeliotis
52

October 2023

4.2 Design of the 3D parts

Figure 4.13: Index fingertip bottom side

Figure 4.14: Step 3: Create the vibration motor socket

socket for the vibration motor. On the top side of the 3D model, we used the ”Sketch”

from the CommandManager to create the sketch for the socket. The sketch consists of a

5.25mm radius circle connected with a rectangle(1.84mm x 3.34mm).

After creating the sketch for the vibration motor casing, the next step was to cut-extrude

it by 3.5mm. This was accomplished by selecting the ”Extruded-Cut” command in the

CommandManager window.

Michail Roumeliotis
53

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

• Step 4: Create a hole for the vibration motor cables

Figure 4.15: Step 4: Create a hole for the vibration motor cables

After creating the motor casing, we created a hole for the vibration motor cables. We

made that by sketching a circle on the front side of the 3D model(CommandManager →
Sketch) and cut-extruding it(Features → Extruded-Cut).

• Step 5: Cut-Extrude holes for the haptics feedback strings

Figure 4.16: Step 5: Cut-Extrude holes for the haptics feedback strings

The next step was to create holes for the haptic feedback strings. By selecting the top

Michail Roumeliotis
54

October 2023

4.2 Design of the 3D parts

side of the 3D model and clicking on the ”Sketch” command in the CommandManager,

we create four holes as shown in 4.16 whose radius is 1mm each. Then we selected all of

the sketched circles and we used the ”Extruded Cut” command from the ”Features” tab

in CommandManager and created the holes measuring 7.5mm.

• Step 6: Fillet the edges of the 3D model

Figure 4.17: Step 6: Fillet the edges of the 3D model

The final step was to fillet the edges through the ”Fillet” command in the ”Features”

tab in the Command Manager window. In the PropertyManager on the left side of the

window, we entered the desired fillet radius. By filleting we made the edges smoother.

Middle Finger & Thumb To design the part placed at the bottom of the thumb and middle

fingertip, we followed the same steps as for the index fingertip. However, there were some minor

modifications. Since on these fingers, we provided tactile feedback through vibration and only

normal indentation, there was no need to create a flat surface underneath the middle and thumb

fingertip. Thus, after step 3 we added one additional step. In this step, we first designed a

2D sketch of the 3D object’s back side. More specifically, we drew a 16mm line, we then set a

reference point located 3mm from the middle of the initial line and used this point to design

a curved spline, similar to the Figure. Then we extruded-cut the 3D object for 20mm depth,

so that it matches the user’s fingertip shape, through the ”Features” tab in the Command

Manager.

Michail Roumeliotis
55

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.18: Rest of the fingertips bottom side part

Ring Finger Similarly to the thumb and middle finger, we followed the same process with

the only difference being in Step 1, where the initial straight-line length was changed to 18mm

from 20mm.

Pinky Finger To design the part underneath the pinky fingertip, we also followed the same

process with the middle and thumb fingers, but with two modifications. The first modification

was in Step 1 to change the initial straight-line length from 20mm to 17mm. The second change

was in the additional step, where we changed the line length from 16mm to 15mm.

4.2.3 Parts responsible for driving cables

To design the parts responsible for driving the cables and the strings, we followed these steps:

• Step 1: Create the 2D sketch and Extrude it

The first step in creating these parts was to design a rectangle with dimensions 22mm x

5mm. Then we extruded this 2D shape by 10mm using the ”Extruded Boss/Base” in the

”Features” tab.

• Step 2: Create holes for the finger and the cables/strings

After creating the basic 3D model, the next step was to create five holes that were used to

drive the cables from the circuit all the way to the fingertips and the strings that control

Michail Roumeliotis
56

October 2023

4.2 Design of the 3D parts

Figure 4.19: Driving cables part

Figure 4.20: Step 1: Create the 2D sketch and Extrude it

Figure 4.21: Step 2: Create holes for the finger and the cables/strings

the haptic feedback. Additionally, we designed an ellipse with a 6mm radius on the minor

radius and 10mm on the major radius. Then, we used the ”Extruded-Cut” command the

create the holes as shown in Figure 4.21.

• Step 3: Fillet the edges of the 3D model

Michail Roumeliotis
57

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.22: Step 3: Fillet the edges of the 3D model

The final step was to make the edges of the 3D model smoother, thus we used the ”Fillet”

command in the ”Features” tab.

4.2.4 Servo braking mechanism

Figure 4.23: Servo breaking mechanism part

To design the servo-breaking part for the kinesthetic feedback, we followed these steps:

• Step 1: Create a 2D sketch and Extrude it

Michail Roumeliotis
58

October 2023

4.2 Design of the 3D parts

Figure 4.24: Step 1: Create a 2D sketch and Extrude it

In Step 1 we created a rectangle sketch as shown in 4.24, with dimensions 15mm x 10mm.

Then, we extruded this sketch by 4mm to create the 3D model.

• Step 2: Create a hole specific for the servo motor output shaft

Figure 4.25: Step 2: Create a hole specific for the servo motor output shaft

After creating the 3D model, the following step was to create a hole specifically to fit

the servo motor output shaft. This was done by sketching a circle using the ”Sketch”

command from the CommandManager and adding small triangles around the perimeter

of the circle. Then by selecting the ”Extruded-Cut” command, we managed to create a

hole in the 3D model.

• Step 3: Create the blocking parts’ bases

In Step 3, we created a base on each side of the 3D model in order to extend it for the

blocking part mechanism. More specifically, we designed a rectangle with dimensions

7mm x 3.5mm through the ”Sketch” command and we extruded it for 10mm using the

”Extruded Boss/Base” option from the ”Features” tab.

• Step 4: Create the blocking parts

Michail Roumeliotis
59

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.26: Step 3: Create the blocking parts’ bases

Figure 4.27: Step 4: Create the blocking parts

After creating the base on each side, the next step was to create the blocking parts on

these bases. This was done by creating the shape shown in Figure 4.27 and extruding it

by 2mm.

• Step 5: Create a part to support the side parts

In order to make the 3D model more difficult to break under tension we added an extra

part, that connects the two bases and creates a stronger bond between them.

Michail Roumeliotis
60

October 2023

4.2 Design of the 3D parts

Figure 4.28: Step 5: Create a part to support the side parts

4.2.5 Softness Level Controller & Hard Object Controller

Figure 4.29: Softness Level Controller & Hard Object Controller

The Softness Level Controller and the Hard Object Controller consist of 3 three parts. The

parts are the following:

• Stable part

The stable part of this 3D assembly is shown in Figure 4.29. To create it, we first drew

a 28mm x 6mm rectangle using the ”Sketch” command. Then we extruded it for 1mm

to create the base of the 3D model. After creating the base, we sketched a Π shape on

the edges of the base and extended them for 6.75mm to create the walls of the 3D model.

Finally, we sketched a slightly bigger Π so that the moving part, which we will discuss

below, can’t move out of the stable part.

Michail Roumeliotis
61

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

• Moving part

The moving part of the design shown in Figure 4.29 was designed to move freely inside the

stable part. To design it, we drew a 15mm x 5.5mm rectangle and extruded it for 5mm.

Then we created three square holes using the ”Extruded-Cut” command. These holes are

used so that the servo-breaking mechanism can block the movement of the moving part.

• Stopper for the moving part

Finally, after placing the moving part inside the stable part we had to block it from

moving outside of it in the side that is empty. Thus, we created a rectangle with 5.75mm

x 5.5mm dimensions using the ”Sketch” command and extruded it by 2mm. This 3D

model is glued on the empty side of the stable part.

Figure 4.30: Creality Ender 3 V2 3D printer

After designing each of the 3D models, the subsequent phase in our research and development

process was to make these models come into reality through 3D printing. The utilization of a 3D

printer, the Creality Ender 3 V2[?], gave us the capability to transform our digital creations from

the virtual world of computer-aided design(CAD) into physical tangible objects with precision

and accuracy.

Michail Roumeliotis
62

October 2023

4.3 Components used for the Haptic Glove

After an exhaustive exploration of different materials, we selected PLA+ as our primary

material of choice over alternatives such as ABS, ASA, and standard PLA.

Firstly, PLA+ offers excellent printability characteristics on the Creality Ender 3 V2, includ-

ing minimal warping and adhesion to build platforms. This provides consistency and reliability,

which are important in research and development.

Secondly, exhibits adequate mechanical strength and durability, making it suitable for pro-

totyping. This material has enhanced toughness compared to standard PLA, which makes it

more suitable for applications where resistance and structural integrity are crucial.

Moreover, PLA+ is more environmentally friendly than materials like ABS and ASA, which

emit potentially harmful fumes during the printing phase. PLA+ is created from renewable

resources and is biodegradable.

Cost-effectiveness also played an important role in our material selection, since it offers a

good balance between affordability and performance.

4.3 Components used for the Haptic Glove

4.3.1 Arduino Micro

To facilitate control and coordination of all implementation components, the use of a microcon-

troller was necessary. A microcontroller is a compact computing device, housing a processor,

memory, and configurable input/output peripherals. In the context of this thesis, the Arduino

Micro was the selected microcontroller board. The Arduino Micro, even though it is smaller

in size compared to other Arduino boards, works well with our haptic glove demands. While

it doesn’t offer the same level of processing power as larger Arduino variants, it excels in our

implementation needs to be compact and lightweight.

The Arduino Micro is based on Atmel’s ATmega32U4 microcontroller. This board is

equipped with essential components, making it easy to program and operate either through

a USB connection to a computer or an external power supply. It offers a rich set of features,

including 20 digital inputs/outputs, of which 7 support PWM outputs, 12 analog inputs, a

micro USB port for programming and communication, a power supply input, a 16 MHz crystal

oscillator, an ICSP(In-Circuit Serial Programming) header, and a reset button.

In addition to the hardware, the Arduino ecosystem provides an Integrated Development En-

vironment(IDE) which we analyzed in Chapter 3. Within the Arduino IDE, each sketch(program

containing the code) consists of two functions: ”setup()” and ”loop()”. The ”setup()” function

Michail Roumeliotis
63

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.31: Arduino Micro microcontroller

runs once at the start of the sketch and is used for initializing variables, inputs, outputs, and

libraries. The ”loop()” function runs continuously, managing the board’s operations until it is

powered off.

Furthermore, essential functions utilized in this thesis include ”pinMode()”, ”delay()”, and

”analogWrite()”. The ”pinMode()” is used for configuring a pin as either an input or an output,

with the syntax ”pinMode(pin, mode)” where ”pin” is the Arduino pin number, and ”mode”

can be ”INPUT” or ”OUTPUT”. Typically, this function is employed in the ”setup()” section.

