

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

����� ������������ ��������� & ��������� �π���������

��π�������� �������

“Μέθοδοι εύρεσης πολύ μικρής περιστροφής ολοκληρωμένων

κυκλωμάτων μέσω ανάλυσης της ψηφιακής εικόνας του τυπωμένου

κυκλώματος.”

������� �������

���������� �π����π�

1. ���. ������� �������� (�π����π��)
2. Eπ. ���. ������� ���������
3. �π. ���. �������������

©Χανιά, Μάιος 2001

To my parents Nikolaos and

Athanasia Iliadis.

Imagination is more important than

knowledge.

 Albert Einstein.

Acknowledgnments

I would like to thank all those, who have helped me in the preparation of this

case study. First I would like to thank professor Mr. Michalis Zervakis whose

experience and ideas helped me refine my thinking. I would also like to thank

professors Mr. Giorgos Rovithakis and Mr. Dionisios Pnevmatikatos for participating

in my jury and for their comments and corrections. Finally, I would like to thank my

roommate and a very close friend Nikos Ntarmos for his advice, particularly in the

technical part of this application, that made the implementation of this case study

possible.

Contents

1 Preliminaries.
2 Extracting characteristics from the PCB image.

2.0 Introduction.

2.1 The PCB image.

2.2 Extracting characteristics

2.2.1 Modeling of Data

2.2.2 General linear least squares

2.2.3 Solution by the use of normal equations

2.2.4 Method to detect the direction of the rotation

 3 Artificial Neural Networks

 4.0 Introduction

 4.1 The Neuron

 4.2 Basic Neural Network Architectures

 4.3 Benefits of Neural Network

 4 Higher order Neural Networks (HONN)

 5.0 Introduction

 5.1 Approximation capabilities

 5.2 Learning traits

 5.3 Least squares learning method

5 Genetic Algorithms
2.3 Introduction

2.4 Description

2.5 Basic Genetic Algorithm operations

2.6 Genetic algorithm traits

2.7 Genetic algorithm versus traditional optimization methods

6 Selection of HONN structure for function approximation
using Genetic Algorithms.

 6.0 Introduction

 6.1 Methods for improving the structure of a neural network

 6.2 Description of the algorithm

 6.3 Structure of a Genetic Algorithm.

7 Alternative way to measure the rotational angle of a PCB
component

 7.0 Introduction

 7.1 Measure the rotational angle using the Radon transform

 7.2 Results.

Appendix A
 About the PCB images

Appendix B
 Manual for the Genetic Algorithm Software

Appendix C
 Manual for the main application software

Chapter 1. Prelimineries

1.1 General Description of the HIPER project for post-Placement

Inspection.

The manufacture of electronics requires sophisticated machinery to place

components (SMDs) on printed circuit boards. Central to the assembly process is the

components’ placement function. Speed, flexibility and accuracy requirements and

the end-user application largely dictate the type of machines that will be used.

Because of the continuing drive for higher accuracy and speed, the placement

machines feature machine-vision equipment for board and component alignment.

However, to be able to verify the position of the placed component, a post-placement

inspection is needed. In order to be able to immediately get the information about the

placement accuracy, this post placement inspection should be executed right after

placement of each component.

With the existing vision systems, the post placement inspection is carried out on the

board, after that the board is fully SMD mounted. A drawback of this method is the

fact that the inspection data is not available before the PCB is fully mounted. Another

problem is the poor dynamic range of the used CCD cameras together with the fixed

video frame rate.

1.2 HIPER Application Perspectives.

Placement process control plays an important role within the zero-defects policy

of today’s electronics manufacturing industry. Parameters that are currently checked /

controlled with vision sensors are:

• Component’s presence check (before and/or after placement)

• Placement force

• Component pick correction (=x, y pipette shift before pick)

• Fiducial alignment measurement (=x, y φ positioning of PCB)

• Component alignment (CA) measurement (=x, y, φ positioning of

component)

• Component lead inspection together with CA

• Component placement position: as a result of nominal required position

plus FA / CA corrections.

In fact the only parameter that is not checked is the positional accuracy of the

component (SMD) after placement. Factors that could influence this positional

accuracy are:

• Shift between SMD and nozzle due to acceleration / nozzle tip

vibrations

• Forces acting on SMD due to PCB warpage

• Other eventual effects: thermal expansion of the PCB was not clamped

sufficiently.

This after-placement positional accuracy of SMDs in not measured up to now.

Reasons are:

• It is not possible to make reliable measurements with “common” CCD

cameras. The difficulty here is that a distinction should be made

between a shiny copper footprint and a shiny SMD lead. The dynamic

reach of CCD cameras is insufficient for this.

• Random pixel access is not possible with conventional CCD cameras.

Therefore it takes a lot of time to collect all pixel data and process this

data.

• It is complex to integrate vision sensors and illumination around the

placement head. This integration is essential to minimize time loss for

post placement inspection.

The HIPER project’s aim is the implementation of an integrated CMOS

sensors / image processing device for an optics / illumination system that will be

situated around the placement head of the SMD placement machine. In the HIPER

project, an image acquisition module will be installed around the placement head of

the ACM (Advanced Component Mounter) machine. This image acquisition module

must be capable of taking top-view images of the respective mounted SMD in its

belonging solder land. Analysis of the images should verify post placement criteria.

1.4 Case study and Chapter organization

This case study is a part of the above HIPER application. It analyzes the

images taken from the HIPER camera in order to detect and to measure extremely

small rotational angles of the SMD components on a printed circuit board. This

analysis will check the positional accuracy of the components (SMD) on a mounted

PCB in a rotational sense. The key features of this method must be high-speed,

flexibility and accuracy of the rotational measurement in order to be reliable and to be

used in real-time systems.

 Although we develop two completely different methods to detect the

rotational angle of an SMD component, we focus our case study in the first one which

utilizes neural networks. The Chapter organization is as follows:

• Chapter 2.

 This chapter analyzes the preprocessing part of our application which utilizes

neural networks. It shows how we extract, from a given image, useful characteristics

which we later provide as data to our neural network. We also make here all necessary

modifications to our data in order to make our application independent of external

factors such as illumination and SMD geometry.

• Chapter 3

Here we make a brief introduction to artificial neural networks (ANN). We

examine how an artificial neural network works and how ANNs can store information

from the training data. We also examine the basic architectures of neural networks, as

well as their advantages and disadvantages.

• Chapter 4

In this chapter we focus on Genetic Algorithms (GAs). These algorithms

comprise a special kind of search algorithms, which we use to find the optimal

structure of our neural network. We examine the basic operations of genetic

algorithms and how they can be used as an optimization technique for ANNs. Finally

we mention all the tradeoffs between the GAs and other optimization methods.

• Chapter 5.

In chapter 5 we analyze in detail the kind of neural networks we use in our

application, the higher order neural networks (HONN). Here we place all the

mathematical proofs that show how HONNs are capable of approximating functions

as well as all the learning traits of higher order neural networks.

• Chapter 6

In earlier chapters we represented the basic concepts of neural networks and

HONNs as well as those of the genetic algorithms. Here we describe the way GAs can

be used as an optimization method to our higher order neural network. We give a

description of the algorithm that we use for that purpose and we examine in detail

every single step of this algorithm. Finally, we mention all the results, such as neural

network error neuron status etc., taken from the implementation of the above

algorithm.

• Chapter 7

In this chapter we examine a completely different approach to the problem. The

technique used here is based on the Radon transform and it is a traditional method to

detect object rotations. In chapter 7 we discuss all the pros and the cons of the Radon

transform and mention the results taken from the implementation of this method.

Besides these chapters we also have three appendices which concern the

implementation techniques of this application. They might help the reader to

understand how each program works.

• Appendix A

 The appendix A discusses the method by which the training samples for our

neural network are taken. We also refer to the difficulties we encounter during this

process and the reasons for these problems.

• Appendix B

 The appendix B is the manual of the implementation of the Genetic algorithm

program. It is a general description of the implementation of the program and it shows

what files are needed in order for it to work

• Appendix C

Here we examine the implementation of the main program. It shows the block

diagram of the program and the main steps the program follows. We also provide a

time profiler which shows how the total execution time is distributed in each function.

We finally have a list of error codes that the program returns in case of an internal or

external error.

The last page shows the results of the program for some unknown (to the

neural network) images for each side of the component.

Chapter 2. Extracting characteristics from the image.

2.0 Introduction

 As we already know image processing is often time-consuming and requires in

most cases large amounts of memory to be accomplished. The above reasons make

image processing applications very difficult to be used in real time and embedded

systems. In this chapter we will discuss in detail the way we produce, from a given

image, useful characteristics for our application that will later be used as input to our

system, thus making the whole application suitable for real time systems. The

characteristics mentioned above must be enough, in order to cover every aspect of the

problem without any loss of information for the specific application. Also the whole

method for the extraction of these characteristics must be abstract, so that the same

method can be applied to similar type problems without any significant changes.

2.1 PCB image.

 In order to gather any useful information for our purpose - to measure the

rotational angle of the component if such rotation exists - it is necessary to observe

more closely the image itself. Such an image is given below (image 2.1). It shows a

PCB circuit board. It constitutes of a component (Topline TQFP120T15.7) and the

pad.

 Image 2-1

 This specific application requires an identification error goal of

degrees in an interval from -0.6 to 0.6 degrees. Due to this very small identification

error goal as well as to the poor image quality, all information regarding the rotation

of the component can only be deduced by the edges of the component, namely the

pins. Taking as a fact that every side of the component is rotated with the same angle

respectively and that the camera taking the image is in a totally horizontal position,

we can assume that analyzing only one side of the component can drive us to the same

results as if we analyzed all sides of the component. This assumption is necessary in

order to speed up the whole application and to reduce the total amount of memory

needed.

01.0±

 As a result of the above assumptions we can create a new image (only for

representational reasons; in real conditions we just allocate only the amount of

memory needed, without having to create a new image), having only one side of the

component. Without any loss of generality we will continue our application with the

upper-side of the component (image 2.2).

 Image 2-2
 (Upper side of the component in horizontal position)

Note that in the images 2-1 and 2-2, we not only show the pins of the

component but also the solder paste between the component and the pad.

 2.2 Extracting characteristics from the PCB image.

 One important feature we could use to detect the rotational angle of the

component is the first derivative of the horizontally projected values of each pixel of

the up side.

