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Methodology and Experiments for Large Scale Distributed Computation on

Reconfigurable Logic – Based Platform

by Christini Tzortzaki

Hardware accelerators have become crucial due to their superior performance

and energy efficiency. One noteworthy example is the application of hardware

accelerators to Convolutional Neural Networks (CNNs), which are computa-

tionally intensive and highly parallelizable. Recent research has demonstrated

significant performance improvements when implementing CNNs with hardware

accelerators. This study builds upon the CNN hardware accelerator developed

by G. Pitsis [1] and C. Loukas [2] for the Xilinx ZCU102 and the QFDB multi-

FPGA prototype board, respectively, and aims at the migration of the accel-

erator to the Alveo U50 Data Center Card and investigates opportunities for

further scaling.

Through a series of experiments, the performance of the migrated CNN archi-

tecture on the Alveo U50 is evaluated and compared with its implementations

on the Xilinx ZCU102 and the QFDB. Not only were the tools changed to en-

able the architecture’s execution on the Alveo platform, but modifications were

also necessary for the architecture itself. As a result, using a similar FPGA,

a 22% improvement in throughput was achieved. The migration to the Alveo

U50 is shown to result in improved computational efficiency, showcasing the

platform’s enhanced capabilities for large-scale distributed computation. Fur-

thermore, the utilization of multiple compute units is explored as a means of

achieving parallelization, leading to enhanced throughput and overall better

performance.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/
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Reconfigurable Logic – Based Platform

by Christini Tzortzaki

Οι επιταχυντές υλικού έχουν γίνει κρίσιμοι λόγω της υπερέχουσας επίδοσης και

της ενεργειακής τους απόδοσης. ΄Ενα αξιοσημείωτο παράδειγμα είναι η εφαρμογή

επιταχυντών υλικού σε συνελικτικά νευρωνικά δίκτυα (CNN), τα οποία είναι υπολ-

ογιστικά εντατικά και εξαιρετικά παραλληλίσιμα. Πρόσφατες έρευνες έχουν δείξει

σημαντικές βελτιώσεις στην απόδοση κατά την εφαρμογή συνελικτικού νευρωνικού

δικτύου (CNN) με επιταχυντές υλικού. Αυτή η μελέτη βασίζεται στον επιταχυντή

υλικού CNN που αναπτύχθηκε από τους Γ. Πίτση [1] και Χ. Λουκά [2] για την Xil-

inx ZCU102 και την πρωτότυπη πλακέτα πολλαπλών FPGA QFDB, αντίστοιχα.

Αυτή η διατριβή στοχεύει στην μετεγκατάσταση του επιταχυντή στην Alveo U50

και διερευνά ευκαιρίες για περαιτέρω κλιμάκωση.

Μέσα από μια σειρά πειραμάτων, αξιολογείται η απόδοση της αρχιτεκτονικής CNN

στο Alveo U50 και συγκρίνεται με τις υλοποιήσεις της στο ZCU102 και το QFDB.

Δεν χρειάστηκε μόνο να αλλάξουν τα εργαλεία για να καταστεί δυνατή η εκ-

τέλεση της αρχιτεκτονικής στην πλατφόρμα Alveo, αλλά και τροποποιήσεις ήταν

απαραίτητες για την ίδια την αρχιτεκτονική. Ως αποτέλεσμα, χρησιμοποιώντας

FPGAs παρόμοιας τεχνολογίας, επιτεύχθηκε 22% βελτίωση στην απόδοση. Η

μετάβαση στο Alveo U50 φαίνεται να έχει ως αποτέλεσμα βελτιωμένη υπολογισ-

τική απόδοση, επιδεικνύοντας τις βελτιωμένες δυνατότητες της πλατφόρμας για

κατανεμημένους υπολογισμούς μεγάλης κλίμακας. Επιπλέον, η χρήση πολλαπλών

υπολογιστικών μονάδων διερευνάται ως μέσο για την επίτευξη παραλληλισμού, που

οδηγεί σε βελτιωμένη απόδοση και συνολικά καλύτερη απόδοση.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/
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Chapter 1

Introduction

In recent years, the field of computational research has witnessed a paradigm

shift towards the utilization of reconfigurable logic-based platforms for large-

scale distributed computation. This transition has been fueled by the increasing

demand for efficient and high-performance solutions to address complex compu-

tational problems, particularly in the domain of deep learning. Convolutional

Neural Networks (CNNs), a pivotal component in the realm of artificial in-

telligence, have proven to be instrumental in tasks such as image recognition,

natural language processing, and autonomous systems.

Work in [1], [3] presents the acceleration of a Convolutional Neural Network

(CNN) architecture on a multi-FPGA platform, given strict limitations regard-

ing bandwidth and energy consumption. More specifically, it provides different

ways to minimize the impact of such hardware limitations, accelerating the in-

ference of the neural network on an FPGA platform. In this work, we make

use of these results, and - building upon the work of Loukas in [2] - we propose

an architecture that aims to further accelerate the inference of the CNN on a

larger scale platform. In particular, we propose a parallel architecture utilizing

the resources of the Alveo U50 Data Center accelerator card[4].

While the integration of reconfigurable logic promises enhanced computational

capabilities, the process of migrating existing designs to such platforms is not

without challenges. The complexity lies not only in adapting the design to the

architecture of the Alveo U50 but also in leveraging the full potential of multiple

compute units to achieve efficient parallelization. This research addresses these

challenges head-on, aiming to provide insights into the intricacies of large-scale

distributed computation on reconfigurable logic-based platforms.

The primary objectives of this research are as follows:
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• Develop a comprehensive methodology for migrating a Convolutional Neu-

ral Network (CNN) design from ZCU102 and QFDB to the Alveo U50

reconfigurable logic-based platform.

• Implement and optimize the migrated CNN design on the Alveo U50,

utilizing the parallel processing capabilities offered by multiple compute

units.

• Conduct a thorough evaluation and comparison of the performance of

the CNN design on the different platforms, considering factors such as

execution time, resource utilization, and energy efficiency.

This research focuses on the migration and optimization of CNN designs specif-

ically, exploring the challenges and opportunities presented by large-scale dis-

tributed computation on reconfigurable logic-based platforms. The experimen-

tation involves quantitative analysis and comparison of results obtained from

ZCU102, QFDB, and Alveo U50, providing valuable insights into the potential

advantages and limitations of each platform.

The outcomes of this research will contribute to the broader understanding

of the feasibility and effectiveness of large-scale distributed computation on

reconfigurable logic-based platforms. The findings are expected to be valuable

for researchers and practitioners in the fields of deep learning, FPGA-based

computing, and distributed systems.
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1.1 Thesis Outline

In this section we present an outline of the organization of this thesis:

• Chapter 2 - Related Work: We describe in detail the related work in the

field of multi-FPGA and the high performance computing.

• Chapter 3 - Design Flow: We describe in detail the design flow in Xilinx

Tools, Vivado Design Suite and Vitis Unified Software Platform

• Chapter 4 - Methodology for transforming Vivado to Vitis: We describe

step-by-step the systemic work that was done in order to develop the

design into Vitis and Alveo U50.

• Chapter 5 - FPGA Implementation: We develop an architecture for

three single FPGAs (ZCU102, ALVEO U50 and VCU118) and for a Quad

FPGA (QFDB).

• Chapter 6 - Results: We present the resource utilization and performance

results of this work.

• Chapter 7 - Conclusions and Future Work: We conclude this thesis, and

we provide directions for future work and possible extensions to our work.
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Chapter 2

Related Work

In this chapter, we will present related work in the field of Convolutional Neural

Networks (CNN), as well as the tools and design flows for FPGA implementation

thereof. Due to the very large body of knowledge and published work, especially

in CNN and their FPGA implementations, this chapter and the associated

references will be largely on works related to the present thesis.

2.1 Convolutional Neural Networks (CNNs)

CNNs [5] are deep neural network architectures that took research by storm

during the last decades, due to their efficiency in machine learning applications

that involve images. Their main advantage compared to more traditional ar-

chitectures is that they require minimal information regarding the features of

the machine learning task, since the feature extraction is part of the training

phase.

More specifically, a typical CNN consists of two different parts. The first one

contains the so-called Convolutional Layers and the second one contains a tra-

ditional Fully Connected feed forward neural network. A CNN example is

depicted in Fig. 2.1.
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FIGURE 2.1: A CNN architecture. Source: [6]

2.1.1 Convolutional Layers

As the name suggests, convolutional layers involve the mathematical operation

that is called convolution. More specifically, each layer consists of a certain

number of randomly initialized kernels-filters, followed by a nonlinear function

called activation, and optionally a pooling layer, which aims to reduce the

dimensionality for computational efficiency. As it can be observed in Fig. 2.1,

the input image is convolved with each filter of the first convolutional layer, and

the resulting (filtered) images are passed to the next layer, after being passed

through the activations and (possibly) the pooling operation.

What should be highlighted is that during the training phase, the network is

able to compute the values of each kernel-filter of each layer that are best for

the machine learning task of interest; those kernels are called feature maps.

This is crucial, since handcrafting features, especially in datasets that involve

images, is a task of immense difficulty.

2.1.2 Fully Connected Layers

After the Convolutional Layers, the architecture of the network typically in-

volves a Fully Connected feed forward neural network. In particular, the

output of the last Convolutional Layer, after being flattened utilizing a so-

called Flatten Layer (meaning that the resulting kernels of the convolutions are

stacked as a vector), is passed as an input to the Fully Connected layer, whose

output depends on the machine learing task. For instance, in Fig. 2.1, since

the CNN is utilized for a classification task, the output of the Fully Connected
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layer involves a softmax activation and the output refers to the probability of

an image belonging to a certain class.