The ”analogWrite()” generates an analog value, often a PWM signal, on a pin and accepts

two parameters: the pin’s name and an integer value(0-255) determining the duty cycle(0 for

fully off and 255 for fully on). Lastly, the ”delay()” function pauses the program for a specified

duration, with the syntax ”delay(ms)” where ”ms” indicates the pause duration in milliseconds.

4.3.2 Vibration Motors

One of the most important aspects of the tactile feedback is vibrations. This was achieved

through 5 coin vibration motors. The options for the vibration were either Linear Resonant

Actuators or Eccentric Rotating Mass motors, each having its advantages and disadvantages.

While Linear Resonant Actuators(LRAs) offer several advantages over ERM(Eccentric Ro-

tating Mass) motors, including significantly lower power consumption(50% less), independence

of amplitude from frequency for more complex waveforms, reduced noise, and longer lifespan,

there were practical considerations that led to the choice of ERM motors. The primary factor

was that the LRAs require an AC(Alternative Current) signal for operation, which needs a more

complex circuit compared to the simpler control requirements of ERM motors. This complex

Michail Roumeliotis
64

October 2023

4.3 Components used for the Haptic Glove

Figure 4.32: The coin vibration motors

circuit will also add more weight to the implementation making it heavy and cumbersome. Ad-

ditionally, there were budget constraints, as LRAs tend to be more expensive and less available

in the market.

The following table shows the specifications of the chosen ERMs.

Table 4.1: The coin vibration motor specifications

4.3.3 WS-MG90S Micro Servos

Another important aspect of haptics is enriched tactile feedback (in the form of normal inden-

tation, and lateral skin stretch) and kinesthetic feedback. This was achieved with 7 WaveShare

MG90S micro servo motors(4 for the tactile feedback and 3 for the kinesthetic feedback).

The WS-MG90S is a small-sized and lightweight servo motor, which makes it suitable for

our implementation where space is limited. It typically provides a torque of around 2kg/cm

at 4.8V, which means it can exert a force of 2 kilograms to rotate any object attached to the

servo. The operating voltage for this servo motor is between 4.8V to 6V. The speed of the

Michail Roumeliotis
65

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.33: The MG90S servo motor

WS-MG90S servo is 0.11s per 60 degrees of rotation at 4.8V. Also, it has a rotation range of

180 degrees. The WS-MG90S is controlled using PWM signals and it usually comes with a

three-wire connector: power(red), ground(brown), and PWM(orange).

The following table shows the specifications of the servo motors.

Table 4.2: The MG90S servo motor specifications

4.3.4 PCA9685-Servo Driver

To drive the servo motors, Arduino offers the Servo library, but each servo will consume a

pin and some Arduino processing power. The proposed solution in this thesis suggests using

the PCA9685 16-Channel 12-bit PWM/Servo Driver to control servo motors instead of relying

solely on the Arduino Servo Library. The PCA9685 is capable of controlling up to 16 servos

simultaneously over the I2C communication protocol using only two pins. It also features an

onboard PWM controller.

The figure illustrates the control input pins on each side of the chip, and this flexibility

allows users to chain multiple PCA9685 boards together to control more than 16 servos. Here

Michail Roumeliotis
66

October 2023

4.3 Components used for the Haptic Glove

Figure 4.34: The PCA9685 16-Channel 12-bit PWM/Servo Driver

is an overview of the control input pins:

• GND, which serves as both the power and signal ground pin.

• OE, which can be used to disable all outputs quickly when set high.

• SCL, which is the I2C clock pin and is connected with the microcontrollers I2C clock

line.

• SDA, which is the I2C data pin and is connected with the microcontrollers I2C data line.

• VCC, which is the logic power pin.

• V+, which supplies power to the servos and can be left unconnected if power is provided

through the blue terminal in the middle of the chip.

Additionally, there are 16 output ports on the bottom side of the chip, each featuring three

pins: V++, GND, and PWM output. Although each PWM output is independent, they must

all operate at the same PWM frequency.

After soldering the pin headers into the designated positions, the Arduino is connected to

the PCA9685 as follows:

• GND → GND

• 5V → VCC

Michail Roumeliotis
67

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

• SDA → SDA

• SCL → SCL

Please note that this connection powers the breakout board itself, but to provide power to

the servos, an external 5V source should be connected to the blue terminal.

The servos are connected to the output ports on the bottom side of the PCA9685 board,

with the brown wire connected to GND, the red wire to V+, and the orange wire to the PWM

input. If the user wants to connect more than 16 servos, he should chain more PCA9685(up to

62), but he needs to assign each board a unique address. This is accomplished by soldering to

bridge the address jumpers on the upper right edge(board 0: 00000, Board 1: 000001, etc.).

4.3.5 Motor Driver Circuit

In the context of this thesis, the ERM motors used had specific electrical characteristics, in-

cluding a startup current draw of 85mA and an operating current draw of 75mA. These current

requirements exceeded the output current capacity of individual Arduino pins, which is limited

to 40mA. To overcome this limitation, a driver circuit was necessary, and the major component

in this circuit was a transistor. Transistors are semiconductor devices used for electronic signal

switching or amplification. There are two main types: Bipolar Junction Transistors(BJTs) and

Field Effect Transistors(FETs).

Figure 4.35: Bipolar Junction Transistor

Bipolar Junction Transistors have three terminals- the Emitter, Base, and Collector.

They come in two configurations: NPN and PNP. NPN BJTs are made by sandwiching a p-

type material between two n-type materials, while PNP BJTs are made with an n-type material

between two p-type materials. BJTs are current-controlled devices, where the current flowing

Michail Roumeliotis
68

October 2023

4.3 Components used for the Haptic Glove

Figure 4.36: Metal Oxide Semiconductor Field Effect Transistor

into the Base terminal controls the current flow from Collector to Emitter(NPN) or from Emitter

to Collector(PNP).

Field Effect Transistors also have three terminals, the Source, Gate, and Drain. The two

main types of FETs are Junction Field Effect Transistors(JFETs) and Metal-Oxide-Semiconductor

FETs(MOSFETs). MOSFETs are divided into two categories, the N-Channel MOSFET and

the P-Channel MOSFET. N-MOSFETs have a p-type body with two n-type regions (Source

and Drain) adjacent to the Gate, while P-MOSFETs have an n-type body with two p-type

regions adjacent to the Gate. FETs are voltage-controlled devices, where applying voltage at

the Gate controls the current flow between the Source and the Drain. If the voltage is negative,

the MOSFET operates in depletion mode, and if it’s positive, it operates in enhancement mode.

Figure 4.37: N-type MOSFET Figure 4.38: P-type MOSFET

In this thesis, the choice was made between BJTs and MOSFETs, with the selection of an

n-type MOSFET(in its saturated mode), specifically the 2N7000. N-MOSFETs were preferred

because they work well with 2V and higher turn-on-voltage(Vgs).

After choosing the N-MOSFET, additional components were needed to complete the circuit

effectively:

• To protect the MOSFET from voltage spikes generated by the motor coils, a Schottky

Michail Roumeliotis
69

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.39: The 2N7000 N-Channel MOSFET

diode (1N5817) was added in parallel across the motor terminals. Schottky diodes allow

current flow from anode to cathode and are able to handle a maximum DC blocking

voltage of 20V with a maximum average forward rectified current of 1A.

Figure 4.40: The Schottky Diode 1N5817

• To ensure the MOSFET remains fully off when there is no signal, a pull-down resistor(50kΩ)

was used, reducing the quiescent current.

• To suppress high-frequency electromagnetic noise generated by the motor, an EMI(Electromagnetic

Interference) suppression capacitor was added. Capacitors ranging from 10 to 100pF were

suitable for this purpose, as they are small enough not to interfere with the PWM signal

but large enough to limit voltage spikes.

The complete circuit that is used in this thesis to drive the ERM motors looks like this:

Michail Roumeliotis
70

October 2023

4.4 Mechanical Design

Figure 4.41: Mechatronic system block di-

agram with pinout information Figure 4.42: The Motor Driver Circuit

4.4 Mechanical Design

We incorporated a total of seven servo motors, each weighing 10.2 grams, into our design

with the aim of ensuring that our device does not impede users’ hand movements and remains

lightweight. Among these, four are strategically positioned around the wrist to control the

motion of the index finger’s moving platform. The remaining servo motors are situated on the

back of the hand and are responsible for providing kinesthetic feedback through a system of

strings. To enhance functionality, we introduced the 3D-printed components described above.

The 3D-printed part equipped on each fingernail weighs 2 grams. Also, we added four driving

cable parts on each finger, each one weighing 1 gram.

4.4.1 Tactile Feedback

For enhancing tactile feedback our design incorporates a system consisting of individual moving

platforms for each fingertip, namely the thumb, middle, ring, and pinky fingers. The key element

in our approach is the use of moving platforms in conjunction with servo motors and strings.

We utilized four strings, each tethered to one of the platform’s corners. When a virtual object is

Michail Roumeliotis
71

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Figure 4.43: The strings that are pulled in each case to simulate location-based tactile feedback

to the index finger

encountered, the corresponding servo motor activates and moves these strings. This movement

of the strings pulls the platform in a precise manner against the fingertip and simulates a

sensation of normal indentation. In the case of the index finger, we had a different approach.

It is equipped with a moving platform connected to four servo motors, each dedicated to one

of the four corners of the platform. The distribution of these strings across the platform’s

corners is strategically designed to simulate the complex sensations of real-world touch. Each

string’s attachment point corresponds to a specific region of the fingertip, enabling the system

to provide feedback in the following ways:

• Normal Indentation, which is achieved when all four strings are simultaneously pulled,

recreating the sensation of pressing on a surface.

• Lateral Skin Stretch, where the users can perceive different directions through shear

forces applied to the fingertip, enhancing the perception of object shapes and textures.

• Surface Curvature Display, where the users can distinguish between round bumps,

pointy bumps, and holes, adding depth and realism to the virtual interactions.

Michail Roumeliotis
72

October 2023

4.4 Mechanical Design

Figure 4.44: Flowchart of the kinesthetic feedback

4.4.2 Kinesthetic Feedback

When our haptic glove comes into contact with a virtual object it employs a mechanism to

deliver kinesthetic feedback to the user. This feedback system is facilitated by strings connected

to a 3D-printed structure, which is under the control of a servo motor. With our design, three

servo motors are strategically deployed to provide kinesthetic feedback for different parts of the

hand: one for the thumb, one for the index finger, and one for the remaining three fingers.

