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1. Introduction	
  
Bioinformatics is the field of biology specialized in developing the 

suitable hardware and software platforms for storing and analyzing the huge 
amounts of data that are generated by life scientists. Sequence alignment 
constitutes one of the most important aspects of bioinformatics since the 
discovery of DNA. 

1.1 Sequence	
  alignment	
  
Sequence alignment is a way of arranging the sequences of DNA, RNA 

or protein in order to identify regions of similarity. Similar sequences often 
derive from the same ancestral sequence, this means that if two or more 
sequences are similar, they probably have the same ancestor, share the 
same structure, and have a similar biological function. This principle works 
even when the sequences come from very different organisms. An accurate 
alignment can provide valuable information for experimentation on the newly 
found sequences. Sequence alignment is indispensable in basic research as 
well as in practical applications such as pharmaceutical development, drug 
discovery, disease prevention and criminal forensics. 

Sequence alignment aims at identifying regions of similarity between 
two DNA or protein sequences (the query sequence and the subject or 
database sequence). Alignment’s classification can be based either on 
completeness or on the number of sequences for alignment. In the case of the 
number of sequences an alignment will be distinguished in pairwise when 
sequences are aligned in pairs or in multiple sequence alignment (MSA) when 
three or more sequences are participating in the alignment. When it comes 
down to completeness an alignment can be global or local. Global sequence 
alignment targets to find the best overall alignment among the sequences, on 
the other hand, local’s target is to find short regions of highly conserved 
sequence, Figure 1.1 

 

 
Figure 1.1: Global vs local alignment. Source

 http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html 
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1.2 Sequence	
  alignment	
  algorithms	
  
	
  

 Since the high importance of sequence alignment has been 
indicated, several algorithms have been developed to offer a solution to 
it. These algorithms are divided in two categories, the first category is 
composed of the algorithms based on the dynamic programming 
method, providing the highest accurate answers despite the fact that 
their high execution time makes it’s use forbidden regarding current 
huge amount of data. The most known algorithms of this category are  
Smith-Waterman for local alignment and the Needleman-Wunch for 
global alignment.  On the contrary, the second category is constituted of 
algorithms based on a heuristic approach to find the answer. Even 
though these answers are not as accurate as the first ones, these 
algorithms are more preferable due to their higher speed. BLAST and 
FASTA are representative algorithms of that category. When it comes to 
MSA a variety of methods producing both local and global alignments 
have been developed, which are categorized into four types, Dynamic 
programming, Progressive, Iterative and Motif finding methods. Some of 
the most known algorithms belong in this types as shown in Figure 1.2 
are ClustalW, MSA, Praline, MMER, and MEME. Because MSA is out of 
the scope of this thesis, there will not be an extensive analysis of its 
methods.  
 
 

 
 

Figure 1.2: Sequence alignment methods 
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Figure 1.3: Time to compare human vs mouse genoms   Source  
 Mercury BLASTN: Fast Streaming DNA Sequence Comparison 
Jeremy Buhler, Joe Lancaster, Arpith Jacob, and Roger Chamberlain 

  Washington University in St. Louis †BECS Technology, Inc. 
 
 
 
 
1.3 Blast	
  algorithm	
  

 

BLAST (Basic Local Alignment Search Tool) is the most powerful and 
most known algorithm for sequence alignment among the community of life 
scientists. It takes a query sequence and aligns it with every subject sequence 
in a database, looking for segments of high degrees of similarities. It picks out 
from the database those sequences that contain a segment so similar to a 
part or the entire query that such similarity is deemed statistically significant. 

 
Figure 1.4: Growth in Genbank (DNA Sequencing Data). Source  

http://www.kurzweilai.net/dna-sequencing-data 
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Due to the exponential growth of the databases (From 1982 to the 

present, the number of bases in GenBank has doubled approximately every 
18 months. As of 15 August 2011, GenBank release 185.0 has 
130,671,233,801 bases [1]). A powerful computer system dedicated to 
running BLAST has been established at the National Center of Biotechnology 
Information, which has over five hundred thousands query submissions on a 
daily base, a number which soon will look very small as the query 
submissions per day, are being double approximately every year, which 
explains why sequence alignment and particularly BLAST becomes an 
excellent candidate for the high performance computing field. 

 
 

 
 

 
Figure 1.5: High performance computing areas. Source:  High-Performance Computing on Intel® 

Architecture 11-Feb-2003 Toulouse, France 
Dr. Herbert CORNELIUS Dr. Bob KUHN Fabien ESDOURUBAIL Jamel TAYEB 

Gilbert CHAMPOUSSIN 
 
 
 

1.4 High	
  Performance	
  Computing	
  (HPC)	
  
 

High performance computing is the branch of computer science that 
focuses on developing supercomputers and software to run on 
supercomputers. A fundamental area of this field is developing parallel 
processing algorithms and software, programs that can be divided into little 
pieces so that each piece can be executed simultaneously by separating the 
processing unit, which can be a processor, a general purpose unit or even a 
specific designed hardware. 
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High performance computing is growing with fast steps nowadays, the 
reason for this is the increase of computational performance necessary for 
many scientific applications, such as applied mathematics, economics,	
  
environmentals, bioinformatics and many more. The main reason behind this 
demand is the exponential growth of information and data. That’s why high 
performance computing is a primary need for the future of science.  

 Until the early 2000s, general purpose single-core CPU-based systems 
were the processing systems of choice for HPC applications. In the mid-
2000s, the HPC industry has gone through a historical step change to meet 
high-performance demands, General-purpose CPU vendors changed course 
to rely on multicore architectures. The technique of simply scaling a single-
core processor's frequency for increased performance has run its course, 
because as frequency increases, power dissipation escalates to impractical 
levels. 
 The shift to multicore CPUs forces application developers to adopt a 
parallel programming model to exploit CPU performance. Even using the 
newest multicore architectures, it is unclear whether the performance growth 
expected by the HPC end user can be delivered, especially when running the 
most data and compute intensive applications [2]. Today the idea of 
heterogeneous computing is shaping the present and future of HPC. 

Generally speaking, a heterogeneous computer is a system that uses 
different types of computational units to accomplish the work of the 
applications that use the computer. The basic idea is coupling to a multicore 
CPU, a new kind of computational engine, such as a field-programmable gate 
array (FPGA), a Cell processor, a graphics processing unit (GPU) or even a 
combination of these. This infrastructure becomes a heterogeneous computer 
with huge processing power and lower power consumption. In this 
configuration the added computational units accelerate several calculations of 
interest, and so are often referred to as accelerators. 

     

1.5 Thesis	
  contribution	
  
The contribution of this thesis is the analysis of the software 

implementation of the Blast algorithm provided by NCBI. Although we spent 
time on BLAST algorithm’s ideas, most of our work was on a specific version 
of it, the nucleotide BLAST algorithm(BLASTn). We also developed two 
hardware software co-design implementations based on it and mapped them 
in a state of the art heterogeneous computing system.  These two 
implementations are different steps of continuous development and evolution 
resulting in a functional prototype of BLASTn application running on our 
system. We achieved our goals concerning training, experience gaining with 
this complicated high performance system and fidelity of our implementation. 
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1.6 Thesis	
  Organization	
  
 

The rest of this thesis is organized as follows: Chapter 2 briefly 
describes BLAST algorithm and focuses mostly on NCBI BLASTn 
implementation. Chapter 3 describes the HC-1 hybrid super computer system 
in details. Chapter 4 has the first and second generation architectures for 
BLASTn. Chapter 5 has performance results and source usability of the 
second generation implementations Finally, Chapter 6 has future work 
proposals and some conclusions from this work. 
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2. BLAST	
  Algorithm	
  

 
BLAST (Basic Local Alignment Search Tool) is the heuristic search 

algorithm for finding most of the highest-scoring (disjoint or at least minimally 
overlapping) local alignments between a query and one or more database 
sequences. We can simply think of BLAST being for nucleotide and protein 
sequences what GOOGLE is for the Internet. 

This chapter is organized as follows. Section 2 analyzes the basic 
stages of the Blast Algorithm. Section 3 describes the substitution matrices 
and their usage. Finally, the rest of the chapter describes the well-known 
NCBI-BLAST suite and the software implementation of NCBI-Blastn algorithm 
as well as, its parameters. 

 
 
2.1 Blast	
  algorithm	
  stages	
  
 
 

 
Figure 2.1: BLAST algorithm steps 

 
 
 
BLAST search consists of three steps: seeding, extension, and 

evaluation. 
During the first step, the query sequence is split forming a list (Look-up 

table), which contains all the continuous overlapped subsequences of length 
W, which are called w-mers. For example if sequence ACGTAAATGCAG is 
the query of length 12 and W is equal to 3, the formed list will contain 10 W-
mers. 

 When the list is generated the database sequences are searched 
against it for finding all common words, which might possibly be part of a High 
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Score Pair (HSP), and which will be used as seed in the second step.  
The basic idea behind seeding is the simplified assumption that any 

alignment of interest between query and database sequence will contain at 
least one region of W consecutive letters that is high-scored. Making the value 
of W too small increases the work, and making W too large reduces 
dramatically the work as it eliminates the search space, but also causes most 
alignments to be missed. 
 Going to the extension step, all the seeds that occurred by chance are 
discarded and only the seeds which are part of a larger common 
subsequence are kept, this is done by extending the alignment to the left and 
right of the seed to find the alignments whose scores are greater than a 
threshold S. In the initial version of BLAST presented in [3] this extension is 
called the one-hit method and consumes most of the processing time of the 
algorithm [4]. In order to improve this, the two-hit method was introduced in 
1997 [5]. According to this method, the algorithm requires two hits rather than 
one to invoke an extension and hence the threshold parameter T must be 
lowered to retain comparable sensitivity. As a result, many more single hits 
are found, but only a small fraction has an associated second hit on the same 
diagonal that triggers an extension. During this process, the quality of the 
alignment is calculated by a scoring scheme, which is relying on scoring 
matrixes (Substitution Matrices), such as the popular BLOSUM62 and PAM, 
described in another part of this thesis. If the ungapped score is above a user-
defined threshold, the seed can be used to produce a gapped alignment 
based on a Smith–Waterman type algorithm [6]. 
 Finally, during the third step, BLAST determines which alignments of the 
previous step are statistically significant using the query and database 
sequence lengths, the substitution matrix and the sequence statistics. The 
accepted alignments are those whose probability of finding such an alignment 
by chance is lower than a user-defined value [7]. 
 
 
 
 

 
Figure 2.2 : Query w-mers of lengh 3. 
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Figure 2.3: example of the Seeding step of BLAST algorithm. 

 
 
 

 
 

Figure 2.4: Example of extension step of BlAST algorithm. 
 
 
 
2.1.1 	
  Substitution	
  Matrices	
  
 
A key element in evaluating the quality of a pairwise sequence 

alignment, as already mentioned, is the "substitution matrix”, which assigns a 
score for any possible aligned pair of residues. Generally, different 
substitution matrices are tailored to detecting similarities among sequences 
that are diverged by differing degrees. In case of nucleotide residues, a 
simple matrix, like the matrix in Table 1.1, is most of the times the proper 
choice because the simplicity of the matrixes of amino acids residues makes 
their construction difficult due to the rarity of certain amino acid substitutions. 
After a lot of studies, many matrices, which are proper for protein alignments, 
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have been derived, among them the most known are PAM and BLOSUM. 
  PAM (Point Accepted Mutation) matrices, Figure 2.5, introduced by 
Margaret Dayhoff [8] in 1978 based on 1572 observed mutations in 71 
families of closely related proteins. Each matrix is twenty-by-twenty (for the 
twenty standard amino acids); which has the score for every pair of proteins.
 BLOSUM (BLOcks of Amino Acid SUbstitution Matrix), Figure 2.6, was 
first introduced in a paper by S.Henikoff  and J.Henikoff [9], they are derived 
from the Blocks database, a set of ungapped alignments of sequence regions 
from families of related proteins. A clustering approach sorts the sequences in 
each block into closely related groups, and the frequencies of substitutions 
between these within a family, derive the probability of a meaningful 
substitution [10]. 