 More analytically, if we project every single pixel of the component in a

vertical line by summing its values and then take the first derivative of that projection,

we will have the following graphs:

 Figure 2-1

 Figure 2-2

 Intuitively we could expect that if the component had 0 degrees of rotation it

would have the largest first derivative in the projected values presented above.

Respectively if the rotational angle is large, the first derivative will be relatively

small, due to the smooth rising of the edge of the component.

Note that the first large derivative in figure 2-2 belongs to the pad and not to the

component so the relative position and value won’t change with any rotational angle

of the component. Our concern is for the second large derivative which corresponds to

the edge of the component.

Truly, if we compare the first derivative of the component for various rotation

angles we can see that our hypothesis is indeed true. The graph presented below

represents the first derivative according to rotational angle, from -0.6 to 0.6.

 Figure 2-3

 As we can see from the figure 2-3 the first derivative that corresponds to the

component (that is the second maximum derivative of the figure 2-2) tends to reduce

as the rotational angle gets larger and it gets larger as the rotational angle gets smaller.

However, due to noise in the original image this behavior is corrupted significally. To

reduce the noise effect without changing the nature of the data gathered above we will

try to model our data (the projected values and not the derivatives) with a certain

polynomial in order to get the desired response.

2.2.1 Modeling of Data

 Our initial approach to this case is to try to model our data with a rather large

order polynomial so that to minimize the noise and to achieve as much good fit we

could without loosing any useful information since we require as much detail as

possible. As a maximum likelihood estimator we considered the least Square function.

The method discussed below is used to achieve the fitting procedure:

2.2.2 General linear least squares

Let considered a polynomial of degree M-1:

y(x)= ++ xaa 21

12
3 ... −++ M

M xaxa (2.1)

The general form of this kind of model is

y(x)= (2.2) ∑
=

M

k
KK xXa

1
)(

Where are fixed arbitrary functions of x, called basis

functions. Note that the functions Xm(x) can be wildly non linear functions of x. In

this discussion “linear” refers only to the model’s dependence on its parameters .

)(),...,(1 xXxX M

ka

For these linear models we define a merit function

2

1

(
2 1

)

∑
=

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ∑
= =

N

i

xXai
M

k
ikkY

X
ισ

 (2.3)

Where ισ is the measurement error (standard deviation) of the ith point presumed to

be known. If the measurement error is not known they may all be set to the constant

value σ = 1.

 Out task is to find the best parameters those that minimize 2X . They are

several techniques available for finding this minimum. To introduce our method we

need some notation.

 Let A be a matrix whose N x M components are constructed from the M basis

functions evaluated at the N abscissas xi, and from the N measurement errors σi, by

the prescription

i
xiXjAij σ

)(
= (2.4)

The matrix A is called the design matrix of the fitting problem. Notice that in

general A has more rows than columns, N>=M, since there must be more data points

(pixel points in our application) that model parameters to be solved for. The design

matrix is shown schematically in Figure 2.4.We also define a vector b of length N by

i

i
i

y
b

σ
= (2.5)

and denote the M vector whose components are the parameters to be fitted

by a.

Maa ,...,1

 Basis functions

 X ()1 ()2Χ … X ()Μ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ν

ΜΜ

Ν

Μ

Μ

Ν σσ

σσ

σσ

σ

σ

σ

)()(

)()(

)()(

)(.

)(

)(

22

2

2

1

22

1

1

1

12

11

2

22

1

11

xXxX

xXxX

xXxX

xX

xX

xX

L

M

M

M

L

L

M

M

M

NX

X
X

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2

1

 Data points

 Figure 2.4 Design matrix for the least squares fit of a linear combination of M basis
function to N data points. The matrix elements involve the basis functions evaluated at the values of the
independent variable at which measurements are made, and the standard deviations of the measured
dependent variable. The measured values of the dependent variable do not enter the design matrix.

2.2.3 Solution by Use of the Normal Equations

 The minimum of equation (2.3) occurs where the derivative of 2X with

respect to all M parameters vanishes. This condition yields the M equations ka

 0 = ∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
−

N

i
ik

M

j
ijji xXxXay

1 1
2)()(1

ισ
 k=1,…,M (2.6)

Interchanging the order of summations, we can write the above equation as the matrix

equation

 ∑ (2.7)
=

=
M

j
kjkj aa

1

β

where

∑
=

=
N

i

ikij
kj

xXxX
a

1
2

)()(

ισ
 or equivalently [a]= (2.8) ΑΑΤ .

an MxM, matrix and

 ∑
Ν

=

=
1

2

)(

ι ι
κ σ

β ikj xXy
 or equivalently [β]= (2.9) b⋅ΑΤ

 The equations (2.6) and (2.7) are called the normal equations of the least-

squares problem. They can be solved for the vector of the vector of parameters a by

the standard methods notably LU decomposition and backsubstitution, Choleksy

decomposition, or Gauss-Jordan elimination.

Acting accordingly to the above theoretical method we manage to achieve a

very good fit on the data in figure 2-1. Although we could try to fit the entire function,

we choose to fit only a specific part of the function in which we are truly interested.

This region of interest is placed between the first maximum derivative (i.e. that of the

pad) and to the second maximum derivative (i.e. that of the component). The order of

the polynomial used for the fitting was 10 and the results are plotted in the graph

below where the red cross (+) represents the fitting:

 figure 2-4

 If we now follow the exactly same procedure to obtain the maximum

derivatives for various rotational angles, we get the following graph.

 Figure 2-5

As we can see from the diagram, the first derivative has the information that

we need, since its values are distinct enough for various angles, even for as small ones

as those required by the application.

2.2.4 Method to detect the direction of the rotation

Due to the nature of the curve in figure 2.5, each possible value of the first

derivative corresponds to two different angles, one positive and one negative. For this

reason we first need to determine the direction of the rotational angle. As we probably

noticed, the projection vector doesn’t give us any information about the direction

(positive or negative) of the rotation of the component. This information must be

acquired from the original image and, more specifically, from the point where the

maximum derivative of the component appears. If we consider again the image 2.2 we

will notice that when the rotation is clockwise, more bright pixels due to the

component are placed in the lower side of the vertical of the specific point. When the

rotation is counterclockwise bright pixels are placed in the upper side of the same

vertical. To represent this idea more clearly, we give the following simple example.

 Up Side

Counterclockwise direction

 Down side

 Up Side

Clockwise direction

 Down Side

 Figure 2.6.

 The above figure represents the same idea with a simpler object (rectangular)

instead of the pins of a PCB component. We assume that the dashed rectangular is at

the point where we have the maximum derivative of the component. As we can see,

when the rotation of the object is clockwise we have more black pixels in the lower

side of the dashed rectangular. Instead, when the rotation is counterclockwise more,

black pixels are placed in the upper side. According to this idea, if we compare the

two sides of the dashed rectangular we can determine the direction of the rotation.

Namely if N is the number of the black pixels (in our example), we have:

N(Upper side) > N(Lower side) counterclockwise rotation

N(Upper side)< N(Lower side) clockwise rotation

N(Upper side)=N(Lower side) zero degrees rotation

 The performance of this idea in our application was very good giving errors

only to extremely small angles (less than 0.01 degrees). The direction of the rotation

is given to our system as an input and has only two possible values: 1 when the

direction is clockwise and -1 when the direction is counterclockwise.

Note that the rotation of the PCB component is done around the center of the

component.

2.2.5 Making first derivative illumination independent

 The value of the first derivative, as figure 2.5 indicates, has the disadvantage

that it depends on illumination factors. A brighter image with the same component

rotation would produce a different maximum derivative. To make the value of the first

derivative, and thus the whole application, illumination independent we need to make

some sort of normalization in the projected values. Let’s consider again the projected

values of the upper window given below.

 Figure 2.7

As we already said we are concerned in the region where the component is

placed, namely in the region [Xmin Xmax]. A brighter image with the same

component rotation would produce different but proportional Xmin Xmax values. To

make the first derivative independent from the Xmin and Xmax values we use a linear

normalization in both regions so that their values will be in the region from 0 to 1. For

an arbitrary point X in the region [Xmin Xmax] the normalization equation is:

minmax

min

XX
XX

X norm −

−
=

 The above relation guaranties that any point between [Xmin Xmax] will have

a value between [0 1]. This method removes the illumination factor from the first

derivative, as all the values of the points in the projected vector (the specific region)

are now scaled from 0 to 1, as long as the illumination changes are distributed

uniformly on every side of the component (left, right, down, up).

 Note. This method assumes that the values of Xmin and Xmax remain the

same under the same illumination and for different rotational angles. Although this

assumption isn’t true, for very small rotational angles, the values Xmin and Xmax

change insignificantly, producing only a very small measurement error, of order of

3% or less. However, in greater angles this normalization method produces much

greater errors.

Using the above method we manage to make our application, illumination

independent having only a rather small measurement error. This process is extremely

important because now we can detect the rotational angle of components in a PCB

image regardless of the illumination factor (an external factor), making the application

abstract enough to be used in practical purposes.

2.2.5 Making first derivative independent of the geometry of the component.

 Intuitively we could say that a bigger PCB component would affect our

maximum derivative results as taken before. Truly, this assumption is indeed true and

can be proved mathematically as follows:

 Let’s assume that the values in our projected vector in the region of interest

(that is where the component is placed), after the normalization, have the form of the

figure 2.8.

(b)
Xmax = =1

S

Xmin = =0
 (a)

F(x)

 Figure 2.8

 As we can see from the above figure the projected values (f(x)) are normalized

and they vary from Xmin==0 to Xmax==1. Lets say that S is the length from point a

to point b.

The first derivative of the f(x) would be:

g(x) =
dx

xdf)((1)

If we take the integral of the above relation we would have:

 (2) 1)(1)(=−=>=∫ abAdxxg
b

a

The equation 2 says that when the derivative increases, due to the component rotation,

the distance between Xmax and Xmin decreases. Therefore, for various rotational

angles we will have the following graph:

 Figure 2.9

A

S

That represents the equation

 S(φ)Α(φ))1(1≅ => A(φ)
)(

1
φS

≅ (3)

However the distance S(φ) is equal to:

 S(φ,R) φR2≅ (4)

 Where R is the distance from the side of the component tο the center of the

rotation.

The equations (3), (4) show clearly that the first derivative depends not only

on the rotational angle φ but also on the geometry of the component. However

knowing the parameter R in our samples we can eliminate this factor of an unknown

component simply by multiplying the first derivative, taken from the unknown

component, with a factor (
'R

R), where R’ is the distance from the side of the new

component to the center of the rotation which is the center of the component.

