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Abstract

This thesis dives into the intersection of quantum computing and genera-
tive modeling by exploring their relationship and potential applications across
various domains, with a primary focus on finance. The journey begins with
a comprehensive analysis of the mathematical framework behind quantum
mechanics. Then, classical generative modeling techniques are presented,
specifically restricted Boltzmann machines (RBMs) for data reconstruction
and denoising and generative adversarial networks (GANs) for the generation
of synthetic data, using the popular MNIST dataset as a benchmark.

Building on this foundational knowledge, we transition into the realm of
quantum machine learning. The struggles of implementing a fault-tolerant
quantum computer for learning tasks is presented and how we can approach
such pieces of work through different angles with current available technol-
ogy. We introduce parameterized quantum circuits (PQCs) and quantum
circuit Born machines (QCBMs), two essential components of quantum com-
puting for generative modeling and machine learning tasks in general. A key
highlight of this section is the training of various topologies of Born machines
on a simple dataset, showcasing the ability to effectively learn the underlying
data distribution through quantum processes.

We then discuss how the above classical and quantum approaches can be
used in the financial sector. Leveraging the power of generative modeling,
a Wasserstein GAN with gradient penalty is employed to generate realis-
tic financial time series data, using the S&P 500 index closing values as a
benchmark. This marks a critical step towards synthesizing financial data
for various analytical and predictive purposes.

At last, we introduce and study a quantum Wasserstein GAN (QWGAN)
in the financial domain. Here, the traditional WGAN generator is replaced by
a parameterized quantum circuit featuring diverse architectures. This novel
approach not only has the potential to enrich the generative capabilities, but
also harnesses the inherent quantum advantages for more, possibly, efficient
and accurate data generation.

Key Words: quantum mechanics, quantum computation, machine learning,
generative modeling, finance
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1 Introduction

1.1 Quantum Computing Now and Beyond

Since 1981, it has been widely recognized that quantum theory can be
utilized to simulate physics on a machine whose operation and behavior de-
viate significantly from classical mechanics, a concept introduced by Richard
P. Feynman through the quantum computer model [1]. Quantum comput-
ers have proven to be really robust on dealing, or not, with a wide variety
of problems and reach to a solution exponentially faster than their classi-
cal counterparts, although this is not the case for every class of tasks. As
Feynman states, ”It’s not a Turing machine, but a machine of a different
kind”.

With the prospect of achieving (exponential) acceleration in demanding
computational tasks, the competition to develop a quantum computer that
is both scalable and resilient is in full swing [2]. A key milestone in this field
will be when a universal quantum computer performs a computational task
that is beyond the capability of any classical computer, an event known as
quantum supremacy.

Several technology companies and research institutions have developed
quantum hardware and quantum programming languages, making quantum
computing more accessible than ever before. Quantum supremacy, demon-
strated by Google’s quantum processor in 2019, marked a significant mile-
stone, showcasing quantum computers’ computational advantage for specific
tasks. However, it’s crucial to recognize that quantum computers are still
in the Noisy Intermediate-Scale Quantum (NISQ) era, where they are error-
prone and have limited qubits [3]. This current phase necessitates substantial
advancements in error correction, qubit stability and hardware scalability to
fully unlock the transformative potential of quantum computing. Researchers
and organizations around the world are tirelessly working to address these
challenges, making the current state of quantum computing an exciting and
dynamic landscape poised for groundbreaking developments in the near fu-
ture.

1.2 Prospects of Quantum Generative Modeling

The integration of quantum computing into the realm of generative mod-
eling offers a promising avenue for reshaping the landscape of artificial intelli-
gence and machine learning. Quantum computing, grounded in the principles
of quantum mechanics, presents unique opportunities and advantages that
could potentially revolutionize the field of generative modeling in several
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transformative ways. One of the most notable advantages lies in the realm
of computational speed. Quantum computers have the potential to deliver
exponential speedups over classical counterparts for specific computational
tasks. This heightened processing power holds the promise of generating
high-quality data samples at a remarkably accelerated pace, opening doors
to real-time or near-real-time generative applications that were previously
unattainable.

Additionally, quantum computing can significantly enhance the process of
sampling from complex probability distributions, a fundamental requirement
in generative modeling. Models such as Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs) stand to benefit from this
quantum advantage, enabling the generation of data samples that closely
match intricate underlying distributions.

The synthesis of synthetic data is another area poised for transformation.
Quantum computers have the potential to generate more diverse and realistic
synthetic data, thereby facilitating improved data augmentation for training
machine learning models. This, in turn, can lead to enhanced model gen-
eralization and performance, particularly in situations where training data
is scarce. Furthermore, the combination of quantum machine learning tech-
niques with generative modeling holds the potential to yield more potent
and adaptable generative models capable of handling intricate data distribu-
tions. Quantum generative modeling holds promise for financial applications
by leveraging quantum computing’s ability to process complex data and per-
form rapid simulations, enabling more accurate risk assessments and portfolio
optimization. Its capacity to handle high-dimensional financial data and gen-
erate probabilistic distributions can enhance decision-making processes and
advance algorithmic trading strategies.

The proficiency in data compression and feature selection can also be har-
nessed to reduce the computational complexity of generative models. This
promises more efficient and compact data representations, potentially al-
leviating resource-intensive model training processes. Moreover, quantum
randomness, an inherent characteristic of quantum systems, can inject a new
dimension of stochasticity. This expanded randomness can lead to more
creative and diverse data generation, making quantum-enhanced generative
models particularly valuable in creative applications like art generation and
content creation. Finally, the security and privacy of generative models can
be strengthened through the application of quantum cryptography. In do-
mains where data confidentiality and integrity are paramount, such as health-
care and finance, quantum-enhanced security offers a robust safeguard.
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1.3 Outline

In this work, we will present some generative models and their extended
versions in terms of quantum computation, focusing on generative adversarial
networks (GANs). The classical GAN framework blends beautifully with the
notion of quantum-classical hybrid learning models in the NISQ era, as it
can be scaled and adjusted by integrating a parameterized quantum circuit
(PQC) whose parameters are optimized with a classical algorithm. We tackle
with some common applications and focus primarly on the financial sector.
A gentle outline of the thesis follows.

In Chapter 2, a thorough analysis of the mathematical framework be-
hind quantum computing is presented. We present basic aspects of linear
algebra such as vector spaces, orthonormal basis sets, unitary and hermi-
tian operators. Quantum information, gates, circuits and properties such as
superposition and entanglement are respresented by utilizing those aspects.
The reader may skip this section if confident with quantum computing basics.

In Chapter 3, we dive into machine learning basics and focus on generative
modeling. We present a restricted Boltzmann machine (RBM) and the math
behind the model as a gentle introduction and train it on the popular MNIST
dataset for the tasks of data reconstruction and denoising. Then, we deal
with a more complex architecture known as generative adversarial network
(GAN). Using the same dataset, we try to generate synthetic data from
random noise inputs.

In Chapter 4, quantum machine learning (QML) is introduced. The focus
lies in hybrid quantum-classical variational models that leverage the current
resources in the NISQ era. A quantum circuit Born machine (QCBM) is
thoroughly analyzed and trained on a simple dataset to show that quantum
circuits have the ability to learn the underlying data distribution effectively
with the help of current state-of-the-art classical optimization techniques.
Also, quantum generative adversarial networks (QGANs) are introduced and
an implementation follows in the the last chapter.

In the last and main chapter of this thesis, we concentrate on the financial
sector, a promising domain for near-term applications of quantum generative
modeling. First, we introduce financial time series and their properties, where
the example at hand is the S&P 500 index. We present some applications
of GANs regarding finance by providing various references. For this work,
we chose to implement a more advanced classical model known as Wasser-
stein GAN that uses a gradient penalty term as an additional regularization
technique. Research is conducted on how synthetic financial data can be
generated that also exhibit real-world properties and the complexity of such
a task. The idea is then extended by integrating a parameterized quan-
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tum circuit (PQC) in the WGAN architecture. We introduce the Quantum
Wasserstein GAN (QWGAN) model and make points on how it should be
approached in order to generate realistic data. Motivated by another work,
we try to generate financial time series and discuss the results.
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2 Fundamentals of Quantum Computation

So, what is quantum computation ? The most fascinating fact about this
question is that there are endless possibe explanations, from using relatively
simple terms to extreme mathematical aspects starting from elementary ab-
stract algebra. Our purpose is to present the preliminaries of quantum com-
putation without neglecting the basic properties and definitions by utilizing
aspects of linear algebra. For a thorough studying of quantum computing
and information, the reader is refered to [4].

2.1 Qubits: Quantum States as Complex Vectors

In quantum mechanics, a quantum state is represented by a complex
vector in a vector space we call the Hilbert space and is n-dimensional. The
following definition follows the so-called Dirac notation for such vectors;

Definition 2.1.1 (Complex Vector: Ket-Bra Notation). Let u ∈ Cn. The
Ket notation is a quantum state representation of u as a n-dimensional col-
umn vector as

|u⟩ =


u1
u2
...
un

 (1)

where u1, u2, ..., un ∈ C. The Bra notation is used to represent the conjugate
transpose of |u⟩ as a n-dimensional row vector as

⟨u| =


u∗1
u∗2
...
u∗n


T

=
(
u∗1 u

∗
2 . . . u∗n

)
(2)

where u∗1, u
∗
2, ..., u

∗
n ∈ C. We will denote the conjugate transpose of |u⟩ with

the dagger symbol as |u⟩† = ⟨u|.
Generally, we are interested in qubits, which are vectors in C2. In corre-

spondence to the the basic unit of information in classical computing which
is the bit and takes the values 0 or 1, the quantum bit or qubit is the basic
unit of information in quantum computing and defined as

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(3)

.
The following definitions encapsulate the essentials of quantum states.
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Definition 2.1.2 (Linear Combination). A vector |u⟩ ∈ Cn is a linear com-
bination of vectors |v1⟩, |v2⟩, . . ., |vm⟩ ∈ Cn, if |u⟩ can be expressed as

|u⟩ =
m∑
i=1

ai |vi⟩ (4)

where ai ∈ C.

Later on, we will see that a quantum system can be in a superposition of
states and this is expressed as a linear combination of vectors. Superposition
is a fundamental principal in quantum mechanics, not present in classical
physics, where if we take a single electron as an example of a quantum system,
the phenomenon states that the particle can be on all possible spin states in
any direction when it is not observed (measured). Any quantum algorithm
utilizes this effect during evaluation.

Definition 2.1.3 (Spanning Set of Vectors). A spanning set of vectors {|vi⟩},
where i = 1, 2, ...,m for Cn, is a set in terms of which any other vector
|u⟩ ∈ Cn can be written as a linear combination.

In this case, we say that the set {|vi⟩} spans the Hilbert space. Also, we
should note that a spanning set for a given vector space is not unique.

Definition 2.1.4 (Linear Independence). We say that a set of non-zero
vectors |v1⟩, |v2⟩, . . ., |vm⟩ ∈ Cn is linearly independent if

m∑
i=1

ai |vi⟩ = 0 ⇔ ai = 0, ∀ i = 1, 2, ...,m (5)

If one vector of the set can be written as a linear combination of other
vectors in the set, the we say that the set is linearly dependent.

Definition 2.1.5 (Basis). A basis in Cn is any set of vectors that is a
spanning set and linearly independent.

As one may notice, because a spanning set of vectors is not unique in a
given vector space, the same applies for a basis. Any basis in Cn consists
of n vectors, called the basis vectors. Quantum states in n dimensions are
straightforward generalizations of qubits in terms of basis vectors.

Definition 2.1.6 (Quantum State - Born Rule). A quantum state is a vector
|ψ⟩ ∈ Cn that is a linear combination of a basis set {|vi⟩}, i = 1, 2, ..., n, with
coefficients ci ∈ C as

|ψ⟩ =
n∑

i=1

ci |vi⟩ (6)
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The scalars ci ∈ C associated with the basis vectors are called probability
amplitudes, as in quantum mechanics they give the probabilities of projecting
the respective state into a basis vector when the appropriate measurement
is performed. This is called the Born rule. Thus, ci ∈ C, ∀i = 1, 2, ..., n,
correspond to a probability distribution and must obey

n∑
i=1

|ci|2 =
n∑

i=1

cic
∗
i = 1 (7)

The probability that a system |ψ⟩ is in state |vi⟩ is |ci|2.

Definition 2.1.7 (Inner Product). Let |u⟩ , |v⟩ ∈ Cn. The inner product
between the two vectors is defined as

|u⟩† · |v⟩ = ⟨u|v⟩ (8)

with ⟨u|v⟩ ∈ C.

The inner product between complex vectors is not commutative in gen-
eral, as opposed to the dot product between two vectors in Euclidean space
Rn.

Definition 2.1.8 (Norm of a Vector). The norm of a vector |u⟩ ∈ Cn is
defined as

∥|u⟩∥ =
√
⟨u|u⟩ (9)

and in an abstract way, it represents the length of |u⟩.

Definition 2.1.9 (Unit Vector - Normalization). Let |u⟩ ∈ Cn, with |u⟩ ≠ 0⃗.
Vector |u⟩ is normalized if ⟨u|u⟩ = 1, so its norm is unity. We call |u⟩ a unit
vector if

∥|u⟩∥ = 1 (10)

Definition 2.1.10 (Mutually Orthogonal Vectors). Let |u⟩ , |v⟩ ∈ Cn, with
|u⟩ , |v⟩ ≠ 0⃗. The vectors are mutually orthogonal if ⟨u|v⟩ = ⟨v|u⟩ = 0.

Definition 2.1.11 (Orthonormal Basis). A basis is orthonormal if all of its
vectors are unit vectors and mutually orthogonal.

The very well-known Gram-Schmidt Orthogonalization method is used to
construct an orthonormal basis {|vi⟩} from an arbitrary basis {|ui⟩} set of
vectors. We are not going further on this, as it does not serve any purpose
on this work. From now on, orthonormality is implied a priori. The basis
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of interest on almost any quantum computing problem is the computational
basis, consisting of the 2-dimensional vectors |0⟩ and |1⟩, where

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(11)

It is trivial to show that those vectors obey all of the above definitions. Other
basis sets may also be used. In the next section, we will see how we can move
between different basis sets of vectors with the use of unitary operators.

Interestingly, we can visualize the qubit as a point in the 3-d unit sphere,
which is so-called the Bloch sphere. The quantum state of a system with one
qubit w.r.t the computational basis is

|ψ⟩ = a |0⟩+ b |1⟩ , a, b ∈ C

As a point in the 3-d unit sphere (Bloch sphere), it is defined as

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , 0 < θ ≤ π, 0 ≤ ϕ ≤ 2π (12)

Figure 1: One-qubit quantum state on the Bloch sphere. While a classical
bit can take only two values (0 or 1), the qubit can be in a superposition of
basis states, a fact that can be exploited for exponential speedup.

In quantum computing, an orthonormal basis contains all the possible
states that a system may be found in after measurement. The meaning of
measurement will be clear later on. Following Definition 2.1.6, we want to
use normalized states and orthonormal basis sets of vectors in order to respect
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the probabilities and statistics of quantum mechanics. We also need to be
able to distinguish the states after they are observed (measured).

Now that we have a well-defined structure for a quantum state, we would
like to construct linear operators with certain properties, known as quantum
gates, to act on states by preserving the norm. If the inner product is different
after an action on the state, this would lead to a totally abstract basis.
Such operators are the equivalent of logic gates in classical computing, with
some examples being NOT, AND, OR, XOR. Next section is about quantum
operations on states.

2.2 Quantum Gates as Complex Operators

Definition 2.2.1 (Linear Operator). A linear operator A : V → W of
dimensions (n×n) is a transformation or mapping from n-dimensional vector
space V to vector spaceW of the same dimension and acts on vectors, namely
quantum states.

Let |ψ⟩ ∈ Cn and a basis set {|vi⟩}, i = 1, 2, ..., n. Then:

A |ψ⟩ = A ·
n∑

i=1

ci |vi⟩ =
n∑

i=1

ciA |vi⟩ , ci ∈ C (13)

We will only deal with square operators, as we want to map onto a space
of equal dimension. The terms linear operator and quantum gate will be used
interchangeably from now on.

Definition 2.2.2 (Hermitian Operator). A linear operator A : Cn → Cn is
Hermitian if and only if it is equal to its conjugate transpose denoted by
A†, namely

A = A† (14)

where A† is obtained by interchanging the rows and columns of A and taking
the conjugate of all the elements.

In quantum mechanics, operators that represent physical observables are
Hermitian. This is because of certain properties that specify these operators:

� The eigenvalues are real numbers. We will see that this is mandatory
as the only quantities that we can measure in a quantum system are
the eignevalues of such operators. Eigenvalues and eigenvectors will be
defined shortly.

� The eigenvectors constitute an orthonormal basis set for the given vec-
tor space.

13



Definition 2.2.3 (Unitary Operator). A linear operator U : Cn → Cn is
unitary if and only if

UU † = U †U = I (15)

where I is the identity matrix and the action preserves the norm of a given
vector state.

By definition, it is easy to verify that a unitary operator is orthogonal,
normal (UU † = U †U) and invertible (U † = U−1). Thus, a crucial difference
to the classical logics gates is that unitary quantum gates can be inverted.
In classical computing, this is not true, as if we come up with some output
of a logic gate, there is no way to find out the respective input. In quantum
computing, this is feasible by constructing the conjugate transpose of the
respective operator.

