
Department of Electrical and Computer Engineering

A System for Traffic Data Mining and Traffic

Monitoring over City Road Networks

Author: Konstantinos Stamatopoulos

 Committee: Asst. Prof. Nikos Giatrakos (Supervisor)

Prof. Aikaterini Mania

 Prof. Dionyssios Hristopoulos

November 2023

1

Table of Contents
Acknowledgments...4
Abstract..5
Chapter 1 - Introduction..6

1.1 Importance of road traffic monitoring..6
1.2 Technical difficulties in developing a viable real-time traffic mining framework...............7
1.3 Overview of our traffic relationships miner...8
1.4 Thesis outline...9

Chapter 2 - Road network and traffic relationships...10
2.1 Definitions..10

2.1.1 Edges..10
2.1.2 Traffic relationships..11

2.2 Obtaining OSM data..13
2.3 Importing OSM data into PostgreSQL...13
2.4 Visualizing data on QGIS...15
2.5 Edge construction...16

2.5.1 Finding the edge points..17
2.5.2 Creating edges..18
2.5.3 Creating linestring edges..18

2.6 Conclusions & Future work...19
Chapter 3 - Traffic data collection...20

3.1 Data collection tools...20
3.1.1 Selenium...21
3.1.2 Beautiful Soup..21

3.2 Time series data collection...21
3.2.1 WebDriver setup and URL construction...22
3.2.2 Web page inspection...23
3.2.3 Threading..25

3.3 Data management...25
3.4 The time series database...26
3.5 Conclusions & Future work...29

Chapter 4 - Traffic Mining...30
4.1 Clustering algorithms and tools...30

4.1.1 DBSCAN..30
4.1.2 OPTICS..34

4.2 Divisive hierarchical clustering..37
4.3 The 3-step clustering model...39

4.3.1 Step 1..39
4.3.2 Step 2..41
4.3.3 Step 3..43

4.4 Separation of traffic relationships..45
4.5 Experimental results...46
4.6 Display of clustered edges...49

4.6.1 OSMnx...49
4.6.2 Folium...50
4.6.3 The interactive map..51

4.7 Conclusions & Future work...52
Chapter 5 - The application...54

5.1 CustomTkinter..54

2

5.2 Design & Functionality..56
5.3 Usage..59
5.4 Conclusions & Future Work...61

Chapter 6 - Epilogue..62

Table of Figures
Figure 1. Directed Network Graph..11
Figure 2. Propagate Definition..11
Figure 3. Split Definition...12
Figure 4. Merge Definition..12
Figure 5. Osm Database...14
Figure 6. QGIS interface...16
Figure 7. Edge Points...17
Figure 8. Page Inspection..23
Figure 9. Time series' Plot(1)...28
Figure 10. Time series' Plot(2)...28
Figure 11. Core, Border and Noise Points...32
Figure 12. Density Reachability..33
Figure 13. Reachability Distances and Reachability Plot..36
Figure 14. Divisive Hierarchical Clustering Diagram...38
Figure 15. DBSCAN Haversine Distance Results...43
Figure 16. Markers' Position..47
Figure 17. Algorithms' Accuracy Graph (1)..48
Figure 18. Algorithms' Accuracy Graph (2)..48
Figure 19. The Interactive Map...52
Figure 20. Application's Interface..59
Figure 21. Application's Results..60
Figure 22. Traffic Merge..61
Figure 23. Traffic Split..61
Figure 24. Traffic Propagation...61

Table of Listings
Text 1. Query for Nodes..14
Text 2. Query for Linestrings...15
Text 3. Selenium..22
Text 4. Beautiful Soup...24
Text 5. Step 1 Implementation...40
Text 6. Step 2 Implementation...42
Text 7. Step 3 Implementation...44
Text 8. Separation of Traffic Relationships...45
Text 9. OSMnx...50
Text 10. Folium..51
Text 11. CustomTkinter Interface..56
Text 12. Button Command (part1)...57
Text 13. Button Command (part 2)..58

3

Acknowledgments

As the time to present my thesis approaches, I would like to express my

sincere gratitude to all the individuals who contributed their assistance

throughout this challenging but fulfilling journey of mine.

Firstly, I would like to acknowledge and give my warmest thanks to my

supervisor, Asst. Professor Nikos Giatrakos, for giving me the opportunity to

work on this subject. His guidance, support and expertise carried me through

all the stages of completing this thesis and provided me with a valuable

mindset on problem solving. I would also like to thank my committee

members, Professor Aikaterini Mania and Professor Dionysios Hristopoulos, for

their significant contribution to my development as an electrical and computer

engineer.

Last but not least, I want to give a special thanks to my family and friends, for

their continuous support, understanding and encouragement during all these

years. Without them, none of what I've achieved would be possible, and I

wouldn’t be the person I am today.

4

Abstract

In recent years, the issue of traffic congestion has been steadily increasing,

making driving an arduous and unfavorable experience for many of us. Despite

the expansion of metropolitan areas, an effective solution to the continuously

growing number of vehicles in their road networks has yet to be found. In

response to this challenge, we have embarked on the design of an application

that simulates traffic flow in the city of Chania, serving as a support system for

traffic decision-making.

Our approach involves collecting real-time traffic data at intervals of a few

minutes for each edge/road segment in the city. Subsequently, we employ a

divisive hierarchical clustering model to cluster this data, extracting

relationships among them, such as traffic propagation, split, and merge. This

process enables us to illustrate the behavior of the road network’s traffic flow

throughout the day, providing a valuable tool for developing improved

transportation systems and techniques to alleviate road overloading.

5

Chapter 1

Introduction

1.1 Importance of road traffic monitoring

Nowadays, most cities around the world suffer from traffic congestion, and

everything indicates that it will continue to worsen, negatively affecting the

quality of urban life. Increasing travel times, fuel consumption, and

environmental pollution make traffic congestion too 'expensive' from various

perspectives. However, authorities have not yet found a solid solution for it.

Road works, accidents, poor transportation infrastructure, and traffic signal

timing are only some of the reasons that contribute to traffic overload on

certain routes. For this reason, we have decided to develop a traffic

management decision support system that incorporates real-time data mining

techniques to extract traffic patterns.

By collecting and analyzing data on traffic conditions, we can predict the traffic

flow on the road network of the city and therefore develop strategies to reduce

congestion. These strategies may include adjusting the timing of traffic lights,

stationing police officers at key spots for better real-time traffic regulation, or

even planning for future transportation infrastructure projects. Hence, road

traffic monitoring is an incredibly useful and important tool for improving traffic

flow in modern, fast-growing societies.

6

1.2 Technical difficulties in developing a

viable real-time traffic mining framework

At first, we considered using the Google Maps APIs[1] to retrieve information

about the speed and congestion of roads in a given area through the Google

Maps Roads API. Undoubtedly, it is an easy-to-use API that provides more than

we initially asked for. However, the drawback lies in the overwhelming costs

associated with it, limiting our ability to scale and fine-tune the framework we

intended to develop. For example, the Google Maps API imposes restrictions

and bases its pricing policy on the number of queries it serves, prompting us to

search for alternatives.

Subsequently, we explored the option of Mapbox[3], where traffic data is

natively matched to OpenStreetMap[4], the source of our information for

modeling the city road network. The appeal was accessing data directly,

outside of Mapbox SDKs and APIs[2]. However, the downside was that the price

for this service was even higher than Google’s.

Eventually, we discovered that obtaining real-time traffic data under a pricing

policy would not make our intended solution neither economically feasible nor

scalable from smaller cities to metropolitan areas. That’s why we decided to

create our own database by 'scraping' traffic data from Google Maps. The idea

is to collect information about traffic features (average speed, travel time, etc.)

per road network edge and treat these data as time series. This approach

allows us to analyze and extract relationships between the road segments of

the network.

7

1.3 Overview of our traffic relationships

miner

The main objective of this project is to discern traffic relationships among road

segments within the network, encompassing phenomena like traffic

propagation, split, and merge. This pursuit is influenced by the framework

introduced in [23]. The traffic of a particular edge can be propagated into one

of its outgoing edges or be split into multiple ones. Conversely, the traffic of an

edge may result from merged traffic from its incoming edges. Detecting these

relationships requires defining similarities between the time series of different

road segments/edges.

To accomplish this, we adopted an approach initially proposed in [5],

leveraging a divisive hierarchical clustering algorithm with three distinct steps.

After each step, clusters are further split into sub-clusters.

In Step 1, we utilize shape-based clustering distance, which detects edges

whose traffic increases and decreases at the same rate based on the Euclidean

distance of their corresponding normalized time series. In Step 2, we employ

structure-based clustering distance to identify neighboring edges. Finally, in

Step 3, we apply value-based distance clustering to identify time series with

similar values, based on their Euclidean distance.

