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ABSTRACT

We consider the problem of tracking the time-varying (TV) parameters of a har-

monic or chirp signal using particle filtering (PF) tools. Similar to previous PF

approaches to TV spectral analysis, we assume that the model parameters (com-

plex amplitude, frequency, and frequency rate in the chirp case) evolve according

to a Gaussian AR(1) model; but we concentrate on the important special case of

a single TV harmonic or chirp. We show that the optimal importance function

that minimizes the variance of the particle weights can be computed in closed

form, and develop procedures to draw samples from it. We further employ Rao-

Blackwellization to come up with reduced-complexity versions of the optimal

filters. The end result is custom PF solutions that are considerably more efficient

than generic ones, and can be used in a broad range of important applications

that involve a single TV harmonic or chirp signal, e.g., TV Doppler estimation

in communications, and radar.

Keywords: Time-varying harmonic, chirp, polynomial phase, tracking, Doppler,

CFO, radar, particle filtering, time-frequency analysis
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1. INTRODUCTION AND DATA MODEL

Spectral analysis and time-frequency analysis are core tools in signal processing

research (e.g., [19, 7]). Time-varying (TV) spectra arise in a broad range of

important applications: from speech, to radar, to wireless communications.

TV spectral analysis tools range from basic non-parametric approaches such

as the spectrogram, to the Wigner-Ville and other time-frequency distributions,

and on to parametric ones such as polynomial basis expansion models, and TV

line spectra mixture models.

Line spectra mixtures (whether stationary or TV) entail a nonlinear observa-

tion equation, which complicates parameter estimation. When the evolution of

model parameters can be captured in state-space form, particle filtering (PF)

tools become particularly appealing for tracking the model parameters, and

there have been several contributions in the recent literature dealing with PF

approaches to TV spectrum estimation [2, 1, 24, 6, 13, 14].

PF algorithms for tracking time-varying phase and amplitude are considered

in [2]. While it is possible to derive instantaneous frequency and frequency rate

estimates by taking successive phase differences, such an indirect approach is

ad-hoc and problematic in practice.
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For a multi-component TV harmonic mixture model, PF approaches have

been pursued in [1, 13]. In [1], the evolution of harmonic parameters (frequencies,

complex amplitudes, possibly also decay rates) follows a Moving Average (MA)

model, the measurement follows a Gaussian TV Auto-Regressive (TVAR) model,

and an improved auxiliary particle filtering algorithm is applied to track the

parameters. In [13], a Gaussian random walk model is employed for the evolution

of the parameters, and an unscented PF algorithm is adapted to track them.

The use of temporal slices of the spectrogram in the measurement equation of

[13] limits the attainable time-frequency resolution. Follow-up work in [14] uses

the spectrogram to design the importance distribution for the frequency, the

underlying assumption being that frequency is locally constant (see also [6], and

[24] for an application of TVAR modeling to the enhancement of speech signals).

Gaussian AR models of the evolution of harmonic mixture parameters are

plausible and convenient in many situations - e.g., they can capture smoothness

due to inertia or other physical constraints. Following [1, 13], we also assume

that the parameters (complex amplitude, frequency, and frequency rate in the

chirp case) evolve according to a Gaussian AR(1) model; but we concentrate on

the important special case of a single TV harmonic or chirp signal.

The specific model we use for a TV harmonic is as follows. Let xk := [ωk, Ak]
T

denote the state at time k, where1 ωk ∈ < and Ak ∈ denote instantaneous

1 ωk = ΩkTs, where Ωk is the instantaneous frequency of the underlying continuous-time

signal at time t = kTs, and Ts is the sampling period. We are interested in estimating ωk.

There is potential for aliasing due to sampling, but we are interested in tracking small offsets
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frequency and complex amplitude. The state is assumed to evolve according to

the following AR(1) model:

xk = Hxk−1 + [uk−1 wk−1]
T ,

where H is 2 × 2 diagonal, H = diag
(
[b1, b2]

T
)
, with b` equal to 1 − ε` (with

ε` > 0 typically small, e.g., ε` = 10−3). The process noise sequence is i.i.d. The

process noise vector at time k consists of two independent random variables with

the following marginal statistics:

[uk−1 wk−1]
T ∼

[ N (
0, σ2

ω

)
, CN (0, 2σ2

A)
]T

,

where N , CN stand for the (real) normal and circularly symmetric complex

normal distribution, respectively. The measurements are related to the state via

the measurement equation

yk = xk(2)ejxk(1)k + vk,

where vk denotes i.i.d. CN (0, 2σ2
n) measurement noise.

Given a sequence of observations {yk}T
k=1, the problem of interest is to esti-

mate the sequence of posterior densities, that is p
(
xk| {yl}k

l=1

)
, k ∈ {1, · · · , T}.

Given p
(
xk| {yl}k

l=1

)
, one can estimate xk via the associated (posterior) mean.

For the above model (and its extension to a TV chirp), we show that the

optimal importance function (that minimizes the variance of the particle weights)

can be computed in closed form, and develop procedures to draw samples from

and slow drifts.
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it. Computing the optimal important function in closed form was not possible

for the models in [2, 1, 24, 6, 13, 14]. We further employ Rao-Blackwellization to

come up with reduced-complexity versions of the optimal filters. The resulting

filters are considerably more efficient than generic ones, and can be applied in a

broad range of applications in digital communications and radar, such as tracking

Doppler frequency and frequency rate drift due to irregular motion.

The above model may appear benign in its simplicity, but it is not. First,

the measurement nonlinearity is severe. Second, in contrast to a general time-

varying phase model, we explicitly model variations in instantaneous frequency.

That is, we constrain the phase to be an affine function of time k, but allow time-

varying jitter in the slope and the offset. These are precisely the parameters of

interest in wireless communications applications. To appreciate the nature of

the model, the following illustration is instructive. Fig. 9.1 depicts a sample

path of the evolution of the frequency variable, generated using b1 = 0.999,

σω = 0.001 and ω0 = 0. Time variation is - purposefully - extremely slow: the

frequency hovers around zero (notice the scaling of the y-axis). Fig. 9.2 depicts

the result of frequency estimation by peak-picking the spectrogram of the noiseless

measurements (amplitude fixed to 1 for clarity), using a rectangular window of

length 8, maximum overlap, and zero-padding to 256 samples. The result may

be surprising at first sight: one would perhaps expect the spectrogram-estimated

frequency to hover around zero as well, instead of steadily diverging towards white

noise - like behavior. The following simple result, whose proof can be found in
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the Appendix, sheds light on this ‘paradox’:

Consider ejωk, where k is a constant and ω is a random variable with contin-

uous pdf fω (·). As k →∞ the pdf of the angle of ejωk approaches a uniform pdf

over [0, 2π).

Under our AR(1) model, ejωkk can be written as a function of ejωk−1(k−1) times

ejuk−1k. It follows that ejωkk is asymptotically independent of ejωk−1(k−1). In other

words, even if we know the frequency at the previous time step (in which case the

new frequency is known within small tolerance, due to the driving term), for large

k the angle will be uniformly distributed - thus carrying no information about

the new frequency. The situation is worse with chirps, due to the presence of the

additional quadratic term in the exponent. Clearly, any tracking algorithm (not

only the spectrogram or PF) will simply diverge after a certain point in time2.

The question is which approach is best for small to moderate k, and stays on-

track longer than others. This is what we explore in the sequel. Our simulations

indicate that PF approaches are far better than the spectrogram in this context.

One might be tempted to think about periodically resetting the time axis by

exploiting the shift property of complex exponentials and absorbing the resulting

factor in the phase term. The spectrogram, however, operates on chunks of data

without regard to a time reference - effectively resetting the time counter for every

new window it processes - yet it suffers from divergence. Furthermore, periodic

2 In certain applications in digital communications, detecting the onset of divergence could

trigger a cold start at the link level to re-acquire synchronization using training data.
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resetting of the time axis would introduce abrupt periodic changes in the phase,

which are inconsistent with phase noise.

Link to Weil’s Theorem: Weil’s Theorem (e.g., see [17]) asserts that the dis-

tribution of the fractional part of {fk}k∈+
, for f irrational (and fixed; + denotes

positive integers) is uniform in [0, 1). In the context of Claim 1, let ω = 2πf , and

< · > denote fractional part. Then ejωk = ej2πfk = ej2π<fk>. The pdf of ω has

been assumed continuous, and thus a realization of f will be irrational with prob-

ability one. Weil’s theorem then shows that the sample (empirical) distribution

of the angle of ejωk for a fixed realization of ω and all k is uniform over [0, 2π).

In contrast, Claim 1 asserts that the ensemble distribution of the angle of ejωk

is (approximately) uniform over [0, 2π) for a fixed large k and ω random with

continuous pdf. So, Weil’s Theorem applies to sample path averages, whereas

Claim 1 to asymptotic ensemble averages. The ensemble distribution converges

to the sample path distribution for large k ∈+; this is an ergodic property of the

random process ejωk. Interestingly, Claim 1 does not require k to be integer.



2. PARTICLE FILTERING

Particle filtering has emerged as an important sequential state estimation method

for stochastic non-linear and/or non-Gaussian state-space models, for which it

provides a powerful alternative to the commonly used extended Kalman filter.