Unitary operators describe the time evolution of a quantum state. Some
basic properties of unitary operators include:

� U is diagonalizable, meaning that it can be decomposed as U = V DV †,
where V is unitary and D is a diagonal matrix.

� |det(U)| = 1

� Eigenspaces are orthogonal.

� U = eiH , the matrix exponential with i =
√
−1 and H a Hermitian

operator. We will see how we can obtain this later on.

� The eigenvalues are complex numbers with modulus 1.

� If the eigenvalues are non-degenerate, then the eigenvectors are mutu-
ally orthogonal.

Unitary transformations are also used in order to transform the matrix
representation of an operator in one basis to a representation of another
basis. For simplicity, let us consider the Hilbert space for qubits C2 and two
orthonormal basis sets {|ui⟩}, {|vi⟩}, i = 1, 2. The change of basis matrix
from {|ui⟩} to {|vi⟩} is given by

U =

(
⟨v1|u1⟩ ⟨v1|u2⟩
⟨v2|u1⟩ ⟨v2|u2⟩

)
(16)

A state vector |ψ⟩ in {|ui⟩} is a state vector |ψ′⟩ in {|vi⟩}, as |ψ′⟩ = U |ψ⟩.
An operator A ∈ C2 expressed in terms of {|ui⟩} is the operator A′ in basis
{|vi⟩}, as A′ = UAU †.
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Definition 2.2.4 (Commutator). The commutator of two operators A,B :
Cn → Cn is defined as

[A,B] = AB −BA (17)

If [A,B] = 0, then operators A,B commute. It is trivial to prove that if
two operators commute, then they share common eigenvectors.

The most famous commutator relation is that of the position operator X
and momentum operator P :

[X,P ] = iℏI

where ℏ is the reduced Planck constant. This is what the Heisenberg Acer-
tainty states, that position and momentum of a particle cannot be deter-
mined simultaneously. Also, we can define the anticommutator as [A,B] =
AB +BA.

The Pauli operators is a set of 2×2 complex matrices which are Hermitian
and unitary and defined as

σ1 = σX =

(
0 1
1 0

)

σ2 = σY =

(
0 −i
i 0

)

σ3 = σZ =

(
1 0
0 −1

)
Thus, these operators correspond to realizable quantum gates acting on

qubits. Let us provide their main properties:

� σ2
1 = σ2

2 = σ2
3 = −iσ1σ2σ3 = I

� detσj = −1, j = 1, 2, 3

� trσj = 0, j = 1, 2, 3

� The eigenvalues of all Pauli operators are ±1
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The normalized eigenvectors are, respectively for σj, j = 1, 2, 3:

|ψx+⟩ =
1√
2

(
1
1

)
, |ψx−⟩ =

1√
2

(
1
−1

)

|ψy+⟩ =
1√
2

(
1
i

)
, |ψy−⟩ =

1√
2

(
1
−i

)

|ψz+⟩ =
(
1
0

)
, |ψz−⟩ =

(
0
1

)
Next, we provide basic information on eigenvectors and eigenvalues.

Definition 2.2.5 (Eigenvectors and Eigenvalues). A given vector |u⟩ ∈ Cn is
an eigenvector of an operator A ∈ Cn×n, if the following equation is satisfied:

A |u⟩ = λ |u⟩ (18)

where λ ∈ C is the corresponding eigenvalue.

The number of eigenvalues coincides with the dimensions of the corre-
sponding linear operator. To find the eigenvalues, we solve the characteristic
equation

det(A− λI) = 0 (19)

where det(·) denotes the determinant of matrix A− λI. If each of the eigen-
vectors of an operator is associated with a unique eigenvalue, we say that
they are non-degenerate.

Later on, we will see that the eigenvalues of operators are the only realiz-
able measurables in a quantum system. Also, we will see their connection to
the probabilities of aj system, as well as for gate decomposition and matrices
transforming to other orthonormal basis sets.

Definition 2.2.6 (Outer Products). Let |u⟩ , |v⟩ ∈ Cn. The outer product
is defined as |u⟩ ⟨v| and it respresents a different notation for some operator
A ∈ Cn×n.

Definition 2.2.7 (Spectral Decomposition). A linear operator A ∈ Cn×n

is normal if it has mutually orthogonal eigenvectors and their normalized
versions {|ui⟩} can diagonalize the operator as

A =
∑
i

λi |ui⟩ ⟨ui| (20)
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where λi are the corresponding eigenvalues. Then:

A = V DV †

where V is a unitary matrix containing the eigenvectors of A in its columns
and D is a diagonal matrix whose main diagonal elements are the eigenvalues
of A.

Every quantum gate is unitary and by definition, normal. So, they can
be decomposed using the spectral decomposition theorem. If we recall the
eigenvalues and eigenvectors of the Pauli matrices, by the definition above
we see that they reconstruct the same operators. This theorem provides the
means to construct quantum gates with respect to other gates. Also, notice
the interrelation with unitary transformations.

Next, we provide a very important relation which is useful in manipu-
lating expressions that often occur in quantum computation. Additionally,
sometimes we may know only the action of some operator on basis vectors
and we would like to find the matrix respresentation. The closure relation is
the tool.

Definition 2.2.8 (Closure Relation). Given a basis set {|ui⟩} in Cn, the
identity operator can be expressed as

n∑
i=1

|ui⟩ ⟨ui| = In×n (21)

Let a state vector |ψ⟩ ∈ Cn with respect to the basis {|ui⟩}. If we denote
the inner product ⟨ui|ψ⟩ = ci, the arbitrary state |ψ⟩ can be expanded in
terms of basis {|ui⟩} as

|ψ⟩ = I |ψ⟩ =
n∑

i=1

|ui⟩ ⟨ui|ψ⟩ =
n∑

i=1

ci |ui⟩ (22)

For an operator A with respect to basis {|ui⟩} we have

A = IAI = (
n∑

i=1

|ui⟩ ⟨ui|)A(
n∑

j=1

|uj⟩ ⟨uj|) (23)

=
n∑

i=1

n∑
j=1

⟨ui|A |uj⟩ |ui⟩ ⟨uj| (24)

where we see that Aij = ⟨ui|A |uj⟩.
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Definition 2.2.9 (Trace of an Operator). Let an operator A ∈ Cn×n with
respect to a basis set {|ui⟩} in Cn. The trace of A is defined as the sum of
its diagonal elements

tr(A) =
n∑

i=1

Aii =
n∑

i=1

⟨ui|A |ui⟩ (25)

Definition 2.2.10 (Expectation Value of an Operator). Let an operator
A ∈ Cn×n and a quantum state |ψ⟩ ∈ Cn. The average value of measurement
results on the quantum state |ψ⟩ after it is prepared multiple times is defined
as

⟨A⟩ = ⟨ψ|A |ψ⟩ (26)

This value is not actually measured! We measure only the eigenvalues of
operator A. This is purely a statistical result. For higher statistical moments,
we have ⟨A⟩ , ⟨A2⟩ , .... The standard deviation as we know from elementary
statistics is

∆A =

√
⟨A2⟩ − ⟨A⟩2 (27)

At last, we will see some introductory material on projection operators
just because this section has to do with operators in general. More informa-
tion on projective measurements later on this chapter.

For simplicity, let us consider an arbitrary qubit state |ψ⟩ ∈ C2 in terms
of the computational basis {|0⟩ , |1⟩}. The projection operator is defined as

P = |ψ⟩ ⟨ψ| (28)

and is Hermitian. If |ψ⟩ is normalized, then P 2 = P . Also, if P1, P2 are
two projection operators that commute, i.e [P1, P2] = 0, then their product
P1P2 = P2P1 is also a projection operator. Notice that the spectral decom-
position theorem allows us to write an operator A in terms of projection
operators. The projection operator Pi = |ui⟩ ⟨ui| projects onto the subspace
defined by the eignevalue λi. The eigenvalue represents a given measurement
result for the operator A. So, projection operators represent a type of mea-
surement described by quantum theory. Since the basis states satisfy the
closure relation, we easily see that∑

i

Pi = I (29)

The probability of finding the i-th outcome when a measurement is made on
a system prepared in state |ψ⟩ is ⟨ψ|Pi |ψ⟩.
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2.3 The Postulates Of Quantum Mechanics

Now, we have all the tools to start working and modeling quantum sys-
tems. In this brief section, we provide the so-called postulates of quantum
mechanics, where various interpretations have been presented throughout the
years. I will state it as 4 laws that govern quantum theory.

1. The State of a System as a Complex Vector
The state of a quantum system is represented by a complex vector |ψ(t)⟩
at time t in a Hilbert space that contains all the information we can
obtain about the system. We work with normalized states, such that
⟨ψ|ψ⟩ = 1, which we call state vectors. The basic unit of information is
the qubit in Hilbert space C2 and it is a state vector |ψ⟩ = a |0⟩+ b |1⟩,
where a, b ∈ C and |a|2 + |b|2 = 1.

2. Observable Quantities as Complex Operators
To every dynamical variable A that is physically a measurable quantity,
there corresponds a Hermitian operator A whose eigenvectors form a
complete orthonormal basis of the Hilbert space.

3. Measurements as Eigenvalues
The possible results of measurement of a dynamical variable A are the
eigenvalues ai of the corresponding Hermitian operator A. Using the
spectral decomposition theorem, we can write the operator A in terms
of its eigenvalues and corresponding projection operators as

A =
∑
i

aiPi (30)

where Pi = |ui⟩ ⟨ui| with respect to the basis {|ui⟩}. The probability
of obtaining measurement result ai is

Pr(ai) = ⟨ψ|Pi |ψ⟩ = tr(Pi |ψ⟩ ⟨ψ|) (31)

The probability amplitude ci = ⟨ui|ψ⟩ gives us the probability of ob-
taining measurement result ai as

Pr(ai) =
|ci|2

⟨ψ|ψ⟩
(32)

where usually ⟨ψ|ψ⟩ = 1. A measurement result causes the collapse of
the wave function, meaning that the system is left in state |ui⟩. The
post-measurement state of the system is

Pi |ψ⟩√
⟨ψ|Pi |ψ⟩

(33)
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4. Time Evolution of the System - Schrödinger Equation
The time evolution of a closed (physically isolated) quantum system is
governed by the Schrödinger Equation

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (34)

where H is an operator called the Hamiltonian of the system and cor-
responds to the total energy of the quantum system. The possible
energies are the eigenvalues of H. The state at a later time t is

|ψ(t)⟩ = e−iHt/ℏ |ψ(0)⟩ (35)

where |ψ(0)⟩ is the initial state. Therefore, U = e−iHt/ℏ is the unitary
operator that governs the time evolution of a quantum system. The ac-
tion of operators on states is nothing else than aplying the Schrödinger
equation.

2.4 Multiparticle Systems and Tensor Products

So far, we were concerned with quantum systems of a single particle, a
qubit. In order to construct and analyze systems with more than one qubit,
called composite systems, we make use of the Kronecker product, frequently
seen as the tensor product.

Without loss of generality, we consider the two-particle case. Let two
Hilbert spaces H1 = Cd1 and H2 = Cd2 . With the tensor product, we can
construct a larger Hilbert space H with dimensions d1 · d2 as

H = H1 ⊗H2

where H = Cd1d2 . For d1 = d2 = 2, the case of qubits, the Hilbert space of
their composite system is C4. In general, if we have n qubits {|ψi⟩}i=1,...,n

then the composite system |ψ⟩ is

|ψ⟩ =
n⊗

i=1

|ψi⟩ (36)

and the Hilbert space is C2n . The dimensions grow exponentially with respect
to the number of qubits.

One of the basic properties regarding the tensor product between vectors
|x⟩, |x1⟩, |x2⟩, |ϕ⟩, |ϕ1⟩, |ϕ2⟩ is linearity, meaning that

|ϕ⟩ ⊗ (|x1⟩+ |x2⟩) = |ϕ⟩ ⊗ |x1⟩+ |ϕ⟩ ⊗ |x2⟩
(|ϕ1⟩+ |ϕ2⟩)⊗ |x⟩ = |ϕ1⟩ ⊗ |x⟩+ |ϕ2⟩ ⊗ |x⟩
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and
|ϕ⟩ ⊗ (a |x⟩) = a |ϕ⟩ ⊗ |x⟩

where a ∈ C. The basis of the composite system is the tensor product of basis
sets of the corresponding qubits. Also, the tensor product is noncommutative

|ϕ⟩ ⊗ |x⟩ ≠ |x⟩ ⊗ |ϕ⟩

In column vector notation, if |ϕ⟩ =
(
a
b

)
and |x⟩ =

(
c
d

)
then

|ϕx⟩ =
(
a
b

)
⊗
(
c
d

)
=

a
(
c
d

)
b

(
c
d

)
 =


ac
ad
bc
bd


where often we omit the symbol ⊗ and we use the notation |ϕ⟩ |x⟩, or more
simply |ϕx⟩.

Tensor products are defined similarly for operators. Let |ϕ⟩ ∈ Cd1 and
an operator A ∈ Cd1×d1 . Let also |x⟩ ∈ Cd2 and an operator B ∈ Cd2×d2 and
the composite system

|ψ⟩ = |ϕ⟩ ⊗ |x⟩

in Cd1×d2 . Then:
(A⊗B) |ψ⟩ = A |ϕ⟩ ⊗B |x⟩

The operator A ⊗ B acts on Hilbert space Cd1×d2 and its dimensions are
d1d2 × d1d2. Some properties include:

� If A,B are Hermitian, then A⊗B is also Hermitian.

� If A,B are projection operators, then A⊗B is a projection operator.

� If A,B are unitary operators, then A⊗B is unitary.

� If A,B are positive operators, then A⊗B is positive.

� (A⊗B)† = A† ⊗B†

� (A⊗ B)(C ⊗D) = AC ⊗ BD, where the dimension of rows of C is d1
and the dimension of rows of D is d2.

In matrix notation, consider A,B ∈ C2×2:

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
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Then:

A⊗B =

(
a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


In many cases of practical interest, rather than considering a single quan-

tum system, we need to study a large number or collection of systems called
an ensemble. For this purpose, the density operator is used, a well-defined
tool for describing quantum channels with statistics. As this is out of the
scope of this thesis, the reader is refered to [4] for further information if
interested.

2.5 Measurement Theory

We have seen how we can define multi-qubit systems and manipulate
them by using quantum gates to perform computations. Now, we wish to
devise a way in order to extract information out of such systems. In the
third postulate of quantum mechanics, we talked about measurement and
wave function collapse. In contrast to the classical systems, it turns out that
measurement does have a profound impact on a quantum mechanical system,
altering its state in an irreversible way.

Let us consider a general qubit in the computational basis

|ψ⟩ = a |0⟩+ b |1⟩

where a, b ∈ C. After a measurement is made, the qubit will be forced into
state |0⟩ or state |1⟩. Superposition of states is gone after the measure-
ment. Thomas Young demonstrated this in 1802 with the famous double-slit
experiment. The measurement of a quantum system involves some type of in-
teraction or coupling of the system with the corresponding measuring device.
A system coupled to an environment is called an open system, in conjuction
with closed systems we discussed up to this point.

When we talked about quantum gates, we provided some information on
projective measurements, also called Von Neumann measurements described
by operators. These in turn, describe mutually exclusive possible states. Let
us summarize the key properties below:

� P = P †, Hermitian

� P = P 2
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� Projection operators are mutually orthogonal, so PiPj = δijPi = 0,
∀ i ̸= j. With 0 we denote the zero matrix. Notice that this is a
necessary and sufficient condition for the sum of such two or more
operators to be also a projection operator.

� They form a complete set of orthogonal projection operators, so∑
i

Pi = I

� The number of projection operators in some Hilbert space is less, or
equal to the dimensions of the respective space.

Let the Hilbert space Cn and consider a set of mutually orthogonal pro-
jection operators {P1, P2, ..., Pn}. Let also a system in an arbitrary state |ψ⟩.
The probability of finding the i-th outcome when a measurement is made is

Pr(i) = |Pi |ψ⟩|2 = ⟨ψ|P 2
i |ψ⟩ = ⟨ψ|Pi |ψ⟩ = tr(Pi |ψ⟩ ⟨ψ|)

Also, notice how the spectral decomposition theorem allows us to write
general operators with respect to projection operators. Let some general
operator A ∈ Cn×n with eigenvalues {λi : i = 1, ..., n} and eigenvectors
{|ui⟩ : i = 1, ..., n}. Then

A =
n∑

i=1

λi |ui⟩ ⟨ui| =
n∑

i=1

λiPi

The expectation value of A is thus

⟨A⟩ = ⟨ψ|A |ψ⟩ =
n∑

i=1

λi ⟨ψ|Pi |ψ⟩

Now, consider a system after measurement. We say that the wave function
|ψ⟩ collapses, meaning that the system is found on some basis state and
quantum properties have vanished. The system after measurement is

Pi |ψ⟩√
⟨ψ|Pi |ψ⟩

where the division is conducted to ensure that the state is normalized.
When we want to measure composite systems with more than two state

vectors, we simply use the tensor product among the operators, combined
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with the identity operator acting on states that we do not want to mea-
sure. For example, let two qubits of a composite system with respect to the
computational basis be in a superposition of states as

|00⟩+ |01⟩+ |10⟩+ |11⟩
2

If we want to measure only the first qubit, we use the operators P0 ⊗ I
and P1 ⊗ I. Similarly, for the second qubit only we would have I ⊗ P0 and
I ⊗ P1. For both qubits simultaneously, we tensor the projection operators
respectively.

