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“Your screen is increasingly a kind of one-way mirror
that reflects your own interests,

while the algorithm analysts observe everything you click on”

Pariser, 2017, p.13



ABSTRACT

Almost all online services encourage users to establish a profile, granting access to
personalized content. Having more and more detailed data from the user, allows for the
platforms to detect his interests and to create the content that has the greatest chance for
success. However, there are instances when recommendations become excessively person-
alized, especially in (cache-friendly) systems also guiding suggestions towards content with
low access cost. This can lead the user in a state where they are consistently presented
with content of a singular nature, which may or may not sustain his interest in the long
run. This thesis aims to improve recommendation systems, by increasing the diversity of
recommended content, thus preventing the creation of content bubbles. First, an overview
is provided, initiating with the exposition of Baseline Recommendation Systems (BS-RS),
their evolution into Network-Friendly Recommendation Systems (NF-RS), and the repre-
sentation of the content bubble phenomenon in NF-RS. The setup of BS-RS and NF-RS
as optimization problems is detailed, and the introduced Diverse NF-RS is presented, ad-
dressing the content bubble phenomenon. The optimization problem for Diverse NF-RS is
formulated, demonstrated to be convex, and linearized before being solved. No previously
established implementation adequately addresses the diversity issue with comparable cost-
diversity trade-offs. The proposed solution incorporates additional fairness metrics from
other works, establishing that our proposed Recommendation System can accommodate
them without compromising the favourable trade-offs achieved.



ΠΕΡΙΛΗΨΗ

Σχεδόν όλες οι διαδικτυακές υπηρεσίες ενθαρρύνουν τους χρήστες να δημιουργήσουν

ένα προφίλ, παρέχοντάς τους έτσι πρόσβαση σε εξατομικευμένο περιεχόμενο. Αντλώντας

συνεχώς λεπτομερή δεδομένα από το χρήστη, οι πλατφόρμες εντοπίζουν τα ενδιαφέροντά

του, και συστήνουν στο χρήστη όλο και πιο πετυχημένο περιεχόμενο - δηλαδή, σχετικό με

τις προτιμήσεις του. Ωστόσο, υπάρχουν περιπτώσεις όπου οι συστάσεις γίνονται υπερβολι-

κά προσωποποιημένες, ειδικά στα συστήματα γνωστά ως ‘φιλικά προς το δίκτυο’. Τέτοιου

είδους συστήματα προσπαθούν να συστήσουν πετυχημένο περιεχόμενο, αλλά παράλληλα ω-

θούν και τους χρήστες προς περιεχόμενα με χαμηλό κόστος πρόσβασης (πχ. που βρίσκονται

στην cache). Αυτό μπορεί να οδηγήσει το χρήστη σε μία κατάσταση όπου του παρουσι-
άζονται μόνιμα συστάσεις ενός συγκεκριμένου χαρακτήρα, διατηρώντας ή όχι το ενδιαφέρον

του μακροπρόθεσμα. Η παρούσα διπλωματική εργασία στοχεύει στη βελτίωση των συστη-

μάτων συστάσεων, μέσω της αύξησης της ποικιλομορφίας του προτεινόμενου περιεχομένου,

αποτρέποντας έτσι τη δημιουργία του φαινομένου γνωστού ως ‘φυσαλίδες περιεχομένου’. Ξε-

κινάμε με την παρουσίαση των τυπικών συστημάτων συστάσεων, την εξέλιξή τους σε ‘φιλικά

προς το δίκτυο’ συστήματα συστάσεων, και την αναπαράσταση του φαινομένου των ‘φυσα-

λιδών περιεχομένου’ στα δεύτερα. Εισάγουμε τα ‘ποικίλα, φιλικά προς το δίκτυο συστήματα

συστάσεων’, τα οποία στοχεύουν στην παράλληλη επίτευξη ικανοποιητικών συστάσεων, χα-

μηλού κόστους και υψηλής ποικιλομορφίας. Αφού διατυπώσουμε τη λειτουργία αυτών των

συστημάτων ως πρόβλημα βελτιστοποίησης, αποδεικνύουμε ότι το πρόβλημα αυτό είναι κυρτό,

και το γραμμικοποιούμε πριν το επιλύσουμε. Από όσο γνωρίζουμε, δεν υπάρχει αντίστοιχη

υλοποίηση στη σχετική βιβλιογραφία η οποία να αντιμετωπίζει το ίδιο φαινόμενο επαρκώς,

ενώ μάλιστα το σύστημα που δημιουργήσαμε αποδεδειγμένα επιφέρει πολύ καλή αντιστάθμιση

κόστους-ποικιλομορφίας. Τέλος, το σύστημά μας επιτρέπει την ενσωμάτωση επιπλέον παρα-

μέτρων (άλλων ερευνών), χωρίς να διακυβεύονται τα ευνοϊκά αποτελέσματα που επιτυγχάνει.
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1 Introduction

In the contemporary digital landscape, dominated by platforms like Netflix, TikTok, and
YouTube, users find themselves immersed in an ever-expanding sea of content. Despite the
sheer volume, the content recommendations provided by these platforms remain remark-
ably captivating, even addictive. The secret behind this allure lies in the sophisticated
recommendation systems employed by these platforms. Uniquely tailored to individual
preferences, these systems analyze user behavior and interactions to curate personalized
content suggestions. The ongoing challenge is to continually enhance these recommenda-
tion algorithms, captivating users and maintaining their engagement. Our thesis aims to
contribute to this evolution by delving into the intricacies of recommendation algorithms.
Through this exploration, we seek to uncover innovative approaches that can elevate the
user experience by offering even more compelling content recommendations.

1.1 Problem definition

A recommendation system (or recommender system - RS) is an artificial intelligence
algorithm designed to predict consumer interests and suggest additional content accord-
ingly. Typically, the suggestions refer to various decision-making processes, ranging from
selecting products to purchase (eBay, Amazon etc), deciding on music to listen to (Spotify,
YouTube etc), choosing online news to read, or finding interesting content on social media
platforms (Instagram, Facebook, TikTok etc). There are also specialized recommendation
systems tailored for specific topics like restaurants, online dating, research articles, adver-
tisements and financial services.

Most Recommendation Systems follow the same steps during the recommendation pro-
cess [47]. Firstly, user information is analyzed to create a comprehensive user profile. Next,
based on the available information, the system selects the most suitable item(s) to present
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to the user. The final step incorporates a feedback mechanism, allowing the Recommenda-
tion System (RS) to track user satisfaction and adjust the user model accordingly. There
are two different approaches for the recommended item selection process: i) collaborative
filtering and ii) content-based filtering. The collaborative filtering method relies on the
assumption that individuals who shared preferences in the past are likely to continue doing
so in the future, enjoying similar types of items as they have previously. The algorithm
calculates similarity scores between users, and uses these scores to predict what items a
target user is likely to be interested in. It identifies peer users (user-based collaborative
filtering) or items (item-based collaborative filtering) with rating histories similar to the
current user or item, creating recommendations based on this neighbourhood similarity.
For example, if similar users wanted low cost items, the algorithm will suggest showing
similar low-cost items to the current user. The collaborative filtering approach does not
depend on machine-analysable content, allowing it to effectively recommend items with-
out necessitating a deep understanding of the items themselves. Various algorithms are
employed to measure user similarity or item similarity in recommendation systems (e.g.
k-nearest neighbour, Pearson Correlation). Collaborative filtering approaches often suffer
from three problems: cold start (for a new user/item, there is not enough data), scalability
(there are millions of users and products, thus, a large amount of computation power is
necessary to calculate recommendations), and sparsity (the large number of items means
very few ratings for each item).

The content-based filtering method is a technique used to make predictions about
a user’s preferences based on the characteristics (genre, director, actor etc) of the items
that the user has liked in the past. It can be applied to any type of item that has explicit
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or implicit attributes, including books, movies, music, and products. The idea behind
content-based filtering is that if a user has liked items with certain attributes in the past,
they are likely to like items with similar attributes in the future. These methods mainly
use techniques like Bayesian Classifiers, cluster analysis, decision trees, and artificial neural
networks. A challenge with content-based filtering is whether the system can learn user
preferences from one content source and apply them to other types. While suitable for
traditional recommendation systems where the items are well-described by their attributes
(e.g., books in Amazon, movies in Netflix), in different platforms there can be a lack of
attribute descriptions for items. This limitation is addressed by most systems (like Netflix)
using some form of a hybrid approach : a combination of collaborative filtering, content-
based filtering, and other techniques to provide more accurate recommendations.

The quality of a platform’s recommendation system significantly impacts its overall
success. Users often seek recommendations when confronted with a vast array of items
within a service. In such scenarios, Recommendation Systems play a crucial role by assist-
ing them in discovering material they might not have found independently. This material
aims to be highly appealing for the specific user, since effective recommended content not
only satisfies the user, but also prolongs their stay on the platform, contributing to its
success.

However, the pursuit of high-quality recommendations poses significant network costs.
In addressing this issue, a recent approach known as network friendly recommendations has
emerged. Network Friendly Recommendation Systems (NF-RS) extend their in-
fluence beyond user satisfaction to optimize network-level performance. The main focus of
this shift is to reduce the network cost, while still maintaining appealing recommendations.

Numerous networking mechanisms can be explored to drastically reduce costs in Rec-
ommendation Systems, with caching standing out as a primary example. In our work, we
leverage the concept known as “cache-friendly recommendations” ([2]-[20]). Unlike
conventional recommendations that focus solely on intriguing content, our approach strate-
gically guides suggestions towards content with both high interest and low access cost (i.e.
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cached content). This methodology aims to keep the quality of recommendations above a
certain threshold, while minimizing expenses in the recommendation process. Additionally,
recommending a content that is almost as interesting to the user, but locally cached, might
not just be “acceptable to the user, better for the network”, but even beneficial to both the
user and the network, if that content can be streamed for example at better quality [4]. So,
the proposed NF-RS would act as following : Instead of simply recommending interesting
content, suggestions could be nudged towards interesting content which is also cached. For
instance, upon peak hours, the recommendation system would put higher preference on
recommending content pre-cached in the vicinity of a user. Then, during an “off” period,
the system would update the cached content depending on users’ interactions of
the day. Content Delivery Networks (CDNs) are mainly used for this type of caching;
Amazon, Facebook, Netflix and many more platforms use them. Notably, Netflix has even
designed its own CDN, known as OpenConnect, to maximize offload efficiency, minimize
upstream demand on the network, and achieve higher speed in content delivery.

However, including the network cost as a determinant in the selection process for recom-
mended items may reduce diversity within the recommendations provided by the system.
In particular, highly popular contents (those frequently requested by users) will be mainly
cached due to their higher engagement, ratings, and overall consumer interaction. Thus,
the introduction of cache-friendly recommenders is likely to further concentrate recommen-
dations around a small subset of items, namely those cached near the users. This specific
kind of bias ultimately results in a decrease in diversity within the recommendations.

The above scenario becomes particularly evident when cached contents are also relative.
For example, consider a system with three users: A, B, and C. Suppose there are three
contents, and only one is recommended to each user at a time.

Interest of user A in the three contents: 1, 0.8, 0.2
Interest of user B in the three contents: 0.8, 1, 0.1
Interest of user C in the three contents: 0.3, 0.9, 1

The BS-RS recommends the most interesting item to each user; item 1 for user A, item
2 for user B, and item 3 for user C. If only item 2 is cached close to all three users, then
the NF-RS would recommend item 2 to all of them. By suffering only a minor reduction
in users’ A and C recommendation utility, the NF-RS increases the cache hit rate by 3
times. However, the diversity of recommended content to the pool of users is also reduced
by 3 times - all 3 items were shown to someone, originally, but now only item 2 is shown.

This can be a concern both for the users (who see less content variety, in the long
run), as well as the content creators of items 1 and 3. The main question we are trying to
address therefore can be framed as follows: Can we have the whole pie (large network cost
reduction) and eat it too (maintain a satisfactory content diversity)?
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We define the phenomenon of reduced diversity (described above) as a content bubble
(or filter bubble). A content bubble represents a state of intellectual isolation wherein
desired information might be occasionally omitted, progressively narrowing the users’ ex-
posure to diverse content. Within this confined space, consumers may experience feelings
of boredom and reduced satisfaction, potentially leading them to leave the platform
they were using. Beyond this dissatisfaction, content bubbles give rise to ethical concerns,
since limiting exposure solely to some content might be perceived as biasing opinions.
This issue is particularly relevant in platforms providing news content.

For instance, consider contents 1, 2, and 3 from the previous example to be political
articles. Assume that content 2 refers to the current government, while contents 1 and 3 are
related to the opposition. If all users are presented with the same content - namely the one
related to the current government - there are two potential outcomes: (i) negative user
experience for those interested in politics holding views contrary to those presented in
content 2, and (ii) Perceived Bias or Political Direction: users may question the neutral-
ity and objectivity of the recommendation system. The content bubble phenomenon has
raised significant ethical concerns to many, including activist Eli Pariser, who expressed
fear regarding the influence of media on directing people through recommendations:

Your identity shapes your media. There is just one flaw in this logic : Media also shape
identity. And as a result, these services may end up creating a good fit between you and
your media by changing... you.

It is important to note that we have performed preliminary measurements to confirm
this initial suspicion about content bubbles being created in NF-RSs. However, this is a
topic of another thesis, where this phenomenon is examined in detail.

1.2 Proposed solution

The objective of this thesis is to introduce an algorithm that ensures both network friend-
liness and content diversity. Specifically, our aim is to redefine the Network-Friendly Op-
timization Problem with the following objectives: i) maintain the core principle of mini-
mizing network-related costs, without compromising the quality of recommendations (as
in the original problem), and ii) reduce the formation of content bubbles.

The significance of this work arises from the limited exploration conducted by previ-
ous studies regarding the extent to which NF-R schemes introduce content similarity and
whether it reaches a level that may be excessively unappealing for the user.

Conversely, content providers may impose explicit diversity requirements, such as re-
stricting content similarity to no more than 50%. Currently, this option is not available
in existing NF-R schemes, as diversity requirements have not been considered as a design
aspect in NF-RS.
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The contributions of this thesis include :

� the Diverse Network-Friendly Recommendation-System formulation

� proving it is a convex problem and hence, can be optimally solved

� performing a Linear Equivalent Transformation allowing fast(er) solution of the prob-
lem, without compromising optimality

� extensive simulations, using real datasets, that demonstrate that significantly bet-
ter diversity-cost trade-offs can be achieved compared to the standard NF-RS. For
instance, a 0.2% increase in network cost corresponded to a 9% increase in content
diversity for the case of 5.3.9.

� sensitivity analysis when introducing additional fairness metrics on top of diversity

Notably, we are not building a new recommendation algorithm, thus we do not com-
pete with already existing platforms like Google, Netflix etc. Instead, we extract the items’
relevance scores from these systems and try to address the content bubble problem.

Figure 1. Evolution of Recommendation Systems. From BS, to NF, to Diverse NF.
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2 Related work

Quality criteria of Recommendations. Recommendation Systems operate with the
primary goal of maximizing customer satisfaction through the delivery of high-quality rec-
ommendations. The core strategy involves questioning how relevant the recommended
content is to item(s) the user has previously viewed (and liked - if we have information
regarding their ratings) [6],[42]. Various state-of-the-art data-driven methods, such as
neighborhood-based methods [44], latent factorization methods [45], and cosine similarity
[46], are employed to estimate relevance scores for all pairs of items. In our research, the rel-
evance scores between items were obtained from the datasets of two real platforms: Last.fm
and MovieLens, as defined precisely in [6]. Specifically, the Last.fm platform implements
the ’getSimilar’ method to derive the contents’ relevance scores, while in the MovieLens
platform [24] item-to-item collaborative filtering and cosine distance are applied to calcu-
late the relevance between each pair of contents.