To ensure our implementation is accessible to the general public, we've

consolidated its functionality into a single, user-friendly application. We crafted

a modern Graphical User Interface (GUI) that allows users to select the month,

day, time span, time interval for the time series data, and the traffic

relationships they are interested in. Once these selections are made, the

program retrieves the desired time series data, clusters them, and displays the

results on an interactive map using OpenStreetMap tiles.

Each choice made by the end-user holds significant importance, as the output

varies based on different parameter combinations. For instance, traffic

relationships on a Saturday will differ from those on a Monday in the same

8

month, and a Friday in August will exhibit distinctions from a Friday in October,

especially when the time span refers to rush hours versus the rest of the day.

In summary, we aimed to design a minimal and user-friendly application where

every option serves a purpose.

1.4 Thesis outline

This section outlines the following chapters’ description of this thesis:

• In Chapter 2, we elaborate on the design of the road network and

topology of the city under study. In our case this is the city center of

Chania for which we construct the database of edges on which we later

perform traffic mining.

• In Chapter 3, we develop an algorithm which is used for scraping traffic

information from Google Maps’ web application and constructs our time

series database.

• In Chapter 4, we develop our traffic mining framework that clusters road

edges based on their time series through a hybrid 3-step clustering

model. We further showcase the effectiveness of our approach against

other base line alternatives.

• In Chapter 5, we explain the design of the GUI of our traffic mining

application which produces the final result according to the user’s

preferences.

• Chapter 6 includes conclusive remarks and reviews the accomplishments

of this thesis.

9

Chapter 2

Road network and traffic relationships

In this chapter, we will elucidate the process of obtaining and manipulating the

necessary road data from OpenStreetMap. Subsequently, we loaded this

data into a PostgreSQL[6] database, enabling us to model the road network

of Chania city as a directed graph. Using the information extracted from this

database, we constructed the edges of the network, which will serve as the

foundation for our examination of traffic relationships in the subsequent

sections.

2.1 Definitions

Before delving into the practical aspects of this thesis, we must first establish

the definition of an edge in the road network. Additionally, we will elucidate the

underlying logic behind traffic relationships, specifically propagation, split, and

merge.

2.1.1 Edges

In our model, we define an edge as the road segment that connects two nodes,

which we term as 'edge points'. These edge points are nodes in the road

network that connect two or more road segments. To simplify, consider an

edge as the portion of the road from one turn to another. When an object

enters the edge, it travels the entire length of the edge until it reaches a point

10

where it must decide whether to turn or continue straight. This concept is

illustrated in the directed network graph example below.

2.1.2 Traffic relationships

In order to be able to analyze and examine the traffic flow, we established

three different traffic relationships between the edges of the network[5]:

 traffic propagation

11

Figure 1. Directed Network Graph[5]

Here the edge points/nodes are depicted as regions (R1, R2, ...)
and the blue arrows form the directed edges of the hypothetical

road network.

Figure 2. Propagate Definition[5]

edge e12 propagates its traffic into edge e23

 traffic split

 traffic merge

12

Figure 4. Merge Definition[5]

edge e23 and edge e73 merge their traffic into edge e34

Figure 3. Split Definition[5]

edge e12 splits its traffic into edge e23 and edge e26

2.2 Obtaining OSM data

The initial step in our project involved designing the road network for the city

of Chania. Following research, we identified OpenStreetMap as a valuable

resource, as it is an open geographic database offering updated topological

data for nearly every city or region worldwide. To obtain the spatial road

network data, users can navigate to [4], search for their desired region using

the search bar, and then click the export button.

For our specific case, where we required a smaller area as a 'test map' for

better comprehension, we manually selected the center of Chania city and

exported the data in OpenStreetMap (.osm) files using the same process.

2.3 Importing OSM data into PostgreSQL

Once we obtained the raw OpenStreetMap (OSM) data, our next step was to

convert them into a usable and readable format. To achieve this, we

downloaded the osm2pgsql tool[7], which facilitated the import of the .osm

file into a PostgreSQL database through the command line. Following this

process, we utilized an interface, specifically pgAdmin[8], to store and

manipulate the pertinent data extracted from the database through queries.

13

The essential spatial data for modeling our road network is found in the

planet_osm_line table. This table encompasses comprehensive details about

the network, and our specific focus was on three key columns: osm_id,

highway, and way. The osm_id column contains the unique identifier for each

node on the map, the highway column specifies the type of the road (e.g.,

living_street, footway, residential), and the way column provides geometry

information about the nodes, including their coordinates and how they are

interconnected.

By utilizing the appropriate queries, we successfully extracted either all the

nodes of the map as points or their linked format, known as linestrings, where

nodes of the same id are connected in a line. However, in both cases, we had

to establish certain criteria based on the 'highway' column to exclude routes

that are not accessible by cars. The queries we employed for this purpose are

as follows:

• Points/nodes

14

Text 1. Query for Nodes

SELECT osm_id, st_asText(((ST_Dumppoints (st_transform(way, 4326))).geom))
FROM planet_osm_line
WHERE highway!='NULL' AND highway!='unclassified' AND highway!='footway' AND
highway!='steps' AND highway!='service' AND highway!='path' AND highway!
='track' AND highway!='living_street' AND highway!='pedestrian';

Figure 5. Osm Database

• Linestrings

To obtain the longitude and latitude format, we needed to convert the current

Reference System to the World Geodetic System, identified by SRID 4326. The

PostGIS[9] function st_transform(way, 4326) returns a geometric variant of the

'way' column, and the st_asText() function provides the Well-Known Text (WKT)

representation of that geometry without SRID metadata. This allowed us to

obtain the data in linestring format. To extract the points along every linestring

and their individual coordinates, we also used the ST_Dumppoints() function.

2.4 Visualizing data on QGIS

Considering the enormous size of data in these databases, we sought a way to

visualize them for better understanding before making our selection. Initially,

we created a PostGIS extension on our PostgreSQL database. Subsequently, we

downloaded a Geographic Information System application, specifically the

QGIS[10] application. QGIS allowed us to visualize our data on an

OpenStreetMap tile and verify querying results, such as the selection of data

types to be excluded in the 'highway' column, using its Query Builder module.

The interface of the application is depicted in the following image, with the

green lines on the map representing the data from the selected table in the

PostgreSQL database.

15

Text 2. Query for Linestrings

SELECT osm_id, st_asText((st_transform(way, 4326))) as linestrings
FROM planet_osm_line
WHERE highway!='NULL' AND highway!='unclassified' AND highway!='footway' AND
highway!='steps' AND highway!='service' AND highway!='path' AND highway!
='track' AND highway!='living_street' AND highway!='pedestrian';

2.5 Edge construction

At this stage, we had two CSV files. The first contained all the points/nodes on

the map with their IDs, and the second contained linestrings, which are the

linked form of those points/nodes, along with their unique IDs. Our primary

task was to identify and store the points that serve as edge points, namely

those where an edge starts or ends. This step was crucial for the subsequent

process of edge identification.

16

Figure 6. QGIS interface

2.5.1 Finding the edge points

To read and handle the data in those CSV files, we utilized the pandas

library[11] in Python, an incredibly powerful and user-friendly open-source tool

for data analysis and manipulation. With the help of some built-in functions,

particularly those for identifying duplicates, we managed to extract the edge

points from the first file. Simply put, if a point occurs more than once with

different IDs in that file, it indicates an edge point, as mentioned in Section

2.1.1, signifying a connection between two or more road segments/edges. To

validate our approach, we stored these edge points in another file and

visualized them as markers using the gmplot library[12] in Python.

17

Figure 7. Edge Points

2.5.2 Creating edges

Having identified the edge points of the city’s road network, our next step was

to create its edges. One way to achieve this is by taking each edge point from

the new file created in Section 2.5.1 and sequentially searching for it in the list

of nodes obtained from the database. Subsequently, if we find such a node, we

check the ID of the next node in the file. If the IDs are the same, it indicates

that we have an edge starting from the current (edge) point and ending at the

next point in the list. Otherwise, we have an edge starting from the previous

point and ending at the current (edge) point. While this method may not be

optimal in terms of time and resources, it is practical. We acknowledge the

potential for improvement in this aspect of our edge extraction technique as

future work.

To validate the created edges, we executed the script for data mining, which

we will analyze later. Unexpectedly, despite the correctness of our logic, we

encountered an issue due to the short length of edges in a city like Chania.

This limitation prevented us from obtaining accurate measurements for

average speed and travel time in our time series database. Google Maps'

minimum travel time is 1 minute, and it does not provide information at the

granularity of seconds, which was essential for our needs. Consequently, we

considered assigning more than one actual edge of the network to a single

edge ID. This approach aimed to enhance differentiation between edges for

improved accuracy in our data representation.