See [3, 9, 10] for recent tutorial overviews.

In particle filtering, continuous distributions are approximated by discrete

random measures, comprising “particles” and associated weights. That is, a

continuous distribution p(xk) (k is a time index) is approximated as

p(xk) ≈
N∑

n=1

wn,kδ(x− xn,k),

where δ(·) denotes the Dirac delta functional, xn,k is the n-th particle (location)

for time k and wn,k is the associated weight. A useful simplification stemming

from this approximation is that the computation of pertinent expectations and

conditional probabilities reduces to summation, as opposed to integration. While

this can also be accomplished via direct discretization over a fixed grid, the use of

a random measure affords flexibility in adapting the particle locations to better

fit the distribution of interest.

If we aim for an on-line filtering algorithm, in which the state at time k

should be estimated from measurements up to and including time k, the key
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distribution of interest is the posterior density p
(
xk | {yl}k

l=1

)
. The basic idea

of particle filtering, then, is to begin with a random measure approximation of the

initial state distribution, and, as measurements become available, derive updated

random measure approximations of p
(
xk | {yl}k

l=1

)
, k ∈ {1, 2, · · · }. That is, we

seek random measure approximations

p̂
(
xk | {yl}k

l=1

)
=

N∑
n=1

wn,kδ(xk − xn,k),

from which the state at time k can be estimated via the associated posterior

mean ̂̄xk =
∑N

n=1 wn,kxn,k. In particle filtering, the updates - the derivation of

p̂
(
xk | {yl}k

l=1

)
from p̂

(
xk−1 | {yl}k−1

l=1

)
- are based on the Bayes rule [3, 9].

A random measure approximation comprises two components: the particles

(locations) and the associated weights. If we could sample from the sought pos-

terior p
(
xk | {yl}k

l=1

)
, then all particle weights would have been equal. Unfor-

tunately, such direct sampling is not possible in most cases, and thus we resort

to sampling from a so-called importance function that “resembles” the desired

posterior, and from which samples can be drawn with relative ease. The mis-

match between the sought density and the importance function is compensated

in the calculation of weights, chosen proportional to their ratio evaluated at each

particle [3, 9].

Different types of particle filters may be applied to a given state-space model.

The various particle filters primarily differ in the choice of importance (or, pro-

posal) function. Different importance functions yield different estimation perfor-

mance - complexity trade-offs. Perhaps the most intuitive choice of importance
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function is the prior importance function p(xk | xn,k−1); i.e., the n-th particle is

updated by propagating it through the state-evolution part of the system. This

is a common choice, for simplicity considerations. The drawback is that particles

evolve without regard to the latest measurement, which only comes into play

in the ensuing weight update. When using the prior importance function, the

weight update at time instant k is given by wn,k = wn,k−1p(yk | xn,k), followed by

normalization to enforce
∑N

n=1 wn,k = 1.

Regardless of the particular importance function employed, a common prob-

lem in particle filtering is degeneracy: the weights of all but a few particles tend

to become negligible after a few iterations [3, 9]. Degeneracy can be detected

via degeneracy measures, and mitigated via resampling techniques [3, 9]. Resam-

pling the discrete measure replicates particles with large weights and removes

those with negligible weights. All particle weights become equal after resam-

pling. There exist several computationally efficient [O(N)] resampling schemes

that can be used to avoid the quadratic cost of brute-force resampling [3, 9].

From the viewpoint of minimizing the variance of the weights, the optimal

importance function (OIF) is given by [3, 9]

p(xk|xn,k−1, yk) =
p(yk|xk)p(xk|xn,k−1)∫
x
p(yk|x)p(x|xn,k−1)dx

,

where xn,k := [ωn,k, An,k]
T denotes the n-th particle at time k, which is computed

by plugging the n-th particle at time k − 1 into the OIF above, and drawing a

sample from it. The OIF usually strikes a better performance - complexity trade-

off than other alternatives. There are, however, two difficulties associated with
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the use of the OIF. First and foremost, it requires integration to compute the

normalization factor, which is usually intractable due to nonlinearity. Second,

sampling from the optimal importance function is a rather complicated process.

Thankfully, for our particular model, it turns out that it is possible to carry out

the integration analytically. This is explained next.



3. OPTIMAL IMPORTANCE FUNCTION: TV HARMONIC

CASE

Define a dummy variable x := [ω, A]T , and let D(yk,xn,k−1) :=
∫
x
p(yk|x)p(x|xn,k−1)dx.

Then

D(yk,xn,k−1) =

∫

ω∈<

∫

A∈

1

2πσ2
n

e
− |yk−Aejωk|2

2σ2
n ×

[
1√

2πσω

e
− (ω−b1ωn,k−1)2

2σ2
ω

1

2πσ2
A

e
− |A−b2An,k−1|2

2σ2
A

]
dAdω

Letting mA := b2An,k−1 , mω := b1ωn,k−1, v := ∠yk − ∠mA, where ∠(·) extracts

the angle of its argument, it can be shown1 that

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) × B,

with the multiplicative factor B given by

I0(
|mA||yk|
σ2

A + σ2
n

) + 2
+∞∑

`=1

I`(
|mA||yk|
σ2

A + σ2
n

)e−
(kσω)2`2

2 cos(`kmω − `v),

where I`(·) denotes the modified Bessel function of the first kind of order `. The

sum term for B is quite interesting. Due to the negative exponential dependence

on k, ` and the properties of modified Bessel functions, it vanishes quickly with

k and `. Given yk, it is easy to come up with a closed-form upper bound on

1 See the appendix
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the truncation error, which is, however, overly conservative. Truncation to 20

terms is adequate in all cases considered in our experiments - adding more terms

does not affect the results. We used 100 terms as an extra safety margin in our

simulations.

We can use rejection [8, pp. 40-42] to generate samples from the optimal

importance function p(xk|xn,k−1, yk) =

1
2πσ2

n
e
− |yk−Akejωkk|2

2σ2
n

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1
2πσ2

A
e
− |Ak−mA|2

2σ2
A

1
2π(σ2

A+σ2
n)

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) B

.

The basic idea of rejection-based sampling can be summarized as follows [8,

pp. 40-42]. Suppose we wish to draw samples from a density φ(x), for which

there exists a dominating density g(x) and a known constant c such that φ(x) ≤

cg(x),∀x. In practice, we choose g(x) to be easy to sample from, and such that

c is as small as possible. The rejection method then works as follows.

1. Draw a sample x from g(·) and an independent sample U uniformly dis-

tributed in [0, 1]);

2. Set τ := c g(x)
φ(x)

;

3. If Uτ ≤ 1, then accept and return x; else reject and go to Step 1.

It can be shown that the above rejection method generates samples from

the desired density φ(.), and the mean number of iterations until a sample is

accepted is c (thus the desire to keep c ≥ 1 as small as possible). Furthermore,
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the distribution of the number of trials is geometric with parameter 1− 1
c
, which

means that the probabilities of longer trials decay exponentially [8, p. 42].

Let

σ2 :=
σ2

Aσ2
n

σ2
A + σ2

n

,

and

µ :=
σ2

A|yk|+ σ2
n|mA|

σ2
A + σ2

n

.

Using the triangle inequality, it can be shown that a suitable dominating density

is

g(xk|xn,k−1, yk) =
e
− (ωk−mω)2

2σ2
ω e−

(|Ak|−µ)2

2σ2

(2π)2 γ (µ, σ) σωσ
,

where

c :=
e−

µ2

2σ2 +
√

2π
σ

Qo

(−µ
σ

)

e
− |mA||yk|

σ2
A

+σ2
n B

,

γ (µ, σ) := Qo

(
−µ

σ

)
+

σ√
2π

e−
µ2

2σ2 ,

Qo

(
−µ

σ

)
:=

∫ +∞

r=0

1√
2πσ

e−
(r−µ)2

2σ2 dr =

1

2
erfc(− σ2

A|yk|+ σ2
n|mA|

σAσn

√
2(σ2

A + σ2
n)

).

For this particular choice of IF and sampling procedure the weight update step

is given by wn,k = wn,k−1D(yk,xn,k−1) and can be carried out before sampling

from the optimal importance function (before the particles are propagated to

time-step k).



4. RAO-BLACKWELLIZATION

For our particular state-space model, it is possible to reduce the dimensionality

of the problem via a technique known as Rao-Blackwellization (see [11, 12, 20]

and references therein). Conditioned on frequency, our model is AR(1) linear

Gaussian on the complex amplitude. The basic idea is to exploit this structure

to avoid computing everything with plain Monte-Carlo sampling. The particle

filter is only used to handle the purely non-linear portion of the state-space.

Reference [20] considers a general non-linear state-space model that contains

a conditionally linear part, and works out the Rao-Blackwellization procedure in

detail. Our particular model is a special case of the so-called Diagonal Model in

[20]; however, we use the OIF to draw samples for the nonlinear part. The choice

of importance function is left open in [20] to maintain generality - usually the

OIF cannot be computed analytically.

The desired posterior pdf at time k, p
(
ωk, Ak | {yl}k

l=1

)
can be written as:

p
(
ωk, Ak | {yl}k

l=1

)
= p

(
Ak | ωk, {yl}k

l=1

)
p
(
ωk | {yl}k

l=1

)
.