Network Friendly Recommendation Systems. The paradigm of NF-RS has
been recently proposed and studied under different network set-ups and content services
([1]–[21]). The proposed NF-RS schemes aim to minimize the network cost by selecting
“less costly” recommendations ([4]-[6],[20]) or by jointly designing the recommendation and
network policy ([2],[3],[7]–[17]). To attain “less-costly” recommendations, NF-RSs employ
efficient cache utilization, implementing various caching techniques.

Caching for Network-Friendly Recommendation Systems. Caching is the pro-
cess of storing data in a cache - a temporary storage area that facilitates faster access to
data - with the goal of improving system performance and minimizing the network cost.
Although caching is extremely helpful for building less costly systems, studies have come
to the result that caching policy alone is limited in the amount of performance gain it
can bring [4], as the size of content catalogues is typically much larger than the storage ca-
pacity of a small cache. Consequently, a significant volume of requests is inevitably directed
through the backhaul, regardless of the specific caching policy in place. Increasing cache
capacity or backhaul capacity seem like the only way to cope with this problem, but these
are hardware solutions involving significant costs. The following question then arises: Are
there any practical software-based solutions that can improve caching efficiency, at a low
cost? The answer to this question follows from two key observations: (i) the performance
of a caching algorithm is dependent on user requests; (ii) user requests are increasingly
driven by recommendation algorithms (e.g. 80% of Netflix’s video views are through rec-
ommendations, while the corresponding percentage for YouTube is 50%). The proposal
in [4] is therefore to not try to further improve what is stored at each cache, but rather
to better exploit the already cached content by taking advantage of the recommen-
dation algorithms integrated in the content services. For instance, upon peak hours (e.g.
during the day) a recommendation system could put higher preference on recommending
content pre-cached in the vicinity of a user (to a nearby cache) ([2]-[20]). Then, during
an “off” period (e.g. at night), the system updates the cached content depending on users’
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interactions of the day. This model has been assumed in plenty of related work, and is for
example how Netflix operates its caches. Dynamic caching is quite more complicated and
will be examined in future work. For now, we will follow the example of [4].

Fairness in Recommendation Systems. Various articles in scientific literature ad-
dress the topic of fairness in Recommendation Systems. Specifically, [38] explores the kinds
of fairness, as : item fairness (treating items fairly instead of prioritizing some of them),
user fairness (treating users fairly instead of recommending based on demographic infor-
mation) and joint fairness (satisfies both). Whether the allocation is fair can affect the
user’s and the provider’s experience. If, for example, the recommendation cannot be fair
to users, then the platform may lose users with specific interests. If the recommendation
treats different items unfairly, then the providers of these discriminated items may leave
the platform. In [39] users’ age was proved to affect the recommendations in a music plat-
form, while in [40], the gender bias was investigated in recommending career-related items.

Despite the many approaches on fairness made by the RS community ([26]–[36], [38]-
[41]), our primary focus has been on a distinct form of fairness : forging a Network-Friendly
RS that maintains fairness towards the Baseline RS (i.e., any standard RS). This ap-
proach aims to strike a balance between cost efficiency and a fair transition to a more
network-friendly RS. The design of the specific Fair NF-RS has been implemented in [36];
a framework we have adopted in our work. The desired level of fairness in [36] is deter-
mined by an input variable, denoted as fairness weight. Fairness captured the deviation
between pBS (Baseline content demand) and pNF (Network-Friendly content demand);
thus, a generic measure, denoted as F, was employed, where F = f(pBS,pNF). The
function f is defined according to the requirements of the content provider. In [36], three
fairness measures were considered (which were then linearised, as shown on Table 1).
We include the formulas here for completeness, as we will use them later in our work:

F-max : Fmax = maxi∈K |pNF
i − pBS

i | relates to the individual fairness and accounts
for the “worst case”, i.e., no content has a demand difference larger than Fmax.

F-TV : FTV = 1
2
·
∑

i∈K |pNF
i − pBS

i | is the total variation distance between the two
distributions, i.e., the average change in content demand. It allows more flexibility than
Fmax in shaping the demand, since it does not impose a constraint for every single content.

F-KL : FKL =
∑

i∈K pBS
i log(

pBS
i

pNF
i

) is the Kullback–Leibler (KL) divergence, a widely

used measure for the difference between distributions. FKL is more sensitive to changes in
contents with lower demand pBS

i .

The previously discussed fairness metrics, while occasionally mitigating content bubbles
as a side-effect, do not consistently address the diversity problem independently. This
limitation arises because these fairness constraints are designed to maintain recommenda-
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tions closely aligned with the Baseline Recommendation System (BS-RS). However, our
current objective diverges from this by placing emphasis on diversity.

For instance, consider a RS with a content catalogue of 9 items, out of which only one
is being recommended each time a user engages with content. Suppose that the user is
currently consuming item 1 and that the BS-RS sequentially recommends the items {7, 4,
9, 8} in the next 4 recommendations. Now, assume that our proposed diverse solution is
{2, 6, 5, 3}. Despite offering the same amount of diversity as the BS-RS (i.e., 4 different
items recommended in the total 4 recommendations, resulting in 100% diversity for both
systems), not a single recommended item in our diverse system matches those in the BS
recommendations. Thus, according to the discussed fairness metrics, the system may be
deemed unfair, but for us, it is fair in terms of diversity.

Certainly, establishing a system with recommendations closely resembling those of the
BS-RS may exhibit similar diversity in its recommendations. However, the primary dis-
tinction in our proposed solution lies in the possibility of finding an alternative solution
with lower network costs and good QoR, featuring slightly different recommended items
from the BS-RS, while maintaining equally high diversity with that of the BS-RS.

Table 1: Set of linear fairness constraints S
(
z,pNF

)
.

Fmax :
pBS
i − pNF

i ≤ cf
pNF
i − pBS

i ≤ cf
∀i ∈ K

FTV :
∑
i∈K

zi ≤ cf

pBS
i − pNF

i ≤ zi ∀i ∈ K
pNF
i − pBS

i ≤ zi ∀i ∈ K

FKL :
∑
i∈K

pBS
i · zi ≥ −

(
cf −

∑
i∈K

pBS
i log

(
pBS
i

))
zi ≤ e(m−1)·s · pNF

i − (m− 1)s− 1, ∀i ∈ K,m ∈ {1, . . . ,M}

Table 2: Important Notation.

K content catalog size (|K| = K)
cf fairness weight cf ∈ [0, 1]
p content demand ; p = [p1, . . . , pK ] and

∑
i∈K pi = 1

pBS Baseline System content demand
pNF Network-Friendly System content demand
z auxiliary variable for linear transformation of the constraints
s sampling step for the KL-constraint linearisation
M number of linear cuts for the KL-constraint linearisation
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The ineffectiveness of the max fairness constraint is not only intuitive (it compares indi-
vidual content items rather than the entire content set) but is also substantiated in Section
5.4.2, where even a highly restrictive max fairness constraint (e.g., a fairness weight of 0.1)
proves inadequate in achieving content variety comparable to the baseline scenario. The
TV and KL constraints could potentially serve as better substitutes, since they study the
cumulative behavior of all the items being recommended. However, our study proved that
this is not always true and could maybe require some extra conditions (i.e. extremely
low fairness weight). Thus, we conclude in that we need an explicit reformulation of the
optimization problem to specifically target the formation of content bubbles.

Diversity in Recommendation Systems. The concept of insufficient diversity in
recommended content is well-established in the related literature, often denoted as filter/-
content/information bubbles. In [23], an examination of YouTube’s video recommendation
algorithm explores potential biases and the emergence of information bubbles. The research
presents evidence of recommendation bias contributing to the formation of tightly-knit con-
tent communities, resulting in the establishment of narrative-specific clusters. The study
outlined in [25] categorizes datasets by language, topics, etc., and investigates the impact
of bias on fairness, diversity, and exposure in social media platforms. Other related works
acknowledge metrics with a similar meaning, such as serendipity. In recommender systems,
serendipity refers to the ability to surprise users with relevant and novel recommendations
they might not have considered otherwise. Serendipitous recommendations have the poten-
tial to stimulate curiosity, creativity, and diversity, by providing a “breadth” in suggestions.
In our context, we use the term content bubbles to denote the potential “concentration”
of the recommended contents’ probability mass function.

3 Problem Setup

We examine a content service that incorporates a recommendation system (RS) within
its (web/mobile) platform. In this scenario, when a user engages with content - such as
watching, listening, or reading - a list of recommendations is provided by the RS, suggest-
ing additional content for the user to consume next.

We assume the user engages with one or more contents during a session, selected from
a catalogue of size K. During the consumption of content i ∈ K, a list of N new contents
is recommended to him, and he may respond in one of the following ways:

� follows recommendations with some fixed probability a ∈ (0, 1), and picks one of the
N recommended contents. The item selection process can be random (as we do in our
work, following the approach in [36]), or it can be based on the position of the item (as
in [6],[12]). The choice made by the user depends on the model employed, allowing
for generalization to other models in future research. For example, [6] proposes a
modeling variation where the user selects out of the N recommendations the most
relevant item to what they just viewed.
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� ignores the recommendations with probability 1 − a, and picks a content j (e.g.,
through a search bar) with probability p0j ∈ (0, 1),p0 = [p01, p02, ..., p0K ]

T .

We define the demand p0j for a content j as the fraction of requests that are for this
content : p0j = number of requests for content j

number of total requests
. Thus, we denote p0 = [p01, ..., p0K ]

T as the
vector with the distribution of demand for each content of the catalogue.

Notably, p0 also serves as the entry point for each session.

Specifically, p0 follows a Zipf distribution with a size K and a Zipf parameter equal to
popularity - an input of the problem, defined in [0, 1]. In the case where this Zipf param-
eter is zero, the distribution becomes uniform (i.e. choosing with an equal probability for
all contents). In other cases, the Zipf distribution would mean choosing several contents
with higher probability, based on their position. For example, with a Zipf parameter of
1 and K = 5, p0 would be: p0 = [0.4379, 0.2189, 0.1459, 0.1094, 0.0876]T , signifying that
the user is more inclined to select content 1, followed by content 2, and so forth.

The modeled session described above captures a number of everyday scenarios, such
as watching clips on YouTube ([23],[25]) or TikTok, or engaging with personalized radio.
Here, a represents the average probability of the user following recommendations. For
instance, a value of a = 0.5 was measured for YouTube [16], while Netflix reported a value
of 0.8 [17], and a value of a = 1 in the case of AutoPlay.

Content Retrieval Cost: We assume that retrieving content i is linked to a generic
cost ci ∈ R, where c = [c1, c2, . . . , cK ]

T . This cost, known to the content provider, may
depend on factors such as access latency, congestion overhead, popularity, file size, or mon-
etary cost. We assign ci = 0 for all cached content and ci = 1 for non-cached content.

Content Relation Matrix U: Each element uij ∈ [0, 1] in this matrix represents a
score indicating the level of relevance between content i ∈ K and content j ∈ K. These
scores are known to the RS and are typically obtained from state-of-the-art algorithms
implemented by existing recommendation platforms. In our case, the uij scores were ex-
tracted from the Last.FM platform and the MovieLens platform. The quality of these
scores directly influences the performance of our recommendation system. However, it’s
important to note that the process of obtaining them is independent of our optimization
framework; our focus lies in using these scores to optimize the recommendation process.

Using all the problem inputs initialized above, we now proceed to define our optimiza-
tion problem (control variables, constraints and objective function).

Control Variable R: The square K × K recommendation matrix, over which we
optimize. Each element rij ∈ [0, 1] in this matrix represents the probability that content
j ∈ K is recommended after a user watches content i ∈ K.
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3.1 Baseline Recommendation System (BS-RS)

The Baseline Recommendation System (BS-RS) is any standard Recommendation System.
For each content i ∈ K, the BS-RS consistently recommends the N items with the highest
uij values. In essence, the objective of the BS-RS is to optimize the quality of recommen-
dations (QoR), without considering the associated cost.

Thus, the control variable RBS will be a K ×K matrix with 1’s at the positions cor-
responding to the highest uij values. We call this “top N” policy.

For every content i, BS-RS accomplishes a quality : qmax
i =

∑K
j=1 r

BS
ij · uij

We aim to design a recommendation policy R, distinct from RBS, that takes into ac-
count both the relation matrix U and the retrieval costs ci of all contents in the catalog, to
address network requirements. In the formulation of our Network-Friendly Recommenda-
tion System below, the objective will be minimizing the total cost, while ensuring a certain
level of quality of recommendations.

3.2 Network-Friendly Recommendation System (NF-RS)

Network-Friendly Recommendation Systems aim to minimize the total cost of retrieving
desired contents, while achieving a Quality of Recommendations comparable to the quality
level offered by the BS-RS.

To guarantee the quality of recommendations, the following set of K inequality con-
straints must be satisfied :

∑K
i=1 r

NF
ij · uij ≥ q · qmax

i ,∀i ∈ K

In this equation, q is a parameter of the RS determining the percentage of qmax quality
we wish to offer. When q → 0, QoR is low, and the RS recommends based solely on access
cost. Conversely, if q → 1, the RS is the Baseline RS, and it cannot improve network
cost. This thesis focuses on values of q > 50%, as we aim to maintain a substantial level
of recommendation quality without significant degradation to achieve our goal.

3.2.1 Objective Function of the NF-RS OP

The objective function of the NF-RS optimization problem (OP) pertains to the expected
cost per user session. To derive this cost, we model the user request process as an Absorb-
ing Markov Chain (AMC), as outlined in [6].

The user request process comprises periods during which the user follows recommenda-
tions (SR), interspersed with steps during which the user ignores recommendations. Each
SR period can be represented by an absorbing Markov chain, which can conclude at any
step with a probability of 1−a (denoted as an additional absorbing state). The transition
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matrix P (shown bellow) of size (K +1)× (K +1) models the above Markov chain, where
the transient part Q = a

N
·R corresponds to the user following recommendations according

to our control variable R. When the SR period concludes, the process “renews”, and the
user re-enters the catalog from the same initial distribution p0, so each SR period is i.i.d.

Matrix P. The matrix modeling our Absorbing Markov Chain.

An example of such user session, driven by a RS, is depicted bellow. A user follows
recommendations (continuous arrows) or ignores them (dotted arrows).

Figure 2. Example of a multi-content user session driven by a Recommendation System.

The aforementioned Absorbing Markov Chain is utilized to calculate the expected cost
per recommendation period SR. Then, the renewal reward theorem [48] is employed, to
determine the expected cost of the entire session - which forms the objective of our opti-
mization problem.

Following the proof on [6], the long term expected cost (LTEC) for a long user session,
given the recommendation matrix R, is :

LTEC = (1− α)pT
0 ·
(
I− α

N
·R
)−1 · c, [6]

So, the objective of our optimization problem will be to minimize the LTEC. As
mentioned earlier, the control variable is the recommendations matrix R. Now, we shall
identify the constraints that must be satisfied, and formulate our optimization problem.
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3.2.2 NF-RS OP Formulation

The Network-Friendly Optimization Problem (NF-RS OP) described above can be formu-
lated as : Minimize the LTEC (8a)⋆, by selecting the recommendationsR (control variable)
which satisfy the following equality and inequality constraints :

(i) Achieve high quality (8b)⋆,

(ii) Consist of exactly N recommendations for each content (8c)⋆, and

(iii) Conform to the definition of control variables (8d)⋆, where they:
- are probabilities defined in the range [0, 1], and
- never allow the recommendation of a content immediately after it was consumed.