This setting is designed with weight efficiency in mind, as it combines the feedback for three

fingers into one actuator. When the user interacts with a virtual object, our system evaluates

the object’s properties. First, it determines whether the object is soft or hard. If the object is

categorized as soft, the system further assesses the level of softness. Based on these evaluations,

the servo motor controls the movement of the servo-breaking mechanism. Then the servo-

breaking mechanism can be rotated left to block the softness level controller or right to block

the hardness object controller. The softness level controller is linked to the fingers through a

flexible string that can stretch and mimic the elasticity of soft objects. This provides a sensation

of softness in two distinct levels. Objects with higher softness levels are associated with smaller

colliders, causing the hand grip to close more in order to interact with them effectively. On

the other hand, for hard objects, the system utilizes a normal string to connect the fingers to

the hard object controller. Depending on the size of the object, the servo-breaking mechanism

restricts the controller. The 3D-printed blocks that house these controllers are robust and

capable of withstanding approximately 26.4N of force before yielding to tension. The tension

Michail Roumeliotis
73

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

in the strings generates an effective force of 192.6N, significantly limiting the movement of the

user’s fingers. This restriction offers resistance, delivering convincing kinesthetic feedback that

enhances the realism of the virtual interaction.

4.5 Front-End Implementation

In this section, we will provide a detailed analysis of the Unity scenes employed in our experi-

ments. These scenes serve as the primary environment for the implementation.

4.5.1 Experiment 1: Softness/Hardness Perception

Figure 4.45: Experiment 1 Unity scene

The Unity scene in the first experiment contains the following game objects:

• ’ServiceProvider’ by Leap Motion: This game object includes the ’Capsule Hands’ repre-

senting hand movements and the ’Main Camera’ for rendering the scene. These compo-

nents are used for hand tracking and visualization.

• ’GreenSphere’ and ’RedSphere’: These game objects are grasped by the user in order to

determine which one is softer. They also contain the ’InteractionBehaviour’ from Leap

Motion, which allows the user to manipulate them through the Leap Motion Controller.

• ’InteractionManager’: This game object manages hand interactions through ’Interaction

Hands’, enabling effective Leap Motion integration. In this experiment, the ’Interaction

Hand’ contains the main script of our implementation, which controls the buttons and

display visibility, and enables/disables the two spheres that the user interacts with.

Michail Roumeliotis
74

October 2023

4.5 Front-End Implementation

• ’Walls’: These game objects are used to block the two spheres from escaping the scene.

The primary objective of this experiment was to investigate users’ perception of the softness

or hardness of virtual objects. In the Softness/Hardness Experiment Unity scene, users were

presented with pairs of spheres. Each sphere possessed an attribute value, which could randomly

be either 0, 1, or 2. These values corresponded to the perceived softness of objects, categorizing

them as soft, medium soft, or hard, respectively. Users encountered pairs of spheres representing

each softness level, and these pairings were presented three times during the experiment. For

each pairing, users had a limited time of 10 seconds to interact with and manipulate each of the

two spheres. After the interaction with a pair of spheres, users were asked to provide feedback

regarding their perception of the objects. Specifically, they had to report, using three buttons,

whether they perceived the first or the second sphere as softer, or if they perceived that both

spheres had the same softness level.

4.5.2 Experiment 2: Lateral Skin Stretch Perception

Figure 4.46: Experiment 2 Unity scene

The Unity scene for the second experiment consists of the following game objects:

• ’GameObject’: This is an empty game object, which contains the script that controls the

experimental procedure. More specifically, it controls the visibility of the buttons and the

display text, generates random numbers each one representing one of the 8 directions, and

sends the appropriate commands to the Arduino using serial communication.

• ’Canvas’: This game object contains 8 buttons, one for direction as shown in Figure 4.46,

and a display text that changes based on the experiment phase.

Michail Roumeliotis
75

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

The main objective of the lateral skin stretch perception experiment was to investigate how

users perceived directional feedback provided through the manipulation of a moving platform.

In the second experiment, each participant was exposed to stimuli generated by the moving

platform. The moving platform was equipped with four strings, which were manipulated by

pulling one or more of these strings. These manipulations provided the users with specific

directional information. Each direction was presented to the users three times, and the order

of presentation was randomized to minimize bias. After each exposure to the haptic cues(that

lasted for 3 seconds), users were presented with a set of 8 buttons, each corresponding to a

specific direction. Then, they were asked to report which of the eight directions they felt they

had experienced. This process was repeated until all possible directions had been presented

three times. In the second phase of the experiment, vibration feedback was introduced. Users

received tactile feedback through vibrations applied to their index fingertips while experiencing

the directional cues from the moving platform. Then, the same procedure of reporting the

feedback was carried out.

4.5.3 Experiment 3: Surface Geometry Perception

Figure 4.47: Experiment 3 Unity scene

The Unity scene for the third experiment comprises the following key game objects:

• ’ServiceProvider’ by Leap Motion: This game object includes the ’Capsule Hands’ repre-

senting hand movements and the ’Main Camera’ for rendering the scene. These compo-

nents are used for hand tracking and visualization.

Michail Roumeliotis
76

October 2023

4.6 Back-End Implementation

• ’GameObject’: This empty game object contains the main script, which controls the

visibility of the buttons, sends commands to the Arduino using serial communication,

and presents haptic cues from a list in random order.

• ’Canvas’: The ’Canvas’ contains UI elements, including the four buttons shown in Figure

4.46, along with a display text.

• ’InteractionCube’: This interactive cube allows users to interact with it using the Leap

Motion Controller.

• ’InteractionManager’: This game object manages hand interactions through ’Interaction

Hands’, enabling effective Leap Motion integration.

The primary aim of the surface geometry perception experiment was to investigate how

participants perceive different surface geometries through tactile feedback. In this experiment,

participants were instructed to move their hands horizontally from left to right inside a box.

As they moved their index finger within this space, they encountered tactile stimuli generated

by a moving platform. These tactile feedback cues were developed to simulate four surface

geometries: a round hole, a triangular hole, a round bump, and a triangular bump. After the

exposure to each surface geometry stimulus, users were presented with a set of response options.

They were instructed to select which of the four geometries they felt. Then, the experiment

was repeated with the addition of vibration feedback. The entire process was repeated until

each haptic feedback cue had been presented three times and in random order.

4.6 Back-End Implementation

4.6.1 Experiment 1 Arduino Code

In the first part of the code(before the setup() function, we include two libraries, ”Wire.h”

and ”Adafruit PWMServoDriver.h”. The ”Wire.h” library provides essential functions for

I2C(Inter-Intergrated Circuit) communication. I2C is a two-wire serial communication pro-

tocol commonly used for connecting microcontrollers to various sensors, devices, and modules.

Key functions provided by this library include ’begin()’, ’write()’, and more. This code is used

for communicating with the Adafruit PWM Servo Driver module via I2C to send commands

for servo control. The ”Adafruit PWMServoDriver.h” library is specific to Adafruit products

Michail Roumeliotis
77

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

and is designed for controlling servo motors using the Adafruit PWM Servo Driver board. Key

functions in this library are ’begin()’, ’setPWM()’, etc.

After the libraries, we include some global variables. With the ’char contact[20]’, we de-

clare a character array named ’contact’ with a length of 20. This array is used to store in-

coming data received from serial communication. It can hold up to 20 characters. The line

”Adafruit PWMServoDriver pwm = Adafruit PWMServoDriver();” declares an instance of the

’Adafruit PWMServoDriver’ class named ’pwm’. It is initialized using the ’Adafruit PWMServoDriver()’

constructor. In the case of the experiment with vibration enabled, we add the ”const int mo-

torPin = 10”, which defines a constant integer named ’motorPin’ and assigns it the value 10.

This constant represents the digital pin on the Arduino to which the finger’s vibration motor

is connected.

After the addition of the global variables, we add some definitions. With ”#define SER-

VOMIN 100”, we define a preprocessor directive to create a constant named ’SERVOMIN’ with

a value of 100. It is described as the minimum pulse length count out of 4096 and is used as

the minimum position for the servo motors. With ”#define SERVOMAX”, we define ’SER-

VOMAX’ as 500, which is the maximum position for the servo motors. Then, we add the line

”define USMIN 600”, which is the constant that represents the minimum microsecond length

based on the minimum pulse of 150. It is related to the timing and pulse width for the servo

control. Similarly, the line ”#define USMAX 2400” defines the maximum microsecond length

based on the maximum pulse of 2400. Finally, with the line ”#define SERVO FREQ 50” we

set the PWM frequency for the servo motors to 50Hz. This frequency affects the speed and

precision of the servo movement.

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

char contact[20];

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

const int motorPin = 10;

#define SERVOMIN 100 // This is the ’minimum’ pulse length count (out of 4096)

#define SERVOMAX 500

#define USMIN 600 // This is the rounded ’minimum’ microsecond length based on the minimum pulse of 150

#define USMAX 2400

#define SERVO_FREQ 50

Michail Roumeliotis
78

October 2023

4.6 Back-End Implementation

Listing 4.1: The global section of the code

In the ”setup()” function, we initialize the communication interface, configure the PWM

driver for servo control, and set up the initial states for both servos and the motor pin. More

specifically, we first include the ”Serial.begin(9600)”, which initializes serial communication

with a baud rate of 9600 bits per second. A baud rate of 9600 provides a good balance be-

tween speed and reliability. Then, we add ”pwm.begin()”, which initializes the PWM driver,

making it ready to control the servo motors. The initialization process sets up the commu-

nication between the Arduino and the PWM driver board. The next step was to add the

”pwm.setOscillatorFrequency(27000000)”, where we set the oscillator frequency to 27MHz and

generated a stable PWM signal. Moreover, we add the ”pwm.setPWMFreq(SERVO FREQ)”,

which sets the PWM frequency for the servo motors to 50Hz. The PWM frequency deter-

mines how fast the PWM signal repeats its cycle, thus in our approach, the signal repeats 50

times per second. In the next lines, we set the initial positions for the servo motors. More

specifically, for the thumb finger, we use ”pwm.setPWM(0,0,195)”, for the index finger we use

”pwm.setPWM(0,0,380)”, and for the remaining three fingers we use ”pwm.setPWM(0,0,305)”.