This factorization enables us to use particles only to approximate p
(
ωk | {yl}k

l=1

)
,

which is a one-dimensional pdf; p
(
Ak | ωk, {yl}k

l=1

)
can then be analytically com-

puted using the Kalman filter. For state estimation, a Kalman filter is associated
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to each frequency particle, and the conditional mean filtered estimate of the

Kalman filter is used to fill-in the ‘missing’ amplitude dimension.

We use the optimal importance distribution to approximate the marginal

posterior density p
(
ωk | {yl}k

l=1

)
. The optimal importance distribution is

p (ωk | ωn,k−1, yk) =
p (yk|ωk) p (ωk|ωn,k−1)∫
ω

p (yk|ω) p(ω|ωn,k−1)dω
.

Letting µA := bk
2E{A0} , σ2

A′ := b2k
2 E{|A0|2} +

1−b2k
2

1−b22
(2σ2

A) , u := ∠yk − ∠µA, it

can be shown that

p (ωk | ωn,k−1, yk) =

1

2π(σ2
A′+σ2

n)
e
− |yk−µAejωkk|2

2π(σ2
A′+σ2

n) 1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1

2π(σ2
A′+σ2

n)
e
− |yk|2+|µA|2

2(σ2
A′+σ2

n) B′
,

with

B′ = I0(
|µA||yk|
σ2

A′ + σ2
n

)+

2

(
+∞∑

`=1

I`(
|µA||yk|
σ2

A′ + σ2
n

)e−
(kσω)2

2
`2 cos(`kmω − `u)

)
.

The weight update is given by wn,k = wn,k−1D(yk, ωn,k−1), with

D(yk, ωn,k−1) :=
1

2π (σ2
A′ + σ2

n)
e
− |yk|2+|µA|2

2(σ2
A′+σ2

n) B′.

To generate samples distributed according to p (ωk | ωn,k−1, yk), we could em-

ploy the transformation method [8]: this is, after all, a one-dimensional pdf. Still,

this requires another integration and some level of approximation (the integral

cannot be put in closed form). As an alternative, we found that rejection for this

one-dimensional pdf is far more efficient than in the previous case (which involved
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three real dimensions), and delivers exact samples, which is a definite advantage

relative to other sampling methods. A common criticism of rejection for real-time

applications is that it takes a random number of draws per particle. With as few

as 30 to 50 particles, however, variance is averaged out and the complexity per

input measurement is stable enough for our purposes.

Starting from p (ωk | ωn,k−1, yk) and using the triangle inequality, it is straight-

forward to show that a suitable dominating density is the transitional prior

p (ωk|ωn,k−1). The constant c associated with the accept-reject algorithm be-

comes

c =
1

e
− |µA||yk|

σ2
A′+σ2

nB′
.

It is interesting to see that sampling from the optimal importance function can

be implemented by rejection over the transitional prior, which is commonly used

as importance function per se. Pseudo-code for the Rao-Blackwellized optimal

filter can be found in Table 9.1.



5. CRAMER-RAO LOWER BOUND

The Cramér-Rao Lower Bound (CRLB) for our model can be computed using

the recursive formula of Tichavsky et al [23] for the calculation of the Fisher

information matrix, Jk. The state equation in our particular model is linear,

Gaussian; this allows considerable simplification of the general result in [23], thus

yielding

Jk = D22
k−1 −D21

k−1(Jk−1 + D11
k−1)

−1D12
k−1, k > 0

with

D11
k−1 := −E{∇xk−1

[∇xk−1
log p(xk|xk−1)

]T},

D12
k−1 :=

[
D21

k−1

]T
= −E{∇xk

[∇xk−1
log p(xk|xk−1)

]T},

and

D22
k−1 := −E{∇xk

[∇xk
log p(xk|xk−1)]

T}−

E{∇xk
[∇xk

log p(yk|xk)]
T}.

At this point, it is convenient to rewrite our model in real-valued form. Upon

defining x′k := [ωk,<(Ak),=(Ak)]
T , where <(·),=(·) extract the real, resp. imag-

inary part, we have

x′k = H′x′k−1 + uk−1,
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yk =
[ <{Ake

jωkk} ={Ake
jωkk} ]T

+ vk,

where H′ = diag
(
[b1, b2, b2]

T
)
, with b` being 1 − ε`, uk−1 ∼ N (0,Q) with Q =

diag
(
[σ2

ω, σ2
A, σ2

A]
T
)
, and vk ∼ N (0,R) with R = diag

(
[σ2

n, σ
2
n]

T
)
. Then

D11
k−1 = H′TQ−1H′,

D12
k−1 =

[
D21

k−1

]T
:= −H′TQ−1,

D22
k−1 = Q−1 + E{F̃k

T
R−1F̃k},

with F̃k being the 2× 3 matrix

F̃k = ∇x′k

[ <{Ake
jωkk} ={Ake

jωkk} ]T
.

For D11
k−1 and D12

k−1, note that the expectation operator was dropped because

the respective Jacobians are independent of the target state. The expectation

operator in the expression for D22
k−1 can be easily estimated using MC integra-

tion; it can also be calculated analytically, albeit the resulting formula appears

cumbersome. Putting terms together yields

Jk = Q−1 + E{F̃k
T
R−1F̃k}−

Q−1H′(Jk−1 + H′TQ−1H′)−1H′TQ−1, k > 0

The initial density p(x0) is taken to be N (x̄0,Q0), in which case J0 = Q−1
0 .



6. NUMERICAL RESULTS: TV HARMONIC CASE

In our simulations, we benchmark the performance of our optimal particle filters

against the CRLB and four additional filters: the extended Kalman filter, the

SIR PF [15], the Auxiliary PF, and a regularized PF. These filters are briefly

discussed next.

6.1 Extended Kalman Filter (EKF)

The EKF equations are well known, but they are rewritten here for convenience.

Recall from the previous section the real-valued state-space model. Since the

state equation is linear, state prediction is performed using the standard Kalman

filter equations

x̂′k|k−1 = H′x̂′k−1|k−1,

Pk|k−1 = H′Pk−1|k−1H
′T + Q.

Since the measurement equation is non-linear, the filter update is carried out

using

x̂′k|k = x̂′k|k−1 + Kk

[
yk − hk(x̂′k|k−1)

]
,

Pk|k = Pk|k−1 −KkSkKk
T ,
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where Sk = F̂kPk|k−1F̂
T
k + R, Kk = Pk|k−1F̂

T
k Sk

−1, with F̂k being the 2 × 3

Jacobian of the non-linearity involved in the measurement equation (denoted as

hk (·)), this time evaluated at the filter’s estimate x̂′k|k−1 (see previous section).

6.2 Regularized PF (RPF)

This algorithm is identical to the Sampling Importance Resampling (SIR) al-

gorithm, which uses the prior importance function, except for a “jittering” of

the resampled particles (using a normal distribution kernel) in order to protect

the filter from sample impoverishment; see, e.g., [3]. Since the process noise

in our model is relatively small, this modification is expected to improve the

performance over the standard SIR. However, this filter also has well known dis-

advantages - the samples are no longer guaranteed to approximate the posterior

density asymptotically in the number of particles.

6.3 Auxiliary SIR (AUX) Filter

The particular algorithm used is the Auxiliary SIR filter introduced by Pitt and

Shephard (see [18]). This filter tries to explore the state-space in a more sophis-

ticated way than the SIR filter. This is done by resampling at the “previous”

time step based on certain point estimates that capture the essential features of

the posterior density. This approximation can be inefficient when the process

noise is large, or when the auxiliary index varies a lot for a fixed prior. When

process noise is small enough, though, the AUX filter is reported to improve the
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performance over the standard SIR.

6.4 Rao-Blackwellized PF Using OIF (RBPF)

The plain version of PF using the OIF employs rejection for a thee-dimensional

distribution, which is not appealing in terms of complexity. The Rao-Blackwellized

version performs equally well in terms of tracking performance for the same num-

ber of particles, but is much faster - up to 100 times faster in our simulations.

We therefore only present results for the Rao-Blackwellized version.

6.5 Initialization Issues

In this section, we investigate the impact of prior knowledge on the CRLB curves.

We start by examining the case where almost no prior information about the

frequency component of the initial state vector is available. For the initial density

of the complex amplitude, we take a narrow Gaussian with mean E [A0] = 1 + j

and standard deviation std [A0] = 0.01. A beta distribution is used to model the

initial density of the frequency component

p(ω0) :=
Γ(u1 + u2)

(
ω0−ωL

ωH−ωL

)u1−1 (
1− ω0−ωL

ωH−ωL

)u2−1

Γ(u1)Γ(u2)(ωH − ωL)
,

for ωo ∈ [ωL, ωH ], where Γ stands for the Gamma function, and u1, u2 are the

shape parameters. The beta distribution contains the uniform distribution as a

special case.
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While in simulations we generate ω0 according to p(ω0), we also need a Gaus-

sian approximation for carrying out CRLB and EKF computations, since both

are premised on the assumption that the initial density is Gaussian (note that

this is not required for the particle filters). The mean and standard deviation of

the best-fitting Gaussian can be found in [5]:

E [ω0] := ωL + (ωH − ωL)
u1

u1 + u2

,

std [ω0] :=

√
(ωH − ωL)2u1 · u2

(u1 + u2)2(u1 + u2 + 1)
.