 

 
 

Table 1 .1: Simple substitution matrix example 

 

 

 

 

 
Figure 2.5 :  Pam 250 matrix example Source

 http://www.birec.org/sandbox/omamasaudtutorial 

 

 U C A G 

U  1 -1 -1/2 -1 

C -1  1 -1 -1/2 

A -1/2 -1  1 -1 

G -1 -1/2 -1  1 
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Figure 2.6: BLOSUM 62 matrix example. source
 http://www.NCBI.nlm.nih.gov/blast/html/sub_matrix.html 

 
 
 

2.2 	
  NCBI-­‐BLAST	
  
 
NCBI-BLAST edition is by far the most known open source 

implementation of the BLAST algorithm. It is actually employed by a collection 
of programs each one specially tailored to implement a different kind of 
alignments. These programs are BLASTP, BLASTN, PSIBLAST, PHIBLAST, 
RPSBLAST, BLASTX, TBLASTN and TBLASTX. Their differences are 
discussed in more details below: 

 
• BLASTP is suitable for alignments between one or more protein 

query sequences to one or more subject protein sequences. 
• BLASTN is the same as BLASTP but is used for nucleotide 

instead of protein sequences.  
• Megablast is an optimized version of BLASTN for finding very 

similar alignments in very large sequences. 
• PSIBLAST is used to align a protein query to a protein 

database, but attempts to build up a query-specific scoring 
model that will be sensitive only to database sequences that lie 
within the same ‘protein family’.  

• BLASTX compare the six-frame conceptual translation products 
of an input nucleotide query sequence (both strands) vs. a 
protein sequence database. 

• TBLASTX searches a translated collection of nucleotide queries 
vs. a translated collection of nucleotide subjects. It is usually 
used for aligning a hypothetical protein sequences whose 
underlying nucleotides have diverged significantly from each 
other. 

• RPSBLAST searches a query protein sequence or protein 
sequences vs. a database of position specific scoring matrices 
(PSSMs, profiles, or more commonly known as conserved 
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domains) to identify the ones the query are similar to. 
• TBLASTN compares a protein sequence to the six-frame 

translations of a nucleotide database. It is a very productive way 
of finding homologous protein coding regions in unannotated 
nucleotide sequences. 

• PHIBLAST computes local alignments between a single protein 
sequence and a database of protein sequences. It starts with a 
collection of matches, on the query and database sequences, to 
a specified regular expression pattern. This expression makes 
PHIBLAST more specific than blastp. 

 
NCBI has established a free online service for all the available flavors 

of blast, and a free ftp server from where anyone can download the source 
code of the latest or older versions of blast suite for local machine usage, and 
a huge amount of preformatted and unformatted sequence databases, as 
well. NCBI also has developed precompiled executables of their software for 
almost every operating system known today. 
 
 

In the current thesis, for simplicity reasons, it is the NCBI-Blastn 
program that is used and all the other programs are disregarded. 
 
 
 

2.3 	
  NCBI-­‐BlASTn	
  
 
 As already mentioned, blastn program is suitable for comparing query 
nucleotides sequences vs. a subject nucleotide database. This algorithm is 
suitable for finding similar sequences, but not identicals. The process of 
finding similar sequences is based on generating an indexed table or 
dictionary of short subsequences, which are called words, for both the query 
and the database. One of the important parameters governing the sensitivity 
of BLAST searches, is the length of the initial words (word size). The most 
important reason that blastn is more sensitive compared to MEGABLAST, 
which is suitable for nucleotide sequence search also, is that it uses a shorter 
word size. That makes blastn more sufficient than MEGABLAST at finding 
alignments that are related to nucleotide sequences from other organisms 
since the initial exact match can be shorter. The word size is adjustable in 
blastn and can be reduced from the default value of 11 to a minimum of 7 to 
increase sensitivity. This word size can also be increased to make the search 
speed faster and limit the number of database hits. 
 

2.3.1 NCBI-­‐BLASTn	
  usage	
  
 
 In this section we will provide the necessary information needed for 
performing a BLASTn ungapped alignment on our local machine using self 
compiled NCBI’s blast package source code version 2.2.24 [Aug-08-2010].
 Most programs in the blast package, are command line program with 
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no graphic user interface (GUI). We control the programs through command 
line options issued in a terminal window. These options instruct each program 
what program function, query, and database to use. They also control the 
search sensitivity, the result format, and the name of the output file, etc.
 Supposing that our query file is the test.fasta containing the properly 
formatted query sequences (proper formats are analyzed later in this chapter)  
and again the proper formatted database file is the ecoli, the command 
performing a basic alignment is the following: 

blastall -p blastn -d ecoli.nt -i test.fast -o output_test.out  
 
 Blastall is used to perform one of the five flavors of blast (blastp, blastn, 
blastx, tblastn and tblastx). Below the most useful command arguments of the 
program will be explained. 

• -p flag denotes the choice of the program name. It must be followed by 
one of the strings "blastp", "blastn", "blastx", "tblastn", or "tblastx". 

• -d flag is followed by the name of a formatted database. Multiple 
database names (bracketed by quotations) are also accepted. An 
example would be -d "ecoli.nt est" , which will search both the ecoli and 
est databases, presenting the results as if they are one database 
consisting of the concatenation of both.  

•  -i flag is followed by the input file. This flag is optional as blastall uses 
the standard input stream for input sequences by default. If multiple 
sequence entries are in the input file, all queries will be searched. 

• -o flag denotes the file in which the output will be stored. The default 
output stream is the standard output. 

• -F flag is used to specify one or more filters to be used to mask query 
sequence(s), it can be either true(T) or false(F) . 

• -g flag guides blastall to perform gapped or ungapped alignment, it also 
have true(T) or false(F) input. 
  

 These are the most basic and useful arguments. The first four are used 
in almost every alignment, while in combination with the last two; blastall will 
provide an unfiltered ungapped alignment. In addition, the blastall method 
offers many more arguments for more flexible and more necessary specific 
alignments. Due to the fact that most of the alignments used by this thesis 
were ungapped and unfiltered we stick command below: 
 
 blastall -p blastn -d ecoli.nt -i test.fast -o output_test.out  -F F –g F. 
 
 
 

2.3.2 Data	
  input	
  formats	
  
  

Query input sequences, that are passed in blastall and especially 
blastn program  with -i argument, are nucleotide sequences in FASTA format. 
Sequences in FASTA format consists of one line of comments beginning with 
a '>' symbol, followed by any number of lines, of any length of sequence 
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information. Lines except the last one often are limited to sixty characters. 
Nucleotide sequences are represented in the nucleic acid codes, with these 
exceptions: lower-case letters are accepted and are mapped into upper-case; 
N may be used for an unknown nucleic acid residue. An example of a 
nucleotide sequence in this format is presented in figure 2.7 below: 

>18BI1 Human MLC1emb gene for embryonic myosin 
alkaline light chain, promoter and exon 1  
GTGAAGAGAGAGCTGTGGCATGAAGGGGAGGGGGCTGGTGGCCCCAAACCTGG
TGACAA 
TACACAGTTGTCAGCTGTACCCTGCTGGCGTTTCTTCCTTTTATAGTCAGCAG
CAGTTG 
CTCTTGCTTTCACCCAGCCCCTCTGTGGGGCTCCTGCCCAGGATAAAAGGGAA
GGGAGG 
CAGCCCAGGCTCCTATCTCATCTCCCAGACGCCACGTCTCTCGGTTTCTTCTT
AG 

Figure 2.7: FASTA format example.  Source http://bayesweb.wadsworth.org/gibbs/fasta.html 

  

 

On the other hand, input databases, which are entered by –d 
argument, are not in the readable FASTA format, but in a compressed format 
suitable for fast execution of blastn and more efficient memory usage. Such 
databases are generated by NCBI’s provided formatdb program. Although 
formatdb’s usage is out of this thesis scope, we will briefly explain the most 
useful arguments of this program by an example.     
 Firstly, we are constructing a multi-fasta file containing one or more 
sequences we would like to include in the database, lets name it ‘db_sequences’. 
This file is then used to construct the index for the BLAST database, lets name the 
database ‘db_test’. Then we execute the formatdb program with the appropriate 
arguments. For our example the command for constructing db_test database 
from our db_sequence input file, will look like this: 

formatdb -i db_sequences -p F -o T -n db_test 
 
 

The parameters, which are used, are explained below: 

• -i argument denotes that one or more filename(s) of database data 
follow. 

• -p argument is an optional flag which is followed by T if the type of 
the file is protein and F if the file consists of nucleotide 
sequences. The default value is set to T. 

•  -o argument is followed by T, parses seqID and creates indexes. 
When it is followed by F, it does not create any indexes. 
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• -n argument allows a user to create BLAST databases with a 
different name other than the original FASTA files. This can be 
used in situations where the original FASTA file is not required 
other than by formatdb. This can help in a situation where disk-
space is tight.  

  
 
 
    

Under the scope of this thesis many various sized query sequences 
and databases have been used for tests, which have been done for profiling 
and output correlation reasons. These datasets were either downloaded by 
NCBI’s web site or were random flexible sequences generated by us. 

2.3.3 BLASTn	
  output	
  
 

BLAST output report can be delivered in a variety of formats. These 
formats include plain text, HTML and XML formatting.  As most of the times 
the report in plain text format consists of a large number of lines a small 
summary follows. 

The BLAST output report starts with some header information that lists 
the type of program used (here blastn), the version (2.0.11), and a release 
date (this is only an example and not the version we are using.). Also, there 
are references to the BLAST program, the query definition line, and summary 
of the database that is used, figure 2.8. 

BLASTN 2.0.11 [Jan-20-2000] 
 
 
Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,  
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),  
"Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs",  Nucleic Acids Res. 25:3389-3402. 
 
Query= U51677 
         (2575 letters) 
 
Database: embl.fas 
           442,729 sequences; 675,252,082 total letters 
 
Searching...................................................done 
 

Figure 2.8: Fist section of BLAST output. 
 
 
 

The second section, Figure 2.9, describes the database matches 
found. These include a database sequence identifier, the corresponding 
definition line, as well as the score (in bits) and the statistical significance ('E 
value') for this match.  
 

                                                                   
Score     E 

Sequences producing significant alignments:             (bits)  Value 
 



	
   19	
  

U51677 Human non-histone chromatin protein HMG1 (HMG1) gene, co...  4129  0.0 
L38477 Mus musculus (clone Clebp-1) high mobility group 1 prote...   353  7e-95 
X80457 M.musculus HMG1 gene                                          353  7e-95 
U00431 Mus musculus HMG-1 mRNA, complete cds.                        353  7e-95 
L08048 Human non-histone chromosomal protein (HMG-1) retropseud...   349  1e-93 
     . 
     . 

 
Figure 2.9: Second section of BLAST output. 

 
      
 
 

In the third section Figure 2.10, each alignment is preceded by the 
sequence identifier, the full definition line and the length of the database 
sequence. Next, the score is presented (in bits and the raw score) as well as 
the statistical significance of the match, followed by the number of identities 
and positive matches according to the scoring system and, if applicable, the 
number of gaps in the alignment. Finally the actual alignment is shown, with 
the query on top and the database match (Sbjct). 
 
 
 
>U51677 Human non-histone chromatin protein HMG1 (HMG1) gene, complete 
            cds. 
            Length = 2575 
             
 Score = 4129 bits (2083), Expect = 0.0 
 Identities = 2167/2209 (98%) 
 Strand = Plus / Plus 
 
                                                                         
Query: 1    atgggcaaaggagatcctaagaagccgagaggcaaaatgtcatcatatgcattttttgtg 60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 1    atgggcaaaggagatcctaagaagccgagaggcaaaatgtcatcatatgcattttttgtg 60 
 
                                                                         
Query: 61   caaacttgtcgggaggagcataagaagaagcacccagatgcttcagtcaacttctcagag 120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct: 61   caaacttgtcgggaggagcataagaagaagcacccagatgcttcagtcaacttctcagag 120 
 
 
     . 
     . 
 