All the initial positions are different because of the different positioning of the servo motors on

top of the hand. After the initialization of the servo position, the next step is to set up five

digital pins as output pins. These pins are used to control the vibration motor(one on each

fingertip).

void setup()

{

Serial.begin(9600);

pwm.begin();

pwm.setPWMFreq(50);

pwm.setOscillatorFrequency(27000000);

pwm.setPWMFreq(SERVO_FREQ);

delay(10);

pwm.setPWM(0, 0, 195); //fat

pwm.setPWM(1, 0, 380); //index

pwm.setPWM(2, 0, 305); //triple

pinMode(11, OUTPUT);

pinMode(10, OUTPUT);

pinMode(9, OUTPUT);

pinMode(6, OUTPUT);

Michail Roumeliotis
79

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

pinMode(5, OUTPUT);

}

Listing 4.2: The ”setup()” section of the first experiment’s code

In the ”loop()” function of the first experiment, we continuously read and interpret com-

mands from the serial interface and adjust the position of the servo motors and the vibration

motor based on the received commands. At the start, with ”int n1=10” we declare an integer

variable ’n1’ and initialize it with the value 10. Then, we add the ”Serial.readBytesUntil(n1,

contact, 4)”, which reads data from the serial interface until it encounters a newline character(”)

or reads four characters. The received byte(character) is stored in the ’contact’ area, which is

used to hold the command received from Unity. The following code block processes the received

command stored in the ’contact’ array and it uses ’strcmp’ to compare the received command

with predefined commands(’left’, ’righ’, ’lero’). If ’contact’ is equal to ’left’, we set the position

of the three servo motors so that they move left to block the softness level controller. If ’contact

is equal to ’righ’, we set the position of the three servo motors so that they move right to

block the hard object controller. Whenever we move the servos left or right we also enable the

vibration motors to provide feedback on touch using the ’analogWrite(pinNubmer,25)’. Finally,

if ’contact’ is ’lero’, we set both the position of the three servo motors back to their initial

position and the vibration motors to 0.

void loop()

{

int nl=10;

Serial.readBytesUntil(nl,contact,4);

// Check if data is received from Unity

if(strcmp(contact,"left")==0){

pwm.setPWM(0, 0, 160); //fat

pwm.setPWM(1, 0, 300); //index

pwm.setPWM(2, 0, 250); //triple

analogWrite(11, 25);

analogWrite(10, 25);

analogWrite(9, 25);

analogWrite(6, 25);

analogWrite(5, 25);

}

Michail Roumeliotis
80

October 2023

4.6 Back-End Implementation

if(strcmp(contact,"righ")==0){

pwm.setPWM(0, 0, 260); //fat

pwm.setPWM(1, 0, 460); //index

pwm.setPWM(2, 0, 380); //triple

analogWrite(11, 25);

analogWrite(10, 25);

analogWrite(9, 25);

analogWrite(6, 25);

analogWrite(5, 25);

}

if(strcmp(contact,"lero")==0){

pwm.setPWM(0, 0, 195); //fat

pwm.setPWM(1, 0, 380); //index

pwm.setPWM(2, 0, 305); //triple

analogWrite(11, 0);

analogWrite(10, 0);

analogWrite(9, 0);

analogWrite(6, 0);

analogWrite(5, 0);

}

}

Listing 4.3: The ”loop()” section of the first experiment’s code

4.6.2 Experiment 2 Arduino Code

Similarly to the first experiment, we follow the same steps in the ”setup()” function for the

second and third experiments. The difference is in the lines from ”pwm.setPWM(0, 0, 500)” to

”pwm.setPWM(3, 0, 500)”, where we set the initial positions for the servo motors that control

the index finger’s moving platform. Additionally, in the case of the experiments with vibration

enabled, we only use one pin with the ”pinMode(motorPin, OUTPUT)”, which configures the

pin connected to the vibration motor as an output pin. Setting it as an output pin means it

will be used to send an electrical signal to control the speed of the vibration motor using PWM.

void setup()

{

Serial.begin(9600);

pwm.begin();

pwm.setOscillatorFrequency(27000000);

Michail Roumeliotis
81

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

pwm.setPWMFreq(SERVO_FREQ);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

pinMode(motorPin, OUTPUT);

}

Listing 4.4: The ”setup()” section of the second and third experiment’s code

In the ”loop()” function of the second experiment, we continuously read and interpret com-

mands from the serial interface and adjust the position of the servo motors and the vibration

motor based on the received commands. Similarly to the first experiment, with ”int n1=10”

we declare an integer variable ’n1’ and initialize it with the value 10. Then, we add the ”Se-

rial.readBytesUntil(n1, contact, 1)”, which reads data from the serial interface until it encoun-

ters a newline character(”) or reads one byte. The following code block processes the received

command stored in the ’contact’ array and it uses ’strcmp’ to compare the received command

with predefined commands(i.e. ’1’, ’2’, ..., ’9’). If a match is found, the code within the

corresponding ’if’ block is executed. More specifically the commands are the following:

• When the received command is 1, we want to move the top left region of the moving

platform. Thus we set servo 1 to the pulling position with ’pwm.setPWM’ set to 100 and

the rest servos to the neutral position with ’pwm.setPWM’ set to 500.

• When the received command i 2, we want to move the top region of the moving platform.

Thus we set both servos 1 and 2 to the pulling position and the rest servos to the neutral

position.

• When the received command is 3, we want to move the top right region of the moving

platform. Thus we set servo 2 to the pulling position and the rest servos to the neutral

position.

• When the received command is 4, we want to move the left region of the moving platform.

Thus we set both servos 0 and 1 to the pulling position and the rest servos to the neutral

position.

Michail Roumeliotis
82

October 2023

4.6 Back-End Implementation

• When the received command is 5, we want to move the right region of the moving platform.

Thus we set both servos 2 and 3 to the pulling position and the rest servos to the neutral

position.

• When the received command is 6, we want to move the bottom left region of the moving

platform. Thus we set servo 0 to the pulling position and the rest to the neutral position.

• When the received command is 7, we want to move the bottom region of the moving

platform. Thus we set both servos 0 and 3 to the pulling position, The rest 2 servos were

set to the neutral position.

• When the received command is 8, we want to move the bottom right region of the moving

platform. Thus, we set servo 0, 1, and 2 to 500(neutral position) and we controlled servo

3 to move to 100(pulling position).

• When the received command is 9, all servo motors are reset to a neutral position with

’pwm.setPWM’ by setting them to 500.

After processing the received command, the ”loop()” function continues to the next iteration,

waiting for the next command.

void loop()

{

int nl=10;

Serial.readBytesUntil(nl,contact,1);

//top-left

if(strcmp(contact,"1")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

analogWrite(motorPin, 25);

}

//top

if(strcmp(contact,"2")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 500);

Michail Roumeliotis
83

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

analogWrite(motorPin, 25);

}

//top-right

if(strcmp(contact,"3")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 500);

analogWrite(motorPin, 25);

}

//left

if(strcmp(contact,"4")==0){

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

analogWrite(motorPin, 25);

}

//right

if(strcmp(contact,"5")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

analogWrite(motorPin, 25);

}

//bottom-left

if(strcmp(contact,"6")==0){

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

analogWrite(motorPin, 25);

}

//bottom

if(strcmp(contact,"7")==0){

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 100);

Michail Roumeliotis
84

October 2023

4.6 Back-End Implementation

analogWrite(motorPin, 25);

}

//bottom-right

if(strcmp(contact,"8")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 100);

analogWrite(motorPin, 25);

}

//reset values

if(strcmp(contact,"9")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

analogWrite(motorPin, 0);

}

}

Listing 4.5: The ”loop()” section of the second experiment’s code

4.6.3 Experiment 3 Arduino Code

In the ”loop()” function of the third experiment, we continuously read and interpret commands

from the serial interface and adjust the position of the servo motors and the vibration motor

based on the received commands. Similarly to the first and second experiments, with ”int

n1=10” we declare an integer variable ’n1’ and initialize it with the value 10. Then, we add

the ”Serial.readBytesUntil(n1, contact, 1)”. The following code block processes the received

command stored in the ’contact’ array and it uses ’strcmp’ to compare the received command

with predefined commands(i.e. ’1’, ’2’, ’3’, ’4’). If a match is found, the code within the

corresponding ’if’ block is executed. More specifically the commands are the following:

• When the received command is 1, we want to provide the round curve haptic feedback.

Thus, we first move the right region of the moving platform by setting servo 3 and 4 to

100. Then, we delay the process by 1 sec and set all servos to 100 to provide normal

indentation. To complete the haptic feedback for the round curve, we incline the ramp to

Michail Roumeliotis
85

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

the opposite side, simulating the curve sensation. We do this by setting servo 1 and 2 to

100. This provides users with the perception of a curved surface. Finally, we reset all the

servo positions back to 500.

• When the received command is 2, we want to provide the triangular curve haptic feedback.

Thus, we first move the right region of the moving platform by setting servo 3 and 4 to

100. Following the initial feedback phase, we smoothly transition to a steeper triangular

curve sensation. To achieve this, we set servos 3 and 4 back to their default position of

500 while simultaneously setting servos 1 and 2 to 100. This adjustment provides users

with a more pronounced curve sensation. After delaying for 2 more seconds, we reset all

the servo positions back to 500.

• When the received command is 3, we want to provide the round hole haptic feedback.

Thus, we first move the left region of the moving platform by setting servo 1 and 2 to

100. Then, we delay the process by 1 sec and set all servos to 100 to provide normal

indentation. After delaying for 1 more second the next step is to ascent to the opposite

side, in order to create the hole, by setting the servo 3 and 4 to 100. Finally, we reset all

the servo positions back to 500.

• When the received command is 4, we want to provide the triangular hole haptic feedback.

Thus, we first move the left region of the moving platform by setting servo 1 and 2 to

100. Then, we delay the process by 1 sec, set the servos 1 and 2 back to 500 and servos 3

and 4 to 100 in order to provide a more steep curve. After delaying for 2 more seconds,

we reset all the servo positions back to 500.

After processing the received command, the ”loop()” function continues to the next iteration,

waiting for the next command.

int nl=10;

Serial.readBytesUntil(nl,contact,1);

//round bump

if(strcmp(contact,"1")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

Michail Roumeliotis
86

October 2023

4.6 Back-End Implementation

pwm.setPWM(3, 0, 100);

delay(1000);

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

delay(1000);

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

delay(1000);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

return;

}

//triangle bump

if(strcmp(contact,"2")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

delay(1000);

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

delay(2000);

Michail Roumeliotis
87

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

return;

}

//round hole

if(strcmp(contact,"3")==0){

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

delay(1000);

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

delay(1000);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

delay(1000);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

return;

}

//triangle hole

Michail Roumeliotis
88

October 2023

4.6 Back-End Implementation

if(strcmp(contact,"4")==0){

pwm.setPWM(0, 0, 100);

pwm.setPWM(1, 0, 100);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

delay(1000);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 100);

pwm.setPWM(3, 0, 100);

delay(2000);

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

return;

}

if(strcmp(contact,"0")==0){

pwm.setPWM(0, 0, 500);

pwm.setPWM(1, 0, 500);

pwm.setPWM(2, 0, 500);

pwm.setPWM(3, 0, 500);

}

Listing 4.6: The ”loop()” section of the third experiment’s code

4.6.4 Experiment 1 Unity Code

The first step after setting up the variables is to generate a timestamp by using the command

’System.DateTime.Now.ToString(”yyyy-MM-dd HH-mm-ss”)’. It formats the date and time as

a string, which includes the year, month, day, hour, minute, and second, separated by hyphens

and underscores. Then, we create a file path by concatenating the formatted timestamp with

the string ’experiment data ’ and appending ’.csv’. After the creation of the file path, we create

Michail Roumeliotis
89

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

a serial port with the name ’COM6’ and a baud rate of 9600 bits per second. Finally, we set

a timeout for the serial port to 1 ms, which means that if no data is received within 1 ms of

attempting to read from the serial port a timeout exception occurs.

string timestamp = System.DateTime.Now.ToString("yyyy-MM-dd_HH-mm-ss");

filePath = "experiment_data_" + timestamp + ".csv";

serialPort = new SerialPort("COM6", 9600);

serialPort.Open();

serialPort.ReadTimeout = 1;

Listing 4.7: Create a file to store experiment’s data and open serial communication for the first

experiment

In Listing 4.8, we set up the initial state of the game by generating combinations, shuffling

them, setting initial game object values, hiding UI elements, and adding button listeners. More

specifically, we use nested foreach loops to generate all possible combinations of integers from

the ’combination’ array(which contains the values 0, 1, and 2). For each combination of ’i’ and

’j’, we create a new integer array containing these values and add it to the ’combinationList’.

