
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ
ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωµατική Εργασία

“Συ-σχεδίαση υλικού και λογισµικού της υλοποίησης NCBI-
BLAST σε υβριδική πλατφόρµα υψηλής απόδοσης (HPC)”

ΡΟΥΣΟΠΟΥΛΟΣ Κ. ΧΡΗΣΤΟΣ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Δόλλας Απόστολος, Καθηγητής Π.Κ. (Επιβλέπων)

Πνευµατικάτος Διονύσιος, Καθηγητής Π.Κ.

Παπαευσταθίου Ιωάννης, Επίκουρος Καθηγητής Π.Κ.

ΧΑΝΙΑ 2011

! !

! ! ! !

! ! !

!
! !

" !# $! ! $ $!

!$! ! ! $!

%!
!

! &! !

!

! !

!

! "! ! # #$ %!

& ! "! ! ! # #!

! "! ! ! # #!

!

!

!

!' $!())*!
!
!

	
 2	

Contents	

1. Introduction... 4	

1.1 Sequence	
 alignment .. 4	

1.2 Sequence	
 alignment	
 algorithms.. 5	

1.3 Blast	
 algorithm.. 6	

1.4 High	
 Performance	
 Computing	
 (HPC)... 7	

1.5 Thesis	
 contribution ... 8	

1.6 Thesis	
 Organization... 9	

2. BLAST	
 Algorithm..10	

2.1 Blast	
 algorithm	
 stages ..10	

2.1.1 Substitution	
 Matrices...12	

2.2 NCBI-­BlAST ...14	

2.3 NCBI-­BlASTn...15	

2.3.1 NCBI-­BLASTn	
 usage ..15	

2.3.2 Data	
 input	
 formats..16	

2.3.3 BLASTn	
 output ...18	

2.4 	
 Profiling ..20	

2.5 	
 Seeding	
 step ..22	

2.6 	
 Conclusions..28	

3. Convey	
 HC-­1...29	

3.1 HC-­1	
 server...29	

3.2 HC-­1	
 system	
 architecture ..30	

3.2.1 Intel	
 host	
 processor..31	

3.2.2 Convey	
 FPGA-­based	
 coprocessor...................................31	

3.3 Programming	
 model ...36	

3.4 Debugging ...36	

3.5 Convey	
 Simulator	
 and	
 Performance	
 Analysis	
 Tool.............................36	

3.6 Porting	
 already	
 existing	
 applications ...37	

3.7 Personalities ..38	

3.7.1 Convey	
 provided	
 personalities.......................................39	

3.8 The	
 Convey	
 Personality	
 Development	
 Kit ...40	

3.8.1 Personality	
 development	
 steps......................................41	

3.9 Convey	
 provided	
 simulator ..44	

3.10 PDK	
 interfaces………………………………………………………………………46	

3.10.1 Dispatch	
 Interface...46	
 	

3.10.2 Memory	
 Controller	
 Interface	
 ...47	

3.10.3 AE-­AE	
 Interface	
 ...49	

3.10.4 Management/Debug	
 Interface..50	

3.11 Host	
 to	
 coprocessor	
 programming	
 interface………………………...52	

3.11.1 Host	
 code..52	

3.11.2 Coprocessor	
 code ..53	

3.11.3 AEs	
 code..54	

4. Introduction...55	

4.1 Setup	
 and	
 familiarization ..55	

4.1.1 Sample	
 personality...55	

4.1.2 PDK	
 tools	
 familiarization ...57	

4.2 Previous	
 work	
 on	
 BLAST ...57	

4.3 System	
 design	
 and	
 major	
 decisions ...58	

4.3.1 Development	
 process ..58	

4.3.2 HW-­SW	
 co-­design	
 ...58	

4.3.3 Implementation’s	
 fidelity...59	

4.3.4 	
 Data	
 structures	
 Design ...59	

4.3.5 Testing	
 data	
 sets..59	

4.4 BLASTn	
 personality	
 architecture:	
 1st	
 generation...............................60	

4.4.1 AEG	
 registers	
 definition..61	

4.4.2 Hitter	
 module	
 version	
 one ...62	

4.4.3 Hitter	
 module	
 functionality...63	

4.4.4 CAE	
 CONTROL	
 FSM	
 ...64	

	
 3	

4.4.5 Host	
 application	
 design...64	

4.5 BLASTn	
 personality	
 architecture:	
 2nd	
 generation66	

4.5.1 AEG	
 registers	
 definition	
 ...68	

4.5.2 Hitter	
 module	
 changes ..68	

4.5.3 Hitter	
 functionality...69	

4.5.4 CAE	
 control	
 FSM...69	

4.5.5 Host	
 application	
 changes..70	

4.6 BLASTn	
 Implementations	
 differences...70	

5. Performance	
 and	
 validation ..72	

5.1 System	
 validation ...72	

5.2 Resources	
 utilization ..73	

5.3 System	
 performance ...74	

5.3.1 Timing	
 analysis	
 ...75	

6. Conclusions	
 and	
 future	
 work...77	

6.1 Conclusions ..77	

6.2 Future	
 work..77	

7. References ..78	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 4	

1. Introduction	

Bioinformatics is the field of biology specialized in developing the

suitable hardware and software platforms for storing and analyzing the huge
amounts of data that are generated by life scientists. Sequence alignment
constitutes one of the most important aspects of bioinformatics since the
discovery of DNA.

1.1 Sequence	
 alignment	

Sequence alignment is a way of arranging the sequences of DNA, RNA

or protein in order to identify regions of similarity. Similar sequences often
derive from the same ancestral sequence, this means that if two or more
sequences are similar, they probably have the same ancestor, share the
same structure, and have a similar biological function. This principle works
even when the sequences come from very different organisms. An accurate
alignment can provide valuable information for experimentation on the newly
found sequences. Sequence alignment is indispensable in basic research as
well as in practical applications such as pharmaceutical development, drug
discovery, disease prevention and criminal forensics.

Sequence alignment aims at identifying regions of similarity between
two DNA or protein sequences (the query sequence and the subject or
database sequence). Alignment’s classification can be based either on
completeness or on the number of sequences for alignment. In the case of the
number of sequences an alignment will be distinguished in pairwise when
sequences are aligned in pairs or in multiple sequence alignment (MSA) when
three or more sequences are participating in the alignment. When it comes
down to completeness an alignment can be global or local. Global sequence
alignment targets to find the best overall alignment among the sequences, on
the other hand, local’s target is to find short regions of highly conserved
sequence, Figure 1.1

Figure 1.1: Global vs local alignment. Source

 http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html

	
 5	

1.2 Sequence	
 alignment	
 algorithms	

	

 Since the high importance of sequence alignment has been
indicated, several algorithms have been developed to offer a solution to
it. These algorithms are divided in two categories, the first category is
composed of the algorithms based on the dynamic programming
method, providing the highest accurate answers despite the fact that
their high execution time makes it’s use forbidden regarding current
huge amount of data. The most known algorithms of this category are
Smith-Waterman for local alignment and the Needleman-Wunch for
global alignment. On the contrary, the second category is constituted of
algorithms based on a heuristic approach to find the answer. Even
though these answers are not as accurate as the first ones, these
algorithms are more preferable due to their higher speed. BLAST and
FASTA are representative algorithms of that category. When it comes to
MSA a variety of methods producing both local and global alignments
have been developed, which are categorized into four types, Dynamic
programming, Progressive, Iterative and Motif finding methods. Some of
the most known algorithms belong in this types as shown in Figure 1.2
are ClustalW, MSA, Praline, MMER, and MEME. Because MSA is out of
the scope of this thesis, there will not be an extensive analysis of its
methods.

Figure 1.2: Sequence alignment methods

	
 6	

Figure 1.3: Time to compare human vs mouse genoms Source
 Mercury BLASTN: Fast Streaming DNA Sequence Comparison
Jeremy Buhler, Joe Lancaster, Arpith Jacob, and Roger Chamberlain

 Washington University in St. Louis †BECS Technology, Inc.

1.3 Blast	
 algorithm	

BLAST (Basic Local Alignment Search Tool) is the most powerful and
most known algorithm for sequence alignment among the community of life
scientists. It takes a query sequence and aligns it with every subject sequence
in a database, looking for segments of high degrees of similarities. It picks out
from the database those sequences that contain a segment so similar to a
part or the entire query that such similarity is deemed statistically significant.

Figure 1.4: Growth in Genbank (DNA Sequencing Data). Source

http://www.kurzweilai.net/dna-sequencing-data

!"#$%&'%('#)*+$%,-#*.%/0%#'-0$%1$.'#$0%%%%%%%%%%%
23456%7"88"'.%7*0$0%$*(,%*9&$+%)+$9"8&$+".1:

!"#$%&'($)*"(+,!-.$/(*)
2'.%'.$%#';$+.%<=>%('+$:

36??%@$*+0

!"#$%&'($)*"(+,0(*1/(*)

29*0&$0&%)-78"0,$;%ABCD%"#)80:
36%@$*+0

2345,467!82,!-.$/(*)

2'.%'.$%#';$+.%<=>%('+$:
34?%;*@0

	
 7	

Due to the exponential growth of the databases (From 1982 to the

present, the number of bases in GenBank has doubled approximately every
18 months. As of 15 August 2011, GenBank release 185.0 has
130,671,233,801 bases [1]). A powerful computer system dedicated to
running BLAST has been established at the National Center of Biotechnology
Information, which has over five hundred thousands query submissions on a
daily base, a number which soon will look very small as the query
submissions per day, are being double approximately every year, which
explains why sequence alignment and particularly BLAST becomes an
excellent candidate for the high performance computing field.

Figure 1.5: High performance computing areas. Source: High-Performance Computing on Intel®

Architecture 11-Feb-2003 Toulouse, France
Dr. Herbert CORNELIUS Dr. Bob KUHN Fabien ESDOURUBAIL Jamel TAYEB

Gilbert CHAMPOUSSIN

1.4 High	
 Performance	
 Computing	
 (HPC)	

High performance computing is the branch of computer science that
focuses on developing supercomputers and software to run on
supercomputers. A fundamental area of this field is developing parallel
processing algorithms and software, programs that can be divided into little
pieces so that each piece can be executed simultaneously by separating the
processing unit, which can be a processor, a general purpose unit or even a
specific designed hardware.

!

"#"$%&'()%*+,-./0%(1/2!"#$%&'()*(+,-.'/0*+123"-#/*-/!"#$%& '()*+#$)#,($

453$'(/6(,-78/,-7/-,+'8/,('/3$'/1(*1'(39/*)/3$'"(/('81'.3":'/*;-'(8
</0*19("#$3/=>>=%=>>?/@-3'A/0*(1*(,3"*-

!"#$%&'()*(+,-.'/0*+123"-#/4(',5

-,.+"$../)+$")$ 0"1+"$$(+"1

	
 8	

High performance computing is growing with fast steps nowadays, the
reason for this is the increase of computational performance necessary for
many scientific applications, such as applied mathematics, economics,	

environmentals, bioinformatics and many more. The main reason behind this
demand is the exponential growth of information and data. That’s why high
performance computing is a primary need for the future of science.

 Until the early 2000s, general purpose single-core CPU-based systems
were the processing systems of choice for HPC applications. In the mid-
2000s, the HPC industry has gone through a historical step change to meet
high-performance demands, General-purpose CPU vendors changed course
to rely on multicore architectures. The technique of simply scaling a single-
core processor's frequency for increased performance has run its course,
because as frequency increases, power dissipation escalates to impractical
levels.
 The shift to multicore CPUs forces application developers to adopt a
parallel programming model to exploit CPU performance. Even using the
newest multicore architectures, it is unclear whether the performance growth
expected by the HPC end user can be delivered, especially when running the
most data and compute intensive applications [2]. Today the idea of
heterogeneous computing is shaping the present and future of HPC.

Generally speaking, a heterogeneous computer is a system that uses
different types of computational units to accomplish the work of the
applications that use the computer. The basic idea is coupling to a multicore
CPU, a new kind of computational engine, such as a field-programmable gate
array (FPGA), a Cell processor, a graphics processing unit (GPU) or even a
combination of these. This infrastructure becomes a heterogeneous computer
with huge processing power and lower power consumption. In this
configuration the added computational units accelerate several calculations of
interest, and so are often referred to as accelerators.

1.5 Thesis	
 contribution	

The contribution of this thesis is the analysis of the software

implementation of the Blast algorithm provided by NCBI. Although we spent
time on BLAST algorithm’s ideas, most of our work was on a specific version
of it, the nucleotide BLAST algorithm(BLASTn). We also developed two
hardware software co-design implementations based on it and mapped them
in a state of the art heterogeneous computing system. These two
implementations are different steps of continuous development and evolution
resulting in a functional prototype of BLASTn application running on our
system. We achieved our goals concerning training, experience gaining with
this complicated high performance system and fidelity of our implementation.