2.5.3 Creating linestring edges

Due to the mentioned limitation at the end of Section 2.5.2, we decided to

incorporate the second file from the osm database, which contains linestrings

of the road network. A linestring is essentially a sequence of nodes, positioned

one after the other, that when connected, forms a line (a sequence of edges)

on the map. Following a similar logic, we extracted each edge point from the

18

file created in the initial step and sequentially searched for it in the list of

linestrings. If we found an edge point in any set of points (linestring), we

considered the entire linestring as an edge. This approach allowed us to

construct our database of hyper-edges, which will be utilized for traffic data

mining.

2.6 Conclusions & Future work

One of the most challenging aspects of this thesis was finding free and

updated spatial data to model the city's road network. Initially, we considered

using Google Maps and its APIs, given its reputation as a constantly evolving

service and the distinction of being a premier mapping and routing provider.

However, in today’s digital landscape, data is often as valuable as currency,

playing a pivotal role in business success. While Google occasionally provides

data for application development, developing a fully-fledged application for

real-world business typically involves fees for its services. Nevertheless, our

goal was to create an application that would be free for both the developer and

the user. To achieve this, we explored and developed our own alternative data

harvesting solution.

Fortunately, after conducting research, we discovered OpenStreetMap, which

supplied us with all the geographical data necessary for the project.

Additionally, we were pleasantly surprised to find that all coordinate

information is seamlessly compatible with Google Maps. This alignment will

prove particularly beneficial in the upcoming data mining discussions.

As a part of future work, we recommend considering the use of original edges

if, at some point, Google Maps starts providing travel time for short-length

road segments with granularity in seconds. However, developers should be

aware that this approach will require corresponding resources for the

automated process of data scraping, as the number of real edges will be

significantly larger than the hypothetical ones used in this implementation.

19

Chapter 3

Traffic data collection

In this chapter, we will present the tools we used to scrape the web application

of Google Maps in order to create our own database of time series for the

edges of the road network. Additionally, we will explain the techniques

employed to obtain these measurements on a regular basis.

3.1 Data collection tools

It is evident that web scraping becomes essential in data science when there is

no alternative source to acquire the necessary data for analysis. In our

scenario, we have already generated a file containing the edges. Now, our

objective is to gather real-time traffic data for each of these edges at regular

intervals, enabling the creation of a time series database for subsequent

clustering. Achieving this requires an automated process wherein we retrieve

information such as distance, travel time, and delay from the source to the

destination point/node of each edge.

This specific data, among others, can be obtained from services like Google

Maps, which we consider to be the most up-to-date and accurate for the

information we seek. After researching various scraping methods, we opted for

a combination of Selenium[13] and Beautiful Soup[14] in Python to extract

and process this data efficiently.

20

3.1.1 Selenium

For our automated data mining routine, we selected Selenium due to its status

as a free, open-source framework widely employed for automated scraping

across various platforms and browsers. It goes beyond being merely a tool,

serving as a suite of software that facilitates the development of automation

scripts for web applications by offering powerful built-in functions. In essence,

all that is required is to download the updated driver for the preferred browser

and then set the path for Selenium's ‘WebDriver’ tool. This enables direct

communication with the browser, allowing us to focus on extracting the

desired data from the rendered HTML document generated by each web page.

3.1.2 Beautiful Soup

Now that we have addressed the automation process, our focus is on reading

and extracting information about travel time, distance, and delay for each

iteration in the file of edges. Whenever a Google Maps page loads, it generates

an HTML document that encompasses the data essential for scraping and

creating our time series database. To achieve this, we opted for Beautiful Soup,

a Python library specifically designed for parsing HTML information from web

pages. It allows us to isolate the classes and titles of interest through specific

commands, facilitating the extraction of the required data.

3.2 Time series data collection

Several key factors required careful consideration before proceeding with the

modeling of our data mining algorithm. These factors include the correct URL

format, the identification and selection of relevant parts within the HTML of the

web page, and the establishment of a mechanism to sustain this process

21

continuously for the desired duration. In the following sections, we will delve

into the challenges we encountered in addressing these aspects.

3.2.1 WebDriver setup and URL construction

For our automated process with Selenium, we opted for Google Chrome as

the browser of choice. To set up Selenium's WebDriver tool, we downloaded the

driver for the current version of the browser, allowing seamless

communication. Additionally, to minimize reCaptcha verifications, we

employed a fake user agent. Constructing the URL was the next step, using the

pair of coordinates for each edge to retrieve the necessary information in drive

mode. It's worth noting that Selenium's capabilities enabled us to effortlessly

handle the "cookie consent" page that appears at the beginning of each

session by automatically locating and clicking the appropriate button. The

following code snippet illustrates the implementation of these steps:

22

Text 3. Selenium

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from fake_useragent import UserAgent

service =
Service('/home/user/Downloads/chromedriver-linux64/chromedriver')
user_agent = UserAgent().random
options = Options().add_argument(f'--user-agent={user_agent}')
driver = webdriver.Chrome(options=options, service=service)

url = f'https://www.google.com/maps/dir/{src_lng},{src_lat}/{dest_lng},
{dest_lat}/data=!4m2!4m1!3e0?hl=en'

driver.get(url)

if first_time == True:
time.sleep(5)
button = driver.find_element(By.TAG_NAME, 'button')
button.click()
first_time = False

3.2.2 Web page inspection

Considering that we set everything up about the Selenium suite, we had to find

which classes, titles and elements to isolate using the HTML parser Beautiful

Soup. This can be achieved by inspecting the part of the page that has the

information we are looking for. For example, if we search in Google Maps the

directions to go from one place to another and then navigate to the area of the

page that has the information you need, then right click and click “Inspect”, we

get something like the following image:

Fortunately, the structure of the HTML document remains consistent across

every iteration, allowing us to scrape the required data using Beautiful Soup's

built-in functions. Subsequently, we can store this data to construct our time

series database. The following code snippet represents our implementation.

23

Figure 8. Page Inspection

As the web page is fully loaded by our driver, we parse the page’s source file

using lxml’s HTML parser. Firstly, we search for the class named “XdKEzd” and

then for the next div inside that class, which has our delay and travel time

information. The class title of that next div contains the delay data, if there is

such, and the class’s text is our travel time data. Then we search inside the

class “XdKEzd” for the class named “ivN21e tUEI8e fontBodyMedium”, whose

text is our distance data. Finally, we compute and store the recorded speed in

our database.

24

Text 4. Beautiful Soup

from bs4 import BeautifulSoup

result = None

while result == None :
soup = BeautifulSoup(driver.page_source, 'lxml')
result = soup.find('div', class_='XdKEzd')

delay_div = result.find('div')
if len(delay_div['class']) > 2:

delay = delay_div['class'][2]
else:

delay = 'no-data'

travel_time = result.find('div').text.replace(' min', '')
distance = soup.find('div',

 class_='ivN21etUEI8efontBodyMedium').text

speed = float(distance)/(int(travel_time)*60)
if delay == 'delay-heavy':

speed /= 2
if delay == 'delay-medium':

speed /= 1.5

if file_exist == False:
edges.append([src_lng, src_lat, dest_lng, dest_lat, speed])

else:
edges.append(speed)

3.2.3 Threading

Our objective was to devise a traffic data mining algorithm capable of running

continuously for an extended duration, collecting data at regular intervals over

a predetermined period. This aligns with the definition of a time series. To

achieve this, we employed the threading library in Python, with each thread

initiating a new automated session. By manually executing this script at the

desired time, it autonomously initiates a new session after the specified

interval has elapsed.

At this point, it's important to note that, on a single script execution for our file

of edges, the optimal frequency we achieved was one measurement every 10

minutes. This was achieved with two different computers working in parallel for

the same purpose. Consequently, each computer could initiate a new session

every 20 minutes to avoid overloads and potential failures. In essence, the

more edge IDs present, the greater the resources required to collect real-time

data within short time intervals.

3.3 Data management

As stated in Section 3.1, the primary objective of the data mining algorithm we

designed was to construct a dedicated database of time series for each edge

ID. In practical terms, we calculate the speed, defined as the distance from the

source to the destination node of the edge divided by its travel time. To

enhance the differentiation between measurements, we opted to incorporate

the factor of delay into the equation.

Prior to executing the script, it's necessary to predetermine its duration by

adjusting certain parameters, such as the total number of sessions and the

waiting time before each subsequent session begins. Once the execution is

complete, a file is generated in the format: "Day(yyyy-mm-dd).csv". However,

it's important to note that data scraping might not occur throughout the entire

25

day. The process often requires manual oversight for unexpected blocks that

necessitate a manual refresh or for reCaptcha pop-ups that require verification.

Given this, if we have one file with data for a specific day and time span, and

another file with data for the same day and month but a different time span,

we need to merge these files to create a comprehensive time series database

for that specific day of the month.