2.2 Accelerations on FPGAs

In recent years, researchers have explored various approaches to address the

computational complexity challenges associated with Convolutional Neural Net-

works (CNNs) on Alveo cards. The following literature review provides an

overview of relevant studies in this domain, focusing on three key papers that

propose novel solutions for enhancing the performance and efficiency of CNN

inference accelerators on Alveo cards.

2.2.1 CNNs on ZCU102

Work in [7] proposes an FPGA-based CNN acceleration architecture using a

mixed on-chip/off-chip memory strategy that achieves 10x speedup over CPU

for VGG-16 and FCN models. The authors in [8] propose an object detection

model called Agilev4 that achieves high accuracy and energy efficiency by op-

timizing the neural network architecture to balance processing speed, power

consumption, and mean average precision. In [9], the authors present the de-

sign and implementation of a convolutional neural network accelerator that ex-

ploits sparsity and features hierarchical memory organization to achieve 1 TOPS

throughput. In [10], the authors present an FPGA-based CNN accelerator that

achieves 160 G-op/s peak performance and 96% resource utilization through op-

timizations for image edge processing, seamless channel switching, and reduced

shift register chain length. In [11], the authors present an FPGA accelerator for

sparse convolutional neural networks. The accelerator uses a weight-oriented

dataflow which performs element-matrix multiplication as the core computa-

tion and employs architecture optimizations including a tile look-up table and

channel multiplexer. Work in [12] proposes power efficient FPGA-SoC design

techniques such as optimized FIFO blocks and reconfigured hardware resources

for a CNN-based object detection accelerator, achieving 10% total power re-

duction. It also shows the potential for traditional low power RTL techniques

to reduce power in CNN hardware accelerators, demonstrating a 25.9% FIFO

power reduction. In [13], the authors present an automated framework to gener-

ate optimized FPGA-based hardware accelerators for deep neural networks: the

tool takes a user’s specifications and DNN model as input and outputs synthe-

sizable HDL code, with optimizations in terms of latency, resource utilization,
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and power efficiency. In [14], the authors propose an uninterrupted processing

technique for a CNN accelerator, allowing simultaneous PE operations and data

fetching, and present a low latency VLSI architecture using a random access

line buffer PE array, achieving 587.52 GOPS throughput and 142.95 GOPs/W

energy efficiency on an FPGA prototype.

2.2.2 CNNs on Alveo U50

In [15], the authors propose an FPGA-based accelerator for randomly wired

neural networks (RWNNs) that uses multiple separable convolution engines to

process the layers in parallel, leveraging the intrinsic parallelism of the RWNN

structure. Their design utilizes HBM2 memory and a crossbar switch to enable

concurrent access to feature maps, and allocates layers to compute units and

HBM channels using heuristic scheduling and graph coloring algorithms Figure

2.2. In [16], the authors propose an FPGA CNN accelerator using Number

Theoretic Transform that attain 2859.5 GOPS throughput, surpassing existing

FFT and Winograd-based accelerators by 9.6x.

FIGURE 2.2: Architecture Design. Source: [15]

In [17], OpenMDS is presented as an open-source framework, proposed for opti-

mizing high-performance designs on Xilinx multi-die FPGAs, using customized

techniques to address timing issues from die-crossing signals. Work in [18] pro-

poses techniques to optimize the utilization of High Bandwidth Memory (HBM)

on FPGAs when using high-level synthesis (HLS) tools. Specifically, it intro-

duces methods called Batched Inter-Channel Arbitrator (BICA) and Batched

Inter-PE Arbitrator (BIPA) to improve memory bandwidth when accessing mul-

tiple HBM channels per processing element or allowing access to a channel from
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multiple processing elements, respectively. In [19], the authors present machine

learning algorithms based on convolutional neural networks and autoencoders

for selecting events with long-lived particle decays using FPGA acceleration

cards. Finds acceptable performance degradation after model quantization and

that the tested CPU, GPU and FPGA setups fit latency constraints.

2.2.3 Descroption of the CNN Model Used in the Present The-

sis

The central theme of this thesis pertains to the deployment of a previously de-

veloped Convolutional Neural Network (CNN) architecture across various plat-

forms. This selection of platforms serves as the basis for our investigation and

evaluation of the CNN’s efficacy and versatility within diverse hardware con-

texts. Subsequently, we will proceed to furnish a comprehensive exposition of

the architecture, elucidating its intricacies. This model is described in detail in

two Technical University of Crete, School of ECE Theses [1, 2].

The work [3] presents a comprehensive study on implementing Convolutional

Neural Networks (CNNs) on Field Programmable Gate Array (FPGA) plat-

forms for signal analysis tasks, particularly focusing on space data classification.

The motivation stems from the need for onboard processing in satellite-based

remote sensing platforms, where bandwidth and energy constraints are criti-

cal. The researchers explore various weight compression techniques to address

the limitations of FPGA hardware, including weight pruning, fixed-point op-

erations, and weight clustering. They demonstrate significant reductions in

memory footprint while maintaining competitive classification accuracy, paving

the way for efficient realization of CNN-based inference architectures in FPGA

platforms.

The most significant accomplishment of this work lies in its successful demon-

stration of highly efficient CNN implementation on FPGA platforms for space

data classification. By effectively compressing model parameters through so-

phisticated weight compression techniques, such as pruning and clustering, the

researchers achieve substantial reductions in memory requirements without sac-

rificing classification accuracy. This breakthrough enables the deployment of

CNN-based inference directly onboard satellites, overcoming the limitations

of traditional ground-based processing paradigms. Moreover, the comparative

evaluation against Graphics Processing Units (GPUs) highlights the superior en-

ergy efficiency and competitive performance of FPGA-based implementations,
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underscoring the potential of this approach for real-world space applications

with strict bandwidth and energy constraints.
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Chapter 3

Analysis of Design Vitis/Vivado
Flow

Vitis Unified Software Platform and Vivado Design Suite are both tools pro-

vided by Xilinx for developing and accelerating applications on Xilinx devices.

While Vivado is primarily used for hardware design and implementation, Vitis

is a higher-level development platform that allows you to create and optimize

applications for accelerated computing. The following is an overview of each

tool and the process involved in programming or enhancing a device.

3.1 Vivado

3.1.1 Vivado Tools

Vivado High Level Synthesis (HLS)

The Xilinx Vivado High Level Synthesis (HLS) tool [20] is used to transform a C

program into a register transfer level (RTL) implementation that can be easily

syntesized into a Xilinx FPGA. The main advantage of utilizing this technology

is the fact that both the development and the testing of the algorithms occur at

the C-level, allowing designers to work at a higher level of abstraction and, thus,

more quickly than using traditional hardware description languages (HDLs). In

addition, it provides optimization directives that can be used for exploring the

design space and finding an optimal implementation.

The HLS main phases are:

• Scheduling: Determines which operation occurs during on each clock cy-

cle based on both the clock frequency and the time for the operation to
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complete, as well as the optimization directives that are specified by the

user.

• Binding: Determines which hardware resource implements each scheduled

operation.

• Contro logic extraction: Extracts the control logic to create a finite state

machine (FSM) that sequences the operations in the RTL design.

In order to determine whether a design meets the requirements, HLS provides

designers with some performance metrics that can be used to refine the imple-

mentation. Those metrics are:

• Area: The amount of hardware resources required to implement the design

based on the resources available in the FPGA.

• Latency: Number of clock cycles required for the function to compute all

the output values.

• Initiation interval (II): Number of clock cycles before the function can

accept new input data.

• Loop iteration latency: Number of clock cycles it takes to complete one

iteration of the loop.

• Loop initiation interval: Number of clock cycles before the next iteration

of the loop starts to process data.

• Loop latency: Number of cycles to execute all iterations of the loop.

Vivado IDE

The Vivado IDE is the GUI for the Vivado Design Suite.

Vivado IDE [21] can compile, synthesize, implement, place and route FPGA

hardware designs written in high-level languages such as C/C++, and HDLs

such as VHDL and Verilog.

In addition, using the IP Integrator tool, hardware systems can be designed by

graphically connecting IP blocks and configuring them through their GUI, with

no coding involved, hence, accelerating the design process.

After the design process is completed, a bitstream can be created and then

downloaded to the target FPGA device to run as a standalone hardware device

or in combination with firmware running on the FPGA’s integrated ARM cores.
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The device’s firmware is developed, compiled, and deployed using the Xilinx

Software Development Kit (SDK) tool.

All of the Vivado design Suite tools are written with a native Tcl interface,

and all of those commands are available through the IDE either through the

GUI or through the Tcl console. Tcl commands can be entered in the Tcl

Console in the Vivado IDE or using the Vivado Design Suite Tcl shell. You can

run analysis and assign constraints throughout the design process. Timing and

power estimations are provided after synthesis, placement, and routing.

Xilinx SDK and Xilinx Vitis IDE

Xilinx SDK (Software Development Kit) is a comprehensive software devel-

opment environment provided by Xilinx, a leading provider of programmable

logic devices. It is part of the Xilinx Vivado Design Suite, which is a suite of

tools used for designing, developing, and programming Xilinx FPGAs (Field-

Programmable Gate Arrays) and SoCs (System-on-Chips).

Xilinx SDK allows developers to create software applications for Xilinx devices,

including embedded processors like ARM Cortex-A9 and MicroBlaze. It pro-

vides a set of tools, libraries, and APIs that facilitate the development process,

enabling software engineers to write, compile, debug, and deploy software on

Xilinx platforms.

Key features of Xilinx SDK include:

• Integrated Development Environment (IDE): Xilinx SDK includes an Eclipse-

based IDE tailored for FPGA and SoC development. It offers features like

code editing, project management, and debugging capabilities.

• Cross-Compilation Toolchain: Xilinx SDK includes a toolchain that sup-

ports cross-compilation, allowing developers to write code on their host

machine and compile it for the target Xilinx device.