	

	

	
 9	

1.6 Thesis	
 Organization	

The rest of this thesis is organized as follows: Chapter 2 briefly
describes BLAST algorithm and focuses mostly on NCBI BLASTn
implementation. Chapter 3 describes the HC-1 hybrid super computer system
in details. Chapter 4 has the first and second generation architectures for
BLASTn. Chapter 5 has performance results and source usability of the
second generation implementations Finally, Chapter 6 has future work
proposals and some conclusions from this work.

	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 10	

2. BLAST	
 Algorithm	

BLAST (Basic Local Alignment Search Tool) is the heuristic search

algorithm for finding most of the highest-scoring (disjoint or at least minimally
overlapping) local alignments between a query and one or more database
sequences. We can simply think of BLAST being for nucleotide and protein
sequences what GOOGLE is for the Internet.

This chapter is organized as follows. Section 2 analyzes the basic
stages of the Blast Algorithm. Section 3 describes the substitution matrices
and their usage. Finally, the rest of the chapter describes the well-known
NCBI-BLAST suite and the software implementation of NCBI-Blastn algorithm
as well as, its parameters.

2.1 Blast	
 algorithm	
 stages	

Figure 2.1: BLAST algorithm steps

BLAST search consists of three steps: seeding, extension, and

evaluation.
During the first step, the query sequence is split forming a list (Look-up

table), which contains all the continuous overlapped subsequences of length
W, which are called w-mers. For example if sequence ACGTAAATGCAG is
the query of length 12 and W is equal to 3, the formed list will contain 10 W-
mers.

 When the list is generated the database sequences are searched
against it for finding all common words, which might possibly be part of a High

	
 11	

Score Pair (HSP), and which will be used as seed in the second step.
The basic idea behind seeding is the simplified assumption that any

alignment of interest between query and database sequence will contain at
least one region of W consecutive letters that is high-scored. Making the value
of W too small increases the work, and making W too large reduces
dramatically the work as it eliminates the search space, but also causes most
alignments to be missed.
 Going to the extension step, all the seeds that occurred by chance are
discarded and only the seeds which are part of a larger common
subsequence are kept, this is done by extending the alignment to the left and
right of the seed to find the alignments whose scores are greater than a
threshold S. In the initial version of BLAST presented in [3] this extension is
called the one-hit method and consumes most of the processing time of the
algorithm [4]. In order to improve this, the two-hit method was introduced in
1997 [5]. According to this method, the algorithm requires two hits rather than
one to invoke an extension and hence the threshold parameter T must be
lowered to retain comparable sensitivity. As a result, many more single hits
are found, but only a small fraction has an associated second hit on the same
diagonal that triggers an extension. During this process, the quality of the
alignment is calculated by a scoring scheme, which is relying on scoring
matrixes (Substitution Matrices), such as the popular BLOSUM62 and PAM,
described in another part of this thesis. If the ungapped score is above a user-
defined threshold, the seed can be used to produce a gapped alignment
based on a Smith–Waterman type algorithm [6].
 Finally, during the third step, BLAST determines which alignments of the
previous step are statistically significant using the query and database
sequence lengths, the substitution matrix and the sequence statistics. The
accepted alignments are those whose probability of finding such an alignment
by chance is lower than a user-defined value [7].

Figure 2.2 : Query w-mers of lengh 3.

!

! "!

#$
% !

%
! #%#$!

&$
!

! % !
! #%&$!

'$

!
!

!
#%'$!

W-mer1

ACGTAAATGCAG
W-mer2

W-mer3

W-mer4
W-mer9

W-mer10

!

!"! #

W-mer List

ACG
CGT
GTA
TAA
AAA
AAT
ATG
TGC
GCA
CAG

.. .Data Base Stream

ACGTAAAGCAG

HIT

Score = 15

Query

#

!"$ #

	
 12	

Figure 2.3: example of the Seeding step of BLAST algorithm.

Figure 2.4: Example of extension step of BlAST algorithm.

2.1.1 	
 Substitution	
 Matrices	

A key element in evaluating the quality of a pairwise sequence

alignment, as already mentioned, is the "substitution matrix”, which assigns a
score for any possible aligned pair of residues. Generally, different
substitution matrices are tailored to detecting similarities among sequences
that are diverged by differing degrees. In case of nucleotide residues, a
simple matrix, like the matrix in Table 1.1, is most of the times the proper
choice because the simplicity of the matrixes of amino acids residues makes
their construction difficult due to the rarity of certain amino acid substitutions.
After a lot of studies, many matrices, which are proper for protein alignments,

!

! "!

#$
% !

%
! #%#$!

&$
!

! % !
! #%&$!

'$

!
!

!
#%'$!

W-mer1

ACGTAAATGCAG
W-mer2

W-mer3

W-mer4
W-mer9

W-mer10

!

!"! #

W-mer List

ACG
CGT
GTA
TAA
AAA
AAT
ATG
TGC
GCA
CAG

.. .Data Base Stream

ACGTAAAGCAG

HIT

Score = 15

Query

#

!"$ #

!

! "#!

.. .Data Base Stream

ACGTAAAGCAG

Score = 70

Query
Continue Extension

Extension First Iteration Match +5 Match +5

.. .Data Base Stream

ACGTAAAGCAG

Score = 71

Query
Continue Extension

Extension Second Iteration MissMatch -4 Match +5

.. .Data Base Stream

ACGTAAAGCAG

Score = 72

Query
Continue Extension

Extension Third Iteration MissMatch -4Match +5

.. .Data Base Stream

ACGTAAAGCAG

Score = 64

Query
Stop Extension

Extension Forth Iteration MissMatch -4MissMatch -4 !
!"# $%

!

!

!

!

!

!

!

	
 13	

have been derived, among them the most known are PAM and BLOSUM.
 PAM (Point Accepted Mutation) matrices, Figure 2.5, introduced by
Margaret Dayhoff [8] in 1978 based on 1572 observed mutations in 71
families of closely related proteins. Each matrix is twenty-by-twenty (for the
twenty standard amino acids); which has the score for every pair of proteins.
 BLOSUM (BLOcks of Amino Acid SUbstitution Matrix), Figure 2.6, was
first introduced in a paper by S.Henikoff and J.Henikoff [9], they are derived
from the Blocks database, a set of ungapped alignments of sequence regions
from families of related proteins. A clustering approach sorts the sequences in
each block into closely related groups, and the frequencies of substitutions
between these within a family, derive the probability of a meaningful
substitution [10].

Table 1 .1: Simple substitution matrix example

Figure 2.5 : Pam 250 matrix example Source

 http://www.birec.org/sandbox/omamasaudtutorial

 U C A G

U 1 -1 -1/2 -1

C -1 1 -1 -1/2

A -1/2 -1 1 -1

G -1 -1/2 -1 1

	
 14	

Figure 2.6: BLOSUM 62 matrix example. source
 http://www.NCBI.nlm.nih.gov/blast/html/sub_matrix.html

2.2 	
 NCBI-­‐BLAST	

NCBI-BLAST edition is by far the most known open source

implementation of the BLAST algorithm. It is actually employed by a collection
of programs each one specially tailored to implement a different kind of
alignments. These programs are BLASTP, BLASTN, PSIBLAST, PHIBLAST,
RPSBLAST, BLASTX, TBLASTN and TBLASTX. Their differences are
discussed in more details below:

• BLASTP is suitable for alignments between one or more protein

query sequences to one or more subject protein sequences.
• BLASTN is the same as BLASTP but is used for nucleotide

instead of protein sequences.
• Megablast is an optimized version of BLASTN for finding very

similar alignments in very large sequences.
• PSIBLAST is used to align a protein query to a protein

database, but attempts to build up a query-specific scoring
model that will be sensitive only to database sequences that lie
within the same ‘protein family’.

• BLASTX compare the six-frame conceptual translation products
of an input nucleotide query sequence (both strands) vs. a
protein sequence database.

• TBLASTX searches a translated collection of nucleotide queries
vs. a translated collection of nucleotide subjects. It is usually
used for aligning a hypothetical protein sequences whose
underlying nucleotides have diverged significantly from each
other.

• RPSBLAST searches a query protein sequence or protein
sequences vs. a database of position specific scoring matrices
(PSSMs, profiles, or more commonly known as conserved

	
 15	

domains) to identify the ones the query are similar to.
• TBLASTN compares a protein sequence to the six-frame

translations of a nucleotide database. It is a very productive way
of finding homologous protein coding regions in unannotated
nucleotide sequences.

• PHIBLAST computes local alignments between a single protein
sequence and a database of protein sequences. It starts with a
collection of matches, on the query and database sequences, to
a specified regular expression pattern. This expression makes
PHIBLAST more specific than blastp.

NCBI has established a free online service for all the available flavors

of blast, and a free ftp server from where anyone can download the source
code of the latest or older versions of blast suite for local machine usage, and
a huge amount of preformatted and unformatted sequence databases, as
well. NCBI also has developed precompiled executables of their software for
almost every operating system known today.

In the current thesis, for simplicity reasons, it is the NCBI-Blastn
program that is used and all the other programs are disregarded.

2.3 	
 NCBI-­‐BlASTn	

 As already mentioned, blastn program is suitable for comparing query
nucleotides sequences vs. a subject nucleotide database. This algorithm is
suitable for finding similar sequences, but not identicals. The process of
finding similar sequences is based on generating an indexed table or
dictionary of short subsequences, which are called words, for both the query
and the database. One of the important parameters governing the sensitivity
of BLAST searches, is the length of the initial words (word size). The most
important reason that blastn is more sensitive compared to MEGABLAST,
which is suitable for nucleotide sequence search also, is that it uses a shorter
word size. That makes blastn more sufficient than MEGABLAST at finding
alignments that are related to nucleotide sequences from other organisms
since the initial exact match can be shorter. The word size is adjustable in
blastn and can be reduced from the default value of 11 to a minimum of 7 to
increase sensitivity. This word size can also be increased to make the search
speed faster and limit the number of database hits.

2.3.1 NCBI-­‐BLASTn	
 usage	

 In this section we will provide the necessary information needed for
performing a BLASTn ungapped alignment on our local machine using self
compiled NCBI’s blast package source code version 2.2.24 [Aug-08-2010].
 Most programs in the blast package, are command line program with

	
 16	

no graphic user interface (GUI). We control the programs through command
line options issued in a terminal window. These options instruct each program
what program function, query, and database to use. They also control the
search sensitivity, the result format, and the name of the output file, etc.
 Supposing that our query file is the test.fasta containing the properly
formatted query sequences (proper formats are analyzed later in this chapter)
and again the proper formatted database file is the ecoli, the command
performing a basic alignment is the following:

blastall -p blastn -d ecoli.nt -i test.fast -o output_test.out

 Blastall is used to perform one of the five flavors of blast (blastp, blastn,
blastx, tblastn and tblastx). Below the most useful command arguments of the
program will be explained.

• -p flag denotes the choice of the program name. It must be followed by
one of the strings "blastp", "blastn", "blastx", "tblastn", or "tblastx".

• -d flag is followed by the name of a formatted database. Multiple
database names (bracketed by quotations) are also accepted. An
example would be -d "ecoli.nt est" , which will search both the ecoli and
est databases, presenting the results as if they are one database
consisting of the concatenation of both.

• -i flag is followed by the input file. This flag is optional as blastall uses
the standard input stream for input sequences by default. If multiple
sequence entries are in the input file, all queries will be searched.

• -o flag denotes the file in which the output will be stored. The default
output stream is the standard output.

• -F flag is used to specify one or more filters to be used to mask query
sequence(s), it can be either true(T) or false(F) .

• -g flag guides blastall to perform gapped or ungapped alignment, it also
have true(T) or false(F) input.

 These are the most basic and useful arguments. The first four are used
in almost every alignment, while in combination with the last two; blastall will
provide an unfiltered ungapped alignment. In addition, the blastall method
offers many more arguments for more flexible and more necessary specific
alignments. Due to the fact that most of the alignments used by this thesis
were ungapped and unfiltered we stick command below:

 blastall -p blastn -d ecoli.nt -i test.fast -o output_test.out -F F –g F.

