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Abstract

Game playing has always been considered an activity requiring a good

level of intelligence and therefore has become a major research area

within Artificial Intelligence and Machine Learning. This thesis fo-

cuses on Adversarial Tetris, a variation of the well-known Tetris game,

introduced at the 3rd International Reinforcement Learning Compe-

tition in 2009. In Adversarial Tetris the mission of the player to com-

plete as many lines as possible is actively hindered by an unknown

adversary who selects the falling tetraminoes in ways that make the

game harder for the player. In addition, there are boards of differ-

ent sizes and learning ability is tested over a variety of boards and

adversaries. This thesis describes the design and implementation of

an agent capable of learning to improve his strategy against any ad-

versary and any board size. The agent combines MiniMax search en-

hanced with Alpha-Beta pruning for looking ahead within the game

tree and the Least-Squares Temporal Difference Learning (LSTD) al-

gorithm for learning an appropriate state evaluation function over a

small set of features. The learned strategies exhibit satisfactory per-

formance over a wide range of boards and adversaries and our agent

achieves good scores on the testing run of the competition.
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Περίληψη

Η συμμετοχή σε παιχνίδια θεωρούνταν ανέκαθεν μια δραστηριότητα που

απαιτεί ένα καλό επίπεδο νοημοσύνης και κατά συνέπεια έχει αποτελέσει

ένα σημαντικό ερευνητικό χώρο στα πλαίσια της τεχνητής νοημοσύνης

και της μηχανικής μάθησης. Η παρούσα διπλωματική εργασία εστιάζει

στο παιχνίδι ανταγωνιστικό Tetris, μια παραλλαγή του γνωστού παι-

χνιδιού Tetris,το οποίο επινοήθηκε για τις ανάγκες του διαγωνισμού

International Reinforcement Learning Competition το 2009. Στο αν-

ταγωνιστικό Tetris ο σκοπός του παίκτη είναι να συμπληρώσει όσες

περισσότερες γραμμές είναι δυνατόν ενώ παρεμποδίζεται ενεργά από

έναν άγνωστο αντίπαλο ο οποίος επιλέγει τα ριπτόμενα τουβλάκια με

τρόπους που δυσκολεύουν το παιχνίδι για τον παίκτη. Επιπρόσθετα,

υπάρχουν πίνακες παιχνιδιού διαφορετικών διαστάσεων και η ικανότητα

μάθησης εξετάζεται σε ένα πλήθος διαφορετικών πινάκων και αντιπάλων.

Η παρούσα εργασία περιγράφει το σχεδιασμό και την υλοποίηση ενός

πράκτορα ικανού να μαθαίνει να βελτιώνει τη στρατηγική του απέναντι

σε οποιαδήποτε αντίπαλο και οποιοδήποτε μέγεθος πίνακα. Ο πράκτορας

συνδυάζει αναζήτηση MiniMax εμπλουτισμένη με κλάδεμα α-β για να

προελαύνει στο δένδρο του παιχνιδιού και τον αλγόριθμο Least-Squares

Temporal Difference Learning (LSTD) για να μαθαίνει μια κατάλληλη

συνάρτηση αξιολόγησης καταστάσεων του παιχνιδιού βάσει ενός μι-

κρού συνόλου χαρακτηριστικών. Οι στρατηγικές που μαθαίνονται επι-

δεικνύουν ικανοποιητική απόδοση απέναντι σε ένα ευρύ φάσμα πινάκων

και αντιπάλων και ο πράκτορας μας επιτυγχάνει καλές βαθμολογίες στη

δοκιμασία του διαγωνισμού.
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Chapter 1

Introduction

Reinforcement Learning is a growing field of Machine Learning focusing on learn-

ing by trial-and-error. The agent is placed in an environment almost or fully

unknown and learns to accomplish certain tasks by processing the information

stemming from its interaction with the environment. This learning setup has

been used as the basis for the introduction of many Reinforcement Learning

algorithms that led to outgrowing performance of the agents in difficult tasks

demanding intelligent behavior.

Skillful game playing has always been considered a token of intelligence, conse-

quently Artificial Intelligence and its field Reinforcement Learning exploit games

in order to exhibit intelligent performance. Another reason for choosing games

for creating and testing learning algorithms is that they provide a complex en-

vironment that can be easily simulated and controlled in contrast with the real

world.