• Board Support Packages (BSPs): Xilinx provides pre-configured BSPs for

various Xilinx development boards and platforms. BSPs include device

drivers, libraries, and example code specific to a particular board, simpli-

fying the development process.

• Debugging and Profiling: Xilinx SDK supports various debugging and

profiling features, including source-level debugging, breakpoints, and per-

formance analysis tools. It allows developers to track and diagnose issues

in their software applications.



14 Chapter 3. Analysis of Design Vitis/Vivado Flow

• Libraries and APIs: Xilinx SDK provides a collection of libraries and APIs

that enable developers to leverage hardware-accelerated features and in-

terfaces provided by Xilinx devices. This includes libraries for communi-

cation, signal processing, and other specialized tasks.

3.1.2 Vivado Design Flow

Below is presented detailed description of the process of creating an accelerator

for an FPGA using Vivado HLS, Vivado IDE and Vivado-Vitis SDK.

Vivado-Vitis HLS: Use Vivado HLS to convert the C/C++ function into RTL

(Register Transfer Level) code. Vivado HLS automatically generates RTL code

that describes the behavior of the function. This process is called high-level

synthesis. First, import the C/C++ function as the top-level function. Specify

synthesis options like the target FPGA device and performance goals. Next,

run synthesis to generate the RTL code. Vivado HLS optimizes the code, adds

pipelining, and generates detailed RTL implementation.

Subsequently, export the generated RTL code from Vivado HLS and create an

IP (Intellectual Property) core for integration into Vivado. Export the RTL

code as an IP core from Vivado HLS. This encapsulates the accelerator func-

tionality as a reusable component.

Vivado Integrated Design Environment (IDE): Consequently, proceed to tran-

sition to the Vivado IDE. First, Launch Vivado and create a new project tar-

geting the FPGA platform. Import the desired IPs into the project and import

the generated IP core or more IP cores, that were generated in Vivado HLS.

Configure project settings like the target device, I/O interfaces, and clocking.

Connect the IP cores to the appropriate interfaces. Finally perform synthesis,

implementation, and bitstream generation. Vivado generates a bitstream file

containing FPGA configuration.

Vivado SDK: The final tool is the Vivado SDK. Vivado SDK is to provide a com-

plete software development environment for designing, implementing, and de-

bugging embedded software applications targeting Xilinx FPGA devices. First,

launch Vivado SDK and create a new software project. Select the hardware

platform corresponding to the FPGA device. Then, develop software to inter-

act with the accelerator running on the FPGA by creating software components

to communicate with the accelerator. Compile and link the software project to

generate the executable. Finally, download the bitstream onto the FPGA and

run the software on the host CPU to control the accelerator and exchange data.
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Vivado SDK provides libraries and APIs to facilitate communication between

the host CPU and the FPGA accelerator.

FIGURE 3.1: Vivado Design Suite design flow. Source: [21]

3.2 Vitis

3.2.1 Vitis Tools

Vitis Unified Software Platform

The Vitis Unified Software Platform is a software that integrates all features of

Xilinx hardware and software development into one unified environment using

C/C++ for both hardware and software components [22].

More specific, by using the Vitis unified software platform, we get access to a de-

velopment environment for heterogeneous applications. In the aforementioned

environment, heterogeneous systems include software applications running on

x86 host processors or Arm embedded processors, compute kernels running in
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programmable-logic (PL) regions or Versal AI Engine arrays, and extensible

platform designs that provide the foundation for building and running the het-

erogeneous systems.

The Vitis unified software platform consists of the following elements:

• The software development tool stack, such as compilers and cross-compilers

to build your software application.

• Debuggers that gives the capability to locate and fix any problems in

system design.

• Program analyzers that offer profiling and analysis of the application’s

performance.

• Xilinx Runtime (XRT) that provides an API and drivers for your soft-

ware program, in order to make the connection with the target platform

possible, as well as handle transactions and data transfers between the

software application and the hardware design.

• Vitis accelerated libraries that provide performance-optimized hardware

functions with minimal code changes, and with the lack of need to re-

implement your algorithms, so that they can reap the benefits of Xilinx

adaptive computing. Vitis accelerated libraries are available for common

functions of math, statistics, linear algebra and DSP, as well as for do-

main specific applications, like vision and image processing, quantitative

finance, database, data analytics, and data compression.

The Vitis tools provide compilation, linking, profiling and debug capabilities

for heterogeneous systems in a number of different design flows including Data

Center application acceleration, RTL kernel design, Embedded System design,

and traditional embedded hardware and software design.

3.2.2 Vitis Design Flow

Below is an overview of the design flow to create an accelerator using the Vitis

Unified Software Platform:

Project Initialization: Create a new project in the Vitis IDE or Vitis command-

line tools and specify the project details, such as the project name, target

platform, and hardware platform (FPGA, ACAP, or SoC).
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Hardware Platform Specification: Define the hardware platform details, includ-

ing the target device, system configuration, memory interfaces, and connectiv-

ity. Select the appropriate platform description file (XSA or XPFM) provided

by the hardware vendor.

Application Development: Write or import your host application code that will

interact with the accelerator. This code will run on the CPU and control the

accelerator’s execution. You can use C, C++, OpenCL, or RTL (VHDL or

Verilog) languages, depending on your requirements.

Accelerator Design: Design the accelerator component that will be implemented

in hardware. This can be done using Vitis High-Level Synthesis (HLS) or RTL

design methodologies or directly in the Vitis environment. Vitis HLS allows you

to describe the functionality of the accelerator in C/C++ and automatically

generates RTL code.

Software-Hardware Interface: Define the interface between the software and

hardware components. This includes defining the data transfer mechanisms

and specifying the data formats and memory locations used by the accelerator.

Accelerator Optimization: Optimize the accelerator design for performance and

resource utilization. Utilize the HLS or RTL design tools to refine the hardware

implementation. Perform optimizations such as loop unrolling, pipelining, and

memory access optimizations to achieve the desired performance.

Platform Integration: Integrate the accelerator into the software application

if you chose to develop the accelerator in Vitis HLS. Use the Vitis platform

to interface with the accelerator, including data transfer, control signals, and

synchronization. Vitis provides libraries and APIs to facilitate this integration.

System Emulation: Run system-level emulation to verify the functionality and

performance of the accelerator. Use the Vitis emulation tools to simulate the

entire system, including the software and hardware components. Emulation

helps in identifying and fixing issues early in the development cycle.

Accelerator Debugging: Use the Vitis debug tools to identify and fix any issues

in the accelerator or software code. Perform both host-based and target-based

debugging, using techniques such as breakpoints, variable inspection, and pro-

filing.

System Validation: Validate the accelerator on the target hardware platform.

Deploy the application on the FPGA or ACAP, measure its performance, and
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verify its functionality against the expected results. Vitis provides tools for

performance measurement and verification.

Deployment and Packaging: Package the accelerator for distribution or deploy-

ment. Generate the necessary files and artifacts for deployment on the target

hardware platform. This may include software executables, libraries, or system

images.

Performance Monitoring and Analysis: Monitor and analyze the performance

of the accelerator on the target hardware platform. Use the Vitis profiling tools

to measure metrics such as execution time, memory bandwidth, and resource

utilization.

By following this design flow, you can effectively create an accelerator using the

Vitis Unified Software Platform. The platform offers a range of tools and util-

ities to streamline the development, optimization, debugging, and deployment

processes.

Fig 3.2:

FIGURE 3.2: Vitis design flow. Source: [23]

3.3 Discussion

Vivado HLS, the predecessor in high-level synthesis (HLS) solutions, had its final

official release in 2020.1. The subsequent iteration, Vitis HLS, represents an
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advancement with notable improvements over Vivado HLS. A key enhancement

as included in [24] is the utilization of an updated LLVM compiler standard,

enabling support for C/C++ in compilation and simulation processes.

Hence, migrating a kernel module or IP from Vivado HLS to Vitis HLS requires

a comprehensive understanding of the differences between these versions and

their impacts on design. These disparities can be classified into three main

categories:

Key Behavioral Differences: Vitis HLS introduces modifications in tool be-

havior that influence the overall design process, necessitating adaptation for

seamless migration.

Deprecated Commands: Certain commands previously used in Vivado HLS

are now either unsupported or discouraged in Vitis HLS, prompting users to

transition to alternative approaches.

Unsupported Features: Vitis HLS may lack support for features that were

available in Vivado HLS, requiring users to make adjustments to their designs

during the migration process.

The most common category that was used in that design and it was needed

to deal with was unsupported features. More specific, several features are not

supported in Vitis HLS, and it is crucial to be aware of these limitations to avoid

encountering issues during the compilation and synthesis processes. One notable

restriction involves the use of pragmas, specifically with the HLS dependence

pragma. When this pragma is employed on an argument that also features an

m axi INTERFACE pragma specifying a bundle with two or more ports, it is

not supported, and the compiler may issue a warning or error.

Moreover, there have been changes in pragma support, specifically regarding

the ap bus mode, which is no longer supported. Developers are advised to use

the m axi interface instead. Also, certain directives and pragmas, such as ”RE-

SOURCE,” are considered deprecated or unsupported. To address this, it is

essential to eliminate or adjust them, following the guidelines outlined in [25]

specific tutorial. Specifically, the outdated ”RESOURCE” directive/pragma in

Vivado HLS has been substituted with ”BIND OP” and ”BIND STORAGE”

pragmas and directives in Vitis HLS. The recommended practice involves uti-

lizing the ”INTERFACE” pragma or directive along with the ”storage type”

option to specify arguments for the top function. This migration guarantees

compatibility and conforms to the updated syntax and features introduced in
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Vitis HLS It’s worth noting that the maximum width for C++ arbitrary pre-

cision types in Vitis HLS is 4096 bits, a reduction from the 32K bits supported

by Vivado HLS. These limitations underscore the importance of revising code

and adapting to the supported features in Vitis HLS to ensure a smooth and

successful compilation process.
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Chapter 4

Methodology to Transform Vivado
Designs to Vitis Designs

This chapter describes in detail the main design which was developed in this

Thesis. As mentioned in previous chapters the main goal of this thesis was

to adapt the architecture in state-of-art tools and a larger FPGA in order to

enhance the design by utilizing effectively the given resources.

