
TECHNICAL UNIVERSITY OF CRETE

Data Evaluation using Shapley Values

Author: Mavrogiorgis Dimitrios

Committee: Garofalakis Minos (Supervisor)

Samoladas Vasileios

Deligiannakis Antonios

 ii

 iii

Acknowledgements

After 5 years at the Technical University of Crete, I want to express my deepest gratitude to all

the people that supported me throughout these difficult, yet fulfilling years.

First and foremost, I would like to thank all the professors and the assistants of Technical

University of Crete because they have helped me gain some major knowledge in the field of

Electrical and Computer Engineering.

Last but not least, this journey wouldn’t be possible without the help of my family and friends. I

owe a lot to my parents who supported me through every decision I have made and gave me the

opportunity to pursue all of my goals. I also want to express my gratitude for my friends, who

were there for me both in good and in bad times.

 iv

Abstract

Purpose: The main purpose of the current work is to calculate the Data Shapley value of specific

data sets by leveraging the mechanisms of differential privacy algorithms to ensure some guarantee

of privacy. To fulfil this objective, the current thesis first studies and presents the theoretical

foundation of the Shapley value calculations. Calculation methods, such as the Truncated Monte

Carlo - Shapley, Gradient - Shapley and Group - Shapley are studied and analyzed, while at the

same time this thesis proposes how new approaches guarantee the correctness and accuracy of

calculations without any information leakage.

Design / methodology / approach: This study first presents the theoretical foundation of both the

Shapley valuation and the differential privacy scientific domains, including mathematical analysis

and the relative practical research evidence. On top, a case study, i.e. a classification problem with

logistic regression has been designed, implemented, analyzed and presented. The code of the

problem includes set up activities, data set creation, execution of three data Shapley algorithms

with and without embedded differential data privacy noise and graphical presentation of the results

obtained. Convergence of the applied algorithms is proved, while at the same time the performance

of the studied algorithms is also evaluated for both non-differential private and noisy versions of

the implemented algorithms.

Findings: Both TMC-Shapley and G-Shapley methods outperform the LOO method, since the

accuracy is reduced faster when bigger fractions of trained data are being removed. For the

differential private TMC-Shapley and G-Shapley methods, a number of graphs with all marginals

is being created which proves the convergence of the algorithms. The performance of the studied

noisy data Shapley methods is also demonstrated. Both Noisy TMC-Shapley and G-Shapley

methods outperform the Noisy LOO and Random versions.

Originality / value: The value added by the current work is coming from the following areas: (1)

Provision of an efficient formulation of the important problem of calculating the fair value of data

sets, known as Data Shapley valuation problem, by taking advantage of machine learning

techniques, (2) Review of existing empirical studies that prove the efficiencies and all desirable

properties of the Data Shapley valuation method, (3) Introduction of a Data Shapley calculation

algorithm variations that are suitable to address the problem under study, (4) Application of

 v

sensitivity and noise to ensure data privacy mechanism as well as to measure and analyze data

Shapley value in the context of differential privacy, and (5) Experimental implementation

developed using Python programming language.

Keywords: Data Shapley, Differential Privacy (DP), Truncated Monte Carlo Shapley (TMC-

Shapley), Gradient Shapley (G-Shapley).

 vi

Table of Contents

Acknowledgements .. iii

Abstract ... iv

List of Figures ... viii

List of Tables ... x

Abbreviations ... xi

1 INTRODUCTION ... 12

1.1 Problem statement and importance .. 12

1.2 Aims and objectives ... 12

1.3 Contribution ... 13

1.4 Main Terminology.. 14

1.5 Dissertation Structure ... 15

2 CURRENT RESEARCH – LITERATURE REVIEW .. 16

2.1 Introduction .. 16

2.2 Background and fundamentals ... 16

2.2.1 Definition and mathematical formulation of the Data Shapley problem 16

2.3 Shapley value calculation methods .. 20

2.3.1 Truncated Monte Carlo Shapley Algorithm ... 20

2.3.2 Gradient Shapley Algorithm ... 22

2.3.3 Variations .. 22

2.4 Differential privacy .. 23

2.4.1 Differential Privacy noise ... 27

2.4.2 Data processing models and data release strategies .. 30

2.4.3 Data Release Types ... 33

2.5 Calculation of Shapley value with differential privacy .. 53

2.5.1 Sensitivity and noise ... 53

2.5.2 Loss function and boundaries ... 53

2.6 Discussion, challenges and areas of optimization .. 54

3 IMPLEMENTATION ... 56

3.1 Introduction .. 56

 vii

3.2 Proposed Design ... 56

3.2.1 Overall solution ... 56

3.2.2 Programming with Python .. 57

3.3 Implementation of Differential Privacy with Laplacian Noise 60

3.4 Core Data Shapley Implementation ... 64

3.5 Core Implementation Results and Discussion .. 67

3.5.1 Results and Discussion for non-Differential Private Data Shapley Methods 67

3.5.2 Results and Discussion for NoisyData Shapley Methods 70

4 CONCLUSIONS .. 89

4.1 Summary and conclusion ... 89

4.2 Dissertation limitations .. 91

4.3 Future work .. 92

References .. 94

 viii

List of Figures

Figure 2.1: Information from a Differential Privacy perspective. .. 23
Figure 2.2: Probability distributions for the outputs of the function (or algorithm) K for datasets D
and D′. ... 25
Figure 2.3: Visualization of the probability density function for different calls of b. 29
Figure 2.4: Interactive or on-line query model. .. 31
Figure 2.5: Non-Interactive model or offline query model... 32
Figure 2.6: DP using the histogram data release type. .. 35
Figure 2.7: Grouping of buckets in the histogram data release type. ... 35
Figure 2.8: A private kd-tree. .. 39
Figure 2.9: An example of the Quad-opt method. .. 40
Figure 2.10: An example of the Graph release method (dK series). ... 46
Figure 2.11: An example of HRG model. ... 48
Figure 3.1: Main features of programming language Python. .. 57
Figure 3.2: Popular applications of programming language Python. ... 59
Figure 3.3: Typical Laplace Distribution. ... 61
Figure 3.4: Laplace Distribution with different values of m and b. .. 62
Figure 3.5: Two different ε-Differential Private Laplace Distributions vs the original output value.
... 63
Figure 3.6: Convergence of marginals for the Truncated Monte Carlo method. 68
Figure 3.7: Convergence of marginals for the G-Shapley method. .. 69
Figure 3.8: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random. .. 70
Figure 3.9: Convergence of marginals for the Noisy Truncated Monte Carlo method. 71
Figure 3.10: Convergence of marginals for the Noisy G-Shapley method. 72
Figure 3.11: Data Shapley performance plots for the Noisy methods TMC-Shapley, G-Shapley,
LOO and Random. .. 73
Figure 3.12: Convergence of marginals for the Noisy TMC-Shapley method (i=1/4). 74
Figure 3.13: Convergence of marginals for the Noisy G-Shapley method(i=1/4). 75
Figure 3.14: Convergence of marginals for the Noisy TMC-Shapley method (i=1/2). 76
Figure 3.15: Convergence of marginals for the Noisy G-Shapley method(i=1/2). 77
Figure 3.16: Convergence of marginals for the Noisy TMC-Shapley method (i=2). 78
Figure 3.17: Convergence of marginals for the Noisy G-Shapley method (i=2).......................... 79
Figure 3.18: Convergence of marginals for the Noisy TMC-Shapley method (i=4). 80
Figure 3.19: Convergence of marginals for the Noisy G-Shapley method (i=4).......................... 81
Figure 3.20: Convergence of marginals for the Noisy TMC-Shapley method (i=8). 82
Figure 3.21: Convergence of marginals for the Noisy G-Shapley method (i=8).......................... 83
Figure 3.22: Convergence of marginals for the Noisy TMC-Shapley method (i=16). 84
Figure 3.23: Convergence of marginals for the Noisy G-Shapley method (i=16)........................ 85
Figure 3.24: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=1/4). .. 86
Figure 3.25: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=1/2). .. 86

 ix

Figure 3.26: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=2). ... 87
Figure 3.27: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=4). ... 87
Figure 3.28: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=8). ... 88
Figure 3.29: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=16). ... 88

 x

List of Tables

Table 2.1: Main types of DP data release methods. .. 34
Table 2.2: Histogram data release methods. ... 37
Table 2.3: Tree structure data release methods. .. 42
Table 2.4: Time series data release methods. ... 45
Table 2.5: Graph data release methods. .. 49
Table 2.6: Pattern mining data release methods. .. 52

 xi

Abbreviations

CA Calculation Algorithm

DP Differential Privacy

LOO Leave One Out

SEA Spatial Estimation Algorithm

TEA Temporal Estimation Algorithm

 12

1 INTRODUCTION

1.1 Problem statement and importance

In recent days, data has become a significant driver of technological and economic growth,

triggering among others the fundamental challenge of how to materialize and measure its value in

the context of algorithmic forecasts and decision making. As part of the discussions that have come

up, researchers and practitioners propose that individuals that share their data in industries such as

healthcare and retail markets, should be compensated; still, it is unclear what should be the fair

price of this data.

A quite popular framework developed to address the data valuation challenge, in the

context of supervised machine learning, is based on the data Shapley metrics. Given a number of

data points used to produce a prediction value, the data Shapley metric quantifies the contribution

of each individual datum to the overall prediction performance. Data Shapley metrics are suitable

for data pricing purposes since they satisfy important properties of a fair data valuation approach.

A large number of practical experiments have also proven that data Shapley methods present

additional benefits; specifically, they are more effective compared to traditional “leave one out”

or scoring methods, while they also produce outliers and insights on the type and nature of

additional data that might be candidate to improve the produced predictions.

On the other hand, differential privacy could be defined as a set of methods and tools

capable for quantifying and solving practical data privacy problems. Differential privacy practices

could be applied in the context of various applications, including Machine and Deep Learning

applications when private data are used. Combination of those practices with the Data Shapley

approach applied to quantify the fair data value for individuals, is an interesting research topic that

will be studied in the framework of the current work.

1.2 Aims and objectives

The main objective of the current work is to calculate the Data Shapley value of specific data sets

by leveraging one of the mechanisms of differential privacy algorithms (i.e. Laplacian, Gaussian,

 13

Exponential) and providing some guarantee of privacy, as defined in the differential privacy

domain. To fulfil this objective, the current thesis first studies and presents the theoretical

foundation of the Shapley value calculations, including mathematical analysis and relative

practical research evidence. Calculation methods, such as the Truncated Monte Carlo (TMC)

Shapley algorithm, as well as the Gradient (G) Shapley and the Group Shapley algorithms are

studied and analyzed, while there is special focus on studying and demonstrating how Data

Shapley values could be calculated with already existing algorithms. At the same time, sensitivity

and noise of the applied data privacy mechanism are measured and analyzed in the context of Data

Shapley metrics. This thesis proposes how new approaches guarantee the correctness and accuracy

of calculations without any information leakage from the data set under consideration.

Summarizing, in the context of the current work, the following main topics are studied:

 Definition of a measure suitable to track the fair value of each (𝑥 , 𝑦) of a calculation

algorithm (CA) in respect to a defined performance metric V.

 Efficient calculation of the above fair data value.

 Study of sensitivity and noise of applied data privacy mechanisms and how those could be

applied in the context of Data Shapley metrics, by guaranteeing the correctness and

accuracy of calculations without any information leakage.

1.3 Contribution

This work aims to contribute to the following areas:

 Provision of an efficient formulation of the important problem of calculating the fair value

of data sets, known as Data Shapley valuation problem, by taking advantage of machine

learning techniques.

 Review of existing empirical studies that prove the efficiencies and all desirable properties

of the Data Shapley valuation method.

 Introduction of a Data Shapley calculation algorithm variations that are suitable to address

the problem under study.

 14

 Application of sensitivity and noise to ensure data privacy mechanism as well as to measure

and analyze data Shapley value in the context of differential privacy.

 Implementation of a representative use case where data Shapley value calculations,

combined with differential privacy guarantees are applied in selected data sets.

1.4 Main Terminology

As already stated, in this thesis the Data Shapley valuation problem and the differential privacy

topic are studied and tested in a combined way. The Shapley value was defined by Shapley (1953)

and can be simply defined as the level of importance, or fair value of a given data set. The main

components of a data valuation process are: (1) the underlying training data set, i.e. a set of n

points, each one of which is also known as datum; (2) the calculation algorithm (CA), i.e. a

procedure which takes as input an arbitrary training data set and produces a calculated predictor

as an output; (3) a metric that defines performance, i.e. a metric that tests the performance of the

CA on a specific metric (Ghorbani & Zou, 2019). One of the most popular methods to calculate

the importance of a data point, is the Leave One Out (LOO) method (Cook, 1977), which is used

in this thesis for comparing and evaluating the efficiency of some of the latest and best performing

valuation methods, such as the Truncated Monte Carlo Shapley (TMC-S) and the Gradient Shapley

(G-S) (Ghorbani & Zou, 2019).

Differential Privacy (DP) could be defined as the change in private information that can be

derived from a data set, when a point that corresponds to an entity (e.g. individual) is removed

from the particular data set. The following two important metrics are of particular importance in

any DP algorithm (Dwork & Roth, 2014): (1) the privacy loss or privacy budget (denoted by ε),

which counts the amount of privacy loss when a differential change takes place in data, e.g. when

one entry is added to, or removed from, the original data set, and (2) the accuracy, which defines

the level of closeness of a DP algorithm’s output to the actual output and is used as a metric for

evaluating a DP algorithm. Introduction of noise is of key importance in the DP algorithms and

the way it is introduced defines significantly how the DP mechanism works; there are three main

noise types usually applied in DP algorithms, namely the Laplace, the exponential, and the

Gaussian noise types. Additionally, the local sensitivity metric is important for the performance of

DP algorithms; it is a mechanism to reduce the noise, with the trade-off of increasing the risk of

 15

reducing the protection of the information included in the dataset. Last, but equally important, the

sequence of processing applied to transform a data set into a differential private data set before

releasing it for access and use, is often known data release strategy (Zhang & Meng, 2014; Wang

et al., 2015).

1.5 Dissertation Structure

This dissertation is organized as follows. The current Chapter states the research problem and its

importance, outlines the dissertation aims and objectives, the contribution of the current research

and the main terminology used. In Chapter 2, an extensive literature review is presented.

Specifically, section 2.1 introduction the problem under research, section 2.2 provides the needed

background and fundamentals, including definition and mathematical formulation of the Data

Shapley problem, while in section 2.3 the Shapley value calculation methods under research are

presented. Section 2.4 introduces Differential Privacy (DP) and the DP noise, while it also

describes data processing models, data release strategies and data release types. Section 2.5

provides some necessary background on the combination of Shapley value calculations with

differential privacy, introducing concepts such as sensitivity, noise, loss function and boundaries.

In section 2.6, the topic is summarized, while challenges and areas of optimization are discussed.

Chapter 3 proposes the implementation of a use case to demonstrate the results of the

current research. Specifically, section 3.1 introduces the Chapter, and section 3.2 presents the

proposed design, including a description of the overall solution along with the used programming

platform (Python). Section 3.3 describes the implementation of Differential Privacy with Laplacian

noise, while in section 3.4 the core Data Shapley implementation is presented. The Chapter closes

with the core implementation results and discussion (section 3.5). Finally, Chapter 4 includes the

conclusions of the current research. In more detail, section 4.1 contains a summary and the main

conclusions of the dissertation, section 4.2 outlines some of the dissertation limitations, and section

4.3 proposes a path of important future work.

 16

2 CURRENT RESEARCH – LITERATURE REVIEW

2.1 Introduction

The current thesis studies and presents the theoretical foundation of the Shapley value calculations,

including mathematical analysis and relative practical research evidence. Calculation methods,

such as the Truncated Monte Carlo Shapley algorithm, as well as the gradient Shapley and the

group Shapley algorithms are studied and analyzed. Specifically, the current work focuses on

studying and demonstrating how Sharpley values could be calculated with already existing

algorithms. It proposes how new approaches that combine Shapley value calculation algorithms

with differential privacy algorithms could be applied. The proposed new approaches guarantee the

correctness and accuracy of calculations without any information leakage from the data set under

consideration. Sensitivity and noise of the applied data privacy mechanism are also measured and

analyzed.