A game that has become a benchmark, exactly because it involves a great

deal of complexity along with very simple playing rules, is the game of Tetris. It

consists of a board in which one of the seven available four-block tiles fall from

the top to the bottom one after the other. The goal of the player is to place the

pieces so that they form complete lines, which are eliminated from the board,

lowering all blocks above. The game is over when a tile placed in the board

reaches the top of the board. The environment of the game chooses randomly

(typically, uniformly) the tile that is going to fall next and the player can fully

manipulate the tile in order to place it at the desired position. The fact that the

1



1. INTRODUCTION

rules are simple should not give the impression that the task is simple. There are

about 40 possible actions available to the player every time he has to decide for

a placement and about 1064 possible states that these actions could lead to. This

is hard even for a human player, let alone for an agent that has certain bounds

on resources he can use.

Adversarial Tetris is a variation of Tetris that keeps the simplicity of playing

rules and the complexity of the task and combines them with another aspect,

adversity. The adversarial environment makes the task even more demanding and

intriguing, as an unknown adversary tries to hinder the player from eliminating

lines. The sole way for the adversary to achieve this is to choose pieces that

augment the difficulty of completing lines for the player and can even “leave out”

a tile from a whole game if it suits his adversarial game play.

Adversarial Tetris was formulated as a Markovian Decision Process for the

needs of the 3rd Reinforcement Learning Competition. The competition started

in March 2009 and ended on June 8, 2009. The domain of Adversarial Tetris had

only two teams competing and unfortunately due to technical reasons our agent

was not able to participate. The task however witholds its interest beyond the

competition due to its challenging nature.

Our approach is to combine a Game Search algorithm in order to produce a

strategy that will confront the adversary and minimize its effect on our agents

game play and a Reinforcement Learning Algorithm that enables the agent to

learn how to perform well in this game. The Minimax Search Algorithm combined

with Alpha-Beta Pruning enables the agent to ”think” beyond his immediate

move, at least see the opponent’s move in response to his own. However, this

does not suffice as the agent must learn which actions will return high reward

in the long run. The proposed agent exhibits a good learning performance and

balances the criteria of maximizing his score in respect to the opponent’s moves,

while trying not to lose during the game.

1.1 Thesis Overview

Chapter 2 contains a consice description of the theory and algorithms we applied

in this thesis and provides some background knowledge for the methods discussed

2



1.1 Thesis Overview

later on. It includes a short description of Tree Search algorithms, Minimax

Search and Alpha-Beta Pruning, evaluation functions, as well as a quick intro-

duction to Markov Decision Processes and Reinforcement Learning to clarify the

context of learning that formed the basis for our agent. The problem of value

prediction with function approximation is emphasized and last but not least the

Least-Squares Temporal Difference learning algorithm that was used in this thesis

is consisely described.

Chapter 3 provides a detailed presentation of the game of Tetris and its vari-

ation Adversarial Tetris along with the formalization of Adversarial Tetris as a

Markovian Decision Process and the goal of this thesis with repect to the game.

This chapter also surveys the related previous work on the game of Tetris.

Chapter 4 describes how we modelled the players actions for Tetris in order to

make the agent more efficient in using the information he receives from the envi-

ronment and the agent’s architecture. In this chapter, the Minimax Game Tree

formulation is described and the evaluation function that is used by the agent in

order to estimate the value of different board depending on their configuration.

Lastly, we propose an incremental version of the Least-Squares Temporal Differ-

ence Learning algorithm which is more appropriate for learning inthe context of

a game.

Chapter 5 fills the reader with some more information on the RL-Competition

and the RL-Glue Framework that provided the environment, the experiments, and

the agent interface for our agent. Several technical details are provided about the

Java implementation of our agent.

Chapter 6 includes the results of all the learning and testing experinments of

this thesis. Experiments were run for representative parameter values to demon-

strate different aspects of the learning problem and the properties of the learned

agents.

Chapter 7.3 discusses the outcome of this thesis along with some future work

that is proposed.
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Chapter 2

Background

2.1 Search in Games

2.1.1 Tree Search

A search problem is typically described by a state space, an initial state, an action

space, a successor function, a goal test, a cost function. The state space describes

all the possible situations in which we are searching for a situation of interest

(goal state) with certain properties. The initial state is where the search begins.

The action space includes all the options available in each state; an action choice

in some state leads to a number of successor states as dictated by the successor

function. Each transition from one state to another comes with a cost described

by the cost function. The goal of a search algorithm is to find a sequence of

actions which when applied from the initial state generates a path through the

state space leading to a goal state with a minimum total path cost.