The first part of this thesis concern the modifications which was needed to carry

out in order to adapt the design in newest versions of tools. Particularly, the

accelerator was developed in Xilinx ZCU102 and QFDB platforms from George

Pitsis and Charisis Loukas in Xilinx Vivado Tools 2017.1 and 2017.2 versions.

In this thesis it was adopted in Xilinx Vivado 2019.2. A detailed description

of tools and platforms are presented in chapter 3. To be accomplished the

adaptation there was not needed to proceed in crucial modifications.

The main and crucial section of this thesis regarding the implementation of

architecture in Alveo Accelerator Card. As already is mentioned the card can

be used with Xilinx Vitis Unified Software Platform, hence the adjustment to

the Vitis platform was necessary.

The company offers numerous tutorials, such as the one on designing for the

same platform and the migration from SDK tool to the Vitis platform. Specifi-

cally, tutorial [26] focuses on updating hardware using the Vivado Design Suite

and importing SDK code into the Vitis platform. However, tutorial [27] reveals

that in the transition to the Vitis environment, certain tasks, typically managed

implicitly by the compiler and runtime, must now be explicitly handled by the

application developer. Consequently, turorial [27] emphasizes the necessity of

creating the design within the Vitis Unified Software Platform from the outset,

rather than relying solely on updating hardware and importing SDK code.
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4.1 Structure of Design

Besides focusing on the specific neural network, we have presented the structure

of the host code as well as the kernel code, both coded in a high-level language,

C/C++, and we have also visualized how the language for heterogeneous sys-

tems, OpenCL, is used and integrated.

Provided is a summary of the architectural design 4.1, as depicted below:

FIGURE 4.1: Architecture Design

1. Input data. In this stage, the input reads through the images, bias weights

that is required for neural network.

2. Memory variables. The reservation of memory for variables in this type of

design is relevant because, otherwise, the system derives from out-of-range

dimension errors.

3. OpenCL section. This section prepares the data and calls the kernel, or

kernels as the case may be, that runs on the FPGA. It consists of the

following steps:

(a) Detect the accelerator device. Since this methodology is compati-

ble with multiple Xilinx platforms, the first step is to detect how

many accelerator devices are available, their information (name and

supplier) and which one will be used.
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(b) Create and configure the context. This step initializes the application

and defines the memory it needs, which will be used to run kernels

on the platform or to transfer data.

(c) Create the input/output buffers. The buffers are memory spaces of

a determined size, designed to be available to both the host and the

kernel (platform).

(d) Configure kernel arguments.

(e) Configure the data transfer from the input buffers to the device.

(f) Call the kernel to be executed.

(g) Configure the data transfer from the output buffers to the host.

(h) Wait for the kernel to finish its task. When that happens, you will

get the result of the hardware acceleration.

4. Results. Print the results from the kernel and valuate them.

4.2 Host Code

In the Vitis Unified Software Platform, the host code refers to the code that runs

on the CPU of the system and controls the execution of the programmable logic

in the FPGA. The host code is typically written in a high-level programming

language such as C++ or Python and communicates with the FPGA through

an API provided by the Vitis runtime libraries. In this thesis, the host code is

written in C++ programming language.

The host code plays a vital role in managing and controlling the interaction

between the software running on the host processor and the hardware acceler-

ator implemented on the FPGA and the adaptive SoC device. This interaction

is facilitated through the use of OpenCL buffers, which enable efficient data

transfer and communication between the host and the accelerator as mentioned

before.

4.2.1 CL buffers

CL buffers in Vitis refer to OpenCL buffers that are used for passing data

between the host CPU and an FPGA accelerator. The usage of CL buffers in

Vitis involves the following steps:
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• Allocate memory for the buffer on the host: The host CPU allocates

memory for the buffer that will be used to store data to be passed to the

accelerator.

• Create a CL buffer object: The host CPU creates a CL buffer object and

specifies the size of the buffer and the memory location of the buffer on

the host.

• Copy data to the CL buffer: The host CPU copies data to the CL buffer

using OpenCL APIs.

• Copy the results back to the host: The host CPU retrieves the results

from the FPGA accelerator by copying the data from the result CL buffer

back to the host memory using OpenCL APIs.

• Pass the CL buffer to the FPGA accelerator: The host CPU passes the

CL buffer object to the FPGA accelerator, which can then access the data

in the buffer.

• Process the data on the FPGA accelerator: The FPGA accelerator pro-

cesses the data in the CL buffer and stores the results in a different CL

buffer.

• Release the CL buffers: Once the processing is complete, the host CPU

releases the memory used by the CL buffers.

The usage of CL buffers in Vitis enables efficient data transfer between the

host CPU and FPGA accelerators and can significantly improve application

performance.

Overall, cl buffers are an essential part of Vitis programming, as they provide

a way to manage memory resources on FPGA accelerators efficiently. By using

cl buffers, we can develop FPGA applications that take full advantage of the

device’s parallel processing capabilities while minimizing data transfer overhead.

OpenCL buffers serve as containers for data that can be shared between the

host and the accelerator as seen in the figure 4.2. The host code allocates these

buffers in the host memory, and they are used to store the input data that

will be processed by the accelerator, as well as the output data generated by

the accelerator. The buffers provide a unified and standardized interface for

accessing and manipulating data, regardless of whether it resides in the host or

the device memory.
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To utilize OpenCL buffers effectively, the host code needs to establish a context

for the accelerator device. The context encapsulates the resources and state

necessary for the execution of OpenCL operations. It enables the host code to

allocate and manage memory resources for the buffers and create the necessary

command queues for issuing commands to the accelerator.

Once the context is established, the host code can create OpenCL buffers using

the allocated memory resources. These buffers can be configured to hold input,

output and intermediate data for the accelerator. The host code is responsible

for initializing the input buffer with the required data and specifying the size

and layout of the buffers.

Data transfer between the host and the accelerator is a key aspect of the host

code’s role. The host code uses OpenCL commands, such as clEnqueueWrite-

Buffer and clEnqueueReadBuffer, to transfer data between the host and the

device memory. These commands ensure the correct synchronization and mem-

ory consistency between the host and the accelerator, allowing for seamless data

movement.

FIGURE 4.2: Data movement through CL buffers

After we have set aside the memory buffers and filled them with initial test

data, the subsequent step to accelerate the process is to transfer these buffers

to the FPGA global memory. This is achieved by establishing OpenCL buffer

objects with the CL MEM USE HOST PTR flag, indicating to the API that

we’re supplying our own pointers instead of having it allocate its own buffers.
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However, it’s important to note that if we have not carefully managed the allo-

cation of these pointers, it could negatively impact our system’s performance.

The code snippet below demonstrates how are associated allocated buffers with

OpenCL buffer objects.

Algorithm 1 Allocate Buffers in Global Memory

OCL CHECK(err, cl :: Bu f f erbu f f er bias1(context,
CL MEM USE HOST PTR|CL MEM READ ONLY,
(BUFSIZE) ∗ sizeo f ( f loat), bias 1.data(), &err));

OCL CHECK(err, cl :: Bu f f erbu f f er bias2(context,
CL MEM USE HOST PTR|CL MEM READ ONLY,
(BUFSIZE) ∗ sizeo f ( f loat), bias 2.data(), &err));

OCL CHECK(err, cl :: Bu f f erbu f f er bias3(context,
CL MEM USE HOST PTR|CL MEM READ ONLY,
(BUFSIZE) ∗ sizeo f ( f loat), bias 3.data(), &err));

.

.

.
OCL CHECK(err, cl :: Bu f f erbu f f er results(context,

CL MEM USE HOST PTR|CL MEM WRITE ONLY,
(BUFSIZE) ∗ sizeo f (uint32 t), results.data(), &err));

In this point to emphasize the fact that data which buffers are going to store

and transfer is necessary to be aligned to 4 KiB boundaries as Alveo cards, are

designed to work with the Alveo DMA (Direct Memory Access) engine. The

Alveo DMA engine requires data to be aligned to 4 KiB boundaries for efficient

data transfer and processing.

Once the buffers are created, the host code using the enqueueMigrateMemOb-

jects function pass the data to device global memory. enqueueMigrateMemOb-

jects function is typically used to move data between different memory regions

in OpenCL, between the host and device memory. As we can see in Algorithm

2 below, the enqueueMigrateMemObjects take a second argument the number

0, that means that the input data are transmitted from the host toward device

memory.

Then, the host code enqueues a command to launch the execution on the accel-

erator. This is achieved using the enqueueTask, which specifies the dimensions

and workgroup sizes for executing the kernel function. The host code can also
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provide synchronization points using OpenCL events to ensure that the ex-

ecution on the accelerator is properly sequenced and coordinated with other

operations.

After the execution is complete, the host code can retrieve the output data

from the output buffer using enqueueMigrateMemObjects. The OpenCL buffer

abstraction simplifies the retrieval of output data, allowing the host code to

seamlessly access the results generated by the accelerator.