2.2 Background and fundamentals

2.2.1 Definition and mathematical formulation of the Data Shapley problem

The data generated by individuals is increasingly becoming a significant factor of the marketplace,

as labor or capital factors (Posner & Weyl, 2018). Even regulatory directives such as GDPR

consider individual data as personal property and state that individuals should be compensated for

the provision of this data (GDPR, 2018). In this context, a fundamental question that should be

responded is, how the fair value of individual data can be calculated. Various methods have been

proposed to calculate this fair value; the current work focuses on exploitation of supervised

machine learning methods.

The main components of a data valuation process are the training data set, the calculation

algorithm itself, and a metric that defines performance (Ghorbani & Zou, 2019). The three

components are mathematically described in detail below:

1. Training Data Set: a set of n points, 𝑥 , 𝑦 , where 𝑖 = 1, … , 𝑛.

 17

2. Calculation Algorithm (CA): a procedure which takes as input an arbitrary training data

set and produces a calculated predictor as an output. An example of a CA is a risk

minimization algorithm that calculates 𝜃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝑙(𝑓(𝑥 ; 𝜃), 𝑦), where l is the

loss function, θ is a parameter that defines a family of models and 𝑓(; 𝜃∗) is the predictor

function.

3. Performance Metric: For any prediction function f, a performance metric 𝑉(𝑓) can be

defined to test the performance of f on a specific metric.

In the context of the current work, two main topics related to fair data valuation are studied:

 The definition of a measure that is suitable to track the fair value of each (𝑥 , 𝑦) for a

Calculation Algorithm (CA) in respect to a defined performance metric V.

 The efficient calculation of the above fair data point value.

An indicative CA could be a machine learning model, that is capable to classify for example

customers or patients based on a relevant data set, using prediction accuracy as a performance

metric for the algorithm effectiveness. As already mentioned, quantification of the value that each

customer’s or patient’s data contributes to the model performance, is the main objective of the

current work. It is important to state that no universal definition of the value for the overall data

set is provided; on the contrary, for every data point (datum), a separate value is provided

depending on the CA, the performance metric, and the overall data set used. This happens because

there are data points which are more significant than others in many cases, depending on the

calculation algorithm used, e.g. logistic regression, neural networks, or similar.

The Shapley value was defined by Shapley (1953) in game theory related content; since then,

it has been widely adopted and used in theoretical and applied research across various research

fields (Shapley et al., 1988). Many problem types use Data Shapley as a basis for their foundation

and analysis. Examples are resource allocation related problems, and voting application studies

(Milnor & Shapley, 1978; Gul, 1989). A big family of Data Shapley value models have been

proposed in recent years, focusing on feature scoring in predictive algorithms. In those studies, the

main objective is quantification of features in order to decide which ones have the highest impact

on the outputs of a model (Cohen et al., 2007; Strumbelj & Kononenko, 2010; Datta et al., 2016;

Lundberg & Lee, 2017; Lundberg et al., 2018; Chen et al., 2018). Other very important studies

 18

related to the Data Shapley value calculation takes advantage of Monte Carlo simulation methods

or similar network algorithms, linear regression methods, or in some specific cases analytical

solutions (Cook, 1977; Fatima et al., 2008; Castro et al., 2009; Maleki et al., 2013; Michalak et al.,

2013). Lately, Ghorbani & Zou (2019) have proposed use of Data Shapley value in the framework

of machine learning methods.

In similar directions Cook and Weisberg (1982) and Koh and Liang (2017) studied the

leverage or influence that perturbations of data points have to algorithm’s parameters and outputs.

However, for those studies it has been shown that the proposed algorithms are not always efficient

and might present stability issues, while they do not present some of the desirable properties that

Data Shaplay valuation methods should have (Ghorbani et al., 2017). Other studies, focus on the

financial aspects, from an angle that is of particular interest for policy makers and economists; in

those studies, it is assessed how individuals or citizens should be compensated for the data they

provide, while at the same time it is discussed how individuals should be incentivized to generate

valuable data (Arrieta Ibarra et al., 2017; Posner & Weyl, 2018).

One of the most popular methods to calculate the importance of a data point, is the Leave

One Out (LOO) method. The core functionality of LOO is based on performing a comparison

between predictor’s performance when the model is trained with the full data set, versus

performance when it is trained with a subset of the full set which is smaller by just one point (Cook,

1977). The level of degradation of model’s performance when it is applied to the subset of the

original training set, is a measure of the value of the removed data point. Variations of the LOO,

use the notion of a leverage or influence score, which tracks the change of predictor’s level of

performance when the weight of a data point slightly changes (Cook & Weisberg, 1982). As shown

by Ghorbani and Zou (2019), the LOO method does not satisfy important desirable properties for

implementing fair data calculation algorithms.

In what follows, application of Machine Learning techniques to calculate the fair value of

data is extensively studied from both a theoretical and a practical perspective. Given a fixed

training data set 𝐷 = {(𝑥 , 𝑦)} , where each 𝑦 is the categorical or actual value that corresponds

to 𝑥 , and a machine learning algorithm 𝒜 that uses D as an input to produce prediction, it is of

particular interest to calculate the predictor when training is applied on particular subsets S of D,

i.e. 𝑆 ⊆ 𝐷. If 𝑉(𝑆; 𝒜), or for simplicity 𝑉(𝑆), denotes the performance score for an algorithm 𝒜

 19

and a predictor based on the data set S, then the main objective is to calculate the fair value of the

data point i, which is denoted as 𝜙 (𝐷, 𝒜, 𝑉) ∈ ℝ, or symbolized as 𝜙 (𝑉), or 𝜙 for simplicity.

According to Ghorbani and Zou (2019), a well-defined fair value function 𝜙 should posses the

following important properties:

(1) If for every 𝑆 ⊆ 𝐷 − {𝑖}, 𝑉(𝑆) = 𝑉(𝑆 ∪ {𝑖}) holds, then 𝜙 =0, which means that the

value of any (𝑥 , 𝑦) that does not have any impact on the performance when added to

any training subset, should be equal to zero.

(2) If for the data points i and j and any 𝑆 ⊆ 𝐷 − {𝑖, 𝑗}, 𝑉(𝑆 ∪ {𝑖}) = 𝑉(𝑆 ∪ {𝑗}) holds, then

𝜙 = 𝜙 . This practically means that if the addition of data points i and j to any subset of

the training set produces the same variation in the score of the predictor then they must

be given the same value.

(3) Let 𝑉 = − ∑ 𝑙 , where 𝑘 ∈ 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 and 𝑙 is the loss function of the predictor on the

k-th data point of the test set. Also, let 𝑉 = −𝑙 be the performance of the predictor on

the k-th data point of the test set, and 𝜙 (𝑉) be the value of the i-th point to the k-th data

point of the train set. If the data point i contributes to the predictors of test points 1 and

2 respectively values 𝜙 (𝑉) and 𝜙 (𝑉), then the value of i in the predictions of both

test points is equal to 𝜙 (𝑉) + 𝜙 (𝑉). This practically means that, when the overall

prediction is the sum of K separate predictions, then the value of a data point equals the

sum of its value for each prediction, i.e. for performance scores V and W, 𝜙 (𝑉 + 𝑊) =

𝜙 (𝑉) + 𝜙 (𝑊).

Ghorbani and Zou (2019) have proven that any calculated fair value 𝜙(𝐷, 𝒜, 𝑉) for which

the above properties (1)-(3) hold, can be mathematically described in the following form:

𝜙 = 𝐶 ∑
(∪{ }) ()

| |
⊆ { } (eq. 2.1)

where C is a constant and the above sum aggregates all subsets of D that do not contain i.

The value 𝜙 calculated with the above relation is known as the data Shapley value of point

i. The above equation practically aggregates the weighted contributions of i, with the weight being

the inverse of the number of subsets with size |𝑆| in the 𝐷 − {𝑖} universe. This formulation is very

close to the LOO formula where every point’s contribution to the fair value is based on a random

 20

subset of the training set, instead of the whole training set. In other words, Shapley equation

captures all scenarios of potential subsets instead of random selections.

Equation (2.1) calculates and assigns to all data points a fair value. However, the

computational effort required to calculate every marginal contribution is very high and heavily

impacted by the size of the training data set, while for every 𝑆 ⊆ 𝐷 the calculation of 𝑉(𝑆) also

implies that a predictor on S should be computed with the aid of algorithm 𝒜. Consequently,

calculation of the accurate Data Shapley value is not realistic for actual use cases that include large

data sets. For this reason, approximations are used in practice.

2.3 Shapley value calculation methods

In this section, popular approximation methods commonly used to calculate the Data Shapley

value are presented and discussed. Specifically, the Truncated Monte Carlo Shapley algorithm and

the Gradient Shapley algorithm. The above methods will be used as a basis for the implementation

proposed in this study.

2.3.1 Truncated Monte Carlo Shapley Algorithm

According to Ghorbani and Zou (2019), equation (2.1) can be reformulated if C is set equal to
!
.

Specifically, if Π is a uniform distribution function in the universe of all n! data point permutations,

then the following equation holds:

 𝜙 = Ε ≈ 𝑉 𝑆 ∪ {𝑖} − 𝑉(𝑆) (eq. 2.2)

with 𝑆 being the data set that includes only the data points that are positioned before data point i

in permutation π. Obviously, 𝑆 = ∅ when i denotes the first data point of the data set. The above

notation implies that equation (2.2) in fact formulates and represents an expectation computation

problem.

Variations of the Monte-Carlo method have been introduced and studied in the framework

of the Data Shapley Value problem (Mann & Shapley, 1962; Castro et al., 2009; Maleki et al.,

2013). In principle the steps followed in those variations are the below:

 21

1. A sample of random permutations of the data points is selected.

2. For each permutation the marginal contribution of each additional data point is calculated.

3. The overall estimation is calculated by averaging all the marginal contributions produced by

step (2).

The above steps conclude to an estimation of the Data Shapley value which is generally unbiased.

Following such an approach, the Monte Carlo calculations are iteratively repeated until the

algorithm converges. According to Maleki et al. (2013), convergence is achieved by generating 3n

samples, which simply means that the computational complexity is 𝑂(𝑛).

To reduce computational complexity and optimize algorithm performance, Ghorbani and

Zou (2019) introduced the idea of truncation in the above Monte Carlo iterative approach. The

method the concluded with, was named Truncated Monte Carlo Shapley (TMC-Shapley). The idea

behind what they proposed is that when a sample permutation is processed to compute its marginal

contributions, calculations can be truncated as soon as V(S) reaches a point with an acceptable

performance tolerance V(D). Calculations on remaining data points for the specific permutation

could be then ignored (i.e., marginal contribution can be set equal to zero for those points), without

any significant impact on the produced outcomes. Applying the idea of truncation in Data Shapley

Monte Carlo saves significant computational effort and at the same time does introduce only

immaterial bias into the estimation produced.

The above calculation is feasible to implement in the framework of Machine Learning

methods. Validity of the idea can be explained by the fact that, since the data set used for testing

is finite, V(S) is in fact just an estimation of the actual performance of the trained model. It is thus

adequate to approximate the Data Shapley value by taking into consideration a tolerance that

equals the intrinsic noise; this noise could be measured by quantifying the performance variations

for the same predictor across the samples of the testing data set (Hastie et al., 2001). At the same

time, Mahajan et al. (2018) and Beleites et al. (2013) have proven that when S becomes larger,

further addition of training points gradually has smaller impact on the performance of the

calculation.

 22

2.3.2 Gradient Shapley Algorithm

Even by applying the efficiencies stated in the previous section, Data Shapley calculations remain

still expensive, especially when big data sets are considered, or high complexity predictive models

such as deep learning models are used. For this reason, the Gradient Shapley Algorithm has been

proposed by Ghorbani and Zou (2019). In most of the cases, predictive models require that

algorithm A performs random iterations on batches of D to appropriately adjust the model

parameters. These iterations are the basis of the stochastic Gradient Shapley, or G-Shapley

algorithm. In this case, the model is gradually trained, by iteratively considering simple

approximations of the model produced by a single parse of the training data. Obviously, this

approach is quite close to the one followed in the Monte Carlo Shapley algorithm. The main

difference is that, in each sample permutation, the model is updated by applying a gradient descent

on each data point for every time step. The marginal contribution can then be calculated as the

change that takes place in the model performance in every iteration. Additionally, to produce the

best approximation, Ghorbani and Zou (2019) applied a hyper-parameter search during the

learning process, which resulted into the best performing model when this is trained with only one

parse of the data.

2.3.3 Variations

In some cases, especially when very large data sets are used as an input, calculation of the Data

Shapley values become extremely demanding in terms of computational resources, and

algorithm’s performance significantly declines. An approach usually proposed in such cases is the

grouping of data points and application of the Data Shapley algorithms on those groups instead of

individual datums. Representative examples that take advantage of the data grouping approach can

be found in the health industry applications such as the prediction of heart diseases, breast cancer,

skin cancer etc., where patients could be grouped into separate bins using as grouping criteria

features like gender, age, etc. Other examples could be found in relative research efforts (Ghorbani

& Zou, 2019).

 23

2.4 Differential privacy

During the last two decades, emblematic data breaches have led private and public Organizations

to put high in their priority agendas, data privacy initiatives. In exactly the opposite direction, the

increasing usage of Machine Learning algorithms has generated strong demand on large volumes

of data sets to get trained and be executed to produce valuable information insights. Important

portions of the required data may contain personal, sensitive and in any case private information;

potential disclosure of such data could generate unpredictable and possibly unmanageable

consequences for the organizations that are responsible to collect, store and manage it.

Differential Privacy (DP) is a relatively new research field, that aims to respond to information

privacy challenges and enable Organizations and Companies to effectively manage private and

sensitive information included in the managed data, as can be seen in Figure 2.1. DP was

established as a research domain in 2006 by the seminal work of Dwork (2006), but has become

popular during the last years, among others because it provides the so-called privacy guarantees

as part of security frameworks and their implementation.

Figure 2.1: Information from a Differential Privacy perspective.

Private
information Non-private

information

Information in data

 24

DP could be viewed as an approach to mathematically define information privacy in the

context of machine learning and statistical analysis techniques (Nissim et al., 2018). It can be

simply defined as the change in private information that can be derived from a data set, when a

point that corresponds to an entity (e.g individual) is removed from the particular data set. DP

carries the unique property of guaranteeing that the outcome of a calculation will remain essentially

unchanged when a particular entity’s private information, contained in the original input is

removed (Nissim et al., 2018). This unique property can guarantee information privacy protection

against a variety of privacy attacks such as differencing, linkage and reconstruction attacks

(Dwork & Roth, 2014).

The following two important metrics are of particular importance in any DP algorithm

(Dwork & Roth, 2014):

 Privacy loss or privacy budget (denoted by ε): This is a metric of privacy loss when a

differential change takes place in data, e.g. when one entry is added to, or removed from,

the original data set. Information privacy protection is inversely propotional to the size of

ε.

 Accuracy: Given a data set, accuracy refers to the level of closeness of a DP algorithm’s

output to the actual output and is used as a metric for evaluating a DP algorithm.

From a mathematical perspective, the DP problem can be formulated as follows. A calculation

function (or algorithm) K provides ε-differential privacy when for any data sets D and D′ that vary

by one row at most (i.e 𝑑(𝐷, 𝐷′)=1), and for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾), the following relation holds:

𝑃𝑟[𝐾(𝐷) ∈ 𝑆] ≤ 𝑒 𝑃𝑟[𝐾(𝐷) ∈ 𝑆] (eq. 2.3)

It is important to note that decreasing ε leads to declining accuracy. Moreover, an algorithm that

is of 0-differential privacy, even if it protects the information privacy adequately, it will be of

limited usage if it has very low accuracy, since it would produce only noise as an output. From

another angle, having an ε which is equal to 0, makes the DP algorithm being independent of the

data set used as an input, and consequently protects information privacy in a perfectly. Typical

values for ε are thus small but non-zero, e.g 0.5, 0.1, 0.001.