The measurement theory can be generalized for general measurements
with different properties. Also, the so-called positive operator valued mea-
sures (POVM) can be constructed by operators that are not projection op-
erators in general. This allows for the construction of more general mea-
surements where projective measurements do not apply. A common example
includes the detection of a photon in a laboratory, where a POVM allows to
describe the system without regard to the post-measurement state.

2.6 Entanglement

Quantum entanglement is a phenomenon that lies at the very heart of
quantum mechanics, defying classical intuitions and challenging our under-
standing of the fundamental nature of the universe. At its core, entanglement
represents a profound connection between particles, where the state of one
becomes intrinsically linked to the state of another, regardless of the physical
separation between them. This connection is so remarkable that, as Einstein
famously stated, ”spooky action at a distance” becomes a simple descrip-
tion. Entangled particles, whether they are electrons, photons, or any other
quantum entities, exhibit correlations that defy classical logic and their be-
havior remains one of the most enigmatic and captivating aspects of quantum
physics.

In this section, we will see some mathematical notation to represent quan-
tum entanglement. Again, for further investigation regarding more advanced
topics on entanglement refer to [4].

Definition 2.6.1 (Bipartite Systems). A bipartite system |ψ⟩ ∈ Cd1d2 con-
sists of two quantum states |ϕ⟩ ∈ Cd1 , |x⟩ ∈ Cd2 with basis sets {|ϕi⟩ : i =
1, ..., d1} and {|xj⟩ : j = 1, ..., d2} as

|ψ⟩ =
d1∑
i=1

d2∑
j=1

cij |ϕi⟩ ⊗ |xj⟩ (37)
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where cij ∈ C with
d1∑
i=1

d2∑
j=1

|cij|2 = 1

.

For simplicity, let us consider the two-qubit system with respect to the
computational basis, where

|ψ⟩ = c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩

with probability amplitudes cij ∈ C.
Now that we have a notation for bipartite systems, let us see how an

entangled vector looks like. For an example of a basis for a bipartite system,
consider the Bell basis. The members of this basis are called the Bell states
or the EPR states, they constitute an orthonormal basis in C4 and they are
identified by the vectors∣∣Φ±〉 = |00⟩ ± |11⟩√

2
,

∣∣Ψ±〉 = |01⟩ ± |10⟩√
2

(38)

In quantum physics, |Ψ+⟩ is the triplet state or spin-1 state and |Ψ−⟩ is the
singlet state or spin-0 state.

One may write the Bell states more compactly as

|βxy⟩ =
|0y⟩+ (−1)x |1ȳ⟩√

2
(39)

where ȳ denotes ”not y”and y is called the parity bit. All Bell states are
maximally entangled states.

In general, if there are some states |ϕ⟩, |x⟩, such that |ψ⟩ = |ϕ⟩ ⊗ |x⟩,
meaning that |ψ⟩ can be factorized, we say that state |ψ⟩ is separable and
there is no entanglement. About the ”amount” of entanglement, one may
consider the Shannon entropy as a measure of uncertainty by using the prob-
ability amplitudes of the corresponding state. The entropy of the Bell states
is equal to 1, meaning maximum entanglement.

2.7 Quantum Gates, Circuits and Algorithms

In the last section of this chapter, we are going to present fundamen-
tals of quantum computation, quantum circuit representation and aspects in
designing quantum algorithms.
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2.7.1 Single-Qubit Gates

Quantum gates can be thought of as an abstraction that represents in-
formation processing. As we have already seen, quantum gates are unitary
operators represented by matrices. A remarkable fact emerging from this,
is that quantum gates are reversible, where this is not the case for classi-
cal gates. Also, the number of inputs is equal to the number of outputs in
quantum gates, contrary to the classical evaluation.

A quantum gate of n inputs and n outputs is represented by a square
matrix of degree 2n. The Pauli operators are single qubit gates and their
action on the computational basis states is

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ (40)

Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ (41)

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ (42)

The Pauli X matrix is identified as the UNOT operator, as shown by its
action above. Notice that we are with respect to the computational basis.

Consider the basis {|+⟩ , |−⟩} where

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

These vectors are the eigenvectors of the Pauli X matrix, so they constitute
an orthonormal basis set for C2 because X is unitary. In order to find the
representation of the Pauli operators in this basis, we use a unitary transfor-
mation. The change of basis matrix in this case is

U =

(
⟨+|0⟩ ⟨+|1⟩
⟨−|0⟩ ⟨−|1⟩

)
which is identified by the Hadamard matrix

H =
1√
2

(
1 1
1 −1

)
(43)

For this reason, we sometimes refer to the basis {|+⟩ , |−⟩} as the Hadamard
basis. The Hadamard gate creates superposition when acted on the compu-
tational basis states, transforming them to the Hadamard basis vectors.

Projection operators are also single qubit gates, as measurement is applied
by an action of some projection operator on a state vector.
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2.7.2 Multi-Qubit Gates

In the case of a composite system, we use the tensor product as defined
earlier in order to act multiple gates on some system by composing a gate out
of single-qubit gates. By using the identity operator we can act on specific
qubits, or with different operators upon a system all in parallel by expanding
the operation.

So far, we have discussed about gates that can be expressed with a single
tensor product. Let us give a definition concerning multi-qubit gates;

Definition 2.7.1 (Local Operators). A unitary operator representing a quan-
tum gate is said to be local, if it can be factorized to a single tensor product.

Examples of local operators in C4×4 are H⊗H, X⊗ I, I⊗Z and so on. Sim-
ilarly, we expand the tensor product for larger systems by placing operators
to desired positions as operands.

However, we want to create effects such as entanglement and this is not
feasible with local operators. In this situation, we use non-local gates. The
action of such gates on some qubit depends on the state of another qubit.
For this reason, a non-local unitary operator cannot be factorized down to a
single tensor product.

The most basic example of non-local operators are the controlled oper-
ators. Let us consider the controlled-NOT operator, which we denote by
UCNOT ∈ C4×4. The action of this operator on the computational basis in
C4 is

UCNOT |00⟩ = |00⟩
UCNOT |01⟩ = |01⟩
UCNOT |10⟩ = |11⟩
UCNOT |11⟩ = |10⟩

We see that the second qubit is reversed when the first qubit is at state |1⟩.
We also need some measurement to determine the state of the first qubit.
Using the closure relation, we can find the matrix elements of UCNOT as

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
I 0
0 X

)
(44)

= P0 ⊗ I+ P1 ⊗X (45)

With the same manner, we can construct multiple qubit controlled gates
by inserting more controls and actions, for example, CCX,CZ,XC,CH
e.t.c.
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The action of UCNOT on two qubit system |x⟩ ⊗ |y⟩ can be written more
compactly as

UCNOT |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |x⊕ y⟩ (46)

where ⊕ denotes the exclusive or operation, where 0 ⊕ 0 = 1 ⊕ 1 = 0 and
0 ⊕ 1 = 1 ⊕ 0 = 1. In general, the output is 1 if the number of 1’s in the
input is odd.

2.7.3 Circuits & Algorithms

We now move on to the construction and representation of quantum cir-
cuits. In general, a quantum circuit is a unitary operator composed by the
product of local and non-local operators, the quantum gates. Let us consider
the Bell basis vectors∣∣Φ±〉 = |00⟩ ± |11⟩√

2
,

∣∣Ψ±〉 = |01⟩ ± |10⟩√
2

(47)

and we work on the computational basis in C4. In order to create the EPR
pairs, we act with the operator

UBELL = UCNOT (H ⊗ I) (48)

in each of the basis states {|00⟩ , |01⟩ , |10⟩ , |11⟩}. The representation of a
quantum circuit with input qubits |0⟩ ⊗ |0⟩ and output the entangled state∣∣Φ+

〉
=
|00⟩+ |11⟩√

2

is shown below:

Figure 2: Bell Circuit creates entanglement between qubits in the computa-
tional basis.

The Bell vectors can be obtained by providing |00⟩ , |01⟩ , |10⟩ , |11⟩ as
input states in the circuit above.
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In general, quantum circuits are represented by n horizontal lines for n
inputs and n outputs, local unitary actions are shown with squares on the
respective qubit and non-local operations are identified with vertical lines
showing the corresponding qubits. Lines are assumed to be connected by
the tensor product. Also, the actions are written in reverse order of the
mathematical expression and this is clear above where H ⊗ I acts first on
the inputs and UCNOT comes right after. A last thing to mention, the so
called gate decomposition has to do with decomposing gates into a series of
single-qubit gates and UCNOT operations. The latter is a universal quantum
gate, meaning that any other gate can be decomposed in controlled-NOT
gates and single qubit gates.

A quantum algorithm is a quantum circuit for some specific computation.
We know that a quantum state of n qubits exists in a Hilbert space C of 2n

dimensions, with the basis vectors needed being also 2n. This exponential
growth of the domain dimensions, as a result of the linear increase in the
number of qubits, is the main reason for the exponential increase in speed
of quantum computations. Also, the fact that a quantum system may be in
a superposition of states allows us to do simultaneous parallel computations
that cannot be done, even in principle, on any classical computer.

More advanced algorithms take advantage of entanglement to fulfill their
cause. Remarkable mentions include Quantum Teleportation as a network
protocol for communication and Superdense Coding as a coding method for
messages during communication. A detailed presentation along with quan-
tum programming may be found in [5].

Other algorithms include the Quantum Fourier Transform, Phase Esti-
mation algorithm, Order Finding algorithm and Shor’s algorithm. The last
utilizes all of the previous algorithms with some extra operations and the
problem it tries to solve is to find the prime numbers that factorize a very
large number. Again, see [5] for further investigation. With this algorithm,
every current encryption protocol will be useless. However, Shor’s algorithm
is very sensitive to quantum noise and the interaction with the environment
and needs really advanced methods from the field of quantum error correc-
tion.

We are mainly focused in the noisy intermediate-scale quantum (NISQ) de-
vices with a few hundreds of qubits [3]. Such devices are very sensitive to the
environment and may lose their quantum state due to quantum decoherence.
They are not designed with advanced error-correction methods. However, a
lot of achievements have been made on NISQ devices.
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3 Deep Learning & Generative Models

3.1 Introduction

The concept of Artificial Intelligence, or AI for abbreviation, goes back to
the 1930s since Alan Turing published his first work, one of the most impor-
tant and influential papers in the history of computer science [6]. Research
upon the subject grew rapidly in the following years and massively the last
decade where we see various and complex techniques utilized in industry and
influencing our lives every day.

More terms have been introduced throughout the years includingMachine
Learning, Neural Networks and Deep Learning. They should not be confused
with one another. AI is a general concept and the others are just parts of it.
The following picture and points help to clarify the matter.

Figure 3: ML is not pure AI.

� Artificial Intelligence: A machine accomplishes a task that requires
human intelligence.

� Machine Learning: The art of designing an AI model based on data.

� Neural Networks: A family of architectures of ML algorithms.

� Deep Learning: Neural networks with multiple layers of computation.

Every machine learning model is categorized first and foremost based on
feedback and then, based on the task it is intended to execute. The next
graph provides a visual categorization of ML systems.
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Figure 4: ML Systems Categorization.

For a detailed presentation on the concepts of neural networks and train-
ing, the reader is refered to Appendix A.

3.2 Generative Modeling

Generative modeling is a form of unsupervised learning where the training
dataset is unlabeled. This means that there is no prior information on what
the output should be with respect to the input data. The goal of the model is
to identify the relationships and interdependencies in intricate datasets and
then produce similar data by drawing from the learned distribution. That
is, it models an unknown probability distribution and generates synthetic
data. Models of this kind have found several applications including computer
vision, speech synthesis, inference of missing text, noise removal from images,
chemical design and much more.

Assume that we have an unknown target distribution p and the distribu-
tion learned by the model qθ⃗. The objective is to minimize the divergence D
of these distributions, i.e

θ⃗∗ = argmin
θ⃗
D(p, qθ⃗) (49)

where θ⃗∗ are the parameters such that the distribution represented by the
model approximately conforms to the targeted distribution as indicated by
the training data in terms of divergence in the statistical manifold. As the
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actual distribution is not known a priori, it is estimated using a dataset
{v⃗i}Ni=1 that is available to us and follows the distribution p.

In information theory and statistics, divergence D between two distribu-
tions is a kind of statistical distance that indicates how ’close’ these distribu-
tions are. Consider the probability distributions p and q on a sample space
X . Of prime importance is the so-called Kullback–Leibler divergence or else,
the relative entropy defined as

DKL(p, q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
= −

∑
x∈X

p(x) log

(
q(x)

p(x)

)
(50)

The relative entropy is always a non-negative value and it equals zero only
when p and q are identical. Despite this fact, it cannot be considered as
a true metric of distance between distributions because it fails to exhibit
symmetry and does not adhere to the triangle inequality. Nevertheless, it
is commonly viewed as a measure of ”distance” between distributions for
practical purposes, as in the case of training the generative models we discuss
in this section.

Other loss functions used in generative modeling tasks include theWasser-
stein distance, Perceptual loss and Reconstruction loss.

3.3 Boltzmann Machines

A Boltzmann machine is a unique category of neural network that serves
as essential component in deep learning structures. Even today, they hold
significant relevance in the field of both practical and theoretical machine
learning. The idea for this type of network goes back to 1982 from J.J. Hop-
field’s work, where he presents a completely connected network comprising
interdependent, deterministic units and possess the capability to store and
recall binary patterns [10]. A Boltzmann machine [11] is a modified version
of the Hopfield network consisting of stochastic units. Every unit modifies
its state with time, relying on a probabilistic approach based on the state
of neighboring units. This proposal addresses various problems of Hopfield
networks that are presented in his work.

The general structure of a Boltzmann machine consists of the so-called
visible units that play the role of the input layer and the hidden units, serving
as underlying variables that shape a conditional and concealed representation
of the data.

32



Figure 5: A Boltzmann machine of 3 visible units and 7 hidden units. Source:
Google.

3.3.1 Restricted Boltzmann Machine

Interestingly, Boltzmann machines can be trained for generative modeling
tasks by using an alternative structure called restricted Boltzmann machine
[12, 13, 14]. This version tackles with the problem of learning the parameters
of the model, which is computationally intensive due to full connectivity of
the network. A restricted Boltzmann machine, on the other hand, retains a
similar structure with the difference that the units in the same layer are not
interconnected, resulting in a bipartite graph as presented below:

Figure 6: A restricted Boltzmann machine of 3 visible units and 7 hidden
units.

A restricted Boltzmann machine (RBM) is a generative stochastic arti-
ficial neural network that can be used for unsupervised learning tasks, such
as dimensionality reduction, feature learning, collaborative filtering, data
denoising and topic modeling. RBMs are particularly useful for modeling
complex distributions of high-dimensional data, such as images, speech sig-
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nals, genomic data and have been successfully applied in a wide range of
fields, including computer vision, speech recognition, natural language pro-
cessing and bioinformatics. RBMs are also used as building blocks for more
complex deep learning models, such as deep belief networks and deep autoen-
coders, which are used for tasks like image and text generation and anomaly
detection.

Restricted Boltzmann machine units are binary stochastic units that ex-
hibit probabilistic behavior, taking on a value of either 0 or 1. The joint state
of the visible layer V L is a bitstring v ∈ {0, 1}V , where V is the number of
units. Same goes for the hidden layer HL as h ∈ {0, 1}H . In a restricted
Boltzmann machine, every unit possesses a bias and every connection has
a weight. Functioning as a generative model, the machine characterizes a
probability distribution. The model determines the joint distribution of each
conceivable pair of visible and hidden vectors as

p(v,h) =
1

Z
e−E(v,h) (51)

Also, the marginal probability distribution of the visible layer can be
evaluated by summing over all possible vectors of the hidden layer as

p(v) =
∑
h

1

Z
e−E(v,h) (52)

and that of the hidden layer by doing the opposite as

p(h) =
∑
v

1

Z
e−E(v,h) (53)

The energy value E(v,h) of a given joint configuration (v,h) in a re-
stricted Boltzmann machine depends on the biases and pairwise interactions
of the units as

E(v,h) = −
∑
i∈V L

aivi −
∑
j∈HL

bjhj −
∑
i,j

wijvihj (54)

which can be written in a more concrete way by defining the V L bias vector
a, the HL bias vector b and the weight matrix W between the layers, so

E(v,h) = −aTv− bTh− vTWh (55)

In equations above, Z refers to the so-called partition function which is
calculated by summing over all possible pairs of visible and hidden vectors
as

Z =
∑
v,h

e−E(v,h) (56)
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which can be interpreted as a normalizing constant to ensure that we have
a valid probability distribution, i.e probabilities sum to 1. However, it is
clear that the computational cost in order to calculate Z is of exponential
time and feasible for problems with low dimensionality. This translates to
the evaluation of the joint distribution as well.