This process gives the application the important capability to be used with the

same data (such as the value of the first derivative) in various components in PCB

images without any changes.

 Giving these two elements as inputs to our system; (normalized) max

derivative and direction of the rotation, it must be capable of recognizing small

rotational angles of a component (as max derivative shows) in a PCB as the

application requires. We manage to extract useful information from the image in order

to avoid handling the image itself in our system, thus making the whole application

much faster. The same principles are applied in any PCB component, so those

characteristics can be used in any similar situation e.g. for other PCB chips. In later

Chapters we will examine in detail the main system and we will show how these two

elements can give us the rotational angle.

(1). As we can see from the figure 2.9 the value S(φ) can be used as another

characteristic that can define the rotational angle of the component. However we

choose not to use this parameter later, because as you can see from the equation (3)

the value of S(φ) can be completely defined from the value of the first derivative.

Having as input to our neural network the value of S(φ) will provide no additional

information to our system.

Chapter 3. Artificial Neural Networks (ANN)

3.0 Introduction

 Here, we make an introduction to artificial neural networks. In our application

we make use of a specific type of neural network (higher order neural network), so it

is imperative to know what neural networks are, how they work and what are their

basic principles.

 Work on artificial neural networks has been motivated right from its inception

by the recognition that the human brain computes in an entirely different way than the

conventional digital computer .The brain is a highly complex, nonlinear and parallel

computer (information processing system). It has the capability to organize its

structural constituents, known as neurons, so as to perform certain computations (e.g.

pattern recognition, perception, and motor control) many times faster than the fastest

digital computer.

 In its most general form, a neural network is a machine that is designed to

model the way in which the brain performs a particular task. We may use the

following definition of a neural network viewed as an adaptive machine:

 Definition: A neural network is a massively parallel distributed processor made up of

simple units, which has a natural propensity for storing experiential knowledge and

making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment

through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are

used to store the acquired knowledge.

The procedure used to perform the learning process is called a learning

algorithm, the function of which is to modify the synaptic weights of the network in

an orderly fashion to attain a desired objective.

3.1 Neuron

 As we have already said a neuron is an information-processing unit that is

fundamental to the operation of a neural network. The Block diagram 4.1 shows the

model of a neuron.

 X1 Wk1 Bk

 BIAS

 X2 Wk2
 Output
 Uk yk
 x3 Wk3

 . .
 . . Summing Activation
 . . Function Function
 xm Wkm

 Φ(-)

 Σ

 Figure 4.1

 We can identify from the above diagram three basic elements of a neuron

model:

1. A set of synapses or connecting links, each of which is characterized by a

weight or strength of its own.

2. An adder for summing the input signals, weighted by the respective

synapses of the neuron. The operations described here constitute a linear

combiner.

3. An activation function for limiting the amplitude of the output of a

neuron. The activation function is also referred to as a squashing function

in that it squashes (limits) the permissible range of the output signal to

some finite value.

The neuronal model as described is deterministic in that its input-output

behavior is precisely defined for all inputs.

3.2 Network architectures

 The manner in which the neurons of a neural network are structured is

intimately linked with the learning algorithm used to train the network. We may

therefore speak of learning algorithms (rules) used in the design of neural networks as

being structured.

 In general, we may identify three fundamental different classes of network

architectures:

1. Single-layer Feedforward network

 In a layered neural network the neurons are organized in the form of layers. In

the simplest form of a layer network, we have an input layer of source nodes that

projects onto an output layer of neurons, but not vice versa. As an example considered

the figure 4.2.Such a network is called single-layer network.

 Figure 4.2 Feedforward network with a single layer of neurons

2. Multilayer Feedforward networks

 The second class of a feedforward neural network distinguishes itself by the

presence of one or more hidden layers, whose computation nodes are correspondingly

called hidden neurons or hidden units. The function of hidden neuron is to intervene

between the external input and the network output in some useful manner. By adding

one or more hidden layers, the network is enabled to extract higher-order statistics. As

an example of a fully connected neural network (every node in each layer is

connected to every other node in the adjacent forward layer) see the figure 4.3.

 Figure 4.3
 Input layer layer of layer of output

 hidden layer neurons

3. Recurrent Networks

 A recurrent neural network distinguishes itself from a feedforward neural

network in that it has at least one feedback loop. For example, a recurrent network

may consist of a single layer of neuron with each neuron feeding its output signal

back to the inputs of all the other neurons, as illustrated in the architectural graph in

figure 4.4.In the structure depicted in this figure there are no self-feedback loops in

the network. Self-feedback refers to a situation where the output of a neuron is fed

back into its own input.

Figure 4.4 Recurrent network with no
self feedback loop and no-hidden
neurons

z z z

3.3 Benefits of neural networks.

 It is apparent that a neural network derives its computing power through, first;

from its massively parallel distributed structure and second from its ability to learn

and therefore generalize. Generalization refers to the neural network producing

reasonable outputs for inputs not encountered during training (learning).These two

information-processing capabilities make it possible for neural network to solve

complex (large-scale) problems that are currently intractable.

 The use of (ANN) offers the following useful properties and capabilities:

1. Nonlinearity. An artificial neural neuron can be linear or nonlinear. A (ANN)

made up of an interconnection of nonlinear neurons is itself nonlinear.

Moreover, the nonlinearity is of special kind in the sense that it is distributed

through the network.

2. Adaptivity. Neural networks have a built-in capability to adapt their synaptic

weights to change in the surrounding environment. In particular, a (ANN)

trained to operate in a specific environment can be easily retrained to deal with

minor changes in the operating environment (i.e. one where statistics change

with time); a neural network can be designed to change its synaptic weights in

real time.

3. Evidential Response. In the context of pattern classification, a neural network

can be designed to provide information not only about which particular pattern

to select, but also about the confidence in the decision make. The later

information can be used to reject ambiguous patterns, should they arise, and

thereby improve the classification performance.

4. Fault tolerance. A neural network, implemented in hardware form, has the

potential to be inherently fault tolerant, or capable of robust computation, in

the sense that its performance degrades gracefully under adverse operating

conditions. For example, if a neuron or its connecting links are damaged,

recall of a stored pattern is impaired in quality. However, due to the

distributed nature of information stored in the network, the damage has to be

extensive before the overall response of network is degraded seriously.

In contrast to the above useful capabilities the artificial neural network offers, it is

often difficult to design good ANNs, since many of the basic principles governing

information processing in ANNs are hard to implement, and the complex interactions

among network units usually make engineering techniques, like divide and conquer,

inapplicable. Fortunately newer algorithms such as Genetic algorithms, as we will see,

tend to eliminate the above problem.

Chapter 4. Higher order Artificial Neural Networks
(HONN)

4.0 Introduction

 A higher order neural network is a network with only one hidden layer that

involves high order activation functions. In mathematical terms a high order neural

network can be expressed as:

 (4, 1))(ˆ xSWy T=

Where are the inputs and the correspondents outputs, W is an L-

dimension vector that expresses the connection weights of the network and S(x) a

respective L-dimension vector with elements

yx ˆ,

 ,)()(xsxS i

i = Li ...,2,1= (4, 2)

In equation (4, 2) s(x) is a continuous activation function. For our purposes we

have used a Gaussian function of the form:

λ
πσ

σ +=
−

− 2

2

2
)(

2
)(

cxl
emxs (4, 3)

where σ,, lm ² are the magnitude, the gradient and the variance respectively

and c, λ the horizontal and vertical transposition. We could also use other activation

functions such as sigmoid functions of the form:

λ+
+

= −−)(1
)(cxle

mxs (4, 4)

In this case m, l represents the magnitude and the maximum gradient of the

function and c, λ the horizontal and vertical transposition respectively.

In general, when the input is an N-length two dimensional vector the elements

of s(x) are of the form:

 (4,5) 44444444 21

L

KtimesN

N
kji xsxsxs)()()(21 ⋅

3

For example a sixth order (HONN) with only one input and one output will

have the following form:

 65432)()()()()()(1 xsxsxsxsxsxsy ++++++=

while a third order (HONN) with 2 inputs and 1 output will have the form:

3

2
2

22
3

1
2

11)()()()()()(1 xsxsxsxsxsxsy ++++++=
...)()()()()()(3

21
2

2121 ++++ xsxsxsxsxsxs
3

2
3

1
2

2
3

12
3

1)()()()()()(... xsxsxsxsxsxs +++

The general equation that gives the maximum number of the higher order

terms in each neuron is:

dq)1(+=β (4.6)

where q, d the order of the neural network and the number of inputs

respective. From (4, 6) we can deduce that as the order of the neural network and the

number of inputs increase, we have a respective exponential increase in the number of

neurons in the neural network

.

4.1 Approximation capabilities

 Higher order neural networks have the ability to approximate regular functions

at least in a region of their range of definition.

The following theorem describes the approximation capabilities of a (HONN).

Theorem 4.1 .We assume that we have a regular but unknown function y=f(x), and

the mathematical model .Then)(ˆ xSWy T= 0>∀ε there is an integer number L and

a vector W *, such that the output of (HONN) with L higher order connections and

weight value *WW = to satisfy

ε≤− yŷsup

for all where a region in the input region of A of the function. Ω∈x nA ℜ⊂⊂Ω

The above theorem guarantees that if we have a satisfactory number of higher order

connections in our (HONN), then is possible to approximate any continuous function

with any accuracy in a given space.

4.2 Learning traits.

 Let assume that is the input of the (HONN) and is the

correspondent output and the f is the unknown function. It is obvious that y=f(x). Let

also assume that is an approximation function of the real f. Then the error

that comes up would be:

ℜ∈x ℜ∈y

)(ˆˆ xfy =

)(ˆ)(ˆ xfxfyye −=−= (4.7).

We can also observe that the error can be calculated without any further information

even if f(x) is a completely unknown function. Now, let’s assume a first order filter

)(ˆ)(xfxfazeazz −+−=+−=& (4, 8)

where ℜ∈z the output of the filter and a design constant of the filter.

Due to the theorem 4.1 we can assume without loss of generality that the unknown

variable in (4, 8) can be replaced from higher order neural network plus an

approximation error

0>a

)(xω .In other words (4, 8) can be written as follows:

 (4.9))()(*)(xxSWxSWazz TT ω++−−=&

where * W the unknown weight values. For the approximation error we make the

useful following assumption, direct result of the theorem 4.1:

Assumption 4.1: In a region ℜ⊂Ω the approximation error satisfies the following

condition

εω ≤)(x

where 0≥ε is an unknown upper bound.