Based on eq. (2.3) and the above discussion, it can easily be understood that the stronger the

privacy guarantee provided the greater the noise added to the outcome of a DP algorithm. To

 25

mathematically justify the trade off between privacy guarantee and noise, the (𝜀, 𝛿)-differential

privacy scheme was introduced in Dwork et al. (2006) and Dwork (2011a). Given two data sets D

and D′ that vary by one row at most (i.e 𝑑(𝐷, 𝐷′)=1), and a calculation function (or algorithm) 𝐾,

𝑅𝑎𝑛𝑔𝑒(𝐾) being the set of all possible output alternatives of 𝐾, then for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐾), the

(𝜀, 𝛿)-differential privacy could be defined as follows:

𝑃𝑟[𝐾(𝐷) ∈ 𝑆] ≤ 𝑒 𝑃𝑟[𝐾(𝐷) ∈ 𝑆] + 𝛿 (eq. 2.4)

There is not any hard requirement to select any specific values for ε or δ, which practically means

that they could be selected based on the requirements or specific properties of the problem that

needs to be tackled each time. In general, appropriate values for δ are usually smaller than 10-4,

while (ε, δ)-differential privacy degenerates to ε-differential privacy if δ is equal to zero.

Figure 2.2: Probability distributions for the outputs of the function (or algorithm) K for datasets
D and D′.

(Source: Wang et al., 2015)

 26

According to Dwork and Roth (2014), DP has the following four (4) important properties

that make it feasible to analyze personal or sensitive information taking into consideration

protection of information privacy:

1. Ability to quantify information privacy loss. DP makes it feasible to measure information

privacy loss and produce meaningful comparisons in the context of machine learning

techniques.

2. Information privacy loss composition. Quantification of information privacy loss, makes it

feasible to analyze and control cumulative impact of privacy loss when multiple

computations are gradually applied. This quantification facilitates the proper design and

analysis of DP algorithms when they are composed from smaller building blocks.

3. Immunity on post-processing. DP is not affected by any type of post-processing. This

practically means that outputs of differential privacy algorithms cannot be used to “re-

create” the relevant inputs, by using any type of computation.

4. Information privacy loss on groups of individuals. DP makes it feasible to analyze privacy

loss incurred in groups of individuals e.g. families, when data are provided at individual

level.

Especially for property (2) above, there are two separate types of composition that could be

met, sequential and parallel. Both play a significant role in providing evidence on whether a

specific algorithm satisfies DP or not. On top, they could also be used to quantify the differential

privacy loss amount, providing thus significant input on the budgeting strategy effectiveness. The

sequential composition variation shows that both the differential privacy budget and the error are

evolving in a cumulative linearly manner when multiple differential privacy approach is used to

release data for a given dataset. The parallel composition variation shows that the level of

differential privacy guarantee is decreasing (or in other words the security is decreasing) when

εi grows (Li et al., 2012; McSherry, 2010). To balance the required budget with the realized

security, a number of methods have been developed based on the calculation of optimal values for

the absolute or the relative error (Qardaji et al., 2013), the variance or the standard deviation

(Cormode et al., 2012; Xiao et al., 2014; Qardaji et al., 2013), and the false negatives (Lee &

Clifton, 2014).

 27

In the rest of the section, the most important differential privacy concepts are studied and

critically analyzed, starting with the definition and detailed presentation and mathematical

formulation of the DP noise.

2.4.1 Differential Privacy noise

As already explained, introduction of noise is of key importance in the DP algorithms and the way

it is introduced defines significantly how the DP mechanism works. There are three main noise

types usually applied in DP algorithms, namely the Laplace, the exponential, and the Gaussian

noise types. To better understand how the noise mechanism works, the global sensitivity metric

should be introduced. For a function 𝑓: 𝐷 → 𝑅 , the global sensitivity is defined as (Dwork, 2006):

𝛥𝑓 = max
,

‖𝑓(𝐷) − 𝑓(𝐷′)‖ . (eq. 2.6)

where 𝐷 and 𝐷 are two adjustment data sets, d is the data set dimension and ‖𝑓(𝐷) − 𝑓(𝐷′)‖

the first order norm of the distance between 𝑓(𝐷) and 𝑓(𝐷′).

Depending on the set of operations performed by function f, the global sensitivity metric

could take different values, e.g, if f represents a simple count function, then 𝛥𝑓 = 1, while

𝛥𝑓 normally takes larger values for other, more complex, operations. Nissim et al. (2007),

proposed a mechanism to better manage outputs when the noise increases. Specifically, they

introduced the metric of local sensitivity defined as follows. For a function 𝑓: 𝐷 → 𝑅 , the local

sensitivity is defined as:

𝐿𝑆 = max

‖𝑓(𝐷) − 𝑓(𝐷′)‖ (eq. 2.7)

where 𝐷 and 𝐷 are two adjustment data sets, d is the data set dimension and ‖𝑓(𝐷) − 𝑓(𝐷′)‖

the first order norm of the distance between 𝑓(𝐷) and 𝑓(𝐷′).

The local sensitivity metric normally reduces the noise, but this comes with an increasing

risk of reducing the protection of the information included in the specific dataset. For this reason,

Nissim et al. introduced the β-smooth sensitivity metric, that makes it feasible to add noise

proportionally to a smooth upper boundary of the local sensitivity. The β-smooth sensitivity is

defined as follows (Nissim et al., 2007). For a function 𝑓: 𝐷 → 𝑅 and a β > 0, the β-smooth

sensitivity is given by:

 28

𝑆 , (𝐷) = max

𝐿𝑆 (𝐷′)𝑒 , (eq. 2.8)

where 𝐷 and 𝐷 are two adjustment data sets, d is the data set dimension and 𝐿𝑆 the local

sensitivity of f.

In what follows the variations of DP noise are presented in detail.

2.4.1.1 Laplacian DP noise

The Laplacian DP noise has been proposed by Dwork et al. (2006b) as a proper mechanism for

achieving differential privacy. The way this mechanism works is that it adds noise to the DP

algorithm outputs, which follows Laplacian distribution. Using mathematical formulation, for a

data set D, a function 𝑓: 𝐷 → 𝑅 with global sensitivity 𝛥𝑓, and a calculation algorithm 𝐾(𝐷) =

𝑓(𝐷) + 𝑛 that satisfies ε-differential privacy, the noise n follows the Laplacian distribution, i.e

𝑛 ∼ 𝐿𝑎𝑝 () with location and scale parameters respectively equal to 0 and . Let 𝐿𝑎𝑝 (𝑏)

denote the Laplacian distribution with location and scale parameters respectively equal to 0 and 𝑏,

and 𝑝(𝑥) =

| |

 denote its probability density function. If 𝜎(𝑥) is the standard deviation and 𝐷(𝑥)

the variance, and 𝑏 = , then:

𝐷(𝑥) = 2𝑏 = 2
()

 (eq. 2.9a)

𝜎(𝑥) = 𝐷(𝑥) = √2 (eq. 2.9b)

As it is depicted in Figure 2.3, for larger values of noise, the larger the value of b and the value of

ε (Wang et al., 2015).

 29

Figure 2.3: Visualization of the probability density function for different calls of b.

(Source: Wang et al., 2015)

2.4.1.2 Exponential DP noise

The exponential DP noise has been proposed by McSherry & Talwar (2007) as another mechanism

for achieving differential privacy. In similarity with the Laplacian DP noise, the way this

mechanism works is that it adds noise to the DP algorithm outputs, which follows exponential

distribution. Their main differentiation point is that the Laplacian mechanism is usually being

applied when the DP problem outputs are numerical, while the exponential mechanism is applied

when the outputs are not numerical. Using mathematical formulation, for an input data set denoted

as D, an output denoted as 𝑟 ∈ 𝑅, and a score function 𝑣: 𝐷 × 𝑅 → 𝑅, if a calculation algorithm

𝐾(𝐷, 𝑣) decides a potential answer based on the following exponential probability defined in (eq.

2.10), then algorithm 𝐾 satisfies ε-differential privacy:

𝐾(𝐷, 𝑣) = 𝑟: 𝑃𝑟[𝑟 ∈ 𝑅] ∝ 𝑒
 (,)

 (eq. 2.10)

where 𝛥𝑣 denotes the sensitivity of the score function 𝑣, defined as follows:

 30

𝛥𝑣 = max
 ∈

 max
 ‖ ‖

|𝑣(𝐷, 𝑟) − 𝑣(𝐷 , 𝑟)| (eq. 2.11)

As already mentioned, the exponential DP noise mechanism can be used for non-numerical

results, using values produced by the score function. The highest the score of an output, the higher

probability to be outputted when ε is larger. Additionally, when the difference between the output

probabilities increases, the produced security decreases; for smaller values of ε, the produced

security increases.

2.4.1.3 Gaussian DP noise

The Gaussian DP noise is another mechanism for achieving differential privacy. The way this

mechanism works is that it adds noise to the DP algorithm outputs, which follows Gaussian

distribution. However, this mechanism requires a slightly different notion of sensitivity. For a

function 𝑓: 𝐷 → 𝑅 , the 𝑙 sensitivity is defined as:

𝛥𝑓 = max
,

‖𝑓(𝐷) − 𝑓(𝐷′)‖ (eq. 2.12)

where 𝐷 and 𝐷 are two adjustment data sets.

The 𝑙 sensitivity and 𝑙 norms enjoy the following relationship:

 ‖𝐷‖ ≤ ‖𝐷‖ ≤ √𝑑‖𝐷‖ (eq. 2.13)

for a vector 𝐷 ∈ 𝑅 . Thus, the 𝑙 sensitivity might be greater by a factor of √𝑑 than 𝑙 sensitivity.

The univariate Gaussian distribution 𝑁 (𝜇, 𝜎) with mean and variance parameters respectively

equal to 𝜇 and 𝜎 has probability density function which is the following:

𝑝(𝑥) =

√
 𝑒

()

 (eq. 2.14)

2.4.2 Data processing models and data release strategies

Two different data processing models exist in the framework of differential privacy, i.e the

interactive or on-line query model (see Figure 2.4) in which the data requester can access the data

through an interface provided by the owner of the data, and the non-interactive model or offline

query model (see Figure 2.5) in which the data requester can directly access only sanitized data

sets as they are released by the data owner (Dwork et al., 2006; Xiong et al., 2014).

 31

In the interactive model (see Figure 2.4) the data owner provides a DP-based query

algorithm to the data requester, while the data requester requests the needed data using a query.

Upon receipt of the query request, the algorithm brings the requested raw data from the original

data source and performs sanitization before returning it to the requester. In this case, the number

of performed queries is inversely proportional to the privacy budget ε, which means that the bigger

the number of queries the smaller the budget for each query and the larger the noise added to the

query result. Consequently, in this type of model, it is of key importance to design the query

algorithm in such a way, so that it provides the largest number of queries that could be applied

under the restriction of the budget ε (Wang et al., 2015).

Figure 2.4: Interactive or on-line query model.

(Source: Wang et al., 2015)

In the non-interactive model (see Figure 2.5) the data owner releases a sanitized data set

since he/she is considered a trusted curator. Upon receipt of a query request from the data requester,

the sanitized data set is used to formulate and return the noisy result. In this type of model, it is of

key importance to design the query algorithm in such a way, so that it is capable to enhance the

accuracy and efficiency of the query; even if a high number of queries are required this is not

prohibitive, since the number of queries are not related to the privacy budget ε (Wang et al., 2015).

 32

Figure 2.5: Non-Interactive model or offline query model.

(Source: Wang et al., 2015)

Based on the above models, three different data release strategies can be applied (Zhang &

Meng, 2014; Wang et al., 2015):

1. Data Release Strategy 1: In this alternative, ε represents a uniform privacy budget and the

noise that follows Laplace distribution 𝐿𝑎𝑝 () is added to the original raw data 𝐷 =

{𝑥 , 𝑥 , … , 𝑥 }, giving a noisy transformation 𝐷 . Post-processing can be applied to the

noisy transformation 𝐷 to improve query accuracy, with a method such as least square,

and finally release the transformed post-processed data set 𝐷 .

2. Data Release Strategy 2: In this alternative, ε represents again a uniform privacy budget. First

a processing is applied to the original raw data 𝐷 = {𝑥 , 𝑥 , … , 𝑥 }, incuding transformation

(e.g a graph structure is converted to a tree structure) and compression, to reduce the sensitivity

of function f, Δf. The outcome is a synthetic data set 𝐷 in which then noise that follows

Laplace distribution 𝐿𝑎𝑝 () is added, to finally release the data set 𝐷 .

3. Data Release Strategy 3: In this alternative, ε represents a non-uniform privacy budget, i.e

𝜀 ≠ 𝜀 and the noise that follows Laplace distribution 𝐿𝑎𝑝 () is added to the original raw

data 𝐷 = {𝑥 , 𝑥 , … , 𝑥 }, giving a noisy transformation 𝐷 . Finally, reasonable budgeting

strategy techniques are used on the noisy transformation 𝐷 to improve query accuracy and

release the data set 𝐷 .

 33

The above data release strategies can be applied either autonomously or in combination. For

example, Data Release Strategy 3 could be initially used to allocate a reasonable budget and then

post-processing of Data Release Strategy 1 could be applied to improve the query accuracy.

2.4.3 Data Release Types

Ensuring high levels of privacy guarantee and at the same time providing highly usable released

data, is apparently the main objective of any differential privacy approach. For this reason, a

significant number of data release methods have been proposed, defining different types of

differential privacy. Although the research in the DP domain is still at the beginning, the data

release methods applied using the strategies mentioned above, lead to different DP approaches. A

classification of these approaches in five (5) separate types, namely Histograms, Tree structures,

Time series, Graphs, and Pattern mining, has been proposed by Wang et al. (2015). The advantages

and defects of each one of those types, along with the most important representative methods and

some typical applications are summarized in Table 2.1.

 34

Table 2.1: Main types of DP data release methods.

Classification Advantage Defect
Representative

methods
Typical Applications

Histogram Supports any range query The noise is large in
high-dimensional

data

DPCube
NoiseFirst 

Structure First

Statistical analysis of
disease and search history

Tree structure Supports multiple-
dimensional data and

data-dependent or data-
independent query

The noise is large in
high-dimensional

data

Quad-opt
AG
SEA

Location query of user
and device, transport

planning

Time series Supports time series query It is hard to balance
the utility and

security in high-
dimensional data

TEA
FAST
U-KF

Real time traffic, disease
surveillance

Graph Supports the analysis and
query of graph data

Sensitivity is high,
and node-differential
privacy is difficult to

achieve

DP2K(ε)
LNPP

hrg-ε1-e-ε2

Relationship analysis of
user in health social

network

Pattern
mining

Supports differential
privacy pattern mining,
and original data can be
constructed by frequent

patterns

Long pattern leads to
large noise

PrivBasis
NoiseCut
Diff-FPM

User behavior, DNA
sequences, trajectory and

disease trend analysis,
recommended system

In the following sections, each one of the above five (5) classifications, is described in detail and

analyzed.

2.4.3.1 Histogram release type

The histogram release type is based on histograms created from the input data set by splitting it

into disjoint data subsets, which are known as “buckets” or “bins”. Bucketing is based on a given

set of rules or attributes. To access the raw data, a DP interface is commonly used, through which

users send queries on the data and the histograms are used to formulate responses. The process

workflow is depicted in Figure 2.6 (Xiao et al., 2010).

 35

Figure 2.6: DP using the histogram data release type.

(Source: Xiao et al., 2015)

One of the most common methods to implement the histogram approach, is by adding

Laplace noise equal to 𝐿𝑎𝑝 () (function sensitivity 𝛥𝑓 = 1) to all histogram bins. This selection is

appropriate when the requests are based on short range queries, since for larger ones the error

increases significantly (error is proportional to). To reduce the error, a grouping of the buckets

can be applied; an example with grouping of age bins is demonstrated in Figure 2.7 below (Xiao

et al., 2010). In this example, by merging the seven (7) buckets into three (3), the total noise is

reduced in 3/7=0.43 of the initial noise. The side effect of this noise improvement is that an

approximation error is introduced which implies that to keep the DP approach effective, the

number of bucket mergers should be limited. Since the finer the partitioning is, the smaller the

approximation error will be, but at the same time the larger the noise will be, it is of key importance

to find the proper balance between introduced noise and approximation error (Xiao et al., 2010).