A common technique to overcome this problem is by using an algorithm
called Gibbs Sampling. Gibbs sampling is a type of Markov Chain Monte
Carlo (MCMC) algorithm used to generate samples from a probability dis-
tribution [15]. The method is commonly used in machine learning and sta-
tistical inference. A starting value is chosen for each variable in the model,
and then, in each iteration, one variable is updated by sampling from its
conditional distribution given the values of the other variables. The process
repeats, and after a sufficiently large number of iterations, the samples con-
verge to the true underlying distribution. One of the advantages of Gibbs
sampling is that it can be used to sample from complex distributions where
direct sampling is not possible. However, convergence to the true distribu-
tion can be slow and the method may require a large number of iterations to
produce accurate results.

By utilizing Bayes theorem and some simple mathematical operations,
we can derive

p(h|v) =
∏
j

p(hj|v) (57)

and
p(v|h) =

∏
i

p(vi|h) (58)

hence, it implies conditional independence of visible units conditioned on all
hidden units and vice-versa, as it is a product of probabilities.

At last, we can express (57), (58) using the sigmoid function σ as

p(hj = 1|v) = σ

(
bj +

∑
i

wijvi

)
(59)

and

p(vi = 1|h) = σ

(
ai +

∑
j

wijhj

)
(60)

respectively.

3.3.2 Learning with a restricted Boltzmann machine

In order to train a restricted Boltzmann machine, we recall what we said
in the beginning of this section on generative modeling and Appendix A.
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Consider a training dataset with N samples S = {v(1),v(2), ...,v(N)} following
the distribution pdata(v), where v ∈ S. We denote the model distribution as
qθ(v).

We are interested in minimizing the relative entropy between the model
and the data distribution

DKL(pdata, qθ) =
∑
v∈S

pdata(v) log

(
pdata(v)

qθ(v)

)
(61)

as
argmin

θ
D(pdata, qθ) (62)

If we work this out, we can see that minimizing the relative entropy is equal
to maximizing the log-likelihood

argmin
θ
D(pdata, qθ) = argmin

θ

∑
v∈S

(pdata(v) log pdata(v)− pdata(v) log qθ(v))

(63)

= argmax
θ

∑
v∈S

pdata(v) log qθ(v) (64)

Gradient-based optimization methods are typically employed to maximize
the log-likelihood. The log-likelihood for a particular vector v and parameter
θ can be obtained by using (52) as

ln qθ(v) = ln

(∑
h

1

Z
e−E(v,h)

)
(65)

= ln
∑
h

e−E(v,h) − ln
∑
v,h

e−E(v,h) (66)

The gradient with respect to the parameter θ is

∇θ ln qθ(v) = −
∑
h

p(h|v)∇θE(v,h) +
∑
v,h

p(v,h)∇θE(v,h) (67)

which comes by differentiation of (65). For the given dataset of N samples,
the log-likelihood gradient is

1

N

N∑
l=1

∇θ ln qθ(v
(l)) = Eq[∇θE(v,h)]− Epdata [∇θE(v,h)] (68)

where E denotes the expectation value with respect to the corresponding
distribution.
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For the restricted Boltzmann machine, the parameter θ corresponds to
all weights and biases of the model. From the last equation, we derive the
following

∆wij = Epdata [vihj]− Eq[vihj] (69)

∆ai = Epdata [vi]− Eq[vi] (70)

∆bj = Epdata [hj]− Eq[hj] (71)

hence, we update the parameters as

w∗
ij = wij + η∆wij (72)

a∗i = ai + η∆ai (73)

b∗j = bj + η∆bj (74)

where η is the learning rate.
The expectation value of the probabilities of the hidden layer with respect

to the training data Epdata can be easily obtained and it’s called the positive
phase. The second term Eq is called the negative phase and calculates the
joint probability of the visible and the hidden layer. As we said previously,
the evaluation of this expression is exponential. It depends on the size of
the smallest layer because the joint probability p(v,h) can be expressed with
respect to both conditional probabilities p(h|v) or p(v|h).

A Markov chain Monte Carlo (MCMC) algorithm for sampling is once
again used to obtain the negative phase of our model. The samples are
collected from the Markov chain at the point of reaching the steady-state
distribution. However, if the chain is allowed to converge at every iteration,
it would result in a high computational cost. To circumvent this issue, we
employ a technique called Contrastive Divergence (CD) [14], which helps us
avoid the computational overhead. The intuition behind CD is that the pos-
itive phase computes the activations that the RBM expects to see when the
input is a training sample, while the negative phase computes the activations
that the RBM generates when the input is generated from the RBM itself.
By minimizing the difference between these activations, CD encourages the
RBM to generate samples that are similar to the training samples.

To reduce the computational burden, one can initialize the Markov chain
with dataset samples, thereby bringing it closer to the target distribution.
Additionally, instead of computing the expectation over the entire converged
distribution, we can obtain a single sample vk by running the Markov chain
for k steps. This enables us to bypass most of the computational expense
involved in obtaining samples from the fully converged distribution.

Hinton has explained that ’contrastive divergence’ can be viewed as the
disparity between two Kullback-Leibler divergences. He also argues that we
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should not focus on minimizing the relative entropy between the original data
distribution and the fully converged distribution of the Markov chain, but
we can minimize the following:

DKL(pdata(v), qθ(v)) = DKL(pdata(v), qθ(v))−DKL(pk(v), qθ(v)) (75)

where pk(v) is the distribution after k steps of the Markov chain. For the
majority of problems, a single iteration of Gibbs sampling is adequate in
practice.

3.3.3 Data Denoising and Reconstruction

In this subsection, we will focus on the tasks of data denoising and recon-
struction. RBMs can be adjusted to remove different types of noise that may
be present on the input samples. The MNIST dataset of handwritten digits
will be used due to simple statistical patterns of the data. RBMs may not
be effective on very complex statistics because of their limited architecture
in terms of the number of layers and units in each layer.

Training restricted Boltzmann machines turns out to be a very challenging
procedure. To train the model, we follow Hinton’s practical guide to training
restricted Boltzmann machines [16] which outlines some important aspects
to consider. In [7], there is a notebook where I train a RBM on Fashion-
MNIST to reconstruct images. The purpose of this is to show that it is more
challenging to achieve a lower reconstruction error on datasets with complex
statistics. Also, there are some tests with different hyperparameters in order
to present the effects that Hinton states in his guide regarding mometum and
learning rate decrease.

The MNIST dataset consists of 60,000 training samples and 10,000 val-
idation samples. Each sample is an image of 28 × 28 pixels with values in
[0,255]. As the RBM requires binary input, we do some simple pre-processing
and normalize the data to binary, i.e [0,1], with a threshold of 127. Below,
we can see some samples from MNIST before normalization:
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Figure 7: MNIST handwritten digits.

First, we train the model on the MNIST dataset such that it learns the
underlying distribution of the data. By using the CD algorithm to maximize
the log-likelihood and minimize the reconstruction error with just one step
of Gibbs sampling, we get sufficient quality reconstructions of handwritten
digits without overfitting to the training data. The reconstruction error on
the training set is really close to than of the validation set, meaning that the
model generalizes well to unseen data.

The pictures below show original handwritten digits and their reconstruc-
tions from the RBM. The model was trained for 20 epochs, a batch size of
10 and a learning rate of 0.0125. The choice of the learning rate came after
several tests which can be found in the notebook where I used the Fashion-
MNIST dataset for experimentation purposes. The RBM consists of 784
visible units (equal to the number of pixels in an image) and 400 hidden
units in order to retain a balance between training time, reconstruction qual-
ity and denoising performance. Also, just one step of Gibbs sampling was
sufficient for achieving adequate results.

Figure 8: Original handwritten digits from the validation set.
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Figure 9: The reconstructed digits from the validation set.

Since the RBM has learned the underlying statistics of the data we are
interested in, we can use this for the task of data denoising.

Figure 10: 2% bit-flipping noise.

Figure 11: Denoised images from RBM.

For higher-levels of noise, as well as other types (e.g Gaussian noise), one
may use more complex architectures and methods, such as deep-belief net-
works (stacked RBMs that form a larger network), convolutional networks or
autoencoders which are suitable and shown to be effective for tasks involving
image processing. Various learning rate and sampling schedules, along with
hyperparameter optimization and fine-tuning are some aspects that may be
further explored.
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3.4 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a more advanced technique
for generative modeling tasks and has been a central area of research since its
conception in 2014 by Ian J. Goodfellow et.al [17]. It consists of two ANNs
that compete with each other in a zero-sum game. These two sub-networks
are commonly seen as the generator and the discriminator respectively.

The following picture represents the general structure of a GAN:

Figure 12: GAN Training Pipeline.

Some of the applications of GANs include image and video synthesis,
data augmentation, style transfer, text generation, anomaly detection and
drug discovery.

3.4.1 Overview

The generator’s task is to generate conceivable data. The discriminator is
mainly a classifier and it is trained using the generated instances as negative
examples and the real data as positive examples. By differentiating between
the generator’s synthetic data and real data, the discriminator penalizes the
generator for creating unrealistic outputs. At the start of training, the gen-
erator’s output is evidently artificial and the discriminator learns to identify
it as such. With time, the generator’s performance improves and it generates
more realistic data, leading to the discriminator making more classification
errors and ultimately decreasing its accuracy. If the generator is trained ef-
fectively, the discriminator’s ability to distinguish between real and fake data
diminishes, causing it to misclassify fake data as real and lower its accuracy.
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As we can see, the generator tries to maximize the error of the discrimina-
tor, whereas the latter wants to minimize the generator’s error by providing
information feedback to update its parameters.

Neural networks typically require input data to operate. However, when
a network generates novel instances as output, we must determine an appro-
priate form of input to supply to the network. At a fundamental level, a GAN
utilizes random noise as its input. Subsequently, the generator processes this
noise into a relevant output, allowing the GAN to produce a diverse range
of data instances by drawing from distinct locations in the desired distribu-
tion. Empirical studies indicate that the nature of the noise distribution is
not significantly relevant. Hence, we can use a simple distribution, such as
a uniform distribution, for noise generation. Furthermore, the noise space is
typically of smaller dimension than the output space for ease of use.

Training a GAN is a complex process because its training algorithm must
address two complications. The first is that we have to train two different
networks. Thus, there is a need of scheduling two procedures. This leads
to the second difficulty, the identification of the convergence of the GAN
training as a whole. A method of alternating training is adopted during the
design of a GAN. First, the discriminator trains for one or more iterations.
Then, the generator trains for one or more iterations as well. These two steps
are repeated to train the two respective networks. During the discriminator
training phase, we keep the generator constant, meaning that we do not pro-
ceed to the update of its parameters. Respectively, we keep the discriminator
constant during the generator’s training.

In the original GAN formulation [17], the discriminator tries to predict
the probability of a sample being real or fake. This is often done by using a
sigmoid activation function in the discriminator output layer. In that case,
a natural loss function is the binary cross-entropy and the optimization task
can be formulated as

min
G

max
D

E
x∼Pr

[log (D(x))] + E
x̃∼Pg

[log (1−D(x̃))]

where G is the generator, D the discriminator, x is a sample from the dis-
tribution of real data Pr and x̃ is a generated sample from the modeled
distribution Pg.

In the best case scenario where the generator performs exceptionally well,
the discriminator would have a 50% accuracy, indicating that it is no better
than random guessing at classification. The evolution of the generator and
discriminator relationship presents a challenge for the convergence of the
GAN. As training progresses, the feedback from the discriminator to the
generator becomes less relevant and if training persists beyond this point, the

42



generator might receive spurious feedback, ultimately resulting in a decline
in quality.

3.4.2 Design Considerations: Simple Application

Designing a GAN is a very complex procedure and there are some con-
cerns that must be taken into consideration for each task at hand:

� Types of generator and discriminator networks (multi-layer, convolu-
tional, recurrent etc).

� Types of cost functions for the respective networks.

� The problem of vanishing/exploding gradients, where the loss function
saturates and there cannot be meaningful updates to the generator
network (due to the discriminator network being more powerful, which
results to high accuracy in distinguishing between real and fake data).

� The problem of mode collapse, where the generator fails to generalize
and produces only some subsets (modes) of the data.

Nevertheless, GANs have been successfully employed for image genera-
tion, data augmentation, fraud detection, style transfer and text inference
among others. The following picture depicts the output of a GAN trained
on MNIST with TensorFlow [8] for 50 epochs, a batch size of 64, learning
rate of 0.0001 and parameter β = 0.5 using Adam optimizer and binary
cross-entropy loss for both networks [7].

Figure 13: Notice that some outputs do not resemble a digit at all and others
are noisy, so adjustments are needed for better performance.
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4 Quantum Machine Learning

4.1 A Gentle Introduction

Quantum Machine Learning (QML) refers to the exploitation of quantum
algorithms as a part of a larger and complex implementation. Quantum al-
gorithms have the potential to outperform classical ones for specific problems
resulting to the so-called quantum speedup. This notion has to do with the
number of queries and gates needed by some algorithm, as well as a scaling
advantage between a wide variety of problems. The latter, however, would
require the implementation of a quantum computer in order to get a com-
parison between the classical and quantum realms, so it is a benchmarking
problem. Moreover, the best performance for some classical algorithms is not
always known for certain tasks. Consider the integer factorization problem.
Recalling some fundamentals of complexity theory, this problem belongs to
the NP class of exponential complexity, but there is no proof that it can
be solved in polynomial time or if it is NP-complete. In 1994, Peter Shor
developed a quantum algorithm that can solve the problem in polynomial
time [18]. But with the current available technology, it is far from being re-
alized as it requires a fault-tolerant quantum computer that can scale up to
a few thousands qubits and is not sensitive to noise, in contrast to the state
of the art quantum processors that exist today with a few tens to hundreds
of qubits and a high sensitivity to noise and errors.

Quantum speedups are idealized models for quantifying resources, as they
are still characterized by measures of classic complexity theory. Research is
being conducted on how to map this idealization to reality. Since fault-
tolerant quantum computing is a long way off from this, study is focused on
near-term devices that can perform quantum computations. Currently, the
community is interested in noisy-intermediate scale quantum (NISQ) devices.
These refer to quantum computers with limited qubits and error-prone oper-
ations, yet are capable of performing specific quantum tasks beyond classical
computing capabilities.

Nevertheless, quantum algorithms that exhibit speedup have already been
proposed. For example, common linear algebra subroutines such as Fourier
transforms, finding eigenvectors and eigenvalues and solving systems of linear
equations fall into the category of quantum-based linear algebra subroutines
(qBLAS) [19] based on the fact that quantum mechanics, by nature, is all
about statistics and linear algebra. Surprisingly, qBLAS translate into quan-
tum speedups for a broad collection of machine learning and data analysis
algorithms such as principal component analysis (PCA) [20], support vector
machines (SVMs) [21], gradient descent and more (see Table 1 below).
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Method Speedup

Bayesian Inference [32] O(
√
N)

Least-squares fitting [33] O(
√
N)

Quantum PCA [34] O(logN)

Quantum SVM [35] O(logN)

Table 1: Speedups of QML algorithms compared to the classical counterparts.

QML is a general approach and techniques such as supervised, unsuper-
vised or reinforcement learning may be adopted. However, there is a distinc-
tion between data and algorithms used. In fact, based on this difference we
can design hybrid classical-quantum systems where some parts of a specific
problem involve classical computations and others are processed using cur-
rent state-of-the-art NISQ devices. A gentle categorization of based on data
and algorithms is shown in the following figure.

Figure 14: Hybrid systems categorization based on data and algorithms.

4.1.1 Fault-tolerant Quantum Computing

The idea of fault-tolerant computing goes back to the 1950s, when J.
von Neumann introduced the threshold theorem [27] stating that an ideal
circuit of p(n) gates can be simulated to precision ε by a gate-faulty circuit
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of O(p(n) logc(p(n)/ε) gates (c is constant), whose components have an error
rate p below some constant threshold pc and under fair assumptions regarding
hardware noise. About half a century later, Peter Shor stated that for any
quantum computation with t gates, a polynomial size quantum circuit that
tolerates O(1/ logc t) amounts of inaccuracy and decoherence per gate can
be implemented by showing that operations can be performed on quantum
data encoded by quantum error-correcting codes without decoding this data
[28]. In this way, the quantum fault-tolerance theorem was introduced.

There are several concerns around fault-tolerant quantum computers.
One of the main difficulties in implementing such hardware is decoherence,
which tends to destroy the superposition of states resulting in information
loss and infeasibility of long computations. Moreover, the accumulation of
the inaccuracies of quantum state transformations during computation make
the system unreliable. To gain better intuition, we present a fundamental
subroutine of QML algorithms and quantum computation field in general
named after its originators Harrow, Hassidim and Lloyd as the HHL algo-
rithm [29].

HHL attempts to solve systems of linear equations with a quantum com-
puter, specifically Ax⃗ = b⃗, where x⃗, b⃗ ∈ CN and A ∈ CN×N , by constructing
a quantum state proportional to A−1 |b⟩, where A−1 is the inverse matrix
of A. In the case where A is not square or has zero eigenvalues, HHL can
be generalized to find the state |x⟩ that minimizes |A |x⟩ − |b⟩| [30]. The
best classical algorithm computes x⃗ in O(N logN), whereas HHL promises
O((logN)2) quantum steps to output |x⟩. However, there are serious lim-
itations that are related to fault-tolerant quantum computations regarding
encoding and decoding of data.

The Input problem: The first issue is that vector b⃗ must be encoded to
the quantum state |b⟩ of logN qubits and be prepared on a quantum device.
This requires the use of a quantum random access memory (qRAM) [31] that
takes O(N) operations divided by O(logN) steps that can be performed in

parallel in order to map data vector b⃗ to the state |b⟩. Nevertheless, designing
a qRAM induces a high cost for big data which makes it infeasible at the time
of speaking, but without it, there is a risk of losing the quantum speedup.
Encoding should be done in polynomial time.