An illustration of such an approximation is presented in Fig. 9.3.

Fig. 9.4 and Fig. 9.5 demonstrate the effect of prior information on the CRLB.

The following parameters were used: b` = 0.999, ∀`, σ2
ω = 10−4, σ2

A = 10−4,

σ2
n = 0.2, u1 = u2 = 1 - thus the accuracy of prior information (std[ω0]) is de-

termined by ωH − ωL. The expectation appearing in the CRLB formulas was

approximated using 100 realizations of the state vector. Observe that the CRLB

with prior knowledge is initially lower, although the significance of prior informa-

tion diminishes very quickly over time and the bounds become indistinguishable

for k > 10. Increasing the value of std[ω0], the CRLB with prior knowledge

approaches the one with no prior knowledge.

6.6 Estimation Performance Results

We now focus on the frequency estimation performance of the five aforementioned

filters in a tracking mode, wherein the initial state is assumed to be known
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exactly - corresponding to a Dirac delta initial distribution. The CRLB and

the EKF assume that the initial density is a Gaussian. This mismatch is dealt

with by using a very tight density (very small initial variance) to approximate a

delta distribution. The expectation appearing in the CRLB was approximated

using 100 realizations of the state vector. The error curves corresponding to the

five filters were produced by averaging over 200 independent Monte-Carlo (MC)

runs, each comprising 100 temporal samples. The conditional mean was used to

generate point estimates for the particle filters. System parameters were set to

b` = 0.999, ∀`, σ2
ω = 10−4, σ2

A = 10−4, σ2
n = 0.1, and multinomial resampling was

employed.

We compared computational and memory complexities for approximately

equal estimation performance. Since accuracy is a major concern, the number

of particles for each algorithm was chosen to yield RMSE close to the CRLB.

Accordingly, the number of particles, N , was 1000 for SIR, 1000 for RPF, 800

for AUX, and 50 for RBPF.

The results are summarized in Fig. 9.6, which also includes the spectrogram

peak estimator as yet another baseline. A rectangular window comprising 8

samples, zero-padding to 128 samples, and maximal overlap factor were used to

compute the spectrogram, followed by peak-picking to estimate the instantaneous

frequency.

It is satisfying to see that the four particles filters and the EKF operate

close to the CRLB, and RBPF in particular performs that well with order-of-
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magnitude less particles. This being a three-dimensional state-space, such good

performance with only 50 particles is not at all obvious. SIR, RPF and AUX

filters perform very poorly with less than a few hundred particles in this context.

The average computation time per measurement (time-step) for each algorithm is

listed in Table 9.2. Observe that, RBPF is the fastest among the particle filters,

in addition to its far lower memory requirements.

Notice that all filters in Fig. 9.6 eventually diverge from the CRLB, with EKF

being the first to do so. Consistent with our earlier discussion regarding Claim 1,

the spectrogram steadily diverges in this case, and from early on. Interestingly,

its performance is order-of-magnitude worse than that of the particle filters.

We note that the particle filters are robust with respect to model parameter

mismatch. In particular, RBPF using σ2
ω = 2 × 10−4, σ2

A = 2 × 10−4, σ2
n = 0.2

(i.e., 2× the actual variance parameters used to generate the input data) performs

essentially the same as RBPF using the correct variance parameters - the only

difference is that the onset of divergence appears slightly earlier (at time index

80 instead of 85).

In Fig. 9.6 it appears that EKF offers a good performance / complexity trade-

off in the case where the initial information is very accurate; however, its per-

formance is severely degraded when the initial information about the frequency

is coarse. In that case, the particle filters can still yield very good performance.

To illustrate this, Fig. 9.7 presents a simple performance comparison between

the EKF and RPF (with 1000 particles) when the initial frequency information is
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inaccurate with std[ω0] = 1.155, and otherwise the same system and noise param-

eters as above. The error curves corresponding to the two filters were produced

by averaging over 500 independent MC runs.



7. EXTENSION TO TV CHIRP SIGNAL

In the following, we extend our results to the case of a TV chirp.

7.1 TV Chirp Model

Let xk := [rk, ωk, Ak]
T denote the state at time k, where rk ∈ < , ωk ∈ < and

Ak ∈ denote the instantaneous frequency rate, frequency, and complex amplitude

respectively. Once again, we shall assume that the state evolves according to the

following simple AR(1) model:

xk = Hxk−1 + vk−1,

where H is 3 × 3 diagonal, H = diag
(
[b1, b2, b3]

T
)
, with b` close to 1. The

process noise sequence is i.i.d. The process noise vector at time k consists of

three independent random variables with the following marginal statistics:

vk−1 ∼
[ N (

0, σ2
r

)
, N (

0, σ2
ω

)
, CN (0, 2σ2

A)
]T

.

The measurement is related to the state via

yk = xk(3)ej(xk(1)k2+xk(2)k) + wk,
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where wk denotes i.i.d. CN (0, 2σ2
n) measurement noise. Again, the problem of

interest is to estimate the sequence of posterior densities, p
(
xk| {yl}k

l=1

)
, k ∈

{1, · · · , T} given {yk}T
k=1.

7.2 OIF

Let mA := b3An,k−1 , mω := b2ωn,k−1 , mr := b1rn,k−1. For the TV chirp model,

the normalizing factor D(yk,xn,k−1) :=
∫
x
p(yk|x)p(x|xn,k−1)dx is given by the

following multidimensional integral: D(yk,xn,k−1) :=

∫

r∈<

∫

ω∈<

∫

A∈

1

2πσ2
n

e
− |yk−Aej(rk2+ωk)|2

2σ2
n ×

[
1√

2πσr

e
− (r−mr)2

2σ2
r

1√
2πσω

e
− (ω−mω)2

2σ2
ω

1

2πσ2
A

e
− |A−mA|2

2σ2
A

]
×

dAdωdr.

Let v := ∠yk − ∠mA − kmω. It can be shown that

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) ×R,

with the multiplicative factor R given by

R = I0(
|mA||yk|
σ2

A + σ2
n

)+

2
+∞∑

`=1

I`(
|mA||yk|
σ2

A + σ2
n

)e
−
„

k2σ2
ω+k4σ2

r
2

«
`2

cos(`k2mr − `v),

where I`(·) denotes the modified Bessel function of the first kind of order `.

Again, the sum can be truncated to a relatively small number of terms (we used

100 terms in our simulations). This is mainly due to the negative exponential
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dependence on `2,k2,k4 and the decay property of the modified Bessel function

with respect to the order `. The OIF can now be written as

p (xk|xk−1, yk) =

1
2πσ2

n
e
− |yk−Akej(rkk2+ωkk)|2

2σ2
n

1
2π(σ2

A+σ2
n)

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) ×R

×

1√
2πσr

e
− (rk−mr)2

2σ2
r

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1

2πσ2
A

e
− |Ak−mA|2

2σ2
A .

What remains to implement the plain OIF filter for the TV chirp case is to come

up with a procedure to draw samples distributed according to the above closed

form. We have already described the basic steps of rejection-based sampling. A

similar procedure can be applied here. Let again

σ2 :=
σ2

Aσ2
n

σ2
A + σ2

n

,

and

µ :=
σ2

A|yk|+ σ2
n|mA|

σ2
A + σ2

n

.

Using the triangle inequality, it can be shown that

g(xk|xn,k−1, yk) =
e
− (ωk−mω)2

2σ2
ω e

− (rk−mr)2

2σ2
r e−

(|Ak|−µ)2

2σ2

(2π)5/2 γ (µ, σ) σωσrσ
,

with

γ (µ, σ) := Qo

(
−µ

σ

)
+

σ√
2π

e−
µ2

2σ2 ,

Qo

(
−µ

σ

)
:=

∫ +∞

r=0

1√
2πσ

e−
(r−µ)2

2σ2 dr =

1

2
erfc(− σ2

A|yk|+ σ2
n|mA|

σAσn

√
2(σ2

A + σ2
n)

).
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For this particular dominating density, it holds p(xk|xn,k−1, yk) 6 c·g(xk|xn,k−1, yk)

with

c :=
e−

µ2

2σ2 +
√

2π
σ

Qo

(−µ
σ

)

e
− |mA||yk|

σ2
A

+σ2
n R

.

In both cases considered (harmonic, chirp) the constant c which determines the

complexity of the associated rejection step is dependent on system parameters.

For this particular choice of IF and sampling procedure the weight update

step is given by wn,k = wn,k−1D(yk,xn,k−1) and can be carried out before the

particles are propagated to time-step k.