So, ’combinationList’ contains all combinations of pairs of 0, 1, and 2. Additionally, we initialize

the ’combinationCounts’ dictionary with keys in the format of ’i,j’(i.e. ’0,0’) and set their values

to 0. This dictionary is used to keep track of how many times each combination is encountered.

After populating the list with all the possible combinations, we shuffle the order of elements

within the list. This is done by iterating through the list and swapping each element with

a randomly selected element from the list. Then, we call the ”SetValues()” method(which is

explained thoroughly below) with the values from the first combination in ’combinationList’.

This sets the initial state of the two spheres. The next lines are used to initially hide the

buttons and the question from the user. Also, we add three button click listeners that when

clicked, invoke the ”OnButtonClick()” method with the argument indicating which button was

clicked(1, 2, or 3). In the final line of Listing 4.8, we use the ’File.WriteAllText’ to create or

clear a CSV file specified by the ’filepath’ variable. The file will have a header line with ’Button,

Value1, Value2’ to indicate the columns.

// Populate combinationList with all possible combinations

Michail Roumeliotis
90

October 2023

4.6 Back-End Implementation

foreach (int i in combinations)

{

foreach (int j in combinations)

{

combinationList.Add(new int[] { i, j });

combinationCounts[i + "," + j] = 0;

}

}

// Shuffle combinationList for random order

for (int i = 0; i < combinationList.Count; i++)

{

int randomIndex = Random.Range(i, combinationList.Count);

int[] temp = combinationList[i];

combinationList[i] = combinationList[randomIndex];

combinationList[randomIndex] = temp;

}

// Set initial values for gameObject1 and gameObject2

SetValues(combinationList[index][0], combinationList[index][1]);

// Reveal buttons

button1.gameObject.SetActive(false);

button2.gameObject.SetActive(false);

button3.gameObject.SetActive(false);

question.gameObject.SetActive(false);

// Add button listeners

button1.onClick.AddListener(() => OnButtonClick(1));

button2.onClick.AddListener(() => OnButtonClick(2));

button3.onClick.AddListener(() => OnButtonClick(3));

// Create or clear the file

File.WriteAllText(filePath, "Button,Value1,Value2\n");

Listing 4.8: Create a list with all the possible combinations for the first experiment

The code in the Listing 4.9 controls the behavior of the game objects, it checks the condi-

tions related to object grasping, adjusts collider sizes, sends commands through a serial port,

and handles the UI element visibility. At the start, we create a conditional logic for UI ele-

Michail Roumeliotis
91

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

ments(button visibility and thank you message) that control their visibility. If the user grasps

only the first sphere or if he doesn’t grasp any, the logic hides the UI elements. Then, we use

’GameObject.Find’ to find the two spheres and store them in ’checkedObj1’ and ’checkedObj2’.

In the next lines, we implement the core function of our implementation. More specifically, we

check the values of ’a’(which corresponds to the first sphere softness/hardness) and ’b’(which

corresponds to the second sphere softness) and we perform the following actions based on their

values:

• if ’a’ is 0(which is the value for medium soft), we set the sphere collider radius to de-

fault(0.5f) and check if the user grasped the sphere. If the user is grasping the sphere, we

invoke a method in order to disable the sphere after 10 sec. Also, we send the command

’left’ via serial communication to the Arduino. If the user stops grasping the sphere for

the duration of 10 sec before disabling the object, we send the command ’lero’ to rest the

servo motor position.

• if ’a’ is 1(which is the value for soft), we set the sphere collider radius to 0.25f. If the user

is grasping the sphere, we invoke the method that disables the game object after 10 sec.

We also send the command ’left’ to the Arduino.

• if ’a’ is 2(which is the value for hard), we set the sphere collider radius to 0.5f. If the user

is grasping the sphere, we invoke the same method as in the previous cases and we send

the command ’righ’ with ’serialPort.Write’.

Similarly, we perform the same actions for the different values of ’b’.

// Update is called once per frame

void Update()

{

if (grasped1 && !grasped2)

{

button1.gameObject.SetActive(false);

button2.gameObject.SetActive(false);

button3.gameObject.SetActive(false);

question.gameObject.SetActive(false);

}

else if (!grasped1 && !grasped2)

Michail Roumeliotis
92

October 2023

4.6 Back-End Implementation

{

button1.gameObject.SetActive(false);

button2.gameObject.SetActive(false);

button3.gameObject.SetActive(false);

question.gameObject.SetActive(false);

}

if (thank)

{

thankYouText.gameObject.SetActive(true);

thankYouText.text = "Thank you for participating!";

}

GameObject checkedObj1 = GameObject.Find("GreenSphere");

GameObject checkedObj2 = GameObject.Find("RedSphere");

if (a == 0)

{

SphereCollider collider1 = gameObject1.GetComponent<SphereCollider>();

if (collider1 != null)

{

float originalRadius = 0.5f; // Adjust to the original radius

collider1.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj1 && !sentData)

{

Debug.Log("Touch 1 but medium soft");

grasped1 = true;

Invoke("DisableObject1", 10.0f);

serialPort.Write("left");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

else if (a == 2)

{

Michail Roumeliotis
93

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

SphereCollider collider1 = gameObject1.GetComponent<SphereCollider>();

if (collider1 != null)

{

float originalRadius = 0.5f; // Adjust to the original radius

collider1.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj1 && !sentData)

{

Debug.Log("Touch 1 but hard");

grasped1 = true;

Invoke("DisableObject1", 10.0f);

serialPort.Write("righ");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

else if (a == 1)

{

// Modify the collider size of gameObject1 when a equals 1

SphereCollider collider1 = gameObject1.GetComponent<SphereCollider>();

if (collider1 != null)

{

float originalRadius = 0.25f; // Adjust to the original radius

collider1.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj1 && !sentData)

{

Debug.Log("Touch 1 soft");

grasped1 = true;

Invoke("DisableObject1", 10.0f);

serialPort.Write("left");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

Michail Roumeliotis
94

October 2023

4.6 Back-End Implementation

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

if (b == 0)

{

SphereCollider collider2 = gameObject2.GetComponent<SphereCollider>();

if (collider2 != null)

{

float originalRadius = 0.5f; // Adjust to the original radius

collider2.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj2 && !sentData)

{

Debug.Log("Touch 2 but medium soft");

grasped2 = true;

Invoke("DisableObject2", 10.0f);

serialPort.Write("left");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

else if (b == 2)

{

SphereCollider collider2 = gameObject2.GetComponent<SphereCollider>();

if (collider2 != null)

{

float originalRadius = 0.5f; // Adjust to the original radius

collider2.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj2 && !sentData)

Michail Roumeliotis
95

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

{

Debug.Log("Touch 2 but hard");

grasped2 = true;

Invoke("DisableObject2", 10.0f);

serialPort.Write("righ");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

else if (b == 1)

{

SphereCollider collider2 = gameObject2.GetComponent<SphereCollider>();

if (collider2 != null)

{

float originalRadius = 0.25f; // Adjust to the original radius

collider2.radius = originalRadius;

}

if (interactionHand.graspedObject != null

&& interactionHand.graspedObject.gameObject == checkedObj2 && !sentData)

{

Debug.Log("Touch 2 but soft");

grasped2 = true;

Invoke("DisableObject2", 10.0f);

serialPort.Write("left");

sentData = true;

}

else if (!interactionHand.isGraspingObject && sentData)

{

sentData = false;

serialPort.Write("lero");

Debug.Log("Sent data: -1 (reset servo)");

}

}

Listing 4.9: Send commands via serial communication depending the object softness or hardness

Michail Roumeliotis
96

October 2023

4.6 Back-End Implementation

Then, we added the ”SetValues()” method, which sets random values to the attributes of

the two spheres.

void SetValues(int value1, int value2)

{

gameObject1.GetComponent<GraspedObject>().attribute = value1;

gameObject2.GetComponent<GraspedObject>().attribute = value2;

if (value1 == 0)

{

a = 0;

}

else if (value1 == 2)

{

a = 2;

}

else if (value1 == 1)

{

a = 1;

}

if (value2 == 0)

{

b = 0;

}

else if (value2 == 2)

{

b = 2;

}

else if (value2 == 1)

{

b = 1;

}

}

}

Listing 4.10: The ”SetValues()” method for the first experiment

The code in the Listing 4.11 is the method ”OnButtonClick()”, which gets executed when a

Michail Roumeliotis
97

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

button is clicked in the Unity application. At the start, we create a string ’line’ that contains the

button number and the values from the current combination(from ’combinationList’) separated

by commas. It also appends this ’line’ to a file specified by the ’filePath’. Then we reset the

values that indicate if the objects are being grasped, hide several UI elements, and reactivate

the first sphere after a button press. The next step is to increment the count for the current

combination in the ’combinationCounts’ dictionary. The key for the dictionary is a string

formed by concatenating the values of the current combination. The next step is to check if the

count for the current combination is greater than or equal to 3(because we want to check each

combination 3 times). If so, we remove the current combination from the ’combinationList’. If

all combinations have been checked, we end the experiment and activate a thank you message.