(⋆) : (8a), (8b), (8c) and (8d) refer to the optimization problem bellow.

NF-RS OP

minimize
R

pT
0 ·
(
I− α

N
·R
)−1 · c

1
1−α

(8.a)

subject to
K∑
j=1

rij · uij ≥ q · qmax
i , ∀i ∈ K (8.b)

K∑
j=1

rij = N, ∀i ∈ K (8.c)

0 ≤ rij ≤ 1(i ̸= j), rii = 0 (8.d)

Table 3: Important Notation.

K content catalog size (|K| = K)
N Number of recommendations
a Prob. the user follows recommendations
q Percentage of original quality

qmax
i Maximum baseline quality of content i
rij Prob. to recommend j after viewing i
uij Similarity scores for content pairs {i,j}
ci Access cost for content i ci ∈ {0, 1}
p0 Baseline popularity of contents

In order to establish that the NF-RS OP presented above can be solved, it is impera-
tive to demonstrate its convexity. Bellow, we will verify the convexity of the optimization
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problem; if it is not convex, it will be transformed into an equivalent convex problem.

3.2.3 Non-convexity of NF-RS OP

Definition Convex Optimization Problem

A convex optimization problem is a problem where all equality constraints are
affine functions, all inequality constraints are convex functions, and the objective is
a convex function if minimizing - or a concave function if maximizing.

Definition Convex Function

A function f(x) is convex iff it has a convex domf and ∀x1,x2 ∈ domf(x), and
∀λ ∈ [0, 1], the following condition holds : f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2)

In simpler terms, this means that the line segment between any two points on the graph
of the function lies above or on the graph of the function, and not below it.

▶ Linear functions are also convex.

The NF-RS OP comprises K2 variables rij, and a set of K2 + 2 · K linear equality
and inequality constraints (they are all linear to the optimization variable rij). Thus, the
feasible solution space is convex.

However, the optimization problem is non-convex because the objective function is
non-convex. Specifically, the objective contains the inverse of a matrix, which is not a
convexity-preserving operator.

Namely, some convexity-preserving operations are:

� Non-negative combinations : f(x) =
∑m

i=1 cifi(x)

� Composition with affine functions f(x) = g(Ax+ b)

� Composition of convex/concave functions f(x) = h (g1(x), . . . , gm(x))

� Pointwise maximum/supremum f(x) = supi∈I fi(x)

Hence, it is necessary to transform the non-convex problem into an equivalent convex one.
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3.2.4 Convexifying NF-RS OP

The NF-RS optimization problem is transformed into a convex problem, as demonstrated
in [6]. Specifically, in [6], a set of K auxiliary variables is introduced, and they are equated
to zT = (1− α) · pT

0 · (I− a
N
·R)−1.

Thus, the initial objective function : minimize
R

pT
0 ·
(
I− α

N
·R
)−1 · c

1
1−α

transforms into : minimize
z,R

zTc (or equivalently : minimize
z,R

cTz).

Intermediate Step (Equivalent formulation)

minimize
z,R

cTz (8.a)

subject to
K∑
j=1

rij · uij ≥ q · qmax
i , ∀i ∈ K (8.b)

K∑
j=1

rij = N, ∀i ∈ K (8.c)

0 ≤ rij ≤ 1(i ̸= j), rii = 0 (8.d)

zT − a

N
· zT R = (1− α) · pT

0 (8.e)

Although the objective is now linear in the variable z, this modification gave rise to a
non-convex constraint (8e) : zT − a

N
· zT R = (1− α) · pT

0 (quadratic in z, R).

The above formulation falls under the umbrella of non-convex quadratically constrained
quadratic program. In this context, it is common to execute a convex relaxation of the
quadratic constraints, subsequently solving an approximate convex problem. Nevertheless,
we will follow the methodology used in [6], where an additional variable transformation is
introduced. Specifically, we define variables fij = rij · zi.

So, the non-convex constraint now becomes:

zj − a
N

∑K
i=1 rij · zi = (1− α) · p0j, ∀jϵK

⇒ zj − a
N

∑K
i=1 fij = (1− α) · p0j, ∀jϵK

which is evidently linear - and thus convex.

page 23 of 87



The meaning of previous optimization variable R and newly introduced optimization
variables z and F are studied bellow :

Matrix R : Each element rij of R denotes the probability to recommend content j ∈ K
conditioned on the fact that the user is at content i ∈ K.

Matrix F : Each element fij of F denotes the percentage of time (in the long run) the
user was at i and saw j in his RS list.

Vector z : Each element zi of z scaled by (1 − α) expresses the long-term probability
that item i ∈ K is requested, i.e. the content demand of NF-RS, i.e. pNF.

Lemma 1

The variable transformation fij = zi · rij is a one-to-one mapping between(zi, rij)
and (zi, fij), given that all contents have a non-zero probability of being requested
by the user [6].

The proof of the Lemma goes as following:

� To obtain rij, one must calculate fij/zi. The sole constraint in this context is that zi
must be strictly non-zero to avoid an undefined rij.

� However, given fij ≥ 0 (this condition is satisfied, as fij represents a percentage

value) and p0i > 0,∀i ∈ K, the variable zj =
a
N

∑K
i=1 fij + (1− α) · p0j is compelled to be

strictly positive, ensuring it is never zero.

� Consequently, rij is always uniquely defined, provided that p0i > 0,∀i ∈ K.

Following the aforementioned steps, we arrive at our convex NF-RS OP, utilizing
the optimization variables z, F. Instead of z, we will now employ the (more accurate)
symbolization pNF, as mentioned earlier.

The (now) convex NF-RS OP is depicted bellow.
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3.2.5 Convex NF-RS OP

minimize
pNF, F

cTpNF, (13.a)

subject to

Original constraints

K∑
j=1

fij · uij − pNF
i · q · qBS

i ≥ 0,∀i ∈ K (13.b)

K∑
j=1

fij −N · pNF
i = 0,∀i ∈ K (13.c)

fij − pNF
i ≤ 0∀i, j ∈ K (13.d)

fij ≥ 0 (i ̸= j), fii = 0 (13.e)

Constraint for transformation to convex(auxiliary variableF)

pNF
j − α

N
·

K∑
i=1

fij = p0j,∀j ∈ K (13.f)

3.2.6 Linear NF-RS OP

Notably, the above convex OP is also linear to the optimization variables F,pNF.

This linearity of the Convex NF-RS OP allowed the writers of [6] to solve the NF-RS
as a Linear Programming (LP) problem (by using the CPLEX linear solver).

Definition Linear programming

Linear programming deals with the maximization (or minimization) of a linear
objective function, subject to linear constraints. The linear objective and constraints
must consist of linear expressions.
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Definition Linear expression

By linear expression we mean an expression which is a scalar product :
∑

aixi.
Values ai represent constraints (i.e. data) and xi represent variables (i.e unknowns).

Such an expression can also be written in short form as a vector product : ATX, where
A is the vector of constants and X is the vector of variables. A linear constraint is ex-
pressed by an equality or inequality; strict inequality operators (> or <) are not allowed
in linear constraints.

So, a symbolic representation of an LP would be :

minimize
x

N∑
i=1

cixi

subject to a11x1 + a12x2...+ a1nxn ≥ b1

a21x1 + a22x2...+ a2nxn ≥ b2

....am1x1 + am2x2...+ amnxn ≥ bm

x1, x2, ..., xn ≥ 0

There are three benefits in solving a Linear Program instead of the convex one:

� Optimality guarantees: the LP-based implementation will never return a sub-optimal
solution.

� No need for parameter tuning: For instance, the performance of a heuristic ADMM
implementation - like that of [4] - depends on carefully selecting the parameter µ (the
penalty on the quadratic term). On the contrary, the CPLEX (linear solver) has no
need of tuning.

� The execution time of the LP-based solution is lower.

Now that we have formalized our Linear optimization problem, we are ready to ad-
dress the diversity issue highlighted in the Introduction. However, before delving into this
matter, it is prudent to first address some additional fairness constraints outlined in the
Related Work. These fairness constraints will be optional in our optimization problem;
i.e., we may choose not use them at times, but in other instances, we may incorporate
them to draw additional conclusions.
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3.2.7 Other Fairness metrics in NF-RS

In related work ([36]) some optional fairness constraints were also included in NF-RS.
Specifically, [36] captures fairness as the deviation between the content demand of the BS-
RS and that of the NF-RS; thus, the Fair NF-RS system aims to maintain fairness towards
the BS-RS. Although the fairness constraints were initially nonlinear, their linear approxi-
mation was derived in [36], enabling us to incorporate them without further adjustments.

The set of linear fairness constraints S
(
z,pNF

)
and their detailed description are avail-

able in the Related Work section. Below, we formulate the Linear Fair NF-RS OP by
incorporating the fairness constraints S

(
z,pNF

)
into the Linear NF-RS OP.

Linear Fair NF-RS OP

minimize
pNF, F

cTpNF, (13.a)

subject to

Original constraints

K∑
j=1

fij · uij − pNF
i · q · qBS

i ≥ 0,∀i ∈ K (13.b)

K∑
j=1

fij −N · pNF
i = 0,∀i ∈ K (13.c)

fij − pNF
i ≤ 0∀i, j ∈ K (13.d)

fij ≥ 0 (i ̸= j), fii = 0 (13.e)

Constraint for transformation to convex(auxiliary variableF)

pNF
j − α

N
·

K∑
i=1

fij = p0j,∀j ∈ K (13.f)

Linear constraints for fairness

S(z,pNF)

After formulating the Linear (Fair) NF-RS OP, we move on to address the content bub-
ble phenomenon in the next section, which comprises our methodology and contributions.
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4 Problem Solving

In order to avoid content bubbles created in NF-RS, an additional constraint was introduced
to the Linear NF-RS optimization problem. This supplementary constraint articulates the
intention to provide content recommendations in a more “uncertain” manner.

4.1 Entropy as a metric of diversity

In mathematical terms, entropy serves as a measure of uncertainty, and thus, the new
constraint could be formulated as maintaining high entropy.

Definition Entropy

The entropy of a random variable X ∈ X is the average level of “uncertainty”
inherent to the variable’s possible outcomes, i.e. H(X) := −

∑
x∈X p(x)log(p(x)),

where
∑

denotes the sum over all the variable’s possible values.

The entropy metric appears to be a logical choice for addressing the diversity issue in
recommendation systems. Diversity implies avoiding deterministic recommendation pat-
terns, where only certain contents are consistently recommended while others are consis-
tently ignored. The entropy of a deterministic system is minimal; the probability of the
recommended contents would equal 1, while the probability of the others would equal 0.
In contrast, we aim for more uniform recommendations, allowing for greater diversity in
the content suggested to users, thus resulting in higher entropy values.

Of course, the entropy is not the only available metric which can be used for this issue.
The Gini Index has also been proposed in a related thesis as an alternative measure
of diversity. Although it was not implemented in this study due to time constraints, it
remains a promising avenue for future research.

By introducing the entropy metric as a method for mitigating content bubbles, this
work lays the groundwork for exploring other diversity metrics (such as the Gini Index).
The methodology presented here can serve as a valuable reference for researchers looking
to investigate alternative metrics and their impact on recommendation diversity.

However, the following questions still remain unanswered: On which variable do we
aim to maintain high entropy? And, how much entropy is considered as “high entropy”?
These are questions we have to address if we wish to formulate our final problem effectively.
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4.2 Diverse NF-RS OP Formulation

Initially, the consideration was to maintain the entropy of the recommendations ma-
trix higher than a specified threshold b. This implies that a greater variety of contents
have the opportunity to be recommended after the user views a particular content. The
constraint to be incorporated was therefore expressed as:

H(rij) = −
∑K

j=1 rijlog(rij) ≥ b, ∀i ∈ K

We will address the specific value of b later in our work.

As we mentioned before, sustaining a high entropy H(rij) implies that the values of
elements rij are closer to 0.5 than to 0 or 1 - thus, a greater variety of content will have a
probability of being recommended.

So, the new optimization problem with the entropy constraint will be :

Diverse NF-RS OP

minimize
R

pT
0 ·
(
I− α

N
·R
)−1 · c

1
1−α

(8.a)

subject to
K∑
j=1

rij · uij ≥ q · qmax
i , ∀i ∈ K (8.b)

K∑
j=1

rij = N, ∀i ∈ K (8.c)

0 ≤ rij ≤ 1(i ̸= j), rii = 0 (8.d)

K∑
j=1

rijlog(rij) ≤ −b, ∀i ∈ K (8.e)

The Diverse NF-RS, as introduced, continues to aim at minimizing network costs (sim-
ilarly with the NF-RS). However, it additionally addresses the diversity issue by imposing
a constraint to ensure that the entropy remains above a certain threshold b.

The introduced constraint (8.e) is convex because entropy is a concave function, and
(8.e) involves the negative of entropy. However, the Diverse NF-RS OP is non-convex
due to the presence of the inverse matrix in the objective function.
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4.3 Convexifying Diverse NF-RS OP

To address the non-convexity of the Diverse NF-RS OP, we employ a similar procedure as
previously done for the NF-RS OP (as outlined in [6]).

Specifically, we introduce the K auxiliary variables zT = (1−α) ·pT
0 · (I− a

N
·R)−1 and

then, also perform an additional variable transformation fij = rij · zi.

So, the constraint (8.e) :
∑K

j=1 rijlog(rij) ≤ −b, ∀i ∈ K is now written as:

∑K
j=1

fij
zi

log(
fij
zi

) ≤ −b,⇐⇒
∑K

j=1 fij · log(
fij
zi

) + b · zi ≤ 0

Let’s examine whether this new diversity constraint is indeed convex on z,F.

4.4 Convex Diverse NF-RS OP

We define : ϕi(F, zi) =
(∑K

j=1 fij · log(
fij
zi
)
)
+ b · zi =

(∑K
j=1 fij · (logfij − logzi)

)
+ b · zi

If every term of the sum is convex, then the sum is convex. So, we remove the linear part,
and we only need to prove that ki(fij, zi) = fij · log(fijzi ) is convex for every i, j ∈ {1, ..., K}.

For this, we will use the Second-Order Condition of Convexity, i.e. we will prove
that the Hessian matrix of ki is positive semi-definite at every fij, zi ∈ domki, where domki
is an open, convex set.

Theorem 1: Second-Order Condition of Convexity

A twice continuously differentiable f with an open convex domain domf is convex
if and only if the following condition holds : ∇2f(x) ≽ 0 (positive semi-definite
Hessian) at every x ∈ domf .

We first calculate the Hessian of ki:

� ∇ki(fij, zi) =


dki(fij, zi)

dfij

dki(fij, zi)

dzi

 =


d(fij · (logfij − logzi))

dfij

d(fij · (logfij − logzi))

dzi

 =


logfij + 1− logzi

−fij
zi
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� D2ki(fij, zi) =


d2ki(fij, zi)

df 2
ij

d2ki(fij, zi)

dfij dzi

d2ki(fij, zi)

dzi dfij

d2ki(fij, zi)

dz2i

 =


d(logfij + 1− logzi)

dfij

d(−fij/zi)

dfij

d(logfij + 1− logzi)

dzi

d(−fij/zi)

dzi



=

 1/fij −1/zi

−1/zi fij/z
2
i

 (A = D2ki(fij, zi) is symmetric, since aij = aji)

Theorem 2: Sylvester’s criterion

A symmetric Hermitian matrix A is positive semi-definite if and only if all its leading
principal minors are non-negative.

The principal minors of the symmetric 2× 2 matrix A are :

� D1 = A1,1 = 1/fij > 0

� D2 = A2,2 = fij/z
2
i > 0

� The determinant det(A) =
1

fij

fij
z2i

− 1

zi

1

zi
=

1

z2i
− 1

z2i
= 0

Since all principal minors of A are non-negative, the Hessian D2ki(fij, zi) is positive
semi-definite, according to Sylvester’s criterion.