7.3 Rao-Blackwellization

We can again take advantage of the model structure and partition the state

vector into [rk, ωk]
T (∈ <2) and Ak (∈). The sought posterior at time-step k,

p
(
rk, ωk, Ak | {yl}k

l=1

)
can be factored as p

(
rk, ωk, Ak | {yl}k

l=1

)
=

p
(
Ak | rk, ωk, {yl}k

l=1

)
p
(
rk, ωk | {yl}k

l=1

)

Again, p
(
Ak | rk, ωk, {yl}k

l=1

)
is Gaussian and can be computed using the Kalman

Filter. To approximate the marginal posterior p
(
rk, ωk | {yl}k

l=1

)
, we use the op-

timal importance density

p (rk, ωk | rn,k−1, ωn,k−1, yk) =

p (yk|rk, ωk) p (rk, ωk|rn,k−1, ωn,k−1)∫
r

∫
ω

p (yk|r, ω) p(r, ω|rn,k−1, ωn,k−1)dωdr
,
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which again admits closed form expression. Letting µA := bk
3E{A0} , σ2

A′ :=

b2k
3 E{|A0|2}+

1−b2k
3

1−b23
(2σ2

A), and ϑ := ∠yk − ∠µA − kmω, it can be shown that

p (rk, ωk | rn,k−1, ωn,k−1, yk) =

1

2π(σ2
A′+σ2

n)
e
− |yk−µAe

j(rkk2+ωkk)|2
2π(σ2

A′+σ2
n)

1

2π(σ2
A′+σ2

n)
e
− |yk|2+|µA|2

2(σ2
A′+σ2

n) R′
×

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1√
2πσr

e
− (rk−mr)2

2σ2
r ,

with

R′ := I0(
|µA||yk|
σ2

A′ + σ2
n

)+

2
+∞∑

`=1

I`(
|µA||yk|
σ2

A′ + σ2
n

)e
−
„

k2σ2
ω+k4σ2

r
2

«
`2

cos(`k2mr − `ϑ).

The weight update is given by wn,k = wn,k−1D(yk, ωn,k−1, rn,k−1), with

D(yk, ωn,k−1, rn,k−1) :=
1

2π (σ2
A′ + σ2

n)
e
− |yk|2+|µA|2

2(σ2
A′+σ2

n) R′.

We shall again employ an accept-reject algorithm to generate samples dis-

tributed according to the OIF. Using the triangle inequality and monotonicity

of e−x, it is easy to show that p (rk, ωk|rn,k−1, ωn,k−1) is a suitable dominating

density for which it holds that

p (rk, ωk | rn,k−1, ωn,k−1, yk) ≤ cp (rk, ωk|rn,k−1, ωn,k−1) ,

with c = 1

e
−|µA||yk|

σ2
A′+σ2

n R′
. Again, notice that sampling from the optimal importance

function can be implemented by rejection over the transitional prior.
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7.4 Cramer-Rao Lower Bound

In this section, we present the CRLB for the TV chirp case. Rewriting the model

in real-valued form and using the results in [23], we end up with the desired

recursive equation for the calculation of Jk

Jk = Q−1 + E{F̃k
T
R−1F̃k} −Q−1H′(Jk−1+

H′TQ−1H′)−1H′TQ−1, k > 0

where now H′ = diag
(
[b1, b2, b3, b3]

T
)
, with b` being 1−ε`, Q = diag

(
[σ2

r , σ
2
ω, σ2

A, σ2
A]

T
)
,

R = diag
(
[σ2

n, σ2
n]

T
)

and F̃k is the 2× 4 matrix defined as:

F̃k = ∇x′k

[
<{Ake

j(rkk2+ωkk)} ={Ake
j(rkk2+ωkk)}

]T

,

which is the Jacobian of the non-linear function involved in the measurement

equation, evaluated at the true value of the (real-valued) state vector x′k :=

[rk, ωk,<(Ak),=(Ak)]
T .

The initial information matrix J0 is calculated from the initial density p(x0),

which is assumed Gaussian N (x̄0,Q0). In that case, the recursions may start by

choosing J0 = Q−1
0 .

The best achievable performance concerning the frequency and the frequency

rate component of the state vector, in the case of very accurate initial information

(an initial pdf with a very small variance), is presented in Fig. 9.8 and Fig. 9.9

respectively, for k ≤ 80. The behavior of the bounds as k grows is illustrated in
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Fig. 9.10 and Fig. 9.11 respectively. System parameters were set to b` = 0.999,

∀`, σ2
ω = 10−4, σ2

A = 10−4, σ2
r = 10−10, σ2

n = 0.2. The expectation appearing in

the CRLB was approximated using 100 realizations of the state vector. Observe

from these figures that the bounds are initially growing. This is due to the

fact that the initial information was very precise, however, the effect of such

an accurate prior knowledge are gradually vanishing over time. Approximately

after 600 time steps the CRLB for the frequency rate component of the state

vector is starting to decrease. Observe, however, that this is not happening for

the frequency component, which exhibits much faster time variation than the

frequency rate in this experiment, so the latter is easier to track.

Accurate prior knowledge is not always available. The best achievable error

performance in the case of inaccurate prior is illustrated next. A Gaussian initial

density N (
mr0 , σ

2
r0

)
can be used to model the initial density concerning the

frequency rate component of the state vector. In the (slowly) TV harmonic case,

we have seen that inaccurate initial information only has measurable impact on

the initial performance. To illustrate that this is not the case for TV chirp

signals, consider a scenario where the initial information about the frequency

rate component r0 is inaccurate, whereas the initial frequency ω0 is accurately

known. For the complex amplitude A0, we take a narrow Gaussian with mean

E [A0] = 1 + j and standard deviation std [A0] = 0.01. The resulting bounds on

estimation performance are plotted in Fig. 9.12 and Fig. 9.13 for the frequency

and frequency rate, respectively. Observe that inaccurate initial information
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concerning r0 has a deleterious effect on the best achievable error performance

for both frequency and frequency rate. Accurate initial information about the

frequency rate is critical for acceptable tracking performance in this context.

7.5 Estimation Performance Results

We now present tracking results for the TV chirp case. We consider two PF

algorithms: the SIR filter, which uses the transitional prior as importance dis-

tribution, and the Rao-Blackwellized filter which uses the optimal importance

density (RBPF). The RMSE results concerning the frequency rate and frequency

are presented in Fig. 9.14 and Fig. 9.15 respectively.

The filters are again considered in a tracking mode - we assume perfect knowl-

edge of the initial state. The expectation appearing in the CRLB was approxi-

mated using 100 realizations of the state vector. The error curves corresponding

to the two filters were produced by averaging over 500 independent runs, each

comprising 100 temporal samples. The conditional mean was used to generate

point state estimates. System parameters were set to b` = 0.999, ∀`, σ2
ω = 10−4,

σ2
A = 10−4, σ2

r = 10−10, σ2
n = 0.1, and multinomial resampling was employed at

each time step. The number of particles, N , was 1000 for SIR and 50 for RBPF.

Notice from the simulation parameters that we have assigned a very small

amount of noise in the frequency rate evolution, thus allowing (capturing) only

very small variations in this term. It is however encouraging to observe that

although we have used only 50 particles in RBPF’s implementation, the two filters
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yield very similar estimation performance (SIR with 1000 particles seems slightly

better), which is also very close to the CRLB. The average computation time per

measurement (time-step) was 0.08419 seconds for SIR and 0.06498 seconds for

RBPF (measured using Matlab tic/toc).



8. CONCLUSIONS

We considered the problem of tracking the parameters of a single TV harmonic

or chirp signal using particle filtering tools. We showed that the importance

function which minimizes the variance of the particle weights can be computed

in closed form, and developed suitable rejection-based procedures to sample from

the optimal importance function. We further derived efficient versions of the

optimal filters based on Rao-Blackwellization. With as few as 50 particles, the

optimized particle filters attain estimation performance comparable to that of

generic particle filters employing 1000 particles. Using the recursive formula of

Tichavsky et al [23], we also computed the pertinent CRLBs and explored their

behavior as a function of model parameters and the accuracy of prior information

concerning the initial state.

A limitation of all tracking approaches considered is that process noise vari-

ance should be small (state evolution should be smooth) for good tracking perfor-

mance. This is to be expected of course - the models considered are generically

unidentifiable and one relies on smoothness to obtain meaningful estimates. Still,

many potential applications (e.g., tracking of Doppler shift in mobile terrestrial

communications, or residual carrier frequency offset following coarse acquisition)
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meet this requirement.

There are several extensions that could be pursued: a single higher-order TV

polynomial phase signal, or multi-component TV harmonic or chirp signals. Both

entail an expansion of the nonlinear part of the state-space and thus hit on the

“curse of dimensionality”. Custom design of particle filters for these cases hinges

on the development of efficient state-space decomposition strategies, which is a

matter of engineering art.



9. APPENDIX

9.1 Proof of Claim 1

The pdf of x := ωk is given by fx(x) = 1
|k|fω

(
x
k

)
, which is an expanded version of

fω(·). Since ejx = ej(x mod 2π), let us define φ := x mod 2π. We will prove that,

as k →∞, the pdf of φ approaches a uniform pdf over [0, 2π).

Split the interval [0, 2π) into N equal subintervals of length ∆x = 2π
N

. Take

N sufficiently large for fx (x) and fφ (φ) to be approximately constant over each

subinterval. Without loss of generality, choose arbitrary ξi ∈ [xk−1, xk] ⊆ [0, 2π).

From the definition of the modulo operation, it follows that

lim
k→∞

fφ (ξi) ∆x = lim
k→∞

(
+∞∑

µ=−∞
fx (ξi + 2πµ) ∆x

)
.