However, if there are more combinations to show, we choose a random index within the range of

available combinations and assign it to the ’index’ variable. Finally, we call the ”SetValues()”

method to set new attribute values for the two spheres based on the next combination in

’combinationList’.

void OnButtonClick(int button)

{

// Record button press and values in the file

string line = button + "," + combinationList[index][0] + "," + combinationList[index][1] + "\n";

File.AppendAllText(filePath, line);

grasped1 = false;

grasped2 = false;

button1.gameObject.SetActive(false);

button2.gameObject.SetActive(false);

button3.gameObject.SetActive(false);

question.gameObject.SetActive(false);

gameObject1.SetActive(true);

// Increment count for current combination

combinationCounts[combinationList[index][0] + "," + combinationList[index][1]]++;

// If current combination has been shown 3 times, remove it from combinationList

if (combinationCounts[combinationList[index][0] + "," + combinationList[index][1]] >= 3)

{

combinationList.RemoveAt(index);

}

Michail Roumeliotis
98

October 2023

4.6 Back-End Implementation

// If all combinations have been checked, show a text and end the experiment

if (combinationList.Count == 0)

{

thank = true;

return;

}

// Choose a random index for next combination

index = Random.Range(0, combinationList.Count);

// Set new values for gameObject1 and gameObject2

SetValues(combinationList[index][0], combinationList[index][1]);

}

Listing 4.11: The ”OnButtonClick()” method for the first experiment

4.6.5 Experiment 2 Unity Code

At the start, we declare the following variables:

• ’numbersList’, which is a list of integers initialized with the values from 1 to 8 and repre-

sents a list of available numbers.

• ’numberCount’, which is an integer array with a length of 8. It was used to count how

many times each number had been selected.

• ’randomNumber’ which is an integer variable that was used to store a randomly selected

number.

• ’filePath’, which is a string variable that stores the path to a CSV file.

• ’sp’, which is a SerialPort object configured to communicate over the COM6 port at a

baud rate of 9600.

Then at the ”Start()” method, we construct the ’filePath’, using the ’Application.dataPath’,

which appends a timestamp to the filename that stores the results of the experiment. Then we

open a serial port for communication and we send the character ’9’ to Arduino in order to reset

the servo motor position. Additionally, we call the ”ShowRandomNumber()” method and set

a text to ”Which orientation did you feel?”.

Michail Roumeliotis
99

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

private List<int> numbersList = new List<int> { 1, 2, 3, 4, 5, 6, 7, 8 };

private int[] numberCount = new int[8];

private int randomNumber;

private string filePath;

private SerialPort sp = new SerialPort("COM6", 9600);

private void Start()

{

filePath = Application.dataPath + "/selectedNumbers_"

+ System.DateTime.Now.ToString("yyyyMMdd_HHmmss") + ".csv";

sp.Open();

sp.Write("9");

ShowRandomNumber();

questionText.text = "Which orientation did you feel?";

}

Listing 4.12: Initialization of variables, create a file to store experiment’s data and open serial

communication for the second experiment

After the ”Start()” method we create the ”OptionSelected()” method, where we track and

record the user’s selections in response to randomly displayed haptic feedback cues. More

specifically, we increment the count of the ’randomNumber’ in the ’numberCount’ array, which

tracks how many times each haptic feedback has been selected. Then, with the if condition we

check whether the current haptic feedback has been selected three or more times. If the condition

is true, we remove the current haptic feedback from the list. With the ’using (StreamWriter

streamWriter = File.AppendText(filePath))’, we open a file, where we write the button pressed

and the haptic feedback separated by commas. Finally, if all haptic feedback cues have been

presented, we display an appropriate message and call the ”ShowRandomNumber()” method.

public void OptionSelected(int buttonNumber)

{

numberCount[randomNumber - 1]++;

if (numberCount[randomNumber - 1] >= 3)

{

numbersList.Remove(randomNumber);

}

Michail Roumeliotis
100

October 2023

4.6 Back-End Implementation

using (StreamWriter streamWriter = File.AppendText(filePath))

{

streamWriter.WriteLine(buttonNumber + "," + randomNumber);

}

if (numbersList.Count == 0)

{

displayText.text = "All numbers have been selected 3 times.";

return;

}

ShowRandomNumber();

}

Listing 4.13: The ”OptionSelected()” method for the second experiment

The ”ShowRandomNumber()” method is responsible for presenting random haptic feedback

to the user. More specifically, we select a random haptic cue from the list and assign it to the

’randomNumber’ variable. Then, we disable the buttons and texts. Finally, we send the random

haptic feedback cue to the Arduino using serial communication and we call the co-routine

”WaitAndEnableButtons()”.

private void ShowRandomNumber()

{

randomNumber = numbersList[Random.Range(0, numbersList.Count)];

displayText.text = "Number: " + randomNumber;

questionText.text = "Which orientation did you feel?";

// Disable buttons

foreach (Button button in buttons)

{

button.interactable = false;

questionText.gameObject.SetActive(false);

infoText.gameObject.SetActive(true);

}

sp.Write(randomNumber.ToString());

StartCoroutine(WaitAndEnableButtons());

}

Listing 4.14: The ”ShowRandomNumber()” method for the second experiment

Michail Roumeliotis
101

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

The co-routine ”WaitAndEnableButtons()” is used to introduce a delay of 3 seconds(by

using the IEnumerator) during which the buttons are disabled, and the character ’9’ is sent to

the Arduino in order to reset the servos.

IEnumerator WaitAndEnableButtons()

{

yield return new WaitForSeconds(3f);

sp.Write("9");

foreach (Button button in buttons)

{

button.interactable = true;

questionText.gameObject.SetActive(true);

infoText.gameObject.SetActive(false);

}

}

Listing 4.15: The ”WaitAndEnableButton()” method for the second experiment

4.6.6 Experiment 3 Unity Code

The main difference between the ”Start()” method of the second and the third experiment is

the ’numberList’ initialization which has the values ’1, 2, 3, 4’. These values represent the four

different haptic cues presented in this thesis. Additionally, in the third experiment, our reset

command sent to Arduino is ’0’ instead of ’9’. Also, we changed the question text.

private List<int> numbersList = new List<int> { 1, 2, 3, 4 };

private int[] numberCount = new int[8];

private int randomNumber;

private string filePath;

private SerialPort sp = new SerialPort("COM6", 9600);

public Cube cubeobject;

private bool stopflag = false;

private void Start()

{

filePath = Application.dataPath + "/selectedNumbers_"

+ System.DateTime.Now.ToString("yyyyMMdd_HHmmss") + ".csv";

Michail Roumeliotis
102

October 2023

4.6 Back-End Implementation

sp.Open();

sp.Write("0");

foreach (Button button in buttons)

{

button.interactable = false;

questionText.gameObject.SetActive(false);

infoText.gameObject.SetActive(false);

}

questionText.text = "Which type of surface geometry did you feel?";

}

Listing 4.16: Initialization of variables, create a file to store experiment’s data and open serial

communication for the third experiment

The code provided is part of the ”Cube.cs” script and serves two crucial functions. Firstly,

it implements the ”OnTriggerEnter()” method, responsible for detecting collisions between the

user’s finger and the cube, and subsequently setting the variable ’entered’ to ’true’ upon collision

detection. Secondly, it includes the ”OnTriggerExit()” method, which monitors when the user’s

finger exits the cube’s collision zone and promptly updates the ’entered’ variable to ’false’. These

functions are essential for tracking user interactions with the cube, enabling the application

to respond accurately to touch or collision events, and providing a reliable mechanism for

determining when the cube is in contact with the user’s finger or not.

private void OnTriggerEnter(Collider other)

{

if(other.gameObject.name == "Contact Fingerbone6")

{

entered = true;

Debug.Log("Entered");

}

}

private void OnTriggerExit(Collider other)

{

if (other.gameObject.name == "Contact Fingerbone6")

{

entered = false;

Michail Roumeliotis
103

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

Debug.Log("Exited");

}

}

Listing 4.17: The ”OnTriggerEnter()” and OnTriggerExit()” methods in ”Cube.cs” script

The check in the ”Update()” method, which examines the ’cubeobject.entered’ condition,

serves as a conditional trigger mechanism to control the execution of the experiment. When

’cubeobject.entered’ is true, it invokes the ”ShowRandomNumber()” method and sets the

’stopflag’ to false. This mechanism prevents redundant or repeated calls to ”ShowRandom-

Number()”.

private void Update()

{

if (cubeobject.entered && !stopflag)

{

ShowRandomNumber();

stopflag = true; // Set the stopflag to true to prevent repeated calls

}

}

Listing 4.18: The ”Update()” method in the third experiment

Similarly to the second experiment, the ”OptionSelected()” method is responsible for up-

dating the counts of the selected haptic cues, removing numbers that have been selected three

times, and logging user selection to a file. However, in the third experiment, we made some

modifications. More specifically, we reset the ’stopflag’ in order to control the execution of the

”ShowRandomNumber()” method. Also, we include a foreach iteration to control the visibility

of the buttons.

public void OptionSelected(int buttonNumber)

{

numberCount[randomNumber - 1]++;

if (numberCount[randomNumber - 1] >= 3)

{

Michail Roumeliotis
104

October 2023

4.6 Back-End Implementation

numbersList.Remove(randomNumber);

}

using (StreamWriter streamWriter = File.AppendText(filePath))

{

streamWriter.WriteLine(buttonNumber + "," + randomNumber);

}

if (numbersList.Count == 0)

{

displayText.text = "All numbers have been selected 3 times.";

return;

}

// Reset the stopflag to allow ShowRandomNumber to be called again

stopflag = false;

foreach (Button button in buttons)

{

button.interactable = false;

questionText.gameObject.SetActive(false);

infoText.gameObject.SetActive(false);

}

}

Listing 4.19: The ”OptionSelected()” method for the third experiment

The only differences between the ”ShowRandomNumber()” method in the second and third

experiments are the question text, which is set to ’Which type of surface geometry did you

feel?’, and using the same foreach iteration to disable the buttons.

private void ShowRandomNumber()

{

randomNumber = numbersList[Random.Range(0, numbersList.Count)];

displayText.text = "Number: " + randomNumber;

questionText.text = "Which type of surface geometry did you feel?";

// Disable buttons

foreach (Button button in buttons)

{

Michail Roumeliotis
105

October 2023

4. GLOVE DESIGN & IMPLEMENTATION

button.interactable = false;

questionText.gameObject.SetActive(false);

infoText.gameObject.SetActive(false);

}

sp.Write(randomNumber.ToString());

StartCoroutine(WaitAndEnableButtons());

}

Listing 4.20: The ”ShowRandomNumber()” method for the third experiment

The ”WaitAndEnableButtons()” method is the same as in the second experiment with the

only difference being in the command sent to Arduino.

IEnumerator WaitAndEnableButtons()

{

yield return new WaitForSeconds(3f);

sp.Write("0");

foreach (Button button in buttons)

{

button.interactable = true;

questionText.gameObject.SetActive(true);

infoText.gameObject.SetActive(true);

}

}

Listing 4.21: The ”WaitAndEnableButtons()” method for the third experiment

Michail Roumeliotis
106

October 2023

Chapter 5

Evaluations & Results

Figure 5.1: Experimental setup for our implementation

5.1 Introduction

We perform a set of experiments to evaluate the effectiveness of haptic feedback. These experi-

ments involve evaluating the ability to distinguish the softness or stiffness of objects, as well as

assessing the lateral skin stretch on the fingertip and how well users can identify the geometry

of a surface.