3.4 The time series database

Before we proceed to the description of our time series database, we have to

define what we mean as time series and traffic of an edge. Assuming that

Google Maps works as a sensor s for us on a particular road segment/edge,

the time series of that sensor is a sequence of the speeds recorded during a

specific time period [ts, te] and are given by the formula:

where vi is the speed recorded by the sensor during the time period [ti, ti+Δt)

and Δt is the transmission rate of the sensor.

An example of the time series of a sensor s with a transmission rate of 10

minutes would be: TSs = {(30, 9:00), (15, 9:10), (20, 9:20), …} and that is the

representation of the traffic in the corresponding edge, recorded by its sensor.

Therefore, the traffic of a road network is a set of time series that describe the

traffic of its edges during a specific time period [ts, te] :

Having grasped these definitions, we successfully crafted our own time series

database using Selenium and Beautiful Soup. The table below serves as an

example of a dataset for a random day spanning from 9:00 to 17:30.

26

index src_lng src_lat dest_lng dest_lat 9:00 9:10 … 17:30

0 35.4795 23.9993 35.5042 24.0066 6.67 3.33 … 10

1 35.5030 24.0057 35.5026 24.0083 4.17 4.17 … 4.17

2 35.5063 24.0036 35.5042 24.0066 4.17 4.17 … 6.25

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

843 35.5182 24.0398 35.5167 24.0399 7.5 5 … 7.5

The index column contains the id of the hyper-edges of our road network. The

src_lng and src_lat columns contain the longitude and latitude coordinates of

each edge’s starting/source point, respectively. Similarly, the dest_lng and

dest_lat columns contain information about longitude and latitude coordinates

of each edge’s ending/destination point. The rest of the columns are named

with the time each session started and contain the speed recorded, at this

specific time, on every edge.

If we plot the time series of the edges, we can make useful observations, both

for the specific day being plotted and for each individual edge itself, even

before clustering them. For instance, when comparing the time series of e0 and

e57 for the same time span on different days of the same month, we obtain the

following results:

27

28

Figure 9. Time series' Plot(1)

Figure 10. Time series' Plot(2)

3.5 Conclusions & Future work

Real-time data collection is undoubtedly essential for projects of this kind,

given its influential role in shaping the final outcome. The combination of

Selenium and Beautiful Soup proved to be ideal for us, and for several

compelling reasons. Primarily, Selenium provides the capability to visualize

precisely what you are attempting to scrape. This means you can verify the

logic behind constructing edges and ensure the accurate extraction of data for

your database through Beautiful Soup. Moreover, Selenium allows for effective

handling of issues that may arise on the specific web application, such as the

"cookie consent" page at the start of each session, webpage blocks, and

verification pop-ups. Importantly, these challenges can be addressed without

disrupting the automated process or losing previously collected data. The

synergy of these factors, along with the excellent performance of Beautiful

Soup's built-in functions, validates our choice for this approach.

Nevertheless, there are conceivable improvements that could enhance this

script in the future. For instance, after every browser update, the need to

download the new driver and replace it with the older one for proper

functioning of Selenium’s WebDriver module can be a cumbersome task.

Currently, the web driver manager tool provided for this purpose somehow

does not work. Another inconvenience lies in the manual treatment of blocks

and pop-ups, requiring developer supervision and making the process time-

consuming. In conclusion, if these issues could be addressed, coupled with a

high-speed internet connection and adequate resources, this algorithm has the

potential to evolve into a powerful tool for constructing time series databases.

29

Chapter 4

Traffic Mining

In this chapter, we will elucidate our custom implementation of a divisive

hierarchical clustering model. Each of the three steps of the model will be

thoroughly analyzed, accompanied by an introduction to the Python tools that

aided us in clustering the database of edges’ time series created earlier. The

outcomes of our algorithm will be discussed, and, in the final sections, we will

demonstrate how to visualize the clustered data on an interactive map.

4.1 Clustering algorithms and tools

Python offers an extensive array of libraries and packages for data analysis

and machine learning, facilitating the implementation of clustering algorithms

tailored to specific needs. In our case, the combination of DBSCAN[15] and

OPTICS[16] clustering algorithms emerged as the optimal choice. These

algorithms utilize distance calculating functions that align with the

requirements of constructing our three-level clustering model. In the following

sections, we will elaborate on the workings of these algorithms and elucidate

how we utilized them to achieve our objectives.

4.1.1 DBSCAN

Clustering analysis is fundamentally an unsupervised learning method that

partitions data into specific groups. Density-based spatial clustering of

30

applications with noise (DBSCAN)[15] is a data clustering algorithm commonly

employed in machine learning to distinguish regions of high point density from

those of low point density. It groups points that are close to each other based

on a distance measurement function and designates points in low-density

regions as noise.

 The DBSCAN algorithm uses two parameters:

• epsilon (eps): a distance measure that specifies how close the points

have to be, so as to be considered neighbors and therefore part of a

cluster.

• min_samples: the minimum number of points (neighbors) to form a

dense region.

In order to choose these parameters, we need to have a basic knowledge

about the dataset that will be used and then perform a parameter estimation,

as follows:

• In general, if the value of epsilon is chosen too large, clusters may

merge, and the majority of data points will be grouped into the same

clusters. Conversely, if it is chosen too small, a significant portion of data

points may be considered as outliers. Experimentation with this

parameter, both increasing and decreasing it, is necessary to find the

most suitable value for our data. However, smaller values of epsilon are

typically preferred.

• The minimum number of min_samples can be determined from the

number of dimensions (D) in the dataset, with the requirement

min_samples >= D + 1. Setting min_samples = 1 wouldn't be

meaningful, as it would result in every data point being considered a

cluster on its own. Typically, the larger the dataset or the noise within it,

the larger the value chosen for the min_samples parameter.

Nevertheless, experimentation is crucial to identifying the most suitable

value.

31

Given epsilon and min_samples, we can categorize the data points in the

following three types:

• Core Point: a point that has at least min_samples within epsilon

range.

• Border/Non-core Point: a point that has fewer than min_samples

within epsilon range, but is in the neighborhood of a core point.

• Noise/Outlier: a point that is neither a core nor a border.

To comprehend the entire process of the DBSCAN algorithm, it's essential to

delve into the concepts of Density Reachability and Density Connectivity. By

definition, a point b is directly density-reachable from a point a if a is a core

point, and b is within its neighborhood. This implies that only core points have

the capacity to reach non-core points in the context of density reachability. For

example, on the diagram below for min_samples=4:

32

Figure 11. Core, Border and Noise Points[17]

Concerning Density Connectivity, two points a and b are considered density-

connected if there exists a point c such that both a and b are density-reachable

from c, forming a chaining process. Density Connectivity is a symmetric

relation, in contrast to Reachability, which is asymmetric.

To sum up, the steps of the DBSCAN algorithm are the following:

1. For every point, find all the neighbor points within eps distance.

2. Identify the core points with at least min_samples as neighbors.

3. Create a new cluster for every core point.

33

Figure 12. Density Reachability[18]

Point A and all the red points are core points as they
contain at least 4 points, including itself, whereas points
B and C are non-core points. Point A is directly density-
reachable from the three red points that are connected to
it with a “double arrow” and vice versa. Points B and C
are directly density-reachable from each red point that is
closer to them, respectively, but indirectly density-
reachable from point A. Also, point A and all the red ones
are not density-reachable from points B and C, and
lastly, point N is an outlier, so it is not density-reachable
from any other point.

A C

B

N

4. Find all the density-connected points for each core point and assign them

on the same cluster.

5. Assign each remaining non-core point to a nearby cluster, if possible,

otherwise consider it as noise.

The advantages of DBSCAN are:

• It does not require specifying the number of clusters, unlike k-means

which needs k as an input.

• It can handle clusters of different shapes and sizes.

• It can detect outliers and separate them from clusters.

• It requires only two parameters and is insensitive to the order of data.

On the other hand, the disadvantages of DBSCAN are:

• It cannot handle varying densities.

• It can struggle on border points that are reachable from more than one

clusters, depending on the order the data are processed.

• It can struggle on high dimensional data, as it depends only on distance

measures.

• It is hard to determine the correct set of parameters.

4.1.2 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS)[16] is a density-

based algorithm that, unlike DBSCAN, can handle varying densities and shapes

and can identify hierarchical structures. Unlike DBSCAN, where we need to pre-

determine an optimal epsilon parameter, OPTICS processes multiple distance

parameters simultaneously. It works with an infinite number of epsilons (epsi)

34

smaller than a "generating distance" or max_eps, with the constraint 0 <=

epsi <= max_eps.

To ensure a consistent result, OPTICS stores the order in which the data are

processed, giving priority to high-density clusters, specifically those with the

lowest epsilon. This allows OPTICS to be effective in identifying hierarchical

structures within the data. The information it provides consists of two values:

• core distance: is the minimum value of epsilon to classify a point as a

core point. If it is not a core point, its core distance is UNDEFINED:

where p is a data point, ε is the distance value, Nε(p) is the neighborhood of

the data point for the specific distance value, MinPts is the min_sampes value

and MinPts-distance(p) is the data points’ distance from its MinPts-th neighbor.