 If we examine (4.9) more closely we can perceive the elements W as

estimators of the unknown weight values W *.If we define WWW −=~ the equation

(4, 9) will then take the form:

)()(~ xxSWazz T ω+−−=& (4.10)

This last equation is of the form bounded input – bounded output (BIBO)

meaning that if the term)()(~ xxSW T ω+ is bounded and approaches to zero then the

output of the stable filter (4, 9) also approach to zero. For the above if the (HONN)

learns a real but unknown function is like forcing z to converge into a real small

region of zero through weight learning W.

4.3 Least squares learning method.

 Although there are many learning methods (lyapynov etc), for our proposes

we will expound the least squares learning method.

The above method is described from the following theorem:

Theorem 4.2. Given the filter (4, 9), the learning rule

)(xzSWW +−= γ& (4.11)

with γ a designed constant, guarantees that the output z of the filter will converge in

an arbitrary small region

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛+≤ℜ∈=

α
γ

α
ε

α
ε 2*2 ||2

2
1|:| WzzZ

(arbitrary small region because the size of the region depends on the design

constants α, γ and the upper bound of the approximation error ω(x)).

The above theorem guarantees that if we have a starting condition z(0) within

region Z then z remains in Z . However if 0≥∀t Zz ∉)0(then there exist limited

time T that Τ≥∀∈ tZtz ,)(.So out primarily goal to converge the output z in a

arbitrary very small region of zero has been accomplished.

It is also obvious from the theorem 4.2 that the size of the set Z can be changed

choosing suitable values for the design constants α, γ. In general, the γ value must be

kept small in order to minimize the error that comes from the *W , while α must be

kept relatively large since it appears in the denominator of the equation that defines z.

Chapter 5. Genetic Algorithms

5.0 Introduction

In this chapter we make a brief introduction to genetic algorithms. It is

necessary to understand the way genetic algorithms work since, as we shall see in

later chapters, we use such processes to find an optimal structure for our neural

network. Here we shall see all theoretical concepts of genetic algorithms and their

practical implementations in various problems. Also we will compare genetic

algorithms to other methods and we will examine all the advantages and

disadvantages of each method.

 The idea of applying the biological principle of natural evolution to artificial

systems, introduced more than three decades ago, has seen impressive growth in the

past few years. Usually grouped under the term evolutionary algorithms or

evolutionary computation, we find the domains of genetic algorithms, evolution

strategies, evolutionary programming, and genetic programming. Evolutionary

algorithms are ubiquitous nowadays, having been successfully applied to numerous

problems from different domains, including optimization, automatic programming,

machine learning, economics, operations research, ecology, and population genetics,

studies of evolution and learning, and social systems.

A genetic algorithm is an iterative procedure that consists of a constant-size

population of individuals, each one represented by a finite string of symbols, known

as the chromosome, encoding a possible solution in a given problem space. This

space, referred to as the search space, comprises all possible solutions to the problem

at hand. Generally speaking, the genetic algorithm is applied to spaces which are too

large to be exhaustively searched. The symbol alphabet used is often binary, although

other representations have also been used, including character-based encodings, real-

valued encodings, and -- most notably -- tree representations.

Definition:A genetic algorithm is defined as GA=(B0, M, Ω, Γ, Φ, Θ, t) where:

• B0=(A1 ,….,Aμ) ε P(B) the population from the set of all possible populations

P(B) where Ai either as a binary or as real number coding

• M size of population

• Ω: P(B)→R fitness function

• Γ: P(B)→P(B) crossover function

• Φ:P(B)→P(B) mutation function

• Θ:P(B)→P(B) selection strategy

• t: R→(0,1) termination function

5.1 Description

The standard genetic algorithm proceeds as follows: an initial population of

chromosomes is generated at random or heuristically. Every evolutionary step, known

as a generation, the chromosomes in the current population are decoded and

evaluated according to some predefined quality criterion, referred to as the fitness, or

fitness function. To form a new population (the next generation), chromosomes are

selected according to their fitness. Many selection procedures are currently in use, one

of the simplest being Holland's original fitness-proportionate selection, where

individuals are selected with a probability proportional to their relative fitness. This

ensures that the expected number of times an individual is chosen is approximately

proportional to its relative performance in the population. Thus, high-fitness (``good'')

individuals stand a better chance of ``reproducing'', while low-fitness ones are more

likely to disappear

Selection alone cannot introduce any new individuals into the population, i.e.,

it cannot find new points in the search space. These are generated by genetically-

inspired operators, of which the most well known are crossover and mutation.

Crossover is performed with probability pcross (the ``crossover probability'' or

``crossover rate'') between two selected individuals, called parents, by exchanging

parts of their genomes (i.e., encodings) to form two new individuals, called offspring;

in its simplest form, substrings are exchanged after a randomly selected crossover

point. This operator tends to enable the evolutionary process to move toward

``promising'' regions of the search space. The mutation operator is introduced to

prevent premature convergence to local optima by randomly sampling new points in

the search space. It is carried out by flipping bits at random, with some probability

pmut.

 Genetic algorithms are stochastic iterative processes that are not guaranteed to

converge; the termination condition may be specified as some fixed maximal number

of generations or as the attainment of an acceptable fitness level. Figure 4.1 presents

the standard genetic algorithm in pseudo-code format.

begin GA
 g:=0 { generation counter }
 Initialize population P(g)
 Evaluate population P(g) { i.e., compute fitness values }
 while not done do
 g:=g+1
 Select P(g) from P(g-1)
 Crossover P(g)
 Mutate P(g)
 Evaluate P(g)
 end while
end GA

Figure 5.1: Pseudo-code of the standard genetic algorithm.

5.2 Basic Genetic Algorithms operations

 There are three basic operations found in almost very algorithm:

 1. Reproduction

 2. Crossover

 3. Mutation

Reproduction

 This operation allows individual strings to be copied for possible inclusion in

the next generation. The chance that a string will be copied is based on the string’s

fitness value, calculated from a fitness function. For each generation the reproduction

operator chooses strings that are placed into a mating pool, which is used as the basis

for creating the next generation. For example, look at the table below.

String Fitness value Percentage
01001 5 19%
10000 12 46%
01110 9 35%

 From this table the string 1000 is the fittest, and it should be selected for

reproduction about approximately 46% of the time, contrary to the string 01001, that

it is the weakest and should only be selected 19% of the time.

Crossover

 The crossover operation allows new solutions to be produced by randomly

mixing the traits of older solutions. In particular the genetic algorithm (GA) select two

strings at random from the mating pool .The strings may be different or identical it

doesn’t matter. The GA then calculates whether crossover should take place using a

parameter called Crossover probability. If the GA decides not to perform crossover,

the two select strings are simply copied to the new population (they are not deleted

from the mating pool, they may be used multiple times during crossover).If the

crossover does take place, then random splicing points is chosen in a string, the two

strings are spliced and the spliced regions are mixed to create two (potentially) new

strings. These child strings are then placed in the new population. For example say

that the strings 10000 and 01110 are selected for the crossover operation. The GA

selects a splicing point let say 3, so the following occurs:

 100|00 01100
 →
 011|10 10010

The newly created strings are 10010 and 01100.

 Mutation

 The specific operation is performed on a single element value and as a result

mutation changes the element value into a new one. In binary coding 1s are changed

to 0s and 0s to 1s.In real number coding a random noise is added to coded values. The

usefulness of this operation is to preserve the variety of solutions in each population.

Mutation can be applied either during selection or crossover (though crossover is

more usual).The GA has a mutation probability ,m, which dictates the frequency at

which mutation occurs although this probability must be kept small as a high mutation

rate can destroy fit strings. As an example, say that the GA decides to mutate bit

position 4 of the string 10010

 10010 →10000

 Example of mutation

5.3 Genetic Algorithm traits

 Genetic algorithms provide robustness, efficiency and flexibility when

searching a space for the optimum solution. GAs judiciously use the idea of

randomness when performing a task. However GAs are not simply random search

algorithms which can be inherently inefficient due to directionless nature of their

search. GAs are not directionless. They utilize knowledge from previous generations

of strings in order to determine a new generation that will approach the optimal

solutions.

Genetic algorithms versus traditional optimization methods

 The fundamental differences between GAs and other traditional methods are

• GAs use a set or population of points to conduct a search and not just a

single point on the problem space. This gives GAs the power to search

noisy spaces with local optimum points (in contrast with other

techniques such as Hill climbing techniques that find only the local

optimum in the neighbourhood of the current point).

• GAs are probabilistic in nature and not deterministic. This is a direct

result of the randomization techniques used by the GAs.

• GAs use only limited information to guide them through the problem

area. Many other techniques need a variety of information in order to

converge in a solution. The only information GAs needs is a measure

of fitness about a point in space. (Known as fitness function).This

characteristic make genetic algorithms extremely useful real problems

where additional information is hard to find.

• However one of the main disadvantages GAs presents is that they

demand a great amount of time in order to converge, which makes

their application nearly impossible in real-time problems.

Chapter 6. Selection of HONN structure for function
approximation using genetic algorithms.

6.0 Introduction.

 In earlier chapters we presented the basic concepts of neural networks

especially for higher order neural networks as also for the genetic algorithms. We

described the advantages and disadvantages of both neural networks and genetic

algorithms. In this chapter we will describe the way genetic algorithms can be used in

order to find the best (HONN) structure for our purpose, which is to approximate the

functions given as inputs to the HONN. This process is very important since we will

use the same method in our system in order to find the optimum structure to

approximate the characteristics that we extracted from our image.

6.1 Methods for improving the structure of a neural network.

 One fundamental problem of neural networks is to determine their internal

structure. This procedure is often a very difficult and time-consuming task because it

requires many tests and verifications of every topology. Moreover, the structure of a

neural network is affecting both the ability of generalization and the training time

required. Until now there is no analytical background to determine which topology is

the optimum one, without using some heuristic methods which usually are problem

depended. In general, these methods include:

• Method of testing and verification: According to this method neural networks

with different structures are trained and the smallest structure with the best

performance in the training sample is chosen.

• Method of destruction: In this method we start with a neural network with a

large structure and, during the training, we reduce the number of neurons in

the network.

• Method of construction: This method is the exact opposite. Namely we start

with a small structure network and during the training we insert more neurons

into the structure.

• Method using genetic algorithms: According to this method we use genetic

algorithms in order to find the optimum topology using some measures such as

the fitness value.