5.1.1 Apparatus

We utilized a 27-inch Samsung CJG50 display, boasting a resolution of 2560 x 1440 and a rapid

refresh rate of 144 Hz. To monitor the user’s hand and finger movements, we employed the

Michail Roumeliotis
107

October 2023

5. EVALUATIONS & RESULTS

Leap Motion Controller, which has a system consisting of two cameras and three infrared LEDs

that trace infrared light with a wavelength measuring 850 nanometers. The applications were

executed on a desktop computer featuring an AMD Ryzen 7-3700X CPU, 16 GB of RAM, and

a solitary Radeon RX-5700XT GPU.

5.1.2 Participants

In the research, 18 individuals participated, including 7 females, with an average age of 26.67

years (SD 2.68), all of whom had either normal vision or vision corrected to normal. Participants

were positioned in front of the screen, as depicted in Figure 5.1. Each participant wore the haptic

glove and engaged with virtual objects to become acquainted with the tracking capabilities

of the Leap Motion Controller. Additionally, they wore headphones to block out external

auditory distractions. Subsequently, the experiment sequence was initiated. On average, it

took approximately 27.5 minutes for each participant to complete the three experiments and

the Leap Motion Controller assessment.

5.2 Results and Discussion

5.2.1 Performance Metrics: Softness/Hardness Perception

Figure 5.2: The percentage of correct answers on each combination

Michail Roumeliotis
108

October 2023

5.2 Results and Discussion

Findings from Experiment 1, which focused on assessing the perception of softness and

hardness, demonstrated better accuracy when users were tasked with distinguishing between a

soft and a hard sphere. Success rates for these conditions were 96.29% and 94.4%, respectively

(see 5.2). However, when the softness levels of the two spheres were set to medium soft and

soft, the success rate notably declined to 62.9% and 57.4%. These results suggest that users

encountered challenges in detecting subtle variations in softness.

5.2.2 Performance Metrics: Lateral Skin Stretch Perception

Figure 5.3: Confusion matrices of 2nd experiment with and without vibration on fingertip

As depicted in Figure 5.3, the outcomes from Experiment 2, which focused on perceiving

lateral skin stretch, revealed that participants successfully identified the platform’s orientation,

with success rates exceeding 61.13% depending on the specific orientation. When vibration was

introduced to the fingertip, these success rates increased to above 75.93%. These findings indi-

cate that the addition of vibration to the fingertip enhanced participants’ ability to distinguish

the platform’s orientation. In Figure 5.4, we summarized the results by categorizing them into

the following groups:

• Grouping top left, left, and bottom left orientations as ”left.”

Michail Roumeliotis
109

October 2023

5. EVALUATIONS & RESULTS

• Grouping top right, right, and bottom right orientations as ”right.”

• Keeping top orientation as ”top.”

• Keeping bottom orientation as ”bottom.”

When the eight platform orientations were condensed into four categories, it became evident

that participants successfully distinguished the primary orientation of the platform, achieving

success rates exceeding 87.05% with vibration and 79.65% without vibration. Thus, these

findings indicate that users could reliably identify whether the platform was oriented as top,

left, right, or bottom, but had greater difficulty recognizing the precise corner orientation.

Notably, the inclusion of fingertip vibration also led to improved results.

Figure 5.4: Confusion matrices of the simplified orientations with and without vibration

5.2.3 Performance Metrics: Surface Geometry Perception

As shown in Figure 5.5, the results of the third experiment, which focuses on surface geom-

etry perception, indicated that participants effectively differentiated between various surface

geometries, achieving success rates exceeding 81.48% without vibration and 87.04% with vibra-

tion. These findings imply that participants were capable of distinguishing subtle differences in

surface geometry, which was further enhanced when vibrations were introduced.

Michail Roumeliotis
110

October 2023

5.2 Results and Discussion

Figure 5.5: Confusion matrices of the 3rd experiment with and without vibration on fingertip

Michail Roumeliotis
111

October 2023

5. EVALUATIONS & RESULTS

Michail Roumeliotis
112

October 2023

Chapter 6

Conclusion, Limitations & Future

Work

6.1 Limitations and Intuitions

We introduce an innovative wearable haptic feedback device capable of delivering tactile sen-

sations through vibration, simulating normal indentation, and replicating surface geometries.

Our design employs four servo motors that connect to a mobile platform positioned on the

fingertip, offering eight-directional movement. What sets our haptic glove apart is its focus

on being lightweight and compact, distinguishing it from previous systems. Additionally, our

system provides kinesthetic feedback, enabling users to experience the varying softness levels of

objects and interactions with objects of different hardness levels. To gauge user perception, we

conducted three formal experiments assessing object softness, hardness, directional cues, and

surface geometry recognition.

Our analysis indicates that incorporating vibration in the second and third experiments

enhanced participants’ ability to distinguish directional cues and recognize surface geometries.

However, our first experiment brought to light a limitation of our haptic device. Users encoun-

tered notable challenges when attempting to perceive minor differences in the softness of virtual

objects. This limitation became particularly evident when users were asked to differentiate be-

tween objects that were soft and medium soft. In such cases, the success rate in accurately

identifying differences in softness decreased. This limitation is crucial to address, as real-world

scenarios often involve subtle variations in softness. An important limitation we encountered

was related to the learning curve associated with the Leap Motion Controller. Participants

Michail Roumeliotis
113

October 2023

6. CONCLUSION, LIMITATIONS & FUTURE WORK

who were not familiar with the device required additional time to become accustomed to its

operation and to effectively track their hand movements. This learning curve can pose a sig-

nificant challenge, especially in applications where user-friendliness and rapid deployment are

important.

Furthermore, participants expressed that the haptic glove was comfortable and easy to wear.

Following the successful completion of the experiments, they conveyed that the sensory feedback

was unique, allowing them to genuinely experience the sensation of interacting with both soft

and hard objects. Their astonishment was particularly notable during the geometry perception

experiment, as they were able to perceive various shapes.

6.2 Future Work

In the future, we aim to transition to a wireless design. Eliminating the need for constraining

cables offers users freedom of movement within virtual environments. This advancement not

only enhances user mobility but also reduces potential safety hazards associated with tangled

cords. The wireless design should aim for seamless connectivity and a robust battery life,

ensuring uninterrupted haptic experiences.

Addressing the limitations of the Leap Motion Controller, future iterations of the haptic

glove will integrate cutting-edge tracking technologies. These technologies should provide pre-

cise and robust hand-tracking capabilities, reducing the learning curve for users and simplifying

setup processes. The tracking solution will be self-contained within the device, eliminating the

need for external tracking hardware. We will also explore computer vision systems, and machine

learning algorithms, that can deliver reliable and user-friendly tracking.

While our current implementation utilizes Eccentric Rotating Mass (ERM) motors for vi-

bration feedback, the transition to Linear Resonant Actuators (LRAs) holds immense promise.

LRAs offer a higher degree of control and precision in generating vibrations. By integrating

LRAs, the haptic device can deliver a more diverse range of vibrations, closely simulating real-

world tactile sensations. This enhancement is particularly valuable in scenarios where accurate

feedback is critical, such as medical simulations.

Recognizing the diverse range of hand and finger sizes among users, future haptic glove

designs will prioritize customization and inclusivity. Offering multiple sizing options ensures

that the device fits securely and comfortably on various hand shapes. This approach not only

enhances user comfort but also optimizes the effectiveness of the haptic feedback.

Michail Roumeliotis
114

October 2023

6.2 Future Work

Achieving the highest level of perceptual accuracy in simulating object softness is important.

Future iterations of the haptic device will incorporate separate servo motors for controlling

softness and hardness independently. This separation ensures that the device can accurately

convey even the subtlest differences in softness levels.

Michail Roumeliotis
115

October 2023

6. CONCLUSION, LIMITATIONS & FUTURE WORK

Michail Roumeliotis
116

October 2023

Bibliography

[1] J. Kreimeier, S. Hammer, D. Friedmann, P. Karg, C. Bühner, L. Bankel, and T. Götzel-

mann. Evaluation of different types of haptic feedback influencing the task-based presence

and performance in virtual reality. In Proceedings of the 12th ACM International Conference

on PErvasive Technologies Related to Assistive Environments (PETRA ’19), pages 289–298.

ACM, 2019. 1

[2] E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic Revolver: Touch, Shear,

Texture, and Shape Rendering on a Reconfigurable Virtual Reality Controller. In Proceedings

of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18), pages 1–12.

ACM, 2018. 1

[3] Q. -Z. Ang, B. Horan and S. Nahavandi. Multipoint Haptic Mediator Interface for Robotic

Teleoperation. In IEEE Systems Journal, vol. 9, no. 1, pages 86-97. IEEE, 2015. 1

[4] R. M. Pierce, E. A. Fedalei and K. J. Kuchenbecker. A wearable device for controlling a

robot gripper with fingertip contact, pressure, vibrotactile, and grip force feedback. 2014

IEEE Haptics Symposium (HAPTICS), pages 19-25. IEEE, 2014. 1

[5] C. Pacchierotti, A. Tirmizi, G. Bianchini and D. Prattichizzo. Enhancing the Performance

of Passive Teleoperation Systems via Cutaneous Feedback. In IEEE Transactions on Haptics,

vol. 8, no. 4, pages 397-409. IEEE, 2015. 1

[6] D. D’Auria, F. Persia and B. Siciliano. A Low-Cost Haptic System for Wrist Rehabilitation.

2015 IEEE International Conference on Information Reuse and Integration, pages 491-495.

IEEE, 2015. 1

Michail Roumeliotis
117

October 2023

BIBLIOGRAPHY

[7] A. Gupta and M. K. O’Malley. Design of a haptic arm exoskeleton for training and rehabil-

itation. In IEEE/ASME Transactions on Mechatronics, vol. 11, no. 3, pages 280-289. IEEE,

2006. 1

[8] Optimo Arm, https://roboligent.com/ 1

[9] HapticVR, https://fundamentalsurgery.com/ 2

[10] M. Solazzi, A. Frisoli and M. Bergamasco. Design of a novel finger haptic interface for

contact and orientation display. 2010 IEEE Haptics Symposium, pages 129-132. IEEE, 2010.