• reachability distance: is the maximum of the core distance of point p

and the Euclidean distance (or any other metric) between points o and p.

If p is not a core point, its core distance is UNDEFINED:

where o and p are data points, ε is the distance value, Nε(p) is the

neighborhood of p data point for the specific distance value and MinPts is the

min_sampes value.

After calculating the reachability distance for every data point, the OPTICS

algorithm constructs an ordered list of points, known as the clustering

structure of the dataset. To facilitate the visualization of this clustering

structure, OPTICS generates a reachability plot. This plot illustrates the

reachability distance values for each data point in the order in which they

35

appear in the cluster ordering, offering insights into the clustering patterns

within the dataset.

In the ordered list depicted on the reachability plot, each point is associated

with a reachability distance, signifying the ease with which that specific data

point can be reached from other points in the dataset. Notably, clusters with

higher density are reflected as deeper "valleys" on the plot, whereas clusters

with lower density appear as shallower "valleys." This observation suggests

that points with similar reachability distances are more likely to belong to the

same cluster, providing a visual indication of the clustering structure within the

data.

Finally, the advantages of the OPTICS algorithm are:

• It can handle varying densities.

• It does not need to determine the perfect epsilon, as it only needs it to

reduce the process time.

• It can reveal clusters that would not be apparent with a constant epsilon.

36

Figure 13. Reachability Distances and Reachability Plot[19]

On the left side we have a visual representation of reachability distances and on the right side the
reachability plot, which corresponds to the three clusters on the left.

On the other hand, the disadvantages of the OPTICS algorithm are:

• It has higher computational complexity than DBSCAN.

• It requires more memory than DBSCAN.

4.2 Divisive hierarchical clustering

Hierarchical clustering is a clustering technique that splits or merges clusters

depending on their similarities or differences. There are two types of

hierarchical clustering:

• Agglomerative: Initially, each data point is regarded as a single cluster.

At each subsequent step, similar clusters merge until one or N clusters

are formed.

• Divisive: Initially, every data point is considered to be part of the same

large cluster. At each step, clusters split into sub-clusters based on

certain criteria, continuing until each data point becomes an individual

cluster or N clusters are formed.

For the purpose of this thesis, we designed a divisive hierarchical clustering

model. Divisive hierarchical clustering, in contrast to agglomerative

hierarchical clustering, is commonly employed in statistical analysis. It

operates as a top-down technique, necessitating either raw data or a distance

matrix for execution. When using raw data, it automatically computes the

distance matrix in the background, employing a chosen distance metric, such

as the Euclidean distance.

As we were unable to find Python tools that met our requirements for this

project segment, we developed a custom divisive hierarchical clustering

algorithm with three distinct levels. The primary distinctions among these

levels lie in the choice of distance metric and the type of data utilized. Our

37

database incorporates both geographical data for the edges and their

associated speed measurements. To simplify this, consider the logic behind the

algorithm as follows:

1. Consider all data points as a single cluster.

2. Choose the distance metric that will be applied on each step.

3. Split every cluster into sub-clusters using the OPTICS or DBSCAN

algorithm, until the process is completed.

The following diagram shows an example of our divisive hierarchical clustering

implementation.

38

Figure 14. Divisive Hierarchical Clustering Diagram

Lets say that in the first big cluster we have the data points of our time series database. At step 1,
we cluster these points and we get two smaller clusters. We follow the same logic using the
proper distance metric and data on each step, until we complete them. After step 3, we get the
final clusters that will determine the traffic relationships among the edges of our road network.

4.3 The 3-step clustering model

At this point, we will elucidate each step of the 3-step hierarchical clustering

model we devised, employing DBSCAN, OPTICS, and other tools from the

scikit-learn library in Python. We will delve into both the theoretical and

practical aspects of each step, presenting our thoughts and work. The

approach adopted is rooted in [5].

4.3.1 Step 1

In step 1, where all edges are initially members of the same cluster, our goal

was to identify those edges whose traffic exhibits both increasing and

decreasing patterns at the same rate. We accomplished this by calculating the

shape-based distance of the edges, determined by the Euclidean distance of

their respective normalized time series. To normalize the time series, we

utilized the normalize() function from the ‘sklearn.preprocessing’ tool, which

employs the Euclidean norm formula. So if x=(x1, x2, …, xn) is a row of our time

series database, after normalization it becomes (x1/||x||2, x2/||x||2, ... ,xn/||x||2),

where:

Every row in our database has the data we collected for each edge id which

means, by definition, that every row contains the edge id’s time series. Now

that we have their normalized values, we can calculate their Euclidean

distance, as follows:

where we assume that we want to calculate the Euclidean distance of edges e1

and e2. Then, TS1 and TS2 are their corresponding time series for a specific

39

period of time [ts, te] and v1’[ti], v2’[ti] are the normalized values at ti for TS1

and TS2 respectively.

We implemented step 1 using the OPTICS algorithm. Initially, we created an

array comprising values selected from our time series database, representing

the rows and columns, and subsequently normalized them. The OPTICS

algorithm was then applied with specific parameters, including max_eps=0.2,

min_samples=10, and the Euclidean distance metric. We determined these

parameters through experimentation, assessing their silhouette score, which

ranges from -1 (worst) to 1 (best). Scores near 1 signify that data points are

distant from other clusters, while scores near 0 suggest overlapping clusters,

and negative values indicate incorrect cluster assignments. Considering our

normalized data range from 0 to 1, we observed that an epsilon greater than 1

would be impractical. Similarly, a significantly smaller value for min_samples

would result in small clusters unlikely to further split in subsequent steps. We

present a code snippet of our implementation right below.

40

Text 5. Step 1 Implementation

import numpy as np
from sklearn.cluster import OPTICS
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import normalize

X_train = np.array(time_series.values)
X_normalized = normalize(X_train)

optics_model = OPTICS(min_samples=10, max_eps=0.2,
metric='euclidean').fit(X_normalized)

print(f'Score at Step 1 is:

{silhouette_score(X_normalized,optics_model.labels_)}')

4.3.2 Step 2

In step 2, our objective was to identify edges, within the sub-clusters created in

step 1, that are topologically close to each other in the network graph. To

achieve this, we computed the structure-based distance between the data

points, determined by the haversine distance of their respective source edge

points' coordinates. The haversine formula calculates the great-circle distance

between two points on a sphere based on their longitudes and latitudes.

The central angle θ between two points on a sphere is:

where d is the distance between the two points (epsilon value) and r is the

radius of the sphere (radius of Earth = 6371km).

Assuming that we need to calculate the haversine distance between two edges

e1 and e2, the haversine of θ would be as follows:

where φ1, φ2 are the latitudes of the source edge points of e1 and e2, and λ1, λ2

are the longitudes of the source edge points of e1 and e2, respectively.

Finally, the haversine function, that computes half a versine of the angle θ,

applied to both the θ and the latitude, longitude differences is:

We implemented step 2 using the DBSCAN algorithm and its haversine

distance metric. Initially, we generated an array that included the latitude and

longitude values of the source points for the edges within each cluster formed

in step 1. Subsequently, we selected a set of min_samples and epsilon

41

parameters, with epsilon being divided by the Earth's radius in kilometers, as

the haversine metric requires it in radians. The choice of these parameters was

made through experimentation, adjusting them incrementally and

decrementally while monitoring the silhouette score. We present a code

snippet of our implementation and a plot of its results right below.

42

Text 6. Step 2 Implementation

import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score

kms_per_radian = 6371
epsilon = 5/kms_per_radian
min_samples = 3

coords = temp[['source_lat', 'source_lng']].values
X_train = np.array(coords)

dbscan_cluster_model = DBSCAN(eps=epsilon, min_samples=min_samples,
 algorithm='ball_tree',metric='haversine').fit(X_train)

print(f'Score at Step 2 (for cluster {i}) is:
{silhouette_score(X_train, dbscan_cluster_model.labels_)}')

4.3.3 Step 3

In the concluding step, step 3, our aim was to identify edges whose time series

exhibit similar values, forming the final clusters of our model. To accomplish

this, we computed the value-based distance, which is determined by the

Euclidean distance of their respective time series.

As we mentioned at Section 4.3.1, every row of our database contains the

edge id’s time series information. Assuming that we want to calculate the

Euclidean distance between two edges e1 and e2, our formula would be as

follows:

43

Figure 15. DBSCAN Haversine Distance Results

On x axis we have the latitudes and on y axis the longitudes for the edges’ source points of a specific
cluster generated after step 1. On the right side of the plot we have the number and the color of the

cluster that each edge will be assigned after step 2.

where TS1 and TS2 are their corresponding time series for a specific period of

time [ts, te] and v1[ti], v2[ti] are the corresponding values at ti for TS1 and TS2

respectively.