Speaking about encoding, we present three general techniques that can
be adopted, since this is not a standard process and relies on the nature of
the problem:
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Figure 15: Encoding schemes.

The Output problem: The second matter in question is reading the
solution from state |x⟩. Decoding takes O(N) repetitions to reconstruct the
components of x⃗ and get the full answer from |x⟩. The latter contains the
values of x⃗ encoded in its logN amplitudes. Again, this imposes a risk on
speedup, but this issue is related to the probabilistic nature of measurements
and quantum mechanics which is inevitable.

The Simulation problem: At last, we are concerned with the matrix
of coefficients A. The condition number connected with Ax⃗ = b⃗ establishes a
limit on the level of imprecision in the approximation of the solution vector
|x⟩. This must be low, so that A is well-conditioned because it affects the
number of times that the state preparation circuit needs to be applied to
succeed. Also, unitary operations of the form e−iAt should be efficiently sim-
ulated by a quantum computer for a wide range of t values. The simulation
should be polynomial in time in order to retain speedup.

To sum up, it is evident that the HHL algorithm needs a higly fault-
tolerant device with immense cost, so it is far from being implemented with
towering accuracy. However, just like the quantum Fourier transform algo-
rithm, we are not interested on the process itself. If special constraints are
taken care of, HHL yields a significant subroutine for achieving speedups
compared to some classical machine learning algorithms. Some remarkable
mentions include Bayesian Inference [32], quantum PCA [34] and quantum
SVMs [35]. HHL also offers a blueprint for encoding and preparing state
|x⟩, implementing unitary transformations and measuring the results. Most
notably, it demonstrates how to calculate the cost of these operations and
assess their efficiency compared to classical algorithms. The following figure
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depicts the problems that the reseachers are concerned with when designing
a quantum computer.

Figure 16: Problems in the design of a fault-tolerant quantum computer.

4.1.2 Noisy-Intermediate Scale Quantum (NISQ) Era

Error-free quantum computers capable of handling millions of qubits are
a prerequisite for many proposed quantum algorithms, a requirement that
stands in stark contrast to the current quantum processors available, which
only provide a few unreliable qubits.

NISQ refers to the current state of quantum computing, which involves
quantum processors that have a limited number of qubits (usually fewer than
100) and suffer from significant quantum noise and errors [3]. These quantum
processors are considered to be at an intermediate stage between classical
computing and full-scale quantum computing. Despite the limitations of
NISQ processors, researchers and businesses are still actively exploring ways
to use them for practical applications. The goal is to develop algorithms
and techniques that can work with the noise and limited number of qubits
in NISQ processors to solve problems that are currently beyond the reach
of classical computers. Some areas of research in NISQ include quantum
chemistry, machine learning and optimization.
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Figure 17: Physical error rate vs Number of physical qubits. Source: [3]
Figure is from 2018. The current state-of-the-art quantum computer in terms
of the number of qubits is IBM’s Osprey superconducting quantum computer,
which has 433 qubits and was announced in November 2022. It has a physical
error-rate of approximately 0.8% for two-qubit gate operations and 3.7% for
readout errors.

The dominant blueprint for obtaining quantum advantage in the NISQ era
is the so-called variational models [36]. It is a type of machine learning model
that are based on the principle of variational inference. Variational inference
is a mathematical framework for approximating the posterior distribution of
a probabilistic model, given some observed data. In variational models, the
idea is to model the posterior distribution as a simpler distribution, typically
a parametric distribution such as a Gaussian and to find the parameters of
this distribution that best approximate the true posterior distribution. The
best approximation is typically found by minimizing the difference between
the true posterior distribution and the approximated one, as measured by a
certain objective function called the variational lower bound.

Variational models have become popular in machine learning because
they offer several advantages over other methods for approximating poste-
rior distributions, such as Markov Chain Monte Carlo (MCMC) methods
[15]. For example, variational models are computationally efficient and can
be trained on large datasets, making them well-suited for real-world applica-
tions. They also have the ability to learn complex distributions, which can
be useful in a variety of settings such as Bayesian deep learning and genera-
tive models. Moreover, they have been applied to a wide range of machine
learning tasks, including density estimation, latent variable models and re-
inforcement learning. Despite their success, however, they are not without
limitations and ongoing research is focused on finding ways to improve the
accuracy and scalability of these models.
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The following figure represents the variational model approach as a part
of a larger general hybrid system implementation:

Figure 18: Variational Model Approach.

In summary, the way variational models work is fairly straightforward.
The data is mapped into quantum states using a parameterized quantum
circuit U(x; θ) [37]. Then, an output measurement is taken to produce an
expectation value. The quality of the prediction is assessed using a cost
function, with optimal parameters found through minimizing the cost via
classical optimization techniques. This classical optimization step is handled
by a classical computer in order to minimize the burden on quantum devices.
The flexibility of variational models makes them ideal for dealing with the
limitations of current quantum computers.

4.2 Quantum Generative Modeling

Quantum generative modeling is a cutting-edge field that harnesses the
power of quantum computing to generate data distributions and has the
potential to impact a wide range of industries and scientific domains. Its de-
velopment is closely tied to advancements in quantum hardware and hybrid
classical-quantum algorithms. Quantum generative models leverage quantum
properties, such as superposition and entanglement, to perform certain com-
putations faster and more efficiently. The key point is to develop algorithms
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that can learn to produce samples from joint probability distributions, which
is an important task in a wide variety of fields. Some notable examples in-
clude quantum autoencoders [38], quantum Boltzmann machines (QBMs) [39]
quantum circuit Born machines (QCBMs) [40, 41, 42] and quantum GANs
[63, 64].

As the scope of this thesis is to present some generative modeling applica-
tions, we will focus on QCBMs and QGANs, where the latter is an extended
idea of an application we will present on financial time series in the next
chapter.

4.2.1 Parameterized Quantum Circuits

The quantum equivalent of a neural network is a parameterized quantum
circuit (PQC) [37]. As the name suggests, it consists of unitary gates that are
parameterized with a set of parameters. Basically, a PQC is decomposed in
a series of adjustable gates such as single-qubit rotation gates or entangling
gates. For instance, we can have parameterized rotations along the X, Y and
Z axes respectively with the operators

RX(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
, RY (θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

RZ(θ) =

(
e−i(θ/2) 0

0 ei(θ/2)

)
or coupling gates between two qubits to introduce entanglement, such as

the Mølmer-Sørensen gate,

XX(θij) = exp

(
− i
2
θijXi ⊗Xj

)

=
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θij
2

)
0 0 −i sin

(
θij
2

)
0 cos
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(
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(
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0
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(
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0 0 cos
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where X is the Pauli gate and θij is a parameter.

Of course, we can use different parameters for each rotation and coupling
gate. The general machine learning model of classical pre/post-processing
and a PQC is shown below:
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Figure 19: Source: [37]

A data vector is sampled from the dataset distribution, x ∼ PD. During
pre-processing, map it to the vector ϕ(x) that parameterizes the encoder cir-
cuit Uϕ(x). A variational circuit Uθ, parameterized by a vector θ, acts on the
state prepared by the encoder circuit and possibly on an additional register
of ancilla qubits, producing the state UθUϕ(x) |0⟩. A set of observable quanti-
ties {⟨Mk⟩x,θ}Kk=1, is estimated from the measurements. These estimates are
then mapped to the output space through classical post-processing function
f . For a supervised model, this output is the forecast associated to input
x. Generative models can be expressed in this framework with small adap-
tations. The output may be obtained indirectly via expectation values, or
directly using projective measurements such as the Born machine model we
discuss next. For further reading on PQCs, the reader is referd to [37].

4.2.2 Quantum Circuit Born Machines

A Quantum Circuit Born Machine (QCBM) is a parameterized quantum
circuit (PQC) model for unsupervised generative modeling tasks that was
first proposed in 2018 by researchers at MIT and have since garnered signif-
icant interest in the quantum computing community. It a type of what we
call a quantum neural network (QNN). The samples x are generated directly
via projective measurements on the qubits using the Born rule

x ∼ Pθ(x) = |⟨x|ψ(θ)⟩|2 (76)

where they follow a probability distribution Pθ(x) with parameters θ. The
quantum system wave-function ψ(θ) is prepared by applying a parameterized
unitary as:

|ψ(θ)⟩ = U(θ) |0⟩ (77)
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The architecture of the PQC U(θ) is based on current NISQ capabilities
at the time of speaking.

The ansatz for the QCBM is comprised of layers of parameterized gates,
where two types of layers are commonly used. The first one contains arbitrary
single-qubit rotations, while the second type corresponds to the so-called
entangling layer which contains coupling gates between two qubits. The
circuit is designed by stacking these two types of layers consecutively. A
high-level overview of a QCBM is shown below:

Figure 20: QCBM Ansatz.

Arbitrary single-qubit rotation layers
Generally, the rotation layer consists of 3 parameterized rotation gates

that correspond to rotations on the Bloch sphere, applied on each qubit.
These unitary gates are the usual RX , RY , RZ rotations around each axis
respectively. Let us define the unitary

U (l)(i) = R(l,i)
z (αi) ·R(l,i)

x (βi) ·R(l,i)
z (γi) (78)

where l is the layer index and αi, βi, γi are the respective parameters of
RZ , RX , RZ , each acting on qubit i.

For N qubits, an arbitrary rotation layer requires 3N parameters. Since
the circuit is initialized to the state |0 . . . 0⟩, we can omit the first rotation

R
(l,i)
Z (αi) around the Z-axis since only a phase is added and the result is the

same state. This reduces the number of trainable parameters in the first
layer to 2N . Moreover, if an odd number of layers is used, the last layer of
the circuit corresponds to a rotation layer and we can omit the last rotation
R

(l,i)
Z (γi), as the phase is not measurable by the Born rule.
Reducing the number of parameters is crucial, as shallow quantum circuits

are more preferable for NISQ devices. Deeper circuits significantly affect the
fidelity of quantum states due to decoherence. Also, more parameters result
in more complex optimization techniques. As QCBMs utilize the Born rule
for generating samples directly, we can leverage this and reduce the number
of parameters of the model by choosing a specific sequence of rotations.
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Entangling layers
The entangling layers contains coupling gates between two qubits and

the architecture depends on the experimental platform at hand. In previous
implementations on trapped-ion quantum computers, the entangling layers
consisted of Mølmer-Sørensen gates. Also, one may use not parameterized
gates for coupling, such as CZ.

As for the complexity of this layer, the number of entangling gates differ
depending on the connectivity we wish to implement. We will study 5 pos-
sible topologies, the chain, star, ring, all-to-all and grid. For 4 qubits, these
are illustrated below:

Figure 21: Topologies of the entangling layers.

Training a QCBM
To approximate an unknown target distribution PD, a QCBM is trained

using a hybrid quantum-classical variational model. The training is performed
on a dataset D consisting of independent and identically distributed (i.i.d)
samples from PD. The model generates samples that are similar to the target
distribution by adjusting the circuit parameters through classical optimiza-
tion, which uses the output of a quantum computer as input.

Classical optimization may involve a gradient-based or a gradient-free
method. Using a gradient-free method, such as particle swarm optimization
(PSO) [65], is more preferable as there is no need to devise a differentiable
cost function and thus, gradients computations are circumvented. In [41], the
authors devise an efficient gradient-based learning algorithm for the QCBM
by minimizing the kerneled maximum mean discrepancy loss and show the
complexity of this process, as well as the advantages over gradient-free opti-
mization schemes.

For our purpose, we opt to go with PSO and use the clipped negative
log-likelihood as the cost function:
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Cnll = −
∑

x∈{0,1}N
PD(x) · log {max (ϵ, Pθ(x))} (79)

where ϵ is a quantity close to zero in order to avoid singularities that occur
when the estimated probability of some data is zero and thus, the cost is
infinite due to the logarithmic function. Typical values are in the range
of ϵ = 0, 001 or ϵ = 0, 0001. In [42], the authors present the results of
training a QCBM with various topologies for the entangling layers, using
the clipped negative log-likelihood cost function and two different gradient-
free optimization methods, PSO and Bayesian optimization [66]. They use a
simple dataset called Bars-and-Stripes (BAS), which can be easily encoded
using the basis encoding scheme.

The Bars and Stripes (BAS) dataset is a simple synthetic dataset used in
machine learning and pattern recognition tasks. It consists of images of bars
and stripes, where bars are horizontal and stripes are vertical. The images
are represented as binary matrices where 1 represents a filled pixel and 0
represents an empty pixel. The images that belong to the dataset comprise a
subset of pictures with n×m pixels. From simple combinatorics, it is trivial
to derive that for n×m pixels, there are BAS(n,m) = 2n + 2m − 2 images
in the subset. The simplest case is the BAS(2, 2). The figure below presents
the data that is in the BAS set along with the target distribution and those
that do not correspond to BAS samples.

Figure 22: Each BAS sample can be interpreted as a N -dimensional vector
x, where N = n · m. Since the patterns are black and white, we have
binary vectors x ∈ {0, 1}N . Thus, we can have one-to-one mapping with the
computational basis of N -qubit quantum systems, i.e x→ |x1x2 . . . xN⟩. For
simplicity, we assume that the samples are i.i.d.
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Using the Qiskit library for quantum programming purposes [67], we
present the QCBM circuits with 2 and 4 layers for the topologies we men-
tioned previously:

Figure 23: QCBM circuits of 2 (left) and 4 (right) layers.

We tested only 2 and 4 layers, as deeper circuits may enhance expressivity
but can also lead to overfitting and create a model that is difficult to train.
For the fully-connected topology, a single rotation layer and an entangling
layer are sufficient to capture the dataset patterns and correlations for this
task. For the other topologies, an additional pair of layers, one rotational
and one entangling is needed to achieve better accuracy, but, at the presence
of high noise. We can confirm these facts by looking at the results below:
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Figure 24: Training results after 100 iterations and 1000 circuits shots. We
point out the all-to-all and grid connectivities to show the best performance.
We used the same PSO initial parameters as in [42].
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We are limiting our focus to shallow circuits because longer circuits are
more suspectible to noise, especially for NISQ devices. If the shallow circuit
yields poor performance, it can be safely assumed that the longer circuit will
also yield poor performance. The number of layers is closely related to the
entangling capability and expressibility of a circuit [43].

Figure 25: QCBM Training Cost History.

4.2.3 Quantum Generative Adversarial Networks

A Quantum Generative Adversarial Network (QGAN) is another type of a
quantum neural network (QNN). It retains the structure of the classical GAN,
but the generator and/or the discriminator is replaced by a parameterized
quantum circuit (PQC). In this work, we focus on the hybrid approach, where
the generator is a quantum circuit and the discriminator is a classical neural
network.

Figure 26: A quantum GAN with a quantum circuit as the generator and a
classical discriminator network.
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5 Quantum Modeling & Finance

Economists study the functioning of economies and develop theories to
explain and predict economic phenomena. Understanding the economy is
important because it can affect the well-being of individuals and societies as
a whole, including their standard of living, income, employment opportunities
and access to goods and services. One of these theories is a mathematical
framework which we refer to as financial time series.

5.1 Financial Time Series

A time series is generally a set of points indicating some quantity over
discrete steps in time. This may include temperatures, data produced by
sensors or some other value. The S&P 500 index daily closing price values
over a period of time is such an example. When we are dealing with finance,
we call this model a financial time series.

As the mechanism that generates financial data is unknown, generative
modeling for finance is an extremely active area of research and has found
various applications involving predictions, assets and risk management, port-
folio optimization and studying the overall health of an economy.

5.1.1 The S&P 500 Index

The S&P 500 index is a market capitalization-weighted index of 500 large-
cap stocks traded on the two largest U.S. stock exchanges: the New York
Stock Exchange (NYSE) and the Nasdaq Stock Market. These stocks are
selected based on certain criteria such as market capitalization, liquidity and
financial viability and are representative of the U.S. economy. It is widely
regarded as one of the best measures of the performance of the US equities
market and it is often used as a benchmark for the overall performance of the
US stock market. The S&P 500 index is frequently used as a gauge of the
health of the US economy and is tracked by investors, analysts and financial
media around the world.
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Figure 27: The S&P 500 index closing prices from 1/1/2000 since 31/12/2022.

The S&P 500 index is clearly in an uptrend over the years. This is logical,
as it kind of measures the overall performance between 500 most successful
companies in the U.S.

We are going to make use of this index in order to study some aspects of
financial time series, as well as develop a generative adversarial network that
generates synthetic data that resembles the S&P 500 index. Then, we will
extend this idea to the quantum computing field, where we will implement
a hybrid classical-quantum variational model with a parametrized quantum
circuit (PQC) as the generator of a higher-level framework known as quantum
GAN (QGAN).