2.3.2 Data	
 input	
 formats	

Query input sequences, that are passed in blastall and especially
blastn program with -i argument, are nucleotide sequences in FASTA format.
Sequences in FASTA format consists of one line of comments beginning with
a '>' symbol, followed by any number of lines, of any length of sequence

	
 17	

information. Lines except the last one often are limited to sixty characters.
Nucleotide sequences are represented in the nucleic acid codes, with these
exceptions: lower-case letters are accepted and are mapped into upper-case;
N may be used for an unknown nucleic acid residue. An example of a
nucleotide sequence in this format is presented in figure 2.7 below:

>18BI1 Human MLC1emb gene for embryonic myosin
alkaline light chain, promoter and exon 1
GTGAAGAGAGAGCTGTGGCATGAAGGGGAGGGGGCTGGTGGCCCCAAACCTGG
TGACAA
TACACAGTTGTCAGCTGTACCCTGCTGGCGTTTCTTCCTTTTATAGTCAGCAG
CAGTTG
CTCTTGCTTTCACCCAGCCCCTCTGTGGGGCTCCTGCCCAGGATAAAAGGGAA
GGGAGG
CAGCCCAGGCTCCTATCTCATCTCCCAGACGCCACGTCTCTCGGTTTCTTCTT
AG

Figure 2.7: FASTA format example. Source http://bayesweb.wadsworth.org/gibbs/fasta.html

On the other hand, input databases, which are entered by –d
argument, are not in the readable FASTA format, but in a compressed format
suitable for fast execution of blastn and more efficient memory usage. Such
databases are generated by NCBI’s provided formatdb program. Although
formatdb’s usage is out of this thesis scope, we will briefly explain the most
useful arguments of this program by an example.
 Firstly, we are constructing a multi-fasta file containing one or more
sequences we would like to include in the database, lets name it ‘db_sequences’.
This file is then used to construct the index for the BLAST database, lets name the
database ‘db_test’. Then we execute the formatdb program with the appropriate
arguments. For our example the command for constructing db_test database
from our db_sequence input file, will look like this:

formatdb -i db_sequences -p F -o T -n db_test

The parameters, which are used, are explained below:

• -i argument denotes that one or more filename(s) of database data
follow.

• -p argument is an optional flag which is followed by T if the type of
the file is protein and F if the file consists of nucleotide
sequences. The default value is set to T.

• -o argument is followed by T, parses seqID and creates indexes.
When it is followed by F, it does not create any indexes.

	
 18	

• -n argument allows a user to create BLAST databases with a
different name other than the original FASTA files. This can be
used in situations where the original FASTA file is not required
other than by formatdb. This can help in a situation where disk-
space is tight.

Under the scope of this thesis many various sized query sequences
and databases have been used for tests, which have been done for profiling
and output correlation reasons. These datasets were either downloaded by
NCBI’s web site or were random flexible sequences generated by us.

2.3.3 BLASTn	
 output	

BLAST output report can be delivered in a variety of formats. These
formats include plain text, HTML and XML formatting. As most of the times
the report in plain text format consists of a large number of lines a small
summary follows.

The BLAST output report starts with some header information that lists
the type of program used (here blastn), the version (2.0.11), and a release
date (this is only an example and not the version we are using.). Also, there
are references to the BLAST program, the query definition line, and summary
of the database that is used, figure 2.8.

BLASTN 2.0.11 [Jan-20-2000]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= U51677
 (2575 letters)

Database: embl.fas
 442,729 sequences; 675,252,082 total letters

Searching...done

Figure 2.8: Fist section of BLAST output.

The second section, Figure 2.9, describes the database matches
found. These include a database sequence identifier, the corresponding
definition line, as well as the score (in bits) and the statistical significance ('E
value') for this match.

Score E

Sequences producing significant alignments: (bits) Value

	
 19	

U51677 Human non-histone chromatin protein HMG1 (HMG1) gene, co... 4129 0.0
L38477 Mus musculus (clone Clebp-1) high mobility group 1 prote... 353 7e-95
X80457 M.musculus HMG1 gene 353 7e-95
U00431 Mus musculus HMG-1 mRNA, complete cds. 353 7e-95
L08048 Human non-histone chromosomal protein (HMG-1) retropseud... 349 1e-93
 .
 .

Figure 2.9: Second section of BLAST output.

In the third section Figure 2.10, each alignment is preceded by the
sequence identifier, the full definition line and the length of the database
sequence. Next, the score is presented (in bits and the raw score) as well as
the statistical significance of the match, followed by the number of identities
and positive matches according to the scoring system and, if applicable, the
number of gaps in the alignment. Finally the actual alignment is shown, with
the query on top and the database match (Sbjct).

>U51677 Human non-histone chromatin protein HMG1 (HMG1) gene, complete
 cds.
 Length = 2575

 Score = 4129 bits (2083), Expect = 0.0
 Identities = 2167/2209 (98%)
 Strand = Plus / Plus

Query: 1 atgggcaaaggagatcctaagaagccgagaggcaaaatgtcatcatatgcattttttgtg 60
 ||
Sbjct: 1 atgggcaaaggagatcctaagaagccgagaggcaaaatgtcatcatatgcattttttgtg 60

Query: 61 caaacttgtcgggaggagcataagaagaagcacccagatgcttcagtcaacttctcagag 120
 ||
Sbjct: 61 caaacttgtcgggaggagcataagaagaagcacccagatgcttcagtcaacttctcagag 120

 .
 .

Figure 2.10: Second section of BLAST output.

The last section, Figure 2.11, lists some information about the database which

was used as well as statistical and search parameters used:

 .

Database: embl.fas
 Posted date: May 15, 1998 5:37 PM
 Number of letters in database: 675,252,082
 Number of sequences in database: 442,729

Lambda K H
 1.37 0.711 1.31

Gapped
Lambda K H
 1.37 0.711 1.31

Matrix: blastn matrix:1 -3
Gap Penalties: Existence: 5, Extension: 2
Number of Hits to DB: 1123218
Number of Sequences: 442729
Number of extensions: 1123218

	
 20	

Number of successful extensions: 86816
Number of sequences better than 10.0: 106
length of query: 2575
length of database: 675,252,082
effective HSP length: 21
effective length of query: 2554
effective length of database: 665,954,773
effective search space: 1700848490242
effective search space used: 1700848490242
T: 0
A: 0
X1: 6 (11.9 bits)
X2: 10 (19.8 bits)
S1: 12 (24.3 bits)
S2: 19 (38.2 bits)

 Figure 2.11: Summary of the four main parts of an NCBI_BLAST output in plain text format.

2.4 	
 Profiling	

 A profiling study of NCBI-BLASTN with default parameters using the
open source GNU gprof profiler, is shown in the charts below. The time spent
in each step of the algorithm can vary substantially with different queries and
different databases. During our profiling tests we have used a variety of
queries and two of the largest databases provided by NCBI :

• Nucleotide collection (nt) which Contains all GenBank and PDB
sequences except Expressed Sequence Tags, Sequence Tagged
Sites, Genomic Survey Sequences and unfinished High Throughput
Genomic Sequences (all of which can be searched separately) and

• Environmental samples (env_nt) Sequences from environmental

samples, such as uncultured bacterial samples isolated from soil or
marine samples, e.g. the Sargasso Sea project. These sequences are
not in nt.

	
 21	

 A I A II

 B I B II

Figure 2.12: Profiling of the NCBI-BLAST code for queries of length 117 to 5662 for ungapped alignments. (I) charts
represents real execution time. (II) charts represents percentage of execution time. (A) For env_nt database, the seeding

and extension steps, respectively, consume up to 50% of the total time (blue and red). (B) For nt database on average, the
seeding, ungapped extension, respectively, consume 55% of the total time (blue and red).

 As charts in figure 2.12 reveal, the ungapped extension and mostly the
seeding are the most computationally intensive parts of the NCBI-Blastn
algorithm. For ungapped alignments, these two steps consume over 50% of
the total execution time. Based on these observations, we decided to focus
our efforts on the seeding step.

0	

10	

20	

30	

40	

50	

60	

117	
 573	
 782	
 1009	
 2542	
 5662	

seeding	
 ungapped_extension	
 other_functions	

0%	

50%	

100%	

117	
 573	
 782	
 1009	
 2542	
 5662	

seeding	
 ungapped_extention	
 other_functions	

0	

50	

100	

150	

200	

250	

300	

350	

117	
 573	
 782	
 1009	
 2542	
 5662	

seeding	
 ungapped_extension	
 other_functions	

0%	

50%	

100%	

117	
 573	
 782	
 1009	
 2542	
 5662	

seeding	
 ungapped_extention	
 other_functions	

	
 22	

Figure 2.13 : BLAST steps and where tihe most of the execution time is spend.

2.5 	
 Seeding	
 step	

When NCBI-BLAST finishes the initial stage for every BLAST program,
which creates the Lookup table, it afterwards starts the seed collection. For
this stage there are several routines named ScanSubject routines, which will
touch every letter of the database being searched for most database
searches. All of the routines’ outputs are a full array of type BlastOffsetPair,
which is a structure containing two indexes for query and database offsets of
hits found. Each BlastOffsetPair represents one high-scoring alignment
between a query sequence and a single subject sequence.

Generally, a ScanSubject routine can be called several times on the
same subject sequence, in case there are many hits to that sequence, and it
works from the beginning to the end of the sequence. There is a limit to the
number of hits that a single ScanSubject routine call can retrieve, which
depends on blast-program and blast look-up table. This limit is properly
chosen so that when the look-up table is accessed, there will be available
room for all of the query offsets at that lookup table entry. During the
construction of the lookup table, an upper bound on the number of lookup
entries is computed, which is given by the ‘longest_chain’ field of Blast
lookup table structures. The maximum number of hits returned by a
ScanSubject call is longest_chain plus a fixed amount.

Blast algorithm has a pool of about two dozens ScanSubject routines
and every time chooses the most suitable for usage, in order to achieve
maximum ScanSubject performance for nucleotide searches. The look-up
table type, the word size, and the scanning stride define that choice. A word
size is the number of letters, which constitute to a group of letters based on
which, comparisons are made. The stride length is the number of letters
between the words where the comparison begins. Figure 2.14 shows how

	
 23	

eight letter words with 4 letter stride lengths are formed.

Figure 2.14: Example of word and stride length.

In more details, when the stride is 1 or 3 plus a multiple of 4, the
scanning loop is unrolled by 4, and when it is 2 plus a multiple of 4 the
scanning loop it is unrolled by 2. The unrolling process eliminates several
shift and mask operations, and turns the shift and mask quantities into
compile-time constants. When the scanning starts, the unrolled routines jump
into the middle of the unrolled loop using a switch statement. In case the
stride is less than 4, the scanning uses an accumulator to store words across
scanning iterations. This reduces the number of memory accesses to the
subject sequence, and the number of pointer increments. If the word size is a
multiple of 4, mask operations are removed when the offset into the subject
sequence is known to be a multiple of 4. Because the loops are unrolled, all
strides benefit of this optimization. In the specific case in witch the lookup
table width is 8 and the stride is 4, all the unrolled loop iterations are similar,
that’s why the scanning can be made to finish only at the bottom of the loop.
This eliminates several bounds checks, and makes this case the fastest of all
the scanning routines. Happily, this loop is also the most common for
ordinary blastn.[11]

 As far as our study concerns, the scanSubject routine is
s_BlastSmallNaScanSubject_8_4, which belongs, in the last category
mentioned above and a detailed flow chart is shown in figure 2.16. It uses as
input a pointer to the look-up table, a pointer to the scan subject, an array of
query and subject positions where word hits are found and which is also the
output of our routine, a variable representing the maximum number of hits and
the maximum length of the array mentioned above and the starting and
ending position on the subject sequence being scanned. During its execution
time two more routines are used, these are SMALL_NA_ACCESS_HITS and

	
 24	

s_BlastSmallNaRetrieveHits. The first one is used to check if any hit exists
and if so, it makes a call to the second one, which is responsible for their
retrieval and their restoration in the right position of the output array. Detailed
flow charts of both routines are shown in figures 2.17 and 2.18.

Figure 2.15: Seeding step using s_BlastSmallNaScanSubject_8_4.

	
 25	

Figure 2.16: Detailed flow chart of s_BlastSmallNaScanSubject_8_4 scanSubject routine.

	
 26	

Figure 2.17: Flow chart of SMALL_NA_ACCESS_HITS routine, used by the seeding step of the
software version of NCBI_BLASTn. It is called by s_BlastSmallNaScanSubject_8_4 routine.

	
 27	

Figure 2.18 : Flow chart of s_BlastSmallNaRetrieveHits routine, used by the seeding step of
the software version of NCBI_BLASTn. It is called by SMALL_NA_ACCESS_HITS predefined routine.

	
 28	

2.6 	
 Conclusions	

This chapter analyzes BLAST algorithm and its basic steps. Also, this
chapter analayzes the computational performance of the NCBI-BLAST
software implementation and its calling routines.

There are some conclusions that come out from this chapter:

1. BLAST algorithm is the most well knonw algorithm for sequence

alignment.