We implemented step 3 using the OPTICS algorithm and its Euclidean distance

metric. Initially, we formed an array comprising the data of the edges within

each cluster generated in step 2. Subsequently, we selected a set of max_eps

and min_samples parameters based on their silhouette score. For

min_samples, we chose the minimum number that makes sense, considering

it's the final step in our divisive hierarchical clustering model. Regarding the

max_eps parameter, we conducted experiments by adjusting it incrementally

and decrementally to optimize the silhouette score. We present a code snippet

of our implementation right below.

44

Text 7. Step 3 Implementation

import numpy as np
from sklearn.cluster import OPTICS
from sklearn.metrics import silhouette_score

X_train = np.array(time_series.values)

optics_model = OPTICS(min_samples=2, max_eps=2,
metric='euclidean').fit(X_train)

print(f'Score at Step 3 (for cluster {i}, {j}) is:
{silhouette_score(X_train,optics_model.labels_)}')

4.4 Separation of traffic relationships

We enhanced our clustering algorithm by introducing an additional feature that

allows users to extract specific traffic relationships from the street network.

Users now have the flexibility to choose between extracting all traffic

relationships, only the propagates, or only the splits/merges. This

customization empowers users to tailor the information according to their

needs, facilitating its use for various research purposes or gaining a better

understanding of traffic flow dynamics.

To implement this feature, we utilized the ‘geopy.distance’ module in Python,

which can calculate geodesic distances between two points. Geodesic

distances represent the shortest path between two points on a curved surface,

making it particularly suitable for our Earth-based context. Following we have a

code snippet of our implementation and its explanation.

45

Text 8. Separation of Traffic Relationships

import geopy.distance as dist

cur_cluster = final_df.loc[final_df['final_clusters'] == cluster]

for i in cur_cluster.index:
coords_source1 = (cur_cluster.iloc[i]['source_lng'],

cur_cluster.iloc[i]['source_lat'])
coords_dest1 = (cur_cluster.iloc[i]['destination_lng'],

cur_cluster.iloc[i]['destination_lat'])
lng_source1 = cur_cluster.iloc[i]['source_lng']
lng_dest1 = cur_cluster.iloc[i]['destination_lng']

if dist.geodesic(coords_source1, coords_dest1).km >= 0.15:
propagates.append(cur_cluster.iloc[i])

for j in range(i, len(cur_cluster)-1):
lng_source2 = cur_cluster.iloc[j+1]['source_lng']
lng_dest2 = cur_cluster.iloc[j+1]['destination_lng']

if ((lng_source1 == lng_dest2) or (lng_dest1 ==
 lng_source2)):

propagates.append(cur_cluster.iloc[i])
propagates.append(cur_cluster.iloc[j+1])

We observed that within a group of actual edges, those indicating propagation

should belong to the same cluster and be consecutive. While our approach

may seem slightly unconventional due to working with hypothetical edges, it is

constructed as follows:

• For each edge within every cluster generated after step 3, we initially

examine the distance between its starting and ending points. Given that

our edges may comprise two or more actual edges, if the distance

between the corresponding points of an edge is equal to or greater than

150 meters, we categorize that hypothetical edge as indicating traffic

propagation.

• Subsequently, we assess whether the identified edge is connected to any

other edge within the same cluster. This is achieved by comparing the

longitudes of their source and destination points, with the aim of

identifying consecutive edges. By definition, the presence of consecutive

edges indicates traffic propagation in our context.

• Upon completing this process for each cluster and its associated edges,

any edges that remain are considered to represent splits/merges in the

context of our clustering algorithm.

4.5 Experimental results

In our initial attempts to implement the 3-step clustering model, we presumed

that the DBSCAN algorithm would be suitable for each step since it provides

both Euclidean and haversine distance metrics essential for clustering our time

series database. However, as we progressed, we encountered challenges in

determining a notable set of min_samples and eps input parameters,

particularly in steps 1 and 3 where we dealt with data points of varying

densities and shapes. This led us to explore alternative algorithms, ultimately

46

choosing OPTICS for these steps. As previously explained, OPTICS eliminates

the need for a perfect predetermined epsilon but introduces a max_eps

parameter serving as a threshold for the process duration.

For step 2, we persisted in using the DBSCAN algorithm since OPTICS lacked

the haversine distance metric crucial for computing the structure-based

distance, resulting in a hybrid model to meet our specific requirements.

To validate our approach, we strategically placed markers in the city center,

where we had a good understanding of the traffic flow. We recorded the traffic

relationships immediately before and after each marker. Subsequently, we

conducted experiments on our clustering algorithm using DBSCAN exclusively

for every step, OPTICS for every step, and finally, our HYBRID model.

Throughout these experiments, we assessed the accuracy of each model in

identifying the traffic relationships among the markers.

Next, we present two charts illustrating the results of this experiment,

conducted for the same day, month, time span, and time interval. The

47

Figure 16. Markers' Position

horizontal axis represents traffic relationships, while the vertical axis depicts

the percentage accuracy for each implementation.

48

Figure 17. Algorithms' Accuracy Graph (1)

Figure 18. Algorithms' Accuracy Graph (2)

4.6 Display of clustered edges

For visualizing the results of our divisive hierarchical clustering model

alongside the verification markers, we employed the osmnx[20] and

folium[21] libraries in Python. We will delve into the capabilities of these tools

and their utility in projects that demand the visual representation of road

networks.

4.6.1 OSMnx

OSMnx is an open-source Python package built on top of NetworkX, Matplotlib,

and GeoPandas, offering powerful capabilities for real-world road network

analysis and visualization. It facilitates the download, modeling, analysis, and

visualization of street networks and other geospatial features from

OpenStreetMap.

To model a road network using OSMnx, one can acquire the necessary GIS data

by finding and downloading the appropriate shapefiles online. OSMnx

simplifies this process by allowing users to download OpenStreetMap (OSM)

data and construct topologically accurate, one-way directional road networks

with straightforward queries, such as a place name or a bounding box. It

performs pre-processing on the raw OSM data, converting them into a

NetworkX MultiDiGraph.

For network analysis and spatial network statistics calculations, OSMnx can

handle tasks such as finding and plotting the shortest-path routes between two

or more points. Additionally, the OSMnx package can convert a NetworkX

graph into a GeoPandas GeoDataFrame, which represents the tabular format of

the network. This makes it easy to customize resulting maps using GeoPandas

mapping tools. Below is a code snippet showcasing our implementation,

providing insight into the functionality of the aforementioned statements:

49

We begin by creating a NetworkX MultiDiGraph using the "Municipality of

Chania" query to obtain the place boundary polygon and specifying the "drive"

type for the street network. Subsequently, we utilize the nearest_nodes()

function to identify the nearest nodes to the source and destination points of

an edge. Here, Xsrc, Ysrc, Xdst, and Ydst represent their respective coordinates

in longitude-latitude format.

With the nodes identified, we compute the shortest path between them and

generate a GeoDataFrame of the route. Finally, to visualize the results

interactively, we leverage the GeoDataFrame's built-in explore() function. We

select the OpenStreetMaps tileset for the map, define a style for the plotted

edge, and assign a color representing its cluster. This creates an interactive

Leaflet map for a comprehensive view of the road network analysis.

4.6.2 Folium

Completing the process outlined in Section 4.6.1 for every edge in our

database resulted in an interactive Leaflet map that displayed the road

network edges, color-coded according to their respective clusters. To

50

Text 9. OSMnx

import osmnx as ox

graph = ox.graph_from_place('Municipality of Chania',
network_type='drive')

origin = ox.distance.nearest_nodes(graph, Xsrc, Ysrc)
destination = ox.distance.nearest_nodes(graph, Xdst, Ydst)
route = ox.distance.shortest_path(graph, origin, destination,

 weight='length')

gdf_route = ox.utils_graph.route_to_gdf(graph, route, weight='length')
route_map = gdf_route.explore(tiles='OpenStreetMap', tooltip=False,

 color=color, style_kwds=dict(opacity=0.6, weight=7))

incorporate markers for verifying our experiments on clustering methods, we

opted for the folium library in Python. Folium leverages the data manipulation

capabilities of the Python ecosystem and the mapping strengths of the

Leaflet.js library.

To achieve this, we first constructed a file containing the coordinates, in

longitude-latitude format, of each marker. We then added these markers to the

appropriate locations on the map already created with osmnx. For

visualization, we utilized pop-up messages to distinguish the markers and

enhance the interactive leaflet map. Following we have our implementation of

this process.