2

[11] S. B. Schorr and A. M. Okamura. Fingertip Tactile Devices for Virtual Object Manipulation

and Exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems (CHI ’17), pages 3115–3119. ACM. 2017. 2

[12] J. Iqbal, N. G. Tsagarakis, and D. G. Caldwell. Four-fingered lightweight exoskeleton

robotic device accommodating different hand sizes. Electron. Lett., 51: pages 888-890. 2

[13] K. Tadano, M. Akai, K. Kadota and K. Kawashima. Development of grip amplified glove

using bi-articular mechanism with pneumatic artificial rubber muscle. 2010 IEEE Interna-

tional Conference on Robotics and Automation, pages 2363-2368. IEEE, 2010. 2

[14] F. Chinello, C. Pacchierotti, M. Malvezzi and D. Prattichizzo. A Three Revolute-Revolute-

Spherical Wearable Fingertip Cutaneous Device for Stiffness Rendering. In IEEE Transactions

on Haptics, vol. 11, no. 1, pages 39-50. IEEE, 2018. 2

[15] S. Nisar, M. O. Martinez, T. Endo, F. Matsuno and A. M. Okamura. Effects of Different

Hand-Grounding Locations on Haptic Performance With a Wearable Kinesthetic Haptic De-

vice. In IEEE Robotics and Automation Letters, vol. 4, no. 2, pages 351-358. IEEE, 2019.

2

[16] X. Gu, Y. Zhang, W. Sun, Y. Bian, D. Zhou, and P. O. Kristensson. Dexmo: An Inex-

pensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in

VR. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems

(CHI ’16), pages 1991-1995. ACM, 2016. 7

[17] HaptX Gloves DK2, https://haptx.com/ 8

Michail Roumeliotis
118

October 2023

https://roboligent.com/
https://fundamentalsurgery.com/
https://haptx.com/

BIBLIOGRAPHY

[18] M. Hosseini, A. Sengül, Y. Pane, J. De Schutter and H. Bruyninck. ExoTen-Glove: A

Force-Feedback Haptic Glove Based on Twisted String Actuation System. In 27th IEEE In-

ternational Symposium on Robot and Human Interactive Communication (RO-MAN), pages

320-327. IEEE, 2018. 8, 9

[19] R. Hinchet, V. Vechev, H. Shea, and O. Hilliges. DextrES: Wearable Haptic Feedback

for Grasping in VR via a Thin Form-Factor Electrostatic Brake. In Proceedings of the 31st

Annual ACM Symposium on User Interface Software and Technology (UIST ’18), pages

901–912. ACM, 2018. 9

[20] M. Roumeliotis and K. Mania. Development of a Wearable Embedded System providing

Tactile and Kinesthetic Haptics Feedback for 3D Interactive Applications. In SIGGRAPH

Asia 2021 Posters (SA ’21 Posters), Article 8, pages 1–2. ACM, 2021. 10

[21] M. Efraimidis and K. Mania. Wireless Embedded System on a Glove for Hand Motion

Capture and Tactile Feedback in 3D Environments. In SIGGRAPH Asia 2020 Posters (SA

’20), Article 8, pages 1–2. ACM, 2020. 10, 11

[22] F. Chinello, M. Malvezzi, D. Prattichizzo and C. Pacchierotti. A Modular Wearable Fin-

ger Interface for Cutaneous and Kinesthetic Interaction: Control and Evaluation. In IEEE

Transactions on Industrial Electronics, vol. 67, no. 1, pages 706-716. IEEE, 2020. 11, 12

[23] D. Leonardis, M. Solazzi, I. Bortone and A. Frisoli. A 3-RSR Haptic Wearable Device for

Rendering Fingertip Contact Forces. In IEEE Transactions on Haptics, vol. 10, no. 3, pages

305-316. IEEE, 2017. 12

[24] F. H. Giraud, S. Joshi and J. Paik. Haptigami: A Fingertip Haptic Interface With Vibro-

tactile and 3-DoF Cutaneous Force Feedback. In IEEE Transactions on Haptics, vol. 15, no.

1, pages 131-141. IEEE, 2022. 13

[25] S. V. Salazar, C. Pacchierotti, X. de Tinguy, A. Maciel and M. Marchal. Altering the Stiff-

ness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable

Haptics. In IEEE Transactions on Haptics, vol. 13, no. 1, pages 167-174. IEEE, 2020. 13, 14

[26] D. Prattichizzo, F. Chinello, C. Pacchierotti and M. Malvezzi. Towards Wearability in

Fingertip Haptics: A 3-DoF Wearable Device for Cutaneous Force Feedback. In IEEE Trans-

actions on Haptics, vol. 6, no. 4, pages 506-516. IEEE, 2013. 14

Michail Roumeliotis
119

October 2023

BIBLIOGRAPHY

[27] M. Gabardi, M. Solazzi, D. Leonardis and A. Frisoli. A new wearable fingertip haptic

interface for the rendering of virtual shapes and surface features. In 2016 IEEE Haptics

Symposium (HAPTICS), pages 140-146. IEEE, 2016. 15

[28] A. Girard, M. Marchal, F. Gosselin, A. Chabrier, F. Louveau, A. Lécuyer. HapTip: Dis-

playing Haptic Shear Forces at the Fingertips for Multi-Finger Interaction in Virtual Envi-

ronments. Frontiers in ICT, vol. 3, 2016. 15, 16

[29] H. Benko, C. Holz, M. Sinclair, and E. Ofek. NormalTouch and TextureTouch: High-

fidelity 3D Haptic Shape Rendering on Handheld Virtual Reality Controllers. In Proceedings

of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16), pages

717–728. ACM, 2016. 16

[30] I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch and S. Follmer. Wolverine: A wear-

able haptic interface for grasping in virtual reality. 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 986-993. IEEE, 2016. 17

[31] I. Choi, H. Culbertson, M. R. Miller, A. Olwal, and S. Follmer. Grabity: A Wearable

Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In Proceedings of

the 30th Annual ACM Symposium on User Interface Software and Technology (UIST ’17),

pages 119–130. ACM, 2017. 17, 18

[32] I. Choi, Eyal Ofek, H. Benko, M. Sinclair, and C. Holz. CLAW: AMultifunctional Handheld

Haptic Controller for Grasping, Touching, and Triggering in Virtual Reality. In Proceedings

of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18), Paper 654,

pages 1–13. ACM, 2018. 18

[33] K. G. Sreeni, K. Priyadarshini, A. K. Praseedha, S. Chaudhuri. Haptic Rendering of Cul-

tural Heritage Objects at Different Scales. In: Isokoski, P., Springare, J. (eds) Haptics: Per-

ception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Com-

puter Science, vol 7282. Springer, 2012. 19

[34] S. Krumpen, R. Klein, and M. Weinmann. Towards Tangible Cultural Heritage Expe-

riences—Enriching VR-based Object Inspection with Haptic Feedback. J. Comput. Cult.

Herit. 15, 1, Article 19. 2021. 20

Michail Roumeliotis
120

October 2023

BIBLIOGRAPHY

[35] J. Ma, L. Sindorf, I. Liao, and J. Frazier. Using a Tangible Versus a Multi-touch Graphical

User Interface to Support Data Exploration at a Museum Exhibit. In Proceedings of the

Ninth International Conference on Tangible, Embedded, and Embodied Interaction (TEI

’15), pages 33–40. ACM, 2015. 20

[36] X. Ji, X. Liu, V. Cacucciolo, Y. Civet, A. El, S. Cantin, Y. Perriard, H. Shea. Untethered

Feel-Through Haptics Using 18-µm Thick Dielectric Elastomer Actuators. In Adv. Funct.

Mater. 2021. 21

[37] J. Lu, Z. Liu, J. Brooks, and P. Lopes. Chemical Haptics: Rendering Haptic Sensations via

Topical Stimulants. In The 34th Annual ACM Symposium on User Interface Software and

Technology (UIST ’21), pages 239–257. ACM, 2021. 21, 22

Michail Roumeliotis
121

October 2023

	1 Introduction
	1.1 Brief Description
	1.2 Purpose of the Thesis
	1.3 Structure of the Thesis

	2 Research Overview
	2.1 Introduction
	2.2 Dorsal-Based Haptic Devices
	2.3 Finger-Based Haptic Devices
	2.4 Handheld Controllers
	2.5 Haptic Devices used for Cultural Heritage
	2.6 Other Haptic Feedback Approaches

	3 Technological Background and Definitions
	3.1 Haptic Feedback
	3.1.1 Types of Haptic Feedback
	3.1.2 Tactile Feedback
	3.1.3 Kinesthetic Feedback

	3.2 Tracking Technologies
	3.2.1 Ultrasonic Tracking
	3.2.2 Magnetic Tracking
	3.2.3 Inertial Measurement Unit
	3.2.4 Oculus Quest
	3.2.5 Leap Motion Controller

	3.3 CAD Software
	3.3.1 Graphics Area
	3.3.2 CommandManager
	3.3.3 FeatureManager Window
	3.3.4 PropertyManager Window
	3.3.5 ConfigurationManager Window

	3.4 Arduino IDE
	3.5 Unity
	3.5.1 Basic Structure of Unity
	3.5.2 Unity Architecture & Project Structure

	4 Glove Design & Implementation
	4.1 Hardware Assembly
	4.2 Design of the 3D parts
	4.2.1 Part on the top side of the fingertips
	4.2.2 Part on the bottom side of the fingertips
	4.2.3 Parts responsible for driving cables
	4.2.4 Servo braking mechanism
	4.2.5 Softness Level Controller & Hard Object Controller

	4.3 Components used for the Haptic Glove
	4.3.1 Arduino Micro
	4.3.2 Vibration Motors
	4.3.3 WS-MG90S Micro Servos
	4.3.4 PCA9685-Servo Driver
	4.3.5 Motor Driver Circuit

	4.4 Mechanical Design
	4.4.1 Tactile Feedback
	4.4.2 Kinesthetic Feedback

	4.5 Front-End Implementation
	4.5.1 Experiment 1: Softness/Hardness Perception
	4.5.2 Experiment 2: Lateral Skin Stretch Perception
	4.5.3 Experiment 3: Surface Geometry Perception

	4.6 Back-End Implementation
	4.6.1 Experiment 1 Arduino Code
	4.6.2 Experiment 2 Arduino Code
	4.6.3 Experiment 3 Arduino Code
	4.6.4 Experiment 1 Unity Code
	4.6.5 Experiment 2 Unity Code
	4.6.6 Experiment 3 Unity Code

	5 Evaluations & Results
	5.1 Introduction
	5.1.1 Apparatus
	5.1.2 Participants

	5.2 Results and Discussion
	5.2.1 Performance Metrics: Softness/Hardness Perception
	5.2.2 Performance Metrics: Lateral Skin Stretch Perception
	5.2.3 Performance Metrics: Surface Geometry Perception

	6 Conclusion, Limitations & Future Work
	6.1 Limitations and Intuitions
	6.2 Future Work