2. BlAST consists of three steps, which are seeding, extention and
evaluation.

3. BLAST algorithm relies on deferent substitution matrices.

4. NCBI BLAST is a suite of programs for deferent kind of alignments.

5. NCBI-BLAST programs are : BLASTP, BLASTN, MEGABLAST,
PSIBLAST,BLASTX,TBLASTX,RPSBLAST,TBLASTN and PHIBLAST.

6. BLAST is a very computationaly expensive algorithm. Its execution

time depends besicaly on the input sequence and database.

7. The most computational intensive part of the algorithm is the seeding
step and it takes up to 50 % of the execution that’s why it was chosen
to implemented on FPGA.

8. NCBI-BLASTn has about a dozen of functions to implement the
seeding step. The function, which is suitable for small query
implemented on FPGA.

	

	

	

	

	

	

	

	
 29	

	

3. Convey	
 HC-­‐1	

Convey Computers made a revolution to the high-performance

computing (HPC) field by launching the world's first hybrid-core computer HC-
1 that breaks the barriers of expensive power, performance and
programmability. The HC -1 server managed to change the till today known
HPC as it breaks through the current power/performance wall to significantly
increase performance for certain compute and memory bandwidth intensive
applications. Also, it is easy for programmers to use as it provides full support
of an ANSI standard C, C++ and Fortran development environment and it
significantly reduces support, power and facility costs for companies.

Convey with HC-1 managed to fill a market space called hybrid-core
computing, which marries low cost and simple programming model of a
commodity system with the performance of customized hardware architecture.

3.1 HC-­‐1	
 server	

Convey’s infrastructure combines an Intel Xeon processor and a
Convey designed coprocessor based on Xilinx Field Programmable Gate
Arrays, with its own high-bandwidth, virtual memory addressed, cache-
coherent memory subsystem. It also offers an ANSI standard development
environment, increasing productivity and portability.

HC-1’s main strength is Convey’s implementations, called
Personalities, which are extensions to the x86 instruction set that are
implemented in hardware increasing productivity and optimizing performance
of specific portions of an application. They are sharing the same physical and
virtual address spaces with the x86 instructions, and applications can contain
both x86 and coprocessor instructions in a single-instruction stream. Convey
compilers generate one executable image that contains both x86 and
coprocessor instructions. Systems can contain multiple personalities. Convey
provides a Personality Development Kit (PDK) for creation of new application-
oriented architectures discussed in details later in this chapter.

Another strong point of HC-1 is its memory, which provides a
bandwidth of 80 Gigabytes/sec delivering huge sustainable performance. A
shared virtual and physical memory between the coprocessor and the x86
provide the tight integration that allows the system to be programmed as a
single architecture. This means that the programmer does not need to
manage the physical memory on the coprocessor nor explicitly move data
back and forth between the x86 main memory and the coprocessor main
memory.

	
 30	

3.2 Hc-­‐1	
 system	
 architecture	

Figure 3.1 HC-1 server architecture.

Convey HC-1 is a hybrid-core computer system that uses a commodity
two-socket motherboard to combine a reconfigurable, FPGA-based
coprocessor with an industry standard Intel 64 host processor. Physically, the
system is based on two main logic boards in a rack-mountable 2U enclosure.
The top half of the enclosure is the coprocessor and the bottom half is the
commodity motherboard. A mezzanine interconnection mechanism connects
the halves and extends the host motherboard’s front-side bus (FSB) to the
coprocessor. The entire system consumes approximately 600 watts with the
coprocessor executing code. The system architecture is shown in Figures 3.1
above and 3.2 below.

	
 31	

Figure 3.2 HC-1 Architecture.

3.2.1 	
 Intel	
 host	
 processor	

 HC-1’s host consists of a dual socket Intel server motherboard an Intel
5400 memory-controller hub chipset, 1,066 MHz FSB and a 2,13 GHz dual
core Intel Xeon low voltage processor. The HC-1 host runs a 64-bit 2.6.18
Linux kernel with a Convey modified virtual memory system for memory-
coherent with the coprocessor board memory reasons.

3.2.2 Convey	
 FPGA-­‐based	
 coprocessor	

Convey’s HC-1 coprocessor composed by three main sets of
components. The Application Engines (AEs), the Memory Controllers (MCs),
and the Aplication Engine Hub (AEH).

	
 32	

Figure 3.3 Coprocessor three main components AEH, AEs, MCs.

 The Application Engine Hub (AEH) is the coprocessor’s to host interface,
it consists of two non–user programmable Xilinx V5LX110 FPGAs. One
serves as the physical interface between the coprocessor board and the FSB,
it monitors the FSB to maintain the snoopy memory coherence protocol and
manages the coprocessor memory’s page table. This FPGA is actually
mounted to the mezzanine connector. The second one contains a soft-core
scalar processor, which implements the base Convey instruction set. It is also
the mechanism by which the host invokes computations on the AEs.
 To support the bandwidth demands of the coprocessor, 8 Memory
Controllers (MCs) are used. Each memory controller is implemented on its
own FPGA and is connected to two standard DDR2 dual inline memory
modules (DIMMs) or to two Convey-designed scatter-gather dual inline
memory modules (SG-DIMMs), containing 64 banks each and an integrated
Stratix-2 FPGA. The SG-DIMMs allow access to physical memory by quad
words (8 bytes) instead of by 64-byte cache lines (as the host does).
Accessing by 8-byte blocks reduces the inefficiencies encountered when
accessing memory by no unity strides (or randomly) with a cache-based
system. The inefficiency can be as drastic as one eighth of the peak
bandwidth, because if only 4 or 8 bytes out of an entire 64-byte cache line are
needed, the rest of the transfer is wasted.

The Application Engines (AEs) are four user-programmable Virtex-5
XC5VLX330 FPGAs, which are the heart of the coprocessor and implement
the extended instructions that deliver performance for a “personality” which is
a particular configuration of these FPGAs .The AEs are connected to the AEH
by a command bus that transfers opcodes and scalar operands, and to the
memory controllers via a network of point-to-point links that provide very high
sustained bandwidth. Each AE instruction is passed to all four AEs. The way

	
 33	

that they process the instructions depends on the personality. The AEs are
interconnected with 668 Mbytes/s, full duplex links for AE to AE
communication.

Each AE has a 2.5 GB/s link to each memory controller, and each SG-
DIMM has a 5 GB/s link to its corresponding memory controller. The effective
memory bandwidth of the AEs is dependent on their memory access pattern
to the eight memory controllers and their two SG-DIMMs. Each AE can
achieve a theoretical peak bandwidth of 20 Gbyte/s when striding across eight
different memory controllers, but this bandwidth would drop if two other AEs
attempt to read from the same set of SG-DIMMs because this would saturate
the 5 Gbytes/s DIMM memory controller links [12].

 The Convey memory system using Scatter/Gather DIMMs has 1024
memory banks. The banks are spread across eight memory controllers (MCs).
Each memory controller has two 64-bit busses, and each bus in accessed as
eight sub busses (8-bits per sub bus). Finally, each sub bus has eight banks.
The 1024 banks is the product of 8 MCs * 2 DIMMs/MC * 8 sub bus/DIMM * 8
bank/sub bus. The coprocessor memory hierarchy is shown in figure 3.4.

Figure 3.4 Coprocessor’s memory hierarchy scheme.

 Convey provides two user-selectable memory mapping modes to
partition the coprocessor’s virtual address space among the SG-DIMMs:

• Binary interleave, which maps bitfields of the memory address to a

	
 34	

particular controller, DIMM, and bank.

• 31-31 interleave, a modulo 31 mapping optimized for constant memory
strides (strides lengths that are a power-of-two are guaranteed to hit all 16
SG-DIMMs for any sequence of 16 consecutive references).
The memory banks are divided into 32 groups of 32 banks each. In 31-31
interleave, one group isn’t used, and one bank within each of the remaining
groups isn’t used. Because the number of groups and banks per group is a
prime number, this reduces the likelihood of strides aliasing to the same SG-
DIMM. The operating system also supports page coloring such that every time
a page is allocated from coprocessor memory, it’s allocated at a specific
physical address to maintain the prime number interleaving. Selecting the 31-
31 interleave comes at a cost of approximately 1 Gbyte of addressable
memory space (6 %) and a 6 percent reduction in peak memory bandwidth.

The 31/31 interleave scheme was defined to meet the following requirements:

1. Provide the highest possible bandwidth for all memory access
strides, with a particular focus on power of two strides.

2. Keep each memory line (64-bytes) on a single memory controller.
This is required to simplify the cache coherency protocol.

3. Maintain the interleave pattern across virtual memory page
crossings. This helps large strides where only a few accesses are to
each page.

4. All virtual addresses must map to unique physical addresses.[12]

When Binary interleave is enabled the 1024 banks are accessed with the
following virtual address assignment:

Figure 3.5 Access pattern of Virtual address.

 In this Figure 3.5 is the targeted DIMM, and MC is the memory
controller. In practice, the hardware design should check bit 8:6 of the virtual
address and send the request to the appropriate MC. To be able to run at
(near) peak bandwidth, all the requests must be equally distributed over the
MCs, but also over the banks and sub busses.

 The memory system also supports large (4 Mbyte) virtual pages,
allowing the entire physical address space to be mapped into the page
translation look aside buffers (TLB) within the memory controllers. By doing

	
 35	

so, an application will only have to fault in a page once for the application’s
entire execution, which eliminates TLB thrashing. Further, each TLB entry
contains a process identifier, which allows TLB entries to survive process
exchanges (if not overwritten).

 The coprocessor memory is cache coherent with the host memory by
using the snoopy coherence mechanism built into the Intel FSB protocol. A
virtual address space is created that both the host and coprocessor share. In
the coherence protocol, both the host and the coprocessor possess copies of
the global memory space. Each block of memory addresses in both the host
memory and coprocessor memory are marked as exclusive, shared, or
invalid. A write by the host to an address block will change its status to
exclusive and invalidate the block on the coprocessor (indicating that it’s out-
of-date). If one of the application engines on the coprocessor reads from this
block, an updated copy of the block’s memory contents is sent to the
coprocessor memory, and the memory block changes to shared in both the
host and coprocessor memory. The coherence mechanism is transparent to
the user and removes the need for explicit direct memory access (DMA)
transactions, which coprocessors based on peripheral component intercon-
nect (PCI) require [13].

Figure 3.6 HC-1’s Programming model.

	
 36	

3.3 Programming	
 model	

 In Convey’s programming model applications can be coded in standard
C, C++, or Fortran, the AEs act as co-processors to the scalar processor,
while the scalar processor acts as a co-processor to the host CPU. Because
of this, the executable file on the host contains integrated scalar processor
code. This is transferred to and executed on the scalar processor when the
host code calls a scalar processor routine through one of Convey’s runtime
library. The scalar processor code can contain instructions that are dispatched
and executed on the AEs. The final executable is generated by a unified
compiler and it integrates both x86 and co-processor instructions defined by
the personality used on compilation time. [14]. Figure 3.6 shows an abstract
view of the programming

3.4 Debugging	

 When it comes to debugging Convey provides the necessary
environment for host and co-processor code debug. This environment is
composed by a version of the GDB debugger that has been extended with
coprocessor-specific register state, for debugging x-86 and coprocessor
routines. A dedicated PCIe link to the Management Processor (MP) on the co-
processor board, independent of the application data-path link through FSB
that configures and monitors the FPGAs, and it also provides visibility, when
the AE FPGAs are in bad state and appear hung. Despite Convey providing
Control and Status Register (CSR) agents to get visibility into the FPGA, the
Chipscope logic analyzer tool can also be used [14].

3.5 Convey	
 Simulator	
 and	
 Performance	
 Analysis	

Tool	

 To help developers get the best performance out of their code, Convey
also offers a simulator and corresponding performance analysis tool called
“Spat” [15] that graphically plots how various aspects of the code map to the
architecture and can assist in code tuning. Information is presented as a plot
of clock cycle versus usage of various architectural features. The tool can also
graphically depict detailed state information for various units within the scalar
and vector processors. This gives the ability to users to step across clock
cycles and watch how the system executes various instructions [13].

	
 37	

3.6 Porting	
 already	
 existing	
 applications	

 Convey offers four different ways for porting already existing applications
to their HC-1 system mentioned below:

• Use the Convey Mathematical Libraries (CML), which is a set of
functions optimized for the co-processor, which use predefined
Convey-supplied personalities, for example Convey’s CML-based
FFT uses the single-precision personality.

• Compile one or more routines with Convey’s compiler. This uses

the Convey auto-vectorization tool to automatically select and
vectorize do/for loops for execution on the co-processor.
Directives and pragmas can also be manually inserted in the
source code, to explicitly indicate which part of a routine should
execute on the co-processor.