Figure 2.7: Grouping of buckets in the histogram data release type.

(Source: Xiao et al., 2015)

 36

One of the most popular partitioning strategies was proposed by Xiao et al. (2010, 2012)

and is based on the notion of the kd-tree. Specifically, the kd-tree histogram data release process

is consisted of the following five (5) steps:

1. The histogram structure is constructed based on the k-th different attributes of the original

raw data.

2. A noisy k-dimensional data set is generated, by adding noise to the original histogram using

half of the privacy budget (i.e. ε/2).

3. Partitioning of the noisy k-dimensional data set is conducted with the use of the kd-tree

algorithm.

4. Noise is added to each one of the partitions using the other half of the privacy budget (ε/2).

5. The generated noisy histogram is released.

A number of algorithms have been based on the kd-tree histogram data release method.

Xiao et al. (2010) proposed DPCube which follows Data Release Strategy 1, i.e. the kd-tree is

applied for post-processing purposes after addition of noise. The DPCube algorithm can handle

long-range query and multidimensional data, while the query error can be optimized with the

proper parameter value selection.

Xu et al. (2013) proposed the idea of using the notion of Sum of Squared Error (SSE) to

appropriately balance the partitioning and noise error. Based on this notion, two important methods

have been proposed, namely methods NoiseFirst and StructureFirst. NoiseFirst follows Data

Release Strategy 1, i.e. first adds noise and then uses dynamic programming to construct the

optimal histogram; NoiseFirst is suitable for short-range queries. StructureFirst follows Data

Release Strategy 2, i.e. first generates the optimal histogram and then adds noise. StructureFirst

uses privacy budget ε1 in the first step as a privacy guarantee mechanism for the sensitive

information in the histogram. In the second step, noise is added to the different partitions using the

rest of the privacy budget (ε- ε1). StructureFirst is suitable for long-range queries and is similar to

en extend with DPCube. Since both NoiseFirst and StructureFirst reconstruct the histogram, large

numbers of partitions negatively affect performance.

 37

Hay et al. (2010) proposed another approach that reduces the error in long-range queries

by applying a hierarchical tree structure, transforming thus the histogram into a hierarchical tree

structure. By applying this transformation, all queried intervals can be organized as trees and query

accuracy is enhanced (Qardaji et al., 2013b). Further work done by Qardaji et al. (2013b), based

on the hierarchical tree notion, concluded to the Flat method which works well for larger

dimensions compared to the original hierarchical approach.

A summary of all histogram data release methods is depicted in Table 2.2.

Table 2.2: Histogram data release methods.

Method Strategy Advantage Defect Budgeting

DPCube Data Release
Strategy 1

Supports multidimensional and
long-range query

Parameter affects query
accuracy heavily

Uniform
budgeting

NoiseFirst Data Release
Strategy 1

Fit for short-range query Histogram reconstruction is
expensive

Uniform
budgeting

Structure
First

Data Release
Strategy 2

Fit for long-range query Histogram reconstruction is
expensive

Near-optimal
budgeting

Flat Data Release
Strategy 2

Fit for multidimensional data Low-dimensional data query
error is larger

Uniform
budgeting

 38

2.4.3.2 Tree structure release type

The tree structure methods are targeting to the reduction of query errors and are based on the idea

of splitting the data into tree structures. They are also met in the relevant literature in another form,

as private spatial decompositions where the geospatial data are split into sub-regions enabling the

generation of statistics within each one of them. In case that a partition might disclose sensitive

information when such a split is performed, the method is called data-dependent decomposition.

If it might not, it is called data-independent decomposition. In that sense for example, kd-tree splits

are based on the median value, which implies disclosure of the median value itself; that is why it

is a data-dependent decomposition (Cormode et al., 2012).

In what follows the two main types of decomposition are presented in detail.

(1) Data-dependent decomposition. As depicted in the example of Figure 2.8, the node with

grid coordinates (5, 4) discloses information of itself during the splitting, leading to noise

addition in order to protect actual information disclosure. Given a data set 𝐷 =

{𝑥 , 𝑥 , … , 𝑥 }, 𝑥 ∈ [1, 𝑟] with n data points sorted in ascending order and 𝑥 being

the median value, then by adding 𝑛𝑜𝑖𝑠𝑒 ~𝐿𝑎𝑝 () the noise median is obtained, i.e

𝑀(𝐷) = 𝑥 + 𝑛𝑜𝑖𝑠𝑒. Given that 𝑀(𝐷) might take values not belonging to [1, 𝑟] it

has been proposed by Inan et al. (2012) that the mean value 𝑥 could be selected instead

of the median when numerical data are used; the mean value could be then approximated

by dividing the sum of the noisy counts to the number of the counts. Xiao et al. (2010,

2012) used initially half of the privacy budget on the original data and the rest of the budget

to construct a kd-tree structure and compute the median on noisy data, guaranteeing thus

the differential privacy of the median.

 39

Figure 2.8: A private kd-tree.

(Source: Wang et al., 2015)

Cormode et al. (2012) proposed a method based on kd-tree structure and EM medians, known

as kd-standard. This method uses EM (exponential mechanism) to check and validate the

median by applying an exponential mechanism and calculates differential privacy as

𝑃𝑟[𝐸𝑀(𝐷) = 𝑥] ∝ 𝑒 | () ()|⁄ . In this way the rank of the returned x is the

same with the rank of x in D. Since x is almost equal to 𝑥 , the median is guaranteed. The

method uses a privacy budget 𝜀 for calculating 𝑥 , and a privacy budget 𝜀 for

the computation of the count. Since 𝜀 = 𝜀 + 𝜀 , the larger the value of 𝜀 the

more accurate the median and the larger the count error, while the smaller the value of 𝜀

the more accurate the count computation but the larger the median error. This practically means

that it is of key importance in the kd-standard method to find the proper balance between the

budget that should be allocated to the count computation and the budget that should be used

for the median computation.

(2) Data-independent decomposition. Method Quad-opt which is based on the notion of quadtree

was proposed by Cormode et al. (2012). The main mechanism on which this method is based

is the recursive decomposition of the data set into equal quadrants, that do not disclosure any

data information. As depicted in the example of Figure 2.9, the data set a is decomposed into

four quadrants of equal size, i.e. b1, b2, b3 and b4; all b data sets are then decomposed to four

(4) equal quadrants and this continues until a predefined depth h of the scetched tree is met.

 40

Figure 2.9: An example of the Quad-opt method.

(Source: Wang et al., 2015)

Going beyond the obvious choice of a uniform budget, i.e. 𝜀 = , Cormode et al. (2012)

proposed a geometrical strategy, with a factor of √2. Based on this strategy, budget 𝜀 =

2 𝜀
√ , with 𝑖 = 0, … , ℎ and 𝜀 = ∑ 𝜀 . For a query Q, the error accumulated is equal

to the sum of the errors occurring in each node and for the upper error boundary in query Q, it

holds that 𝐸𝑟𝑟𝑜𝑟(𝑄) = 𝑉𝑎𝑟(𝑄) ≤ . Method Quad-opt can further enhance the accuracy of

the query, by applying post-processing on the noisy data with the aid of the least square

method. When the entire privacy budget is allocated to the leaf nodes, the method implies

decomposition of the data set into w×w cells.

Fan et al. (2013) proposed another data-independent decomposition method, called Spatial

Estimation Algorithm (SEA), which is merging similar cells into groups, proved to be effective

especially in cases of sparse data sets. The SEA method starts with modeling the cells, by

grouping them into different cell types (dense or sparse) that depend on the knowledge of the

domain before decomposition. Any group of cells is characterized as homogeneous when every

cell of the group is of the same type (dense or sparse) and no need for further decomposition

exists. Further decomposition is needed in case that a group is not homogeneous, if the

predefined depth of the tree has not been reached. In SEA, noise is added in each one of the

groups after completion of the required decomposition, and the total cell noise is given by the

formula
×

, where 𝑔 × 𝑠𝑖𝑧𝑒 is the number of cells in group 𝑔 . The main advantage of

 41

SEA is that it enhances the accuracy of the query, while at the same time manages to provide

a high-level privacy guarantee by merging the cells, or in other words by reducing the noise

added to each cell.

While the decomposition methods kd-standard and quadtree are suitable for one-dimensional

or two-dimensional data sets, they are not appropriate for multi-dimensional data sets. Qardaji

et al. (2013) proposed UG which is based on a uniform grid that simulates an n-tree structure.

The error generated in the UG method is coming from two separate sources. First, a random

noise error is introduced following Laplace distribution and second a non-uniformity error is

added as a result of the assumption that that the data points are uniformly distributed. The non-

uniformity error is mainly driven by the data points that are positioned in the border cells of

the query rectangle. Since the UG method decomposes the data set into w×w cells, for a query

Q the error is given by the formula 𝐸𝑟𝑟𝑜𝑟(𝑄) =
√

+
√ , with N being the number of data

points, r the ratio of the query area Q to the overall domain area, and 𝑐 a constant. It is

important to notice that the granularity 𝑤 =
√

 of the decomposed space is the main factor

that effects the accuracy of the query results.

The UG method treats similarly dense and sparse cells. The result of this is that, in cases where

a cell is sparse, the noise error is large, while for dense cells the non-uniformity error gets

larger. This was the main trigger for Qardaji et al. (2013) to propose the Adaptive Grid (AG)

method that targets in balancing the above two errors. To achieve this balance, AG initially

decomposes the data space into winit × winit cells with non-fine granularity. Then, cells that are

too dense are further decomposed into wgran × wgran more granular cells. After applying the

decomposition, a count query is created for each cell, using privacy budget a × ε for the initial

coarse cells and (1 – a) × ε for the more granular cells. Τo optimize the error, Qardaji et al.

(2013) used the following values:

𝑤 = 𝑚𝑎𝑥 10, 0.25 (eq. 2.15)

𝑤 =
()

√
 (eq. 2.16)

where 𝑥 is the noisy count of the cell 𝑐 .

 42

The main drawback of AG is that it still lacks a solid adaptive rule to decide if a cell is dense

or sparse. Other issues with both UG and AG are that they are both using the assumption that

the non-uniformity error is driven by the number of data points included in the cells, the

rectangular shape of the grid, and the heavy dependency of the query results on the selection

of 𝑐 .

Overall, it has become evident from the above analysis that in data-dependent decomposition

methods, such as kd-tree, a part of the overall privacy budget is required to guarantee the privacy.

Minimizing the privacy budget to increase the query accuracy is one of the main challenges and

future research topics. In the case of data-independent decomposition methods there is not privacy

risk, but the reduction of the noise error is a significant challenge. On top, the level of granularity

of the performed decomposition, is one of the main challenges and future research topics. A

summary of all tree structure data release methods is depicted in Table 2.3.

Table 2.3: Tree structure data release methods.

Method Strategy Advantage Defect Budgeting

Quad-opt Data Release
Strategies 2, 3

Computational efficiency is
high; support any range query

Error is large Geometric budgeting

SEA Data Release
Strategy 2

Noise error is small Approximate error is
large

Uniform budgeting

kd-standard Data Release
Strategy 2

Query accuracy is high Only fit for low-
dimensional data

Median and count use
privacy budget together

UG Data Release
Strategy 1

Support any range query Neglects the balance
between noise error and

nonuniformity error

Uniform budgeting

AG Data Release
Strategy 1

Balance the noise error and the
nonuniformity error

Lack of the adaptive
judging criterion

Uniform budgeting

 43

2.4.3.3 Time series release type

The time series release type methods are using time series data to reduce the DP error. One

of the main representatives of this category is the DFTk method, proposed by Rastogi and Nath

(2010). For time series D, DFTk executes the following steps:

1. Applies a discrete Fourier transform F=DET(D) from the output of which only the first

k DET coefficients are kept.

2. Adds Laplace noise to the k coefficients that have been kept.

3. Executes inverse Fourier transform on the noisy coefficients 𝐷 = 𝐼𝐷𝐸𝑇 𝐹 .

4. Releases the perturbed data 𝐷.

Although from a result production point of view DFTk works well, from a performance point of

view it cannot be used in real time applications since both DET and IDET operations are required

to be applied on the full time series (Fan et al., 2013).

To overcome the performance issues of DFTk, Fan et al. (2013) proposed the Temporal

Estimation Algorithm (TEA). For a space G, this method executes the following steps:

1. Splits G into smaller w×w cells and discretizes the time span T using a time index k≥0,

and 𝑘 < 𝑇. With this split, the frequency series 𝐷 for cell c can be defined as

{𝑥 |0 ≤ 𝑘 < 𝑇}, 𝑥 being the frequency series of cell c at time step k and {𝐷 | 𝑐 ∈ 𝐺}

being all frequency series 𝐺 in G.

2. Constructs the model to be dependent on the broader domain knowledge, i.e.

population, network, and locations. Mathematically, this can be formulated in the

following way: for every cell c, 𝑥 = 𝑥 + 𝜔 , and 𝑝(𝜔)~𝑁(0, 𝑄), 𝑄 being the

level of variation between neighbouring time steps, or the noise added to 𝑥 . This is

𝑥 ~𝑥 + 𝑛𝑜𝑖𝑠𝑒, where 𝑛𝑜𝑖𝑠𝑒~𝐿𝑎𝑝 0, , 𝜀 = , ε being a uniform budget for the

overall time span T. To facilitate calculations, noise can be replaced by white Gaussian

noise, i.e. 𝑛𝑜𝑖𝑠𝑒~𝑁(0, 𝑅).

3. Releases the noisy data set 𝐷 .

 44

The main advantage of TEA compared to DFTk is that the computational complexity of TEA is

lower (𝑂(𝑘𝑤) with 𝑘 = 𝑂(1)) since it takes advantage of an “educated guess” to extend the

model accuracy.

The performance of TEA in real time applications depends heavily on the sampling rate;

the higher the sampling rate is, the larger amount of noise should be added to achieve differential

privacy. To appropriately adapt the sampling rate, an adaptive sampling method known as FAST

was proposed (Fan et al., 2013b; Fan & Xiong, 2014). The main idea on which FAST is based is,

that the sampling rate F can be adjusted automatically according to the dynamics of the data, i.e.

the sampling increases when the data changes fast while it decreases when the data changes slow.

The dynamics of the data speed could be described by the feedback error 𝐸 =
 ,

, with

𝑥 and 𝑥 being respectively the post-state and the pre-state estimates of the nth sampling point

at the 𝑘 time step and δ being a user defined parameter (normally δ=1). To reach the appropriate

sampling rate, FAST uses a specific algorithm, known as PID, that controls and adjust the rate.

With the adaptation described above, FAST manages to reduce the order of the noise error from

O(T) to O(F).

Fan et al. (2014) proposed an extension of the FAST method, known as U-KF to further

improve it by utilizing the idea of session-level differential privacy, applicable especially in cases

of web browsing. U-KF works only for browsing requests in a single server, but still worths

mentioning since in the single server case is very effective. To release the DP aggregates, U-KF

uses a real time state-space approach and applies a Kalman filter (Kalman, 1960) in a post-

processing stage. For a data set 𝑥 , 𝑖 = 1, … , 𝑚 with 𝑥 being the number of sessions that browse

pagei at time step k the U-KF executes the following steps:

1. Prediction step: predict a pre-estimate of the current step 𝑥 ; this estimate is calculated

by using the previous step’s post-estimate 𝑥 .

2. Computation step: Compute the perturbed value 𝑥 = 𝑥 + 𝑛𝑜𝑖𝑠𝑒 , and

𝑛𝑜𝑖𝑠𝑒 ~𝐿𝑎𝑝 0, , with lmax being the sensitivity of the query.

 45

3. Correction step: the post-estimate value of 𝑥 is calculated by using the perturbed value

𝑥 and the pre-estimate value 𝑥 , i.e 𝑥 = 𝑥 + 𝐾 𝑥 − 𝑥 , with 𝐾 being the

Kalman gain.