Additionally, domki is convex, so ki(fij, zi) = fij · log(fijzi ) is convex ∀i, j ∈ {1, ..., K}.

Consequently, the diversity constraint is convex, as we intended to demonstrate.

The convexity of the reformulated diversity constraint enables us to formulate the Con-
vex Diverse NF-RS OP, which will be identical to the Convex NF-RS OP but with the
inclusion of the reformulated diversity constraint (which is denoted bellow as 13.g).
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Convex Diverse NF-RS OP

minimize
pNF, F

cTpNF, (13.a)

subject to

Original constraints

K∑
j=1

fij · uij − pNF
i · q · qBS

i ≥ 0,∀i ∈ K (13.b)

K∑
j=1

fij −N · pNF
i = 0,∀i ∈ K (13.c)

fij − pNF
i ≤ 0∀i, j ∈ K (13.d)

fij ≥ 0 (i ̸= j), fii = 0 (13.e)

Constraint for transformation to convex(auxiliary variableF)

pNF
j − α

N
·

K∑
i=1

fij = p0j,∀j ∈ K (13.f)

Diversity constraint

K∑
j=1

fij · log(
fij
pNF
i

) + b · pNF
i ≤ 0, ∀i ∈ K (13.g)

4.5 Linearisation of Diverse NF-RS OP

In the case of the Diverse NF-RS OP, we are not so fortunate. The entropy constraint
involves a logarithmic function, thus, it is non-linear.

There is a large software ecosystem for non-linear, convex optimization problems; e.g.
CVXPY/CVXMOD/CVXOPT. However, due to the advantages outlined above in solving
a Linear Programming (LP) problem instead of a convex one, and particularly because the
NF-RS has been previously solved as an LP by the authors of [6], we aim to transform
our Convex Diverse NF-RS into a LP problem. This approach will enable us to utilize the
existing code implementation by incorporating the additional diversity constraint.
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The primary technique for transforming convex optimization problems into linear ones
is linear approximation. This approach simplifies a convex OP by approximating the
convex objective function and constraints with linear functions.

Key aspects of linear approximation in the context of convex problems include:

▶ First-Order Taylor Approximation: Linear approximation often involves using
the first-order Taylor expansion to approximate a convex function. This involves
replacing the function with its linear tangent at a specific point. For convex functions,
this linear approximation provides a lower bound for minimization problems.

The general expression for the first-order Taylor approximation of a (multivariate)
function f(x) around a point x0 is given by: f(x) ≈ f(x0)+∇f(x0)

T (x−x0), where
f(x0) is the value of f at the point x0, ∇f(x0) is the gradient (vector of partial
derivatives) of f evaluated at x0, and x− x0 is the vector representing the deviation
from the point x0.

▶ Local Approximation: Linear approximation is typically performed locally around
a current iterate or solution point. Thus, the approximation is valid in the vicinity
of the current point.

▶ Iterative Refinement: Linear approximation is often used iteratively. At each it-
eration, the linear approximation is updated based on the current solution estimate,
and the process is repeated until convergence to an optimal solution.

On the next subsection, we will perform a linear approximation (using the First-Order
Taylor Approximation mentioned above) of the Diverse NF-RS OP. Then, we will solve
the linear problem instead of the Convex Diverse NF-RS OP.
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4.5.1 Linear Approximation via Taylor series

We introduce an auxiliary set of K2 variables d ∈ RK×K , and we demand the following
K2 +K inequalities, which are equivalent to the original diversity constraint (13.g).

K∑
j=1

dij ≤ −b, ∀i ∈ K

rij · log(rij) ≤ dij, ∀i, j ∈ K

The first K inequalities are linear on dij. The restK
2 inequalities are non-linear on rij.

To transform them to linear constraints, we approximate the non-linear terms rij ·
log(rij) with a general family of linear cuts. Specifically, we define M lines for every pair
of {i, j}, as L(rij) = am,ij · rij + bm,ij. These lines are tangent to the function g(rij) =
rij · log(rij) in the interval rij ∈ (0, 1], which is of our interest.

There are many ways to choose at which points we will sample g(rij). In these points,
the tangent lines L(rij) will be calculated, via Taylor series approximation.

We will implement two ways of sampling g(rij) and keep the best one:

▶ EXPONENTIAL SAMPLING : Sample g at the points
{
e−(m−1)s,−(m− 1)se−(m−1)s)

}
▶ LINEAR SAMPLING : Sample g at the points

{ m

100
,
m

100
log(

m

100
)
}

A. Exponential sampling

We first calculate the 1st-order Taylor approximation on points
{
e−(m−1)s, g(e−(m−1)s)

}
:

L(rij) = g′
(
e−(m−1)s

)
(rij − e−(m−1)s) + g(e−(m−1)s) =

= (1 + log(e−(m−1)s))(rij − e−(m−1)s) + e−(m−1)s log e−(m−1)s =

= (1− (m− 1)s)rij − e−(m−1)s
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These lines L(rij) are tangent to the actual rij · log(rij) function for every pair of {i,j}.
So, instead of using the K2 non-linear inequalities rij · log(rij) ≤ dij, we use the following
M ·K2 inequalities that are linear on the variables rij and dij :

(1− (m− 1)s)rij − e−(m−1)s ≤ dij, ∀i, j ∈ K, m = 1, ...,M

Thus, the linear equivalent of the entropy constraint will be:

K∑
j=1

dij ≤ −b, ∀i ∈ K

(1− (m− 1)s)rij − e−(m−1)s ≤ dij, ∀i, j ∈ K, m = 1, ...,M

And it transforms as follows, after applying the transformation rij = fij/p
NF
i :

K∑
j=1

dij ≤ −b, ∀i ∈ K

(1− (m− 1)s)fij − e−(m−1)s pNF
i ≤ dij p

NF
i , ∀i, j ∈ K, m = 1, ...,M

The last K2 constraints are linear on fij, but quadratic on the variables pNF
i , dij.

We will address this problem later. First, let’s see the linear sampling of g(rij).

B. Linear sampling

We first calculate the 1st-order Taylor approximation on points
{ m

100
, g
( m

100

)}
:

L(rij) = g′
( m

100

)(
rij −

m

100

)
+g
( m

100

)
=
(
(1 + log

( m

100

))(
rij −

m

100

)
+

m

100
log
( m

100

)
=

=
(
1 + log

( m

100

))
rij −

m

100
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These lines L(rij) are tangent to the actual rij · log(rij) function for every pair of {i,j}.
So, instead of using the K2 non-linear inequalities rij · log(rij) ≤ dij, we use the following
M ·K2 inequalities that are linear on the variables rij and dij :

(
1 + log

( m

100

))
rij −

m

100
≤ dij, ∀i, j ∈ K, m = 1, ...,M

Thus, the linear equivalent of the entropy constraint is:

K∑
j=1

dij ≤ −b, ∀i ∈ K(
1 + log

( m

100

))
rij −

m

100
≤ dij, ∀i, j ∈ K, m = 1, ...,M

And it transforms as follows, after applying the transformation rij = fij/p
NF
i :

K∑
j=1

dij ≤ −b, ∀i ∈ K(
1 + log

( m

100

))
fij −

m

100
pNF
i ≤ dij p

NF
i , ∀i, j ∈ K, m = 1, ...,M

The last K2 constraints are linear on fij, but they are quadratic on pNF
i , dij.

This is an issue that must be addressed; otherwise, the previous approximation would
appear futile in making the convex problem linear. The initial approach was to explore
potential modifications to the problem formulation. While there may be other methods to
tackle the issue, this approach proved effective for us; thus, we present it bellow.

4.5.2 Problem redefinition for achieving linearity

The problem redefinition we propose is the following:

If the new constraint referred to the vector pNF (content demand) instead of the rec-
ommendations matrix RNF, the linearization would have functioned correctly. However,
does the meaning remain consistent?

Ensuring that the entropy of pNF stays high implies that more contents will have a
probability of being demanded. In other words, the user will demand a more diverse set of
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contents overall, and the RS will have to provide him with such diverse contents. This is
because the user’s demands shape recommendations.

Therefore, we posit that maintaining diversity in content demand holds the same signif-
icance as ensuring diversity in recommended videos (i.e., ensuring many videos have a good
probability of being recommended). This perspective allows us to proceed as following.

Redefined constraint :
∑K

i=1 p
NF
i log(pNF

i ) ≤ −b

Repeating the linear approximation methods above for g(pNF
i ) = pNF

i log(pNF
i ), we get:

� L(pNF
i ) = (1− (m− 1)s)pNF

i − e−(m−1)s ≤ di for exponentially sampled points.

� L(pNF
i ) =

(
1 + log

( m

100

))
pNF
i − m

100
≤ di for linearly sampled points.

And the constraint becomes equivalent to the following M ·K + 1 linear ones:

A. Exponential sampling

K∑
i=1

di ≤ −b

(1− (m− 1)s)pNF
i − e−(m−1)s ≤ di, ∀i ∈ K, m = 1, ...,M

B. Linear sampling

K∑
i=1

di ≤ −b(
1 + log

( m

100

))
pNF
i − m

100
≤ di, ∀i ∈ K, m = 1, ...,M

In our code, we successfully implemented both linear and exponential sampling meth-
ods. The linearly sampled data provides a significantly improved approximation of the
curve p log(p), accompanied by substantially lower execution time. Consequently, we have
opted to proceed with the linear sampling implementation for our ongoing experiments.

page 37 of 87



Bellow, the plots for the two approximations (green and red colour for the exponential
and the linear sampling respectively), along with the real graph of the plog(p) function
(blue colour), are illustrated using MATLAB :

Figure 2: Function plog(p) (blue colour) and its exponentially sampled approximation (green).

Figure 3: Function plog(p) (blue colour) and its linearly sampled approximation (red colour).

Upon closer examination, it becomes evident that the green line (exponentially sampled
data) deviates more from the curve p log(p) compared to the red line (linearly sampled
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data). This demonstrates that linearly sampled data provide a superior approximation.

The Linear (Fair) Diverse NF-RS OP is presented bellow. The linear fairness constraints
S(z,pNF) are also included for completeness. However, it must be emphasized that their
usage is optional, and not all experiments will incorporate them.

4.6 Linear Diverse NF-RS OP

minimize
z,d,pNF, F

cTpNF, (13.a)

subject to

Original constraints

K∑
j=1

fij · uij − pNF
i · q · qBS

i ≥ 0,∀i ∈ K (13.b)

K∑
j=1

fij −N · pNF
i = 0,∀i ∈ K (13.c)

fij − pNF
i ≤ 0∀i, j ∈ K (13.d)

fij ≥ 0 (i ̸= j), fii = 0 (13.e)

Constraint for transformation to convex(auxiliary variableF)

pNF
j − α

N
·

K∑
i=1

fij = p0j,∀j ∈ K (13.f)

Entropy constraint linearised (optional)

K∑
i=1

di ≤ −b, (b > 0)(
1 + log

( m

100

))
pNF
i − m

100
≤ di, ∀i ∈ K, m = 1, ...,M (13.g)

Linear constraints for fairness (optional)

S(z,pNF)
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4.7 Quantifying Desired Diversity

However, the problem is not complete yet. Earlier in our work, we posed the question:

How much entropy is considered “high entropy”?

At that time, we opted to defer addressing this question and simply assumed that we
aimed to sustain entropy higher than a specified threshold b. Now, we will investigate
the meaningful significance of the b value for our problem.

We initiated our research with the Baseline RS, characterized by a cost (costBS) and an
entropy value (HBS). Then, we introduced the Network-Friendly RS, featuring a signifi-
cantly lower cost (costNF < costBS) and a smaller entropy value (HNF < HBS), indicating
reduced diversity in content recommendations. Lastly, we incorporated an additional con-
straint related to content diversity into the NF-RS, resulting in the Diverse NF-RS, which
aims to maintain a cost similar to costNF and an entropy value similar to HBS.

Nevertheless, it’s crucial that the entropy increases only to the extent that it also per-
mits maintaining a low cost. In essence, the Diverse NF-RS endeavors to find a point that
offers a favorable trade-off between cost and diversity.

To achieve this, we introduce a new variable called “bubble metric”. This variable
is an input to the optimization problem, it ranges from 0 to 1, and it represents the per-
centage of HBS we aim to achieve in our Diverse NF-RS..

So, the value of the previously specified threshold b is : b = bubble metric · HBS

Certainly, when the “bubble metric” is set to zero, there is no entropy constraint
imposed. Conversely, when the “bubble metric” is set to one, we wish that the entropy
of pNF approaches HBS.

Now that our Linear Diverse NF-RS OP is formulated and the value of b has been
specified, we can solve the optimization problem, by adding the new diversity constraint
in the code implementation of the Linear NF-RS OP. The process followed is detailed in
the section bellow.

4.8 Code implementation

Our primary work, regarding the code implementation, involved including the constraints
related to content bubble restrictions into the linear NF-RS problem.

Specifically, our contributions can be summarized as follows:
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- We computed the baseline entropy HBS for the specified input arguments.
- We introduced the new variable “bubble metric” - strictly defined in [0,1].
- From these two values, we calculated the value of b (b = bubble metric · HBS).
- We included our auxiliary optimization variables dij to the solver.
- We incorporated the desired linear constraints (when bubble metric ̸= 0).

After these modifications, the code can be tested for various “bubble metric” inputs to
observe how the cost of the Diverse NF-RS changes relative to its entropy. Of course, these
steps required study of the provided code and familiarity with the CPLEX tool used.

CPLEX Problem Formulation

Definition CPLEX Optimization Studio

IBM ILOG CPLEX Optimization Studio is an analytical decision support toolkit
for rapid development and deployment of optimization models, using mathematical
and constraint programming. It combines an integrated development environment
(IDE) with the powerful Optimization Programming Language (OPL) and high-
performance ILOG CPLEX optimizer solvers.

The CPLEX Optimizer solves linear programming problems. It provides a Python lan-
guage interface, which is the one we used. Bellow we explain the steps used to define
and solve an LP in Python, the way CPLEX documentation requires.

Step 1: Install and import CPLEX (Community Edition)
Step 2: Create an instance of a problem
Step 3: Choose whether the objective function will be minimized or maximized
Step 4: Create the decision variables, and their bounds, then add them to the problem
Step 5: Create the linear constraints and add them to the problem
Step 6: Solve the problem

In creating the decision variables and the linear constraints of the problem (steps 4, 5),
a certain formula has to be used. We explain this with an example Python implementation :

Mathematical Representation of an LP - example

minimize
p

cTp

subject to
K∑
i=1

pi = 1 , p ≥ 0
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The decision variable of this LP is p. We would normally initialize it with zeros of
required size (length(p) = K), but we notice that the objective function contains p. Thus,
we initialize p so that it also considers the multipliers ci. The decision variable’s bounds
are given by the last constraint : p ≥ 0. So, we define 0 as the lower bound and inf as the
upper bound. Last, the linear constraint of the LP is :

∑K
i=1 pi = 1 .