We choose the last one for being a more automated procedure as well as a more

accurate method than the others.

6.2 Description of the algorithm

 The algorithm we use to determine the structure of a given neural network

using genetic algorithms is given below:

Training Cycle

• Increment Iteration Count

• Neural Net Learning

• Check Criteria To Stop? If Yes --> Stop

• Check Time To Evolve? If Yes --> Evolution Cycle

• Evaluate Network Population

• Rank Network Population

• Store Image of Fittest Network

• Select Most Fit Parents

• Elitism

• Crossover & Mutation

• Increment Generation Count

• Update Network Population

• Continue training cycle
Fig. 6.1. The training cycle with the nested evolution cycle.

 In order to show the above algorithm more analytically, let’s consider a

structure of a higher order neural network:

 Input

 Output

 Hidden layer Intermediate links

 Figure 6.2 A simple structure of a HONN

 As we have already mentioned a higher order neural network contains one

hidden layer. The intermediate nodes have the following meaning: We assume that

our network consists of a set of higher order networks; these networks are combined

in order to give the final result .We will explain below that each subnetwork can

consist of neurons with different activation functions.

6.3 Structure of genetic algorithm.

From the above structure of a higher order neural network, we can understand that

a genetic algorithm must define all the activation connections in the network as well

as the parameters of the Gaussian function for each subnetwork. The genetic

algorithm must find an optimal combination of all the above from a relative large

number of possible combinations.

More analytically, a genetic algorithm must have the following structures.

Binary Form.

 In this structure we have the status of both the activations of an entire sub

networks and the activations of single neurons in our HONN. For example, if we

consider a 6th order HONN with 4 subnetworks and if we define as structure A the

structure that contains the activation of the subnetworks and B the structure that

represents the activation of the neurons, a possible form of these two structures would

be the following:

 1 1 0 0 1 1 1

 0 - - - - - -

 1 1 0 1 0 1 0

 1 1 1 1 1 1 1

Structure A Structure B
Figure 6.3 Structures of the digital part of the chromosome

The dashes (-) in the activation status of the neurons in the second subnetwork

(structure B) have the meaning that once this subnetwork is off (structure A) those

neurons don’t take part in the result of the genetic algorithms whatever activation

value they might have. These two structures constitute the digital part of the genetic

algorithm.

Real form.

This structure refers to the parameters of the activation function (eg. Gaussian)

As we already mentioned, each subnetwork can have different values for every

parameter in its activation function. If we consider again the example of the 4

subnetworks, a possible form of this structure can be as following (as activation

function we choose the Gaussian).

 l m λ c α γ σ2

 1 1.82 0.983 -2.3 0.4 3.45 0.03 0.7

 0 - - - - - - -

 1 9.67 0.672 4.78 0.8 9.87 0.02 0.96

 1 1.567 0.541 3.67 0.2 1.23 0.001 0.451

 Structure A Structure C
 Figure 6.4 .Structure of the analog part of a chromosome.

The dashes (-) have the exact same meaning as above. This structure is the analog part

of the genetic algorithm.

Initialize population.

 In the initialization stage we create a population of different topologies. The

number of these different topologies remains the same during the search process. For

the structures A and B we give possible values 1 or 0 with probability 50% and we

also initialize structure C with random values within certain bounds that we give as

inputs for all the parameters in the activation function.

Fitness value.

 Every chromosome represents a structure of the network. During the training

process we solve a differential equation system, which is:

)ˆ(yyzz −+⋅−= α& (7.1)

)(ixszWW ⋅+⋅−= γ& (7.2)

where α and γ the design constants, s(xi) the correspondent output of the ith hidden

neuron, W the active weights, namely the weights of activated connections which

change during training, y the desired output and finally the output of the HONN.

When this training process ends we compute the fitness function for every structure.

The fitness value can be compute from the following equation:

ŷ

f

ctvaluefitness
+

=
1

_ (7.3)

Where ct is a constant and f the mean absolute error given from:

∑
=

−=
N

i
yy

N
f

1

1) (7.4)

where N is the size of the training set.

Selection.

 In this stage, each structure is evaluated using a fitness function and assigned a

fitness value. On the basis of their relative fitness values, structures in the current

population are selected for reproduction. A stochastic procedure ensures that the

expected number of offspring associated with a given structure s is u(s)/u(P), where

u(s) is the observed performance of s and u(P) is the average performance of all

structures in the current population. Thus structures with high performance are more

likely to be chosen for replication while poor performing structures are eventually

removed from the population. In the absence of other mechanisms, such a selective

process would cause the best performing structures in the initial population to occupy

an increasingly larger proportion of the population over time. So when the fitness

value is computed for all the chromosomes, the chromosomes are sorted and a certain

percentage of the best chromosomes are chosen to be the base for the next generation.

Crossover process

 In this stage the selected structures are recombined using crossover, with two

complementary search functions. First, it provides new points for further testing of

structures already present in the population; Secondly, it introduces instances of new

structures into the population. There are several ways to cross the parent nets. One

way is to produce new offspring by randomly mating parents. As we know, every

chromosome consists of three fields. The crossover operation is applied in each field

separately with probability p=1- pc for each structure where pc is the crossover

probability.

 For the digital part of the chromosome, we generate two random real numbers

r1, r2 in the interval [0, 1]. If r1>p then we perform a single point crossover for the

structure B. The exact same procedure is used for the structure B. We can see the

crossover process in the following scheme.

 100011001110

 Figure 6.5 Crossover process for the structure B.

 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0

 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1

Figure 6.6: Crossover process for the structure A.

 For the analog part of the chromosome we use the same procedure. Namely,

for every parameter of the activation function we randomly choose a real number. If

this number is larger than p then we perform crossover between the parents in this

exact parameter. This operation is schematically depicted in figure 7.7

 l m λ c α γ σ2

 l’ m’ λ’ c’ α’ γ’ σ2’

r<p r<p r>p r>p r<p r>p r<p

 l m λ’ c’ α γ’ σ2

 l’ m’ λ c α’ γ σ2’

Figure 6.7. Crossover process for the analog part of the chromosome.

111110001111
110011100110
111111000111
001101101111
110100110011

111111001110
110110001111
110011100110
100011000111
001101101111
111100110011

Mutation.

 As in the crossover operation, we have here two types of coding: digital and

analog. We define the mutation probability as pm .For each chromosome we generate

a random real number, [0, 1]. If r<pm then a mutation operation is performed

either in structure A or in structure C. The reason why the mutation operation isn’t

performed on structure B is that the mutation operation hasn’t the sense of fine tuning

so there is no need to mutate the structure that is responsible for the activation or not

of the subnetworks. In case structure A is chosen, the mutation operation randomly

changes one bit of the structure. In case structure B is chosen, a random real number

is added in one of the parameters of the activation function. Schematically the

mutation operation is depicted in figure 7.8

∈r

 Mutation point

1 1 0 0 1 0 1 1

1 1 0 0 0 0 1 1

 Figure 6.8 mutation operation.

Elitism

 According to this procedure, the best chromosome (that is the chromosome

with the best fitness value) always propagates to the next generation. The reason for

this procedure is that without the Elitism the best chromosome could be lost in any

generation and there is no guaranty that it will appear again in the following

generations. In plain words, Elitism is a process that guarantees the asymptotic

converge to the global optimum.

Stoping Criteria.

The above genetic algorithm stops in two ways. Either when the number of

generations reaches a specific number or the mean absolute error e is smaller or equal

to an also specific value.

6.4 Implementation of the algorithm and results
Here, we will represent the results taken from the implementation of the above

algorithm. Our goal is to make a function approximation of the maximum derivatives

taken from images with component rotation at various angles, as chapter 2 indicates.

The preprocessing that we make at the training samples aims to normalize all

maximum derivatives in a region from 0 to 1. As activation function for our higher

order network we choose the Gaussian functions, namely functions of the form:

λ
πσ

σ +=
−

− 2

2

2
)(

2
)(

cxl
emuxs

We choose the specific function because it gave better results (we also tried sigmoid

functions but the HONN had very poor performance). Although we tried several

approaches to implement this algorithm we finally conclude, for better accuracy, in

using two different higher order neural networks, for when the component’s rotation

direction is clockwise or counter clockwise respectively. All the results below are

produced by summing the results of both networks. Our initial training samples were

taken from images with component rotation from -0.6 degrees to 0.6 with step 0.02

degrees (61 samples in total). However, we interpolate our data vector so as to reduce

the step to 0.01 degrees, so our train samples were 121.

Our starting hypotheses for both neural networks were:

• Maximum number of epochs 20000

• Mean absolute error to stop the training process 1%

• Maximum number of HONN subnetworks 10

• Maximum order 10

• Crossover probability 0.3

• Mutation probability 0.2

• Pick 30% of the best chromosomes in each population.

Given all the above, our system gives the following results after the genetic process

training:

 Figure 6.9

 As the above figure indicates, the blue line represents the real rotational angle

in our training samples, the red line is the system output degrees for each training

sample and the black line the error in each sample. As we can see, the red line almost

fits in with the blue one except in a very small region near zero where we have a wild

oscillation of the system output. The mean absolute error of the above figure was

about 0.01 degrees. This error represents the 1.7% and it is within application goals.

 In the next figures we show the error in respect to the number of epochs in the

genetic process in both neural networks

 Figure 6.10

 Figure 6.11

As we can see from figure 6.10 and 6.11 in both neural networks the average

error is falling significantly in the first 100 epochs, after that the falling rate is very

small. Although our stopping criteria were at 200000 epochs only minor changes were

observed after the first 1000 epochs.

After the completion of the genetic process, the optimum structures of the

higher order neural networks are given below.

Neuron status (structure B) Subnetwork status (Structure Β)

0.000000 0.000000 0.000000 0.000000 0.0000000.000000
 1.000000 1.000000 0.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 0.000000
 1.000000 1.000000 0.000000 1.000000
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000
 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 0.000000 0.000000 0.000000 0.000000
 1.000000 1.000000 0.000000 1.000000
1.000000 1.000000 0.000000 1.000000 1.000000 0.000000
 0.000000 1.000000 1.000000 1.000000
0.000000 1.000000 1.000000 1.000000 0.000000 1.000000
 0.000000 0.000000 0.000000 1.000000
0.000000 0.000000 1.000000 0.000000 1.000000 0.000000
 0.000000 1.000000 1.000000 0.000000
1.000000 1.000000 0.000000 1.000000 1.000000 0.000000

0.000000
1.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

 1.000000 0.000000 1.000000 1.000000
1.000000 1.000000 0.000000 0.000000 0.000000 0.000000
 1.000000 1.000000 0.000000 1.000000
0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
 1.000000 1.000000 0.000000 0.000000

 Figure 6.12 (HONN structure for clockwise rotational angles)

In figure 6.12 we can see in detail the digital part of the genetic algorithm

process that corresponds to the status of the neurons of the HONN (structure A) and

of the subnetworks (structure B). Although we define our genetic algorithm to start

with 10 subnetworks of second order, we see that the optimum structure was found

having only one subnetwork (those having 1 in structure B).