Algorithm 2 Manage Data Movement using OpenCL

//Copy input data to device global memory

OCL CHECK(err, err = q.enqueueMigrateMemObjects(all input bu f f ers, 0));

//Launch the Kernel

OCL CHECK(err, err = q.enqueueTask(kernel));

//Copy Result from Device Global Memory to Host Local Memory

OCL CHECK(err, err = q.enqueueMigrateMemObjects(bu f f er results,
CL MIGRATE MEM OBJECT HOST));

In summary, the host code in the Vitis Unified Software Platform leverages

OpenCL buffers to manage the interaction between the host processor and the

FPGA or adaptive SoC accelerator. It establishes a context for the accelerator,

creates and configures the OpenCL buffers, transfers data between the host and

the device memory, launches the execution on the accelerator, and retrieves the

output data. The use of OpenCL buffers streamlines the data transfer and

communication process, enabling efficient and seamless hardware acceleration

within the Vitis Unified Software Platform.

4.3 Kernel Code

As described above, the Vitis Unified Software Platform comprises of two main

components, the kernel and the host program. The kernel program is the design

aspect for which the Vitis HLS accelerator was developed in the present thesis.

In Vivado HLS Tool there are three IPs. First of all, there is the Conv Accel IP

that is implementing the Convolutional Layer. Secondly, there is the FC Accel

IP that is the Fully Connected Layer and finally there is the Find Max IP.
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The accent of this thesis is to integrate that accelerators on Vitis Unified Soft-

ware Platform. Thus, this thesis required the consolidation of these three dif-

ferent IPs into a single entity and at first the three IPs are considered as black

boxes in order to be focused to the interface. Therefore, it was necessary to

modify the method by which data is transmitted between IPs.

4.3.1 Streaming data

The three IPs, accept hls::streams of input data and return the results in

hls::streams also. Convolutional layers accepts an input stream that include

bias, kernel and the image. Then read that stream, store the bias and kernel in

BRAM and execute the convolution. Convolution is composed of 5 functions.

Convolution1, 2x Shifted Fifo , 2x Convolution2 and Packed Fifo. There is use

of HLS dataflow as the Conv Accel was the top function of IP. Consequently,

the FC Accel is the Fully Connected layer, that accepts the data streamed by

128bits and return a stream of 32bits. In that accelerator FC Accel is used 2

instances. Finally there is the Find Max IP that accepts the 2 hls::stream from

FC Accel IPs and returns a stream with the position and the value of maximum

element of these two streams.

To combine these three IPs into a single one, a new top-level function was

created Figure 4.3, incorporating the functionalities from all Vivado HLS IPs.

The main goal was to consolidate all three IPs by integrating their top-level

functions. In the kernel’s top function, the biases and kernels that are used in

convolution are stored in BRAM in order to can be executed under dataflow

and can accessed in parallel. Images data are passed directly into Convolution

layer, where the convolution operation is performed. Additionally, FC Accel

and Find Max functions are added. At the same way, data is passed directly to

the FC Accel components. All of these operations, except the read and store

data in BRAM, are organized under an HLS dataflow 4.5 to enable parallel

processing.

Once the kernel has finished executing, the OpenCL runtime can copy the results

from the buffer back to host memory for further processing.



4.3. Kernel Code 29

FIGURE 4.3: Block Diagram of kernel - input 32bits

HLS DATAFLOW

It is crucial to note that we incorporate the call of all functions utilized in the

top functions of each Vivado HLS into the kernel’s top function. By employing

HLS DATAFLOW for all functions, the dataflow configuration aligns with the

illustrated Figure 4.5. This configuration clearly demonstrates that the design

is capable of concurrently executing functions. As soon as the Convolutional

layer produces results, triggering the PackedFifo function, the execution of the

fully connected layer commences. Subsequently, when it yields its results, the

Find Max function initiates its execution.

This approach ensures a parallel execution of functions, enhancing the efficiency

of the overall design. As the Convolutional layer progresses, other layers seam-

lessly follow suit, creating a streamlined and parallelized dataflow that optimizes

the processing capabilities of the design. The orchestration of functions in this

manner promotes a more efficient and parallelized execution of tasks within

kernel.

FIGURE 4.4: Block Diagram of kernel without dataflow
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FIGURE 4.5: Block Diagram of kernel with dataflow

4.3.2 Changes in Kernel

The Xilinx Vitis development environment is designed to enable hardware ac-

celeration on a variety of Xilinx devices, including both FPGAs and adaptable

SoCs. When migrating a design from one target device to another, such as

moving from the ZCU102 evaluation board to the Alveo U50 accelerator card,

it is common to encounter design-specific issues and differences between the

devices.

While attempting to adapt the code, II violations occurred as a consequence.

”II violations” typically refer to initiation interval violations, which occur when

the loop iterations in kernel cannot be fully unrolled or pipelined to meet the

target device’s timing requirements. The initiation interval represents the min-

imum number of clock cycles between successive loop iterations. Violating the

initiation interval constraint can result in a suboptimal or non-functioning de-

sign.

When migrating from the ZCU102 to the Alveo U50, several factors can con-

tribute to II violations:

1. Clock frequency: The Alveo U50 have a different maximum clock fre-

quency compared to the ZCU102. If your design relies on a specific clock

frequency, as in our case, that cannot be met by the new device, it may

lead to II violations.

2. Resource limitations: The Alveo U50 has a different FPGA architecture

and resource availability compared to the ZCU102. If your design uses
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resources that are scarce or not available on the U50, it may require

alternative implementations that introduce II violations.

3. Memory access patterns: The memory hierarchy and bandwidth charac-

teristics differ between the ZCU102 and Alveo U50. If your design heavily

relies on specific memory access patterns that are not well-suited for the

U50, it may introduce II violations due to memory contention or subop-

timal memory access.

The Alveo U50 has a higher clock frequency compared to the ZCU102. More

specific, the design was implemented in ZCU102 with clock set at 150MHZ and

Alveo U50 run at 300MHz. Consequently, tasks or procedures can be executed

in fewer clock cycles. Therefore, it becomes necessary to modify certain sections

of the code in order to perform these procedures efficiently and complete them

before the next procedure requires their results.

To provide a scientific explanation, clock frequency refers to the speed at which

a computer’s processor operates. It is measured in cycles per second, or Hertz

(Hz). A higher clock frequency means that the processor can perform more

instructions or tasks in a given amount of time.

In this context, the Alveo U50, being equipped with a higher clock frequency

than the ZCU102, can execute operations at a faster rate. This can potentially

result in shorter execution times for procedures. Consequently, to take advan-

tage of this increased processing speed, it may be necessary to optimize the

code by rewriting specific sections to ensure that procedures are completed in

a timely manner before their results are needed for subsequent tasks. By doing

so, the overall efficiency and performance of the system can be improved.

A typically II Violation that we were called to face is located in Find Max

function and is presented below:
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Algorithm 3 Original Kernel code

if f loat1 > f loat2 then
tempMax ← f loat1
tempPos← i

else
tempMax ← f loat2
tempPos← i + DIM1

if tempMax > max then
max ← tempMax
position← tempPos

In this scenario, the calculation of ”res1” will begin in the first clock cycle, and

in the subsequent clock cycle, it will be checked in the ”if” statement. However,

since the ”sub” operation is not completed in the second clock cycle, it cannot be

compared as required. This leads to a violation known as II (Initiation Interval)

violation, indicating that there is an issue with the timing of the operations.

Therefore, it is necessary to address this problem and make the appropriate

corrections to ensure proper execution.

As result, the part of code must be rewrited in order to remove II violation as:

Algorithm 4 Amended Kernel code

res1← f loat1− f loat2
if res1 > 0 then

tempMax ← f loat1
tempPos← 4 ∗ i + j

else
tempMax ← f loat2
tempPos← 4 ∗ i + j + DIM1

if tempMax > max then
max ← tempMax
position← tempPos

4.4 Optimization

To harness the capabilities of the Alveo Accelerator Card’s resources effectively,

certain actions were taken. These cards are specifically engineered to deliver
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high-performance computing across diverse applications. As part of this op-

timization, the Alveo card enables the reading of 512 bits of data, thereby

minimizing memory access and consequently improving overall performance.

Achieving this required modifications to the kernel code.

4.4.1 Wide Memory Access

In Vitis, wide memory access refers to accessing memory elements in a wide

fashion, typically using vectorized or burst access methods. It allows for pro-

cessing multiple data elements simultaneously, which can significantly improve

memory bandwidth utilization and overall performance. To achieve wide mem-

ory access, a modification was made to the input reading mechanism in the

kernel. Some code was implemented while every function read inputs, which

reads inputs in chunks of 512 bits and then converts them into 32-bit elements,

as accelerator specifically operates on 32-bit elements.

Algorithm 5 Wide Memory Access

BUFFER SIZE = 128
VECTOR SIZE = 512 / 32 = 16
procedure FUNC(uint512 t *in, ..., size)

uint512 t v1 local[BUFFER SIZE];
size in16← (size− 1)/VECTOR SIZE + 1
for size in16 do

chunk size← BUFFER SIZE
for chunk size do

v1 local[j]← in[i + j]

for chunk size do
uint512 ttmpV1← v1 local[j]
uint32 t val1
for VECTOR SIZE do

val1 ← tmpV1.range(DATATYPE SIZE ∗ (i + 1) − 1, i ∗
DATATYPE SIZE)

// your code using val1

The arguments of that function 5 are a type unsigned int 512 bits pointer, and

the size of elements that we desire to read. Before start, it is necessary to

define BUFFER SIZE and VECTOR SIZE that represent the elements that

can be read with one memory access. As mentioned with one memory access
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can be read 512bits from the memory. In that case, the data type that ac-

celerator handled is unsigned 32 bits. Consequently, 512bits per access / 32

bits every element is equal to 16. Hence, with one memory access can be read

16 elements. Let’s analyze the algorithm of function. First it is defined a

uint512 t local buffer v1 local, where read data from the every access will be

saved temporarily. Also, it is defined the access size, the times that it is going

to access memory size in16, in order to read the desired size of elements. The

times of access memory calculating by the size of elements that is needed to

read from memory divided by the vector size, in that case size in16=(size -

1)/VECTOR SIZE + 1. For example, if the elements that are desired to read

from memory are 1000, the size in16 will be 1000 divided with 16, elements

that can be read in one access, size in16=1000/16=62.5 +1 = 63.5. Thus, with

63 memory accesses can be read 1000 elements. Finally, ranging data that are

saved in uint512 t local buffer v1 local passed into uint32 t output. The line

val1 = tmpV1.range(DATATYPE SIZE * (i + 1) - 1, i * DATATYPE SIZE);

uses the range() method on tmpV1 to extract a subrange of 32 bits from tem-

porary tmpV1, where is stored 512 bits of one access. The starting position of

the subrange is calculated as DATATYPE SIZE * (i + 1) - 1, and the ending

position is i * DATATYPE SIZE. The extracted subrange of 32 bits is then

stored in the val1 variable, and finally, val1 can be used.