• Develop hand-code routines in assembly language, using both

standard instructions and personality specific accelerator
instructions. Which can be called from C, C++, or Fortran code.

• Develop a custom personality using Convey’s Personality

Development Kit (PDK), to give the ultimate in performance using
a hardware description language such as Verilog or VHDL [14].

	
 38	

Figure 3.7 HC-1’s runtime environment.

3.7 Personalities	

 Personalities are the key to the Convey systems’ performance and
flexibility. A personality includes the precompiled FPGA bit files that
implement a coprocessor instruction set, a description of the machine state
model sufficient for the compiler to generate and schedule instructions, and
an ID used by the application to load the correct image at runtime. A system
can contain multiple personalities that can be dynamically loaded, but only
one personality is loaded at any one time. Each personality supports the
entire canonical instruction set, plus extended instructions that may be unique
to that personality. Extended instructions are designed for particular
workloads, and may include only the operations that represent the largest
portion of the execution time for an application.
All personalities have some elements in common, however:

• Coprocessor execution is initiated and controlled via instructions,
as defined by the Convey Instruction Set Architecture.

• All personalities use a common host interface to dispatch
coprocessor instructions and return status. This interface uses shared
memory and leverages the cache coherency protocol to minimize
latency.

	
 39	

• Coprocessor instructions use virtual addresses and coherently
share memory with the host processor. The host processor and I/O
system can access coprocessor memory and the coprocessor can
access host memory. The virtual memory implementation provides
protection for process address spaces as in a conventional system.

• All personalities support the canonical instruction set, and the
Convey compilers assume that the canonical instructions can be
generated and executed.

 These common elements ensure that compilers and other tools can
be leveraged across multiple personalities, while still allowing
customization for different workloads.
 Convey has developed the ability to swap personalities. For
example, a user has a code that processes large arrays that can be
easily vectorized followed by a series of long state machines. When the
application lands on the first vector instruction, the AEH send a signal to
the Application Engines to reconfigure themselves into a wide vector
processor. At the point where the vector instructions are complete, the
AEH signals again to switch to a specialized state machine. This
hardware context switching occurs in real time with very little latency to
the application. The AEH also caches these in the event that they must
be reused.
 Convey develops and licenses its own set of personalities but also
allows users to design and implement their own custom personality
using the personality development kit (PDK).

3.7.1 Convey	
 provided	
 personalities	

 Convey’s set of personalities includes a single-precision vector
personality and a double-precision vector personality which are vector
coprocessors for the scalar processor and are targets for Convey’s vectorizing
compiler. For these personalities, each AE implements eight floating point
multiply adder pipelines and eight load/store units (for a total of 32 logically
combined across four AEs). Financial analytics personality, which is a double-
precision personality that adds additional vector instructions, transcendental
functions, probability distribution functions, and various random number
generators designed for high-performance Monte Carlo simulation, is also
included in Convey’s set. In addition Convey provides several applications
paired with a custom personality. These applications are based on
existing 3-rd party applications, and can provide huge speedups while
producing identical or very similar results, for the Bio-informatics
industry these are:

	
 40	

• Convey Graph Constructor

 Generates simplified de Bruijn graphs from short read sequence
data generated by modern sequencers. It reduces the execution time
and memory required for graph construction.

• Convey Sequencing Library

 A simple, reusable interface to common algorithmic constructs
utilized for sequencing and alignment operations.

• Blast applications and associated personality (cnyBLASTp
and cnyBLASTx)

 An extension of NCBI BLAST which interfaces with an FPGA based
pre-filter to provide accelerated performance of protein-based
searches on Convey hybrid-core servers.

• Convey Smith-Waterman Search application and
associated personality

 A protein sequence search program using the Smith-Waterman
algorithm, optimized for the Convey hybrid-core architecture.

 As mentioned earlier, users who wish to develop their own custom
personalities with HDL-based design or C-to-HDL third party tools for
accelerating personality Development must license the PDK, which includes
design flows and robust system models that support hardware/software co-
simulation. A custom personality can be developed for many applications, to
utilize the full potential of the Convey coprocessor. By developing a
personality for a specific application, the Convey coprocessor can make the
most effective use of the FPGAs of the coprocessor. A custom personality
implements a number of functional units within the coprocessor, each of witch
can perform the same calculations on different data, in parallel with the other
functional units.

3.8 The	
 Convey	
 Personality	
 Development	
 Kit	

 The Personality Development Kit is a set of tools and infrastructure that
enables development of a custom personality for the Convey HC-1 system. A
set of generic instructions and defined machine state in the Convey
instruction-set architecture allows the user to define the behavior of the

	
 41	

personality. Logic libraries included in the PDK provide the interfaces to the
scalar processor, memory controllers, to the inter-FPGA links and to the
management processor for debug. We will present each of these interfaces
with more detail in next session. The user develops custom logic that
connects to these interfaces.

The Convey PDK provides the following set of features as a part of the kit:

• Makefiles to support simulation and synthesis design flows,

• A Programming-Language Interface (PLI) to let the host code interface
with a behavioral HDL simulator such as Modelsim or Synopsys.

• FPGA hardware interfaces provided as Verilog modules, these
interfaces connect custom personality hardware to instruction dispatch,
management and memory resources on the coprocessor.

• Custom personality software and hardware simulation environment Bus
-functional models are provided to connect each of the hardware
interfaces to Convey’s architecture simulator.

• A sample personality illustrates how to use the hardware and
simulation interfaces to develop a custom personality.

In addition to the PDK package, several Convey software packages are
required for PDK development. Which are:

• Xilinx ISE Design Software for synthesis, place and route of FPGAs.

• An HDL simulator for Verilog/VHDL simulation. Mentor ModelSim or
Synopsys VCS. [12]

The PDK’s simulation framework is easy to use and allows users to switch
between a simulated coprocessor mode and an actual coprocessor, by
changing a single environment variable.

3.8.1 Personality	
 development	
 steps	

 Convey provides ten step-by-step instructions for the process of
developing a custom personality for its Coprocessor.

	
 42	

Figure 3.8 PDK Development Steps proposed by Convey

1.Analyze Application

 The first step of personality development is to completely understand the
problem to be solved. How does the current application perform on existing
hardware? What are the bottlenecks that limit the performance? What data
structures are involved? How parallelizable is the application? Answers to
these questions provide the first insight into how the application can be
accelerated in hardware. Some tools that are useful in gathering this
information are gprof (The GNU Profiler) and oprofile.

2.Evaluate Hardware Options

With a detailed knowledge of the application and its performance limitations,

	
 43	

the second step is to evaluate options for implementing the application in
hardware. This requires a good understanding of the hardware architecture
and the FPGA resources available to the custom personality.
Once a concept for hardware design is completed, the performance of the
hardware can be compared vs. to the existing application performance.

3.Define Custom Instructions

With a hardware concept in place, the functions that are implemented by the
hardware design can be mapped to custom instructions. These are a set of
instructions in the Convey Instruction Set Architecture reserved for custom
personalities. Instruction sets designed to be used across a wide variety of
applications typically have a large number of instructions that perform
relatively simple operations. As a custom personality is designed to improve
the performance of a single application, it might implement very few
instructions with much more complex behavior.

4.Develop Software Model of Custom Personality

Convey provides an architecture simulation environment to allow rapid
prototyping of both the hardware and software components of a custom
personality. This environment is written in C++ to emulate the rest of the
system. It includes hardware models of instruction dispatch, register state and
the memory subsystem.
With a hardware design concept in place, and a definition of custom
instructions to interface to that hardware, a software model can be developed
to emulate the hardware. The hardware model can then be simulated with the
rest of the system to prove the concept before detailed design begins.

5.Replace Application Kernel with Call to Coprocessor

The application should be modified so that the application kernel can be
called as a function. To dispatch instructions to the coprocessor, the kernel
function call is replaced with a call to dispatch the function to the coprocessor.
This function explicitly defines the custom instructions to be dispatched to the
Application Engines. The sample application described later in this document
illustrates the use of this interface.

6.Compile Application with Convey Compiler

The PDK package includes Convey64 compilers that can be used to compile
coprocessor applications with direct calls to coprocessor functions.

7.Simulate Application with Convey Architecture Simulator

Once the AE software model is in place and the appropriate changes to the
application have been made, the application can run against the Convey
architecture simulator. This step allows the application and the custom
instruction set to be debugged before the hardware is designed.

	
 44	

8.Develop FPGA Hardware

With an instruction set architecture defined, the hardware implementation can
begin.

9.Simulate Hardware in Convey Simulation Environment

As an extension of the Convey architecture simulator, Convey provides a
hardware simulation environment with bus-functional models for all hardware
interfaces to the Application Engine (AE) FPGA. Using a standard VPI
interface (Verilog Procedural Interface) the architecture simulator can be used
to provide stimulus to the HDL simulation.

10.Integrate with Convey Hardware

The final step is to run the application on the Convey Coprocessor hardware.

Figure 3.9 PDK design flow. [12]

3.9 Convey	
 provided	
 simulator	

 Convey provides a very useful Coprocessor architecture simulator for

	
 45	

functional testing which contains a VPI (Verilog Procedural Interface) interface
to an HDL simulator. This allows the actual user application, running on the
architecture simulator, to provide the AE instructions for the hardware
simulation of the FPGA.
 The architecture simulator was developed to allow software to be tested
and debugged in the absence of the actual Convey coprocessor hardware. It
can also be used to prototype a PDK design quickly before investing the time
to develop the FPGA hardware. The simulator models the machine state and
the canonical instruction set, as well as instructions for the single and double-
precision vector personalities designed by Convey. For custom personalities,
the instructions set extensions are defined by the user and therefore cannot
be modeled in the simulator, that’s why a socket interface is designed into the
simulator to allow a user-developed AE software model to connect to the
simulation process and emulate it. The application executable is a Linux
executable, where host code calls to coprocessor routines are routed to the
simulator. The host x86-64 code and the coprocessor simulator share the
memory space of the executable, just as the real Convey coprocessor shares
memory with the x86-64 host code.
 The user’s developed software model must include implementation of
the functions implemented and functions callable by custom personality.
Such functions are personality initialization, modeling the instruction
dispatch hardware interface where instruction decoding takes place, and
memory and registers loads and stores. It also can be used as a checker in
the hardware simulation.
 Hardware simulation process (shown in the diagram below) needs an
HDL simulator (ModelSim or VCS), which compiles the Verilog source for the
Convey interfaces and custom logic, as well as the software model of the AE.

Figure 3.10 Custom AE hardware simulation.

 During hardware simulation, the device under test (DUT) is the entire
FPGA, consisting of the user-developed personality as well as the Convey-
supplied hardware interfaces. The FPGA is instantiated in the testbench along
with Verilog drivers and monitors for the FPGA interfaces. The bus functional
models connect to the C-code portion of the simulation environment through

	
 46	

VPI.

3.10 PDK	
 interfaces	

 For simple integration of a custom personality into the Convey
coprocessor, PDK includes hardware interfaces for the Convey provided
Verilog modules. Together with the custom personality module(s) developed
by the user, these modules make up the design that will be synthesized into
the AE FPGAs. These interfaces are:

3.10.1 Dispatch	
 Interface	
 	

	

 The dispatch interface is the hardware interface through which a host
application sends coprocessor instructions to be executed by the AE. The
dispatch interface receives instructions from the scalar processor. Some
instructions are handled directly in the dispatch module. The dispatch
interface also ensures that scalar data is returned to the scalar processor
when required by the instruction.

Figure 3.11 Dispatch Interface Diagram.

	
 47	

3.10.2 Memory	
 Controller	
 Interface	
 	

Figure 3.12 Coprocessor AE Memory Connections.

 The Memory Controller (MC) Interface gives the AEs direct access to
coprocessor memory. Each of the 4 AEs is connected to each of the 8 MCs
(Memory Controllers) through a 300MHz DDR interface. The MC interface
inside the AE FPGAs is provided by Convey. Each of 8 MC interfaces in the
AE FPGA is directly connected to a single Memory Controller, and each MC
physically connects to 1/8 of the coprocessor memory. The 8 MC interfaces
are physically located on the left and right sides of the AE FPGA, as shown in
figure 3.13 below. Each Memory Controller is connected to 2 DIMMs. The AE
personality must decode the virtual memory address so that only requests
intended for a particular MC’s attached memory are sent to that MC.