4. Release step: The final calculated value 𝑥 , 𝑖 = 1, … , 𝑚 is released.

The main advantage of U-KF is that this method is a univariate time series algorithm with high

query accuracy and computational effort proportional to the number of web pages, i.e. O(m).

A summary of all time series data release methods is depicted in Table 2.4.

Table 2.4: Time series data release methods.

Method Strategy Advantage Defect Budgeting

DFTk Data Release
Strategy 2

Supports long-range query Parameter affects query
accuracy

Uniform
budgeting

TEA Data Release
Strategies 1 and 2

Computing complexity is low, query
accuracy is high

Affected by data type Uniform
budgeting

FAST Data Release
Strategies 1 and 2

Query accuracy is high, adaptive
data changes

Add the cost of feedback
control

Uniform
budgeting

U-KF Data Release
Strategy 2

Computing complexity is low, query
accuracy is high

Only supports requests
in signal server

Uniform
budgeting

2.4.3.4 Graph release type

Given the high sensitivity of network data when noise is added, a number of specialized

data release methods have been proposed to enhance the usability of sanitized data for this

category. In this context, the edge DP approach for networks was proposed by Hay et al. (2009)

as follows. Given two neighbouring data sets Gr1 and Gr2 whose difference is (at most) one edge,

i.e |𝐺𝑟 ∆𝐺𝑟 | = 1, and a random function 𝐹: 𝐷 → 𝑅, then 𝑅𝑎𝑛𝑔𝑒(𝐹) can be defined as the data

set that contains all potential outputs of 𝐹 in 𝐺𝑟 and 𝐺𝑟 ; for any 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝐹), 𝐹 is defined as

the ε-edge DP (or ε-DP) if the following relation holds:

Pr [𝐹(𝐷) ∈ 𝑆] ≤ 𝑒 Pr [𝐹(𝐷) ∈ 𝑆] (eq. 2.17)

 46

The above definition can be generalized for neighbouring data sets whose difference is k

edges, i.e |𝐺𝑟 ∆𝐺𝑟 | = 𝑘. In this case the function 𝐹 is defined as ε-k edge DP. Even further, in

case that neighbouring data sets that differ up to all the edges are linked with a single node (i.e.

|𝐺𝑟 ∆𝐺𝑟 | = ∀𝑘), the function 𝐹 is defined as ε-node DP. Even though achieving an ε-node DP

looks very desirable, it has the disadvantage that the noise introduced in this case is too high

resulting into issues in the quality of the data.

To increase the usability of the graph for a given level of DP, its structure should be

appropriately captured and then, with the addition of noise, it should be converted to a synthetic

graph equivalent to the original one. Based on this approach, the Pygmalion method was proposed

by Sala et al. (2011); in Pygmalion graph capturing is being done by using a dK-series graph model

(Mahadevan et al., 2006). Figure 2.10, explains the transformation for two different values of d,

i.e. d =1 and d=2. A synthetic graph is then being generated from the dK-series by using a matching

generator. As explained in the figure, Pygmalion captures the dK-series from the original graph,

clusters the dK-series to sets of sub-series and then perturbates the sub-series with a random noise

and using a local sensitivity; as a final step of the method, the perturbated sub-series are combined

to create a synthetic graph. The drawback of Pygmalion is that the local sensitivity might cause

reveal of sensitive information as a price for reducing the magnitude of the noise.

Figure 2.10: An example of the Graph release method (dK series).

(Source: Wang et al., 2015)

To resolve the drawback of Pygmalion method, Wang and Wu (2013) introduced a “smooth

sensitivity” approach and proposed method DP2K(ε) which satisfies (ε,δ)-DP for 2K-graphs.

DP2K(ε) is based on the execution of the following steps:

 47

1. Use parameter (ε,δ) to calculate (β,α), with 𝑎 = , and 𝛽 = .

2. Calculate the β-smooth sensitivity 𝑆 , (𝐺) and the sensitivity 𝐿𝑆 (𝐺).

3. With the aid of 𝑆 , (𝐺) obtain a random noise and add it to the 2K-series graph.

4. Generate a new graph by perturbating the one created in step (3) above.

Wang et al. (2103) proposed a different approach, known as LNPP method, which is based

on the use of a spectral graph for guaranteeing the data. The LNPP method first decomposes the

matrix A that represents graph G (i.e. the adjacent matrix that encodes the topological structure of

the graph) and then calculates its eigenvectors and eigenvalues. A Laplace based perturbation is

applied on the calculated values of eigenvectors which are then post processed by applying vector

orthogonalization since the previous transformations conclude to non-orthonormal eigenvectors.

By utilizing the spectral graph and the dK-graph models for privacy guarantee privacy, noise of

order 𝑂 √𝑛 and sensitivity of order 𝑂(𝑛) is introduced respectively in the calculations, n being

the number of the vertices of the graph.

To improve the drawbacks of DP2K(ε) and LNPP methods, Xiao et al. (2014) proposed a

method based on the Hierarchical Random Graph (HRG) model, known as ℎ𝑟𝑔 − 𝜀 − 𝑒 − 𝜀 .

Τhe HRG model represents graph G as a hierarchical structure (a binary tree with n leafs that

represent the n vertices of G), including also the information of connection probabilities; for every

internal node r, a probability pr applies, while for any two vertices i and j, the connection

probability is provided by the following formula (eq. 2.18):

𝑝 , = 𝑝 , 𝑝 =
∗

 (eq. 2.18)

with r being the two-vertices lowest common ancestor in T, 𝐿 and 𝑅 being respectively the left

and the right sub-trees of the internal node r, 𝑛 and 𝑛 being respectively the number of leaves

of the left and the right sub-trees, and 𝑒 being the number of edges for which the end points are

leaves of the two sub-trees of r in T. With the notation just explained, the HRG can be defined as

(𝑇, { 𝑝 }).

 48

Figure 2.11: An example of HRG model.

(Source: Wang et al., 2015)

Figure 2.11 above shows how the original graph G could be represented by treegrams, or

dendrograms T1 and T2. For a graph G, to select the proper dendrogram, the following formula (eq.

2.19) has been proposed for the calculation of the likelihood of each dendrogram:

𝐿(𝑇, { 𝑝 }) = 𝛱 𝑝 (1 − 𝑝) ∗ (eq. 2.19)

The calculated likelihoods are then compared and the dendrogram with the larger one is selected

since it better represents the original graph.

In the ℎ𝑟𝑔 − 𝜀 − 𝑒 − 𝜀 method, the calculation of the DP budget ε is split into two parts.

For the first part an exponential calculation mechanism is being used; specifically, a Markovian

Monte Carlo procedure is utilized to select a good candidate dendrogram 𝑇 , for which any

single edge change might affect only one probability. The DP budget consumed in this part is 𝜀 ,

while the score function is given by the following formula (eq. 2.20):

𝑙𝑜𝑔𝐿(𝑇, { 𝑝 }) = −𝛴 𝑛 ∗ 𝑛 ∗ ℎ(𝑝), (eq. 2.20)

where

ℎ(𝑝) = −𝑝 𝑙𝑜𝑔𝑝 − 1 − 𝑝 (1 − 𝑙𝑜𝑔𝑝) (eq. 2.21)

For the second part, a Laplace calculation mechanism is applied and the 𝑝 set of dendrogram

𝑇 is perturbed thus using the remaining budget 𝜀 . After completion of the budget split,

the sanitized graph 𝐺 is created using the HRG model. With the above steps, the sensitivity of the

ℎ𝑟𝑔 − 𝜀 − 𝑒 − 𝜀 method costs 𝑂(log 𝑛) which is significantly better from the previously

mentioned methods.

A summary of all graph data release methods is depicted in Table 2.5 below.

 49

Table 2.5: Graph data release methods.

Method Strategy Advantage Defect Budgeting

Pygmalion Data Release
Strategy 2

Reducing the noise by
subsection

Having the risk of privacy
disclosure using local

sensitivity

Uniform budgeting

DP2K(ε) Data Release
Strategy 2

Guaranteeing the privacy
by smooth sensitivity

Noise is large Uniform budgeting

LNPP Data Release
Strategies 1, 2

Enhancing the utility by
postprocessing

Noise is large Uniform budgeting

hrg-ε1-e-ε2 Data Release
Strategy 2

Utility of the data is high Result affected by different
budgeting strategies

Sampling and perturbation
use privacy budget together

2.4.3.5 Pattern mining release type

A frequent pattern can be defined as a subset of data items which appear frequently in a

data set and is the basis of data mining techniques such as classification and clustering. Since the

existence of frequent patterns may reveal privacy of an individual during data mining, the study of

differential privacy in the framework of data mining has become a significant research topic. There

are three different pattern mining release methods, measured by the degree of support (Shen & Yu,

2013; Li et al., 2012; Lee & Clifton, 2014), the occurrence (Luca & Li, 2013), or the stay point

(Ho & Ruan, 2011; 2013). For a transaction data set 𝐷 = {𝑡𝑟𝑎𝑛 , 𝑡𝑟𝑎𝑛 , … , 𝑡𝑟𝑎𝑛 , }, 𝑡𝑟𝑎𝑛 ∈ 𝑇,

given that every transaction is consisted of items, i.e. 𝑡𝑟𝑎𝑛 =

{𝑖𝑡𝑒𝑚 , 𝑖𝑡𝑒𝑚 , … , 𝑖𝑡𝑒𝑚 , }, 𝑖𝑡𝑒𝑚 ∈ 𝐼, where I is the space of all items and 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 is a subset

of item space I, if 𝑡𝑟𝑎𝑛 includes 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 then 𝑡𝑟𝑎𝑛 supports 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 . In this case as support

degree of 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 is defined the ratio of the number of transactions supporting 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 to the

total number of transactions. Obviously, the higher the support degree of 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 , the more

frequently it appears in the transaction data set.

To mine useful patterns for geographic locations of interest, Ho & Ruan (2011) proposed

the BuildDPQuadTree method which is based on quadtrees and the density-based clustering

algorithm (DBSCAN), and it takes advantage of the notion of stay point mentioned above. Let the

 50

data trajectory vector be defined as 𝑡𝑟𝑎𝑗 = 𝑥 , 𝑥 , … , 𝑥 , 𝑥 = 𝑙𝑎𝑡𝑡 , 𝑙𝑜𝑛𝑔 , 𝑡 , 𝑡 being a

timestamp, 𝑙𝑎𝑡𝑡 the latitude, and 𝑙𝑜𝑛𝑔 the longitude of 𝑥 . In case that for a period equal to ΔT,

a trajectory stays within a cyclic region with radius ρ, the center of this circle 𝑙𝑎𝑡𝑡 , 𝑙𝑜𝑛𝑔 can

be defined as a stay point. On top, for a given a set of trajectories 𝑇𝐽 = 𝑡𝑟𝑎𝑗 , 𝑡𝑟𝑎𝑗 , … , 𝑡𝑟𝑎𝑗 ,

the region is known as location of interest, if it includes more than r stay points.

The BuildDPQuadTree method (Ho & Ruan, 2011) repeatedly splits the data space G into

subspaces, taking into consideration a stay-point set S, a threshold 𝑇 , and a privacy budget

𝜀 . Splitting continues until |𝑆| + 𝐿𝑎𝑝 ≤ 3𝑇 . After this iterative splitting process, a

set of clusters 𝐺 is obtained by applying density-based spatial clustering using the noise clustering

method (Ester et al., 1996). For a given threshold r, and privacy budgets 𝜀 and 𝜀 , then 𝐺 is

called a region of interest, if the following relation (eq. 2.22) holds (Ho & Ruan, 2011):

𝐺 + 𝐿𝑎𝑝 ≥ 𝑟 (eq. 2.22a)

where

𝛥𝑓 = 𝑚𝑎𝑥 ∈ # 𝑠 ∈ 𝐺 |𝑠 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑦 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑖 (eq. 2.22b)

D being the set of all is with records in cluster 𝐺 .

In this case, the center location of the region of interest is given by the following formula (eq. 2.23)

(Ho & Ruan, 2011):

∑ (,)
 (eq. 2.23a)

with

𝛥𝑓 =
,

, 𝑝𝑜𝑖𝑛𝑡 ∈ 𝐺 (eq. 2.23b)

and

𝜀 = ∑ 𝜀 + 𝜀 + 𝜀 (eq. 2.23c)

 51

where h is the depth of quad-tree.

Since in their initial work where the BuildDPQuadTree method was established, the level

of noise is significantly affected by parameter 𝑇 , in research that followed the original one the

algorithm DP-ILD was proposed, that utilized the idea of β-smooth sensitivity satisfying (ε,δ)-DP

(Ho & Ruan, 2013).

When the Top-k frequent pattern mining approach is applied, the sensitivity of the

transaction data set depends on the number of dimensions. Thus, to reduce the sensitivity, the

original data set is usually projected into a dimensional space with lower number of dimensions.

In this direction, the PrivBasis method was proposed by Li et al. (2012); PrivBasis, as an

initialization step, targets to the reduction of the original data space by identifying smaller data

sets IB that contain the top k frequent item sets. As a next step, a binary support counting technique

is applied (Chen & Xiao, 2010) on the identified data sets that produces the supports of the IB

subsets. The drawback of the PrivBasis method is the accuracy of the final frequent patterns

obtained.

To resolve the accuracy issue of PrivBasis, the method NoiseCut, which was based on the

notion of the FP-tree and the sparse vector technique, was proposed by Lee & Clifton (2014). The

NoiseCut in its first step, identifies all frequent data subsets L by applying a sparse vector technique

that reduce the consumption of the DP budget; for a noisy threshold �̂� and a count-type query q,

privacy budget is consumed only in case that 𝑞(𝐷) + 𝐿𝑎𝑝 ≥ �̂�, with �̂� = 𝜎 + 𝐿𝑎𝑝(.), 𝜎 being

the support of the k-th in series most frequent item set. To decide if an item set is frequent, NoiseCut

compares its noisy support 𝜏 + 𝛼 with �̂� and if 𝜏 + 𝛼 > �̂�, then this item set it considered to be

frequent. In its second step, NoiseCut builds the noisy FP-tree utilizing L and can then decide the

supports of item sets and consequently the Top-k frequent item sets. The false negative of this

calculation is 𝑒 , and the smaller it is the better frequent patterns are obtained.

Leveraging the idea of the method they developed for the graph data release type, Shen &

Yu (2013) proposed a frequent graph pattern mining method based on a Markov chain and a Monte

Carlo random walk, known as Diff-FPM. This method bases the Top-k frequent sub-graph

selection on the result of a random walk. If the random walk reaches a steady state, then the actual

counts of the sub-graphs are perturbed with the aid of a Laplacian random noise and Diff-FPM

 52

satisfies ε-DP; if no steady state can be reached, Diff-FPM satisfies (ε,δ)-DP and in this case data

security issues might appear.

Luca & Li (2013) highlighted in their research that for sequential data, e.g. DNA data sets,

frequent mining patterns might fail to be calculated properly. To resolve this issue, the authors

proposed the notion of occurrence and a two-phase algorithm for mining sequential patterns with

differential privacy (Luca & Li, 2013b). For a data pattern 𝑝 = 𝑎 𝑎 … 𝑎 , 𝑎 ∈ 𝛴 and a

character string 𝑥 = 𝑥 𝑥 … 𝑥 , in case that there is an integer 𝑖 ∈ (0, 𝑚 − 𝑛) for which 𝑥 =

𝑎 , 𝑗 = 0, … , 𝑛 − 1, then it is said that the pattern p appears in position i of the character string x

and 𝑓 (𝑝) is the number of all occurrences of p in x. The equivalent for a data set 𝐷 =

{𝑥 , 𝑥 , … , 𝑥 }, is the notion of 𝐹 (𝑝) = ∑ 𝑓 (𝑝) which denotes the number of occurrences

of the sequential pattern p in the given data set D; in that case, if 𝐹 (𝑝) is greater than the value of

the threshold, then p symbolizes the frequent sequential pattern.

A summary of all pattern mining data release methods is depicted in Table 2.6.

Table 2.6: Pattern mining data release methods.