4.6.3 The interactive map

Upon completing the addition of colored edges and markers on the

‘route_map’, we save it as an HTML file and open it using our web browser. The

visualization of our clustering results provides a more accessible means for

verifying our modeling logic and identifying the traffic relationships that

emerge among the edges of the road network. This visual representation

51

Text 10. Folium

import folium
import pandas as pd

markers_df = pd.read_csv('input/markers.csv',
dtype={'marker_location':str})

for ind in markers_df.index:
message = 'Marker'+str(ind)+''
cur_location = markers_df.loc[ind,

'marker_location'].split(' ')
folium.Marker(location=[float(cur_location[0]),

float(cur_location[1])], popup=message,
icon=folium.Icon(color='red',
icon='pushpin')).add_to(route_map)

enhances the clarity of our clustering outcomes. Knowing that every cluster

has its own unique color, we could define the traffic relationships as follows:

• Propagate: the color remains the same on the consecutive edges that

propagate their traffic.

• Split: the color of an edge splits into two different colors of the edges

that it splits the traffic.

• Merge: the different colors of two edges merge into one third different

color of the edge that merges their traffic.

4.7 Conclusions & Future work

Divisive hierarchical clustering is infrequently employed by developers, leading

to a scarcity of dedicated libraries in Python for such implementations. By

decomposing our clustering algorithm into three distinct steps and addressing

52

Figure 19. The Interactive Map

Before Marker1 we have traffic propagation (gray) and after the marker we have traffic split
(purple, orange).

each one independently, we successfully amalgamated them to create our own

hierarchical clustering model. The pivotal role played by the powerful DBSCAN

and OPTICS algorithms cannot be overstated; they furnished us with

indispensable tools and information crucial for navigating through each step.

These algorithms not only facilitated the execution of each phase but also

enabled us to scrutinize and refine our results. Their adeptness in handling the

diverse densities and shapes inherent in our dissimilar hypothetical edges'

time series and spatial data proved instrumental in resolving one of our

primary challenges.

Moreover, the visual representation of our data through the use of the osmnx

tool significantly facilitated the examination of the final results from our

custom divisive hierarchical clustering model. It transformed our raw data,

which were initially challenging to interpret, into a format that is easily

understood by humans. The tool's seamless integration with OpenStreetMaps

allowed us to effortlessly display our edges' data without the need for

additional modifications in our code. In essence, osmnx emerges as an optimal

choice for visualizing street networks reliant on OSM data, offering a diverse

array of built-in functions capable of addressing a wide range of tasks.

In summary, the hybrid model we adopted yielded satisfactory results.

However, we acknowledge that if, in the future, the OPTICS algorithm

incorporates the haversine distance metric, it would be preferable to utilize

this algorithm for step 2 as well.

53

Chapter 5

The application

In this chapter, we will illustrate our transformation process of transitioning

from a command-line interface (CLI) script for clustering, to a graphical user

interface (GUI) desktop application. This shift aims to enhance user interaction

by leveraging graphical elements. We will showcase the tools employed for

designing the interface and provide an explanation of the functionality

pertaining to its widgets.

5.1 CustomTkinter

CustomTkinter[22] is an extension of the widely used Tkinter module in

Python, representing a modernized version with added UI elements that offer

extensive customization options. Tkinter itself is a lightweight, cross-platform

GUI framework that is renowned for its simplicity and is commonly employed

for developing desktop applications. It provides numerous built-in widgets for

designing interfaces to suit various requirements.

In alignment with this philosophy, CustomTkinter enhances the capabilities of

Tkinter by introducing additional widgets such as:

• CtkFrame: a “container” widget that groups the other widgets together.

• CtkLabel: a widget to display text.

• CtkTextBox: a widget to display multi-line, scrollable text or to take

input from the user.

• CtkSwitch: a widget used for toggle options.

54

• CtkOptionMenu: a widget to display a list of options/values.

• CtkRadioButton: a widget that allows the user to choose only one of a

predefined set of options.

• CtkButton: a widget to display a button that can be clicked to perform

an action.

• CtkTabview: a widget that creates tabs of CtkFrames.

In order to be able to organize the geometry of these widgets in the

application frame, CustomTkinter offers three methods:

• the pack() method: organizes the positioning of widgets in relation to

each other.

• the grid() method: organizes the positioning of widgets in a two

dimensional grid of rows and columns.

• the place() method: organizes the positioning of widgets either with x,

y coordinates or relative to another widget.

It is important to note that we should not combine these methods in the same

master window, but we should choose one and stick with it instead. Therefore,

to sum up, the steps of creating a desktop GUI application using the

CustomTkinter module are the following:

1. Import the CustomTkinter module.

2. Create the main window of the application.

3. Add a CtkFrame as a container for the widgets.

4. Add widgets to the frame and apply their functionality.

5. Use the mainloop() function to run the application.

55

5.2 Design & Functionality

Our aim was to create a straightforward application with user-friendly options,

ensuring ease of use without the need for an instruction manual. To achieve

this, we implemented a vertical positioning of the widgets using the pack()

method. We fine-tuned the padx and pady variables to optimize the aesthetic

appeal of the interface.

For the majority of our options, we employed CustomTkinter's ‘CtkOptionMenu’

widget, and for time's am/pm selection, we utilized the ‘CtkRadioButton’

widget. The title of each option menu and the error message were designed

using the ‘CtkLabel’ widget. Finally, for the button responsible for initiating the

clustering based on our preferences, we used the ‘CtkButton’ widget. Below is

an example of our setup:

56

Text 11. CustomTkinter Interface

import customtkinter

app = customtkinter.CTk()
app.geometry("450x850")

frame = customtkinter.CTkFrame(master=app)
frame.pack(pady=30, padx=50, fill="both", expand=True)

label = customtkinter.CTkLabel(master=frame, text="Menu Title")
label.pack(pady=(30,0), padx=10)

optionmenu = customtkinter.CTkOptionMenu(frame, width=200,
values=[option_values],

command=message_update)
optionmenu.pack(pady=0, padx=10)

button = customtkinter.CTkButton(master=frame, text="Button",
fg_color="green", border_width=1, border_color="white",
width=80, command=button_callback)

button.pack(pady=(30,0), padx=10)

app.mainloop()

The CustomTkinter module offers a wealth of customizations for its widgets,

providing developers with various styling options. The most noteworthy aspect

of the widgets' variables is the command parameter, which signifies their

functionality. For instance, the message_update() function is responsible for

updating the error message label whenever an error occurs. On the other

hand, the button_callback() function performs preprocessing on the user's

selections before providing them as input to our clustering routine. This

modular approach enhances the flexibility and functionality of the GUI

application.

57

Text 12. Button Command (part1)

from clustering import clustering_routine

def button_callback():
am_to_pm1 = int(optionmenu_from.get().split(":")[0])
am_to_pm2 = int(optionmenu_to.get().split(":")[0])

if radiobutton_var_from.get() == 2 and optionmenu_from.get() != "12:00":
am_to_pm1 += 12
start_time = str(am_to_pm1) + ":00"

elif radiobutton_var_from.get() == 1 and optionmenu_from.get() == "12:00":
am_to_pm1 -= 12
start_time = str(am_to_pm1) + "0:00"

elif radiobutton_var_from.get() == 1 and am_to_pm1 < 10:
start_time = "0" + str(am_to_pm1) + ":00"

else:
start_time = optionmenu_from.get()

if radiobutton_var_to.get() == 2 and optionmenu_to.get() != "12:00":
am_to_pm2 += 12
end_time = str(am_to_pm2) + ":00"

elif radiobutton_var_to.get() == 1 and optionmenu_to.get() == "12:00":
am_to_pm2 -= 12
end_time = str(am_to_pm2) + "0:00"

elif radiobutton_var_to.get() == 1 and am_to_pm2 < 10:
end_time = "0" + str(am_to_pm2) + ":00"

else:
end_time = optionmenu_to.get()

Firstly, we import our divisive hierarchical clustering routine. Next, we

reconstruct the starting (‘optionmenu_from’) and ending (‘optionmenu_to’)

times of the measurements that we are going to cluster, based on the user's

am/pm preferences. In the first case, we search for the pm version of times

ranging from 1:00 to 11:00, and we add 12 to their first two digits to

reconstruct them in a format ranging from 13:00 to 23:00. In the second case,

we look for the am version of 12:00 and reconstruct it to 00:00. In the third

case, we add a leading zero to the am version of times ranging from 1:00 to

9:00, so as to reconstruct them in a format ranging from 01:00 to 09:00. In the

last case, we simply retrieve the user's selection of time as is, following the

same logic for both ‘start_time’ and ‘end_time’.

After reconstructing the time values, we extract the parameter for the time

interval selected by the user, dividing it by 10, as the data in our time series

database are scraped with a transmission rate of 10 minutes. Using the chosen

day and month, we construct the path for the input file. Finally, we use all the

above as input variables for our divisive hierarchical clustering routine.