We can make the exact same observations with the second HONN structure

shown in the figure 6.13

Neuron status (structure B) Subnetwork status (Structure Β)

0.000000 1.000000 1.000000 0.000000 0.000000 1.000000

1.000000 1.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

0.000000 0.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

1.000000 0.000000 0.000000 1.000000
1.000000 0.000000 1.000000 1.000000 1.000000 0.000000

1.000000 0.000000 0.000000 1.000000
0.000000 0.000000 0.000000 0.000000 1.000000 1.000000

1.000000 0.000000 1.000000 1.000000
0.000000 1.000000 1.000000 1.000000 0.000000 0.000000

0.000000 1.000000 0.000000 1.000000
0.000000 0.000000 1.000000 1.000000 0.000000 1.000000

0.000000 0.000000 0.000000 1.000000
1.000000 0.000000 1.000000 0.000000 0.000000 1.000000

0.000000 0.000000 0.000000 1.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 1.000000 1.000000 0.000000
0.000000 0.000000 1.000000 0.000000 0.000000 0.000000

0.000000 1.000000 1.000000 1.000000

0.000000
0.000000
0.000000
1.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

 Figure 6.13 (HONN structure for counterclockwise rotational angles).

 Conclusively, we can say that in this chapter we analyze in detail how genetic

algorithms can be applied to determine the structure of a neural network and more

specific of a higher order neural network. This process was necessary since we use a

HONN in our main application to find the component’s rotational angle in our PCB

images. As we saw from the above results, this method has a quite good performance,

not only in accuracy, but also, as we shall see in appendix C, the main application has

a very small execution time, so it can be used in real time systems. An important

drawback of this method is that the execution time of the genetic algorithm process is

very large (it took about 2 days to be completed), while it needs large amounts of

memory, especially when we train HONNs of larger order. However, it is used only to

determine the structure of the HONN and it is not taking part in the main application.

Chapter 7. Alternative way to measure the
rotational angle of a PCB component.

7.0 Introduction

 In previous chapters we analyze how to measure the rotational angle of a PCB

component using higher order neural networks involved with genetic algorithms. In

this chapter we introduce another technique and we will compare both methods,

outlining all the pros and the cons of each of them. We must note that in our

application we are concerned not only in the percentage of the error produced in each

method but also in the speed and the size of each application as well. So, in order to

compare their corresponding performance, we must take the above factors into

consideration.

7.1 Measure the rotational angle using the RADON transform.

In recent years the radon transform has received much attention. The radon

transform is able to transform two-dimensional images with lines into a domain of

possible line parameters, where each line in the image will give a peak positioned at

the corresponding line parameters. This has led to many line detection applications

within image processing, computer vision, and seismics. The Radon transform was

first established in 1917 by Johann Radon.

Several definitions of Radon transform exist, but they are related to each other.

A very popular form expresses lines in the form

ρ = x)sin()cos(θθ ⋅+⋅ y

Where p is the smallest distance to the origin of the coordinate system, and θ the angle

as it appears in the figure 7.1

 Figure 7.1

The Radon transform for a set of parameter (ρ,θ) is the line integral through

the image g(x,y), where the line is positioned corresponding to the value (ρ,θ). The

delta() is Dirac’s delta function, which is infinite at 0 and zero for all other arguments

(and whose integral over all values is equal to one), while in the digital version, the

Kronecker delta is used.

∫ ∫
∞

∞−

∞

∞−
−−= dxdyyyxgg)sincos(),(),(~ θθχρδθρ

or the identical expression

∫
∞

∞−
+−= dsssgg)cossin,sincos(),(~ θθρθθρθρ

Using this definition, an image containing two lines is transformed into the Radon

transform as shown below.

 Figure 7.2 (Radon transform).

 It can be seen that two very bright spots are found in the Radon transform, and

the positions show the parameters of the lines in the original image. A very strong

property of the Radon transform is the ability to extract lines from very noisy images,

while an important drawback of this transform is that it’s global in nature, so it can

not tell the difference between long and short lines.

 We can measure the rotational angle of a PCB component using a combination

of edge detection and the above Radon transform.

 Step 1. Perform edge detection. Let’s consider the PCB image in chapter 2.1.

To make Radon transform work we need to perform edge detection in our image so as

to measure the rotation of the pins in the PCB component. We have tried several edge

detection algorithms (Sobel, Prewitt, Roberts, Laplacian of Gaussian, zero-cross,

Canny) but we choose the Laplacian of Gaussian method because it gave the best

results in a mean absolute error sense. The Laplacian of Gaussian method finds edges

by looking for zero crossings after filtering the image with a Laplacian of Gaussian

filter. Moreover, we tried to detect only the vertical edges, so as to leave out of the

Radon transform the edges corresponding to the pad.

 Step 2.Compute the Radon transform of the edged image. The Radon

transform computes projections of the image at various angles. Peaks in the Radon

transform indicate the possible presence of lines.

 The results of the above process gave us the following diagram which

indicates the output of the Radon transform.

7.2 Results

 Figure 7.3

As we can see from the figure 7.3 Radon transform can measure the rotational

angle of the PCB component. The whole concept of this method is very simple and

easy to use. Due to the fact that it can compute projections through the image at

various angles, this method doesn’t require training samples as our previous

application did (neural network application). However, it lacks both in speed and

accuracy as we can see from the following figure.

 Figure 7.4

 As we can see from the above figure, the absolute error of the Radon

transform is large, reaching in some cases a 26% (as for -0.16 degrees), therefore

being hardly within our application goals. Finally, the figure below indicates that this

method is too slow to be used in real time systems.

 Figure 7.5

 We must note here that the time required for this method to be accomplished is

relevant and it depends on the accuracy parameter given to the Radon transform in

order to compute the projections at various angles. The above time was measured

using the Matlab environment (this method was constructed only in Matlab) and it

will probably be faster under C/C++ environment. However, we should note here that

the execution time would be by default (due to the Radon transform) too large for this

algorithm to be used in real time systems.

 We can conclude this chapter by saying that the Radon transform, as a

traditional method for measuring the rotational angle of an object, as desirable might

be, due to its simplicity, it does not cover the application standards, both in error and

speed. In our previous model we make a quite productive trade-off between simplicity

and performance that make it by far the best choice.

Appendix A PCB images

Here, we examine in detail the way we produced all samples for our neural

network, namely all the PCB images. Due to the reason that we had no real samples,

apart from two separate images (one with only the pad and one only with the

component of the PCB), it was necessary to make artificial samples. This process,

although not a part of the application, is very important for all the assumptions we

made so far.

 In order to make those samples we used two separate images. The first named

h_qfp_14, is an 8bit 1024x1024 BMP image, containing the pad, and the second

named h_qfp_11, is also an 8bit 1024x1024 BMP image, containing the PCB

component. Without any former knowledge of both images, we assumed that the PCB

component had an original rotation. To define this rotation, we rotate the component

for various angles and we make use of the method specified in chapter 2. Namely, we

take the first derivative of the projections of each side of the component and we

compare the maximum first derivative in each component sample. The rotation was

made around the center of the component which was calculated manually (calculate

the width and height of the component and divide by two). We also rotate the

component using a bilinear method in order to be more accurate. This process showed

us that the PCB component had an original rotation of 0.2 degrees in the up and left

side of the component and -0.02 degrees in the down and right side. This abnormal

situation can be explained in one or more of the following ways.

Reasons for having different component angles in each side of the same component:

• The center of the rotation doesn’t match with the center of the component

• The component has different side lengths (horizontal and vertical).

• The length of the lead varies in its side

• The axis of the camera that took the PCB image isn’t in vertical position with

the horizontal PCB axis or we have a gradient between the component and the

PCB.

Therefore, we continued by rotating the component by -0.2 degrees and taking

only the upper side of it. The exact same procedure was also followed for the second

bmp image with the pad.

 Our application goal was to detect and to measure high-handed very small

rotational angles of the component in a bound region from -0.6 to +0.6 degrees. Due

to the discrete nature of the image, we took samples of rotated components with step

0.01 degrees because no smaller step was possible (step smaller than 0.01 produced

the exact same image even when rotating the component with bilinear method).

Although in our application we train our neural network with characteristics from

different images with step 0.01 degrees, this was done with interpolation of the

characteristics with this step. However we considered our goal to be detecting and

measuring angles with maximum estimated error of 0.01 degrees.

 To produce the final image containing both the pad and the component we

used a threshold (after aligning the centers of both the pad and the component), in

order to overlay the pad with the component. More specifically, we chose as

component threshold the value t=58. When the pixel value of the component is equal

to or greater than t, we replace the pad’s pixel value with that of the component;

otherwise we leave the pad’s pixel value intact. All the image samples used in this

application were taken using this process. If we need to alter in some way this process

(e.g. change the threshold value) all possible assumptions we made for this

application (e.g. errors, neural network weights etc) must be recalculated.

Appendix B Manual for the Genetic algorithm

software

Here we analyze the way genetic algorithm software works. This program

(Genetic.exe) is used in order to train and find an optimum structure for the higher

order neural network, as described in previous chapters. As activation function for the

higher order neural network we used the Gaussian function, which has the form:

λ
πσ

σ +=
−

− 2

2

2
)(

2
)(

cxl
emxs

 The figure 1 shows schematically how this program works.

Options.txt

Data.txt

Results.txt

Domh.txt

Param2.txt

Param1.txt

param0.txt

Genetic.exe

 Figure 1

Input files.

 As the figure 1 shows, this program takes as inputs two txt files. The first

called data.txt contains the data of the function we want to approximate. The format

of this file has the form:

Input11 Input21…Output11 Output21…

Input1N Input2N…Output1N Output2N…

Where N the number of the training data.