So, the code implementing Steps 1 - 6, for the specific example would be:

import cp lex # 1
problem = cplex . Cplex ( ) # 2
problem . ob j e c t i v e . s e t s e n s e ( problem . ob j e c t i v e . s ense . minimize ) # 3

ob j e c t i v e = [ c i f o r x in range (K) ] # cˆT p
lower bounds = [ 0 . 0 ] * K
upper bounds = [ 1 . 0 * cp lex . i n f i n i t y ] * K
problem . v a r i a b l e s . add ( obj=obj , lb=lower , ub=upper ) # 4

con s t r a i n t = [ ] # sum p i = 1
l 1 = l i s t ( range (K) ) # indexes o f p vec to r (p1 , p2 , . . , pK)
l 2 = [ 1 . 0 f o r i in range (K) ] # c o e f f i c i e n t s o f p vec to r
tmp = [ l1 , l 2 ]
c on s t r a i n t . append (tmp)
s en s e s = [ ’E’ ] * 1 # ’E’ denotes Equal i ty
rhs = [ 1 . 0 ] * 1 # the constant part

problem . l i n e a r c o n s t r a i n t s . add ( l i n e x p r=constr , s en s e s=s , rhs=r ) # 5
problem . s o l v e ( ) # 6

Senses must be either a list of single-character strings or a string containing the senses
of the linear constraints. Each entry must be one of ’G’, ’L’, ’E’, and ’R’, indicating
greater-than, less-than, equality, and ranged constraints, respectively. Rhs is a list of
floats, specifying the right-hand side of each linear constraint.

We applied the formula detailed above to incorporate our specific bubble constraints
into the code for the Linear (Fair) NF-RS OP.

Finally, we performed tests with different values of the input arguments to col-
lect sufficient data for drawing conclusions. We also developed a MATLAB code to utilize
the numerical results from these tests, creating plots that illustrate the relationship be-
tween the system’s cost and entropy. The numerical result matrices and plots for each
experiment are presented in the following section.
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5 Results

In this section, we first describe the details of the datasets we used, which provide the
crucial relevance matrix U. Then, we offer an overview of the specific values chosen for
each input argument and the rationale behind those choices. Following this, we present
the results for these arguments in many different scenarios, also proving the existence
of content bubbles in NF-RS. Last, we compare the BS-RS, the NF-RS and our Diverse
NF-RS, sometimes activating other fairness notions as well, as proposed in the work of
[36].

5.1 Datasets and Input Arguments

In order to evaluate the baseline and the proposed algorithms, we will use two public
datasets that have also been used in related work on network-friendly recommendation
systems [6],[36]. We’ll explain here how each dataset needs to be preprocessed, in order to
construct the utility matrix U, that is the key input to the various algorithms.

MovieLens RS
MovieLens is a web-based recommender system and virtual community that recommends
movies for its users to watch. It contains about 11 million ratings for about 8500 movies.
The site uses item-based and user-based collaborative filtering. In addition, to address
the cold-start problem for new users, MovieLens asks new users to rate how much they
enjoy watching various groups of movies (e.g. movies with dark humour versus romantic
comedies). The preferences recorded by this survey allow the system to make initial rec-
ommendations, even before the user has rated a large number of movies on the website.
For each user, MovieLens predicts how the user will rate any given movie on the website.
Based on these predicted ratings, the system recommends movies that the user is likely to
rate highly. The website suggests that users rate as many fully watched films as possible,
so that the recommendations given will be more accurate, since the system would then
have a better sample of the user’s film tastes.

Last.fm RS
Last.fm is a web-based recommender system and virtual community that recommends
songs for its users to listen to. Last.fm automatically generates a profile page for every
user which includes basic information such as their user name, avatar, date of registration
and the total number of tracks played. Profile pages are visible to all, together with a list
of top artists and tracks, and the 10 most recently played tracks. Each user’s profile has a
“Taste-o-Meter” which gives a rating of how compatible the user’s music taste is. Last.fm
features a personal recommendations page that is only visible to the user concerned and
lists suggested new music and events, all tailored to the user’s own preferences. Last.fm
will play tracks that do not appear in the user’s library, but are often played by other
users with similar musical tastes. As this approach leverages the behavior of users, it is an
example of a collaborative filtering technique [22].
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The specific data we extract from these platforms includes the similarity (relevance)
scores obtained from collaborative filtering for all catalogue items, i.e. the elements of U
matrix. These relevance scores were obtained from the datasets of Last.fm and MovieLens
platforms, as precisely defined in [6]. Specifically, the ’getSimilar’ method was used to
derive the relevance scores of contents from the Last.fm database. In the MovieLens data,
item-to-item collaborative filtering was applied to fill in missing user ratings and, then,
cosine distance was employed to calculate the relevance between each pair of contents.

The U matrix defines the catalog size K, representing the number of available con-
tents on the specific platform. However, it’s important to note that for our given platforms,
not all contents were utilized. For instance, in the case of MovieLens, we did not include all
8500 movies; instead, we considered only 1060 of them. Similarly, for the Last.fm platform,
we considered 757 items of the platform’s available contents. So, the catalogue size for our
implementation is either K = 1060 for MovieLens, or K = 757 for Last.fm.

There are more datasets that can (and have been) used in similar works. However,
without loss of generality, we will focus on these two datasets in this evaluation.

Input Arguments

a : The probability of following recommendations, denoted as α, is typically defined in the
range (0, 1). We choose a value of 0.8 - which is also what is used in Netflix- as it strikes a
balance between being not too strict, but substantial enough to have a significant impact
on the results. Then, we increase the value of α to 0.99 to illustrate an extreme scenario
where the user almost always follows recommendations - as in Auto-play.

popularity : The p0 vector represents the distribution of the initial content demand for
all contents, i.e. the initial number of requests for a content out of the total requests. To
define this vector, we need the value of K (catalogue size) and a popularity value, which
determines how content demand is initially distributed. Specifically, the popularity
value serves as the Zipf distribution parameter. In our implementation, we consider two
extreme cases: a popularity of 0 (resulting in a uniform distribution) and a popularity of 1.

L : The value of L represents the user’s session length, i.e. how many items they will view
in one session, on average. To observe the creation of a content bubble, a relatively large
value of L is chosen (as no bubble can be created for a very small L). We set our session
length to be 40 items for all the experiments we implemented.

N : The value of N represents the number of items recommended to the user. We experi-
ment with different values of N, starting with N = 2, and then considering a larger value of
10 items. We believe that for a catalogue size close to 1000 items, N = 10 is a sufficiently
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large number of recommended contents, and we do not increase it further. With a larger
N, the user would be suggested a substantial portion of the content catalog, especially in
the case of a large viewing session (e.g. for L = 40, as chosen). Such a scenario would
deviate from a realistic representation.

C : The value of C represents the number of items cached in the vicinity of the user. These
items have zero cost for the network - while the rest have a content cost equal to one - and
are encouraged to be recommended in the case of NF-RS. Initially, we set the cache size
to 20, and later decrease it to 5. A cache size larger than 20 would not be realistic for a
catalog of only approximately 1000 items.

caching policy : As mentioned in Section 3, the caching policy for the Baseline RS is the
“top N” policy, implying that the N most relative contents will be recommended. Conse-
quently, the recommendation matrix RBS will contain 1’s at positions corresponding to the
highest uij values, and the content demand vector pBS will represent the distribution for
this top N policy. The C items with the largest pBS values will be selected to be cached.
We adhere to this approach in all the presented results.

q : This parameter determines the percentage of qmax (Baseline quality) we aim to offer.
We focus on values of q greater than 0.5 (i.e. > 50%), as we wish to maintain a substantial
level of recommendation quality while achieving our diversity goal. Hence, we initially ex-
plore q values set to 0.8, followed by an examination of extreme cases where q is either 0.5
or 0.99. This approach provides a comprehensive understanding of how the q parameter
influences the problem solution.

bubble metric : The bubble metric defines the amount of BS-RS diversity we aim to
attain. We first conduct all experiments with a bubble metric set to 0, representing the
standard NF-RS implementation. Subsequently, we run various scenarios with different
bubble metric values (≤ 1) to generate the entropy-cost curve (trade-off). The bubble
metric will be referred to as ’bubble’ in the matrices presented below.

Fairness mode : This is an optional parameter in our problem, indicating whether an-
other fairness metric is included as an additional constraint in the optimization problem
(that is when Fairness mode is defined). The three available options, when specified, are
KL, TV, and MAX fairness metric.

Fairness weight : This parameter is also optional and should only be defined when the
fairness mode is specified. It represents the weight of the fairness constraint, denoted as the
constant value cf in the optimization problem. We explore various values of this parameter
in each scenario, to comprehend how each additional fairness metric impacts diversity: 1)
without our entropy constraint and 2) in conjunction with the entropy constraint.

On the following subsections, we present the results of the experiments we conducted.
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5.2 Diversity in BS-RS Vs in NF-RS

Below are a set of results, obtained from the Last.Fm dataset, which provide evidence
of decreased diversity in NF-RS. Although the specific results are detailed in subsequent
subsections, we present numerical values here (Table 4), accompanied by a scatter plot
(Figure 4) for better visualization, to demonstrate the existence of the content bubble
problem discussed in previous sections. The calculations include network costs and entropy
values for both the BS-RS and the NF-RS.

The results in Table 4 are presented in pairs. Each pair includes data for the BS-RS
and the NF-RS of the same specific input arguments (i.e. the ones described in Section
5.1), while a double line is used to separate the distinct pairs. The first column indicates
whether the results are for BS-RS or NF-RS, while the second column displays the network
cost for the respective RS. The third column expresses this cost as a percentage of the BS
cost. Subsequently, the entropy of the RS is computed in the fourth column, followed by
the percentage of this entropy relative to the BS entropy in the fifth column. This percent-
age for the NF-RS illustrates the decrease in diversity compared to the BS-RS. The values
of cost and entropy for each RS have also been plotted in Figure 4. A more detailed
exploration of this effect is available in another thesis authored by one of our colleagues.

Examples of reduced diversity (entropy) in NF-RS compared to BS-RS:

RS cost % of costBS HRS % of HBS

BS 0.817 100% 5.808 100%

NF 0.032 3.9% 1.938 33%

BS 0.687 100% 5.628 100%

NF 0.337 49% 3.829 67%

BS 0.891 100% 6.312 100%

NF 0.271 30% 4.070 64%

BS 0.790 100% 5.917 100%

NF 0.329 41% 4.130 69%

BS 0.787 100% 5.745 100%

NF 0.033 4% 2.349 40%

Figure 4: Cost-Entropy scatter plot. Table 4: Cost-Entropy numerical values.

We observe scenarios where the NF-RS exhibits a moderate reduction in diversity,
such as when 69% of HBS is achieved. This scenario corresponds to a large value of N
(number of recommendations), which poses challenges in decreasing costs. The cost is
big either way, thereby allowing for a wider choice of recommendations (close to that of
BS). Conversely, there are cases where the system’s diversity is considerably decreased,
such as when 33% of HBS is achieved. This scenario corresponds to a large value of α
(user always following recommendations), which allows for a great reduction in costs and
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thus, a restricted choice of recommendations. These preliminary findings indicate that
while enforcing network-friendliness does not consistently lead to a significant decrease in
diversity, it is essential to impose our entropy constraint to ensure a consistent level
of diversity in recommendations.

In the next subsection, we examine the results obtained from our Diverse NF-RS also
incorporating the entropy constraint. The results have the same format as in Table 4.

5.3 Diverse NF-RS

5.3.1 Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40 No Fairness

In our initial test, we use the Last.Fm dataset and consider a scenario with moderately
defined input parameters aiming for realism. Specifically, (i) popularity is set to 0 -
a uniform initial demand for all contents; (ii) a is set to 0.8 - moderate strictness level
of following recommendations; (iii) N is set to 2 - a realistic choice given the dataset’s
size of 757 items: e.g. YouTube has a library of over 800 million contents and suggests
approximately 200 contents per recommendation instance; (iv) C is set to 20 - relatively
large cache capacity considering only 2 recommendations are provided; (v) q is set to 0.8
- a commendable QoR that is neither too lenient nor overly restrictive; (vi) L is set to 40
- extended viewing sessions.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BS 0.89078 100% 6.31276 100%

NF - bubble 0 0.41072 46% 4.58777 72%

NF - bubble 0.10 0.41072 46% 4.63642 72%

NF - bubble 0.70 0.41072 46% 4.63682 73%

NF - bubble 0.75 0.41072 46% 4.63750 73.5%

NF - bubble 0.80 0.42211 47% 4.92127 78%

NF - bubble 0.82 0.43425 48% 5.03492 79%

NF - bubble 0.85 0.46149 52% 5.21413 82%

NF - bubble 0.90 0.54023 60% 5.55556 88%

NF - bubble 0.95 0.64721 72% 5.91701 93%

NF - bubble 1 0.76969 86% 6.27383 99.4%

Table 5: Cost-Entropy numerical values for Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40.

Notably, 72% of HBS is achieved without the bubble constraint. Hence, it is reasonable
to anticipate shifts in results for bubble metric values exceeding 0.7; we sample in this range.

Elevating the cost from a minimum of 46% of BS (in NF with a bubble metric of 0) to
52% of BS, results in an enhanced entropy of 82% of HBS, surpassing the initial 72%. This
represents a favorable trade-off between cost and entropy. We plot the values of Table 5
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and observe the nature of the curve, which we anticipate to be convex. Such convexity
indicates that higher diversity can be achieved with a relatively modest increase in cost.

Figure 5: Cost-Entropy plot for Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40, Diverse NF-RS.

Certainly, a convex curve is evident, suggesting a favorable cost-entropy trade-off and
encouraging further experimentation. In the subsequent subsections, we will systematically
vary one input argument at a time to evaluate the behavior of the Diverse NF-RS.

5.3.2 Lastfm pop0 a0.99 N2 C20 CPtop Q0.8 L40 No Fairness

First, we modify α from 0.8 to 0.99, indicating that users will almost invariably adhere
to recommendations. This heightened compliance results in minimal network costs,
primarily due to the prevalence of cached content recommendations, which users are read-
ily accepting. Consequently, we anticipate a decrease in costs compared to the previous
scenario.

However, this reduction in costs also resulted in decreased entropy for the NF-RS,
as users primarily interact with cached contents, which restrict the variety of recommenda-
tions. Nevertheless, there is a possibility that the combination of low costs and the initially
poor NF entropy could pave the way for a significant cost-entropy trade-off. Given
the minimal initial network costs, there might be room for prioritizing other factors over
cost, such as diversity.

page 48 of 87



ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.81793 100% 5.80810 100%

NF - bubble 0 0.03197 3.9% 1.93827 33%

NF - bubble 0.10 0.03197 3.9% 2.10223 36%

NF - bubble 0.40 0.03433 4.2% 2.29268 39%

NF - bubble 0.60 0.11894 14% 3.43656 59%

NF - bubble 0.70 0.20485 25% 3.98508 68%

NF - bubble 0.75 0.25016 30% 4.25031 73%

NF - bubble 0.80 0.29595 36% 4.50037 77%

NF - bubble 0.85 0.34243 41% 4.74097 81%

NF - bubble 0.90 0.40389 49% 5.04006 86%

NF - bubble 1 0.58346 71% 5.71487 98%

Table 6: Cost-Entropy numerical values for Lastfm pop0 a0.99 N2 C20 CPtop Q0.8 L40.

Strategically increasing the cost to 30% of the BS-RS (from an initial 3.9%) yields a no-
table improvement, reaching 73% of HBS from the initial 33%. This solidifies our primary
hypothesis that a low initial cost allows for significant enhancements in entropy. We can
now confidently conclude that higher values of a lead to an improved trade-off between
entropy and cost; the convex nature of the graph in Figure 6 also confirms this.

Figure 6: Cost-Entropy plot for Lastfm pop0 a0.99 N2 C20 CPtop Q0.8 L40, Diverse NF-RS.
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5.3.3 Lastfm pop0 a0.8 N10 C20 CPtop Q0.8 L40 No Fairness

The subsequent adjustment involves altering the number of recommendations. Precisely,
we will maintain the input parameters from section 5.3.1 and modify N from 2 to 10.