	
 48	

Figure 3.13 AE to MC Interface Diagram

 The link between the AE FPGA and the MC FPGA runs at 300 MHz, but
in order to ease timing in the FPGA, the 300 MHz interface is converted into
two 150 MHz memory ports to/from the AE personality. Data from these two
ports, the “even” port and the “odd” port, are multiplexed onto the same 300
MHz request channel in the MC interface.
For write operations, the write data is stored in a first-in, first-out buffer until it
is sent across the AE-MC link. No response is returned to the AE personality
for write operations.
For read operations, the write data bus is used to store read return control
information. This data is stored in the write data buffer until the read request is
sent out. When the read request is sent to the MC, the read request data is
removed from the write data buffer and stored in a read control buffer based
on the transaction ID assigned to the request transaction. When the read is
returned from the MC, the transaction ID (TID) is used to lookup the read
control information from the read control buffer.
The 32-bit read response control bus can be used by the custom personality
for tracking request/response pairs. The data that is returned on this bus is
the data that was written into bits <31:0> of write data when the read request
was sent to the MC interface. Figure 3.14 below illustrates the functionality of
the interface.

	
 49	

Figure 3.14 MC Interface Functional Block Diagram

3.10.3 AE-­‐AE	
 Interface	
 	

 The AE-to-AE interface allows data to be transferred directly from one
AE to another. Because the use of an AE-AE interface is unique to each
application, it is difficult to design a solution that would be ideal for all custom
personalities. Convey provides an AE- AE interface that the user may choose
to use. The user is also free to use the signals between AEs in whatever way
best supports their application. The Convey provided the AE-to-AE interface,
which is designed with unidirectional busses to and from the previous or next
AE. Each instance of the interface connects to a single AE, to connect an AE
to both the previous and next AEs, two interfaces must be instantiated. This
interface is simple and generic so that it can be used by many applications.
Figure 3.15 below shows the AE-AE interface to the Custom Personality.

	
 50	

Figure 3.15 AE-to-AE Interface Diagram

3.10.4 Management/Debug	
 Interface	

 The management interface provides the communication path between
the Management Processor and the AE. The Management Processor (MP) is
responsible for initialization and monitoring of the FPGAs. Since this path is
independent of the instruction dispatch path from the host processor, it can be
useful in debugging by allowing visibility into internal FPGA state, even when
the application is hung.
The MP interface is instantiated in the Convey-supplied libraries, along with
CSR agents in a ring topology. The custom personality must complete the ring
by either adding one or more CSR agents to the ring or by simply connecting
the inputs to the outputs. For many designs, a single agent is sufficient. For
more complicated designs, the developer may choose to instantiate multiple
CSR agents. The ring topology allows multiple agents to be placed near their
associated logic. PDK CSR Registers are accessed from the host for
debugging reasons. The host communicates with the MP FPGA via telnet.
Figure 3.16 below shows the connectivity of the CSR interface:

	
 51	

Figure 3.16 Management Interface Diagram

The Application Engines in the HC-1 platform are implemented in Xilinx
Virtex 5 LX330 FPGAs. The required Convey hardware interfaces—the
dispatch interface, CSR interfaces and MC interfaces—use about 10% of the
available logic resources and about 25% of the block rams.

The dispatch interface occupies 400 slices in the center of the chip.
The MC interfaces are on the left and right sides of the FPGA, and the MC
CSR interfaces are in the corners of the part. Figure 3.17 below shows the
FPGA floor plan.

There are 288 36Kb block RAMs in the LX330 FPGA. The required Convey
interfaces use 66, leaving a total of 222 available for use by the custom
personality. However, of the 222 available, 26 are on the left and right sides of
the FPGA, which contain mostly MC interface and MC CSR logic. These block
RAMs may or may not be useable, depending on the application and the
timing requirements.

	
 52	

Figure 3.17 AE FPGA Floor Plan for HC-1

3.11 Host	
 to	
 coprocessor	
 programming	
 interface	

 In this section we will discuss the host to coprocessor programming
interface, which is the way we can dispatch a function from the host to the
coprocessor of the HC-1 system. Instructions that have to end up in the AEs
go through the steps described below.

3.11.1 Host	
 code	

 The host program is typically written in C/C++ or in Fortran [16]. If we

	
 53	

want to make use of a custom instruction, we have to dispatch a function to
the coprocessor. By using the copcall functions (provided by Convey), we
dispatch our function with its necessary arguments to the coprocessor. An
example of the host code dispatching a function is presented in figure 3.18
below. In this example cptestEx1 is our function that should run on the
coprocessor and the sig argument indicates which personality we want to use.
L_copcall_fmt is Convey’s copcall function, which dispatch our function
together with its arguments to the coprocessor.

Figure 3.18 Example of the host code dispatching a function to the coprocessor

3.11.2 Coprocessor	
 code	

Figure 3.19 Call function, which consists of instructions defined by Convey’s scalar instruction set and
runs on the coprocessor

 The FPGA call function is executed on the coprocessor, and consists out
of instructions defined by Conveys scalar instruction set. The four move
instructions in the example presented in figure 3.19 above move the t1, t2 and
t3 and size arguments from their A coprocessor registers to the AEG registers
on the AE. The caep00 instruction calls the AE to execute custom instruction
00. Finally the last move instruction returns the value from the first AE to the
register of the coprocessor’s instruction set.

	
 54	

 The coprocessor’s instruction set has two types of scalar registers. The
A registers which are a set of general purpose registers intended to be used
to manipulate addresses for S and AE register loads and stores. Additionally,
the A registers are used to handle loop counts and calculating vector length,
vector stride, vector partition length and vector partition stride. The S registers
are a set of general purpose registers intended to be used to manipulate
scalar data [17]. The first value that is loaded into an A register is loaded into
A8, the second into A9, etc. Similarly, the first value loaded into an S register
is loaded into S1, the second into S2, etc.

3.11.3 AEs	
 code	

The AE receives the caep00 instruction to be executed. When the AE code
finishes, it can return data to the coprocessor routine, or write a flag to
memory.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 55	

	

4. Introduction	

	

This chapter describes the necessary steps for the setup and the

familiarization with the CONVEY tools. Also, it describes in details the
hardware and software components of the first and second generation of
NCBI-BLASTn personality architectures. Final, there is a brief presentation of
previous works of BLAST on FPGAs.

4.1 Setup	
 and	
 familiarization	

	

 The setup and familiarization processes consist of two phases. We
installed and experimented with both cross-development software tools
provided by CONVEY and the HC-1 server itself.

 First, we downloaded from CONVEY the cross-development tools and
installed them to our local server. As mentioned in chapter 3, PDK
development requires some extra tools, like the Xilinx ISE Design Suite 12 for
synthesis, place and route of FPGAs and Mentor ModelSim HDL simulator for
Verilog and VHDL simulation, as well. Second, an HC-1 server was supplied
with the pre-installed native CONVEY’s software tools Also, the Xilinx ISE
Design Suite 12 tool was used for HDL synthesis. Finally, the Synopsys VCS
tool was used for hardware simulation after the setup of it’s license server.

Acquaintance with the CONVEY tools started with working basically
with CONVEY’s provided examples. Our main interest was on PDK tool and
its examples. First, we spent some time to deal with the provided examples
dedicated to HC-1’s programming tools, which use single and double
precision personalities as well as financial analytics personality. Valuable
experience was gained on CONVEY’s compilers, debugger and simulator
(mainly used due to not having license for the above personalities).

The training effort on developing custom personalities for HC-1 was
based on PDK’s sample personality. A detailed and deep analysis of this
example personality in combination with a variety of small custom
personalities, which were produced by changes made on the sample
personality, led to deep understanding of CONVEY’s step-by-step instructions
for developing a custom personality for its Coprocessor.

4.1.1 Sample	
 personality	

	
 56	

 CONVEY has developed a sample custom personality, as part of the
PDK package, that can be used as a reference design. The sample
personality was designed to be very simple while using all of the required
hardware interfaces inside the FPGA except of the AE-to-AE interface.
 CONVEY’s sample personality implements a memory-to-memory
instruction that adds values stored in one block of memory to the values
stored in another block of memory. The array of results is stored back in
memory. It consists of 16 copies of a functional block, which adds a portion of
the memory storing the operands. The functional blocks are directly
connected to the memory controllers so that each block only performs
operations on values in its attached memory. A detailed block diagram is
presented in figure 4.1 below. The sample personality was used as a starting
point for new PDK personalities.

Figure 4.1: Block diagram of Sample personality provided by convey

	
 57	

4.1.2 PDK	
 tools	
 familiarization	

 Some new variations of the sample personality were developed for
better understanding of the sample personality’s functionality and pdk’s
interface connections. We made small changes experimenting with both the
simulator’s golden model and the Verilog designs.
 The first variation is very small and includes only the functionality of the
sample personality. We changed the sample personality from a memory-to-
memory adder, to a memory-to-memory substractor. The changes took place
to the host processor’s code, to the simulator’s model and to the hardware
design. During the development of this variation we had the chance to learn
how to create a new personality and get a deeper understanding of the
sample personality. Our second try was to create a custom application
connected only to the dispatch interface. We implemented a basic scalar
adder in Verilog and connected it with the dispatch interface. That gave us a
better view of the way the custom application interacts with the scalar
processor of the coprocessor, how to develop software model for the
simulator and how to dump and visualize hardware signals simulation. Next
variation helped us find how to use pre existing cores generated by Xilinx’s
Core Generator. We generated a Block RAM with Xilinx’s tool, which we
integrated, with our custom designed fine state machine (FSM) creating a
simple personality, which takes an address and returns its content.
 In general, we developed even more variations of the sample
personality, all of them on the cross-development tools and using the
simulators mentioned above.

4.2 Previous	
 work	
 on	
 BLAST	

 Biological sequence searching using FPGAs has been an active area of
research for over a decade. A lot of research has been done in implementing
BLAST.
 BLASTn’s bottleneck resides in the first stage where the hits are
located. There are two different classes of BLASTn works. In the first one
belongs the works, which are mainly focused in the bottleneck, and in the
second one belongs the works, which implements the entire algorithm on the
FPGA. A brief description of some of this works from both classes follows.

The first one is the RC – BLAST project [18], which belongs to the first
class of solutions, but its overall performance was reported to be poor, even
worse than the corresponding software implementation and no further efforts
where given for this project. Despite that, the RC – BLAST project remains
important as it is the first full BLAST implementation in reconfigurable
technology.

Next one is the TreeBLAST project witch was presented in 2005 by the
CAAD Lab at Boston University. This project belongs to the second class of
solutions. It is a BLAST algorithm implementation for small queries of up to
800 nucleotides [19] and it was extended and implemented later [20],

	
 58	

providing speedup vs. the software implementation. An extension of
TreeBLAST presented in 2009 [21] was based on the database prefiltering.

The parallel Mercury BLAST [22], [23] [24] is one more implementation
of BLASTn introduced by Washington University in St. Louis, which offers a
good speedup vs. software execution on a general purpose computer.

One more completed system work is TUC-BLAST [25], which
implements BLAST algorithm for all its versions and for any size of database
and query. This system has been fully designed and partially implemented
using FPGAs and it consists of software and hardware parts. This
implementation achieved speedup of up to thousands of times vs. general
purpose computers.

Multi-seed/ Multi-channel BLAST [26] [27] is the most recent effort from
Chinese National University of Defense Technology which also reports very
interesting results for a generic architecture for BLAST algorithm.

Except of the above academic approaches there are and some
commercial companies, like Time Logic [28] and SGI/Mitrionics, which offer
the Decypher machine and RASC Appliance respectively. They offer high
performance over present multi core processors but they provide little detail
about their designs. Recently, the IBM Cell broadband Engine [29] has also
been used to speedup BLASTn.

Final, the related work on BLAST CONVEYs BLAST personality
presented in [chapter 3 ready personalities] can not be omitted.

4.3 System	
 design	
 and	
 major	
 decisions	

 This section describes the implementation of the NCBI-BLASTn
personality. The HC-1 hybrid supercomputer was used for the BLAST
implementation. We implemented a hardware design to run on the
coprocessor, and a software program controlling the coprocessor and
managing IO. Some major decisions are listed below, which were taken
before and during the implementation of the personality.

4.3.1 Development	
 process	

 We proceeded to the implementation in phases, which led to the
generation of two different NCBI BLASTn personalities. This approach helped
us discover and make clear implementation issues, coming up during the
development process, individually, and as fast as possible.

4.3.2 HW-­‐SW	
 co-­‐design	
 	

 The main target was to develop the personality that would substitute the
most time consuming function of NCBI BLASTn software implementation.

	
 59	

After a large number and many extensive, profiling tests the three different
functions s_BlastSmallNaScanSubject_8_4, SMALL_NA_ACCESS_HITS,
s_BlastSmallNaRetrieveHits were chosen for hardware implementation.
These functions implement the seeding step of the algorithm, as mentioned in
Chapter 2. We decided to implement in hardware the last two and part of the
first one, and in software the communication between our hardware design
and NCBI’s software.