The block diagram that occurs by implementing that wide memory access is

depicted below:

FIGURE 4.6: Block Diagram of kernel - input 512bits

4.4.2 Multiple Compute Units

Multiple compute units (MCUs) are a key feature of modern high-performance

computing systems, including FPGA-based accelerators such as the Alveo U50.
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MCUs enable parallel execution of compute-intensive tasks, which can signifi-

cantly improve performance compared to a single compute unit. In this section,

we will explore the concept of MCUs and how they can be implemented using

the Vitis Unified Software Platform.

Each individual instance of a kernel is often referred to as a compute unit (CU).

Increasing the number of CUs enhances parallelism within a host-kernel system.

This means that a host program can execute the same kernel multiple times with

various datasets. In such scenarios, it is beneficial to generate multiple CUs

of the kernel to enable concurrent execution, which significantly enhances the

overall system’s performance. This approach allows the host program to fully

leverage the available computing resources, improving the efficiency of data

processing and computation. Essentially, by increasing the number of CUs,

you’re optimizing the system to perform tasks more swiftly and efficiently by

parallelizing the workload across multiple compute units, thereby taking full ad-

vantage of modern multi-core processors and GPUs for enhanced computational

performance.

Using Multiple Compute Units it was needed to modify the host code of appli-

cation. More specific, it is defined the number of units in which the application

will be executed. Practically, compute units represent instances of the kernel

that calculate the total result. Using a single compute unit, the kernel accept

as input 2500 images and process all images them own. Using more compute

units divided the number of input images in compute units. Firstly, it was used

2 compute units, that means that each compute unit accepts and process 1250

images. The key of multiple compute units is that gives the opportunity to

execute them concurrently. In effect, the time that it is needed to execute the

application is decreased in half. Later we increased the number of compute units

in 4. Practically, each compute unit accepts and process 2500/4=650 images.

That means 650 images are processing concurrently instead of 2500 that was

calculated by one compute unit. In that point, it is necessary to mention that

the Alveo Data Center Cards give us the advantage of use multiple units with

many resources that they provide. More details about the Alveo u50 which is

used in this thesis provided in chapter 5.
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Algorithm 6 Multiple Compute Units

num cu← 4
chunk size image← images/num cu
chunksize results← results/num cu
std :: vector < cl :: Bu f f er > bu f f er result(num cu)
std :: vector < cl :: Bu f f er > bu f f er input(num cu)
for num cu do

bu f f er input[i] = cl :: Bu f f er(context,
CL MEM USE HOST PTR|CL MEM READ ONLY, chunk size image ∗
sizeo f ( f loat), input.data() + i ∗ chunk size image, &err)

bu f f er result[i] = cl :: Bu f f er(context,
CL MEM USE HOST PTR|CL MEM WRITE ONLY, chunk size result ∗
sizeo f (uint32 t), results.data() + i ∗ chunk size result, &err)

for num cu do
// Setting kernel arguments
kernel[i].setArg(#arg, bu f f er bias)

.

.

.
kernel[i].setArg(#arg, bu f f er result[i])
kernel[i].setArg(#arg, bu f f er result[i])

for num cu do
// Launch the kernel
q.enqueueTask(kernel[i])

q. f inish()
for num cu do

q.enqueueMigrateMemObjects(bu f f er result[i],
CL MIGRATE MEM OBJECT HOST)

The implementation of multiple compute units in the code does not deviate

significantly from the previous version. Critical differences lie in how memory

is allocated in host local memory and the execution of compute units. The code

makes use of multiple compute units (num cu) to concurrently execute the same

kernel, thereby enhancing overall throughput.

Initially, the buffers used by the convolutional neural network for data remain

unchanged, as they are essential for execution. The only necessary modifications

involve the buffers storing the input images and the results of the convolutional
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neural network. Specifically, the input data is divided among the employed

compute units, requiring the allocation of one additional buffer for each compute

unit dedicated to images and another for results. This results in an unchanged

memory allocation process, with the size of allocated buffers now divided by

the number of compute units.

Data Flow and Data Interface

One important consideration when implementing MCUs in the Vitis Unified

Software Platform is the data flow and data interface between the different

compute units. In order to achieve maximum performance, it is important to

carefully design the data flow and data interface to minimize data movement

between the different compute units.

Alveo Cards offer 32 memory ports for data processing. In our initial approach,

we distributed the data across multiple ports to maximize parallel data process-

ing performance. To be more precise, we allocated 13 ports for each individual

compute unit. When utilizing 2 compute units, all 26 ports are fully utilized,

leaving no additional ports for adding more compute units. To accommodate

additional compute units, it becomes essential to merge input data into buffers,

thereby reducing the consumption of memory ports. The code below demon-

strates that we consolidate all the bias and kernel data for the CNN into a single

buffer. Similarly, for the dense data, which is quite extensive, we use another

buffer. We also maintain separate buffers for images and results because these

will be divided to be processed by different computing units.

Algorithm 7 Kernel Interface MCU

procedure KERNEL(inputs, images, data1, data2, results)
#pragma HLS INTERFACE m axi port=inputs bundle=gmem0
#pragma HLS INTERFACE m axi port=images bundle=gmem1
#pragma HLS INTERFACE m axi port=data1 bundle=gmem2
#pragma HLS INTERFACE m axi port=data2 bundle=gmem3
#pragma HLS INTERFACE s axi port=results bundle=gmem4

This approach allows each individual compute unit to utilize 5 memory ports.

In order to optimize the data flow and data interface, it is important to have a

deep understanding of the characteristics of the input data and the computation

being performed. This can be achieved through careful profiling and analysis of

the application, which can help identify bottlenecks and areas for optimization.
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FIGURE 4.7: Platform Design - 4 Compute Units

In conclusion, multiple compute units are a key feature of modern high-performance

computing systems, and are essential for achieving high levels of performance

in FPGA-based accelerators such as the Alveo U50. The Vitis Unified Soft-

ware Platform provides a set of APIs and tools that can be used to implement
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MCUs in FPGA-based accelerators, enabling developers to achieve maximum

performance through parallel execution of compute-intensive tasks.

High Bandwidth Memory

HBM, or High Bandwidth Memory, utilizes advanced chip fabrication methods

to offer increased bandwidth and efficiency per watt compared to conventional

DDR implementations. In this Alveo implementation, the memory manufac-

turer employs stacked die and through-silicon via chip fabrication techniques

to combine multiple smaller DDR-based memories into a larger, faster mem-

ory stack. The FPGA package integrates two 16-layer HBM stacks, adhering

to the HBM2 specification, which are linked to the FPGA fabric through an

interposer.

FIGURE 4.8: High-Level Diagram of Two HBM Stacks [28]

4.4.3 Mapping Kernel Ports to Memory

By default, when kernels are linked to the platform the memory interfaces from

all the kernels are connected to a single default global memory bank, as shown

in Figure 4.7. As a result, only a single compute unit (CU) can transfer data to

and from the global memory bank at one time, limiting the overall performance

of the application. If the device contains only one global memory bank, then

this is the only option. However, if the device contains multiple global memory

banks, you can customize the global memory bank connections by modifying the

memory interface connection for a kernel during linking. The method for per-

forming this is discussed in detail in Mapping Kernel Ports to Memory. Overall

performance is improved by using separate memory banks for different kernels
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or compute units, enabling multiple kernel memory interfaces to concurrently

read and write data.

The Vitis compiler can automatically connect compute units (CU) to global

memory resources, but it’s also possible to manually designate which global

memory bank each kernel argument or interface should connect to, using a

configuration file 8. It’s crucial to properly configure the kernel to memory con-

nectivity in order to optimize data transfers, maximize bandwidth, and improve

overall application performance. Even if there’s only one compute unit in the

device, performance can be improved by mapping its input and output argu-

ments to different global memory banks, which allows for simultaneous access

to input and output data. As we already mentioned, Alveo Cards provide 32

ports to memory, thus every input corresponds to a different global memory

bank to achieve parallel access to memory and higher performance.

Algorithm 8 HMB Configuration file

[connectivity]
sp=kernel1.inputs:HBM[0]
sp=kernel1.images:HBM[1]
sp=kernel1.data1:HBM[2]
sp=kernel1.data2:HBM[3]
sp=kernel1.results:HBM[4]
. . .
sp=kernel4.inputs:HBM[15]
sp=kernel4.images:HBM[16]
sp=kernel4.data1:HBM[17]
sp=kernel4.data2:HBM[18]
sp=kernel4.results:HBM[19]

4.5 Review of The Process

In the process of integrating a design from an FPGA to a larger one, several

challenges were encountered and addressed. One prominent issue stemmed from

the differing clock frequencies between Alveo and ZCU, leading to initiation

interval (II) violations. This necessitated the rewriting of certain sections of

the code to ensure compatibility and proper functionality.
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Another noteworthy challenge arose from the utilization of hls::stream for com-

munication between IPs through dataflow. The inherent depth of hls::streams

was found to be insufficient in the Alveo design, where the higher clock fre-

quency resulted in rapid data accumulation and subsequent waiting periods for

data to be read. This scenario led to an unending cycle, preventing the program

from concluding effectively. To overcome this, the depth of the hls stream had

to be increased, providing sufficient space for data storage, thereby enabling the

program to progress as intended.