58

Text 13. Button Command (part 2)

if optionmenu_interval.get().split(" ")[1] != "hour":
parameter = int(int(optionmenu_interval.get().split(" ")[0]) / 10)

else:
parameter = 6

input_file = "data/"+optionmenu_month.get()+"/"+optionmenu_day.get()+".csv"
relationships = optionmenu_relationships.get()

try:

clustering_routine(input_file, start_time, end_time, parameter,
relationships)

except:
label_message.configure(text="Invalid options.\nTry again!",

text_color="red")

5.3 Usage

The options available in our application's interface are as follows:

• 'Month' and 'Day': Users can select the month and day for which traffic

data will be clustered.

• 'From' and 'To': Users can specify the start and end times for the

measurements collected on the chosen day and month.

• 'Time Interval': Users have the flexibility to choose the time interval

between samples in the time series database.

• 'Traffic Relationships': Users can indicate which of the detected traffic

relationships they want to display.

59

Figure 20. Application's Interface

If we click the 'Show Results' button with the specified options in Figure 17, we

would cluster the traffic data collected on a Saturday in October. To be more

precise, we would select the average speeds measured between 14:00 and

16:00 with a time interval of 10 minutes. After applying our 3-step divisive

hierarchical clustering model to these data, an interactive map would be

generated. This map would display the edges of our road network, with each

edge colored according to the cluster to which it belongs.

Visualizing our clustering results allows us to observe the traffic relationships

among the edges, providing insights into how traffic flows within the road

network. By zooming in on the map depicted in Figure 18 and applying the

definitions outlined in Section 4.6.3, we can pinpoint traffic propagation, split,

and merge. This visual representation enhances our understanding of the

intricate dynamics of traffic patterns within the network.

60

Figure 21. Application's Results

5.4 Conclusions & Future Work

Utilizing the CustomTkinter module, we successfully crafted an aesthetically

pleasing and user-friendly GUI desktop application that encompasses the

necessary functionality for executing our clustering routine. As a suggestion for

future work, we propose the development of a web-based version to make it

accessible to users through the internet without requiring installation. This

would enhance the convenience and reach of the clustering tool.

61

Figure 23. Traffic Split

The 'gray' edge splits its traffic between
the 'light blue' and 'light green' edges.

Figure 22. Traffic Merge

The 'orange' and 'light blue' edges merge
their traffic into the 'light green' edge.

Figure 24. Traffic Propagation

The 'blue' edge, preceding the marker, propagates its traffic to the
'blue' edge after the marker.

Chapter 6

Epilogue

In this thesis, we addressed the challenge of traffic management by creating

an application that extracts traffic relationships between the edges of a road

network, building upon the approach outlined in [5]. We successfully

implemented these techniques in practice, utilizing real-world data and

providing a visual representation of the algorithms' results.

The availability of geospatial data through OpenStreetMap played a crucial role

in our ability to design and extract information about the road network,

aligning seamlessly with data obtained from Google Maps. This alignment

facilitated the scraping of traffic data necessary for constructing our time

series database, a task that would have been challenging without access to

such comprehensive geospatial information.

Consequently, we developed an automated scraping routine utilizing Selenium

and Beautiful Soup. This routine enabled the collection of real-time traffic data

over extended periods, serving as the foundation for constructing our

comprehensive database.

We subjected the collected data to analysis through a 3-step divisive

hierarchical clustering model. This model calculates the shape-based,

structure-based, and value-based distances using the DBSCAN and OPTICS

algorithms. Starting from a single, large cluster encompassing all edges, the

model progressively segments the data into smaller sub-clusters, revealing

traffic relationships between edges, when displayed on the map.

In the concluding phase, we integrated the clustering process into a simple GUI

desktop application, crafted with CustomTkinter, so that it ensures accessibility

for a wider audience.

62

References

[1] Google Maps APIs, https://developers.google.com/maps

[2] Mapbox web services APIs, https://docs.mapbox.com/api/overview/

[3] Mapbox | Maps, Navigation, Search, and Data, https://www.mapbox.com/

[4] OpenStreetMap, https://www.openstreetmap.org

[5] Irene Ntoutsi, Nikos Mitsou, Gerasimos Marketos: Traffic mining in a road-network: How does

the traffic flow? Int. J. Bus. Intell. Data Min. 3(1): 82-98 (2008)

[6] PostgreSQL: The world's most advanced open source database, https://www.postgresql.org/

[7] Home - osm2pgsql, https://osm2pgsql.org/

[8] pgAdmin - PostgreSQL Tools, https://www.pgadmin.org/

[9] PostGIS, https://postgis.net/

[10] the QGIS project, https://www.qgis.org/

[11] pandas - Python Data Analysis Library, https://pandas.pydata.org/

[12] GoogleMapPlotter, https://github.com/gmplot/gmplot/wiki/GoogleMapPlotter

[13] Selenium, https://www.selenium.dev/

[14] BeautifulSoup4, https://pypi.org/project/beautifulsoup4/

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. (1996). A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the

Second International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI

Press, 226–231

[16] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander. (1999). OPTICS:

Ordering Points To Identify the Clustering Structure. ACM SIGMOD international conference on

Management of data. ACM Press. pp. 49–60

63

https://pypi.org/project/beautifulsoup4/
https://www.selenium.dev/
https://github.com/gmplot/gmplot/wiki/GoogleMapPlotter
https://pandas.pydata.org/
https://www.qgis.org/
https://postgis.net/
https://www.pgadmin.org/
https://osm2pgsql.org/
https://www.postgresql.org/
https://www.openstreetmap.org/
https://www.mapbox.com/
https://docs.mapbox.com/api/overview/
https://developers.google.com/maps

[17] Nagesh Singh Chauhan,

DBSCAN Clustering Algorithm in Machine Learning, Kdnuggets,

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html, 2022

[18] DBSCAN, Wikipedia, By Chire - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=17045963

[19] Yufeng, Understanding OPTICS and Implementation with Python, Towards Data Science,

https://towardsdatascience.com/understanding-optics-and-implementation-with-python-

143572abdfb6, 2022

[20] OSMnx 1.7.1 documentation, https://osmnx.readthedocs.io/en/stable/

[21] Folium, https://pypi.org/project/folium/

[22] Tom Schimansky, CustomTkinter, https://customtkinter.tomschimansky.com/

[23] Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, René Schult: MONIC: modeling and

monitoring cluster transitions. KDD 2006: 706-71

[24] Chania Traffic Flow Simulator, https://github.com/st4mk/CTFS.git

64

https://github.com/st4mk/CTFS.git
https://customtkinter.tomschimansky.com/
https://pypi.org/project/folium/
https://osmnx.readthedocs.io/en/stable/
https://towardsdatascience.com/understanding-optics-and-implementation-with-python-143572abdfb6
https://towardsdatascience.com/understanding-optics-and-implementation-with-python-143572abdfb6
https://commons.wikimedia.org/w/index.php?curid=17045963
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html

	Department of Electrical and Computer Engineering
	A System for Traffic Data Mining and Traffic Monitoring over City Road Networks
	Author: Konstantinos Stamatopoulos
	Committee: Asst. Prof. Nikos Giatrakos (Supervisor)
	Prof. Aikaterini Mania
	Prof. Dionyssios Hristopoulos
	November 2023
	Acknowledgments
	Abstract
	Chapter 1
	Introduction
	1.1 Importance of road traffic monitoring
	1.2 Technical difficulties in developing a viable real-time traffic mining framework
	1.3 Overview of our traffic relationships miner
	1.4 Thesis outline

	Chapter 2
	Road network and traffic relationships
	2.1 Definitions
	2.1.1 Edges

	
	2.1.2 Traffic relationships

	2.2 Obtaining OSM data
	2.3 Importing OSM data into PostgreSQL
	2.4 Visualizing data on QGIS
	2.5 Edge construction
	2.5.1 Finding the edge points
	2.5.2 Creating edges
	2.5.3 Creating linestring edges

	2.6 Conclusions & Future work

	Chapter 3
	Traffic data collection
	3.1 Data collection tools
	3.1.1 Selenium
	3.1.2 Beautiful Soup

	3.2 Time series data collection
	3.2.1 WebDriver setup and URL construction
	3.2.2 Web page inspection
	3.2.3 Threading

	3.3 Data management
	3.4 The time series database
	3.5 Conclusions & Future work

	Chapter 4
	Traffic Mining
	4.1 Clustering algorithms and tools
	4.1.1 DBSCAN
	4.1.2 OPTICS

	4.2 Divisive hierarchical clustering
	4.3 The 3-step clustering model
	4.3.1 Step 1
	4.3.2 Step 2
	4.3.3 Step 3

	4.4 Separation of traffic relationships
	4.5 Experimental results
	4.6 Display of clustered edges
	4.6.1 OSMnx
	4.6.2 Folium
	4.6.3 The interactive map

	4.7 Conclusions & Future work

	Chapter 5
	The application
	5.1 CustomTkinter
	5.2 Design & Functionality
	5.3 Usage
	5.4 Conclusions & Future Work

	Chapter 6
	Epilogue