Figure 2.10: Second section of BLAST output. 
 

 
The last section, Figure 2.11, lists some information about the database which 

was used as well as statistical and search parameters used:  
 
    . 
 
 
Database: embl.fas 
    Posted date:  May 15, 1998  5:37 PM 
  Number of letters in database: 675,252,082 
  Number of sequences in database:  442,729 
   
Lambda     K      H 
    1.37    0.711     1.31  
 
Gapped 
Lambda     K      H 
    1.37    0.711     1.31  
 
 
Matrix: blastn matrix:1 -3 
Gap Penalties: Existence: 5, Extension: 2 
Number of Hits to DB: 1123218 
Number of Sequences: 442729 
Number of extensions: 1123218 
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Number of successful extensions: 86816 
Number of sequences better than 10.0: 106 
length of query: 2575 
length of database: 675,252,082 
effective HSP length: 21 
effective length of query: 2554 
effective length of database: 665,954,773 
effective search space: 1700848490242 
effective search space used: 1700848490242 
T: 0 
A: 0 
X1: 6 (11.9 bits) 
X2: 10 (19.8 bits) 
S1: 12 (24.3 bits) 
S2: 19 (38.2 bits) 
 
 

  Figure 2.11:  Summary of the four main parts of an NCBI_BLAST output in plain text format. 
 

 

 

2.4 	
  Profiling	
  
 
 
 
 A profiling study of NCBI-BLASTN with default parameters using the 
open source GNU gprof profiler, is shown in the charts below. The time spent 
in each step of the algorithm can vary substantially with different queries and 
different databases. During our profiling tests we have used a variety of 
queries and two of the largest databases provided by NCBI :  

• Nucleotide collection (nt) which Contains all GenBank and PDB 
sequences except Expressed Sequence Tags, Sequence Tagged 
Sites, Genomic Survey Sequences and unfinished High Throughput 
Genomic Sequences (all of which can be searched separately) and 

 
• Environmental samples (env_nt) Sequences from environmental 

samples, such as uncultured bacterial samples isolated from soil or 
marine samples, e.g. the Sargasso Sea project. These sequences are 
not in nt. 
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   A I       A II  

 

  

   B I       B II 

Figure 2.12: Profiling of the NCBI-BLAST code for queries of length 117 to 5662  for ungapped alignments. (I) charts 
represents real execution time. (II) charts represents percentage of execution time. (A) For env_nt database, the seeding 

and extension steps, respectively, consume up to 50% of the total time (blue and red). (B) For nt database on average, the 
seeding, ungapped extension, respectively, consume 55% of the total time (blue and red). 

 

 As charts in figure 2.12 reveal, the ungapped extension and mostly the 
seeding   are the most computationally intensive parts of the NCBI-Blastn 
algorithm. For ungapped alignments, these two steps consume over 50% of 
the total execution time. Based on these observations, we decided to focus 
our efforts on the seeding step. 
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Figure 2.13 : BLAST steps and where tihe most of the execution time is spend. 

 

2.5 	
  Seeding	
  step	
  
 
 

When NCBI-BLAST finishes the initial stage for every BLAST program, 
which creates the Lookup table, it afterwards starts the seed collection. For 
this stage there are several routines named ScanSubject routines, which will 
touch every letter of the database being searched for most database 
searches. All of the routines’ outputs are a full array of type BlastOffsetPair, 
which is a structure containing two indexes for query and database offsets of 
hits found. Each BlastOffsetPair represents one high-scoring alignment 
between a query sequence and a single subject sequence. 

Generally, a ScanSubject routine can be called several times on the 
same subject sequence, in case there are many hits to that sequence, and it 
works from the beginning to the end of the sequence. There is a limit to the 
number of hits that a single ScanSubject routine call can retrieve, which 
depends on blast-program and blast look-up table. This limit is properly 
chosen so that when the look-up table is accessed, there will be available 
room for all of the query offsets at that lookup table entry. During the 
construction of the lookup table, an upper bound on the number of lookup 
entries is computed, which is given by the ‘longest_chain’ field of Blast 
lookup table structures. The maximum number of hits returned by a 
ScanSubject call is longest_chain plus a fixed amount. 

Blast algorithm has a pool of about two dozens ScanSubject routines 
and every time chooses the most suitable for usage, in order to achieve 
maximum ScanSubject performance for nucleotide searches. The look-up 
table type, the word size, and the scanning stride define that choice. A word 
size is the number of letters, which constitute to a group of letters based on 
which, comparisons are made. The stride length is the number of letters 
between the words where the comparison begins. Figure 2.14 shows how 
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eight letter words with 4 letter stride lengths are formed. 

 

Figure 2.14: Example of word and stride length. 

In more details, when the stride is 1 or 3 plus a multiple of 4, the 
scanning loop is unrolled by 4, and when it is 2 plus a multiple of 4 the 
scanning loop it is unrolled by 2. The unrolling process eliminates several 
shift and mask operations, and turns the shift and mask quantities into 
compile-time constants. When the scanning starts, the unrolled routines jump 
into the middle of the unrolled loop using a switch statement. In case the 
stride is less than 4, the scanning uses an accumulator to store words across 
scanning iterations. This reduces the number of memory accesses to the 
subject sequence, and the number of pointer increments. If the word size is a 
multiple of 4, mask operations are removed when the offset into the subject 
sequence is known to be a multiple of 4. Because the loops are unrolled, all 
strides benefit of this optimization. In the specific case in witch the lookup 
table width is 8 and the stride is 4, all the unrolled loop iterations are similar, 
that’s why the scanning can be made to finish only at the bottom of the loop. 
This eliminates several bounds checks, and makes this case the fastest of all 
the scanning routines. Happily, this loop is also the most common for 
ordinary blastn.[11] 

  
 As far as our study concerns, the scanSubject routine is 
s_BlastSmallNaScanSubject_8_4, which belongs, in the last category 
mentioned above and a detailed flow chart is shown in figure 2.16. It uses as 
input a pointer to the look-up table, a pointer to the scan subject, an array of 
query and subject positions where word hits are found and which is also the 
output of our routine, a variable representing the maximum number of hits and 
the maximum length of the array mentioned above and the starting and 
ending position on the subject sequence being scanned. During its execution 
time two more routines are used, these are SMALL_NA_ACCESS_HITS and 
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s_BlastSmallNaRetrieveHits. The first one is used to check if any hit exists 
and if so, it makes a call to the second one, which is responsible for their 
retrieval and their restoration in the right position of the output array. Detailed 
flow charts of both routines are shown in figures 2.17 and 2.18. 
 

 

Figure 2.15: Seeding step using s_BlastSmallNaScanSubject_8_4. 
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Figure 2.16: Detailed flow chart of s_BlastSmallNaScanSubject_8_4 scanSubject routine. 
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Figure 2.17: Flow chart of SMALL_NA_ACCESS_HITS routine, used by the seeding step of the 
software version of NCBI_BLASTn. It is called by s_BlastSmallNaScanSubject_8_4 routine. 
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Figure 2.18 : Flow chart of s_BlastSmallNaRetrieveHits routine, used by the seeding step of 
the software version of NCBI_BLASTn. It is called by SMALL_NA_ACCESS_HITS predefined routine. 
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2.6 	
  Conclusions	
  
 

This chapter analyzes BLAST algorithm and its basic steps. Also, this 
chapter analayzes the computational performance of the NCBI-BLAST 
software implementation and its calling routines.   

 
There are some conclusions that come out from this chapter: 
 
1. BLAST algorithm is the most well knonw algorithm for sequence 

alignment. 
 

2. BlAST consists of three steps, which are seeding, extention and 
evaluation. 

 
3. BLAST algorithm relies on deferent substitution matrices. 

 
 

4. NCBI BLAST is a suite of programs for deferent kind of alignments.  
 

5. NCBI-BLAST programs are :  BLASTP, BLASTN, MEGABLAST, 
PSIBLAST,BLASTX,TBLASTX,RPSBLAST,TBLASTN and PHIBLAST. 

 
6. BLAST is a very computationaly expensive algorithm. Its execution 

time depends besicaly on the input sequence and database.  
 
 

7. The most computational intensive part of the algorithm is the seeding 
step and it takes up to  50 % of the execution that’s why it was chosen 
to implemented on FPGA.  
 

8. NCBI-BLASTn has about a dozen of functions to implement the 
seeding step. The function, which is suitable for small query 
implemented on FPGA.   

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
   29	
  

	
  
3. Convey	
  HC-­‐1	
  

 
Convey Computers made a revolution to the high-performance 

computing (HPC) field by launching the world's first hybrid-core computer HC-
1 that breaks the barriers of expensive power, performance and 
programmability. The HC -1 server managed to change the till today known 
HPC as it breaks through the current power/performance wall to significantly 
increase performance for certain compute and memory bandwidth intensive 
applications. Also, it is easy for programmers to use as it provides full support 
of an ANSI standard C, C++ and Fortran development environment and it 
significantly reduces support, power and facility costs for companies. 

Convey with HC-1 managed to fill a market space called hybrid-core 
computing, which marries low cost and simple programming model of a 
commodity system with the performance of customized hardware architecture. 

 

 

3.1 HC-­‐1	
  server	
  
 

Convey’s infrastructure combines an Intel Xeon processor and a 
Convey designed coprocessor based on Xilinx Field Programmable Gate 
Arrays, with its own high-bandwidth, virtual memory addressed, cache-
coherent memory subsystem. It also offers an ANSI standard development 
environment, increasing productivity and portability. 

HC-1’s main strength is Convey’s implementations, called 
Personalities, which are extensions to the x86 instruction set that are 
implemented in hardware increasing productivity and optimizing performance 
of specific portions of an application. They are sharing the same physical and 
virtual address spaces with the x86 instructions, and applications can contain 
both x86 and coprocessor instructions in a single-instruction stream. Convey 
compilers generate one executable image that contains both x86 and 
coprocessor instructions. Systems can contain multiple personalities. Convey 
provides a Personality Development Kit (PDK) for creation of new application-
oriented architectures discussed in details later in this chapter.  

Another strong point of HC-1 is its memory, which provides a 
bandwidth of 80 Gigabytes/sec delivering huge sustainable performance. A 
shared virtual and physical memory between the coprocessor and the x86 
provide the tight integration that allows the system to be programmed as a 
single architecture. This means that the programmer does not need to 
manage the physical memory on the coprocessor nor explicitly move data 
back and forth between the x86 main memory and the coprocessor main 
memory. 
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3.2 Hc-­‐1	
  system	
  architecture	
  
 

  

 
Figure 3.1 HC-1 server architecture. 

 

 

Convey HC-1 is a hybrid-core computer system that uses a commodity 
two-socket motherboard to combine a reconfigurable, FPGA-based 
coprocessor with an industry standard Intel 64 host processor. Physically, the 
system is based on two main logic boards in a rack-mountable 2U enclosure. 
The top half of the enclosure is the coprocessor and the bottom half is the 
commodity motherboard. A mezzanine interconnection mechanism connects 
the halves and extends the host motherboard’s front-side bus (FSB) to the 
coprocessor. The entire system consumes approximately 600 watts with the 
coprocessor executing code. The system architecture is shown in Figures 3.1 
above and 3.2 below.  
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Figure 3.2 HC-1 Architecture. 

 

3.2.1 	
  Intel	
  host	
  processor	
  
 HC-1’s host consists of a dual socket Intel server motherboard an Intel 
5400 memory-controller hub chipset, 1,066 MHz FSB and a 2,13 GHz dual 
core Intel Xeon low voltage processor. The HC-1 host runs a 64-bit 2.6.18 
Linux kernel with a Convey modified virtual memory system for memory-
coherent with the coprocessor board memory reasons.  