4.3.3 Implementation’s	
 fidelity	

 The most important target of the implementation was to have identical
results vs. the NCBI’s official software.
 Although, BLAST is a heuristic algorithm and a hundred percent
compatibility with NCBI’s blast output is unnecessary, it is difficult to convince
biologists of the same. A typical user would have no idea whether the
differences are statistically significant. That’s why we decided not to
compromise fidelity of our design as other implementations do. Due to this
decision, we left aside the parallelization factor and also the speed up that it
produces during the first phases of our design process.

4.3.4 	
 Data	
 structures	
 Design	

 Another issue that came up from the start due to the integration
mentioned above, was the design of the data structures, which affect the
efficiency of parallelization and overall implementation. For this issue, both the
software and the hardware of the implemented system have their own data
structures and also some shared ones. The most important data structure,
which is used by our implementation consist of a query-index table named
backbone and an overflow table storing the positions of the words of the
query, a table that stores the database subjects and an index table storing the
resulting ungapped alignments between the query and each of the database
subjects. The location of each data structure in memory was carefully
selected, depending on data size and how often each structure is accessed
during execution. In particular, frequently accessed structures are stored in
the possibly fastest memories that could accommodate their size.

4.3.5 Testing	
 data	
 sets	

 For testing and evaluation reasons, small testing datasets were created,
which are much smaller in size but accurate enough to help us accelerate
development process and evaluate the functionality and output fidelity of our
implementation. These datasets include a variety of input databases with

	
 60	

different number of subject sequences of different lengths, which are
formatted with the help of NCBI’s formatdb program. Also, two reference
query sequences were used for building backbone and overflow data
structures mentioned above. The first query sequence was small but really
helpful during functional evaluation and the other one larger and more
representative of the average query lengths.

4.4 BLASTn	
 personality	
 architecture:	
 1st	

generation	

	

 This section presents the first generation architecture of our personality
in details. It was developed with all decisions described in previews section
and it was also our first attempt to develop a hardware extension of a well
known and established software, in the community of biologists, on a very
high tech server.
 The implementation is a prototype, which maps part of the functionality
of the seeding step. It takes as input from the NCBI-BLASTn software a
sixteen-bit quantity representing eight residues of the subject sequence, and
counts the number of appearances of this quantity in the query, and more
specifically in the pre-generated memories where the w-mers are kept. This
number is what it returns to the software so that the software can resume the
execution. An abstract block diagram of the architecture is presented in the
figure 4.2 below.

Figure 4.2: Block diagram of 1st generation BLASTn personality

	
 61	

 As shown in the figure above the implementation uses only of dispatch
and the processor management interfaces. Figure 4.3 gives a more detailed
view of the design and how it uses these interfaces.

Figure 4.3: Detailed block diagram of 1st generation BLASTn personality showing its connection with

the PDK’s interfaces

4.4.1 AEG	
 registers	
 definition	

 The personality consists of the logic needed to decode the instructions
coming from the dispatch interface. These instructions either move data from
the application engine to the dispatch interface and vice versa or implement a
custom instruction. This logic also generates an exception if an instruction is
not implemented in the design.
 AEG registers are used for storing the data, which is moved from or to
the application engine. The implemented infrastructure uses only two AEG
registers, which are defined at the table 3.1 below.

AEG	
 index	
 Register	
 Name	
 Description	

	

0	
 Init_index	
 Hiter	
 initial	
 index	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 30	
 Hits_num	
 Hiter	
 output	

Table 3.1: AEG registers

Init_Index register

 Init_Index register stores the sixteen less significant bits of the
subject sequence, which is checkedfor existence in the look up tables.

	
 62	

Hits_num register

 Hits_num register stores the output of the hitter module when it
finishes. The value of this register is returned to the host processor.

If an invalid index of an AEG register is given to the design it will produce an
exception. The processing element of our design is the hitter module.

4.4.2 Hitter	
 module	
 version	
 one	

 The hitter module implements most of the work. Custom instruction zero
enables the hitter module to start processing. A detailed figure 4.4 of hitter
module architecture follows.

Figure 4.4: Hitter module generation one block diagram

 The hitter module consists of four parts. These are two BRAMs of size
65536 X 16 each, which stores the backbone and overflow memory
respectively, a Fine State Machine (FSM) that is responsible for the control of
the module and a counter for counting the number of hits.
 The two memories are the data structures accessed most often, almost
during every clock cycle, that’s why we decided despite their size to place
them in BRAMS inside the Application Engine FPGAs and initialize them with
two pre-generated “COE” files in which we saved backbone and overflow
tables generated by NCBI-BLASTn software execution for a specific query. As
this design is a lab prototype we chose to stick with those two predefined
memories, so we properly chose to use a query, which would be
representative of most nucleotide sequences regarding the sequence length.
 The FSM control unit defines the correct signals for all the functional
units of the module. It has four states, which compose the whole functionality
of the module; transactions between stages are shown in figure 4.5 below.

	
 63	

Figure 4.5: Hitter module control FSM stages transactions

4.4.3 Hitter	
 module	
 functionality	

 Hitter’s module functionality in the first generation architecture is to count
the number of seeds for every sixteen-bit subject sequence quantity
(init_index) in the query. At the time init_index is available and START bit is
set to one, the hitter uses the init_index as a memory read address for the
backbone memory. Its output is used by the FSM to check if the index has
zero, one or more appearances in the query. When the backbone memory
returns a minus one value, this shows that the searching index has zero
appearances. In case, the memory’s returned value is an integer greater than
or equal to zero, the index has only one appearance in that position and the
FSM increases the counter by one end sets ended bit to one, which indicates
the end of seeds searching for this particular index. On any other case which
means it is a negative integer less than or equal minus two, the index has
more than one appearances. In such a case the FSM gets the absolute value
of this negative integer and uses it as a base read address for the overflow
memory. At that point, a loop depending on overflow’s output starts. Initially,
the overflow’s position holds the number that represent the position of the first
appearance of the index in the query and overflow’s next position holds the
second number and so on until overflow’s output takes the value minus one
and the loop terminates. Each iteration of this loop takes one cycle time to
complete and in each iteration the counter increments by one except the last
one where ended output signal is set to one. When ended signal is set, the
num_of_hits holds the number of the seeds for this index.

	
 64	

4.4.4 CAE	
 CONTROL	
 FSM	
 	

 The control FSM for the custom application engine is responsible for
enabling the hitter module and store its output result in the appropriate AEG
register. Also, it controls the stall and the idle signals from the dispatch
interface. An abstract diagram of its stages transactions is presented in figure
4.6 below.

Figure 4.6: CAE control FSM stages transactions

4.4.5 Host	
 application	
 design	

 A program, which is a modified version of the original NCBI BLASTn and
runs on the Intel Xeon processor, controls the coprocessor. The main
difference between the original program and the one developed to use the
implemented personality is mostly on the three functions that have already
been described in chapter two. More specifically, for the first generation of the
design the differences are only in s_BlastSmallNaScanSubject_8_4 seeding
function. We changed this function by adding a portion of a code responsible
for loading our personality to the coprocessor and also managed the dispatch
to it by calling the assembly code with the necessary input arguments. A flow
chart of the modified function is presented in figure 4.7 below. The only
difference from the original flow chart presented in chapter two figure 2.16 is
the addition of the copcall function, which makes a dispatch to the
coprocessor and loads the assembly written external function to it with only
input argument, a part of the subject sequence of eight letters length (sixteen
bits). This function returns in num_of_hits variable the number of hits counted
by our personality for this particular index.
 The main part of the assembly external function above is loading the
init_index value to AEG [0] register described in details above and makes a
call to the custom instruction zero (caep00) which with its turn enables the
Application Engines mapping our design. When our design ends the
execution, the counting result that is in AEG [30] is returned with assembly

	
 65	

instruction to the host processor. During the execution of the external function
on the coprocessor, the host program blocks its execution waiting for the
result. When the return happens the host continues its execution from the
point it was blocked.
 In this first generation of our implementation, the return value of the
hardware part in num_of_hits variable is used only for evaluation reasons.

	
 66	

Figure 4.7: Block diagram of 2nd generation BLASTn personality

 First generation BlASTn personality was a lab prototype that we mostly
used for getting the experience of developing a hardware and software co-
design implementation based on very complicated software like the NCBI-
BLAST. It helped us get more experience on the tools and especially on
debugging large and complex designs. It also helped us on getting answers
and solutions on questions and teething problems, mostly on tools usability,
coming up during its design.
 Although the first generation personality design is a conservative
approach to the real problem, it gave us a satisfactory base to work on, as
long as it has been fully functional and accurate. Further work and evolution
development, resulted in the second generation described below.

4.5 BLASTn	
 personality	
 architecture:	
 2nd	

generation	

 This section describes the second generation architecture of NCBI Blast
personality, which is a newer version of the first one. The main aim
concerning this generation was to extend first generation’s functionality one
step further. We used the memory controllers and their interfaces so that the
Application Engine stores its query end its subject sequence offset index for
every hit it finds. Due to the fact that every memory controller is connected to
the one eighth of the memory and we want to write on different places on the
whole memory we decided to use the memory crossbar.
 The memory crossbar is a Convey provided module instantiated
between our design and the memory controllers interfaces on the Application
Engine and routes our memory requests to the right interface which will send
it to the right memory controller.
 An abstract block diagram of the architecture is presented in figure 4.8
below where a clear view of Application Engine’s modules placement is
presented.

	
 67	

Figure 4.8: Block diagram of 2nd generation BLASTn personality

 A more detailed figure 4.9 showing the interconnection between PDK’s
interfaces and BLASTn second generation personality follows. This diagram
also shows the inner parts of our second-generation personality.

Figure 4.9: Detailed block diagram of 2nd generation BLASTn personality showing its connection with the

PDK’s interfaces

	
 68	

4.5.1 AEG	
 registers	
 definition	
 	

The AEG registers that were used for this generation are defined at the table
4.2 below.

AEG	
 index	
 Register	
 Name	
 Description	

	

0	
 Init_index	
 Hiter	
 initial	
 index	

1	
 mem_base	

Base	
 write	
 memory	

address	
 for	
 storing	

hits	
 	

2	
 	
 s_off	
 offset	
 in	
 subject	

sequence	

30	
 	
 Hits_num	
 Num	
 of	
 hits	
 (Hitter	

output)	

Table 4.2: AEG registers definition

Init_Index register and Hits_num register

 These two registers are exactly the same with those used in
generation one.

 Mem_base register

 Mem_base register is used to store the starting address from
where the Application Engine will start storing results.

 S_off register

 This register is used to hold the offset index in the subject
sequence. It is used to find hit forms on an offset pair index by concatenating
its value with the value that the hitter retrieves from its memories.

Exceptions for this generation are the same with the previous.

4.5.2 Hitter	
 module	
 changes	

 The hitter module architecture went under few changes, which were
enough to add the extra functionality we were looking for. The basic modules
left untouched but the most variations have been made mostly on the FSM
controlling the hitter module and adding more functionality in it without
changing stages and their transactions. An additional offset pair write address
generator was implemented as Figure 4.10 shows.

	
 69	

Figure 4.10: Hitter module generation one block diagram

4.5.3 Hitter	
 functionality	

 Hitter module in this second generation architecture keeps all the
functionality of hitter module used in previous generation as it is an evolution
of it, but there is some additional functionality, as this hitter is capable of
storing query and subject sequence offset indexes, for every hit it finds,
directly to memory.
 For every sixteen bit quantity passed to hitter we also pass its offset
index in the subject sequence which is thirty two bits long. The hitter module
uses this extra input; in concatenation with the unsigned extended query
offset index retrieved from the hitters memories (memories outputs are
sixteen bits long) for every hit it is found to form a sixty four bit quantity
representing an offset pair which will be used from the software responsible
for the extension step of the program. Each offset pair is sent together with
the memory address generated from the memory address generator and the
necessary write control signals to the memory crossbar that was mentioned
above.
 When the hitter retrieves all hits, it raises the ended signal and
num_of_hits holds the number of hits found for this quantity.

4.5.4 CAE	
 control	
 FSM	

This module in second generation architecture have been left unattached as it
was in the first one, figure 4.5.

	
 70	

4.5.5 Host	
 application	
 changes	

	

 For this generation the host application has more changes. First, the
assembly external function has changed and became more complicated, in
this version as it loads not only AEG [0] but also AEG [1] and AEG [2]. The
rest of the function has no changes. Second, the NCBI BLAST source code
has come under changes unlike the first generations. These changes are
mostly on removing part of the code which now is replaced by the hardware.
In details, this replaced code matches to the two functions
SMALL_NA_ACCESS_HITS and s_BlastSmallNaRetrieveHits which are
called from the program for every sixteen bit quantity. The
S_BlastSmallNaScanSubject_8_4 function has also changed, now it’s
responsible to form the sixteen bit index and make a call to the hardware
providing the necessary arguments.