In the context of design scaling, the original design incorporated multiple mem-

ory gates to facilitate parallel memory access for enhanced performance. How-

ever, adapting the design for Alveo, which offered 32 memory ports, required a

redesign of the kernel interface. This involved minimizing the number of ports

in memory from 11 to 5 for each kernel, a strategic decision enabling the inclu-

sion of a larger number of design copies. Ultimately, this adjustment allowed

for the creation of a design with four copies, optimizing resource utilization and

overall system efficiency.

In summary, the integration process involved addressing clock frequency dis-

parities, optimizing hls::stream depth, and reconfiguring the kernel interface for

efficient scaling. These adaptations were crucial in ensuring seamless operation

and performance improvement when transitioning the design to a larger FPGA

platform.
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Chapter 5

FPGA Implementation

This chapter will introduce the platforms where design has been applied, show-

casing the results to comprehensively illustrate the capabilities that have been

demonstrated in the field of design.

5.1 FPGA Platforms

The architectures implemented for the purposes of this thesis were targeted to

three platforms, namely the Xilinx ZCU102, ALVEO U50 and the QFDB node

prototype. In this section we will present a few basic facts about the platforms

and a set of important figures to get a quantitative view of their capabilities.

5.1.1 Xilinx Zynq UltraScale+ MPSoC ZCU102

The ZCU102 [29], depicted in figure 5.1, is an evaluation board designed for

rapid prototyping purposes. It is based on the Zynq UltraScale+ XCZU9EG-

2FFVB1156E MPSoC, offering versatility for various applications. It features

high-speed DDR4 SODIMM and component memory interfaces, FMC expan-

sion ports, multi-gigabit per second serial transceivers, and a range of periph-

eral interfaces. Additionally, it incorporates FPGA logic, allowing users to

customize their designs effectively. In terms of processing power, the board in-

cludes a Quad-core Cortex-A53 MPCore serving as an Application Processing

Unit (APU), a Dual-core Arm Cortex-R5 functioning as a Real-Time Process-

ing Unit (RPU), and an Arm Mali-400 MP2 serving as a Graphics Processing

Unit (GPU).
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FIGURE 5.1: The ZCU102 evaluation kit. Source: [29]

5.1.2 Quad FPGA Daughter Board

The QFDB [30], depicted in figure 5.2, is a prototype HPC testbed for the Eu-

roExa research project, which includes 4 Zynq UltraScale+ XCZU9EG-FFVC900-

2-e MPSoCs, similar to those found in the ZCU102 board. Each FPGA node on

the board is connected to a 32MB QSPI memory and a 16GB DDR4 SODIMM,

allowing for data transfer rates of up to 160 Gbps and a total memory capacity

of 64 Gb. The board also features a 256 GB SSD/NMVe, with larger 2 TB

devices available. The FPGA nodes are interconnected in an all-to-all topol-

ogy using 2 High-Speed Serial Links (HSSL) with GTH transceivers and 24

Low-voltage differential signaling (LVDS) pairs. Additionally, one of the MP-

SoCs is connected to the outside world using 10 HSSLs at 10.3125 Gbps and

GTH transceivers. The hardware design can easily be transferred between the

ZCU102 board and the QFDB due to their similar architectures.
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FIGURE 5.2: Block Diagram of the QFDB board: Source: [30]

Figure 5.3 illustrates the block diagram for both the ZCU102 and QFDB plat-

forms, both of which incorporate the Zynq Ultrascale+ processor. The Zynq

UltraScale+ processor utilizes the AXI4 protocol for communication and data

streaming with IP cores. The AXI4 protocol is a high-speed on-chip intercon-

nect standard that enables efficient data transfer.

By using three DMA IP cores, one for the input data and two for the weight

values, the system can efficiently stream data to the different layers of the neural

network. More specifically, one for the kernel and input data streamed to the

IP of convolutional layers and two for the weight values to the 2 IP cores, each

containing 400 nodes of the fully connected layer. The use of SmartConnect IPs

allows for a more flexible connection between the DMAs and the PS. Finally,

the AXI Interconnect IP core is used in the master port of the PS to improve

communication and data transfer efficiency by routing data.
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FIGURE 5.3: Zynq Architecture. Image from Loukas’s Thesis
[2]

5.1.3 AMD Virtex UltraScale+ FPGA VCU118 Evaluation Kit

The VCU118 evaluation board [31] serves as a robust hardware platform de-

signed for the development and evaluation of designs targeting the AMD Vir-

tex™ UltraScale+™ FPGA, specifically featuring the XCVU9P-L2FLGA2104

device. This board incorporates essential features commonly found in eval-

uation systems, including DDR4 and RLD3 component memory, dual small

form-factor pluggable (QSFP+) connectors, a sixteen-lane PCI Express® inter-

face, an Ethernet PHY, general-purpose I/O capabilities, two UART interfaces,

and a FireFly™ Optical x4 28 G connector. Additionally, the VCU118 board

is equipped with flexibility for expanding its functionality through modules

compatible with the VITA-57.1 FPGA mezzanine card (FMC) and VITA-57.4

FPGA mezzanine card plus high serial pin (FMC+ HSPC) connectors. This

versatility allows developers to leverage a wide range of peripherals and func-

tionalities, making it an ideal platform for comprehensive FPGA-based design

exploration and evaluation..
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FIGURE 5.4: Block Diagram of the VCU118. Source: [31]

Initially, the architectural modifications for the Virtex UltraScale+ FPGAVCU118

Evaluation Kit involved the substitution of the Zynq UltraScale processing

unit with a Microblaze core. Subsequently, it became imperative to replace

the SmartConnect intellectual property (IP) components with AXI Memory-

Mapped to Stream Mapper (mm2 mapper) instances. Additionally, two more

AXI Memory-Mapped to Stream Mapper components were introduced to facil-

itate communication between the master port of the PS and the AXI Intercon-

nect IP.

The AXI Memory-Mapped to Stream Mapper is used to bridge the gap be-

tween components that use memory-mapped interfaces (AXI) and those that

use stream-based interfaces. It translates read and write requests on the AXI

bus into a stream of data.

The AXI Memory-Mapped to Stream Mapper takes this request and converts it

into a stream of data or extracts data from a stream, depending on the direction

of the transaction.The data is then transferred between the two components

using the stream interface.
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FIGURE 5.5: VCU118 architecture: clock, reset and interrupt
signals were omitted, to emphasize the most structurally im-

portant connections of the AXI protocol

To incorporate multiple instances of accelerators, three AXI Interconnect IPs

had to be integrated. Each AXI Interconnect IP is designated for a specific

DMA (Direct Memory Access) module. These DMAs are responsible for han-

dling streaming data for each IP, one for Convolutional layers and two for fully

connected layers. This arrangement ensures seamless communication of the

streamed data within each IP Figure 5.6.
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FIGURE 5.6: VCU118 architecture using 2 instances of accel-
erator: clock, reset and interrupt signals were omitted, to em-
phasize the most structurally important connections of the AXI

protocol

FIGURE 5.7: VCU118 architecture using n instances of accel-
erator: clock, reset and interrupt signals were omitted, to em-
phasize the most structurally important connections of the AXI

protocol
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5.1.4 Alveo U50 Data Center Accelerator Card

The Xilinx Alveo U50 accelerator card for data centers is a passively-cooled,

low profile card that occupies a single slot and operates within a maximum

power limit of 75W. It can support either PCIe Gen3 x16 or dual Gen4 x8 and

comes with 8GB of high-bandwidth memory (HBM2) and Ethernet networking

capabilities 5.8. The Alveo U50 card is designed to speed up compute-intensive

applications that are memory-bound, such as financial computing, data search,

and analytics. The Alveo U50 LV is specifically recommended for accelerat-

ing machine learning inference workloads. Both the U50 and U50 LV cards

are identical, except for the core operating voltage, with the U50 operating at

VNOM and the U50 LV at VLOW.

The Xilinx Alveo U50 accelerator card can be utilized with the Xilinx Vitis uni-

fied software platform and target platform, which streamlines the design process

and enables the use of high-level programming languages such as C, C++, and

OpenCL. A platform allows for configuration of the card from onboard flash

memory, and upgrades can be performed through PCI Express.

FIGURE 5.8: Block Diagram of Alveo U50
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In Figure 5.9 depict the block diagram of multiple compute units. The data flow

begins with the host system, which is connected to the Alveo U50 accelerator

card via the PCI Express (PCIe) interface. PCIe is a high-speed serial interface

that facilitates the transfer of data between the host and the FPGA-based

accelerator card. The data received through PCIe is then loaded into the HBM.

HBM’s high bandwidth allows for quick and efficient storage and retrieval of

data during computation. After the kernel has generated the data stored in

HBM.

The kernels (kernel 1 through kernel 4) are processing data, and each has spe-

cific data types associated with them (e.g., inputs, images, data1, data2, and

results). The data for each type is stored in a designated HBM interface. When

a kernel needs access to a particular type of data (e.g., inputs or images), it

communicates with the corresponding HBM interface.