 

3.2.2 Convey	
  FPGA-­‐based	
  coprocessor	
  
 

Convey’s HC-1 coprocessor composed by three main sets of 
components. The Application Engines (AEs), the Memory Controllers (MCs), 
and the Aplication Engine Hub (AEH). 
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Figure 3.3 Coprocessor three main components AEH, AEs, MCs. 

  
 
 The Application Engine Hub (AEH) is the coprocessor’s to host interface, 
it consists of two non–user programmable Xilinx V5LX110 FPGAs. One 
serves as the physical interface between the coprocessor board and the FSB, 
it monitors the FSB to maintain the snoopy memory coherence protocol and 
manages the coprocessor memory’s page table. This FPGA is actually 
mounted to the mezzanine connector. The second one contains a soft-core 
scalar processor, which implements the base Convey instruction set. It is also 
the mechanism by which the host invokes computations on the AEs.  
 To support the bandwidth demands of the coprocessor, 8 Memory 
Controllers (MCs) are used. Each memory controller is implemented on its 
own FPGA and is connected to two standard DDR2 dual inline memory 
modules (DIMMs) or to two Convey-designed scatter-gather dual inline 
memory modules (SG-DIMMs), containing 64 banks each and an integrated 
Stratix-2 FPGA. The SG-DIMMs allow access to physical memory by quad 
words (8 bytes) instead of by 64-byte cache lines (as the host does). 
Accessing by 8-byte blocks reduces the inefficiencies encountered when 
accessing memory by no unity strides (or randomly) with a cache-based 
system. The inefficiency can be as drastic as one eighth of the peak 
bandwidth, because if only 4 or 8 bytes out of an entire 64-byte cache line are 
needed, the rest of the transfer is wasted. 

The Application Engines (AEs) are four user-programmable Virtex-5 
XC5VLX330 FPGAs, which are the heart of the coprocessor and implement 
the extended instructions that deliver performance for a “personality” which is 
a particular configuration of these FPGAs .The AEs are connected to the AEH 
by a command bus that transfers opcodes and scalar operands, and to the 
memory controllers via a network of point-to-point links that provide very high 
sustained bandwidth. Each AE instruction is passed to all four AEs. The way 
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that they process the instructions depends on the personality. The AEs are 
interconnected with 668 Mbytes/s, full duplex links for AE to AE 
communication. 

Each AE has a 2.5 GB/s link to each memory controller, and each SG-
DIMM has a 5 GB/s link to its corresponding memory controller. The effective 
memory bandwidth of the AEs is dependent on their memory access pattern 
to the eight memory controllers and their two SG-DIMMs. Each AE can 
achieve a theoretical peak bandwidth of 20 Gbyte/s when striding across eight 
different memory controllers, but this bandwidth would drop if two other AEs 
attempt to read from the same set of SG-DIMMs because this would saturate 
the 5 Gbytes/s DIMM memory controller links [12]. 

 The Convey memory system using Scatter/Gather DIMMs has 1024 
memory banks. The banks are spread across eight memory controllers (MCs). 
Each memory controller has two 64-bit busses, and each bus in accessed as 
eight sub busses (8-bits per sub bus). Finally, each sub bus has eight banks. 
The 1024 banks is the product of 8 MCs * 2 DIMMs/MC * 8 sub bus/DIMM * 8 
bank/sub bus. The coprocessor memory hierarchy is shown in figure 3.4. 
 
 
 

 
 
 

Figure 3.4 Coprocessor’s memory hierarchy scheme. 

 

 Convey provides two user-selectable memory mapping modes to 
partition the coprocessor’s virtual address space among the SG-DIMMs: 
 
• Binary interleave, which maps bitfields of the memory address to a 
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particular controller, DIMM, and bank.  
 
• 31-31 interleave, a modulo 31 mapping optimized for constant memory 
strides (strides lengths that are a power-of-two are guaranteed to hit all 16 
SG-DIMMs for any sequence of 16 consecutive references). 
The memory banks are divided into 32 groups of 32 banks each. In 31-31 
interleave, one group isn’t used, and one bank within each of the remaining 
groups isn’t used. Because the number of groups and banks per group is a 
prime number, this reduces the likelihood of strides aliasing to the same SG-
DIMM. The operating system also supports page coloring such that every time 
a page is allocated from coprocessor memory, it’s allocated at a specific 
physical address to maintain the prime number interleaving. Selecting the 31-
31 interleave comes at a cost of approximately 1 Gbyte of addressable 
memory space (6 %) and a 6 percent reduction in peak memory bandwidth. 
 
The 31/31 interleave scheme was defined to meet the following requirements: 
 

1. Provide the highest possible bandwidth for all memory access 
strides, with a particular focus on power of two strides. 
 
2. Keep each memory line (64-bytes) on a single memory controller. 
This is required to simplify the cache coherency protocol. 
 
3. Maintain the interleave pattern across virtual memory page 
crossings. This helps large strides where only a few accesses are to 
each page. 
 
4. All virtual addresses must map to unique physical addresses.[12] 

 
 

When Binary interleave is enabled the 1024 banks are accessed with the 
following virtual address assignment: 

 
Figure 3.5 Access pattern of Virtual address. 

 
 
 In this Figure 3.5 is the targeted DIMM, and MC is the memory 
controller. In practice, the hardware design should check bit 8:6 of the virtual 
address and send the request to the appropriate MC. To be able to run at 
(near) peak bandwidth, all the requests must be equally distributed over the 
MCs, but also over the banks and sub busses. 
 
 The memory system also supports large (4 Mbyte) virtual pages, 
allowing the entire physical address space to be mapped into the page 
translation look aside buffers (TLB) within the memory controllers. By doing 
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so, an application will only have to fault in a page once for the application’s 
entire execution, which eliminates TLB thrashing. Further, each TLB entry 
contains a process identifier, which allows TLB entries to survive process 
exchanges (if not overwritten). 
 
 
 The coprocessor memory is cache coherent with the host memory by 
using the snoopy coherence mechanism built into the Intel FSB protocol. A 
virtual address space is created that both the host and coprocessor share. In 
the coherence protocol, both the host and the coprocessor possess copies of 
the global memory space. Each block of memory addresses in both the host 
memory and coprocessor memory are marked as exclusive, shared, or 
invalid. A write by the host to an address block will change its status to 
exclusive and invalidate the block on the coprocessor (indicating that it’s out-
of-date). If one of the application engines on the coprocessor reads from this 
block, an updated copy of the block’s memory contents is sent to the 
coprocessor memory, and the memory block changes to shared in both the 
host and coprocessor memory. The coherence mechanism is transparent to 
the user and removes the need for explicit direct memory access (DMA) 
transactions, which coprocessors based on peripheral component intercon- 
nect (PCI) require [13]. 
 
 
 
 
 
 

    
 

Figure 3.6 HC-1’s Programming model. 
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3.3 Programming	
  model	
  
 
 
 In Convey’s programming model applications can be coded in standard 
C, C++, or Fortran, the AEs act as co-processors to the scalar processor, 
while the scalar processor acts as a co-processor to the host CPU. Because 
of this, the executable file on the host contains integrated scalar processor 
code. This is transferred to and executed on the scalar processor when the 
host code calls a scalar processor routine through one of Convey’s runtime 
library. The scalar processor code can contain instructions that are dispatched 
and executed on the AEs. The final executable is generated by a unified 
compiler and it integrates both x86 and co-processor instructions defined by 
the personality used on compilation time. [14]. Figure 3.6 shows an abstract 
view of the programming  
 
 
 

3.4 Debugging	
  
 
 When it comes to debugging Convey provides the necessary 
environment for host and co-processor code debug. This environment is 
composed by a version of the GDB debugger that has been extended with 
coprocessor-specific register state, for debugging x-86 and coprocessor 
routines. A dedicated PCIe link to the Management Processor (MP) on the co-
processor board, independent of the application data-path link through FSB 
that configures and monitors the FPGAs, and it also provides visibility, when 
the AE FPGAs are in bad state and appear hung. Despite Convey providing 
Control and Status Register (CSR) agents to get visibility into the FPGA, the 
Chipscope logic analyzer tool can also be used [14]. 
 
 

3.5 Convey	
  Simulator	
  and	
  Performance	
  Analysis	
  
Tool	
  

 
 To help developers get the best performance out of their code, Convey 
also offers a simulator and corresponding performance analysis tool called 
“Spat” [15] that graphically plots how various aspects of the code map to the 
architecture and can assist in code tuning. Information is presented as a plot 
of clock cycle versus usage of various architectural features. The tool can also 
graphically depict detailed state information for various units within the scalar 
and vector processors. This gives the ability to users to step across clock 
cycles and watch how the system executes various instructions [13]. 
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3.6 Porting	
  already	
  existing	
  applications	
  
 
 
 Convey offers four different ways for porting already existing applications 
to their HC-1 system mentioned below: 
 

•   Use the Convey Mathematical Libraries (CML), which is a set of 
functions optimized for the co-processor, which use predefined 
Convey-supplied personalities, for example Convey’s CML-based 
FFT uses the single-precision personality. 

 
•   Compile one or more routines with Convey’s compiler. This uses 

the Convey auto-vectorization tool to automatically select and 
vectorize do/for loops for execution on the co-processor. 
Directives and pragmas can also be manually inserted in the 
source code, to explicitly indicate which part of a routine should 
execute on the co-processor.  

 
•    Develop hand-code routines in assembly language, using both 

standard instructions and personality specific accelerator 
instructions. Which can be called from C, C++, or Fortran code. 

 
•   Develop a custom personality using Convey’s Personality 

Development Kit (PDK), to give the ultimate in performance using 
a hardware description language such as Verilog or VHDL [14]. 
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Figure 3.7 HC-1’s runtime environment. 
 
 
 

3.7 Personalities	
  
 
 
 Personalities are the key to the Convey systems’ performance and 
flexibility. A personality includes the precompiled FPGA bit files that 
implement a coprocessor instruction set, a description of the machine state 
model sufficient for the compiler to generate and schedule instructions, and 
an ID used by the application to load the correct image at runtime. A system 
can contain multiple personalities that can be dynamically loaded, but only 
one personality is loaded at any one time. Each personality supports the 
entire canonical instruction set, plus extended instructions that may be unique 
to that personality. Extended instructions are designed for particular 
workloads, and may include only the operations that represent the largest 
portion of the execution time for an application. 
All personalities have some elements in common, however: 
 

• Coprocessor execution is initiated and controlled via instructions, 
as defined by the Convey Instruction Set Architecture. 
 
• All personalities use a common host interface to dispatch 
coprocessor instructions and return status. This interface uses shared 
memory and leverages the cache coherency protocol to minimize 
latency. 
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• Coprocessor instructions use virtual addresses and coherently 
share memory with the host processor. The host processor and I/O 
system can access coprocessor memory and the coprocessor can 
access host memory. The virtual memory implementation provides 
protection for process address spaces as in a conventional system. 
 
• All personalities support the canonical instruction set, and the 
Convey compilers assume that the canonical instructions can be 
generated and executed. 
 
 These common elements ensure that compilers and other tools can 
be leveraged across multiple personalities, while still allowing 
customization for different workloads. 
 Convey has developed the ability to swap personalities. For 
example, a user has a code that processes large arrays that can be 
easily vectorized followed by a series of long state machines. When the 
application lands on the first vector instruction, the AEH send a signal to 
the Application Engines to reconfigure themselves into a wide vector 
processor. At the point where the vector instructions are complete, the 
AEH signals again to switch to a specialized state machine. This 
hardware context switching occurs in real time with very little latency to 
the application. The AEH also caches these in the event that they must 
be reused.  
 Convey develops and licenses its own set of personalities but also 
allows users to design and implement their own custom personality 
using the personality development kit (PDK). 
 