There are several search algorithms which are based on the idea of generating

a search tree from the initial state and they differ only in the strategy they use to

expand the tree. A search tree is formed by generating a root node representing

the initial state and by expanding the initial state and its successors recursively

generating children nodes for all successor states of a node. In this sense, a

search tree represents all possible paths through the state space starting from

the initial state. Each node in the tree, in addition to the representation of the

corresponding state, holds useful information about the action that lead to its

5



2. BACKGROUND

creation, links to its predecessor and to its successor nodes, its depth in the tree

from the root, the total path cost up to that node, etc.

There are some kinds of nodes of special importance in the tree. One is the

root node that is already mentioned. Another kind is a fringe node, that is a node

whose successor nodes have not been generated yet, i.e. the node has not been

expanded yet. The set of nodes that have not been expanded at any time is called

the fringe of the tree. Finally, the terminal or leaf nodes are nodes corresponding

to states with no successors. That means that a search tree cannot be expanded

from terminal nodes and represent dead-ends.

2.1.2 Game Trees

A one-player game can be easily cast as a search problem. The state space includes

all possible states of the game, the initial state represents the beginning of the

game, the actions are the player choices, the successor function includes the rules

of the games, and the cost function is the rewarding scheme of the game that

describes how the score is modified with each state transition. States describing

the end of a game correspond to terminal nodes in the search tree. Computing

a good strategy is equivalent to searching for a sequence of actions that leads

to a game end with highest total score, the only difference being the change of

optimization objective as we are now looking for the path of maximum total

“cost”. Therefore, given sufficient time an agent can search the entire game tree

and find an optimal strategy (an optimal path) leading to the highest possible

score. Thanks to the fact that game trees even for simple one-player games

are enormous in size, interest in such games has not been lost and attention

is focused on approximating optimal strategies as close as possible with limited

computational resources.

An alternating game is a two-player game where player play in turn and typi-

cally have conflicting objectives; one is trying to maximize the score (maximizer),

while the other is trying to minimize it (minimizer). These games are known as

zero-sum games since what is won by one player is lost by the other and therefore

the sum is always zero. This common type of game can also be modeled as a

search problem, however with several modifications. As before, each node in the

6



2.1 Search in Games

game tree represents the state of the game and information about which player is

supposed to play at the current state. Therefore, the game tree is now organized

in alternating levels depending on the player turn; each such level is called a ply.

The root node of the tree corresponds to the initial state of the game and the

terminal nodes correspond to states where the game has ended.

As an example, consider the game tree shown in Figure 2.1 for the well-known

Tic-Tac-Toe game. Tic-Tac-Toe is played by two players on a 3× 3 board. One

player draws Xs and the other Os placing them on empty squares of the board.

The player who completes a series of three of his own symbols in any direction

wins. If the board is filled without anyone completing any series of symbols the

game ends in a draw. We assume that our two players are Max and Min. Max

has the X and Min the O. The initial state of the game is when the board is

blank. Let’s say that Max plays first. Max has nine choices at the beginning of

the game. Every choice of Max can lead to a possible state of the game. These

states are the successor states of the initial state. In the game tree there are now

nine states with an X on a different place; the nodes at this level correspond to

a ply. When Max has made his choice, Min has eight choices given the Max’s

choice. So, for every state that was created before with one X there will be eight

successors with an O in a different place. As they play in alternating turns the

game tree covers all possible game evolutions. The nodes at the ninth ply are

terminal nodes, that is states where the game has ended. In each terminal node,

a payoff is given to each of the two players. A reward for the winner and a penalty

for the loser (+1 if Max wins, −1 if Min wins, 0 for a draw).

2.1.3 MiniMax Search

Every path down a two-player alternating game tree represents alternating player

choices. Therefore, a single player cannot really drive the game into a desired

terminal node, because the two players have conflicting goals and therefore will

try to reach different terminal nodes. As a result, each player will try to choose

actions that will increase his probability of winning and will reduce his probability

of loosing. Given that the strategy of the opponent is typically unknown an agent

searching such a game tree can only assume that the opponent will play optimally.

7



2. BACKGROUND

Figure 2.1: Tic-Tac-Toe game tree

This is the only safe assumption that can be made in the absence of any other

information. Any other assumption will lead to strategies that can eventually be

exploited by the opponent.