With this increase in recommended content, we anticipate a rise in network costs;
because the cache hit ratio (i.e. network gains) of cached and related contents to recom-
mended contents tends to be smaller for larger N values. In particular, let M represent
the number of cached and related contents in U. If M is greater than the recommended
number of videos (M > N), the cache hit ratio will be favorable. However, if M is less
than the recommended number of videos (M < N), it necessitates recommending related,
non-cached items, incurring higher costs. Unfortunately, this is the prevalent scenario, as
it is quite impossible - for this catalogue and cache size - to feature a substantial number
of contents that are both cached and related. For a specific M value, and considering the
cache hit ratio (CHR) defined as CHR = M

N
, increasing N diminishes the success rate and

escalates the cost for a given entropy value.

This rise in network costs results in a greater initial diversity in NF recommenda-
tions, as more content options meet the ”relaxed” network cost criteria, resembling choices
closer to the BS-RS. Unfortunately, we anticipate that this heightened initial diversity may
limit the scope for improvements in cost-entropy trade-offs. As a result, we expect a less
favorable trade-off in this scenario compared to that observed in section 5.3.1.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.73710 100% 6.01646 100%

NF - bubble 0 0.49529 67% 5.02111 83%

NF - bubble 0.40 0.49529 67% 5.02111 83%

NF - bubble 0.85 0.49529 67% 5.02111 83%

NF - bubble 0.90 0.50986 69% 5.27271 87%

NF - bubble 0.95 0.55584 75% 5.59254 92%

NF - bubble 1 0.65427 88% 5.95426 99%

Table 7: Cost-Entropy numerical values for Lastfm pop0 a0.8 N10 C20 CPtop Q0.8 L40.

We confirm our initial suspicion that increasing N leads to a less favorable entropy-cost
trade-off. Nevertheless, it’s crucial to note that the trade-off should still retain convexity.
For instance, a mere 2% increment in NF cost yields a noticeable 4% increase in NF entropy
(as seen in Table 7), which is a positive sign. The specific relationship between cost and
entropy is depicted in Figure 7 provided below.
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Figure 7: Cost-Entropy plot for Lastfm pop0 a0.8 N10 C20 CPtop Q0.8 L40, Diverse NF-RS.

5.3.4 Lastfm pop0 a0.99 N10 C20 CPtop Q0.8 L40 No Fairness

The less favorable trade-off observed in the previous subsection piqued our interest in
exploring the effects of simultaneously increasing both N (which is detrimental to the
trade-off) and a (which is beneficial for the trade-off). In this context, we have now ad-
justed the values of both of these input arguments.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.68703 100% 5.62819 100%

NF - bubble 0 0.33720 49% 3.82980 67%

NF - bubble 0.40 0.33720 49% 3.82980 67%

NF - bubble 0.60 0.33720 49% 3.82980 67%

NF - bubble 0.70 0.33746 49% 3.90946 68%

NF - bubble 0.80 0.37034 53% 4.44870 79%

NF - bubble 0.95 0.47627 69% 5.19651 92%

NF - bubble 1 0.52875 77% 5.46831 97%

Table 8: Cost-Entropy numerical values for Lastfm pop0 a0.99 N10 C20 CPtop Q0.8 L40.

We observe that, while a higher value of parameter a might alleviate the substantial
cost associated with a larger N, the compromised trade-off resulting from the larger N
value persists. The cost-entropy trade-off is presented in Figure 8 below.
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Figure 8: Cost-Entropy plot for Lastfm pop0 a0.99 N10 C20 CPtop Q0.8 L40, Diverse
NF-RS.

5.3.5 Lastfm pop0 a0.8 N2 C5 CPtop Q0.8 L40 No Fairness

The subsequent adjustment involves altering the cache size of our problem. Decreasing the
cache size would inevitably lead to increased network costs, as there would be a dimin-
ished probability of related content being cached. Similar to the scenario of increasing N,
which also led to higher initial network costs, we anticipate that this modification would
result in a less favorable trade-off.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.96344 100% 6.31276 100%

NF - bubble 0 0.61038 63% 4.59893 72%

NF - bubble 0.70 0.61038 63% 4.59893 72%

NF - bubble 0.80 0.62151 64% 4.82147 76%

NF - bubble 0.90 0.70044 72% 5.57939 88%

NF - bubble 0.95 0.76909 79% 5.92205 94%

NF - bubble 1 0.85579 88% 6.26312 99%

Table 9: Cost-Entropy numerical values for Lastfm pop0 a0.8 N2 C5 CPtop Q0.8 L40.

Our initial suspicion is confirmed; however, it’s worth noting that the trade-off still
retains convexity. For instance, with a 9% increase in NF cost, there is a substantial 16%
increase in NF entropy. The cost-entropy trade-off is presented in Figure 9 below.
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Figure 9: Cost-Entropy plot for Lastfm pop0 a0.8 N2 C5 CPtop Q0.8 L40, Diverse NF-RS.

5.3.6 Lastfm pop0 a0.8 N2 C20 CPtop Q0.5 L40 No Fairness

We now proceed to experiment with the value of Q (quality of recommendations - QoR).
Decreasing Q implies that the quality constraint is not so tight. A higher degree of elas-
ticity regarding the quality constraint would contribute to an improved entropy-cost
trade-off, as it allows for the consideration of numerous alternative solutions that may
offer higher entropy while maintaining a similar cost level.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.89078 100% 6.31276 100%

NF - bubble 0 0.27167 30% 4.07049 64%

NF - bubble 0.70 0.27324 30% 4.31054 68%

NF - bubble 0.75 0.28998 32% 4.57350 72%

NF - bubble 0.80 0.34348 38% 4.85347 76%

NF - bubble 0.85 0.43856 49% 5.22508 82%

NF - bubble 0.90 0.53895 60% 5.59316 88%

NF - bubble 0.95 0.64721 72% 5.94419 94%

NF - bubble 1 0.76969 86% 6.28570 99%

Table 10: Cost-Entropy numerical values for Lastfm pop0 a0.8 N2 C20 CPtop Q0.5 L40.
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Remarkably, the trade-off is highly favorable. Even without a cost increment, there is
a 4% increase in entropy, while with just a 2% increase in NF cost, there is a significant
8% increase in NF entropy. The cost-entropy trade-off is presented in Figure 10 below.

Figure 10: Cost-Entropy plot for Lastfm pop0 a0.8 N2 C20 CPtop Q0.5 L40, Diverse
NF-RS.

5.3.7 Lastfm pop0 a0.8 N2 C20 CPtop Q0.99 L40 No Fairness

We also examine the extreme case where Q is 0.99, indicating a stringent requirement
for excellent recommendations’ quality. In this highly constrained scenario, we anticipate
both extremely high costs and a poor trade-off, as there might not be much room for
improvement in the trade-off while satisfying such a high QoR constraint.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.89078 100% 6.31276 100%

NF - bubble 0 0.80527 90% 6.12899 96%

NF - bubble 0.10 0.80527 90% 6.12899 96%

NF - bubble 0.60 0.80527 90% 6.12899 96%

NF - bubble 0.70 0.80527 90% 6.12911 97%

NF - bubble 0.80 0.80527 90% 6.12911 97%

NF - bubble 0.90 0.80527 90% 6.12911 97%

NF - bubble 1 0.81876 91% 6.24325 99%

Table 11: Cost-Entropy numerical values for Lastfm pop0 a0.8 N2 C20 CPtop Q0.99 L40.
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Indeed, the initial NF cost is very high, paralleled by an elevated entropy. In the ex-
treme scenario where we aim for 100% of HBS, the entropy does increase to 99%, with a
1% compromise in cost.

Also, our suspicion about the unfavorable entropy-cost trade-off is confirmed. This
phenomenon is attributed to the limited size of our catalog, making it highly unlikely that
any alternative solutions satisfying the quality constraint of ≥ 0.99 exist with lower cost
and substantial entropy.

The cost-entropy trade-off is presented in Figure 11 below. The plot appears as a line
because there are only two available entropy values in this context, resulting in a straight-
forward representation.

Figure 11: Cost-Entropy plot for Lastfm pop0 a0.8 N2 C20 CPtop Q0.99 L40, Diverse
NF-RS.

5.3.8 Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40 No Fairness

Last, we experiment with the popularity value. Transitioning from a popularity value of 0
to 1 signifies a change in the distribution of the initial content demand, denoted as p0.

For a popularity value of 0, p0 adheres to a Zipf⋆ distribution with a zipf parameter
set to 0, effectively equivalent to a uniform distribution: p0 = [ 1

K
, 1
K
, . . . , 1

K
].
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In the case of a popularity value of 1, p0 follows a Zipf⋆ distribution with a zipf pa-

rameter of 1. The distribution formula for each item i is given by p0i = (i+1)−1∑K
j=1 j

−1
. So,

the values of p0 for a Zipf parameter of 1 and a small catalog size of K = 5, will be:
p0 = [0.4379, 0.2189, 0.1459, 0.1094, 0.0876]. These values of p0 indicate that the first con-
tent has the highest probability of being chosen when the user enters the platform, with
subsequent items having decreasing probabilities.

⋆ Zipf distributions are utilized for sampling data in accordance with Zipf’s law, which
posits that the n-th common term is 1/n times as frequent as the most common term.

Following the selection of the initial content, the user either adheres to the system’s
recommendations or not. In the latter case, the user chooses again from the Zipf dis-
tribution vector p0. In summary, a popularity of 0 implies that whenever the user does
not follow recommendations, they choose from the catalog with equal probability for each
content. Conversely, a popularity of 1 signifies that the user selects from the catalog with
a descending probability based on the content’s position in the list.

In the context of selecting elements to be cached (according to a “top” policy), prefer-
ence is given to those with the highest pBS values. The posterior content demand, pBS,
is influenced by p0, as expressed by the formula: pBS = (1 − α)p0T(I − a

N
R)−1. Con-

sequently, variations in p0 affect the network cost due to their impact on the selection
of cached content. Specifically, items with higher demand are more likely to be cached.
Thus, we anticipate lower network costs for a popularity value of 1 but we also expect
a decrease in diversity due to increased popularity bias. Consequently, we expect the
cost-entropy trade-off to resemble that of popularity 0, perhaps slightly worse.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.79018 100% 5.91797 100%

NF - bubble 0 0.32912 41% 4.13001 69%

NF - bubble 0.70 0.32912 41% 4.15314 70%

NF - bubble 0.75 0.33467 42% 4.37356 73%

NF - bubble 0.80 0.35796 45% 4.62883 78%

NF - bubble 0.85 0.39522 50% 4.88194 82%

NF - bubble 0.90 0.44470 56% 5.15382 87%

NF - bubble 0.95 0.52940 67% 5.47965 93%

NF - bubble 1 0.62774 79% 5.82893 99%

Table 12: Cost-Entropy numerical values for Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40.

Our intuitions are confirmed, as we can see in Figure 12 below.
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Figure 12: Cost-Entropy plot for Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40,Diverse NF-RS.

5.3.9 Lastfm pop1 a0.99 N2 C20 CPtop Q0.8 L40 No Fairness

Having a user who always follows recommendations and caching these recommendations
solely based on their popularity represents the scenario where we anticipate the lowest net-
work costs compared to all the previously discussed cases. We were particularly interested
in exploring this scenario.

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.78742 100% 5.74528 100%

NF - bubble 0 0.03275 4% 2.34916 40%

NF - bubble 0.10 0.03275 4% 2.61673 45%

NF - bubble 0.50 0.03355 4.2% 2.83142 49%

NF - bubble 0.55 0.05036 6% 3.11591 54%

NF - bubble 0.60 0.08533 10% 3.39780 60%

NF - bubble 0.70 0.17530 22% 3.96947 69%

NF - bubble 0.80 0.26843 34% 4.46336 78%

NF - bubble 0.90 0.38141 48% 4.98193 87%

NF - bubble 1 0.56048 71% 5.65959 99%

Table 13: Cost-Entropy numerical values for Lastfm pop1 a0.99 N2 C20 CPtop Q0.8 L40.

The cost associated with this paradigm indeed represents the lowest cost achieved
among all the examples, and the cost-entropy trade-off is exceptionally favorable as well,
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as depicted in Figure 13 below.

Figure 13: Cost-Entropy plot for Lastfm pop1 a0.99 N2 C20 CPtop Q0.8 L40,Diverse
NF-RS.

However, it’s crucial to acknowledge that the execution time for this particular instance
is exceptionally high, and the value of α = 0.99 is not practical or realistic.

We shall now proceed to present the results derived from the MovieLens dataset.

5.3.10 MovieLens pop0 a0.8 N2 C20 CPtop Q0.8 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.89411 100% 6.50775 100%

NF - bubble 0 0.33977 38% 4.58428 70%

NF - bubble 0.80 0.36793 41% 5.02457 77%

NF - bubble 0.85 0.45472 50% 5.44687 84%

NF - bubble 0.90 0.48819 54% 5.58523 86%

NF - bubble 0.95 0.59521 66% 5.93344 92%

NF - bubble 1 0.66438 74% 6.14127 95%

Table 14: Cost-Entropy numerical values for MovieLens pop0 a0.8 N2 C20 CPtop Q0.8 L40.
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5.3.11 MovieLens pop0 a0.99 N2 C20 CPtop Q0.8 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.70070 100% 5.52828 100%

NF - bubble 0 0.03075 4% 3.18366 57%

NF - bubble 0.70 0.12522 18% 3.82161 69%

NF - bubble 0.80 0.21697 30% 4.26000 77%

NF - bubble 0.90 0.30109 43% 4.71087 85%

NF - bubble 1 0.35814 51% 5.00970 91%

Table 15: Cost-Entropy numerical values for MovieLens pop0 a0.99 N2 C20 CPtop Q0.8 L40.

5.3.12 MovieLens pop0 a0.8 N10 C20 CPtop Q0.8 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.88560 100% 6.64107 100%

NF - bubble 0 0.39304 44% 4.91802 74%

NF - bubble 0.80 0.41120 46% 5.09041 77%

NF - bubble 0.85 0.43800 49% 5.26393 79%

NF - bubble 0.90 0.52977 60% 5.71450 86%

NF - bubble 0.95 0.63960 72% 6.11336 92%

NF - bubble 1 0.71374 80% 6.36386 96%

Table 16: Cost-Entropy numerical values for MovieLens pop0 a0.8 N10 C20 CPtop Q0.8 L40.

5.3.13 MovieLens pop0 a0.8 N2 C5 CPtop Q0.8 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.96529 100% 6.50775 100%

NF - bubble 0 0.48796 50% 4.30808 66%

NF - bubble 0.70 0.49877 51% 4.41813 68%

NF - bubble 0.80 0.53805 55% 4.96588 77%

NF - bubble 0.85 0.58133 60% 5.27592 81%

NF - bubble 0.90 0.64702 67% 5.61199 86%

NF - bubble 0.95 0.72761 75% 5.95123 92%

NF - bubble 1 0.77897 80% 6.22498 96%

Table 17: Cost-Entropy numerical values for MovieLens pop0 a0.8 N2 C5 CPtop Q0.8 L40.
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5.3.14 MovieLens pop0 a0.8 N2 C20 CPtop Q0.5 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.89411 100% 6.50775 100%

NF - bubble 0 0.25024 28% 4.11403 63%

NF - bubble 0.70 0.25080 29% 4.47753 69%

NF - bubble 0.80 0.35343 40% 5.00887 77%

NF - bubble 0.85 0.40965 46% 5.27164 81%

NF - bubble 0.90 0.48795 55% 5.58126 86%

NF - bubble 0.95 0.59521 66% 5.92596 91%

NF - bubble 1 0.66438 74% 6.13496 95%

Table 18: Cost-Entropy numerical values for MovieLens pop0 a0.8 N2 C20 CPtop Q0.5 L40.