 
3.7.1 Convey	
  provided	
  personalities	
  

 
 
  Convey’s set of personalities includes a single-precision vector 
personality and a double-precision vector personality which are vector 
coprocessors for the scalar processor and are targets for Convey’s vectorizing 
compiler. For these personalities, each AE implements eight floating point 
multiply adder pipelines and eight load/store units (for a total of 32 logically 
combined across four AEs). Financial analytics personality, which is a double-
precision personality that adds additional vector instructions, transcendental 
functions, probability distribution functions, and various random number 
generators designed for high-performance Monte Carlo simulation, is also 
included in Convey’s set. In addition Convey provides several applications 
paired with a custom personality.  These applications are based on 
existing 3-rd party applications, and can provide huge speedups while 
producing identical or very similar results, for the Bio-informatics 
industry these are: 
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• Convey Graph Constructor 
 
 Generates simplified de Bruijn graphs from short read sequence 
data generated by modern sequencers. It reduces the execution time 
and memory required for graph construction. 
  

• Convey Sequencing Library 
 

 A simple, reusable interface to common algorithmic constructs 
utilized for sequencing and alignment operations. 
 

• Blast applications and associated personality (cnyBLASTp 
and cnyBLASTx) 
 
 An extension of NCBI BLAST which interfaces with an FPGA based 
pre-filter to provide accelerated performance of protein-based 
searches on Convey hybrid-core servers. 
 

•  Convey Smith-Waterman Search application and 
associated personality  

 
 A protein sequence search program using the Smith-Waterman 
algorithm, optimized for the Convey hybrid-core architecture. 

 
  

 As mentioned earlier, users who wish to develop their own custom 
personalities with HDL-based design or C-to-HDL third party tools for 
accelerating personality Development must license the PDK, which includes 
design flows and robust system models that support hardware/software co-
simulation. A custom personality can be developed for many applications, to 
utilize the full potential of the Convey coprocessor.  By developing a 
personality for a specific application, the Convey coprocessor can make the 
most effective use of the FPGAs of the coprocessor.  A custom personality 
implements a number of functional units within the coprocessor, each of witch 
can perform the same calculations on different data, in parallel with the other 
functional units.  
 
 

3.8 The	
  Convey	
  Personality	
  Development	
  Kit	
  
 
 
 The Personality Development Kit is a set of tools and infrastructure that 
enables development of a custom personality for the Convey HC-1 system. A 
set of generic instructions and defined machine state in the Convey 
instruction-set architecture allows the user to define the behavior of the 
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personality. Logic libraries included in the PDK provide the interfaces to the 
scalar processor, memory controllers, to the inter-FPGA links and to the 
management processor for debug. We will present each of these interfaces 
with more detail in next session. The user develops custom logic that 
connects to these interfaces.  
 
The Convey PDK provides the following set of features as a part of the kit:  
 

• Makefiles to support simulation and synthesis design flows, 
 
 
• A Programming-Language Interface (PLI) to let the host code interface 
with a behavioral HDL simulator such as Modelsim or Synopsys. 
 
• FPGA hardware interfaces provided as Verilog modules, these 
interfaces connect custom personality hardware to instruction dispatch, 
management and memory resources on the coprocessor. 
  
• Custom personality software and hardware simulation environment Bus 
-functional models are provided to connect each of the hardware 
interfaces to Convey’s architecture simulator. 
 
• A sample personality illustrates how to use the hardware and 
simulation interfaces to develop a custom personality. 

 
In addition to the PDK package, several Convey software packages are 
required for PDK development. Which are:  
 

• Xilinx ISE Design Software for synthesis, place and route of FPGAs. 
 

• An HDL simulator for Verilog/VHDL simulation. Mentor ModelSim or 
Synopsys VCS. [12]  

 
The PDK’s simulation framework is easy to use and allows users to switch 
between a simulated coprocessor mode and an actual coprocessor, by 
changing a single environment variable.  
 
 
 
 
 

3.8.1 Personality	
  development	
  steps	
  
 
 Convey provides ten step-by-step instructions for the process of 
developing a custom personality for its Coprocessor. 
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Figure 3.8 PDK Development Steps proposed by Convey 

 
1.Analyze Application 
 
 The first step of personality development is to completely understand the 
problem to be solved. How does the current application perform on existing 
hardware? What are the bottlenecks that limit the performance? What data 
structures are involved? How parallelizable is the application? Answers to 
these questions provide the first insight into how the application can be 
accelerated in hardware. Some tools that are useful in gathering this 
information are gprof (The GNU Profiler) and oprofile. 
 
2.Evaluate Hardware Options 
 
With a detailed knowledge of the application and its performance limitations, 
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the second step is to evaluate options for implementing the application in 
hardware. This requires a good understanding of the hardware architecture 
and the FPGA resources available to the custom personality. 
Once a concept for hardware design is completed, the performance of the 
hardware can be compared vs. to the existing application performance. 
 
3.Define Custom Instructions 
 
With a hardware concept in place, the functions that are implemented by the 
hardware design can be mapped to custom instructions. These are a set of 
instructions in the Convey Instruction Set Architecture reserved for custom 
personalities. Instruction sets designed to be used across a wide variety of 
applications typically have a large number of instructions that perform 
relatively simple operations. As a custom personality is designed to improve 
the performance of a single application, it might implement very few 
instructions with much more complex behavior. 
 
4.Develop Software Model of Custom Personality 
 
Convey provides an architecture simulation environment to allow rapid 
prototyping of both the hardware and software components of a custom 
personality. This environment is written in C++ to emulate the rest of the 
system. It includes hardware models of instruction dispatch, register state and 
the memory subsystem. 
With a hardware design concept in place, and a definition of custom 
instructions to interface to that hardware, a software model can be developed 
to emulate the hardware. The hardware model can then be simulated with the 
rest of the system to prove the concept before detailed design begins. 
 
5.Replace Application Kernel with Call to Coprocessor 
 
The application should be modified so that the application kernel can be 
called as a function. To dispatch instructions to the coprocessor, the kernel 
function call is replaced with a call to dispatch the function to the coprocessor. 
This function explicitly defines the custom instructions to be dispatched to the 
Application Engines. The sample application described later in this document 
illustrates the use of this interface. 
 
6.Compile Application with Convey Compiler 
 
The PDK package includes Convey64 compilers that can be used to compile 
coprocessor applications with direct calls to coprocessor functions.  
 
7.Simulate Application with Convey Architecture Simulator 
 
Once the AE software model is in place and the appropriate changes to the 
application have been made, the application can run against the Convey 
architecture simulator. This step allows the application and the custom 
instruction set to be debugged before the hardware is designed. 
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8.Develop FPGA Hardware 
 
With an instruction set architecture defined, the hardware implementation can 
begin. 
 
9.Simulate Hardware in Convey Simulation Environment 
 
As an extension of the Convey architecture simulator, Convey provides a 
hardware simulation environment with bus-functional models for all hardware 
interfaces to the Application Engine (AE) FPGA. Using a standard VPI 
interface (Verilog Procedural Interface) the architecture simulator can be used 
to provide stimulus to the HDL simulation. 
 
10.Integrate with Convey Hardware 
 
The final step is to run the application on the Convey Coprocessor hardware. 
 
 
 

 
  

Figure 3.9 PDK design flow. [12] 
 
 
 
 

3.9 Convey	
  provided	
  simulator	
  
 
 Convey provides a very useful Coprocessor architecture simulator for 
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functional testing which contains a VPI (Verilog Procedural Interface) interface 
to an HDL simulator. This allows the actual user application, running on the 
architecture simulator, to provide the AE instructions for the hardware 
simulation of the FPGA. 
 The architecture simulator was developed to allow software to be tested 
and debugged in the absence of the actual Convey coprocessor hardware. It 
can also be used to prototype a PDK design quickly before investing the time 
to develop the FPGA hardware. The simulator models the machine state and 
the canonical instruction set, as well as instructions for the single and double-
precision vector personalities designed by Convey. For custom personalities, 
the instructions set extensions are defined by the user and therefore cannot 
be modeled in the simulator, that’s why a socket interface is designed into the 
simulator to allow a user-developed AE software model to connect to the 
simulation process and emulate it. The application executable is a Linux 
executable, where host code calls to coprocessor routines are routed to the 
simulator. The host x86-64 code and the coprocessor simulator share the 
memory space of the executable, just as the real Convey coprocessor shares 
memory with the x86-64 host code. 
 The user’s developed software model must include implementation of 
the functions implemented and functions callable by custom personality. 
Such functions are personality initialization, modeling the instruction 
dispatch hardware interface where instruction decoding takes place, and 
memory and registers loads and stores. It also can be used as a checker in 
the hardware simulation. 
 Hardware simulation process (shown in the diagram below) needs an 
HDL simulator (ModelSim or VCS), which compiles the Verilog source for the 
Convey interfaces and custom logic, as well as the software model of the AE. 
 
 

 
 

Figure 3.10 Custom AE hardware simulation. 
  
  
 
 During hardware simulation, the device under test (DUT) is the entire 
FPGA, consisting of the user-developed personality as well as the Convey-
supplied hardware interfaces. The FPGA is instantiated in the testbench along 
with Verilog drivers and monitors for the FPGA interfaces. The bus functional 
models connect to the C-code portion of the simulation environment through 
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VPI. 
 
 
 

3.10 PDK	
  interfaces	
  
 
 
 For simple integration of a custom personality into the Convey 
coprocessor, PDK includes hardware interfaces for the Convey provided 
Verilog modules. Together with the custom personality module(s) developed 
by the user, these modules make up the design that will be synthesized into 
the AE FPGAs. These interfaces are: 
 
 
 

3.10.1 Dispatch	
  Interface	
  	
  
	
  

 
  
 The dispatch interface is the hardware interface through which a host 
application sends coprocessor instructions to be executed by the AE. The 
dispatch interface receives instructions from the scalar processor. Some 
instructions are handled directly in the dispatch module. The dispatch 
interface also ensures that scalar data is returned to the scalar processor 
when required by the instruction. 

 
 

Figure 3.11 Dispatch Interface Diagram. 
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3.10.2 Memory	
  Controller	
  Interface	
  	
  
 
 

 
 

Figure 3.12 Coprocessor AE Memory Connections. 
 
 
 
 The Memory Controller (MC) Interface gives the AEs direct access to 
coprocessor memory. Each of the 4 AEs is connected to each of the 8 MCs 
(Memory Controllers) through a 300MHz DDR interface. The MC interface 
inside the AE FPGAs is provided by Convey. Each of 8 MC interfaces in the 
AE FPGA is directly connected to a single Memory Controller, and each MC 
physically connects to 1/8 of the coprocessor memory. The 8 MC interfaces 
are physically located on the left and right sides of the AE FPGA, as shown in 
figure 3.13 below. Each Memory Controller is connected to 2 DIMMs. The AE 
personality must decode the virtual memory address so that only requests 
intended for a particular MC’s attached memory are sent to that MC. 
 



	
   48	
  

 
 

Figure 3.13 AE to MC Interface Diagram 
 
 
 The link between the AE FPGA and the MC FPGA runs at 300 MHz, but 
in order to ease timing in the FPGA, the 300 MHz interface is converted into 
two 150 MHz memory ports to/from the AE personality. Data from these two 
ports, the “even” port and the “odd” port, are multiplexed onto the same 300 
MHz request channel in the MC interface. 
For write operations, the write data is stored in a first-in, first-out buffer until it 
is sent across the AE-MC link. No response is returned to the AE personality 
for write operations. 
For read operations, the write data bus is used to store read return control 
information. This data is stored in the write data buffer until the read request is 
sent out. When the read request is sent to the MC, the read request data is 
removed from the write data buffer and stored in a read control buffer based 
on the transaction ID assigned to the request transaction. When the read is 
returned from the MC, the transaction ID (TID) is used to lookup the read 
control information from the read control buffer. 
The 32-bit read response control bus can be used by the custom personality 
for tracking request/response pairs. The data that is returned on this bus is 
the data that was written into bits <31:0> of write data when the read request 
was sent to the MC interface. Figure 3.14 below illustrates the functionality of 
the interface. 
 