These ideas gave rise to the Minimax Search algorithm [1] for two-player

zero-sum games. MiniMax search generates the game tree in order to compute

the minimax value of every node, representing the utility of any given node to the

player we are in favor. The computation of the minimax value is done according

to the way Max and Min play. Max wants to maximize his payoff, so he wants

to choose the children node with the greatest value. Min, on the contrary, wants

to minimize Max’s payoff, so as to maximize his own payoff, so he chooses the

children node with the least value. Given this pattern repeats, the algorithm uses

a recursive computation for the utility of any node n: The complete MiniMax al-

gorithm from the maximizer’s point of view is shown in Algorithm 1. Clearly, the

algorithm will have to reach the leaf nodes of the tree to terminate the recursion

and return their utility. The recursion unwinds from the leaves towards the root

8



2.1 Search in Games

MiniMax Value (n) =

Utility (n), if n is a terminal state

maxs ∈ Successors(n) MiniMax Value (s), if n is a Max node

mins ∈ Successors(n) MiniMax Value (s), if n is a Min node

of the tree backing up the values that the players choose in each node. Once the

minimax value of the root is updated the Max player is ready to make a decision

and choose this action that leads to the child node where the minimax value at

the root came from. Recursively, one can extract the full optimal strategy leading

to the terminal node whose utility was backed up all the way to the root. If both

players play optimally, the game will end in that terminal node. Note that even

if the Min player chooses to play a suboptimal strategy, the minimax strategy

guarantees that the resulting score for the Max player will be no less that the

minimax value at the root. Applying MiniMax to the game tree of Tic-Tac-Toe

will bring a value of 0 to the root, as expected, indicating the fact that optimal

play by both agents will definitely lead to a draw. A minimax value of +1 or

−1 at the root would indicate an inherent advantage given to one player over the

other.

Notice that a game tree does not necessarily have to begin from the initial

state of the game; the root node can be any intermediate state of the game.

A game tree can be formed from any state where a player needs to make a

decision and the resulting minimax strategy will be the best strategy from the

current state. The game tree is a principled way of looking ahead into the game

and predicting possible evolutions. This fact is exploited by MiniMax to create

optimal strategies.

2.1.4 Alpha-Beta Pruning

The main problem with Minimax Search is the space and time complexity. Its

time complexity is O(bm) and its space complexity if all successor nodes are

produced at once is O(bm), with b being the number of legal moves of a player

(the branching factor of the tree) and m the number of plies. This complexity

9



2. BACKGROUND

Algorithm 1 The MiniMax algorithm for search in game trees.

action := MiniMax Decision (state)

inputs: a state

returns: an action

u← MaxValue (state)

return action ∈ Successors(state) with value u

utility value := MaxValue (state)

inputs: a state

returns: a utility value

if TerminalTest(state) = true then

return Utility(state)

end if

u← −∞
for all s ∈ Successors(state) do

u← max(u, MinValue (state))

end for

return u

utility value := MinValue (state)

inputs: a state

returns: a utility value

if TerminalTest(state) = true then

return Utility(state)

end if

u← +∞
for all s ∈ Successors(state) do

u← min(u, MaxValue (state))

end for

return u

10



2.1 Search in Games

makes the algorithm inapplicable, if no optimizations are used. The most common

optimization to MiniMax is the Alpha-Beta Pruning algorithm.

Alpha-Beta Pruning [1] is an enhancement to MiniMax that computes the

same minimax values, however by pruning away parts of the tree that are not

going to change the MiniMax decision at the root. The main idea is that if there

is a better choice for a player at the parent node or at any predecessor then

the current node and entire subtree underneath can be eliminated or get pruned.

This pruning is safe since the pruned subtrees will not affect the computation

of the minimax values. The value of a Max node can be estimated even before

processing all its successor nodes. The current max value is a lower bound to its

final value; if this lower bound exceeds the value of some Min choice higher up

in tree, it will definitely lead the Min to avoid the current branch and therefore

it can be pruned. A similar argument holds for pruning Min nodes.

In order for the pruning to be done effectively, the value of the best choice

along a path must be accessible to the successor nodes. For this reason, two

values are propagated to the successor nodes: α and β. α is the value of Max’s

best choice along the path and β is the value of Min’s best choice. Pruning at the

Max nodes is based on the value of β; if the current value of a Max node exceeds

β, Min will choose the branch with the lower β value. At every Max node α is

updated before it is passed to lower levels. Correspondingly, at Min’s nodes the β

value is updated and the nodes are pruned based on the value of α. An example

of Alpha-Beta Pruning on a simple game tree is shown in Figure 2.2; the nodes

in gray will not be expanded while computing the minimax values. The complete

Alpha-Beta Pruning algorithm is shown in Algorithm 2.