Method Strategy Advantage Defect Budgeting

BuildDPQuadTree Data Release
Strategy 2

Identify the
interesting location

using stay point

Noise is large Partition and cluster use the
privacy budget together

DP-ILD Data Release
Strategy 2

Utility of the data is
high

Only supports offline data Uniform budgeting

PrivBasis Data Release
Strategy 2

Mining speed is fast The final frequent patterns
may be imprecise

Uniform budgeting

NoiseCut Data Release
Strategies 1, 2

Utility of the data is
high

Results are affected by
different budgeting

strategies

Privacy budget is allocated for
two steps of the algorithm

Diff-FPM Data Release
Strategy 2

Query accuracy is
high

The drop in utility with the
increase of the number of

outputs

Sampling and perturbation use
the privacy budget together

 53

2.5 Calculation of Shapley value with differential privacy

In this section, the way that Shapley calculation algorithms could work when combined with a DP

mechanism is described. Especially, sensitivity and noise formulation for this case are stated, while

the impact on the loss function and boundaries are also presented.

2.5.1 Sensitivity and noise

In algorithms such as the truncated Monte Carlo Shapley algorithm, the privacy of the data is under

risk during the Shapley value computations, since to compute the Shapley value for a point i,

requires all other data points to be processed, putting thus at risk their privacy. By design, DP

protects data privacy and acts proactively to avoid data leaks. It thus provides a privacy guarantee

for every data point of the data set, by making sure that the Shapley value is not statistically

sensitive to the addition or removal of individual data points. Under that perspective, the Shapley

value is assumed to be a function and its sensitivity (and consequently the noise added by any

mechanism, e.g. Laplacian) can be calculated. Of course, transforming a Data Shapley calculation

to differential private, comes always with the challenge to achieve in parallel the highest possible

Shapley calculation accuracy.

2.5.2 Loss function and boundaries

Let L represent the loss function of the related logistic regression, i.e.:

𝐿(𝑤, 𝑥) = ∑ 𝑙𝑜𝑔 1 + 𝑒 (eq. 2.24)

where w is the vector of logistic regression parameters, 𝑥 is each datum and 𝑦 is its label.

To calculate the above loss function for a test set, other than the train set (used to calculate w), an

upper boundary M should be assumed, so that:

|𝐿(𝑤, 𝑥) = 𝐿(𝑤 , 𝑥)| ≤ 𝑀 (eq. 2.25)

In the framework of differential privacy, it is interesting to examine what happens to the

loss function if a datum x is replaced with a datum x' in the trainset. In such a case, calculating the

loss function for each x that belongs to the test set, will cause change of the vector of the parameters

w, to w'. The upper boundary M can be calculated based on relative research (Bousquet & Elisseeff,

 54

2002). Additionally, a linear regression can be performed for with the loss function providing

another approximate upper boundary M':

𝐿(𝑤, 𝑥) = ∑(𝑤 𝑥 −𝑦) (eq. 2.26)

In any case, identification of an upper boundary for the loss function is instrumental for applying

any differential privacy strategy and that is why researchers are focusing on identifying such a

boundary.

2.6 Discussion, challenges and areas of optimization

The current research proposes the extension of Shapley value calculation with differential privacy

embedded. Three different data Shapley valuation algorithms have been implemented and tested,

suitably transformed to preserve differential privacy, namely the TMC-Shapley, G-Shapley and

for comparison reasons the classic LOO. By executing the implemented algorithms, it has been

validated that both differentially private and non-differentially private Shapley values calculated

are meaningful in terms of data set accuracy, which practically means that their outputs could be

used in the same way.

Even though the theoretical results studied around the scientific domain of differential

privacy injected Shapley valuations, it is evident that relevant research is still far from establishing

widely acceptable and usable results. One of the most significant challenges in the specific domain

is to connect data sets with actual meaningful use cases, translating thus the scientific results to

socially valuable values and metrics.

From a technical perspective, proving that the extension of data Shapley properties to

Monte Carlo based approximations still needs further research efforts to be investigated. One of

the reasons why this might be a challenge is that calculation of Shapley value for data points that

are part of potentially large data sets can prove highly complex and demanding. Another topic of

interest is the intuition behind the data Shapley calculated values, i.e. if the calculated Shapley

values is aligned with what humans expect that in some cases might be valid while in others not

(Kumar et al. 2020; Fryer et al., 2021).

 55

Although the current study is contributing to the enrichment of the data Shapley valuation

approaches with the preservation of privacy, its contribution in the provision of meaningful and

actionable insights and thus its impact in the social society, remains still ambiguous. The main

reason is that both Shapley valuation and differential privacy are domains without straightforward

interpretation of their outcomes, making thus unclear if algorithms or mechanisms that combined

the two domains could help humans in practice to take better and more accurate decisions, instead

of just adding complexity, uncertainty and the fear of technology. The following issues that

differential private data Shapley calculations might create, are indicative (Bagdasaryan &

Shmatikov, 2019; Ganev et al., 2021):

 Differential private methods do not provide perfect privacy; instead, they produce

probabilistic results that might lead to misunderstandings.

 Differential private transformations might become suspicious for unethical and dangerous

usage such as cyber-attacks, fraud, or abuse.

 Unethical parties may intentionally provide fake data points targeting in increasing their

benefit or reducing the benefits of others.

 Valuation applications may preserve and propagate fraud and create the need for

continuous monitoring of the conducted valuations.

 Possible leakage of data with high value, could become an opportunity for attackers and

put at risk data holders.

 Incentivizing the data might become a reason for potential abuse, since depending on the

circumstances, it could create pressures to data owners to contribute this data or receive a

penalty for not contributing it.

 In case that highly valuable data is privacy sensitive, connecting it with incentives might

be a good reason for someone to act towards loss of data privacy.

 56

3 IMPLEMENTATION

3.1 Introduction

As part of the current work, calculation methods, such as the truncated Monte Carlo Shapley

algorithm, as well as the Gradient Shapley and the Group Shapley algorithms are studied and

analyzed. At the same time, sensitivity and noise of the applied data privacy mechanism are

measured and analyzed in the context of Data Shapley metrics. Specifically, sensitivity and noise

of applied data privacy mechanisms and how those could be applied in the context of Data Shapley

metrics, by guaranteeing the correctness and accuracy of calculations without any information

leakage, have been implemented and are presented in this chapter.

3.2 Proposed Design

3.2.1 Overall solution

The proposed implementation has been developed exclusively using Python programming

language. In particular, two Jupyter notebooks have been developed; the first has been used for

executing and demonstrating three Data Shapley algorithms (Truncated Monte Carlo Shapley,

Gradient Shapley, Leave One Out) without differential privacy (named DataShapley_v2.ipynb),

while the second, named DataShapley_v3.ipynb, has been used to embed differential privacy with

Laplacian DP noise in the Data Shapley algorithms.

Additionally, three python files have been developed and contain all the code required to

calculate the Data Shapley values for a given data set, namely Data_Shapley.py, Shapley_Class.py

and utilities.py. Finally the Jupyter notebook DP_v1.ipynb has been created and used as an

independent example to demonstrate how differential privacy with Laplacian DP noise could be

applied to a data set. In the following sections the detailed code design is presented, explained and

analyzed.

 57

3.2.2 Programming with Python

Python is a programming language developed by Guido van Rossum, starting in 1989. It is a

relatively simple and easily understood programming language, which owes its name not to the

well-known snake (python) but to a comedy TV show (Monty Python's Flying Circus). The key

features of the Python language are presented in Figure 3.1 and can be summarized as follows:

Figure 3.1: Main features of programming language Python.

1) Reliability: This is a truly reliable language with very comprehensive commands, which

perform the expected functions in a reliable and effective way.

Features of
programming

language
Python

Automated
memory

management

Advanced
features

Reliability

Easy to learn

Cross
platformΟpen Source

Wide variety
of libraries

Free of cost

Effective
exception
handling

 58

2) Easy to learn: Python's structure and operation is relatively simple, while its commands are

high-level and highly expressive. Therefore, understanding and learning it can be done

quickly and relatively easily.

3) Cross Platform: Python can work across all popular operating systems (Mac, Windows,

Linux, Unix, etc.) without variations and issues. This makes Python a language with a high

degree of portability.

4) Open Source: Python is an open source programming language with all the advantages that

this gives to the developers who use it.

5) Wide variety of libraries: There is a wide variety of standard libraries with prepared code

and important pre-implemented functions, which can be deployed and utilized without

large-scale coding.

6) Free of cost: Python language is provided for free to download and use, which makes it

even more attractive.

7) Exception Handling: This feature increases the tolerance of executable code as it runs even

when there are errors, which the developer can handle at a later stage of development and

debugging.

8) Automatic memory management: Python supports automatic memory management, which

practically means that memory is automatically cleared and released, without any need for

developer intervention.

9) Advanced features: Python supports, among others, generators and list comprehensions

which are very advanced and useful features.

There are multiple areas in which programming with Python is applicable. The following

list is indicative, while Figure 3-2 summarizes those areas:

1) Web application development: Popular web frameworks such as Django and Flask have

been developed based on Python. With their help, server-side code can be written for

operations such as database management, back end logic, etc.

 59

2) Machine Learning: There are many machine learning applications written in Python.

Examples are product recommendations on popular sites like Amazon, eBay, etc. and

voice-facial recognotion.

3) Data Analysis: Data analysis and visualization using interactive charts is particularly

popular in Python.

4) Scripting: Using small programs (scripts) to automate simple tasks such as sending

automated emails is very common in Python programming language.

Figure 3.2: Popular applications of programming language Python.

Popular
applications of
programming

language
Python

Desktop
applications

Web
applications

Machine
Learning

Data
AnalysisScripting

Game
Development

Embedded
Applications

 60

5) Game Development: This is an area where the use of Python is gradually becoming more

and more popular.

6) Embedded Applications: The development of embedded applications using Python is

rapidly increasing.

7) Desktop Applications: Office applications using Python have already become popular,

using libraries such as TKinter and QT.

As already mentioned, one of the most important advantages of Python is the wide range

and variety of libraries that contain significant ready-to-use functionality, without requiring the

developer to write extensive code. For example, Matplotlib which is Python's traditional design

library has strong functional features and its use is typically given for specialized libraries such as

NetworkX and Pandas data frames. In areas such as integration and interactivity, Bokeh and Plotly

are also top, presenting the advantage of being built upon Javascript, which makes the ability to

convert graphics from Javascript an easy task.

3.3 Implementation of Differential Privacy with Laplacian Noise

To demonstrate how differential privacy with Laplacian noise is applied to an algorithm, a python

program based on PyDP python library has been developed. Using that program, the way an ε-

differentially private algorithm works is demonstrated through graphical representations of

aggregated statistics over a potential numeric data set which might contain sensitive or private

information. As already explained, to preserve data privacy it is fundamental to add noise,

transforming in that way the original data set to prevent a potential attacker from realizing the

actual original data set. The most popular choice of distribution to add noise is the Laplace

distribution because it works effectively with the differential privacy parameter ε.

The Laplace distribution is practically consisted of two adjustment exponential distributions,

that mirror the positive values to their negative equivalents as it is depicted in the chart of Figure

3 which is produced by use of the following python code:

def show_laplace(x1):

 return npy.exp(-npy.abs(x1))

x1 = npy.arange(-10, 10, 0.01)

 61

pltt.plot(x1, show_laplace(x1));

If we read this under the prism of differential privacy, the peak in the middle of the graphical

representation could be read as follows: it is probable that someone would choose a number close

to zero in which case the result will be close to the actual original result. In case that the selection

is a number far from zero, a potential attacker can identify the actual result with a smaller

probability.

Figure 3.3: Typical Laplace Distribution.

To achieve better results in terms of differential privacy, the Laplace distribution could be

adjusted by introducing a scaling parameter, typically defined with the introduction of two

additional parameters, namely m and b as follows:

𝑓(𝑥|𝑚, 𝑏) = 𝑒
| |

 (eq. 3.1)

m being the mean of the distribution and b the scaling parameter.

From a differential privacy perspective, increasing parameter b results to more privacy,

since by flattening out the distribution graph, it makes it more probable to choose a higher value

 62

for the noise; this practically implies that potential attackers will be less certain for the accuracy

of the results they obtain. The python code below produces the graph depicted in Figure 3.4.

def laplace(x1, m, b):

 return 1 / (2 * b) * npy.exp(-npy.abs(x1 - m) / b)

def plot_laplace(x1, m, b):

 pltt.plot(x1, laplace(x1, m, b), label="m={}, b={}".format(m, b))

x1 = npy.arange(-20, 20, 0.01)

plot_laplace(x1, -5, 2)

plot_laplace(x1, 5, 4)

pltt.legend();

Figure 3.4: Laplace Distribution with different values of m and b.

As already explained in the previous Chapter, the ε-differential privacy can be defined with

ε being a parameter that determines the acceptable levels of privacy loss. More accurately, ε-

differential privacy means that the probability to produce the actual result when using this

distribution should be smaller by 𝑒 times from the probability when using the original

distribution. By setting parameter b equal to 1/ε in the Laplace distribution the ε-differential

privacy is being achieved as depicted in Figure 3.5 which is produced by the following python

code:

 63

output_value = 100

epsilon = 0.5

x1 = npy.arange(95, 105, 0.1)

distribution_1 = laplace(x1, output_value, 1 / epsilon)

distribution_2 = laplace(x1, output_value + 1, 1 / epsilon)

pltt.plot(x1, distribution_1, label="distribution_1")

pltt.plot(x1, distribution_2, label="distribution_2")

pltt.axvline(x=output_value, c="red", dashes=(1, 2), label="output_value")

pltt.legend()

probability1 = laplace(output_value, output_value, 1 / epsilon)

probability2 = laplace(output_value, output_value + 1, 1 / epsilon)

probability1, probability2

Figure 3.5: Two different ε-Differential Private Laplace Distributions vs the original output
value.

In Figure 3.5, the dotted line shows the output value. As could be easily understood, it is more

probable that the output value might came from distribution_1 rather than from distribution_2.

 64

3.4 Core Data Shapley Implementation

In the case study proposed in this thesis, a classification problem with logistic regression has been

designed, implemented, analyzed and presented. The code of the problem includes set up activities,

data set creation, execution of three data Shapley algorithms with/ without embedded differential

data privacy noise and graphical presentation of the results obtained. In detail, its design is

consisted of the following steps:

1. Create a synthetic data set: A synthetic data set is created based on Bernouli’s formula, i.e

𝑦 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑓(𝑥)), 𝑓(𝑥) being a polynomial of order defined by variable “difficulty”

and 𝑥 ∈ ℝ ; variable “important_dims” determines the number of non-null dimensions d

in x

2. Execution stage: An instance that takes care of running all algorithms for the specific

synthetic data set, is created. Following this instance creation, runs are repeated multiple

times sequentially (in a real-world scenario they should run in parallel). More specifically,

this step includes the following sub steps:

a. Initialization and execution of the instance, is supported by the following function:

def __init__(self, X, y, X_test, y_test, num_test, sources=None, sample_weight =

None, directory = None, problem = 'classification', model_family = 'logistic',

metric = 'accuracy', seed = None, overwrite = False, **kwargs)

The arguments used by the initialization function are:

 X: represents the data covariates

 y: stores the data labels

 X_test: holds the test and held-out covariates

 y_test: holds the test and held-out labels

 sources: stores the mapping of each point to its group. If it takes the value

“None”, then each points gets its individual value

 samples_weights: contains the weight of the train samples in the loss function

for algorithms where weighted training method is applicable

 65

 num_test: indicates the number of data points used for the calculation of the

evaluation metric

 directory: names the directory where results and figures are saved

 problem: defines the problem type to be solved, i.e. "Classification"

 model_family: defines the family of the model used for the learning algorithm

 metric: represents the evaluation metric used

 seed: holds the “random seed” needed to initialize the Monte-Carlo

simulations

 overwrite: facilitates deletion of existing data to re-execute computations

 **kwargs: the arguments of the model

b. Calculation the data point values is based on the following function:

def run(self, save_every, err, tolerance=0.01, g_run=True, loo_run=True)

The arguments used for the definition of the above function are:

 save_every: defines the saving frequency of the marginal contributions

 err: indicates algorithm’s exit criteria

 tolerance: defines the truncation tolerance used

 g_run: when this variable takes the value “True”, the function calculates the

G-Shapley values

 loo_run: when this variable is “True”, the function calculates the leave-one-

out scores

c. Execution of the TMC-Shapley algorithm is supported by the following function:

def _tmc_shap(self, iterations, tolerance=None, sources=None)

The arguments used for the definition of the above function are:

 iterations: defines the number of iterations for execution of the TMC-Shapley

algorithm

 66

 tolerance: defines the truncation tolerance ratio of the TMC-Shapley algorithm

 sources: indicates if the values used are coming from sources of data points

rather than being individual points

d. Execution of the G-Shapley algorithm is supported by the following function:

def _g_shap(self, iterations, err=None, learning_rate=None, sources=None)

The arguments used for the definition of the above function are:

 iterations: defines the number of iterations for execution of the G-Shapley

algorithm

 err: indicates algorithm’s exit criteria

 learning_rate: defines the learning rate used for the algorithm; when this

variable takes the value “None” the algorithm calculates the best learning rate

 sources: indicates if the values used are coming from sources of data points

rather than being individual points

e. Execution of the LOO algorithm is supported by the following function:

def _calculate_loo_vals(self, sources=None, metric=None)

The arguments used for the definition of the above function are:

 metric: defines the metric to be used; when this variable takes the value “None”

the algorithm uses the default metric

 sources: indicates if the values used are coming from sources of data points

rather than being individual points

The outcome of the algorithm is the calculated “leave-one-out” scores.