 



	
   49	
  

 
 

Figure 3.14 MC Interface Functional Block Diagram 
 
 
 

3.10.3 AE-­‐AE	
  Interface	
  	
  
 
 
 The AE-to-AE interface allows data to be transferred directly from one 
AE to another. Because the use of an AE-AE interface is unique to each 
application, it is difficult to design a solution that would be ideal for all custom 
personalities. Convey provides an AE- AE interface that the user may choose 
to use. The user is also free to use the signals between AEs in whatever way 
best supports their application. The Convey provided the AE-to-AE interface, 
which is designed with unidirectional busses to and from the previous or next 
AE. Each instance of the interface connects to a single AE, to connect an AE 
to both the previous and next AEs, two interfaces must be instantiated. This 
interface is simple and generic so that it can be used by many applications. 
Figure 3.15 below shows the AE-AE interface to the Custom Personality. 
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Figure 3.15 AE-to-AE Interface Diagram 
 
 
 

3.10.4 Management/Debug	
  Interface	
  
 
 The management interface provides the communication path between 
the Management Processor and the AE. The Management Processor (MP) is 
responsible for initialization and monitoring of the FPGAs. Since this path is 
independent of the instruction dispatch path from the host processor, it can be 
useful in debugging by allowing visibility into internal FPGA state, even when 
the application is hung. 
The MP interface is instantiated in the Convey-supplied libraries, along with 
CSR agents in a ring topology. The custom personality must complete the ring 
by either adding one or more CSR agents to the ring or by simply connecting 
the inputs to the outputs. For many designs, a single agent is sufficient. For 
more complicated designs, the developer may choose to instantiate multiple 
CSR agents. The ring topology allows multiple agents to be placed near their 
associated logic.  PDK CSR Registers are accessed from the host for 
debugging reasons. The host communicates with the MP FPGA via telnet. 
Figure 3.16 below shows the connectivity of the CSR interface: 
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Figure 3.16 Management Interface Diagram 

 

The Application Engines in the HC-1 platform are implemented in Xilinx 
Virtex 5 LX330 FPGAs. The required Convey hardware interfaces—the 
dispatch interface, CSR interfaces and MC interfaces—use about 10% of the 
available logic resources and about 25% of the block rams.  

The dispatch interface occupies 400 slices in the center of the chip. 
The MC interfaces are on the left and right sides of the FPGA, and the MC 
CSR interfaces are in the corners of the part. Figure 3.17 below shows the 
FPGA floor plan. 

There are 288 36Kb block RAMs in the LX330 FPGA. The required Convey 
interfaces use 66, leaving a total of 222 available for use by the custom 
personality. However, of the 222 available, 26 are on the left and right sides of 
the FPGA, which contain mostly MC interface and MC CSR logic. These block 
RAMs may or may not be useable, depending on the application and the 
timing requirements. 
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Figure 3.17 AE FPGA Floor Plan for HC-1 

 

 

 

3.11 Host	
  to	
  coprocessor	
  programming	
  interface	
  
 
 
 In this section we will discuss the host to coprocessor programming 
interface, which is the way we can dispatch a function from the host to the 
coprocessor of the HC-1 system. Instructions that have to end up in the AEs 
go through the steps described below. 
 
 

3.11.1 Host	
  code	
  
 
 
 The host program is typically written in C/C++ or in Fortran [16]. If we 
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want to make use of a custom instruction, we have to dispatch a function to 
the coprocessor. By using the copcall functions (provided by Convey), we 
dispatch our function with its necessary arguments to the coprocessor.  An 
example of the host code dispatching a function is presented in figure 3.18 
below. In this example cptestEx1 is our function that should run on the 
coprocessor and the sig argument indicates which personality we want to use. 
L_copcall_fmt is Convey’s copcall function, which dispatch our function 
together with its arguments to the coprocessor. 
 

 
 

Figure 3.18 Example of the host code dispatching a function to the coprocessor 
 
 

3.11.2 Coprocessor	
  code	
  
 

 
 

Figure 3.19 Call function, which consists of instructions defined by Convey’s scalar instruction set and 
runs on the coprocessor 

  
 
 The FPGA call function is executed on the coprocessor, and consists out 
of instructions defined by Conveys scalar instruction set. The four move 
instructions in the example presented in figure 3.19 above move the t1, t2 and 
t3 and size arguments from their A coprocessor registers to the AEG registers 
on the AE. The caep00 instruction calls the AE to execute custom instruction 
00. Finally the last move instruction returns the value from the first AE to the 
register of the coprocessor’s instruction set. 
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 The coprocessor’s instruction set has two types of scalar registers. The 
A registers which are a set of general purpose registers intended to be used 
to manipulate addresses for S and AE register loads and stores. Additionally, 
the A registers are used to handle loop counts and calculating vector length, 
vector stride, vector partition length and vector partition stride. The S registers 
are a set of general purpose registers intended to be used to manipulate 
scalar data [17]. The first value that is loaded into an A register is loaded into 
A8, the second into A9, etc. Similarly, the first value loaded into an S register 
is loaded into S1, the second into S2, etc. 
 
 
 

3.11.3 AEs	
  code	
  
 
 
The AE receives the caep00 instruction to be executed. When the AE code 
finishes, it can return data to the coprocessor routine, or write a flag to 
memory. 
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4. Introduction	
  

	
  
This chapter describes the necessary steps for the setup and the 

familiarization with the CONVEY tools. Also, it describes in details the 
hardware and software components of the first and second generation of 
NCBI-BLASTn personality architectures. Final, there is a brief presentation of 
previous works of BLAST on FPGAs. 

 

4.1 Setup	
  and	
  familiarization	
  

	
  
 The setup and familiarization processes consist of two phases. We 
installed and experimented with both cross-development software tools 
provided by CONVEY and the HC-1 server itself. 

 First, we downloaded from CONVEY the cross-development tools and 
installed them to our local server. As mentioned in chapter 3, PDK 
development requires some extra tools, like the Xilinx ISE Design Suite 12 for 
synthesis, place and route of FPGAs and Mentor ModelSim HDL simulator for 
Verilog and VHDL simulation, as well. Second, an HC-1 server was supplied 
with the pre-installed native CONVEY’s software tools Also, the Xilinx ISE 
Design Suite 12 tool was used for HDL synthesis. Finally, the Synopsys VCS 
tool was  used for hardware simulation after the setup of it’s license server.  

Acquaintance with the CONVEY tools started with working basically 
with CONVEY’s provided examples. Our main interest was on PDK tool and 
its examples. First, we spent some time to deal with the provided examples 
dedicated to HC-1’s programming tools, which use single and double 
precision personalities as well as financial analytics personality. Valuable 
experience was gained on CONVEY’s compilers, debugger and simulator 
(mainly used due to not having license for the above personalities).  

The training effort on developing custom personalities for HC-1 was 
based on PDK’s sample personality. A detailed and deep analysis of this 
example personality in combination with a variety of small custom 
personalities, which were produced by changes made on the sample 
personality, led to deep understanding of CONVEY’s step-by-step instructions 
for developing a custom personality for its Coprocessor. 

 
 

4.1.1 Sample	
  personality	
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 CONVEY has developed a sample custom personality, as part of the 
PDK package, that can be used as a reference design. The sample 
personality was designed to be very simple while using all of the required 
hardware interfaces inside the FPGA except of the AE-to-AE interface. 
 CONVEY’s sample personality implements a memory-to-memory 
instruction that adds values stored in one block of memory to the values 
stored in another block of memory. The array of results is stored back in 
memory. It consists of 16 copies of a functional block, which adds a portion of 
the memory storing the operands. The functional blocks are directly 
connected to the memory controllers so that each block only performs 
operations on values in its attached memory. A detailed block diagram is 
presented in figure 4.1 below. The sample personality was used as a starting 
point for new PDK personalities. 
 
 
 

 
 

Figure 4.1: Block diagram of Sample personality provided by convey 
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4.1.2 PDK	
  tools	
  familiarization	
  
 
 Some new variations of the sample personality were developed for 
better understanding of the sample personality’s functionality and pdk’s 
interface connections. We made small changes experimenting with both the 
simulator’s golden model and the Verilog designs. 
 The first variation is very small and includes only the functionality of the 
sample personality. We changed the sample personality from a memory-to-
memory adder, to a memory-to-memory substractor.  The changes took place 
to the host processor’s code, to the simulator’s model and to the hardware 
design. During the development of this variation we had the chance to learn 
how to create a new personality and get a deeper understanding of the 
sample personality. Our second try was to create a custom application 
connected only to the dispatch interface. We implemented a basic scalar 
adder in Verilog and connected it with the dispatch interface. That gave us a 
better view of the way the custom application interacts with the scalar 
processor of the coprocessor, how to develop software model for the 
simulator and how to dump and visualize hardware signals simulation. Next 
variation helped us find how to use pre existing cores generated by Xilinx’s 
Core Generator. We generated a Block RAM with Xilinx’s tool, which we 
integrated, with our custom designed fine state machine (FSM) creating a 
simple personality, which takes an address and returns its content. 
 In general, we developed even more variations of the sample 
personality, all of them on the cross-development tools and using the 
simulators mentioned above.  
 
 

4.2 Previous	
  work	
  on	
  BLAST	
  
 
 Biological sequence searching using FPGAs has been an active area of 
research for over a decade. A lot of research has been done in implementing 
BLAST. 
  BLASTn’s bottleneck resides in the first stage where the hits are 
located. There are two different classes of BLASTn works. In the first one 
belongs the works, which are mainly focused in the bottleneck, and in the 
second one belongs the works, which implements the entire algorithm on the 
FPGA.  A brief description of some of this works from both classes follows. 

The first one is the RC – BLAST project [18], which belongs to the first 
class of solutions, but its overall performance was reported to be poor, even 
worse than the corresponding software implementation and no further efforts 
where given for this project. Despite that, the RC – BLAST project remains 
important as it is the first full BLAST implementation in reconfigurable 
technology. 

Next one is the TreeBLAST project witch was presented in 2005 by the 
CAAD Lab at Boston University. This project belongs to the second class of 
solutions. It is a BLAST algorithm implementation for small queries of up to 
800 nucleotides [19] and it was extended and implemented later [20], 
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providing speedup vs. the software implementation. An extension of 
TreeBLAST presented in 2009 [21] was based on the database prefiltering.  

The parallel Mercury BLAST [22], [23] [24] is one more implementation 
of BLASTn introduced by Washington University in St. Louis, which offers a 
good speedup vs. software execution on a general purpose computer. 

One more completed system work is TUC-BLAST [25], which 
implements BLAST algorithm for all its versions and for any size of database 
and query. This system has been fully designed and partially implemented 
using FPGAs and it consists of software and hardware parts. This 
implementation achieved speedup of up to thousands of times vs. general 
purpose computers. 

Multi-seed/ Multi-channel BLAST [26] [27] is the most recent effort from 
Chinese National University of Defense Technology which also reports very 
interesting results for a generic architecture for BLAST algorithm. 

Except of the above academic approaches there are and some 
commercial companies, like Time Logic [28] and SGI/Mitrionics, which offer 
the Decypher machine and RASC Appliance respectively. They offer high 
performance over present multi core processors but they provide little detail 
about their designs. Recently, the IBM Cell broadband Engine [29] has also 
been used to speedup BLASTn. 

Final, the related work on BLAST CONVEYs BLAST personality 
presented in [chapter 3 ready personalities] can not be omitted. 
 
 

4.3 System	
  design	
  and	
  major	
  decisions	
  
 
 This section describes the implementation of the NCBI-BLASTn 
personality. The HC-1 hybrid supercomputer was used for the BLAST 
implementation. We implemented a hardware design to run on the 
coprocessor, and a software program controlling the coprocessor and 
managing IO. Some major decisions are listed below, which were taken 
before and during the implementation of the personality. 
 