We have assumed that fω is continuous, and therefore so is fx; it follows that

lim
k→∞

fφ (ξi) ∆x =
+∞∑

µ=−∞
lim
k→∞

fx (ξi + 2πµ) ∆x =

+∞∑
µ=−∞

lim
k→∞

fω

(
ξi

k
+ 2πµ

k

)

k
∆x = lim

k→∞

+∞∑
µ=−∞

fω

(
2πµ
k

)

k
∆x

since ξi is bounded. ¥
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9.2 TV Harmonic Case

9.2.1 Derivation of closed-form expression for the optimal importance density

D(yk,xn,k−1) =

∫

ω∈<

∫

A∈

1

2πσ2
n

e
− |yk−Aejωk|2

2σ2
n ×

[
1√

2πσω

e
− (ω−b1ωn,k−1)2

2σ2
ω

1

2πσ2
A

e
− |A−b2An,k−1|2

2σ2
A

]
dAdω =

=
1

2πσ2
n

1√
2πσω

1

2πσ2
A

∫

ω∈<
e
− (ω−b1ωn,k−1)2

2σ2
ω ×

[∫

A∈
e
− |yk−Aejωk|2

2σ2
n e

− |A−b2An,k−1|2

2σ2
A dA

]
dω.

Let mA := b2An,k−1 , mω := b1ωn,k−1. The integral inside the brackets can be

computed in closed form; by completing the squares in the exponent we obtain

Aג =

∫

A∈
e
− |yk−Aejωk|2

2σ2
n e

− |A−mA|2
2σ2

A dA = 2π
σ2

Aσ2
n

σ2
A + σ2

n

e
− |mA−yke−jωk|2

2(σ2
A

+σ2
n) .

D(yk,xn,k−1) can now be written as

D(yk,xn,k−1) =
1

2πσ2
n

1

2πσ2
A

1√
2πσω

2π
σ2

Aσ2
n

σ2
A + σ2

n

×
∫

ω∈<
e
− (ω−mω)2

2σ2
ω e

− |mA−yke−jωk|2
2(σ2

A
+σ2

n) dω.

After straightforward manipulations and a change of variable v := ∠yk − ∠mA,

we obtain:

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)

1√
2πσω

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) ×

∫

ω∈<
e
− (ω−mω)2

2σ2
ω ×

[
e
|mA||yk|
σ2

A
+σ2

n
cos(ωk−v)

]
dω.

Using the Jacobi-Anger expansion [4] for the term inside the brackets we obtain

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)

1√
2πσω

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n)

∫

ω∈<
e
− (ω−mω)2

2σ2
ω

×
[

+∞∑

`=−∞
j`J`(− j

|mA||yk|
σ2

A + σ2
n

)ej`(ωk−v)

]
dω
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=
1

2π(σ2
A + σ2

n)

1√
2πσω

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) ×

+∞∑

`=−∞
(−1)`I`(−|mA||yk|

σ2
A + σ2

n

)

∫

ω∈<
e
− (ω−mω)2

2σ2
ω ej`(ωk−v)dω,

where I`(·) is the modified Bessel function of the first kind. We now compute the

integral

iΩ =

∫

ω∈<
e
− (ω−mω)2

2σ2
ω ej`(ωk−v)dω.

By analyzing ej`(ωk−v) and using Tables (see, e.g., [16]), it follows that

iΩ =
√

2πσωe−
(kσω)2

2
`2e−j(`kmω−`v),

hence D(yk,xn,k−1) can be written as

D(yk,xn,k−1) =
1

2π(σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) × B,

with

B :=
+∞∑

`=−∞
(−1)`I`(−|mA||yk|

σ2
A + σ2

n

)e−
(kσω)2

2
`2e−j(`kmω−`v).

Using identities and that I`(·), ` ∈ Z∗ is symmetric with respect to the order, `,

it follows that

B = I0(
|mA||yk|
σ2

A + σ2
n

) + 2

(
+∞∑

`=1

I`(
|mA||yk|
σ2

A + σ2
n

)e−
(kσω)2

2
`2 cos(`kmω − `v)

)
.

9.2.2 Derivation of dominating density

The optimal importance density is given by:

p(xk|xn,k−1, yk) =

1
2πσ2

n
e
− |yk−Akejωkk|2

2σ2
n

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1
2πσ2

A
e
− |Ak−mA|2

2σ2
A

1
2π(σ2

A+σ2
n)

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) B

.
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Using the triangle inequality and monotonicity of e−x, we can upper bound the

optimal importance density:

p(xk|xn,k−1, yk) 6
1

2πσ2
n
e
− (|Ak|−|yk|)2

2σ2
n

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1
2πσ2

A
e
− (|Ak|−|mA|)2

2σ2
A

1
2π(σ2

A+σ2
n)

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) B

=

=

1
2πσ2

Aσ2
n

1√
2πσω

e
− (ωk−mω)2

2σ2
ω e

− Ψ

2σ2
A

σ2
n

1
σ2

A+σ2
n
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) B

,

with Ψ defined as:

Ψ := σ2
A(|Ak| − |yk|)2 + σ2

n(|Ak| − |mA|)2.

After some manipulations and upon defining µ :=
σ2

A|yk|+σ2
n|mA|

σ2
A+σ2

n
, and σ2 :=

σ2
Aσ2

n

σ2
A+σ2

n
,

Ψ = (σ2
A + σ2

n)(|Ak| − µ)2 +
σ2

Aσ2
n

σ2
A + σ2

n

(|mA|2 − 2|mA||yk|+ |yk|2),

and

p(xk|xn,k−1, yk) 6 e
− (ωk−mω)2

2σ2
ω e−

(|Ak|−µ)2

2σ2

(2π)3/2σ2σωe
− |mA||yk|

σ2
A

+σ2
n B

.

The only remaining part is to evaluate the normalization factor and the domi-

nating density

c :=

∫

ω∈<

∫

A∈

e
− (ω−mω)2

2σ2
ω e−

(|A|−µ)2

2σ2

(2π)3/2σ2σωe
− |mA||yk|

σ2
A

+σ2
n B

dωdA =

1

e
− |mA||yk|

σ2
A

+σ2
n B

[∫

ω∈<

1√
2πσω

e
− (ω−mω)2

2σ2
ω dω

]
×

[∫

A∈

1

2πσ2
e−

(|A|−µ)2

2σ2 dA

]
.

With A = x + jy, x = z cos θ, y = z sin θ, dx dy = z dz dθ it follows that

c =
1

2πe
− |mA||yk|

σ2
A

+σ2
n Bσ2

[∫ ∞

−∞

∫ ∞

−∞
e−

(
√

x2+y2−µ)2

2σ2 dx dy

]
=
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1

2πe
− |mA||yk|

σ2
A

+σ2
n Bσ2

[∫ ∞

0

∫ 2π

0

ze−
(z−µ)2

2σ2 dzdθ

]
=

1

e
− |mA||yk|

σ2
A

+σ2
n Bσ2

[∫ ∞

0

ze−
(z−µ)2

2σ2 dz

]
=

e−
µ2

2σ2 +
√

2π
σ

Qo

(−µ
σ

)

e
− |mA||yk|

σ2
A

+σ2
n B

,

where

Qo

(
−µ

σ

)
:=

∫ +∞

r=0

1√
2πσ

e−
(r−µ)2

2σ2 dr =
1

2
erfc(− σ2

A|yk|+ σ2
n|mA|

σAσn

√
2(σ2

A + σ2
n)

).

Let γ (µ, σ) := Qo

(−µ
σ

)
+ σ√

2π
e−

µ2

2σ2 . The dominating density is

g(xk|xn,k−1, yk) =
e
− (ωk−mω)2

2σ2
ω e−

(|Ak|−µ)2

2σ2

(2π)2 γ (µ, σ) σωσ
.

9.2.3 Derivation of closed form expression for p (ωk | ωn,k−1, yk)

The likelihood p (yk|ωk) can be computed as follows:

p (yk|ωk) =

∫

Ak

p (yk|ωk, Ak) p (Ak|ωk) dAk =

∫

Ak

p (yk|ωk, Ak) p (Ak) dAk,

by independence of ωk, Ak. Since Ak obeys an AR(1) evolution model with AR

parameter b and driving term a CN (0, 2σ2
A), it follows that p (Ak) = CN (µA, σ2

A′)

with µA = bkE{A0} and σ2
A′ = b2kE{|A0|2} + 1−b2k

1−b2
(2σ2

A). Substituting back to

the likelihood formula and completing the squares in Ak yields

p (yk|ωk) =
1

2π (σ2
A′ + σ2

n)
e
− |yk−µAejωkk|2

2π(σ2
A′+σ2

n) .