3. Merge results of parallel runs: in this step the results from the different runs are merged.

The function on which this merge is based is the following:

def merge_results(self, max_samples=None)

The outcome of this step is the merged marginals, sample indices and values calculated for

the algorithm used.

 67

4. Convergence plots of the algorithms: in this step the convergence plots produced from the

different runs, showing the effect of removing points contributing in the overall value, are

presented. The function on which drawing of those plots is based, is the following:

def performance_plots(self, vals, name=None, num_plot_markers=20, sources=None)

The arguments used for the definition of the above function are:

 vals: provides a list of different valuations of data points

 name: defines the name of the saved plot

 num_plot_markers: indicates the number of points used to draw each plot

 sources: indicates if the values used are coming from sources of data points rather

than being individual points

The outcomes of this step are the plots that show the performance variations that when data

points are removed from the data set, in an order starting from most valuable datum and

proceeding to the least valuable ones.

3.5 Core Implementation Results and Discussion

In this section, the results of applying Data Shapley techniques coupled or not with differential

privacy noise, are presented and discussed. The first part of the section covers presentation and

analysis of the results produced by Data Shapley algorithms without differential privacy, while in

the second part the impact of Laplacian noise is also presented and compared to the previous ones.

3.5.1 Results and Discussion for non-Differential Private Data Shapley Methods

To prove convergence of the applied algorithms, the proposed implementation takes care of

plotting the marginals. For the Truncated Monte Carlo method, by making use of the relevant

python statement convergence_plots(dshap.marginals_tmc), a number of graphs with all

marginals is being created as depicted in Figure 3.6. It can be easily noted that the marginals

converge to very small (close to zero) values, which proves the convergence of the TMC method

for the specific use case.

 68

Figure 3.6: Convergence of marginals for the Truncated Monte Carlo method.

For the G-Shapley method, by making use of the relevant python statement

convergence_plots(dshap.marginals_g), a number of graphs with all marginals is being created as

depicted in Figure 3.7. Again, it can be easily noted that the marginals converge to very small

(close to zero) values, which proves the convergence of the G-Shapley method for the specific use

case.

 69

Figure 3.7: Convergence of marginals for the G-Shapley method.

The performance of the studied Data Shapley methods is demonstrated in Figure 3.8 by

making use of the relevant python statement dshap.performance_plots([dshap.vals_tmc,

dshap.vals_g, dshap.vals_loo], num_plot_markers=20, sources=dshap.sources). It is evidend that

both TMC-Shapley and G-Shapley methods outperform the LOO method as well as the Random

method, since the accuracy is reduced faster when bigger fractions of trained data are being

removed.

 70

Figure 3.8: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random.

3.5.2 Results and Discussion for NoisyData Shapley Methods

To prove convergence of the applied algorithms, the proposed implementation takes care of

plotting the marginals. For the Noisy Truncated Monte Carlo method, by making use of the

relevant python statement convergence_plots(dshap.marginals_tmc), a number of graphs with all

marginals is being created as depicted in Figure 3.9. It can be easily noted that the marginals

converge to very small (close to zero) values, which proves the convergence of the Noisy TMC

method for the specific use case.

 71

Figure 3.9: Convergence of marginals for the Noisy Truncated Monte Carlo method.

For the Noisy G-Shapley method, by making use of the relevant python statement

convergence_plots(dshap.marginals_g), a number of graphs with all marginals is being created as

depicted in Figure 3.10. Again, it can be easily noted that the marginals converge to very small

(close to zero) values, which proves the convergence of the Noisy G-Shapley method for the

specific use case.

 72

Figure 3.10: Convergence of marginals for the Noisy G-Shapley method.

The performance of the studied Noisy Data Shapley methods is demonstrated in Figure 3.11

by making use of the relevant python statement dshap.performance_plots([dshap.vals_tmc,

dshap.vals_g, dshap.vals_loo], num_plot_markers=20, sources=dshap.sources). It is evident that

both Noisy TMC-Shapley and G-Shapley methods outperform the Noisy LOO method as well as

the Noisy Random method, since the accuracy is reduced faster when bigger fractions of trained

data are being removed.

 73

Figure 3.11: Data Shapley performance plots for the Noisy methods TMC-Shapley, G-Shapley,
LOO and Random.

For the Noisy TMC method as well as the Noisy G-Shapley method, can be noted that all the

marginals converge to very small (close to zero) values for i=1/4, 1/2, 2, 4, 8 and 16, which proves

the convergence of these noisy methods.

 74

Figure 3.12: Convergence of marginals for the Noisy TMC-Shapley method (i=1/4).

 75

Figure 3.13: Convergence of marginals for the Noisy G-Shapley method(i=1/4).

 76

Figure 3.14: Convergence of marginals for the Noisy TMC-Shapley method (i=1/2).

 77

Figure 3.15: Convergence of marginals for the Noisy G-Shapley method(i=1/2).

 78

Figure 3.16: Convergence of marginals for the Noisy TMC-Shapley method (i=2).

 79

Figure 3.17: Convergence of marginals for the Noisy G-Shapley method (i=2).

 80

Figure 3.18: Convergence of marginals for the Noisy TMC-Shapley method (i=4).

 81

Figure 3.19: Convergence of marginals for the Noisy G-Shapley method (i=4).

 82

Figure 3.20: Convergence of marginals for the Noisy TMC-Shapley method (i=8).

 83

Figure 3.21: Convergence of marginals for the Noisy G-Shapley method (i=8).

 84

Figure 3.22: Convergence of marginals for the Noisy TMC-Shapley method (i=16).

 85

Figure 3.23: Convergence of marginals for the Noisy G-Shapley method (i=16).

The performance of the studied Noisy Data Shapley methods is demonstrated in Figure 3.24

through Figure 3.29 i=1/4, 1/2, 2, 4, 8 and 16. It is evident that as Laplacian noise increases the

Noisy TMC-Shapley and G-Shapley methods as well as the Noisy LOO method have identical

performance as the Noisy Random method, since the accuracy is reduced even faster when bigger

fractions of trained data are being removed.

 86

Figure 3.24: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=1/4).

Figure 3.25: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=1/2).

 87

Figure 3.26: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=2).

Figure 3.27: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=4).

 88

Figure 3.28: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=8).

Figure 3.29: Data Shapley performance plots for methods TMC-Shapley, G-Shapley, LOO and
Random (i=16).

 89

4 CONCLUSIONS

4.1 Summary and conclusion

This study first presents the theoretical foundation of the Shapley value calculations, including

mathematical analysis and the relative practical research evidence. Calculation methods, such as the

TMC-Shapley, the G-Shapley and the Group-Shapley algorithms are studied and analyzed. The main

components of a data valuation process are the training data set, the calculation algorithm itself, and

a metric that defines performance (Ghorbani et al., 2019). In the context of the current work, two

main topics related to fair data valuation are studied, the definition of a measure that is suitable to

track the fair value of each (𝑥 , 𝑦) for a Calculation Algorithm (CA) in respect to a defined

performance metric V, and the efficient calculation of the above fair data point value.

Differential Privacy (DP) is a relatively new research field, that aims to respond to

information privacy challenges and enable Organizations and Companies to effectively manage

private and sensitive information included in the managed data. DP was established as a research

domain in 2006 by the seminal work of Dwork (2006), but has become popular during the last years,

among others because it provides the so-called privacy guarantees as part of security frameworks

and their implementation. Introduction of noise is of key importance in the DP algorithms and the

way it is introduced defines significantly how the DP mechanism works. There are three main noise

types usually applied in DP algorithms, namely the Laplace, the exponential, and the Gaussian noise

types. Two different data processing models exist in the framework of differential privacy, namely

the interactive or on-line query mode in which the data requester can access the data through an

interface provided by the owner of the data, and the non-interactive model or offline query model in

which the data requester can directly access only sanitized data sets as they are released by the data

owner (Dwork et al., 2006; Xiong et al., 2014). To demonstrate how differential privacy with

Laplacian noise is applied to an algorithm, a python program has been developed. Using that

program, the way an ε-differentially private algorithm works is demonstrated through graphical

representations of aggregated statistics over a potential numeric data set which might contain

sensitive or private information.

 90

In algorithms such as the truncated Monte Carlo Shapley algorithm, the privacy of the data

is under risk during the Shapley value computations, since to compute the Shapley value for a point

i, requires all other data points to be processed, putting thus at risk their privacy. By design, DP

protects data privacy and acts proactively to avoid data leaks. It thus provides a privacy guarantee

for every data point of the data set, by making sure that the Shapley value is not statistically sensitive

to the addition or removal of individual data points. Under that perspective, the Shapley value is

assumed to be a function and its sensitivity (and consequently the noise added by any mechanism,

e.g. Laplacian) can be calculated. Of course, transforming a Data Shapley calculation to differential

private, comes always with the challenge to achieve in parallel the highest possible Shapley

calculation accuracy.

As part of the current study, an experimental implementation has been developed using

Python programming language. In particular, Jupyter notebooks have been developed for executing

and demonstrating three Data Shapley algorithms (Truncated Monte Carlo Shapley, Gradient

Shapley, Leave One Out) without differential privacy, while at the same time a variation of the

algorithms which embeds differential privacy with Laplacian DP noise in the Data Shapley

calculations, has been implemented.

Specifically, in the case study proposed in this thesis, a classification problem with logistic

regression has been designed, implemented, analyzed and presented. The code of the problem

includes set up activities, data set creation, execution of three data Shapley algorithms with/ without

embedded differential data privacy noise and graphical presentation of the results obtained. To prove

convergence of the applied algorithms, the proposed implementation takes care of plotting the

marginals. For the Truncated Monte Carlo method, a number of graphs with all marginals is being

created. It can be easily noted that the marginals converge to very small (close to zero) values, which

proves the convergence of the Noisy TMC method for the specific use case. For the Noisy G-Shapley

method, a number of graphs with all marginals is being created. Again, it can be easily noted that

the marginals converge to very small (close to zero) values, which proves the convergence of the G-

Shapley method for the specific use case.

The performance of the studied Data Shapley methods is also demonstrated. It is evident that

both TMC-Shapley and G-Shapley methods outperform the LOO method as well as the Random

method, since the accuracy is reduced faster when bigger fractions of trained data are being removed.

 91

To prove convergence of the applied algorithms, the proposed implementation takes care of plotting

the marginals. For the Noisy Truncated Monte Carlo method, a number of graphs with all marginals

is being created. It can be easily noted that the marginals converge to very small (close to zero)

values, which proves the convergence of the Differential Private TMC method for the specific use

case. For the Differential Private G-Shapley method, a number of graphs with all marginals is being

created. Again, it can be easily noted that the marginals converge to very small (close to zero) values,

which proves the convergence of the Noisy G-Shapley method for the specific use case. The

performance of the studied Noisy Data Shapley methods is also demonstrated. It is evident that both

Noisy TMC-Shapley and G-Shapley methods outperform the Noisy LOO method as well as the

Noisy Random method, since the accuracy is reduced faster when bigger fractions of trained data

are being removed.

In summary, this work aims to contribute to the following areas:

 Provision of an efficient formulation of the important problem of calculating the fair value

of data sets, known as Data Shapley valuation problem, by taking advantage of machine

learning techniques.

 Review of existing empirical studies that prove the efficiencies and all desirable properties

of the Data Shapley valuation method.

 Introduction of a Data Shapley calculation algorithm variations that are suitable to address

the problem under study.

 Application of sensitivity and noise to ensure data privacy mechanism as well as to measure

and analyze data Shapley value in the context of differential privacy.

 Implementation of a representative use case where data Shapley value calculations,

combined with differential privacy guarantees are applied in selected data sets.

4.2 Dissertation limitations

This study is primarily addressed to researchers who deal with the important thematic fields of Data

Shapley valuations and differential privacy. It presents a broad bibliographic analysis of this

scientific domain, including empirical studies that have been conducted to support and substantiate

 92

findings on the application and impact of differential private Shapley calculations. Additionally, the

current research went beyond the limits of simple literature review and included quantitative

research and analysis to evaluate how the two scientific domains could be combined, with the aid of

appropriate programming tools. Overall, therefore, one can easily understand that the limitations set

in the context of this study are those that may be set by the used tools of literature search, and of

conducting quantitative study and analysis.

Especially for the quantitative analysis, it is obvious that the actual conditions of the

experimentation, i.e. the selected data set, the parameters use for experiments configuration, and the

tested algorithms themselves, put specific limitations on the breadth and depth of the research as

well as to the interpretation of the produced results. One of the most significant limitations of the

current study is the connection of the data sets used for experimentation with actual and meaningful

use cases, and the ability to translate the scientific results to socially understandable and valuable

metrics. In other words, although the current study is contributing to the enrichment of the data

Shapley valuation approaches with the embedded differential privacy, its contribution in the

provision of meaningful and actionable insights and thus its impact in the social society, remains

limited. Another significant limitation, which is connected to the previous one, is the computational

effort and resources required to handle especially large data sets that in practice connect with real

life applications. Additional work should be done at algorithm level to remove this limitation and

expand the usage and applicability of the current study.

4.3 Future work

The current study has captured a number of aspects around the calculation of the Data Shapley value

and differential privacy, but there are still many open questions for further research. Regarding the

data Shapley calculations, some of the future work could be the following:

Data Shapley calculations satisfy three important properties for the fair valuation of data.

Undoubtedly, there are many different Machine Learning settings where these properties are

desirable or not, while there are other settings where additional properties might become important.

Additional work will be needed to identify what are the desirable properties and under what scenarios

the calculations of Data Shapley value is more effective.

 93

 Combinations of fair data value calculation with other important areas such as data privacy,

and personal association are also candidates for future research directions.

 Applied learning metrics and functions in the framework of Data Shapley value calculations

need to also be further studied and are proposed for future work.

At the same time differential privacy has become the standard approach to guarantee privacy

and is one of the most popular research topics in domains where the sensitivity of exchanged

information is high. Important work has been conducted, but research efforts should further evolve

and could be directed in the following directions:

 Since differential privacy is a highly sensitive problem, reduction of the sensitivity to further

enhance useability, require on-going research.

 Privacy guarantee in cases of online data transfer is another significant question which

worths additional study.

 Since computational complexity of differential privacy algorithms remains high in many

cases, improvement of algorithm efficiency is another area where further research should be

done.

 Distributed differential privacy, which means sharing data among multiple parties and at the

same time guaranteeing privacy, is another research area that deserves additional attention

(Liu et al., 2013; Friedman et al., 2014).

 Designing optimal privacy budgeting strategies in structures such as trees, is a great

challenge that would need significant future work (Cormode et al., 2012).