5.1.2 Raw price fluctuations vs Logarithmic Returns

The upward trend is a common property in many financial time series,
especially in indexes such as the S&P 500, which means that the value of the
index may increase over time even if there are fluctuations in the short term.
Therefore, studying the index’s price alone may not be sufficient to compare
the index’s performance over different periods of time. Instead, analysts use
the returns instead of prices for such purposes. The logarithmic returns of a
stock or an index is defined by the equation

rt = ln(pt)− ln(pt−1) = ln

(
pt
pt−1

)
(80)

where rt are the logarithmic returns at time t and pt is the stock or index
price at time t. Also, we assume that the prices are equally spaced by some
constant ∆t (in our case, this is one day). For further details, refer to [44].
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The logarithmic returns have some special properties that we wish to
exploit, which are not present if we used the direct returns instead, given by
pt − pt−1. Let us visualize the direct returns and the logarithmic ones to get
an idea:

Figure 28: Direct Returns (Left), Log-Returns (Right).

Scaling over time
The first thing to notice is how the returns scale over time. The log-returns
stay within an approximate range, whereas the bounds of the direct returns
range are altered. Raw price fluctuations can vary widely depending on the
value of the index, which can make it difficult to compare fluctuations at dif-
ferent points in time. However, log-returns account for the percentage change
in price, which helps to normalize the data and makes it easier to compare
fluctuations across different periods. This is because of the compression that
the logarithmic function induces on the values. Additionally, log-returns are
additive, which means that the return over a longer period can be calculated
by summing the returns over shorter periods, which is not the case with
raw price fluctuations. This allows for simple arithmetic operations, such as
averaging, which can be useful for various applications.

Returns Rate
Also, the returns rate Rt at time t is closely related to log-returns as

Rt =
pt − pt−1

pt−1

≈ ln

(
pt
pt−1

)
(81)

The returns rate is simply the percentage change in the value of an in-
vestment over a specific period of time. Log-returns are calculated using
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the natural logarithm of the ratio between the final and initial values of an
investment. Since the logarithmic function is continuous and differentiable,
log-returns can be interpreted as the continuously compounded returns rate.
This means that a log-return of 0.01 (or 1%) can be interpreted as a contin-
uously compounded return rate of 1%.

Volatility Smile
Log-returns are also related to stock volatility, which measures how much the
price of a stock fluctuates over time. The relationship between log-returns
and stock volatility is known as the volatility smile. It is a common feature
of financial markets where implied volatility, which is derived from options
prices, varies with respect to the strike price and time to expiration. In gen-
eral, the volatility smile implies that log-returns are not normally distributed,
but instead have fatter tails than a normal distribution would suggest. We
will come to this right after.

5.1.3 Stylized Empirical Facts

Over the years, analysts have extracted several statistical properties from
financial time series that are present in almost every market, which are known
as stylized facts. This is essential, as there is no standard procedure of how
the values of such a series are produced. As a result, predicting future stock
prices is out of the question. As a consequence of many independent empirical
studies on the statistical properties of financial markets, there is a wide
collection of stylized facts [45]. We will be concerned with some of them.

Log-Returns Density is not Gaussian

Figure 29: Non-Gaussianity of Logarithmic Returns.

On the left, we have the histogram of the log-returns along with a Gaus-
sian distribution with the same parameters and on the right, we plot the
same results in logarithmic scale to inspect in further detail. The log-returns
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density peak is almost doubled with respect to the Gaussian distribution.
Also, by inspecting the right figure, we see that the tails of the log-returns
do not decay as fast as the Gaussian. This property is known as fat tails.

It is worth noting that these two properties are not so well clarified when
we increase the time scale from days to weeks or months. This is so-called
aggregational normality.

Absence of Linear Autocorrelation
The previous observation comes from a statistical perspective and is indepen-
dent of time. However, there are some stylized facts that deal with properties
related to time. One such property is the absence of linear autocorrelations.
We can inspect this by calculating the autocorrelation function (ACF) of the
log-returns of the S&P 500 for a range of different lags

ρ(τ) = corr(rt, rt+τ ) =
cov(rt, rt+τ )

σrtσrt+τ

(82)

where rt, rt+τ are the returns, σrt , σrt+τ are the standard deviations and
cov(rt, rt+τ ) is the covariance of the returns between times t and t+ τ , where
τ is the lag. Since we have daily timeframe, τ ∈ N∗.

Figure 30: ACF of S&P 500 index logarithmic returns.

As we can see, the values are very close to zero, so there is no sufficient
autocorrelation. In an efficient market, stock prices are believed to reflect
all known information about the market, which means that any new infor-
mation that becomes available will be quickly incorporated into the stock
price. As a result, there should be no predictable pattern of price move-
ments over time and the autocorrelation of the stock returns should be close
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to zero. This is because, if investors are rational and acting on all available
information, the current stock price should reflect the expected future value
of the stock and any deviation from that expected value would be quickly
corrected as new information becomes available. Therefore, the absence of
autocorrelation is actually to be expected in an efficient market, since the
current price already incorporates all available information and there should
be no predictable pattern of price movements over time. Also, as lags are
getting higher, autocorrelation decreases.

Volatility Clustering
Volatility clustering is a phenomenon in financial markets where periods of
high volatility tend to be followed by other periods of high volatility and
periods of low volatility tend to be followed by other periods of low volatility.
This means that volatility tends to cluster together in time, rather than being
randomly distributed.

We can get an intuitive understanding of volatility clustering by looking at
the log-returns. However, we wish to quantify this phenomenon. Specifically,
we can do this by looking at the autocorrelation function ACF of the absolute
log-returns |rt| and |rt+τ | over a range of lags τ defined by

ρabs(τ) = corr(|rt| , |rt+τ |) (83)

Figure 31: ACF of S&P 500 index absolute logarithmic returns.

The presence of significant autocorrelation for absolute log-returns is an
indication that there are patterns in the data that are related to the magni-
tude of price changes and that these patterns can be characterized by volatil-
ity clustering. Also, autocorrelation decreases as the lag is increased. This is
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expected in efficient markets. This plot provides insights into the persistence
of volatility over time in the financial time series.

The Leverage Effect
But, how the returns are correlated to volatility ? The leverage effect is a
stylized fact that deals with this and is commonly present in financial time
series. It is given by

L(τ) = corr
(
r2t+τ , rt

)
(84)

where r2t+τ is another widely used metric for volatility.

Figure 32: Leverage Effect of S&P 500 index logarithmic returns.

As the lag increases, the leverage effect goes to 0, starting from a lower
negative value. The returns are negatively correlated to price volatility.
Specifically, it means that as the price of an asset falls, the volatility of that
asset tends to increase and vice versa. This implies that when the market is
experiencing negative returns, the volatility of that market tends to increase.
The reason for the leverage effect is due to the presence of financial leverage,
which refers to the use of borrowed funds to invest in assets. When investors
use leverage to buy an asset, they increase the risk of their investment since
they have to pay back the borrowed funds regardless of the performance of
the asset. If the asset performs poorly, then the investor may be forced to
sell at a loss to pay back the borrowed funds, which can further amplify the
downward price movement and increase the volatility of the asset.
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5.2 Utilization of GANs in Finance

5.2.1 Domain Applications & Financial Data Generation

The utilization of GANs in the realm of finance is a burgeoning area of
interest. In [46], the authors introduce the concept of incorporating adversar-
ial learning into stock price prediction models. In their framework, the price
prediction model is optimized to minimize the discriminator’s loss, thus en-
suring more realistic price movement predictions. Another interesting work
lies in [47], where GANs are employed to refine systematic trading strategies
and discover effective combinations of trading approaches. In the domain of
fraud detection, GANs are exploited in [48] and [49].

Generating realistic financial data can be challenging due to the complex
and dynamic nature of financial markets. The generated samples may not
fully capture the intricacies of real-world financial data and caution should
be exercised when using generated data for decision-making or risk manage-
ment purposes. It’s important to acknowledge the limitations of generative
modeling in financial time series.

Producing financial time series data that exhibit stylized facts is a de-
manding and interesting task. The adoption of GANs has brought about a
significant transformation in the realm of generative modeling, particularly in
handling intricate data types like images, videos and more recently, financial
time series data. GAN-based modeling stands out for its ability to capture
the intricate characteristics found in financial time series, requiring minimal
assumptions about the underlying dataset [50].

Since the area of research in terms of various model implementations is
vast and rapidly growing, we opt to follow a similar implementation as in
[51]. Wasserstein GANs with gradient penalty [52] have shown to avoid the
problems of mode collapse and vanishing/exploding gradients by adding a
regularization term in the loss function of the critic network, the gradient
penalty. Schwander conducted a thorough analysis on generating synthetic
logarithmic returns by utilizing this model. In his work, he compares two
GAN models, one with a multi-layer feedforward architecture for the critic
network and one with 1D convolutional layers (in WGANs, the discriminator
is referred to as the critic network). In [53], Takahashi et al. show that using
convolutional layers improve the quality of the generated data in terms of
stylized facts and Schwander confirms this in [51]. Also, we will not be
concerned with the generator architecture, as the scope of this thesis is to
show general applications involving generative modeling and how we can
leverage quantum computing in this area. The generator network will be
replaced by a parameterized quantum circuit (PQC). Schwander integrates a
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quantum generator in the WGAN-GP framework [51]. We will investigate
and extend this research when we will talk about quantum GANs.

5.2.2 Wasserstein GANs

WGANs use a different type of loss function called the Wasserstein dis-
tance, which measures the distance between two probability distributions.
In a WGAN, the generator produces synthetic financial time series data and
the discriminator outputs a scalar value representing the probability that a
given sequence of financial time series data is real or synthetic. The WGAN
training process involves minimizing the Wasserstein distance between the
probability distributions of the real and synthetic financial time series data.
This is a variant of the GAN framework.

The Wasserstein distance, also known as Earth Mover’s Distance (EMD)
is a quantitative metric that allows the comparison of two distributions that
two different datasets follow, without assuming any underlying distribution.
Assume that the reference distribution is denoted by P and the model dis-
tribution by Q. As we are interested with one-dimensional data, we use the
so-called Wasserstein-1 distance defined by

W1(P,Q) =

∫ ∞

−∞
|FP (x)− FQ(x)| dx (85)

where FP (x) and FQ(x) are the cumulative distribution functions of P and
Q respectively and x denotes the samples. This needs a numerical method
in order to be computed. It can be found in the Python SciPy library [54],
which is widely used for scientific and technical computing.

The key difference between WGAN and other GAN variants is the use
of a critic instead of a discriminator. The critic is trained to output a real
number rather than a probability and is optimized to minimize the Wasser-
stein distance between the real and generated distributions. The WGAN
with gradient penalty (WGAN-GP) is an improved version of the original
WGAN that introduces a gradient penalty term to the critic’s loss function.
In the WGAN-GP, the critic is penalized when its gradient norm deviates
from 1, which is the desired value for a Lipschitz continuous function. This
is achieved by computing the gradient penalty as the squared difference be-
tween the norm of the critic’s gradient and 1 and adding it to the original
Wasserstein distance objective. If we assume that the output of the critic is
denoted by C(x), where x is a sample, the critic’s loss function becomes

W ′
1(P,Q) =

∫ ∞

−∞
|FP (x)− FQ(x)| dx+ (∥∇xC∥ − 1)2 (86)
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This encourages the critic to have a gradient norm close to 1 everywhere,
which in turn enforces the Lipschitz continuity constraint and leads to more
stable training and improved sample quality. Also, it helps avoid the prob-
lem of vanishing gradients and mode collapse. The magnitude of the gradi-
ent penalty is controlled by a hyperparameter called the penalty coefficient,
which determines the strength of the penalty relative to the original Wasser-
stein distance objective.

5.2.3 Model Performance

When dealing with GANs for financial time series, one should carefully
consider what metrics will define the model performance. The generated
synthetic data must be close to the original data and should be able to
replicate the stylized facts up to some extent.

In order to monitor the performance in terms of the stylized facts during
training, we will use the Root Mean Square Error (RMSE) metric as in [51].
For the autocorrelation of the log-returns, we can define the following metric

RMSE(ρS&P (τ), ρθ(τ)) =

(
1

τmax

τmax∑
τ=1

(
ρS&P (τ)− ρθ(τ)

)2) 1
2

(87)

where ρS&P (τ) is the ACF of the log-returns of the S&P 500, ρθ,i(τ) is the
ACF of the log-returns of the generated data of the model with parameters
θ and the others are implied.

With the same approach, we can define the RMSE for the absolute log-
returns (volatility clustering) as

RMSE(ρS&P
abs (τ), ρθabs(τ)) =

(
1

τmax

τmax∑
τ=1

(
ρS&P
abs (τ)− ρθabs(τ)

)2) 1
2

(88)

where ρS&P
abs (τ) is the ACF of the absolute log-returns of the original data and

ρθabs(τ) is the ACF of the absolute log-returns of the generated data from the
model with parameters θ.

Last, we define the RMSE for the leverage effect as

RMSE(LS&P (τ), Lθ(τ)) =

(
1

τmax

τmax∑
τ=1

(
LS&P (τ)− Lθ(τ)

)2) 1
2

(89)

where the variables are implied.
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In addition, we can monitor the EMD by numerically evaluating the
Wasserstein distance using SciPy. We also use a visualization technique
called the Q-Q plot which gives the ability of better inspection of the specific
areas of the distribution where the two distributions differ [55]. A Q-Q plot
(quantile-quantile plot) is a graphical tool used in statistics to assess whether
a dataset follows a particular theoretical distribution, such as a normal dis-
tribution. It is primarily used to compare the distribution of the observed
data to the expected distribution, which could be a theoretical distribution
or the distribution of another dataset.

Figure 33: Q-Q plot of the original S&P 500 log-returns. The points form
an S-shaped curve, which indicates a distribution with more extreme values
than the theoretical distribution.

When training neural networks, it is a common practice to evaluate the
result over multiple samples. So, we should bear in mind to calculate the
costs above over multiple generated time series. Also, we should reverse the
pre-processing of data as the generator learns to generate samples based on
the pre-processed dataset that is fed into the critic.
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5.2.4 Data Pre-Processing & Implementation

Financial modeling requires careful data pre-processing in order to deal
with training stability and overall performance. Apart from the standard
normalization step (scale the data to have zero mean and unit variance),
models that deal with financial data include some additional pre-processing
techniques.

Given the limited number of samples in the tails, learning a heavy-tailed
distribution can be difficult. To address this challenge, we can employ a
method to decrease the influence of these tails. One approach involves ap-
plying an inverse Lambert-W transform to the normalized log returns [56].
By applying this transformation, we can convert the heavy-tailed data into
a distribution that closely resembles a Gaussian distribution. This can be
advantageous for further analysis or modeling tasks that assume Gaussianity.

Given Lambert’s W function which is the inverse of z = ueu with z : R→
R, we can define the following transform to our normalized heavy-tailed data
set V as

Wδ(v) = sgn(v)

√
W (δv2)

δ
(90)

where v ∈ V , δ ≥ 0 a tunable parameter and sgn(v) the sign of v and W the
Lambert function.

The Gaussianized data can be transformed back to its original state using
the equation

v = Wδ(v) exp

(
δ

2
W 2

δ (v)

)
(91)

In practice, equation the Lambert transform may behave poorly and give
unreasonable values, so we can perform clipping to avoid this issue.

As financial data is usually sequential, we can also employ the rolling
window technique in order to introduce a larger dataset of smaller length
time series, specified by the window length. Rolling window also involves a
stride, which determines the slide step of the window. Frequently, the step
size is smaller than the window’s size, causing the samples to partially overlap
and become correlated. While this correlation among training samples is not
ideal, having a larger pool of training samples can ultimately enhance the
model’s performance.

The following figure depicts the pre-processing pipeline and shows how
the inverse Lambert transform helps to Gaussianize the input data:
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Figure 34: Pre-processing pipeline of the S&P 500 log-returns data.

For the implementation, we will use TensorFlow library provided by
Google [8]. The algorithm is taken from [52] and is modified with differ-
ent hyperparameters as shown below. The code can be found in [57].

Algorithm 1 WGAN with gradient penalty. We use values of λ = 10,
ncritic = 5, η = 0.0001, m = 32 and default values for β1, β2 parameters of
the Adam optimizer

Require: The gradient penalty coefficient λ, the number of critic iterations
per generator iteration ncritic, the batch size m, Adam hyperparameters
η, β1, β2.

Require: Initial critic parameters w0, initial generator parameters θ0.
1: while θ has not converged do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample real data x ∼ Pr, latent variable z ∼ p(z), ϵ ∼ U [0, 1].
5: x̃← Gθ(z)
6: x̂← ϵx+ (1− ϵ)x̃
7: L(i) ← Dw(x̃)−Dw(x) + λ (∥∇x̂Dw(x̂)∥2 − 1)2

8: end for
9: w ← Adam

(
∇w

1
m

∑m
i=1 L

(i), w, η, β1, β2
)

10: end for
11: Sample a batch of latent variables

{
z(i)
}m
i=1
∼ p(z).

12: θ ← Adam
(
∇θ

1
m

∑m
i=1−Dw(Gθ(z)), θ, η, β1, β2

)
13: end while
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At last, we present the training pipeline in a flowchart for better under-
standing of the process:

Figure 35: Training pipeline of the WGAN-GP model. The model is trained
for 3000 epochs. We used a window size of 30 and stride 1 for the rolling
window and the generator’s input is a normally distributed noise vector of
length 8. The results differ from [51] as we implemented the code from scratch
and used different hyperparameters and smaller length training data.