5.3.15 MovieLens pop1 a0.8 N2 C20 CPtop Q0.8 L40 No Fairness

ALGORITHM COST % of costBS ENTROPY % of HBS achieved

BASELINE 0.77506 100% 5.96419 100%

NF - bubble 0 0.24239 31% 4.04675 68%

NF - bubble 0.70 0.24239 31% 4.12983 69%

NF - bubble 0.80 0.30276 39% 4.64603 78%

NF - bubble 0.85 0.35332 45% 4.89763 82%

NF - bubble 0.90 0.40461 52% 5.15431 87%

NF - bubble 0.95 0.45671 58% 5.40899 91%

NF - bubble 1 0.52839 68% 5.70310 96%

Table 19: Cost-Entropy numerical values for MovieLens pop1 a0.8 N2 C20 CPtop Q0.8 L40.

To avoid repetition, we consolidate all the results for the Movielens dataset into a single
plot in the next subsection. This will allow us to compare and analyze the Movielens
results alongside the Last.Fm results, which were also plotted together for a comprehensive
evaluation of the Diverse NF-RS.

Specifically, we will present the NF entropy and NF cost of all the scenarios as a
percentage of the BS entropy and cost. Then, we will extract our final results.
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5.3.16 Conclusions for Diverse NF-RS

Last.Fm: the red line corresponds to the initial case; any line positioned above the red
line signifies a greater cost; any line below the red line indicates a lower cost.

Figure 14: Cost-Entropy plot for Lastfm, Diverse NF-RS, all cases.

MovieLens:

Figure 15: Cost-Entropy plot for MovieLens, Diverse NF-RS, all cases.
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Based on the analysis of both plots, we draw conclusions regarding the optimal be-
haviour in terms of the trade-off between entropy and cost.

The most favourable outcomes were observed in cases characterized by:

� a larger popularity,

� higher values of α,

� smaller values of N,

� larger values of C,

� smaller values of QoR.

5.4 Fair Diverse NF-RS

We will now conduct our entropy and fairness-constrained problem for the case where:
a0.8 N2 C20 CPtop Q0.8 L40, since these are some realistic input values. We delib-
erately did not opt for the less-costly scenario with α = 0.99 due to its extreme nature,
disallowing the user from discontinuing following the recommendations. Additionally, we
refrained from selecting Q as 0.5 (allowing smaller costs), as it represents a very low qual-
ity of recommendations, while our aim is to maintain a greater quality level. Exploring
popularity values, we found that for α = 0.8, there wasn’t a significant difference in out-
comes for popularity 0 or 1. This means that a great trade-off can be achieved either by
starting with a uniformly distributed vector p0 or by a Zipf distribution. We will consider
results for both values of popularity for the LstFM dataset, and for a 0 popularity for the
MovieLens dataset.

Then, our goal is to answer the following questions about each fairness metric:

1. Do the achieved trade-offs become worse when this specific fairness constraint is
active too (apart from the bubble constraint)?

2. Can we actually achieve the cost-bubble trade-offs for “free”, as a side-effect of one
of the other metrics introduced in previous work?

Below are the results obtained after running our code for each fairness metric (i.e.
KL, MAX and TV), while also including the entropy constraint with different weights (i.e.
bubble metric values).
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5.4.1 Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40 KL

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BS - 0.89078 100% 6.31276 100%

NF - bubble 0.00 - 0.41072 46% 4.58777 72%

NF - bubble 0.80 - 0.42211 47% 4.92127 78%

NF - bubble 0.85 - 0.46149 52% 5.21413 82%

NF - bubble 0.90 - 0.54023 60% 5.55556 88%

NF - bubble 0.95 - 0.64721 72% 5.88091 93%

NF - bubble 1.00 - 0.76969 86% 6.27383 99.4%

NF - bubble 0.00 KL 0.01 0.77148 86% 6.1111 96.8%

NF - bubble 0.00 KL 0.1 0.46048 51% 5.11269 80%

NF - bubble 0.80 KL 0.1 0.46048 51% 5.11269 80%

NF - bubble 0.85 KL 0.1 0.47334 53% 5.25147 83%

NF - bubble 0.90 KL 0.1 0.54026 60% 5.55667 88%

NF - bubble 0.95 KL 0.1 0.64721 72% 5.92370 94%

NF - bubble 1.00 KL 0.1 0.76969 86% 6.28771 99.6%

NF - bubble 0.00 KL 0.3 0.41072 46% 4.67054 74%

NF - bubble 0.80 KL 0.3 0.42211 47% 4.92127 78%

NF - bubble 0.85 KL 0.3 0.46149 52% 5.21413 82%

NF - bubble 0.90 KL 0.3 0.54023 60% 5.55556 88%

NF - bubble 0.95 KL 0.3 0.64721 72% 5.92434 94%

NF - bubble 1.00 KL 0.3 0.76969 86% 6.28671 99.6%

Table 20: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 KL

RESULTS:

1. Do the achieved trade-offs become worse when the KL fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone
is preserved when the ’KL’ fairness constraint is also active, for KL fairness weights
of 0.1 and 0.3. Therefore, we can still achieve good costs and low bubble phenomena
at a fair, bubble-constrained system. In fact, the trade-off even slightly improves in
the end, eventually surpassing the graph obtained with just the entropy constraint.
However, for a tight KL weight (0.01), the entropy-cost trade-off is bad.
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Figure 16: Cost-Entropy plot for Diverse KL-Fair NF-RS

2. Can we achieve the cost-bubble trade-offs for “free”, as a side-effect of the KL metric?

No. Indeed, an improvement in entropy is observed when the KL constraint is
included, especially with an extremely tight setting. For example, with the KL
fairness weight set to 0.1, the fairness constraint alone achieves a notable 8% increase
in entropy with a cost sacrifice of 5%. A similar result is attained with a bubble
constraint equal to 0.85 when no fairness constraint is included. Hence, for a tight
KL constraint, addressing the entropy problem can be achieved up to a point by
only incorporating the KL constraint. However, for higher values of fairness weight,
the inclusion of the entropy constraint becomes imperative to effectively address the
entropy issue. Also, the KL-Fair NF-RS might increase its entropy as the fairness
weight gets smaller, but this implementation still does not come with as good a trade-
off as that offered by the Diverse NF-RS (by changing the bubble weight). This can
be observed below:
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Figure 17: Cost-Entropy plot for Diverse NF-RS Vs KL-Fair NF-RS

5.4.2 Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40 max

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89078 100% 6.31276 100%

NF - bubble 0.00 - 0.41072 46% 4.58777 72%

NF - bubble 0.80 - 0.42211 47% 4.92127 78%

NF - bubble 0.85 - 0.46149 52% 5.21413 82%

NF - bubble 0.90 - 0.54023 60% 5.55556 88%

NF - bubble 0.95 - 0.64721 72% 5.88091 93%

NF - bubble 1.00 - 0.76969 86% 6.27383 99.4%

NF - bubble 0.00 MAX 0.1 0.41072 46% 4.67085 74%

NF - bubble 0.80 MAX 0.1 0.42211 47% 4.92127 78%

NF - bubble 0.85 MAX 0.1 0.46149 52% 5.21413 82%

NF - bubble 0.90 MAX 0.1 0.54023 60% 5.55556 88%

NF - bubble 0.95 MAX 0.1 0.64721 72% 5.88091 93%

NF - bubble 1.00 MAX 0.1 0.76969 86% 6.21289 98%

NF - bubble 0.00 MAX 0.3 0.41072 46% 4.62509 73%

NF - bubble 0.80 MAX 0.3 0.42211 47% 4.92127 78%

NF - bubble 0.85 MAX 0.3 0.46149 52% 5.21413 82%

NF - bubble 0.90 MAX 0.3 0.54023 60% 5.55556 88%

NF - bubble 0.95 MAX 0.3 0.64721 72% 5.88091 93%

NF - bubble 1.00 MAX 0.3 0.76969 86% 6.27450 99.4%

Table 21: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 MAX
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Since the results seem to be very similar with the non-constrained problem, we also run
some examples for an even smaller MAX fairness weight, i.e. for 0.01 (very constrained).

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89078 100% 6.31276 100%

NF - bubble 0.00 MAX 0.01 0.69078 77% 5.96409 94%

NF - bubble 0.95 MAX 0.01 0.69078 77% 6.0041 95%

NF - bubble 1.00 MAX 0.01 0.76969 86% 6.26231 99.2%

Table 22: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 MAX

We conclude that under highly constrained fairness conditions, the achieved trade-
off becomes unfavorable. Optimal trade-offs suggest avoiding excessively tight con-
straints on either entropy or fairness.

RESULTS:

1. Do the achieved trade-offs become worse when the MAX fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone is
preserved when the MAX fairness constraint is also active, provided that the MAX
weight is not too tight (e.g. 0.01). The trade-off only becomes slightly worse (1.4% in
contrast with the entropy of the unfair bubble-constrained problem) in the extreme
case where the bubble = 1, for a small MAX weight set to 0.1.

Figure 18: Cost-Entropy plot for Diverse MAX-Fair NF-RS
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2. Can we achieve the cost-bubble trade-offs for “free”, as a side-effect of the MAX
metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the MAX fairness metric. Incorporating a
MAX fairness constraint - without a bubble constraint - results in a linear relation-
ship between cost and entropy. Thus, the MAX fairness constraint alone does not
effectively address the entropy problem. To achieve higher entropy values, it is es-
sential to incorporate the entropy constraint into our problem. The trade-offs for 1)
the MAX-Fair NF-RS with different MAX weight values and 2) the Fair NF-RS with
different bubble values can be observed below:

Figure 19: Cost-Entropy plot for Diverse NF-RS Vs MAX-Fair NF-RS

page 67 of 87



5.4.3 Lastfm pop0 a0.8 N2 C20 CPtop Q0.8 L40 TV

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89078 100% 6.31276 100%

NF - bubble 0.00 - 0.41072 46% 4.58777 72%

NF - bubble 0.80 - 0.42211 47% 4.92127 78%

NF - bubble 0.85 - 0.46149 52% 5.21413 82%

NF - bubble 0.90 - 0.54023 60% 5.55556 88%

NF - bubble 0.95 - 0.64721 72% 5.88091 93%

NF - bubble 1.00 - 0.76969 86% 6.27383 99.4%

NF - bubble 0.00 TV 0.1 0.79078 88% 6.03081 95%

NF - bubble 0.80 TV 0.1 0.79078 88% 6.17009 97.7%

NF - bubble 0.90 TV 0.1 0.79078 88% 6.17680 97.8%

NF - bubble 1.00 TV 0.1 0.79078 88% 6.18338 98%

NF - bubble 0.00 TV 0.3 0.59078 66% 5.52909 87%

NF - bubble 0.80 TV 0.3 0.59078 66% 5.56682 88%

NF - bubble 0.85 TV 0.3 0.59078 66% 5.57558 88%

NF - bubble 0.90 TV 0.3 0.59078 66% 5.58459 88%

NF - bubble 1.00 TV 0.3 0.65800 74% 5.92664 94%

NF - bubble 0.00 TV 0.5 0.41161 46% 4.66700 74%

NF - bubble 0.80 TV 0.5 0.41381 46.5% 4.80056 76%

NF - bubble 0.85 TV 0.5 0.43704 49% 5.04176 80%

NF - bubble 0.90 TV 0.5 0.47572 53.5% 5.27249 83%

NF - bubble 0.95 TV 0.5 0.52806 59% 5.51530 87%

NF - bubble 1.00 TV 0.5 0.64588 72.5% 5.87300 93%

Table 23: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 TV

For tightly constrained fairness conditions (small TV weight), the entropy increases
significantly even without the entropy constraint. Specifically, for bubble = 0 and:

- TV weight equal to 0.1 : a 95% of HBS is achieved with 88% of costBS

- TV weight equal to 0.3 : a 87% of HBS is achieved with 66% of costBS

Tightly constraining the TV fairness also addresses the entropy problem up to a cer-
tain point. Conversely, for a TV weight ≥ 0.5, the TV fairness constraint alone is not
sufficient to increase diversity, and an entropy constraint has to be included. However,
we again have to check whether the TV-constrained problem alone can achieve as high a
cost-entropy trade-off as the bubble-constrained problem does.
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RESULTS:

1. Do the achieved trade-offs become worse when the TV fairness constraint is active
too (apart from the bubble constraint)?

Not much. The favorable entropy-cost trade-off achieved by the entropy constraint
alone is preserved when the TV fairness constraint is also active, if the TV fairness
weight is not very tight. Again, for an extremely tight TV constraint the TV fairness
constraint increases the network cost significantly, creating a more unfavorable cost-
entropy trade-off.

Figure 20: Cost-Entropy plot for Diverse TV-Fair NF-RS

2. Can we achieve the cost-bubble trade-offs for “free”, as a side-effect of the TV metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the TV fairness metric. Incorporating a TV
fairness constraint - without a bubble constraint - results in a worse relationship be-
tween cost and entropy, because high entropy is indeed succeeded but it comes with
a bigger cost. Thus, the TV fairness constraint alone does not effectively address the
entropy problem. To achieve higher entropy values, it is essential to incorporate the
entropy constraint into our problem. The trade-offs for 1) the TV-Fair NF-RS with
different TV weight values and 2) the Fair NF-RS with different bubble values can
be observed below:
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Figure 21: Cost-Entropy plot for Diverse NF-RS Vs TV-Fair NF-RS

The results for the three cases discussed above can be summarized as:

1. Do the achieved trade-offs become worse when the fairness constraint is active too
(apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone
is preserved when another fairness constraint is also active, unless the fairness con-
straint is extremely tight. This scenario is extreme, so it does not concern us.

2. Can we achieve the cost-bubble trade-offs for “free”, as a side-effect of the fairness
metrics already implemented in the wowmom paper?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the existing fairness metrics. Thus, these
fairness constraints alone do not effectively address the entropy problem. This was
demonstrated through several plots showing that while good entropy can sometimes
be achieved with fairness constraints, it comes with a higher cost compared to our
proposed Diverse NF-RS.

Next we will repeat the same experiments for a popularity of 1.
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5.4.4 Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40 KL

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.79018 100% 5.91797 100%

NF - bubble 0.00 - 0.32912 41% 4.13001 69%

NF - bubble 0.70 - 0.32912 41% 4.15314 70%

NF - bubble 0.80 - 0.35796 45% 4.62883 78%

NF - bubble 0.85 - 0.39522 50% 4.88194 82%

NF - bubble 0.90 - 0.44470 56% 5.15382 87%

NF - bubble 0.95 - 0.52940 67% 5.47965 93%

NF - bubble 1.00 - 0.62774 79% 5.82893 99%

NF - bubble 0.00 KL 0.01 0.62608 79% 5.50991 93%

NF - bubble 0.00 KL 0.1 0.35688 45% 4.43312 75%

NF - bubble 0.80 KL 0.1 0.36788 46.5% 4.65874 79%

NF - bubble 0.85 KL 0.1 0.40173 50% 4.90749 83%

NF - bubble 0.90 KL 0.1 0.44750 56.5% 5.16215 87%

NF - bubble 0.95 KL 0.1 0.52940 67% 5.48100 92.6%

NF - bubble 1.00 KL 0.1 0.62774 79.5% 5.84035 98.6%

NF - bubble 0.00 KL 0.3 0.32912 42% 4.10646 69%

NF - bubble 0.80 KL 0.3 0.35796 45% 4.62883 78%

NF - bubble 0.85 KL 0.3 0.39522 50% 4.88194 82.5%

NF - bubble 0.90 KL 0.3 0.44470 56% 5.15383 87%

NF - bubble 0.95 KL 0.3 0.52940 67% 5.48123 92.6%

NF - bubble 1.00 KL 0.3 0.62774 79% 5.84125 98.7%

Table 24: Cost-Entropy numerical values for LastFm pop1 a0.8 N2 C20 Q0.8 L40 KL

The outcomes closely resemble those observed in the scenario where popularity is set
to 0. This suggests that positive results can be achieved for both types of initial content
demand p0 (uniform and Zipf distributions).