 The second input file is called Options.txt and has the following structure:

IVal1 IVal2 IVal3 IVal4 IVal5 fVal1 fVal2 fVal3 fVal4 fVal5 fVal6 fVal7 fVal8 fVal9

fVal10 fVal11 fVal12 fVal13.

Where:

IVal1: The order of HONN
IVal2: The number of the subnetworks
IVal3: Number of inputs of HONN
IVal4: Number of outputs of HONN
IVal5: Number of epochs for the GA (stopping criteria)
fVal1: Mean absolute error for the GA(stopping criteria)
fVal2: Crossover probability
fVal3: Mutation probability
fVal4: Lower bound for the parameter c in Gaussian function
fVal5: Upper bound for the parameter c
fVal6: Lower bound for the parameter l in Gaussian function
fVal7: Upper bound fir the parameter l
fVal8: Lower bound for the parameter m
fVal9: Upper bound for the parameter m
fVal10: Lower bound for the parameter lambda (λ)
fVal11: Upper bound for the parameter lambda (λ)
fVal12: Lower bound for the parameter sigma () 2σ
fVal13: Upper bound for the parameter sigma (). 2σ

 Note that all the Ival values must be printed as integers and all the fVal values

as floats

Output files.

After the completion of the training the genetic.exe produces five txt files.

Param0.txt.

This file contains the activation status of each neuron of the HONN (‘1’-On,

‘0’-Off).The format of this file would be like the following.

1.000000 0.000000 1.000000 1.000000 0.000000 1ο Subnetwork

0.000000 1.000000 1.000000 0.000000 0.000000 2ο Subnetwork

0.000000 0.000000 0.000000 0.000000 0.000000 3ο >>

1.000000 1.000000 1.000000 1.000000 0.000000 4ο >>

1.000000 0.000000 1.000000 0.000000 1.000000 5ο >>

Param1.txt

This file contains the activation status of each Subnetwork (‘1’-On, ‘2’- Off).

The format of this file would be like this:

1.000000 0.000000 1.000000 1.000000 0.000000

1ο Subnetwork 2ο Subnetwork 3ο Subnetwork 4ο Subnetwork 5ο Subnetwork

Param2.txt

This file contains the parameters of the Gaussian activation function for each

subnetwork and it has the following form.

1o Subnetwork l m λ c σ2

……………………………………………………………………………..
 …………….
……………………………………………………………………………..
 …………….
 l’ m’ λ’ c’ σ2’

Ν-Subnetwork.

All of three files are used for the main application program. Additionally the

genetic.exe program produces two more file that corresponds to the evolution of the

genetic process. These files are:

Domh.txt

This file contains the evolution of the Genetic process and has the following

structure:

Epoch number fitness value Mean absolute Error

Results.txt

This file contains the error per training sample and has the following structure:

Input Output Output of HONN Error

The time of completion of this program depends on numerous factors

(hardware, number of inputs, order of HONN, subnetworks of HONN, number of

epochs, mean absolute error) so it won’t make any sense to profile the time needed by

the program. Suggestively we say that for our application, using the parameters

mentioned in chapter 6, the time of completion of this program was about 2,1/2 days

in a PENTIUM II 350MHz running Windows 98. Due to this rather large time of

execution we present a new program which is a variation of genetic.exe. This

program has the ability to load the txt files of a previous training (param0, param1

param2) and to further continue the training process, reducing the estimated error of

the previous training. In plain words, with this program (Load_val_genetic.exe) we

can stop and continue the training process. However, we also need the first program to

produce the original txt files.

 Finally, we provide one additional function that is totally irrelevant to this

application program. This function is named splint.cpp and it is used to perform an

interpolation of a given vector of data. It is used in order to calculate possible

maximum derivatives of rotational components with step smaller than 0.02 degrees.

By doing so, we multiply our training samples for the HONN, thus giving the network

a better training process. We choose as interpolation method the spline, because

splines tend to be more stable than polynomials with less possibility of wild

oscillation.

Appendix C Manual for the main application

software

 In this appendix we analyze how the main application program works. Before

this program is started it is imperative to have the neural network trained, since here

we make use of the txt files produced by the genetic.exe program. In this program we

are extracting characteristics from an image with unknown rotational angle and as

system output we have the component’s angle with an estimated error. Schematically

the main application function is showed in figure 1.

 Image
Extracting
Characteristics

Neural Network
Rotational
Angle 0≥

Param1_pos.txt Param2_pos.txt Param0_pos.txt Options_pos.txt

direction

Clockwise direction

CounterClockwise direction

Neural Network

Options_neg.txt Param1_neg.txt Param1_neg.txt Paran2_neg.txt

Rotational
Angle < 0

 Figure 1

 In the above figure the dashed rectangular indicates the main application

program and the block arrows represent the system inputs. In more detail, the

“extracting characteristics” part, implements the following three steps:

Step1. It loads the image in memory.

Step2. It holds in memory only the up side of the component, which it rotates in a way

that the pins of the component face left.

Step3. It makes a vector by vertically projecting every pixel value.

Step4. It models the projected vector with a polynomial

Step5. It takes the first derivative and it gives as first output the maximum first

derivative

Step 6. It finds the maximum and the minimum values around the maximum

derivative and it normalizes the value of the maximum derivative

Step6. In the point where the first derivative was found, it computes the direction of

the rotation and gives that information as the second output.

 The two outputs of this part (normalized maximum derivative and direction)

become inputs to the neural network system which implements the following steps:

According to the direction of the rotation it can load the higher neural network that

corresponds either to the clockwise direction or to the counter clockwise direction as

figure 1 shows. In any case, the steps of the neural network subsystem are:

Step1. Load from the options.txt file the structure of the HONN.

Step2. Load from the param0.txt, param1.txt, param2.txt the status of the HONN

network (activation status of neurons, activation status of the subnetwork, parameters

of the activation function for each subnetwork).

Step3. Given the input characteristic, compute the output of the HONN, namely the

rotational angle of the component.

 We must say that steps 1 and 2 are implemented only once and that if we have

more that one images with unknown rotation then the neural network system

implements only the last step.

 We have tested the above application in a PENTIUM II 350MHz running

Windows 98. Below we list the total amount of execution time needed. Note, that we

measured the execution time for the first inserted image so additional time was

required loading all the txt files as illustrated in figure 1. The execution time would be

significantly smaller for other images after the first one. Moreover, we didn’t make

use of any optimization options of the compiler; because we left the user to decide

about time/memory trade offs.

The profiler records how many times each function was called (hit count) as

well as how much time is spent in each function call. The Func Time column reports

how much time it took for the function to run in milliseconds. The next column shows

what percent of the total profile time is represented by the function time. Func+ child

Time refers to the total time profiled for the function as well as any function called by

that function. The next column shows what percent of the total profile time is

represented by the Func+child time. The Hit count column reports the number of

times the function was called. The function column displays the decorated name of

the function.

Profile: Function timing, sorted by time

Program Statistics

 Command line at 2001 Aug 10 04:09: "C:\Project\HYPER\Debug\HYPER"
 Total time: 216,658 milliseconds
 Time outside of functions: 4,468 milliseconds
 Call depth: 5
 Total functions: 45
 Total hits: 49
 Function coverage: 51,1%
 Overhead Calculated 7
 Overhead Average 7

Module Statistics for hiper.exe

 Time in module: 212,190 milliseconds
 Percent of time in module: 100,0%
 Functions in module: 45
 Hits in module: 49
 Module function coverage: 51,1%

 Func Func+Child Hit
 Time % Time % Count Function

 111,415 52,5 171,958 81,0 1 Load_Image
 58,803 27,7 58,803 27,7 1 RapFileLoad
 19,406 9,1 212,190 100,0 1 main

 6,902 3,3 6,902 3,3 1 Acquire_ROI
 6,698 3,2 6,698 3,2 1 Make_projection
 3,020 1,4 3,020 1,4 1 load_val
 2,511 1,2 2,586 1,2 1 polyfit
 1,146 0,5 1,146 0,5 1 RapFileSize
 0,537 0,3 0,537 0,3 1 RapImgFree
 0,515 0,2 0,681 0,3 1 procces_net
 0,354 0,2 0,354 0,2 2 find_local_max
 0,262 0,1 0,262 0,1 1 Rot_detect
 0,191 0,1 0,191 0,1 20 funcs
 0,166 0,1 0,166 0,1 7 summing
 0,075 0,0 0,075 0,0 1 solve
 0,073 0,0 0,073 0,0 1 fitting_parameters
 0,024 0,0 0,215 0,1 1 derivative
 0,021 0,0 0,021 0,0 1 RapImgInit (rhapsody.dll)
 0,020 0,0 0,020 0,0 1 RapImgGetPar (rhapsody.dll)
 0,018 0,0 0,700 0,3 1 learning_step
 0,016 0,0 0,016 0,0 1 RapInitialise (rhapsody.dll)
 0,015 0,0 0,715 0,3 1 learning_procces
 0,001 0,0 0,001 0,0 1 feed_net

 Profiler for the main application program

 As we can see from the time profiler, about 80% of the total execution time is

spent to load the image file from the disk to memory. However, the total execution

time is quite small, so the specific application can be used in real time systems.

 Below we will examine in detail what each function of the application does.

Structures.h

 In this header file we are defining all the structures that we use in the

application. These structures are:

• struct image_rap_info{
 unsigned char **data;
 int h,w;
 }

 This structure contains the image matrix as well as the height h and the width

w of the image matrix. We use this structure to allocate memory not only for the

whole image matrix but also for the upper side of the component.

• struct _chromosome{
 float **nurs;
 float *dikt;
 float *analog[5];
 float fitness;

 int valid;
 }

 With this structure we define a chromosome for the genetic algorithm process.

It contains all the information a chromosome needs. This structure uses a matrix

named nurs of length (subnetwork x neurons) which contains the status of the neurons

in the HONN (‘1’-On, ‘0’-Off). It also has a vector of length (subnetworks) which

contains the status of the subnetworks of the HONN. Finally it contains a matrix of

length (subnetwork x 5) with the parameters of the activation function. Note that in

this application we are not dealing with the genetic algorithm process so the fitness

and the valid parameters of the chromosome are not used. This structure is simple

code reuse from the genetic.exe program and it helps us to load the optimum structure

of the HONN from the files that genetic.exe produced.