FIGURE 5.9: Block Diagram - 4 Compute Units
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Each kernel is depicted in Figure 5.10. The kernel as we already mentioned,

have five memory interfaces, consisting of four inputs (inputs, images, data0,

data1) and one output. The kernel processes inputs by initially reading and

passing them to various components. Conv Accel receives an image, performs

convolution, and transfers the results to FC Accel, responsible for executing

the fully connected layer of the CNN. Notably, two instances of the fully con-

nected layer are employed to concurrently calculate. The results from FC Accel

are then forwarded to the Find Max component, whose result constitutes the

kernel’s output.

FIGURE 5.10: Block Diagram of kernel - input 512bits

5.2 Discussion

In the preceding sections, it became evident that certain platforms, like QFDB,

boast numerous memory ports, resulting in higher overall bandwidth. However,

this platform typically incorporate four FPGAs, necessitating internal commu-

nication. On the other hand, platforms such as Alveo exhibit fewer memory

ports, but their advantage lies in the absence of communication challenges be-

tween multiple different FPGAs. It is crucial to acknowledge that the design

must be tailored to optimize the memory subsystem for each specific platform,

leading to the identification of a distinct design flow.

The variation in memory port abundance between platforms like QFDB and

Alveo highlights the need for a platform-specific approach. While QFDB’s

extensive memory doors contribute to increased total bandwidth, the inter-

connected nature of its four FPGAs introduces complexities in internal com-

munication. Conversely, Alveo’s streamlined design with fewer memory ports

mitigates communication challenges, capitalizing on the efficiency of a single
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FPGA. Adapting the design to leverage the strengths of the memory subsys-

tem on each platform becomes imperative, underscoring the significance of a

nuanced and tailored design flow.

In essence, the observed differences underscore the necessity for an adaptable

design strategy that can harness the unique characteristics of the memory sub-

system on diverse platforms. Whether it is optimizing for the multitude of

ports in QFDB or capitalizing on the faster single-port configuration of Alveo,

designers must navigate a nuanced design flow to ensure optimal performance

based on the intricacies of each platform’s architecture.
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Chapter 6

Results

This chapter presents the results obtained in the present thesis, and compares

these results to previous ones from the same CNN, as described in the theses

of G. Pitsis and C. Loukas. It should be noted that the previous designs were

built again during this thesis on newer versions of the tools, and hence the per-

formance and design footprint (resource utilization, etc.) which are presented

in this chapter are from new runs on new tools. We will detail the resource

utilization for each design and the performance.

6.1 Resource Utilization

ZCU102 (%) QFDB (only F2
FPGA) (%)

Alveo U50 (%)

LUT 40.0 40.0 24.23
LUTRAM 2.0 2.0 3.57
FF 39.0 39.0 18.58
BRAM 12.0 12.0 21.39
DSP 19.0 19.0 8.32
IO 0 0 2.40
GT 0 0 80.0
BUFG 6 0 6.10
PLL 0 0 6.25

TABLE 6.1: Utilization comparison between platforms

Table 6.1 shows a comparison between the resource utilization of the ZCU102-

targeted design, the the QFDB-targeted standalone design and the Alveo U50-

targeted design. As we can see, migrating from the ZCU102 to the QFDB
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does not affect the resource utilization at all, and migrating to Alveo U50 there

are significant differences. However, the difference between the ZCU102-target,

QFDB-target designs and the Alveo U50-target design is obvious and is of course

to be expected as Alveo Card is larger FPGA with more resources. We mark

an decrease in Look-Up Tables (LUT) utilization by 16%, in Flip-Flops (FF)

by 20% and in Digital Signal Processor by 10%.

% LUT LUTRAM FF BRAM DSP IO BUFG
single CU 24.23 3.57 18.58 21.39 8.32 2.40 6.10
2 CUs 37.21 5.16 30.33 29.54 16.57 2.40 7.59
4 CUs 63.17 8.34 53.83 45.84 33.07 2.40 10.57

TABLE 6.2: Utilization Comparison between Compute Units

Table 6.2 presents the resource utilization after the use of the CNN architec-

ture multiple instances, with the exception of the Alvep u50. Regarding these

results we can see that one instance of CNN makes use of 13% LUTs, 2& LU-

TRAM 7% BRAM and 8% DSP. Also we can see that IO remains the same,

as it is mentioned before, that kernel is using different memory port for each

input/output, such in this way bottleneck is avoided by adding more compute

units.

6.2 Power Consumption and Energy Consumption

Power Consumption

Power consumption is defined as the amount of energy consumed per unit time

to perform a specific task. It is usually measured in Watts (W) or kilo-Watts

(kW). The power consumption of a system is extremely important and should

be kept as low as possible. The battery life of portable electronic de-vices

such as cell phones and laptops is limited by power consumption. Low power

consumption leads to higher energy efficiency and lower building costs. Using

a simplified and smaller architecture for a design can increase energy efficiency.

Energy Consumption

Energy consumption refers to the energy required for accomplishing a particular

task in a specific amount of time. It is commonly measured using Joule (J) or
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kilo Joule (kJ). This metric value should also remain at the lowest level possible.

E = P× T

where E represents the energy in Joules, P indicates the required power for

the device to function and T is the time needed to execute the task. The

Images/Joule metric can be calculated as follows:

Images
Joule

= max (
Throughput

Power
,

1
Power× Latency

)

6.3 Throughput and Latency Speedup

Latency

Latency, is the required time to complete a single task. In this work, latency

can be the time taken to process a single image, a batch of images, a dataset of

images, etc.

Throughput

Throughput is generally referred to as the quantity of tasks completed in a

given amount of time. The rate at which something is processed increases with

throughput. Throughput in this work is referred to as the number of images

processed per second.

Throughput =
Images
Time

(sec)

6.4 Overall Performance Comparison

Table 6.3 illustrates that Alveo operates at a clock frequency of 300MHz, sur-

passing the F2 design, which runs at 100MHz, resulting in improved latency.

In the Alveo U50 design, latency is reduced to 2.485ms with a total runtime of

6.2 seconds for a dataset containing 2500 input values, as opposed to the 7.45

seconds required by the F2 design.

Utilizing multiple compute units in parallel execution further diminishes exe-

cution time significantly. Specifically, with 4 compute units, each responsible

for calculating 625 images, the individual execution time per compute unit is

reduced to 1.6 seconds. As previously mentioned, these compute units operate
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concurrently, resulting in a total runtime of 1.6 seconds for the entire 2500 input

value dataset when employing 4 compute units.

Clock Frequency
(MHz)

Power
(Watts)

Throughput
(Images/s)

Latency
(ms)

F2 100 9.523 329 3.037

Alveo U50 300 20.966 402 2.485

TABLE 6.3: Measurements for 2500 input value dataset

FIGURE 6.1: Total Throughput
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FIGURE 6.2: Total Power Consumption

Figure 6.1 depicts the throughput of each design, confirming our earlier obser-

vation that the Alveo U50 design operates more efficiently due to its higher

clock frequency, resulting in faster results.

Simultaneously, Figure 6.2 illustrates that the Alveo U50 FPGA demonstrates

higher power consumption compared to the F2 design, which is in line with ex-

pectations due to the Alveo U50’s larger size requiring more power. Specifically,

the Alveo U50 consumes 20.966W with an execution time of 6.2 seconds per

compute unit, resulting in an energy consumption of 130 Joules. Conversely,

the F2 consumes 9.523W with an execution time of 7.45 seconds per compute

unit, leading to an energy consumption of 71 Joules. This indicates that per

compute unit, the F2 is more energy-efficient.

However, when considering the utilization of four compute units, the Alveo U50

demonstrates a total execution time of 1.6 seconds with a power consumption

of 42.599 Watts, resulting in a total energy consumption of 68 Joules. Conse-

quently, the Alveo U50 emerges as more energy-efficient in this scenario.

In summary, while the F2 proves to be more energy-efficient per compute unit,

the Alveo U50 surpasses it in energy efficiency when utilizing multiple compute

units simultaneously.
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FIGURE 6.3: Execution runtime

Lastly, in Figure 6.3, the execution time is depicted concerning the number of

utilized compute units. Notably, employing 4 compute units results in a per-

formance improvement that is four times faster than utilizing a single compute

unit. This acceleration is attributed to each compute unit handling the calcu-

lation of 2500/4 images. As discussed in the previous chapter, the concurrent

operation of all compute units, coupled with the advantageous configuration of

Alveo memory, allows for parallel access to memory without introducing addi-

tional latency to read and write in memory.
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Chapter 7

Conclusions and Future Work

In summary, the results presented in this study provide valuable insights into the

performance characteristics of Alveo U50 and ZCU102 FPGAs in the context

of image processing. Alveo U50 demonstrated superior latency, lower runtime,

and the ability to harness parallelism effectively, showcasing its potential for

applications demanding high computational throughput. Conversely, ZCU102

exhibited competitive performance but with slightly higher latency and runtime.

The trade-off between FPGA size and power consumption was a key consider-

ation in this study. While Alveo U50’s larger size allowed for the integration

of more compute units and concurrent execution, it came at the cost of higher

power consumption. Although this led to increased power consumption, lever-

aging multiple compute units ultimately resulted in lower energy consumption

despite the higher power usage and execution time.

Migrating a design from the Vivado design flow to the Vitis design flow is a

time-intensive process involving numerous steps. Additionally, there is a need

for redesign when dealing with variations in the memory subsystem or clock

configurations.

The tools continue to evolve, and there are inconsistencies even within High-

Level Synthesis (HLS). Maintaining an IP core over time is challenging, even

within the same design flow. The complexity increases when transitioning from

Vivado to Vitis.

In conclusion, this study contributes to the understanding of FPGA perfor-

mance and highlights the nuanced decision-making process in FPGA selection.

The results underscore the potential benefits of utilizing larger FPGAs for spe-

cific applications while emphasizing the importance of managing associated

power consumption. Ultimately, the insights gained from this research can
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inform the design and implementation of FPGA-based systems, paving the way

for improved efficiency and performance in image processing applications.
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