Figure 36: Training history of critic and generator losses (left) along with
the RMSEs and EMD (right). We should note that the generator loss lacks
significance as it exclusively evaluates generated samples, failing to consider
the combination of real and generated samples required to approximate the
EMD.
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Let us inspect the generated data properties:

Figure 37: Original vs Generated data properties.
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The generated log-returns are shown below:

Figure 38: Original vs Generated Log-Returns. The reason for the occurence
of several spikes may be due to the poor performance of the Lambert trans-
form when reversing the pre-processing and introduces extreme values which
are clipped with a predefined threshold. This threshold is a hyperparameter
that may be further optimized.

From the performance metrics of the stylized facts, we can see a steady
decline towards zero, apart from volatility clustering. This property is chal-
lenging to model due to the non-stationary, multimodal and long-range de-
pendent nature of financial time series data, as well as its sensitivity to regime
shifts, data noise and limited historical information. To model volatility
clustering effectively, researchers often turn to specialized techniques such as
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) mod-
els, stochastic volatility models, or other generative architectures that can
handle these challenges.

Inspecting the results of the WGAN model, we can clearly see that it
has the ability to generate financial data with stylized facts, but up to some
extent. Of course, we cannot assume at all that the model is primed for such
a task, as there are other empirical facts that we did not consider [45]. The
generated distribution is relatively close to the original, even in the tails as it
can be seen from the Q-Q plot. The absence of autocorrelation is there and
there seems to be some volatility clustering and leverage effect, but they are
significantly different from the S&P 500 benchmark.

In general, our goal was to present such an application in the context of
generative modeling and not to implement a model that can perfectly capture
real-world financial data properties. The performance may be increased fur-
ther by exploring other architectures for the critic and generator networks, as
well as other available optimization techniques. Also, the hyperparameters
can be tuned for this purpose, but the possible combinations require time
and computational resources, a task that is out of the scope of this thesis.
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5.3 Quantum GANs in Finance

In the ever-evolving landscape of modern finance, technological inno-
vations continue to play a pivotal role in reshaping the industry. Among
the most promising advancements is the integration of quantum computing
with financial processes. Quantum generative adversarial networks (QGANs)
stand at the forefront of this intersection, offering a unique and powerful
toolset to address complex financial challenges. QGANs, an extension of
classical GANs, harness this quantum supremacy to generate and manip-
ulate data with unparalleled efficiency and accuracy. This transformative
technology holds immense potential for applications in finance, addressing
critical issues and unlocking new opportunities across the sector.

Quantum generative modeling is making significant strides in revolution-
izing the financial sector with diverse applications such as portfolio optimiza-
tion, risk assessment, options pricing, fraud detection, algorithmic trading
and quantitative research. The reader is refered to [58, 59, 60] for a general
presentation of various applications and methods of quantum computing for
finance.

The current state of the art quantum models for financial time series
include QGANs for generating synthetic data that exhibit stylized facts [61]
and QCBMs that learn the correlations between currency pairs [62].

In [51], it is also shown that the QGAN outperforms a QCBM in learning
the correlations between currency pairs. After conducting extensive param-
eter sweeps in terms of the number of layers and qubits for the PQC gen-
erator, the QGAN is able to produce time series data that exhibit stylized
facts up to some extent. The quantum generator utilzes non-parameterized
entangling layers with CZ gates and two different topologies are considered.
Motivated by this, we are going to further extend the research and consider
more topologies, as well as entangling layers with trainable parameters.

5.3.1 Design Considerations

One may wonder why we did not choose to use a QCBM as a quantum
generator. The goal is to generate a time series of continuous values and of
specific length. However, a QCBM generates samples directly via projective
measurements and is more suitable when dealing with binary data. If we
consider using a QCBM, we have to deal with complex data encoding and
decoding, which will result to reduced resolution and precision, as well as a
large number of qubits.

But, can’t we encode a range of continuous values in a basis state ? We
could proceed to do so by using bins, but in this case, the number of qubits
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determines the precision of the data values. Moreover, there is the need of
performing multiple measurements to generate a time series, as the length is
determined by the number of circuit runs.

Could we encode a time series as a whole on a single basis state in order
to produce a sample with a single measurement ? This would be really chal-
lenging and one should explore other encoding techniques such as amplitude
encoding, feature maps or quantum encoding circuits. The decoding would
make the whole process even more complex. All of these may be researched
in a future work, as for now it is out of the scope of this thesis.

5.3.2 Quantum Wasserstein GAN

As in [51], we will follow another approach used in quantum machine
learning where the samples are generated indirectly via expectation values
of tensor products of Pauli operators called Pauli strings. A Pauli string is
nothing but an element of the set {I,X, Y, Z}⊗N . The set of all possible Pauli
strings is a subset of all N -qubit Hermitian operators. The number of Pauli
strings will determine the length of the output series. Expectation values are
in the range [-1,1]. Recall the third postulate of quantum mechanics that
states that the only measurable quantities in practice are the eigenvalues of
observables. Following the spectral decomposition theorem, the expectation
value of some unitary operator is strongly connected to the eigenvalues of
the same observable. So, we can leverage this to encode data in these values!

For the types of layers used, as well as the number of qubits and the overall
PQC implementation, we follow a similar approach as in [51]. We use an
encoding layer in the circuit input consisting only of Rx rotation gates whose
parameters are uniformly distributed random values. A crucial difference is
that we do not apply trainable scaling parameters to the final expectation
values. We chose to scale the data in the range [-1,1] after the inverse Lambert
transform during pre-processing, without the last normalization step. The
training dataset is generated by a rolling window of length 20 and stride 5.
Also, we use the Adam optimizer with default learning rate and beta values
and we consider the same set of Pauli strings, as with just a single qubit at our
disposal, it becomes apparent that we can, at most, derive two uncorrelated
expectation values for our Pauli matrices. This limitation necessitates careful
consideration when selecting our set of Pauli strings. Furthermore, given that
we do not follow a classical post-processing step, such as a classical dense
layer, it’s crucial to recognize that each Pauli string corresponds to a single
logarithmic return. Therefore, it may be prudent to explore a collection of
closely related Pauli strings to generate our log returns. However, conducting
experiments with a broader spectrum of Pauli strings could yield a deeper
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understanding of their overall impact on the outcomes.
Using a similar PQC consisting of 10 qubits and a circuit depth of 4 layers,

we will attempt to generate time series samples of length 20. We use the
observable set {X1, Z1, X2, Z2, . . . , X9, Z9, X10, Z10}. Also, we will attempt
to introduce more parameters in the model by using Mølmer-Sørensen gates
in the entangling layers.

5.3.3 Non-Parameterized Entanglement

For the sake of brevity, we present an instance of the quantum generator
of 4 qubits. The encoding layer is omitted for simplicity, as it is placed only
in the input and has no trainable parameters.

Figure 39: The rotation and entangling layers along with a data re-uploading
layer is shown. The entangling layer uses CZ gates with ring topology.

The figure above presents a hidden layer in the PQC. With N qubits,
there are 3N rotation gates, ring topology requires N coupling gates and at
last, we have N rotation gates for data-reuploading. A hidden layer thus,
requires 4N single-qubit gates and N entangling gates, resulting to a total
of 5N gates and 4N parameters, since CZ is not a parameterized gate. If
we assume that there are L hidden layers, we have 5NL gates and 4NL
parameters.

For the full generator circuit, we must consider the input and output
layers as well. The output layer of the PQC includes only rotations, as we
observed that it yields better results than an entangling layer. This is maybe
due to the correlations (entanglement) between log-returns, which we wish
to avoid for our task. The spatial complexity of the quantum generator is
thus,

N︸︷︷︸
input

+ 5NL︸︷︷︸
hidden

+ 3N︸︷︷︸
output

= N(5L+ 4) (92)

gates and the total number of parameters is N(4L+ 3).
In the next page, we can see the training history along with the generated

data properties versus the original.
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The generated log-returns are shown below:

Figure 40: Original vs Generated Log-Returns. The reason for the high
density of the generated log-returns may lie to the pre-processing where we
scale the training data in the range [−1, 1]. This induces limitations to the
generated data that the network learns.

We should note that the generator loss lacks significance as it exclusively
evaluates generated samples, failing to consider the combination of real and
generated samples required to approximate the EMD. Comparing to the clas-
sical model though, the generator loss lies below the critic loss.

From simple inspection, all properties deviate from the original ones.
However, we should note that, due to limited computational and time re-
sources, we used a learning rate of 0.001, a batch size of 10 and the critic
is trained for 2 rounds in each iteration, compared to the classical hyperpa-
rameters of 0.0001, 32 and 5 respectively. Moreover, the S&P 500 training
data is taken from 2008 to 2022, reducing the available number of samples.
The training time for the QWGAN is x4 slower than the classical model.

Let us now assess the performance of a similar circuit by using another
topology for the entangling layer, which arranges the gates in a star-like
structure.

Figure 41: The rotation and entangling layers along with a data re-uploading
layer is shown. The entangling layer uses CZ gates with star topology.
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With this topology, the first qubit is connected to all the others to create
entanglement, so for N qubits, we need N − 1 CZ gates in a hidden layer.
Here, the spatial compexity of the generator with L layers is

N︸︷︷︸
input

+(5N − 1)L︸ ︷︷ ︸
hidden

+ 3N︸︷︷︸
output

= N(5L+ 4)− L (93)

gates and the total number of parameters is N(4L+3). In this case, we have
a shallower circuit with the same number of parameters.

Using the same training procedure and hyperparameters, we can inspect
the cost history of the model below:

Figure 42: Training history of the QWGAN with star topology for the en-
tangling layers with CZ gates.

Comparing to the model with ring topology, it is obvious that the RMSEs
show better behavior, especially the EMD, which decays even more. A crucial
and interesting observation is the performance of volatility clustering metric.
While the circuit with ring entanglement does not show any improvement
over the absolute log-returns RMSE, it seems that the star-like approach has
helped the model to get better in capturing volatility clusters. Let us present
the generated data and its properties for further assessment.

Figure 43: Original vs Generated Log-Returns. The reason for the high
density was described previously.
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Figure 44: Original vs Generated properties.

At first sight, it is obvious that the star connectivity outperforms the
ring topology in all stylized facts. The generated distribution is much closer
to the original and there seems to be some volatility clustering, although it
decays at higher delays. Notable is the fact that we used a smaller-depth
circuit that seems to have better performance.
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As we have seen in the previous chapter where we trained QCBMs with
various topologies, the all-to-all connectivity had shown the best perfor-
mance. Let us arrange the coupling gates in such a topology.

Figure 45: The rotation and entangling layers along with a data re-uploading
layer is shown. The entangling layer uses CZ gates with all-to-all topology.

With this topology, each qubit is connected to all the others, so there
are more gates involved. For N qubits, we need

∑N−1
i=1 i = N(N−1)

2
coupling

gates, so a generator with L hidden layers requires

N︸︷︷︸
input

+(
N(N − 1)

2
+ 4N)L︸ ︷︷ ︸

hidden

+ 3N︸︷︷︸
output

=
LN2 + 7LN + 8N

2
(94)

gates and the total number of parameters is N(4L + 3). In this case, we
have a circuit with a quadratic complexity and with the same number of
parameters.

Using the same training procedure and hyperparameters, we can inspect
the cost history of the model below:

Figure 46: Training history of the QWGAN with all-to-all topology for the
entangling layers with CZ gates.

This model also shows better performance in capturing volatility clus-
tering and the EMD is slightly lower than both previous implementations.
However, it requires more time to learn the underlying data properties.

82



Figure 47: Original vs Generated properties.

All-to-all connectivity clearly outperforms the ring topology but not the
star-like structure. Increasing the depth of the entangling layer does not
seem to make things better. As we can see, the topology of the entangling
layer plays a crucial role in model performance. Moreover, the star topology
seems to outperform both previous ones and has the least number of gates.
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The generated log-returns are shown below:

Figure 48: Original vs Generated Log-Returns.

5.3.4 Parameterized Entanglement

In this approach, we attempt to add some extra parameters to the model
by using Mølmer-Sørensen (MS) gates in the entangling layers. This is the
same gate we used in the previous chapter for the quantum circuit Born
machine and is defined as

XX(θij) = exp
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− i
2
θijXi ⊗Xj

)

=


cos
(

θij
2

)
0 0 −i sin
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0 0 cos
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where X is the Pauli gate and θij is a parameter. In this way, we introduce
trainable parameters to the entangling layer that the model can optimize
throughout the learning process.

Apart from the training time, the QWGAN model settings remain the
same. For simplicity, we do not show circuit instances here, as they are
exactly the same in terms of connectivities and they only differ in the type of
gates used in the entangling layers. What we need to consider though, is the
increased number of parameters of the model. Recall that non-parameterized
entanglement layers of N qubits using the CZ gate in ring topology required
5N gates with 4N parameters. Since MS gates come with a new parameter
each, we have an additional N parameters and the spatial complexity of the
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quantum circuit is

N︸︷︷︸
input

+ 5NL︸︷︷︸
hidden

+ 3N︸︷︷︸
output

= N(5L+ 4) (95)

gates and the total number of parameters is N(5L + 3), where we exclude
the encoding layer that has no trainable parameters.

The performance metrics are shown below:

Figure 49: Training history of the QWGAN with ring topology for the en-
tangling layers with MS gates.

The generated log-returns:

Figure 50: Original vs Generated Log-Returns.

About the performance metrics, we see a very different behavior for the
EMD. Although it seems to increase with high fluctuations, the values in
which it does so are the ones that the model without coupling parameters
seems to have converged during the whole training session. This means that
the QWGAN with parameterized couplings learns the data distribution faster
than the circuits with CZ gates. We should also mention that this model
was trained for 1000 epochs less.
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Figure 51: Original vs Generated properties.

With less training rounds, it is obvious that the generated distribution
matches the original way better with parameterized couplings. Moreover, the
leverage effect seems to have lower values and a smoother increase to zero
with more detail. Nevertheless, the temporal properties deviate significantly
from the S&P 500 benchmarks. With more computational resources available
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and careful hyperparameter tuning, the performance is expected to increase,
much more than the performance of the model with non-parameterized en-
tangling layers.

Closing this part, let us investigate the effect of star connectivity on
parameterized entanglement. As we have seen previously, this model requires

N︸︷︷︸
input

+(5N − 1)L︸ ︷︷ ︸
hidden

+ 3N︸︷︷︸
output

= N(5L+ 4)− L (96)

gates and the total number of parameters is N(4L+ 3). In this case, we use
MS gates, so the model parameters increases to N(5L+ 3)− L.

The performance metrics are shown below:

Figure 52: Training history of the QWGAN with star topology for the en-
tangling layers with MS gates.

The generated log-returns:

Figure 53: Original vs Generated Log-Returns.

Once again, we can see from the performance metrics that the model
with parameterized star connectivity outperforms all previous models, since
it learns the underlying data properties much faster.
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Figure 54: Original vs Generated properties.

At this point, we should note that we chose not to go with the all-to-all
connectivity with parameterized couplings, mainly due to limited computa-
tional resources, since the increased number of parameters and gates severely
deteriorates execution time and memory usage. The code for all models may
be found in [57].
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5.4 On Model Complexity

In this last subsection, we are going to discuss and try to compare the gen-
erative models we implemented for generating financial time series data, as
well as highlight the complexity of such a task. We begin with a comparison
of the classical WGAN with the QWGAN in terms of model architectures.

5.4.1 Classical GAN

The table below shows the amount of training data used and how it was
partitioned for the learning process using the rolling window with length and
stride as hyperparameters.

Data Span Observations Length Stride Training Set

S&P 500 2000-2022 5787 30 1 (5758,30)

Table 2: Dataset Information for WGAN.

Using Tensorflow, we can inspect the total number of parameters of the
model which we showcase below for reference:

Critic Parameters Generator Parameters Total

369,665 8,450 378,115

Table 3: Number of trainable parameters of the WGAN.

In Appendix B, we present the architecture of the networks as they are
displayed by TensorFlow. In addition to those parameters, the model requires
careful tuning of quite a few hyperparameters. This makes it obvious that
there are endless possibilities in fine-tuning a WGAN with gradient penalty.
The hyperparameters that we used were set based on various works that we
have already referenced. Our goal was not to design a model for an indus-
trial case, but to build a solid structure that can be scaled to the quantum
computing field.

5.4.2 Quantum GAN

Since simulating quantum circuits requires lots of computational resources
and access to quantum computers on the cloud is costly, we limited ourselves
to a smaller time span and used a smaller training set for the Quantum
Wasserstein GAN (QWGAN).
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Adam learning rate η

Adam β1,β2
Batch size m

# of Epochs

# of critic rounds ncritic

Gradient penalty λ

LeakyReLU slope α

Dropout rate

Clipping threshold for Lambert

Input noise dimensions

Table 4: Hyperparameters of the WGAN.

Data Span Observations Length Stride Training Set

S&P 500 2008-2022 3777 20 5 (752,20)

Table 5: Dataset Information for QWGAN.

As we have seen, the quantum generator architecture depends on the
topology of the entangling layers, whether parameterized or non-parameterized
gates are used. Moreover, when parameterized gates are used for entangle-
ment, the number of parameters of the circuit also depends on the layer
architecture. Let us summarize the complexity we derived in the tables be-
low. Assume that we have N qubits and L layers for the PQC, which are
hyperparameters.

Ring Star All-to-all

# of gates N(5L+ 4) N(5L+ 4)− L LN2+7LN+8N
2

# of parameters N(4L+ 3) N(4L+ 3) N(4L+ 3)

Table 6: Quantum Generator Architecture with CZ gates.