Using

p(ωk|ωn,k−1, yk) =
p(ωk, yk|ωn,k−1)

p(yk|ωn,k−1)
=

p(yk|ωk, ωn,k−1)p(ωk|ωn,k−1)∫
ω∈< p(yk|ω, ωn,k−1)p(ω|ωn,k−1)
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=
p(yk|ωk)p(ωk|ωn,k−1)∫
ω∈< p(yk|ω)p(ω|ωn,k−1)

,

we may write p (ωk | ωn,k−1, yk) as

p (ωk | ωn,k−1, yk) =

1

2π(σ2
A′+σ2

n)
e
− |yk−µAejωkk|2

2π(σ2
A′+σ2

n) 1√
2πσω

e
(ωk−mω)2

2σ2
ω

D(yk, ωn,k−1)
,

with

D(yk, ωn,k−1) :=

∫

ω∈<

1

2π (σ2
A′ + σ2

n)
e
− |yk−µAejωk|2

2π(σ2
A′+σ2

n) 1√
2πσω

e
− (ω−mω)2

2σ2
ω dω,

which can be computed in closed form by employing the Jacobi-Anger expansion

[4] and then using Tables (see, e.g., [16]). The derivation is almost identical to

the one presented previously in this section.

9.3 TV Chirp Case

9.3.1 Derivation of closed-form expression for the optimal importance density

D(yk,xn,k−1) :=

∫

r∈<

∫

ω∈<

∫

A∈

[
1

2πσ2
n

e
− |yk−Aej(rk2+ωk)|2

2σ2
n

]
×

[
1√

2πσr

e
− (r−b1rn,k−1)2

2σ2
r

1√
2πσω

e
− (ω−b2ωn,k−1)2

2σ2
ω

1

2πσ2
A

e
− |A−b3An,k−1|2

2σ2
A

]
dAdωdr =

=
1

(2π)3σ2
n σ2

A σr σω

∫

r∈<

∫

ω∈<
e
− (r−b1rn,k−1)2

2σ2
r e

− (ω−b2ωn,k−1)2

2σ2
ω

×
[∫

A∈
e
− |A−b3An,k−1|2

2σ2
A e

− |yk−Aej(rk2+ωk)|2
2σ2

n dA

]
dωdr.
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Let mA := b3An,k−1 , mω := b2ωn,k−1 , mr := b1rn,k−1. The integral inside the

brackets can be computed by completing the squares:

Aג =

∫

A∈
e
− |yk−Aej(rk2+ωk)|2

2σ2
n e

− |A−mA|2
2σ2

A dA = e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) e

<(m∗Ayke−j(rk2+ωk))

σ2
A

+σ2
n

∫

A∈
e

− |A−W |2

2
σ2

A
σ2

n

σ2
A

+σ2
n dA,

yielding

Aג := 2π
σ2

Aσ2
n

σ2
A + σ2

n

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) e

<(m∗Ayke−j(rk2+ωk))

σ2
A

+σ2
n .

With v := ∠yk − ∠mA − rk2, we obtain

D(yk,xn,k−1) =
1

2π (σ2
A + σ2

n)

1√
2πσω

1√
2πσr

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n)

∫

r∈<
e
− (r−mr)2

2σ2
r

[∫

ω∈<
e
− (ω−mω)2

2σ2
ω e

|mA||yk|
σ2

A
+σ2

n
cos(ωk−v)

dω

]
dr.

We have already seen that the integral inside the brackets actually yields

iΩ :=
√

2πσωI0

(
−|mA||yk|

σ2
A + σ2

n

)
+ 2

√
2πσω

∞∑

`=1

(−1)`I`(−|mA||yk|
σ2

A + σ2
n

)e−
(kσω)2`2

2 cos(`kmω−`v),

where I`(·) is the modified Bessel function of the first kind. Letting λ := ∠yk −

∠mA−kmω, substituting iΩ into D(yk,xn,k−1), and rearranging terms we obtain:

D(yk,xn,k−1) =
1

2π (σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) I0

(
−|mA||yk|

σ2
A + σ2

n

)
+

1

2π (σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) · 2

∞∑

`=1

(−1)`I`(−|mA||yk|
σ2

A + σ2
n

)e−
(kσω)2`2

2

[∫

r∈<

1√
2πσr

e
− (r−mr)2

2σ2
r cos(`k2r − `λ)dr

]
.

The integral inside the brackets can be evaluated using the characteristic function,

yielding

Fג := e−
`2k4σ2

r
2 cos(`k2mr − `λ).
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This yields the final form

D(yk,xn,k−1) :=
1

2π (σ2
A + σ2

n)
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) ×R,

with

R = I0(
|mA||yk|
σ2

A + σ2
n

) + 2
+∞∑

`=1

I`(
|mA||yk|
σ2

A + σ2
n

)e
−
„

k2σ2
ω+k4σ2

r
2

«
`2

cos(`k2mr − `λ).

9.3.2 Derivation of dominating density

The optimal importance density is

p(xk|xn,k−1, yk) :=
p(yk|xk) · p(xk|xn,k−1)

1
2π(σ2

A+σ2
n)

e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) R

,

with

p(yk|xk) :=
1

2πσ2
n

e
− |yk−Akej(rkk2+ωkk)|2

2σ2
n ,

and

p(xk|xn,k−1) :=
1

(2π)2σ2
Aσωσr

e
− (rk−mr)2

2σ2
r e

− (ωk−mω)2

2σ2
ω e

− |Ak−mA|2
2σ2

A .

Using the triangle inequality and monotonicity of e−x, we obtain

p(xk|xn,k−1, yk) 6
1

2πσ2
Aσ2

n

1√
2πσω

e
− (ωk−mω)2

2σ2
ω

1√
2πσr

e
− (rk−mr)2

2σ2
r e

− Ψ

2σ2
A

σ2
n

1
σ2

A+σ2
n
e
− |yk|2+|mA|2

2(σ2
A

+σ2
n) R

,

with

Ψ := σ2
A(|Ak| − |yk|)2 + σ2

n(|Ak| − |mA|)2.

Let µ :=
σ2

A|yk|+σ2
n|mA|

σ2
A+σ2

n
; then

Ψ = (σ2
A + σ2

n)(|Ak| − µ)2 +
σ2

Aσ2
n

σ2
A + σ2

n

(|mA|2 − 2|mA||yk|+ |yk|2),
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and with σ2 :=
σ2

Aσ2
n

σ2
A+σ2

n

p(xk|xn,k−1, yk) 6 e
− (ωk−mω)2

2σ2
ω e

− (rk−mr)2

2σ2
r e−

(|Ak|−µ)2

2σ2

(2π)2σ2σωσre
− |mA||yk|

σ2
A

+σ2
n R

.

The only remaining part is to evaluate the normalization factor and the domi-

nating density:

c :=

∫

r∈<

∫

ω∈<

∫

A∈

e
− (ω−mω)2

2σ2
ω e

− (r−mr)2

2σ2
r e−

(|A|−µ)2

2σ2

(2π)2σ2σωσre
− |mA||yk|

σ2
A

+σ2
n R

drdωdA =

=
1

e
− |mA||yk|

σ2
A

+σ2
n R

[∫

ω∈<

1√
2πσω

e
− (ω−mω)2

2σ2
ω dω

] [∫

r∈<

1√
2πσr

e
− (r−mr)2

2σ2
r dr

]

×
[∫

A∈

1

2πσ2
e−

(|A|−µ)2

2σ2 dA

]
=

=
e−

µ2

2σ2 +
√

2π
σ

Qo

(−µ
σ

)

e
− |mA||yk|

σ2
A

+σ2
n R

,

where

Qo

(
−µ

σ

)
:=

∫ +∞

r=0

1√
2πσ

e−
(r−µ)2

2σ2 dr =
1

2
erfc(− σ2

A|yk|+ σ2
n|mA|

σAσn

√
2(σ2

A + σ2
n)

).

Let γ (µ, σ) := Qo

(−µ
σ

)
+ σ√

2π
e−

µ2

2σ2 . The dominating density is

g(xk|xn,k−1, yk) =
e
− (ωk−mω)2

2σ2
ω e

− (rk−mr)2

2σ2
r e−

(|Ak|−µ)2

2σ2

(2π)5/2 γ (µ, σ) σωσrσ
.

9.3.3 Derivation of closed form expression for

p (rk, ωk | rn,k−1, ωn,k−1, yk)

p (yk|rk, ωk) =

∫

Ak

p (yk|rk, ωk, Ak) p (Ak|rk, ωk) dAk =

∫

Ak

p (yk|rk, ωk, Ak) p (Ak) dAk,
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by independence of rk, ωk, Ak. Since Ak obeys an AR(1) evolution model with

AR parameter b and driving term CN (0, 2σ2
A), it can be shown that p (Ak) =

CN (µA, σ2
A′) with µA = bkE{A0} and σ2

A′ = b2kE{|A0|2} + 1−b2k

1−b2
(2σ2

A). Substi-

tuting back to the likelihood formula and completing the squares in Ak yields

p (yk|rk, ωk) =
1

2π (σ2
A′ + σ2

n)
e
− |yk−µAe

j(rkk2+ωkk)|2
2π(σ2

A′+σ2
n) .

This allows us to write p (rk, ωk | rn,k−1, ωn,k−1, yk) =

1

2π(σ2
A′+σ2

n)
e
− |yk−µAe

j(rkk2+ωkk)|2
2π(σ2

A′+σ2
n) 1√

2πσω
e

(ωk−mω)2

2σ2
ω

1√
2πσr

e
(rk−mr)2

2σ2
r

D(yk, rn,k−1, ωn,k−1)
,

with

D(yk, rn,k−1, ωn,k−1) :=

∫

r∈<

∫

ω∈<

1

2π (σ2
A′ + σ2

n)
e
− |yk−µAe

j(rk2+ωk)|2
2π(σ2

A′+σ2
n)

[
1√

2πσω

e
− (ω−mω)2

2σ2
ω

1√
2πσr

e
− (r−mr)2

2σ2
r

]
dωdr.