4.6 BLASTn	
 Implementations	
 differences	

Figure 4.11: BLASTn seeding step differences between NCBI’s software and first and second
generation personality implementations

 As it is already mentioned in session 4.4, in the first generation
architecture our custom application engine (CAE) which is the hardware
design module placed in the FPGAs, is running in parallel with the host
program’s seeding functions without effecting their functionality, and outputs
the number of hits, only for comparison reasons, with the one produced by
these functions. Unlike the first generation, in the second one the CAE is a
functional part of the program and it replaces two of these functions and part
of the third one. Differences between NCBI’s BLASTn program and the two

	
 71	

generations software and hardware co-designs we have developed according
to the seeding step is shown in figure 4.11 above.
 The second generation’s personality CAE output plays a vital role in the
alignment output of BLASTn that’s why we have spent a large amount of time
on testing and evaluating since we have been aiming at an one hundred
percentage of matching between our personality alignment and the alignment
taken from the NCBI’s software.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 72	

5. Performance	
 and	
 validation	

 According to chapter two, the BLAST algorithm consists of three basic
steps: seeding, extension and evaluation. The profiling of the NCBI BLASTn
program showed that the hotspot of the algorithm is the seeding process,
which consumes up to fifty percent of total execution time.

 As chapter four describes, the most time consuming functions of the
seeding process were implemented and mapped in reconfigurable hardware.
This chapter describes the performance of the second generation NCBI
BLASTn personality implemented. First generation’s personality was used
most for familiarization and evaluation reasons and that’s why its performance
was not taken under evaluation. This section compares the software stand-
alone NCBI BLASTn program vs. the software hardware co-design
implementation.

For both implementations the performance tests were based in one
query, which was properly chosen so that its length to be representative of the
average nucleotide query length, and on four different databases of various
number of sequences and lengths. Also, the performance results are based
on “wall time” as both implementations are fully functional. Tables 5.1 and 5.2
show the size of the testing query and the four databases.

QUERY SEQUENCE
LENGTH(letters) 782

Table 5.1: Testing query sequence length in letters.

DATABASE NAME No OF SEQUENCES No OF LETTERS

Test_db 6 4309

Testdb_large 1 3.756.989
Env_nt 18.486.260 7.655.037.578
nt 14.245.355 36.716.926.086

Table 5.2: Testing databases No of sequences and No of letters.

5.1 System	
 validation	

	
 73	

As already mentioned many times above, the main goal of the
software-hardware implementation was the validation of its output vs. the
software implementation’s results. Many test have shown that this goal was
achieved a hundred percent, as the results of both implementations are
identical.

5.2 Resources	
 utilization	

This section analyzes the recourses of the HC-1 system and the
utilization of our second generation BLASTn implementation. Although the
available hardware resources are four AEs (FPGAs), our design maps only to
one of them. Table 5.3 shows the utilization of the FPGA for one Hitter
Processing Element (HPE) and table 5.4 shows utilization of the whole
personality, using one processing element.

Hitter Processing Element recourses utilization (one Virtex5)
Slice Logic
Utilization Used Available Utilization

Number of Slices 139 51840 0%

Number of Block
RAM/FIFO

(36 Kb)
45 288 15%

Number of DSPs 0 192 0%

Table 5.3: HPE resources utilization.

BLASTn 2nd generation arcitecture recourses utilization (one Virtex5)
Slice Logic
Utilization Used Available Utilization

Number of Slices 15364 51840 29%

Number of Block
RAM/FIFO

(36 Kb)
87 288 30%

Number of DSPs 0 192 0%

Table 5.4: 2nd generation BLASTn personality resources utilization.

	
 74	

Table 5.3 makes clear that the critical resource of the HPE is the Block
RAMs. The above numbers reveal that the extra logic of the whole system
including PDK’s interfaces consumes 42 Block RAMs leaving 246 for adding
more HPEs working on parallel.

HC-1 system can combine 5 parallel working HPEs on each of its AE,
summing up to 20 HPEs total.

5.3 System	
 performance	

This section describes the performance analysis of our BLASTn
system implementation and where it stands in comparison with the
performance of the software implementation provided by NCBI.

It is necessary to point out that our implementation is not a design
focused on performance of BLASTn but a design of fully functionality and
accuracy. As the sw-hw implementation and the NCBI Blast software are
complete systems, the “wall time” measurement was used for performance
comparison.

The software execution was tested in the HC-1’s host processor, which
is a 2,13 GHz dual core Intel processor.

 Table 5.5 presents the “wall time” for the seeding step that consists of
three different software functions, which were mapped in the reconfigurablke
logic. Table 5.6 presents the “wall time” for the entire systems.

Functions:
s_BlastSmallNaScanSubject_8_4, SMALL_NA_ACCESS_HITS,

s_BlastSmallNaRetrieveHits (seeding step)

Database

SW
Performance

(sec)

SW-HW
Performance

(sec)

Speedup
(SW vs.
SW-HW)

No of
coprocessor

calls

test_db 0.01 0.9 90 1069

testdb_large 0.01 10.86 1086 939246

env_nt 10.7 10577.33 988 1888341885

nt 35.46 104969.75 2960 569752874

Table 5.5: Wall time performance of seeding step both in NCBI’s BLASTn software implementation and
2nd generation BLASTn

	
 75	

BLASTn implementations (SW by NCBI SW-HW by us)

Database

SW
Performance

(sec)

SW-HW
Performance

(sec)

Speedup
(SW vs.
SW-HW)

test_db 0.01 0.9 90

testdb_large 0.019 11.53 607

env_nt 16.089 21942 1371

nt 251 106055 423

Table 5.6: Wall time performance of both in NCBI’s BLASTn software implementation and 2nd
generation BLASTn

5.3.1 Timing	
 analysis	
 	

The comparison of the perfromance results, which are presented
above, shows that our implementation is much slower than the software one.
This is due to two very significant reasons.

 Parallelization:

 As already mentioned, our implementation maps only 1 HPE. The
reason why only one is used is mainly validation reasons, as we wanted to
create a basic design, which will be easily checked as far as its accuracy
concerns. HPE’s clock frequency is 150 MHz a number due to the Convey’s
system specifications.

 Coprocessor calls:

For both implementation’s execution time varies a lot depending on the
database and more specifically on the number of letters it has, as for every 8
letters (sixteen bit quantity) a call to the seeding functions has to be made.
Our implementation makes a call to the coprocessor and for every call it has
to pass the necessary arguments for the hardware implementation
initialization through assembly instructions to the coprocessor, which are
executed to the coprocessors scalar processor, which works on really, lower
clock frequency than the host. All this coprocessor calls adds a large time
overhead in our implementation.

	
 76	

In next chapter there are some proposals how to overcome this two
bottlenecks of our design in a future work.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 77	

6. Conclusion	
 and	
 future	
 work	

 This chapter concludes this thesis and it, also, describes some
proposals for future work based on what have already been done.

6.1 	
 Conclusion	

	

 This thesis analyzed the software implementation of the Blast algorithm
provided by NCBI and deep knowledge of the BLAST algorithm was gained.
Although we spend time on BLAST algorithm’s ideas most of our work was on
a specific version of it, the nucleotide BLAST (BLASTn). We also developed
two hardware software co-design implementations based on it and mapped
them in a state of the art heterogeneous computing system. These two
implementations are different steps of continuous development and evolution
resulting in a functional prototype of BLASTn application running on our
system. We achieved our goals concerning training, experience gaining with
this complicated high performance system and fidelity of our implementation,
there are some future work development proposals focused mostly
performance.

6.2 Future	
 work	

Generation two of the BLASTn application, which derived from the first

one, has left some positive signs with its fidelity but it lucks performance. The
system’s potentials, especially the memory system potentials, and also the
parallelization hidden in the algorithm seem encouraging and raise some
aspects for future work. Some proposals are:

• Migrating the functionality of generating input data and
passing them to the AEG registers of the CAE through
execution of scalar instructions and system function calls to
the CAE itself, so that a hardware module will replace all
three software functions and take full advantage of the
system’s memory bandwidth.

• Adding more than one hitter module, which will take fully the
advantage of the algorithm’s parallelization and will make
use of the great variety of system recourses.

	
 78	

• More extra functionality concerning the extension step can
be added to the hardware. In this case, more steps will be
executed in parallel.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 79	

REFERENCES	

	

[1] ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

[2] Prasanna Sundararajan, “High Performance Computing Using FPGAs”, Xilinx White
Paper 375 (v1.0) September 10, 2010.

[3] Altschul,S.F. et al, “Basic local alignment search tool”, J. Mol. Biol., 215, 403–410,
1990

[4] Peters,R. and Sikorski,R, “BLAST off! Science”, 278, 510–502,1997

[5] Altschul,S.F. et al, “Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res”, 25, 3389–3402,1997

[6] Smith,T. and Waterman,M, “Identification of common molecular subsequences”, J.
Mol. Biol., 137, 195–197.

[7] Karlin,S. and Altschul,S.F, “Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes”, Proc. Natl Acad.
Sci. USA, 87, 2264–2268.

[8] M. Dayhoff, R. Schwartz, and B. Orcutt, “A model of evolutionary change in proteins,”
In: Dayhoff,M,O, (ed), Atlas of Protein Sequence and Structure National Biomedical
Research Foundation, Washington, DC, pp, 345–352, 1978.

[9] S. Henikoff, J. Henikoff, "Amino Acid Substitution Matrices from Protein Blocks",
PNAS 89: 10915–10919, 1992.

[10] Cynthia Gibas, Per Jambeck, “Developing Bioinformatics Computer Skills”

[11] Jason Papadopoulos, “The Developer’s Guide to BLAST “

[12] Convey, “Convey Personality Development Kit Reference Manual”, Version
4.2,June 2011

[13] Jason D. Bakos, “High-Performance Heterogeneous Computing with the
Convey HC-1”, 1-1-2010

	
 80	

[14] Karl Savio Pimenta Pereira, “Characterization of FPGA-based High
Performance Computers”

[15] Convey, ”Convey Spat Users Guide”, Version 1.0, June 2009 .

[16] Convey, “Convey Programmers Guide”, Version 1.8, November 2010.

[17] Convey, “Convey Reference Manual”, Version 2.00, September 2009.

[18] K. Muriki, K. Underwood, and R. Sass, “RC-BLAST: Towards an open source
hardware implementation,” In Proceedings of the International Workshop on High
Performance Computational Biology (2005).

[19] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, T. VanCourt, "Single Pass,
BLAST-Like, Approximate String Matching on FPGAs"14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM'06), pp, 217-
226, 2006.

[20] M. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt, “Single pass
streaming BLAST on FPGAs”, Parallel Computing, vol. 33, issue 10-11 (Nov, 2007),
pp 741-756, 2007.

[21] P. Afratis, E. Sotiriades, G. Chrysos, S. Fytraki, and D. Pnevmatikatos, “A rate-

based prefiltering approach to BLAST acceleration,” in Proc,IEEE Conference on
Field Programmable Logic and Applications, 2008.

[22] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, and J.

Lancaster, "Biosequence Similarity Search on the Mercury System," In Proc. of the
IEEE 15th Int'l Conf, on Application-Specific Systems, Architectures and Processors,
September 2004, pp, 365-375.

[23] J. Lancaster, J. Buhler, R. Chamberlain, “Acceleration of Ungapped

Extension in Mercury BLAST”, 7th workshop on media and streaming processors,
Barcelona, Spain, November 12, 2005

[24] A. Buhler et al. "Mercury blastn: faster dna sequence comparison using a
streaming hardware architecture", RSSI, 2007.

[25] Euripides Sotiriades, “Reconfigurable Architecture Structures for the BLAST

DNA Sequencing Algorithm”, phd thesis.

[26] F. Xia, Y. Dou and J. Xu, “Families of FPGA-Based Accelerators for BLAST
Algorithm with Multi-seeds Detection and Parallel Extension”, Bioinformatics
Research and Development, Second International Conference, BIRD 2008, pp, 43-
57, Vienna, Austria, July 7-9, 2008.

[27] F. Xia, Y. Dou, J. Xu, "FPGA-Based Accelerators for BLAST Families with

Multi-Seeds Detection and Parallel Extension," The 2nd International Conference on
Bioinformatics and Biomedical Engineering, 2008, ICBBE 2008,, pp,58-62, 16-18 May
2008.

[28] www.timelogic.com. Time logic biocomputing solutions.

	
 81	

[29] A. Wirawan, K. C. Keong, and B. Schmidt. Parallel dna sequence alignment

on the cell broadband engine. Lecture Notes in Computer Science, pages 1249–
1256, 2007.

	