Ring Star All-to-all

# of gates N(5L+ 4) N(5L+ 4)− L -

# of parameters N(5L+ 3) N(5L+ 3)− L -

Table 7: Quantum Generator Architecture with MS gates.
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6 Conclusion & Outlook

Considering all the facts, we built upon the classical WGAN-GP frame-
work and incorporated a parameterized quantum circuit based on quantum
machine learning techniques in order to deal with financial data following the
work in [51]. As one will notice, the process of doing so is a very complex
task and achieving decent results requires patience, persistence and a vast
amount of research along with expertise.

6.1 Discussion

By looking back at the results, we can conclude that the QWGAN with
parameterized entangling layers is more promising for the task of generating
financial time series data. Moreover, the model where the entangling layers
utilize star connectivity is the least complex and has the ability to capture
temporal effects more efficiently. We have shown that the topology of the
entangling layers can impact model performance, since ring topology does
not seem to capture volatility clustering at all, whereas the star topology is
capable to do so.

One important thing to mention is that the quantum generator has way
less parameters compared to the classical, but it seems it is still possible to
generate financial time series data with temporal properties at the cost of a
long training time. This is logical, as the quantum circuit is sampled 1000
times in each generation to get the average expectation values. With more
available resources and utilization of NVIDIA CUDA Toolkit [68] capabilities
for GPU acceleration with TensorFlow and TensorFlow Quantum, the train-
ing time may be reduced dramatically and proper hyperparameter tuning is
expected to give more decent results.

In our case, we used 10 qubits and 4 layers, so if we consider the star
topology circuit with parameterized entangling layers, we can easily derive
that the quantum generator has 226 parameters in contrast to the 8,450 pa-
rameters of the classical generator network! This is a huge decrease in the
number of trainable parameters of the model! But, is this a fair comparison?
In [62], the authors fixed the models to have the same numbers of trainable
parameters as a benchmark of fairness. This is achieved by adjusting the
number of hidden units in the restricted Boltzmann machine architecture.
Of course, adjusting the quantum circuit structure to match the number of
parameters of the classical model is out of the question. Optimizing the
balance between the number of qubits and circuit depth becomes a critical
consideration in NISQ-era, acknowledging the limitations of available hard-
ware. The preference for shallow circuits often involves a trade-off between
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the number of qubits used and the complexity of the computation. With
fewer layers, the quantum algorithm might demand more qubits to achieve
similar computational outcomes as deeper and more complex circuits. In
order to match the number of parameters of our quantum circuit, we would
need to reduce the number of layers and neurons in the classical generator of
the WGAN. This will result in a significant decrease in the expressibility of
the generator, following a decrease in overall model performance. Moreover,
for a clear and straightforward comparison, we should also use a fixed train-
ing dataset for both approaches. As we saw, we trained the quantum model
on a smaller dataset and different preprocessing steps, as well as a different
set of hyperparameters mainly due to computational burden.

6.2 Future Outlook

For a future work following ours and [51], one may also consider different
critic architectures that can help the quantum circuit during the learning
process, or even use different optimization algorithms for both networks. It
has been shown that temporal convolutional neural networks (TCNs) are
primed for such a task [61], so one may investigate an approach by replacing
the critic network. Moreover, alternative data pre-processing pipelines may
be followed, such as introducing training parameters to the output expecta-
tion values of the quantum circuit and let the model learn to scale the output
and match the original data [51]. Instead, our approach limits the scaling of
the output expectations, so it is a part that surely has better potential.

Another interesting approach regarding synthetic data generation would
be for prediction purposes. In [69], the authors propose a classical GAN ar-
chitecture using the S&P 500 daily closing values and try to predict the daily
closing price. To achieve this, they use a long short-term memory (LSTM)
as the generator network and a multi-layer perceptron (MLP) discriminator
and their results show promising performance compared with other models.
This exact application may be explored using the WGAN-GP model we dis-
cussed in this thesis, as it is not included in their comparison. Then, the
QWGAN may be exploited for this purpose. Since they try to generate a
single value, the QWGAN may be adjusted such that the quantum generator
outputs a single expectation by using a set of a single Pauli string. In this
case, the critic architecture is also reduced, along with the required com-
putational resources. Furthermore, one could test their approach without
altering the optimization process by replacing just the LSTM generator with
a parameterized quantum circuit featuring diverse architectures, just like we
did with the WGAN.
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The ultimate objective of this work is to showcase how we can approach
generative modeling tasks with the rapidly evolving field of quantum tech-
nology. By harnessing the fundamental laws of quantum mechanics and
the properties of such systems, we are entering an era where it is possi-
ble to reform existing state-of-the-art systems regarding real-world applica-
tions, or even replace them with pure quantum mechanical counterparts.
Alas, realization of a fault-tolerant quantum computer is not possible in the
near future. This should not limit us to explore innovative ideas, as hy-
brid quantum-classical computing applications are very promising and the
industry is already interested on the subject, especially for real-world tasks
involving generative modeling.
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”Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly, it’s a

wonderful problem because it doesn’t look so easy.”

Richard P. Feynman

”Generative models are a family of machine learning models that can
generate data with high fidelity, both in terms of visual appearance and, in

many cases, in terms of statistical quality.”

Ian J. Goodfellow
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A Artificial Neural Networks

A.1 Basic Structure

As the name suggests, ANNs form a simplified model of the human brain.
Generally, we can think of an ANN as a nonlinear function which transforms
input data to output, based on the training on many data samples and pa-
rameters. In 1943, Warren McCulloch and Walter Pitts suggested the com-
putational model of a neuron. For the sake of completeness, know that the
human brain consists of approximately 100 billion neurons (brain cells) and
100 trillion synapses (permit interactions between neurons).

An ANN is a collection of connected processing units (neurons) which
consist a network. Each of these units is able to execute a simple and specific
mathematical operation.

Figure 55: A dense ANN with two hidden layers.

Every neural network must obviously have an input layer as well as an
output layer. The in-between are called the hidden layers, but the simplest
form of a network is just a single neuron (or perceptron) with one or more
inputs, some processing and a single output.

Figure 56: Basic Neuron Model (Perceptron).

The inputs are denoted as xj ∈ R where j = 1, ..., n. The output of the
neuron is a nonlinear function of weighted sums of inputs:
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zk =
∑
j

wkjxj + bk (97)

where wkj ∈ R are the weights and bk ∈ R is some offset or bias. Then, (1) is
the input of some nonlinear function which can be the same for all neurons
in a network. Two examples of commonly used functions include the rectified
linear unit (RELU), where yk = f(zk) = zk and a constant derivative equal
to one for zk ≥ 0 and zero elsewhere. Also, the sigmoid function

f(zk) =
1

1 + e−zk
(98)

provides a smooth variation in the output within the interval [0, 1], which
is useful when we want to model uncertainty. The derivative is equal to
(1− yk)yk. One may also consider other activation functions as well, as long
as changes in the inputs do not cause big changes in the output.

Let us consider a simple network with no hidden layers and introduce
some indices that help avoid consufion when analyzing the underlying pro-
cesses, as well as when scaling the network with more layers.

Figure 57: Simple ANN without hidden layers.

We will use the index j for the input neurons and k for the output neurons.
So, from (1):

zk =
n∑

j=1

wkjxj + bk (99)

for k = 1, 2, hence
yk = f(zk) (100)

By simple inspection on the indices and some linear algebra, we can write
(3) in a more compact and computationally effective form as

z⃗ = W · x⃗+ b⃗ (101)
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where z⃗ =
[
z1 z2

]T
is the output k-dimensional vector, W is the weight

matrix of k × j dimensions acting with the dot product on the input j-

dimensional vector x⃗ =
[
x1 x2 x3

]T
and b⃗ is the bias vector of k dimen-

sions. The number of rows of the weight matrix is equal to the number of
output neurons and the number of columns is equal to the number of input
neurons corresponding to that matrix. At last, we have a k-dimensional vec-
tor y⃗ consisting of the nonlinear outputs of some activation function. It is
also clear that there is a feedforward process, where the outputs of some layer
are passed as inputs to the next layer.

A.2 The Universal Approximation Theorem

The Universal Approximation Theorem states that any arbitrary smooth
function with vector input and vector output can be approximated as well
as desired by an ANN with at least one hidden layer, as long as we allow for
sufficiently many neurons [9].

All of the aforementioned may seem a little bit abstract in terms of the
values of weights and biases. One must adjust these parameters in order to
get the desired output value. This value should be of high accuracy and we
can achieve this through training of the network at hand.

Training refers to the adjustment of those parameters based on some
training data samples. This is a form of supervised learning. Assume that
a neural network is denoted by Fw (contains weights and biases), its input
vector by xin and its output vector by yout, such that

yout = Fw(x
in) (102)

Also, let the desired or target function be F . A training dataset consists
of inputs xin and respective outputs ytarget, such that ytarget = F (xin). Obvi-
ously, we would like the network output to approximate with high accuracy
the target output, hence

yout ≈ ytarget = F (xin) (103)

We need a cost function that can measure the deviation between yout and
ytarget with respect to the parameters. One may use various functions based
on the underlying task, but one of the most common cost functions is the
least-squares defined as

C(w) =
1

2

〈
∥Fw(x

in)− F (xin)∥2
〉

(104)

where the vector norm is used and the average over all samples is taken.
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There is process called batch training, where the respective model is
trained on many samples in parallel. In this case, we would need a matrix of
samples with dimensions Nsamples× j. That is the reason we use the average
in expression (8). The 1/2 factor is used to ease derivative evaluation, but
with modern computers this is not a matter to be concerned of.

A.3 Gradient Descent and Backpropagation

The purpose of training is to find the ”best” weights and biases by mini-
mizing the cost function with respect to its parameters. We can achieve this
by using the gradient descent method. The gradient of the cost function is
evaluated and then, the parameters should follow the path of the steepest
descent, as the method’s name suggests. Remember that the gradient is a
vector pointing in the direction of the steepest ascent, so we need to find the
negative gradient for minimization. One may also reverse the problem based
on the underlying task and try to maximize the cost by using the so-called
gradient ascent. We will stick to the minimization of the cost, meaning that
if C(w)→ 0, the model tends toward better accuracy.

The problem is that evaluating C(w) would mean averaging over all train-
ing samples. However, when we deal with lots of data we tend to average only
a few samples and get an approximate cost. In each step, different samples
are taken. This is called stochastic gradient descent (SGD).

For sufficiently small steps, the sum over many steps approximates the
true gradient. The following figure helps visualizing the difference between
SGD and the true gradient:

Figure 58: SGD vs True Gradient Descent.

After evaluating the gradient of the cost function, we proceed to the
update of the parameters as

w∗ → w∗ − η
∂C(w)

∂w∗
(105)
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where η is the so-called learning rate, a small constant to ensure convergence
to a local minimum. The learning rate can be also interpreted as a step size
that shows how fast the gradient is moving and thus, how fast the learning
process is. We assume that w∗ is some weight somewhere in the network
including the bias, as the introduction of this offset is the same as if we
considered an extra input x0 = 1 with weight wk0 = bk.

For deep networks in general, the question is how do we calculate the
gradient with respect to some inner weight? If a network consists of one
million weights, we need to evaluate it one million times! Fortunately, the
chain rule for derivatives is the holy grail here!

Let us consider a simple network with two inputs and one output as shown
below:

Figure 59: A simple ANN with two inputs and one output.

From (3), we have
z = w1x1 + w2x2 + b (106)

and the cost function reads

C(w) =
1

2

〈
(f(z)− F (x1, x2))2

〉
(107)

where F is the target function. Using the last two expressions, the gradient
reads

∇C(w) =

 ∂C
∂w1

∂C
∂w2

 =


〈
(f(z)− F )f ′(z) ∂z

∂w1

〉
〈
(f(z)− F )f ′(z) ∂z

∂w2

〉
 =

⟨(f(z)− F )f ′(z)x1⟩

⟨(f(z)− F )f ′(z)x2⟩


and thus, we have all the values to evaluate it. We proceed with an update
for both weights as in (9) and feed another input data until the cost function
reaches a local minimum.

Next, we consider the general case of an ANN with n hidden layers:
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Figure 60: General ANN with n hidden layers.

In order to work with the full network when it comes for the gradient layer-
by-layer, we adopt the well-known backpropagation algorithm. The name will
be clear later on. First, we need to keep track of the indices very carefully:

� xin, the ANN input

� ynj , the value of neuron j in layer n

� znj , the input value for ynj = f(znj )

� wn,n−1
jk , the weight from the k-th neuron in layer n− 1 feeding the j-th

neuron of layer n

The cost for one particular input is C(w) = ⟨C(w, xin)⟩. The derivative
with respect to some weight w∗ somewhere in the network is

∂C(w, xin)

∂w∗
=
∑
j

(ynj − Fj(x
in))

∂ynj
∂w∗

(108)

=
∑
j

(ynj − Fj(x
in))f ′(znj )

∂znj
∂w∗

(109)

where Fj is the target function. Remember that ynj = f(znj ), so if we apply

the chain rule repeatedly for the term
∂znj
∂w∗

, we get

∂znj
∂w∗

=
∑
k

∂znj

∂yn−1
k

∂yn−1
k

∂w∗
=
∑
k

wn,n−1
jk f ′(zn−1

k )
∂zn−1

k

∂w∗
(110)

This last expression runs over all the weights corresponding to the j-th
neuron of layer n. Plugging this into (13), we must do the same for all neurons
of layer n. Here comes an important insight to compute this efficiently. We
can construct a matrix M whose element with index (j, k) is

Mn,n−1
jk = wn,n−1

jk f ′(zn−1
k ) (111)
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.
In this way, each pair of layers (l, l − 1) backwards through the network

contributes with multiplication of a matrix M with dimensions (l × l − 1).
Instead of having to go through all the weights of some pair of layers, we can
use repeated matrix multiplication starting from the last hidden layer up to
the input as

∂znj
∂w∗

=
∑

k,l,...,u,v

Mn,n−1
jk Mn−1,n−2

kl ...M2,1
uv

∂z1v
∂w∗

(112)

We see that in order to compute the derivative of the cost function, we
need values from layer n, as well as values from the previous layer n− 1. To
continue with the evaluation of (14), we need the values of layer n−1 and layer
n − 2. In this way, we propagate the results starting from the n-th hidden
layer backwards onto the first hidden layer. That is the backpropagation
algorithm, which we declare below:

Algorithm 2 Backpropagation

Input: ynj , Fj(x
in), f ′(znj ) ▷ n is the output layer

Output: ∂C(w,xin)
∂w∗

▷ gradient vector with respect to all weights

∆j ← (ynj − Fj(x
in))f ′(znj ) ▷ initialize vector from output layer

l← n
repeat ▷ for each pair of layers

for all j ∈ l do ▷ neurons in l-th layer
for all k ∈ (l − 1) do ▷ neurons in (l − 1)-th layer

Mn,n−1
jk ← wn,n−1

jk f ′(zn−1
k ) ▷ construct layer matrix

end for
end for

∆new
k ←

∑
j ∆jM

n,n−1
jk ▷ multiply vector by matrix

dC ← store cost derivatives for all weights and biases in layer l
l← l − 1

until first hidden layer and input layer pair

Once we get the gradient with respect to all the parameters of the net-
work, we proceed to the update. Then, the same procedure is followed with
the updated parameters on some other subset of the training dataset. After
all, everything reduces to matrix and vector multiplications which can be eas-
ily achieved through the efficiency of modern computer algebra. This is the
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power of the backpropagation algorithm, which combines basic aspects of cal-
culus and linear algebra. Notice that we do not have to evaluate with respect
to all possible weights w∗ of the network. We just start from some weight in
the output layer and via the chain rule, all weights contribute to the gradient
vector, as it was intended to. This is the basis for the training methods that
we refer to as gradient-based. Gradient-based optimization methods uti-
lize gradient information to iteratively update model parameters in order to
minimize or maximize a cost function. These methods are effective when the
cost function is differentiable and gradients can be efficiently calculated. The
most common include Stochastic Gradient Descent (SGD), Mini-Batch Gra-
dient Descent and Adaptive Moment Estimation (Adam). The other class
of training methods are called gradient-free. Gradient-free optimization
methods do not require gradient information and are suitable for optimizing
non-differentiable or noisy functions. Common techniques include Random
Search, Genetic Algorithms, Particle Swarm Optimization (PSO) [65] and
Bayesian Optimization [66].

A.4 On Hyperparameters, Datasets and Training

The art of machine learning lies in the fine-tuning of the parameters
and the structure of the respective model. In general, there is no standard
procedure that one should follow in order to adjust the settings of a model,
as it all comes down to the background and the experience of the designer.
Before heading towards implementation though, we have to deal with the
data that the network will be trained on, especially in the case of supervised
learning. The stage of data pre-processing has to do with collection, feature
extraction and various techniques involving statistical analysis and pattern
recognition, such as missing data issues, noisy samples, outliers removal and
normalization. The following diagram portrays the various concerns that
arise when designing a machine learning prototype:

Figure 61: Learning is a stochastic and very complex nonlinear process.
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Basic machine learning model implementations with Python, as well as a
summary of how parameter selection can influence the training process can
be found in my personal github repository [7].

B WGAN Architectures

B.1 Critic Network

Figure 62: Critic network with window length 30.
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B.2 Generator Network

Figure 63: Generator network with window length 30.
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