4.3.1 Development	
  process	
  
 
 We proceeded to the implementation in phases, which led to the 
generation of two different NCBI BLASTn personalities. This approach helped 
us discover and make clear implementation issues, coming up during the 
development process, individually, and as fast as possible. 
 
 
 

4.3.2 HW-­‐SW	
  co-­‐design	
  	
  
 
 The main target was to develop the personality that would substitute the 
most time consuming function of NCBI BLASTn software implementation. 
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After a large number and many extensive, profiling tests the three different 
functions s_BlastSmallNaScanSubject_8_4, SMALL_NA_ACCESS_HITS, 
s_BlastSmallNaRetrieveHits were chosen for hardware implementation. 
These functions implement the seeding step of the algorithm, as mentioned in 
Chapter 2. We decided to implement in hardware the last two and part of the 
first one, and in software the communication between our hardware design 
and NCBI’s software. 
 

4.3.3 Implementation’s	
  fidelity	
  
 
 The most important target of the implementation was to have identical 
results vs. the NCBI’s official software. 
 Although, BLAST is a heuristic algorithm and a hundred percent 
compatibility with NCBI’s blast output is unnecessary, it is difficult to convince 
biologists of the same. A typical user would have no idea whether the 
differences are statistically significant. That’s why we decided not to 
compromise fidelity of our design as other implementations do. Due to this 
decision, we left aside the parallelization factor and also the speed up that it 
produces during the first phases of our design process. 
 
 
 

4.3.4 	
  Data	
  structures	
  Design	
  
 
 Another issue that came up from the start due to the integration 
mentioned above, was the design of the data structures, which affect the 
efficiency of parallelization and overall implementation. For this issue, both the 
software and the hardware of the implemented system have their own data 
structures and also some shared ones. The most important data structure, 
which is used by our implementation consist of a query-index table named 
backbone and an overflow table storing the positions of the words of the 
query, a table that stores the database subjects and an index table storing the 
resulting ungapped alignments between the query and each of the database 
subjects. The location of each data structure in memory was carefully 
selected, depending on data size and how often each structure is accessed 
during execution. In particular, frequently accessed structures are stored in 
the possibly fastest memories that could accommodate their size. 
 
 
 

4.3.5 Testing	
  data	
  sets	
  
 
 For testing and evaluation reasons, small testing datasets were created, 
which are much smaller in size but accurate enough to help us accelerate 
development process and evaluate the functionality and output fidelity of our 
implementation. These datasets include a variety of input databases with 
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different number of subject sequences of different lengths, which are 
formatted with the help of NCBI’s formatdb program. Also, two reference 
query sequences were used for building backbone and overflow data 
structures mentioned above. The first query sequence was small but really 
helpful during functional evaluation and the other one larger and more 
representative of the average query lengths.  
 
 
 

4.4 BLASTn	
  personality	
  architecture:	
  1st	
  
generation	
  
	
  

  
 This section presents the first generation architecture of our personality 
in details. It was developed with all decisions described in previews section 
and it was also our first attempt to develop a hardware extension of a well 
known and established software, in the community of biologists, on a very 
high tech server. 
  The implementation is a prototype, which maps part of the functionality 
of the seeding step. It takes as input from the NCBI-BLASTn software a 
sixteen-bit quantity representing eight residues of the subject sequence, and 
counts the number of appearances of this quantity in the query, and more 
specifically in the pre-generated memories where the w-mers are kept. This 
number is what it returns to the software so that the software can resume the 
execution.  An abstract block diagram of the architecture is presented in the 
figure 4.2 below. 
 
 

 
 

Figure 4.2: Block diagram of 1st generation BLASTn personality 
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 As shown in the figure above the implementation uses only of dispatch 
and the processor management interfaces.  Figure 4.3 gives a more detailed 
view of the design and how it uses these interfaces. 
 

 
Figure 4.3:  Detailed block diagram of 1st generation BLASTn personality showing its connection with 

the PDK’s interfaces 
 
  
  

4.4.1 AEG	
  registers	
  definition	
  
 
 The personality consists of the logic needed to decode the instructions 
coming from the dispatch interface. These instructions either move data from 
the application engine to the dispatch interface and vice versa or implement a 
custom instruction. This logic also generates an exception if an instruction is 
not implemented in the design. 
 AEG registers are used for storing the data, which is moved from or to 
the application engine. The implemented infrastructure uses only two AEG 
registers, which are defined at the table 3.1 below. 
 
 

AEG	
  index	
   Register	
  Name	
   Description	
  
	
  

0	
   Init_index	
   Hiter	
  initial	
  index	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  30	
   Hits_num	
   Hiter	
  output	
  

 
Table 3.1: AEG registers 

 
Init_Index register 
 
 Init_Index register stores the sixteen less significant bits of the 
subject sequence, which is checkedfor existence in the look up tables.  
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Hits_num register 
 
 Hits_num register stores the output of the hitter module when it 
finishes. The value of this register is returned to the host processor. 

 
If an invalid index of an AEG register is given to the design it will produce an 
exception. The processing element of our design is the hitter module. 
 

4.4.2 Hitter	
  module	
  version	
  one	
  
 
 The hitter module implements most of the work. Custom instruction zero 
enables the hitter module to start processing. A detailed figure 4.4 of hitter 
module architecture follows. 
 
 

 
 

Figure 4.4: Hitter module generation one block diagram 
 
 
  
 The hitter module consists of four parts. These are two BRAMs of size 
65536 X 16 each, which stores the backbone and overflow memory 
respectively, a Fine State Machine (FSM) that is responsible for the control of 
the module and a counter for counting the number of hits. 
 The two memories are the data structures accessed most often, almost 
during every clock cycle, that’s why we decided despite their size to place 
them in BRAMS inside the Application Engine FPGAs and initialize them with 
two pre-generated “COE” files in which we saved backbone and overflow 
tables generated by NCBI-BLASTn software execution for a specific query. As 
this design is a lab prototype we chose to stick with those two predefined 
memories, so we properly chose to use a query, which would be 
representative of most nucleotide sequences regarding the sequence length. 
 The FSM control unit defines the correct signals for all the functional 
units of the module. It has four states, which compose the whole functionality 
of the module; transactions between stages are shown in figure 4.5 below. 
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Figure 4.5: Hitter module control FSM stages transactions 
 
 
 
 

4.4.3 Hitter	
  module	
  functionality	
  
  
 Hitter’s module functionality in the first generation architecture is to count 
the number of seeds for every sixteen-bit subject sequence quantity 
(init_index) in the query. At the time init_index is available and START bit is 
set to one, the hitter uses the init_index as a memory read address for the 
backbone memory. Its output is used by the FSM to check if the index has 
zero, one or more appearances in the query. When the backbone memory 
returns a minus one value, this shows that the searching index has zero 
appearances. In case, the memory’s returned value is an integer greater than 
or equal to zero, the index has only one appearance in that position and the 
FSM increases the counter by one end sets ended bit to one, which indicates 
the end of seeds searching for this particular index. On any other case which 
means it is a negative integer less than or equal minus two, the index has 
more than one appearances. In such a case the FSM gets the absolute value 
of this negative integer and uses it as a base read address for the overflow 
memory. At that point, a loop depending on overflow’s output starts. Initially, 
the overflow’s position holds the number that represent the position of the first 
appearance of the index in the query and overflow’s next position holds the 
second number and so on until overflow’s output takes the value minus one 
and the loop terminates. Each iteration of this loop takes one cycle time to 
complete and in each iteration the counter increments by one except the last 
one where ended output signal is set to one. When ended signal is set, the 
num_of_hits holds the number of the seeds for this index.  
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4.4.4 CAE	
  CONTROL	
  FSM	
  	
  
 
 The control FSM for the custom application engine is responsible for 
enabling the hitter module and store its output result in the appropriate AEG 
register. Also, it controls the stall and the idle signals from the dispatch 
interface. An abstract diagram of its stages transactions is presented in figure 
4.6 below. 
 
 

 
    

 
Figure 4.6: CAE control FSM stages transactions 

 
 
 

4.4.5 Host	
  application	
  design	
  
 
 A program, which is a modified version of the original NCBI BLASTn and 
runs on the Intel Xeon processor, controls the coprocessor. The main 
difference between the original program and the one developed to use the 
implemented personality is mostly on the three functions that have already 
been described in chapter two. More specifically, for the first generation of the 
design the differences are only in s_BlastSmallNaScanSubject_8_4 seeding 
function. We changed this function by adding a portion of a code responsible 
for loading our personality to the coprocessor and also managed the dispatch 
to it by calling the assembly code with the necessary input arguments. A flow 
chart of the modified function is presented in figure 4.7 below. The only 
difference from the original flow chart presented in chapter two figure 2.16 is 
the addition of the copcall function, which makes a dispatch to the 
coprocessor and loads the assembly written external function to it with only 
input argument, a part of the subject sequence of eight letters length (sixteen 
bits). This function returns in num_of_hits variable the number of hits counted 
by our personality for this particular index.  
 The main part of the assembly external function above is loading the 
init_index value to AEG [0] register described in details above and makes a 
call to the custom instruction zero (caep00) which with its turn enables the 
Application Engines mapping our design. When our design ends the 
execution, the counting result that is in AEG [30] is returned with assembly 



	
   65	
  

instruction to the host processor. During the execution of the external function 
on the coprocessor, the host program blocks its execution waiting for the 
result. When the return happens the host continues its execution from the 
point it was blocked. 
 In this first generation of our implementation, the return value of the 
hardware part in num_of_hits variable is used only for evaluation reasons. 
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Figure 4.7: Block diagram of 2nd generation BLASTn personality 
 
 
 
 
 First generation BlASTn personality was a lab prototype that we mostly 
used for getting the experience of developing a hardware and software co-
design implementation based on very complicated software like the NCBI-
BLAST. It helped us get more experience on the tools and especially on 
debugging large and complex designs. It also helped us on getting answers 
and solutions on questions and teething problems, mostly on tools usability, 
coming up during its design.  
  Although the first generation personality design is a conservative 
approach to the real problem, it gave us a satisfactory base to work on, as 
long as it has been fully functional and accurate. Further work and evolution 
development, resulted in the second generation described below. 
 
 
 
 

4.5 BLASTn	
  personality	
  architecture:	
  2nd	
  
generation	
  

 
  
  This section describes the second generation architecture of NCBI Blast 
personality, which is a newer version of the first one. The main aim 
concerning this generation was to extend first generation’s functionality one 
step further. We used the memory controllers and their interfaces so that the 
Application Engine stores its query end its subject sequence offset index for 
every hit it finds. Due to the fact that every memory controller is connected to 
the one eighth of the memory and we want to write on different places on the 
whole memory we decided to use the memory crossbar.  
 The memory crossbar is a Convey provided module instantiated 
between our design and the memory controllers interfaces on the Application 
Engine and routes our memory requests to the right interface which will send 
it to the right memory controller.  
 An abstract block diagram of the architecture is presented in figure 4.8 
below where a clear view of Application Engine’s modules placement is 
presented. 
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Figure 4.8: Block diagram of 2nd generation BLASTn personality 
 

  
  
 
 A more detailed figure 4.9 showing the interconnection between PDK’s 
interfaces and BLASTn second generation personality follows. This diagram 
also shows the inner parts of our second-generation personality.  
  

 
Figure 4.9: Detailed block diagram of 2nd generation BLASTn personality showing its connection with the 

PDK’s interfaces 
 

 
 



	
   68	
  

4.5.1 AEG	
  registers	
  definition	
  	
  
 
The AEG registers that were used for this generation are defined at the table 
4.2 below. 
 