• struct _NN{
 int order;
 int neuron_num;
 int networks;
 int in_num;
 float *inputs;
 int hidden_num;
 float *S;
 float ***W;
 int out_num;
 float **outputsin;
 float *outputs;
 float **H;
 float *I;
 }

 In this structure we define the higher order neural network structure. Where

order, neuron_num, networks, in_num, out_num, hidden_num, are the order of the

HONN, the number of neurons in one subnetwork of the HONN, the number of

subnetworks, the number of the inputs, the number of the outputs and the number of

hidden neurons respectively. We also provide a vector named “inputs” of length

in_num that contains the inputs of the HONN as well a vector named “outputs” of

length “out_num” that it contains the output of the network. The vector S has length

“hidden_num” and contains the activation function as it has described at chapter 5.

The 3D-matrix W has a size of (networks x neuron_num x out_num) and contains the

weights for each neuron in the neural network. The vector outputsin has a length

(out_num x networks) and its element contains the output value of its subnetwork

(note that each subnetwork has the same number of inputs and outputs as the whole

network). The matrix H has length (networks x neuron_num) and it contains the status

of each neuron in the HONN. Finally the vector I has length (networks) and its

element of this vector contains the status of each subnetwork of the HONN.

• struct _io_pair{
 float *in;
 float *out;
 }

 We use this structure to pass our inputs to the neural network. Although we

could use simple vectors instead of pointers, since we know the number of inputs we

use beforehand, we did that for code reuse purposes only (the same program with

minor changes can be used with more or less inputs and outputs).

Constants.h

 In order to extract the characteristics from the image we must give the

geometry of the component. This file defines all the necessary geometry information

of the image (centre of the component, length of pad, distance from first to last pad) to

extract the up side of the component. It also defines the search region used in

find_local_max function as well as a variable named second_max used in

fitting_parametets function. These two variables are used to determine the maximum

derivative as we will see later. Note that all numbers in Constants.h file represents

pixels.

Load_image.c

 This is the first function that we use in our application. It allocates the memory

and loads the image matrix. This function uses other rhapsody functions that are

contained in rhapsody.lib file. Images are allocated in 32-bit boundary line. When the

number of pixels in not on a 32-bit boundary, a line will be present on right-hand side

of the image page, because that part of the page is not overwritten by loading an

image from file. In normal situations Load_image.cpp it returns 1 unless one or more

rhapsody functions returns an error message. To see the return values of rhapsody

functions please refer to the RhapsodyUserManual.

Acquire_ROI.c

 This function holds in memory only the upper side of the component. Doing

so, all the memory allocated in the previous function is now freed. The upper side of

the component is allocated in such way that the pins of the component are facing left.

We do that by rotating this side by 90 degrees and then inversing the object.

Make_projection.c

 Here we make the projection vector by summing vertical every pixel value of

the upper side of the component. To normalize the results so that can be from 0-1 we

divide each projection with the highest possible value they might have namely with

ROI_columns*256 since the images are 8-bit grey scale. This function returns 1 I

normal execution.

Find_local_max.c

 This function is used to find local maximums in a given vector. In order to

find maximums within an area, we must provide a specific search_region (given at

constants.h file) .This function looks for the largest element in a region

2xsearch_region (search_region pixels to the left and search_region pixels to the

right). Due to the very noisy images we also we provide this function with a certain

threshold variable so that every maximum derivative must have value greater than this

threshold. In normal situation this function returns 1 unless no maximum derivatives

above the threshold value found in the data vector.

Fitting_parameters.c

 Here we initialize all parameters that will be used in polyfit function.

Polyfit.c

 In this function we make a polynomial fitting in a given vector of data. The

order of the polynomial is given as input to the function however the function doesn’t

check their parameter inputs e.g does not check if the order of the polynomial is

positive or negative, so extra cautious must be used for the inputs of this parameters.

The memory for the parameter used by polyfit was reserved by fitting_parameter

function. Finally this function make use the solve function in order to solve the

simultaneous equations from the polynomial fitting. The solve.cpp is internal function

of polyfit.cpp and is used only in that point.

derivative.c

 Here we compute the first derivative of the modelling data and the results are

placed in a vector given as input to the function.

Rot_detect.c

 In this function we compute the direction of the rotation of the component.

The method followed here has been analyzed in detail at chapter 2. Due to the reason

that the upper side of the component wasn’t in a central position we need to adjust the

up and down side vectors of chapter 2. Also for greater accuracy we took tree

columns instead of one (1 columns form the point where max derivative found).

The result of this function is placed to a variable and can have only two possible

values, 1 that indicates that the rotation has counter clockwise direction or 0 that

indicates the opposite. In success this function returns 1.

±

 Besides these functions the application also makes use of two more functions

that assist all the above.

Save_ROI.c

 Here we save a previously allocated image page in a file. This function also

makes use of Rhapsody functions so in case of abnormal execution see the Rhapsody

User manual. This function is helpful in debugging mode only (to examine if the

upper side of the component has been correctly allocated) and it is not used in other

way,

Funcs

 This function computes the result of the polynomial fitting. It takes as inputs

the parameters of the basis functions and the position x and it calculates the

equation:

Ma

y(x)= ++ xaa 21
12

3 ... −++ M
M xaxa (2.1)

Where M the order of the polynomial.

myAssert

 This function is used in every step of the whole application. It takes as input

an expression argument and it controls the normal execution of the program as well it

evaluates expressions. When the result is FALSE it exits the program with an integer

that has a specific meaning. Also this function is used to identify logic errors and to

handle unexpected outputs of the functions. The application can run without this

function however it is extremely useful, especially in debug mode.

 Below we give possible return values of myAssert function.

Error values Meaning

1-16……………………………… Error in main function. Cannot allocate memory

for the neural network structure.

490……………………………… Error in main function. The file that contains the

weights of the neurons (weights_pos.txt or

weight_neg.txt) doesn’t exist or is not in same

directory with the executable program.

491……………………………… Error in main function. The file that contains the

structure of the HONN (option_pos.txt or

options_neg.txt) doesn’t exist or is not in same

directory with the executable program.

250……………………………… Load original image failed. The image file may

not exist or there is no available memory. If none

of the above please check of Rhapsody User

manual

101-102………………………….. Internal errors on load_Image function. Image file

may be invalid or there is no available memory. If

none of the above there is an error in Rhapsody

functions. Please check the Rhapsody User

Manual.

260……………………………… Error in Acquire_ROI function.

209……………………………… Internal error in Acquire_ROI function. There is

no available memory.

210……………………………… Internal error in Acquire_ROI function. There is

no available memory to allocate the matrix.

280……………………………… Error in Make_projection function.

401……………………………… Internal error in Make_projection function.

There is no available memory to allocate

variables.

Error values Meaning

290……………………………… Error in find_local_Max function. No local

maximum found

501………………………………. Internal error in find_local_Max function. There is

no available memory to the system

502………………………………. Internal error in find_local_Max function. The

search_region defined in constants.h file is greater

than the whole data vector.

503……………………………… Internal error in find_local_Max function. This

shouldn’t have happened. Check the normalization

procedure.

300……………………………… Error in fitting_parameters function. Possible due

to memory problems.

6011……………………………….Internal error in fittitng_parameters function. The

search region given in constants.h file used for

polynomial fitting is greater that the data vector.

601-609………………………… Internal errors in fitting_parameters function. No

memory available to allocate specific parameters

400……………………………… Error in polyfit function. This shouldn’t have

happened. Check the inputs of the functions.

500……………………………… Error in derivative function. Possible due to

memory problems

801-802………………………….. Internal errors in derivative function. There is no

available memory to allocate specific parameters.

501………………………………. Error in find_local_max function in different part

of the program.than error 290.No maximum

derivative found.

450………………………………. Error in Rot_detection function. This shouldn’t

have happened.

Error values Meaning

800……………………………… Error in load_val function. Check the inputs of the

function.

980……………………………… Internal error in load_val function. The file that

contains the activation status of the subnetworks

of the HONN (param1_pos.txt or param1_neg.txt)

does not exist or it isn’t in the same directory with

the main application program.

981……………………………… Internal error in load_val function. The file that

contains the activation status of the neurons of the

HONN (param0_pos.txt or param0_neg.txt) does

not exist or it isn’t in the same directory with the

main application program.

982……………………………… Internal error in load_val function. The file that

contains the parameters of the Gaussian activation

function for each subnetwork of the HONN

(param2_pos.txt or param2_neg.txt) does not exist

or it isn’t in the same directory with the main

application program.

900………………………………. Error in the learning_process function. Check the

inputs of this function.

901-902………………………….. Internal error in learning_process function. Cannot

allocate memory for specific parameters.

903………………………………...Internal error in learning_process function and

error in feed_net function. Check the rightness of

the inputs.

904………………………………...Internal error in learning_process function and

error in process_net function. Check the rightness

of the inputs.

Error values Meaning

905………………………………...Internal error in learning_process function and

error in summing_net function. Check the

rightness of the inputs.

In the next page we will see some new images with unknown rotational angles.

As we have already said in Appendix A, it is possible that every side of the

component has different rotational angles due to some predefined factors. In the next

table we will show the rotational angles of every side of the component of the 20 new

images (from h01_1Qf-h10_2Qf).

The first four columns show the result of our application in degrees for each

side. For example, for the image h_01_1Qf, the left side has a rotational angle of

about 0.25 degrees where the bottom side of the same component has a rotational

angle of about 0.061 degrees.

To explain this extraordinarily big difference between the rotational angles of

the sides of the same component we measure the distance S for each side. The

distance S is the same parameter from the equation (3) at chapter 2.2.5 which is the

horizontal distance between the first and the last pin of the component. As we can

imagine a big S corresponds to a small first derivative and thus to a big angle. For

example we can see that the left side of the first image has a very big rotational angle

because the horizontal distance between the first pin and the second pin of the

component is about 4.375 pixels whereas the correspondent distance for the bottom

side is only 2.1872. Apparently the centre of the rotation wasn’t the centre of the

component. The columns H-K show the distance S of each side of the component.

To be able to produce one “general” rotational angle we compute firstly the

average derivative of the four sides in each component and then give this average

derivative as input to out neural network. This Average rotation is shown at column L.

	Cover.doc
	ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
	Διπλωματική Εργασία
	Βασίλης Ηλιάδης
	Εξεταστική επιτροπή

	Dedication.doc
	To my parents Nikolaos and Athanasia Iliadis.

	Contents.doc
	Chapter1.doc
	Chapter2.doc
	Chapter3.doc
	Chapter4.doc
	Chapter5.doc
	Chapter6.doc
	Chapter7.doc
	AppendixA.doc
	AppendixB.doc
	AppendixC.doc