RESULTS:

1. Does the achieved trade-off become worse when the KL fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone is
preserved when the KL fairness constraint is also active, as depicted bellow:

page 71 of 87



Figure 22: Cost-Entropy plot for Diverse KL-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the KL fairness
metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the KL fairness metric. This is demonstrated
in the following plot:

Figure 23: Cost-Entropy plot for Diverse NF-RS Vs KL-Fair NF-RS
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5.4.5 Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40 MAX

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.79018 100% 5.91797 100%

NF - bubble 0.00 - 0.32912 41% 4.13001 69%

NF - bubble 0.70 - 0.32912 41% 4.15314 70%

NF - bubble 0.75 - 0.33467 42% 4.37356 73%

NF - bubble 0.80 - 0.35796 45% 4.62883 78%

NF - bubble 0.85 - 0.39522 50% 4.88194 82%

NF - bubble 0.90 - 0.44470 56% 5.15382 87%

NF - bubble 0.95 - 0.52940 67% 5.47965 93%

NF - bubble 1.00 - 0.62774 79% 5.82893 99%

NF - bubble 0.00 MAX 0.01 0.59019 75% 5.16763 87%

NF - bubble 0.00 MAX 0.1 0.32912 41.6% 4.16964 70%

NF - bubble 0.80 MAX 0.1 0.35796 45% 4.62884 78%

NF - bubble 0.85 MAX 0.1 0.39522 50% 4.88194 82.5%

NF - bubble 0.90 MAX 0.1 0.44470 56% 5.15382 87%

NF - bubble 0.95 MAX 0.1 0.52940 67% 5.47228 92.5%

NF - bubble 1.00 MAX 0.1 0.62774 79% 5.78765 97.8%

NF - bubble 0.00 MAX 0.3 0.32912 41% 4.10553 69%

NF - bubble 0.80 MAX 0.3 0.35796 45% 4.62883 78%

NF - bubble 0.85 MAX 0.3 0.39522 50% 4.88194 82.5%

NF - bubble 0.90 MAX 0.3 0.44470 56% 5.15382 87%

NF - bubble 0.95 MAX 0.3 0.52940 67% 5.47006 92.5%

NF - bubble 1.00 MAX 0.3 0.62774 79.5% 5.78578 98%

Table 25: Cost-Entropy numerical values for LastFm pop1 a0.8 N2 C20 Q0.8 L40 MAX

The outcomes closely resemble those observed in the scenario where popularity is set
to 0. This suggests that positive results can be achieved for both types of initial content
demand p0 (uniform and Zipf distributions).

RESULTS:

1. Does the achieved trade-off become worse when the MAX fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone is
preserved when the MAX fairness constraint is also active, as depicted bellow:
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Figure 24: Cost-Entropy plot for Diverse MAX-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the MAX fair-
ness metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the MAX fairness metric. This is demonstrated
in the following plot:

Figure 25: Cost-Entropy plot for Diverse NF-RS Vs MAX-Fair NF-RS
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5.4.6 Lastfm pop1 a0.8 N2 C20 CPtop Q0.8 L40 TV

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.79018 100% 5.91797 100%

NF - bubble 0.00 - 0.32912 41% 4.13001 69%

NF - bubble 0.80 - 0.35796 45% 4.62883 78%

NF - bubble 0.85 - 0.39522 50% 4.88194 82%

NF - bubble 0.90 - 0.44470 56% 5.15382 87%

NF - bubble 0.95 - 0.52940 67% 5.47965 93%

NF - bubble 1.00 - 0.62774 79% 5.82893 99%

NF - bubble 0.00 TV 0.1 0.69018 87.4% 5.75497 97.3%

NF - bubble 0.80 TV 0.1 0.69018 87.4% 5.76927 97.5%

NF - bubble 0.85 TV 0.1 0.69018 87.4% 5.77121 97.5%

NF - bubble 0.90 TV 0.1 0.69018 87.4% 5.77146 97.5%

NF - bubble 0.95 TV 0.1 0.69018 87.4% 5.77146 97.5%

NF - bubble 1.00 TV 0.1 0.69018 87.4% 5.78433 97.8%

NF - bubble 0.00 TV 0.3 0.49018 62% 5.06851 85.6%

NF - bubble 0.80 TV 0.3 0.49018 62% 5.08230 85.8%

NF - bubble 0.85 TV 0.3 0.49018 62% 5.08864 86%

NF - bubble 0.90 TV 0.3 0.49018 62% 5.12652 86.6%

NF - bubble 0.95 TV 0.3 0.51360 65% 5.35546 90%

NF - bubble 1.00 TV 0.3 0.56759 72% 5.59507 95%

NF - bubble 0.00 TV 0.5 0.32916 41% 4.13990 70%

NF - bubble 0.80 TV 0.5 0.35040 44% 4.55558 77%

NF - bubble 0.85 TV 0.5 0.38157 48% 4.78398 80%

NF - bubble 0.90 TV 0.5 0.42181 53% 5.01288 85%

NF - bubble 0.95 TV 0.5 0.46822 59% 5.24227 89%

NF - bubble 1.00 TV 0.5 0.51836 65% 5.46200 92%

Table 26: Cost-Entropy numerical values for LastFm pop1 a0.8 N2 C20 Q0.8 L40 TV

RESULTS:

1. Do the achieved trade-offs become worse when the TV fairness constraint is active
too (apart from the bubble constraint)?

A little bit. The favorable entropy-cost trade-off achieved by the entropy constraint
alone is preserved when the TV fairness constraint is also active, as long as the fairness
constraint is not too tight. For a tighter TV constraint, the trade-off is slightly worse,
as depicted below. However, we are not very concerned about this, as it is just one
example among many (and the difference is not huge either).
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Figure 26: Cost-Entropy plot for Diverse TV-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the TV fairness
metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the TV fairness metric. This is demonstrated
in the following plot:

Figure 27: Cost-Entropy plot for Diverse NF-RS Vs TV-Fair NF-RS
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As for the MovieLens dataset the results are similar, provng that they are generic and
not only due to the specific dataset of LastFM. They are presented bellow:

5.4.7 MovieLens pop0 a0.8 N2 C20 CPtop Q0.8 L40 KL

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89411 100% 6.50775 100%

NF - bubble 0.00 - 0.33977 38% 4.58428 70%

NF - bubble 0.80 - 0.36793 41% 5.02457 77%

NF - bubble 0.85 - 0.45472 50% 5.44687 84%

NF - bubble 0.90 - 0.48819 54% 5.58523 86%

NF - bubble 0.95 - 0.59521 66% 5.93344 92%

NF - bubble 1.00 - 0.66438 74% 6.14127 95%

NF - bubble 0.00 KL 0.01 0.75947 85% 6.24048 95%

NF - bubble 0.00 KL 0.1 0.44337 49% 5.28015 81%

NF - bubble 0.80 KL 0.1 0.44337 49% 5.28015 81%

NF - bubble 0.85 KL 0.1 0.45978 51% 5.40084 83%

NF - bubble 0.90 KL 0.1 0.51173 57% 5.65455 87%

NF - bubble 0.95 KL 0.1 0.59521 66% 5.98588 92%

NF - bubble 1.00 KL 0.1 0.71355 80% 6.39409 98%

NF - bubble 0.00 KL 0.3 0.33977 38% 4.77925 73%

NF - bubble 0.80 KL 0.3 0.36793 41% 5.02457 77%

NF - bubble 0.85 KL 0.3 0.42031 47% 5.28759 81%

NF - bubble 0.90 KL 0.3 0.48819 55% 5.58524 86%

NF - bubble 0.95 KL 0.3 0.59521 66% 5.98457 92%

NF - bubble 1.00 KL 0.3 0.71355 80% 6.39282 98%

Table 27: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 KL

RESULTS:

1. Do the achieved trade-offs become worse when the KL fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off achieved by the entropy constraint alone
is preserved when the KL fairness constraint is also active. The main difference is
that, for a very tight KL constraint, the minimum cost achieved is larger than that
of the unfair problem, as depicted below.
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Figure 28: Cost-Entropy plot for Diverse KL-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the KL fairness
metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the KL fairness metric:

Figure 29: Cost-Entropy plot for Diverse NF-RS Vs KL-Fair NF-RS

page 78 of 87



5.4.8 MovieLens pop0 a0.8 N2 C20 CPtop Q0.8 L40 MAX

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89411 100% 6.50775 100%

NF - bubble 0.00 - 0.33977 38% 4.58428 70%

NF - bubble 0.80 - 0.36793 41% 5.02457 77%

NF - bubble 0.85 - 0.45472 50% 5.44687 84%

NF - bubble 0.90 - 0.48819 54% 5.58523 86%

NF - bubble 0.95 - 0.59521 66% 5.93344 92%

NF - bubble 1.00 - 0.66438 74% 6.14127 95%

NF - bubble 0.00 MAX 0.01 0.69411 78% 6.15510 94%

NF - bubble 0.00 MAX 0.1 0.33977 38% 4.71714 72%

NF - bubble 0.80 MAX 0.1 0.36793 41% 5.02457 77%

NF - bubble 0.85 MAX 0.1 0.42031 47% 5.28517 81%

NF - bubble 0.90 MAX 0.1 0.48819 55% 5.58524 85%

NF - bubble 0.95 MAX 0.1 0.59521 66% 5.93553 91%

NF - bubble 1.00 MAX 0.1 0.71355 80% 6.36928 97%

NF - bubble 0.00 MAX 0.3 0.33977 38% 4.77110 73%

NF - bubble 0.80 MAX 0.3 0.36793 41% 5.02457 77%

NF - bubble 0.85 MAX 0.3 0.42031 47% 5.28517 81%

NF - bubble 0.90 MAX 0.3 0.48819 55% 5.58524 85%

NF - bubble 0.95 MAX 0.3 0.59521 66% 5.93206 91%

NF - bubble 1.00 MAX 0.3 0.71355 80% 6.36928 97%

Table 28: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 MAX

RESULTS:

1. Do the achieved trade-offs become worse when the MAX fairness constraint is active
too (apart from the bubble constraint)?

No. The favorable entropy-cost trade-off attained by the entropy constraint alone
experiences a minor deterioration when the MAX fairness constraint is also in effect.
This impact is not significant, and thus, the mentioned issue does not cause any
concern for us.
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Figure 30: Cost-Entropy plot for Diverse MAX-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the MAX fair-
ness metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the MAX fairness metric. This is demonstrated
in the following plot:

Figure 31: Cost-Entropy plot for Diverse NF-RS Vs MAX-Fair NF-RS
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5.4.9 MovieLens pop0 a0.8 N2 C20 CPtop Q0.8 L40 TV

ALGORITHM FAIRNESS COST % of costBS ENTROPY % of HBS

BASELINE - 0.89411 100% 6.50775 100%

NF - bubble 0.00 - 0.33977 38% 4.58428 70%

NF - bubble 0.80 - 0.36793 41% 5.02457 77%

NF - bubble 0.85 - 0.45472 50% 5.44687 84%

NF - bubble 0.90 - 0.48819 54% 5.58523 86%

NF - bubble 0.95 - 0.59521 66% 5.93344 92%

NF - bubble 1.00 - 0.66438 74% 6.14127 95%

NF - bubble 0.00 TV 0.01 0.88411 99% 6.48699 99%

NF - bubble 0.00 TV 0.1 0.79411 89% 6.34325 97%

NF - bubble 0.00 TV 0.3 0.59411 66% 5.60110 86%

NF - bubble 0.80 TV 0.3 0.59411 66% 5.73341 88%

NF - bubble 0.90 TV 0.3 0.59411 66% 5.73341 88%

NF - bubble 0.95 TV 0.3 0.59411 66% 5.87591 90%

NF - bubble 1.00 TV 0.3 0.65390 73% 6.13212 94%

NF - bubble 0.00 TV 0.5 0.39411 44% 5.06093 77%

NF - bubble 0.85 TV 0.5 0.41063 45% 5.21910 80%

NF - bubble 0.90 TV 0.5 0.467465 52% 5.46122 84%

NF - bubble 0.95 TV 0.5 0.52554 58% 5.70384 88%

NF - bubble 1.00 TV 0.5 0.58508 65% 5.94414 91%

Table 29: Cost-Entropy numerical values for LastFm pop0 a0.8 N2 C20 Q0.8 L40 TV

RESULTS:

1. Do the achieved trade-offs become worse when the TV fairness constraint is active
too (apart from the bubble constraint)?

Only for too tight TV constraints. The favorable entropy-cost trade-off attained
by the entropy constraint alone is preserved when the TV fairness constraint is also
in effect, except from the cases where the TV constraint is too tight (e.g. for a TV
weight of 0.3). This behavior can be seen bellow:
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Figure 32: Cost-Entropy plot for Diverse TV-Fair NF-RS

2. Can we achieve the cost-bubble trade-off for “free”, as a side-effect of the TV fairness
metric?

No. The favorable entropy-cost trade-off achieved by the entropy constraint cannot
be replicated solely by the inclusion of the TV fairness metric. This is demonstrated
in the following plot:

Figure 33: Cost-Entropy plot for Diverse NF-RS Vs TV-Fair NF-RS
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6 Discussion and Future Work

This thesis has delved into an examination of content bubbles, a phenomenon attributed to
the heightened degree of personalization in contemporary RSs. The emphasis given nowa-
days on minimizing network costs - leading to the development of NF-RS - contributes
to the creation of content bubbles by further constraining content diversity. Our research
has confirmed this diversity restriction, particularly in NF-RS, where constant sug-
gestions usually exhibit a singular nature. After highlighting the inadequacy of existing
implementations in addressing this issue, a specific solution for the content bubble prob-
lem is presented. Our approach is designed to minimize the bubble phenomenon created
by vanilla recommenders, while maintaining cost efficiency. The introduced framework is
capable of providing optimal trade-offs between cost and diversity across various
scenarios. Furthermore, the bubble metric introduced in this study complements existing
fairness metrics in relevant literature in two ways : 1) it performs a distinct role that other
metrics fail to achieve, and 2) it can collaborate with existing metrics without undermining
each other’s efficacy.

Regarding possible future work, the potential use of the Gini coefficient as an alterna-
tive measure of diversity has also been proposed in a related thesis. The formal definition
of the Gini index enables its use as a measure of diversity, providing an opportunity to
substitute the entropy constraint with a Gini index constraint. Although it was not imple-
mented in this study due to time constraints, this work lays the groundwork for exploring
it in future research.

Another promising direction for future research could involve introducing dynamic ad-
justments to the number of recommended contents and cached contents, rather than relying
on static inputs. This approach aims to achieve a more optimal trade-off. It is essential for
this strategy to be implemented with the collaboration of the platforms, acknowledging the
potential for dynamic changes in these values. The degree of flexibility should be carefully
considered, ensuring that adjustments are within reasonable limits; e.g. recommending 5
contents instead of 7, if this proves to offer a more favorable trade-off, and the platform
approves such changes.

Last, future work could involve exploring different ways of picking just one recom-
mendation out of the N suggestions provided. The user’s choice depends on the model
employed, allowing for generalization to other models in future research. In our work, this
selection is random (a uniform distribution is used). However, [6] suggests a different per-
spective, where the user chooses the most relevant item based on what they just viewed.
Something similar could also be implemented.
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