The normalizing factor D(yk, rn,k−1, ωn,k−1) can be computed in closed form

by employing the Jacobi-Anger expansion [4] and then using Tables (see, e.g.,

[16]). The derivation is almost identical to the one presented previously in this

section.



BIBLIOGRAPHY

[1] C. Andrieu, M. Davy, A. Doucet, “Improved Auxiliary Particle Filtering:

Applications to Time-Varying Spectral Analysis,” in Proc. IEEE SSP 2001

Workshop, Singapore, Aug. 2001.

[2] C. Andrieu,“Optimal estimation of non-stationary phase and amplitude pro-

cesses,” in Proc. IEEE ICASSP 2000, vol. 2, pp. 637-640, June 2000.

[3] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, “A tutorial on particle

filters for nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal

Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

[4] F. Bowman, Introduction to Bessel Functions, Dover, New York, 1958.

[5] K. Bury, Statistical Distributions in Engineering, Cambridge University Press,

1999.

[6] A.T. Cemgil, H.J. Kappen, D. Barber, “A generative model for music tran-

scription,” IEEE Trans. on Audio, Speech and Language Processing, vol. 14,

no. 2, pp. 679 - 694, Mar. 2006.

[7] L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1994



Bibliography 57

[8] L. Devroye, Non-uniform random variate generation, Springer-Verlag, New

York, 1986.

[9] P. Djuric, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. Bugallo, J.

Miguez, “Particle Filtering,” IEEE Signal Processing Magazine, pp. 19-38,

Sep. 2003.

[10] A. Doucet, X. Wang, “Monte Carlo Methods for Signal Processing: A Re-

view in the Statistical Signal Processing Context,” IEEE Signal Processing

Magazine, vol. 22, no. 6, pp. 152-170, Nov. 2005.

[11] A. Doucet, S.J. Godsill, and C. Andrieu, “On sequential Monte Carlo sam-

pling methods for Bayesian filtering,” Statistics and Computing, vol. 10, no.

3, pp. 197-208, 2000.

[12] A. Doucet, N. Gordon, and V. Krishnamurthy, “Particle filters for state es-

timation of jump Markov linear systems,” IEEE Trans. on Signal Processing,

vol. 49, no. 3, pp. 613-624, Mar. 2001.

[13] C. Dubois, M. Davy, J. Idier, “Tracking of Time-Frequency Components

Using Particle Filtering,” in Proc. IEEE ICASSP 2005, March 18-23, 2005,

Philadelphia, PA, U.S.A.

[14] C. Dubois, M. Davy, “Joint Detection and Tracking of Time-Varying Har-

monic Components: A Flexible Bayesian Approach,” IEEE Trans. on Audio,

Speech and Language Processing, vol. 15, no. 4, pp. 1283-1295, May 2007.



Bibliography 58

[15] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc.-F, vol. 140,

no. 2, pp.107-113, 1993

[16] I.S. Gradshteyn, I.M. Ryzhik (A. Jeffrey, Ed.), Tables of Integrals, Series,

and Products, Academic Press, 5th ed., 1994.

[17] S. Molchanov, and X. Wang, “On the Benford’s Empirical Law,” Random

Oper. and Stoch. Equ., vol. 12, no. 3, pp. 201-210, 2004.

[18] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary Particle fil-

ters,” in Journal of the American Statistical Association, vol. 94, no. 446, pp.

590-599, 1999.

[19] P. Stoica, R.L. Moses, Spectral Analysis of Signals, Prentice-Hall, 2005.

[20] T. Schon, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle filters

for mixed linear/nonlinear state-space models,” IEEE Trans. on Signal Pro-

cessing, vol. 53, no. 7, pp. 2279-2289, July 2005.

[21] E. Tsakonas, N.D. Sidiropoulos, A. Swami, “Time-Frequency Analysis Using

Particle Filtering: Closed-form Optimal Importance Function and Sampling

Procedure for a single Time-varying Harmonic,” in Proc. Nonlinear Statisti-

cal Signal Processing Workshop: Classical, Unscented, and Particle Filtering

Methods, Sep. 13-15, 2006, Corpus Christi College, Cambridge, U.K.

[22] E. Tsakonas, N.D. Sidiropoulos, A. Swami, “Optimal Particle Filters for



Bibliography 59

tracking a Time-Varying Harmonic or Chirp Signal, ” it IEEE Trans. Signal

Processing, to appear.

[23] P. Tichavsky, C.H. Muravchik, and A. Nehorai, “Posterior Cramer-Rao

bounds for discrete-time dynamical systems,” in IEEE Trans. on Signal Pro-

cessing, vol. 46, no. 5, pp. 1386-1396, May 1998.

[24] J. Vermaak, C. Andrieu, A. Doucet, S.J. Godsill, “Particle methods for

Bayesian modeling and enhancement of speech signals,” IEEE Trans. on

Speech and Audio Processing, vol. 10, no. 3, pp. 173 - 185, Mar. 2002.



Bibliography 60

0 500 1000 1500 2000 2500
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

fr
eq

ue
nc

y

time

true

Fig. 9.1: True frequency hovers around zero (notice scaling of y-axis).
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Fig. 9.2: Peak-picking the spectrogram corresponding to Fig. 1 (fixed complex ampli-

tude = 1, noiseless measurement, rectangular window of length 8, maximum

overlap, zero-padding to 256 samples).
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Fig. 9.3: The probability density of ω0. Shape parameters: u1 = u2 = 1.1.
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Fig. 9.6: RMSE (frequency estimation) comparison of the four particle filters, EKF,

spectrogram and
√

CRLB with accurate prior information. Number of par-

ticles: 1000 for SIR, 1000 for RPF, 800 for AUX, 50 for RBPF.
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Fig. 9.7: RMSE (frequency estimation) comparison of RPF, EKF, and
√

CRLB with

inaccurate prior information.
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CRLB for the frequency component: very accurate prior information and

k ≤ 80.
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Fig. 9.9:
√

CRLB for frequency rate component: very accurate prior information and

k ≤ 80.
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CRLB for frequency component: very accurate prior information and k ≤

10000.
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Fig. 9.11:
√

CRLB for frequency rate component: very accurate prior information and

k ≤ 10000.
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CRLB for frequency component: dependence on the accuracy of prior

information.
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Fig. 9.13:
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CRLB for frequency rate component: dependence on the accuracy of prior

information.
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Fig. 9.14: RMSE performance comparison in TV second-order PPS case: SIR , RBPF

and
√

CRLB for the frequency rate parameter. Number of particles: 1000

for SIR, 50 for RBPF.
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Fig. 9.15: RMSE performance comparison in TV second-order PPS case: SIR , RBPF

and
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CRLB for the frequency parameter. Number of particles: 1000 for

SIR, 50 for RBPF.
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Tab. 9.1: RBPF using OIF for Tracking A Single Time-Varying Harmonic (see text for
definition of constants)

[{ωi
k,m

i
Ak

, P i
Ak
}N

i=1

]
= RBPF

[
{ωi

k−1,m
i
Ak−1

, P i
Ak−1

}N
i=1, yk

]

1. Compute normalized importance weights:

• FOR i=1:N,

w̃i
k = 1

2π(σ2
A′+σ2

n)
e
− |yk|2+|µA|2

2(σ2
A′+σ2

n) × B′

• END FOR

• FOR i=1:N,

- Normalize: wi
k = w̃i

k/sum
[{w̃i

k}N
i=1

]

• END FOR

2. Resample → equally weighted particles
[
{ωi

k−1,m
i
Ak−1

, P i
Ak−1

}N
i=1

]
= RESAMPLE

[
{ωi

k−1,m
i
Ak−1

, P i
Ak−1

,wi
k}N

i=1

]

3. Sample from the optimal importance density p (ωk|ωk−1, yk):

• FOR i=1:N,

- Calculate c := e
|µA||yk|
σ2

A′+σ2
n /B′

- Set U := 1/eps and τ := 1/eps

• WHILE (Uτ > 1)

- Draw a candidate frequency sample from the dominating density
p
(
ωk|ωi

k−1

)
:

ωi
k ∼ N

(
b1ω

i
k−1, σ

2
ω

)

- Set the acceptance parameter associated with rejection:

τ = c
Dominating(ωi

k)

Optimal(ωi
k)

- Draw a sample U ∼ Uniform[0, 1]

• END WHILE

• END FOR

4. Use the Kalman Filter relations to obtain analytically the {mi
Ak

, P i
Ak
}

associated with each frequency sample:

• FOR i=1:N,
[

mi
Ak

, P i
Ak

]
= KF

[
ωi

k,m
i
Ak−1

, P i
Ak−1

, yk

]

• END FOR
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Tab. 9.2: Mean computation times in seconds - (STVH case)

EKF SPEC/GRAM RBPF SIR RPF AUX

0.00020 0.00015 0.06382 0.07569 0.16431 0.15653