 

AEG	
  index	
   Register	
  Name	
   Description	
  
	
  

0	
   Init_index	
   Hiter	
  initial	
  index	
  

1	
   mem_base	
  
Base	
  write	
  memory	
  
address	
  for	
  storing	
  
hits	
  	
  

2	
   	
  s_off	
   offset	
  in	
  subject	
  
sequence	
  

30	
   	
  Hits_num	
   Num	
  of	
  hits	
  (Hitter	
  
output)	
  

 
Table 4.2: AEG registers definition 

 
 
Init_Index register and Hits_num register 
  
 These two registers are exactly the same with those used in 
generation one. 
 

 Mem_base register 
  
  Mem_base register is used to store the starting address from 
where the Application Engine will start storing results. 
 
 S_off register  
  
  This register is used to hold the offset index in the subject 
sequence. It is used to find hit forms on an offset pair index by concatenating 
its value with the value that the hitter retrieves from its memories.   
 
 
Exceptions for this generation are the same with the previous. 
 

4.5.2 Hitter	
  module	
  changes	
  
 
 The hitter module architecture went under few changes, which were 
enough to add the extra functionality we were looking for. The basic modules 
left untouched but the most variations have been made mostly on the FSM 
controlling the hitter module and adding more functionality in it without 
changing stages and their transactions. An additional offset pair write address 
generator was implemented as Figure 4.10 shows. 
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Figure 4.10: Hitter module generation one block diagram 
 
 
  

4.5.3 Hitter	
  functionality	
  
  
 Hitter module in this second generation architecture keeps all the 
functionality of hitter module used in previous generation as it is an evolution 
of it, but there is some additional functionality, as this hitter is capable of 
storing query and subject sequence offset indexes, for every hit it finds, 
directly to memory. 
 For every sixteen bit quantity passed to hitter we also pass its offset 
index in the subject sequence which is thirty two bits long. The hitter module 
uses this extra input; in concatenation with the unsigned extended query 
offset index retrieved from the hitters memories (memories outputs are 
sixteen bits long) for every hit it is found to form a sixty four bit quantity 
representing an offset pair which will be used from the software responsible 
for the extension step of the program.  Each offset pair is sent together with 
the memory address generated from the memory address generator and the 
necessary write control signals to the memory crossbar that was mentioned 
above. 
 When the hitter retrieves all hits, it raises the ended signal and 
num_of_hits holds the number of hits found for this quantity. 
 
 

4.5.4 CAE	
  control	
  FSM	
  
 
This module in second generation architecture have been left unattached as it 
was in the first one, figure 4.5. 
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4.5.5 Host	
  application	
  changes	
  
	
  

 For this generation the host application has more changes. First, the 
assembly external function has changed and became more complicated, in 
this version as it loads not only AEG [0] but also AEG [1] and AEG [2]. The 
rest of the function has no changes.  Second, the NCBI BLAST source code 
has come under changes unlike the first generations. These changes are 
mostly on removing part of the code which now is replaced by the hardware. 
In details, this replaced code matches to the two functions 
SMALL_NA_ACCESS_HITS and s_BlastSmallNaRetrieveHits which are 
called from the program for every sixteen bit quantity. The 
S_BlastSmallNaScanSubject_8_4 function has also changed, now it’s 
responsible to form the sixteen bit index and make a call to the hardware 
providing the necessary arguments. 
 
 

4.6 BLASTn	
  Implementations	
  differences	
  
 

 
 

Figure 4.11: BLASTn seeding step differences between NCBI’s software and first and second 
generation personality implementations 

 
 
 As it is already mentioned in session 4.4, in the first generation 
architecture our custom application engine (CAE) which is the hardware 
design module placed in the FPGAs, is running in parallel with the host 
program’s seeding functions without effecting their functionality, and outputs 
the number of hits, only for comparison reasons, with the one produced by 
these functions. Unlike the first generation, in the second one the CAE is a 
functional part of the program and it replaces two of these functions and part 
of the third one.  Differences between NCBI’s BLASTn program and the two 
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generations software and hardware co-designs we have developed according 
to the seeding step is shown in figure 4.11 above. 
 The second generation’s personality CAE output plays a vital role in the 
alignment output of BLASTn that’s why we have spent a large amount of time 
on testing and evaluating since we have been aiming at an one hundred 
percentage of matching between our personality alignment and the alignment 
taken from the NCBI’s software.  
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5. Performance	
  and	
  validation	
  
 

 According to chapter two, the BLAST algorithm consists of three basic 
steps: seeding, extension and evaluation. The profiling of the NCBI BLASTn 
program showed that the hotspot of the algorithm is the seeding process, 
which consumes up to fifty percent of total execution time. 

 As chapter four describes, the most time consuming functions of the 
seeding process were implemented and mapped in reconfigurable hardware. 
This chapter describes the performance of the second generation NCBI 
BLASTn personality implemented. First generation’s personality was used 
most for familiarization and evaluation reasons and that’s why its performance 
was not taken under evaluation. This section compares the software stand-
alone NCBI BLASTn program vs. the software hardware co-design 
implementation.  

For both implementations the performance tests were based in one 
query, which was properly chosen so that its length to be representative of the 
average nucleotide query length, and on four different databases of various 
number of sequences and lengths. Also, the performance results are based 
on “wall time” as both implementations are fully functional. Tables 5.1 and 5.2 
show the size of the testing query and the four databases. 

 

QUERY SEQUENCE 
LENGTH(letters) 782 

 

Table 5.1: Testing query sequence length in letters. 

 

 

DATABASE NAME No OF SEQUENCES No OF LETTERS 

Test_db 6 4309 

Testdb_large 1 3.756.989 
Env_nt 18.486.260 7.655.037.578 
nt 14.245.355 36.716.926.086 

 

Table 5.2: Testing databases No of sequences and No of letters. 

 

5.1 System	
  validation	
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As already mentioned many times above, the main goal of the 
software-hardware implementation was the validation of its output vs. the 
software implementation’s results. Many test have shown that this goal was 
achieved a hundred percent, as the results of both implementations are 
identical.  

5.2 Resources	
  utilization	
  
 

This section analyzes the recourses of the HC-1 system and the 
utilization of our second generation BLASTn implementation. Although the 
available hardware resources are four AEs (FPGAs), our design maps only to 
one of them. Table 5.3 shows the utilization of the FPGA for one Hitter 
Processing Element (HPE) and table 5.4 shows utilization of the whole 
personality, using one processing element. 

 

Hitter Processing Element recourses utilization (one Virtex5) 
Slice Logic 
Utilization Used Available Utilization 

Number of Slices 139 51840 0% 

Number of Block 
RAM/FIFO 

(36 Kb) 
45 288 15% 

Number of DSPs 0 192 0% 
 

Table 5.3: HPE resources utilization. 

 

 

BLASTn 2nd generation arcitecture recourses utilization (one Virtex5) 
Slice Logic 
Utilization Used Available Utilization 

Number of Slices 15364 51840 29% 

Number of Block 
RAM/FIFO  

(36 Kb) 
87 288 30% 

Number of DSPs 0 192 0% 
 

Table 5.4:  2nd generation BLASTn personality resources utilization. 
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Table 5.3 makes clear that the critical resource of the HPE is the Block 
RAMs. The above numbers reveal that the extra logic of the whole system 
including PDK’s interfaces consumes 42 Block RAMs leaving 246 for adding 
more HPEs working on parallel.  

HC-1 system can combine 5 parallel working HPEs on each of its AE, 
summing up to 20 HPEs total. 

 

5.3 System	
  performance	
  
 

This section describes the performance analysis of our BLASTn 
system implementation and where it stands in comparison with the 
performance of the software implementation provided by NCBI.  

It is necessary to point out that our implementation is not a design 
focused on performance of BLASTn but a design of fully functionality and 
accuracy. As the sw-hw implementation and the NCBI Blast software are 
complete systems, the “wall time” measurement was used for performance 
comparison.  

The software execution was tested in the HC-1’s host processor, which 
is a 2,13 GHz dual core Intel processor. 

  Table 5.5 presents the “wall time” for the seeding step that consists of 
three different software functions, which were mapped in the reconfigurablke 
logic. Table 5.6 presents the “wall time” for the entire systems.  

 

Functions:  
s_BlastSmallNaScanSubject_8_4, SMALL_NA_ACCESS_HITS, 

s_BlastSmallNaRetrieveHits (seeding step) 
 

Database 
 

SW 
Performance 

(sec) 

SW-HW 
Performance 

(sec) 

Speedup  
(SW vs.  
SW-HW) 

No of 
coprocessor 

calls 

test_db 0.01 0.9 90 1069 

testdb_large 0.01 10.86 1086 939246 

env_nt 10.7 10577.33 988 1888341885 

nt 35.46 104969.75 2960 569752874 

 

Table 5.5: Wall time performance of seeding step both in NCBI’s BLASTn software implementation and 
2nd generation BLASTn 
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BLASTn implementations (SW by NCBI SW-HW by us) 

Database 
 

SW 
Performance 

(sec) 

SW-HW 
Performance 

(sec) 

Speedup  
(SW vs.  
SW-HW) 

test_db 0.01 0.9 90 

testdb_large 0.019 11.53 607 

env_nt 16.089 21942 1371 

nt 251 106055 423 

 

Table 5.6: Wall time performance of both in NCBI’s BLASTn software implementation and 2nd 
generation BLASTn 

 

 

5.3.1 Timing	
  analysis	
  	
  
 

The comparison of the perfromance results, which are presented 
above, shows that our implementation is much slower than the software one. 
This is due to two very significant reasons. 

 Parallelization: 

 As already mentioned, our implementation maps only 1 HPE. The 
reason why only one is used is mainly validation reasons, as we wanted to 
create a basic design, which will be easily checked as far as its accuracy 
concerns. HPE’s clock frequency is 150 MHz a number due to the Convey’s 
system specifications. 

 

 Coprocessor calls: 

For both implementation’s execution time varies a lot depending on the 
database and more specifically on the number of letters it has, as for every 8 
letters (sixteen bit quantity) a call to the seeding functions has to be made. 
Our implementation makes a call to the coprocessor and for every call it has 
to pass the necessary arguments for the hardware implementation 
initialization through assembly instructions to the coprocessor, which are 
executed to the coprocessors scalar processor, which works on really, lower 
clock frequency than the host. All this coprocessor calls adds a large time 
overhead in our implementation. 
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In next chapter there are some proposals how to overcome this two 
bottlenecks of our design in a future work. 
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6. Conclusion	
  and	
  future	
  work	
  
 

 This chapter concludes this thesis and it, also, describes some 
proposals for future work based on what have already been done. 

 

6.1 	
  Conclusion	
  

	
  
  This thesis analyzed the software implementation of the Blast algorithm 
provided by NCBI and deep knowledge of the BLAST algorithm was gained. 
Although we spend time on BLAST algorithm’s ideas most of our work was on 
a specific version of it, the nucleotide BLAST (BLASTn). We also developed 
two hardware software co-design implementations based on it and mapped 
them in a state of the art heterogeneous computing system.  These two 
implementations are different steps of continuous development and evolution 
resulting in a functional prototype of BLASTn application running on our 
system. We achieved our goals concerning training, experience gaining with 
this complicated high performance system and fidelity of our implementation, 
there are some future work development proposals focused mostly 
performance. 

 

 

6.2 Future	
  work	
  
Generation two of the BLASTn application, which derived from the first 

one, has left some positive signs with its fidelity but it lucks performance. The 
system’s potentials, especially the memory system potentials, and also the 
parallelization hidden in the algorithm seem encouraging and raise some 
aspects for future work. Some proposals are: 

• Migrating the functionality of generating input data and 
passing them to the AEG registers of the CAE through 
execution of scalar instructions and system function calls to 
the CAE itself, so that a hardware module will replace all 
three software functions and take full advantage of the 
system’s memory bandwidth. 

 

• Adding more than one hitter module, which will take fully the 
advantage of the algorithm’s parallelization and will make 
use of the great variety of system recourses. 
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•  More extra functionality concerning the extension step can 
be added to the hardware. In this case, more steps will be 
executed in parallel. 
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