 Balancing of the noise and nonuniformity errors, by choosing the optimal partition

granularity, especially for geospatial data is also a challenge that requires future research

(Qardaji et al., 2013a).

No need to explain, that future research efforts on the combined problem, i.e. Data Shapley

valuations combined with Differential Privacy guarantees, is of great importance to further evolve

the current research in both directions in a way that adds value in both directions.

 94

References

Arrieta-Ibarra, I., Goff, L., Jimenez Hernandez, D., Lanier, J., & Weyl, E. (2017). Should we treat
data as labor? Moving beyond “free”. AEA Papers and Proceedings, 108, 38-42.
https://doi.org/10.1257/pandp.20181003

Bagdasaryan, E., & Shmatikov, V. (2019). Differential privacy has disparate impact on model
accuracy. Advances in Neural Information Processing Systems, 32, 1-10.
https://doi.org/10.48550/arXiv.1905.12101

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., & Popp, J. (2013). Sample size planning for
classification models. Analytica Chimica Acta, 760, 25-33. https://rb.gy/knslaq

Bousquet, O., & Elisseeff, A. (2002). Stability and Generalization. Journal of Machine Learning
Research, 2, 499-526. https://cutt.ly/iN4h3pt

Castro, J., Gomez, D., & Tejada, J. (2009a). Polynomial calculation of the shapley value based on
sampling. Computers & Operations Research, 36(5), 1726-1730.
https://doi.org/10.1016/j.cor.2008.04.004

Chen, J., Song, L., Wainwright, M., & Jordan, M. (2018). L shapley and c-shapley: Efficient
model interpretation for structured data. arXiv, 1808.02610. https://rb.gy/qcdyk6

Chen, J., & Xiao, K. (2010). BISC: a bitmap itemset support counting approach for efficient
frequent itemset mining. ACM Transactions on Knowledge Discovery from Data, 4(3), 1-37.
https://doi.org/10.1145/1839490.1839493

Cohen, S., Dror, G., & Ruppin, E. (2007). Feature selection via coalitional game theory. Neural
Computation, 19(7), 1939-1961. https://rb.gy/w2xzxl

Cook, R. (1977). Detection of influential observation in linear regression. Technometrics, 19(1),
15-18. https://cutt.ly/hN4js4Q

Cook, R., & Weisberg, S (1982). Residuals and influence in regression. New York: Chapman and
Hall.

Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., & Yu, T. (2012). Differentially private
spatial decompositions. Proceedings of the 28th IEEE International Conference on Data
Engineering (ICDE ′12), pp. 20-31. https://doi.org/10.1109/ICDE.2012.16

Datta, A., Sen, S., & Zick, Y. (2016). Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. Security and Privacy (SP), 2016 IEEE
Symposium, 598-617. https://rb.gy/7vdnoz

Dong, J., Roth, A., & Su, W. (2022). Authors’ Reply to the Discussion of ‘Gaussian Differential
Privacy’. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1),
50-54. https://doi.org/10.1111/rssb.12463

Dwork, C. (2006). Differential privacy. Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP) (2), 1-12. https://rb.gy/gvogzh

 95

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., & Naor, M. (2006). Our Data, Ourselves:
Privacy Via Distributed Noise Generation, in: Vaudenay, S. (eds) Advances in Cryptology -
EUROCRYPT 2006. Lecture Notes in Computer Science, Vol 4004. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11761679_29

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006b). Calibrating Noise to Sensitivity in
Private Data Analysis. In: Halevi, S., Rabin, T. (eds) Theory of Cryptography. TCC 2006.
Lecture Notes in Computer Science, vol 3876. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11681878_14

Dwork C. (2011a). A firm foundation for private data analysis. Communications of the ACM,
54(1), 86-95. https://doi.org/10.1145/1866739.1866758

Dwork, C. (2011b). Differential Privacy, in: Van Tilborg, H.C.A., Jajodia, S. (eds), Encyclopedia
of Cryptography and Security. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-
5906-5_752

Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4), 211-407. https://rb.gy/55urlt

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. Proceedings of the International Conference on
Knowledge Discovery & Data Mining (KDD ′96), 226-231. https://shorturl.at/jmW09

Fan, L., Xiong, L., & Sunderam, V. (2013). Differentially Private Multi-dimensional Time Series
Release for Traffic Monitoring. In Wang, L., Shafiq, B. (eds) Data and Applications Security
and Privacy XXVII, DBSec 2013. Lecture Notes in Computer Science, vol. 7964. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39256-6_3

Fan, L., Xiong, L., & Sunderam, V. (2013b). FAST: differentially private real-time aggregate
monitor with filtering and adaptive sampling. Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, 1065-1068. Association for Computing
Machinery, New York, USA. https://doi.org/10.1145/2463676.2465253

Fan, L., & Xiong, L. (2014). An Adaptive Approach to Real-Time Aggregate Monitoring With
Differential Privacy. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2094-
2106. https://doi.org/10.1109/TKDE.2013.96

Fan, L., Bonomi, L., Xiong, L., & Sunderam, V. (2014). Monitoring web browsing behavior with
differential privacy. Proceedings of the 23rd International Conference on World Wide Web
(WWW ′14), Seoul, Republic of Korea, pp. 177-187.
https://doi.org/10.1145/2566486.2568038

Fatima, S., Wooldridge, M., & Jennings, N. (2008). A linear approximation method for the shapley
value. Artificial Intelligence, 172(14), 1673-1699. https://rb.gy/djt5aq

Friedman, A., Sharfman, I., Keren, D., & Schuster, A. (2014). Privacy-preserving distributed
stream monitoring. Network and Distributed System Security Symposium, San Diego,
California, USA, pp. 1-12. https://shorturl.at/npJM9

 96

Fryer, D., Strümke, I., & Nguyen, H. (2021). Shapley Values for Feature Selection: the Good, the
Bad, and the Axioms. arXiv: 2102.10936. https://doi.org/10.48550/arXiv.2102.10936

Ganev, G., Oprisanu, B., & De Cristofaro, E. (2021). Robin hood and matthew effects–differential
privacy has disparate impact on synthetic data. arXiv preprint arXiv:2109.11429.
https://doi.org/10.48550/arXiv.2109.11429

GDPR (2018). Guide to the General Data Protection Regulation. Information Commissioner’s
Office. https://cutt.ly/3N4j3XE

Ghorbani, A., Abid, A., & Zou, J. (2017). Interpretation of neural networks is fragile. arXiv:
1710.10547. https://rb.gy/njgyk8

Ghorbani, A., & Zou, J. (2019). Data Shapley: Equitable Valuation of Data for Machine Learning.
Proceedings of the 36th International Conference on Machine Learning, Long Beach,
California, PMLR 97, 2019. https://cutt.ly/wN4kQ52

Gul, F. (1989). Bargaining foundations of shapley value. Econometrica: Journal of the
Econometric Society, 57(1), 81-95. https://rb.gy/deergi

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning (2nd ed.).
New York: Springer series in statistics. https://rb.gy/v12kk7

Hay, M., Li, C., Miklau, G., & Jensen, D. (2009). Accurate Estimation of the Degree Distribution
of Private Networks. 2009 Ninth IEEE International Conference on Data Mining, Miami
Beach, FL, USA, 169-178, https://doi.org/10.1109/ICDM.2009.11

Hay, M., Rastogi, V., Miklau, G., & Suciu, D. (2010). Boosting the accuracy of differentially
private histograms through consistency. Proceedings of the VLDB Endowment, 3(1-2), 1021-
1032. https://doi.org/10.14778/1920841.1920970

Ho, S.-S., & Ruan, S. (2011). Differential privacy for location pattern mining. Proceedings of the
4th ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS
(SPRINGL ′11), Chicago, Ill, USA, 17-24. https://doi.org/10.1145/2071880.2071884

Ho, S.-S., & Ruan, S. (2013). Preserving privacy for interesting location pattern mining from
trajectory data. Transactions on Data Privacy, 6(1), 87-106. https://shorturl.at/EO257

Hsu, J., Gaboardi, M., Haeberlen, A., Khanna, S., Narayan, A., Pierce, B., & Roth, A (2014).
Differential privacy: an economic method for choosing epsilon. Proceedings of the IEEE
27th Computer Security Foundations Symposium (CSF ′14), Austria, IEEE, 398-410.
https://rb.gy/r1s3b6

Inan, A., Kantarcioglu, M., Ghinita, G., & Bertino, E. (2012). A hybrid approach to private record
matching. IEEE Transactions on Dependable and Secure Computing, 9(5), 684-698.
https://doi.org/10.1109/TDSC.2012.46

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82(1), 35-45. https://doi.org/10.1115/1.3662552

Koh, P., & Liang, P. (2017). Understanding black-box predictions via influence functions. arXiv:
1703.04730. https://rb.gy/liyxlj

 97

Kumar, I., Venkatasubramanian, S., Scheidegger, C., & Friedler, S. (2020). Problems with
Shapley-value-based explanations as feature importance measures. Proceedings of the 37th
International Conference on Machine Learning, PMLR 119, 5491-5500.
https://shorturl.at/hqSW4

Lee, J., & Clifton, C. (2014). Top-k frequent itemsets via differentially private FP-tree.
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ′14), New York, USA, pp. 931-940.
https://doi.org/10.1145/2623330.2623723

Li, N., Qardaji, W., Su, D., & Cao J. (2012). Privbasis: frequent itemset mining with differential
privacy. Proceedings of the VLDB Endowment, 5(11), 1340-1351.
https://doi.org/10.14778/2350229.2350251

Li, Y., Wen W., Xie G. Q. (2012). Survey of research on differential privacy, Application
Research of Computers, 299, pp. 3201-3211

Liu, J., Xiong, L., Luo, J., & Huang, J. (2013). Privacy preserving distributed DBSCAN clustering.
Transactions on Data Privacy, 6, 69-85. https://shorturl.at/kqPS2

Luca, B., & Li, X. (2013). Mining frequent patterns with differential privacy. Proceedings of the
VLDB Endowment, 6(12), 1422-1427. https://doi.org/10.14778/2536274.2536329

Luca, B., & Li, X. (2013b). A two-phase algorithm for mining sequential patterns with differential
privacy. CIKM '13: Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, 269–278. https://doi.org/10.1145/2505515.2505553

Lundberg, S., & Lee, S. (2017). A unified approach to interpreting model predictions. Advances in
Neural Information Processing Systems, 4765-4774. https://rb.gy/ujcvkp

Lundberg, S., Erion, G., & Lee, S. (2018). Consistent individualized feature attribution for tree
ensembles. arXiv: 1802.03888. https://rb.gy/93gaue

Mahadevan, P., Krioukov, D., Fall, K., & Vahdat, A. (2006). Systematic topology analysis and
generation using degree correlations. ACM SIGCOMM Computer Communication Review,
36(4), 135–146. https://doi.org/10.1145/1151659.1159930

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., & Van Der
Maaten, L. (2018). Exploring the limits of weakly supervised pretraining. arXiv:
1805.00932. https://rb.gy/6s4ohs

Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., & Rogers, A (2013). Bounding the estimation
error of samplingbased shapley value approximation. arXiv: 1306.4265. https://rb.gy/g6sm1f

Mann, I., & Shapley, L. (1962). Values of large games. 6: Evaluating the electoral college exactly.
Santa Monica: Rand Corp. https://rb.gy/nth7kh

McSherry, F. (2010). Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. Communications of the ACM, 539, 89-97.
https://doi.org/10.1145/1810891.1810916

 98

McSherry, F., & Talwar, K. (2007). Mechanism Design via Differential Privacy. 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS'07), Providence, RI, USA,
94-103. https://rb.gy/cuncun

Michalak, T., Aadithya, K., Szczepanski, P., Ravindran, B., & Jennings, N. (2013). Efficient
computation of the shapley value for game-theoretic network centrality. Journal of Artificial
Intelligence Research, 46, 607-650. https://rb.gy/nbuokf

Milnor, J., & Shapley, L. (1978). Values of large games ii: Oceanic games. Mathematics of
operations research, 3(4), 290-307. https://rb.gy/ehes1w

Nissim K., Raskhodnikova S., & Smith A (2007). Smooth sensitivity and sampling in private data
analysis. Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC
′07), 75-84. https://doi.org/10.1145/1250790.1250803

Nissim, K., et al. (2018). Differential Privacy: A Primer for a Non-technical Audience.
https://rb.gy/xiycvq

Posner, E., & Weyl, E. (2018). Radical Markets: Uprooting Capitalism and Democracy for a Just
Society. Chicago: Princeton University Press.

Qardaji, W., Yang, W., & Li, N. (2013a). Differentially private grids for geospatial data.
Proceedings of the 29th International Conference on Data Engineering (ICDE ′13), Brisbane,
Australia, pp. 757-768. https://doi.org/10.1109/ICDE.2013.6544872

Qardaji, W., Yang, W., & Li, N. (2013b). Understanding hierarchical methods for differentially
private histograms. Proceedings of the VLDB Endowment, 614, pp. 1954-1965.
https://doi.org/10.14778/2556549.2556576

Rastogi, V., & Nath, S. (2010). Differentially private aggregation of distributed time-series with
transformation and encryption. Proceedings of the ACM SIGMOD International Conference
on Management of Data, Indianapolis, 735-746, https://doi.org/10.1145/1807167.1807247

Sala, A., Zhao, X., Wilson, C., Zheng, H., & Zhao, B. Y. (2011). Sharing graphs using
differentially private graph models. Proceedings of the ACM SIGCOMM Internet
Measurement Conference (IMC ′11), Berlin, Germany, 81-97.
https://doi.org/10.1145/2068816.2068825

Shapley, L. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28),
307-317. https://rb.gy/r0isrg

Shapley, L., Roth, A., et al. (1988). The Shapley value: essays in honor of Lloyd S. Cambridge:
Cambridge University Press.

Shen, E., & Yu, T. (2013). Mining frequent graph patterns with differential privacy. Proceedings
of the 19th ACM SIGKDD International Conference, Chicago, Ill, USA, 545-553.
https://doi.org/10.1145/2487575.2487601

Strumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using
game theory. Journal of Machine Learning Research, 11, 1-18. https://rb.gy/ujvfwe

 99

Wang, J., Liu, S., & Li, Y. (2015). A Review of Differential Privacy in Individual Data Release.
International Journal of Distributed Sensor Networks, 11(10), 259682-2596.
https://rb.gy/bbbmbr

Wang, Y. & Wu, X. (2013). Preserving differential privacy in degree-correlation based graph
generation. Transactions on Data Privacy, 6(2), 127-145. PMID: 24723987; PMCID:
PMC3979555. https://shorturl.at/ipqW4

Wang, Y., Wu, X., & Wu, L. (2013). Differential Privacy Preserving Spectral Graph Analysis. In:
Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery
and Data Mining. PAKDD 2013. Lecture Notes in Computer Science, vol 7819. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_28

Xiao, Q., Chen, R., & Tan, K. (2014). Differentially private network data release via structural
inference. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ′14), New York, USA, pp. 911-920.
https://doi.org/10.1145/2623330.2623642

Xiao, Y., Gardner, J., & Xiong, L. (2012). DPCube: Releasing Differentially Private Data Cubes
for Health Information. IEEE 28th International Conference on Data Engineering, Arlington,
VA, USA, pp. 1305-1308, https://doi.org/10.1109/ICDE.2012.135

Xiao, Y., Xiong, L., & Yuan, C. (2010). Differentially Private Data Release through
Multidimensional Partitioning. In: Jonker, W., Petković, M. (eds) Secure Data Management.
SDM 2010. Lecture Notes in Computer Science, Vol 6358. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-15546-8_11

Xiong, P., Zhu, T. Q., Wang, X. F (2014). A survey on differential privacy and applications.
Chinese Journal of Computers, 371, pp. 101-122. DOI: 10.3724/SP.J.1016.2014.00101

Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., & Winslett, M. (2013). Differentially private
histogram publication. The VLDB Journal, 226, 797-822. https://doi.org/10.1007/s00778-
013-0309-y

Zhang, X. J., Meng, X. F. (2014). Differential privacy in data publication and analysis. Chinese
Journal of Computers, 374, pp. 927-949.