The Alpha-Beta Pruning algorithm can reduce the time complexity of Mini-

max Search to O(b
m
2 ) in the best case. The reduction depends on the processing

order of the successor nodes and their values. If the ordering is optimal the time

complexity will be O(b
m
2 ), however for a random ordering the average time com-

plexity will be O(b
3m
4 ). In the worst case, there will be no reduction at all and

the time complexity will be exactly the same as that of MiniMax.

11



2. BACKGROUND

Algorithm 2 The MiniMax algorithm with α-β Pruning for search in game trees.

action := MiniMax Alpha-Beta Decision (state)

inputs: a state

returns: an action

u← MaxValue (state, −∞, +∞)

return action ∈ Successors(state) with value u

utility value := MaxValue (state, α, β)

inputs: a state, α, β

returns: a utility value

if TerminalTest(state) = true then

return Utility(state)

end if

u← −∞
for all s ∈ Successors(state) do

u← max(u, MinValue (state, α, β))

if u ≥ β then

return u

end if

α← max(α, u)

end for

return u

utility value := MinValue (state, α, β)

inputs: a state, α, β

returns: a utility value

if TerminalTest(state) = true then

return Utility(state)

end if

u← +∞
for all s ∈ Successors(state) do

u← min(u, MaxValue (state, α, β))

if u ≤ α then

return u

end if

β ← min(β, u)

end for

return u
12



2.1 Search in Games

Figure 2.2: Alpha-Beta Pruning

2.1.5 Evaluation Functions

For any non-trivial game, the corresponding game tree grows rapidly at exponen-

tial rates and therefore running MiniMax with or without Alpha-Beta Pruning

is simply impractical for making decisions in reasonable time. In practice, these

algorithms can only expand the game tree up to a small depth in the order of 5 to

10, depending on the game. So, unless the current state of the game is near the

end of the game with only a few moves left, MiniMax will not be able to return

an optimal decision in reasonable time. However, the most important decisions

in a game are probably those taken early on or around the middle of the game.

How can MiniMax and Alpha-Beta become useful in such cases?

The key lies in finding an evaluation function which, given any game state,

returns a numeric value that estimates the minimax value of the corresponding

node. The availability of such a function allows cutting-off the MiniMax search

at a certain depth and considering the nodes there as terminal nodes giving them

values using the evaluation function. These values propagate to the root exactly

as if they were payoff values. The net gain is that the decision at the root is

based on previewing a significant number of moves ahead the current state. Even

if the evaluation function is somewhat inaccurate, MiniMax with cut-off will yield

good decisions. Note that Alpha-Beta Pruning can be helpful at doubling in the
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best case the depth at which cut-off is invoked, therefore allowing for even better

decisions.

There is no recipe for designing perfect evaluation functions as they strongly

depend on the game and its state space. In most cases, experience and domain

expertise can be helpful in isolating a number of useful state features that can

be used to learn a parametric evaluation function. The basic background behind

the learning techniques used in games are outlined in the next section.

2.2 Sequential Decision Making and Learning

2.2.1 Markov Decision Processes

The task of a decision maker is greatly simplified if each decision is based only on

the current state information and not on the entire history of states in the past.

This implies that the state description is rich enough to retain all the needed

past information. This independence from the past property is known as the

Markov property [2]. It should be clear that in a Markovian process, a state

needs not retain the information of how it was produced or the whole sequence of

everything that lead to it, as long as the information that needed for succeeding

states can be produced. For example, in chess, if we have all the information

about the board, i.e. which pieces are where, we have all the information we need

in order to produce future states; the sequence of actions which led the pieces to

their positions is not needed. The most important consequence of the Markov

property is that state transitions depend only on the current state and the action

chosen, and therefore the decision in each state can be based without loss solely

on the current state.

A Markov Decision Process (MDP) is a formalization used in describing

sequential decision problems, whereby a decision maker needs to make sequences

of decisions with long-term effects. An MDP is a 5-tuple (S,A,P,R, γ) where:

• S is a finite set of states

• A is a finite set of actions
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• P is a Markovian transition model, where P(s′|s, a) is the probability of

transition to state s′ when taking action a in state s

• R is a reward function, where R(s, a, s′) is the reward for a transition from

state s to s′ with action a

• γ is the discount factor for future rewards, γ ∈ [0, 1)

An MDP is a discrete-time process and the objective to choose actions at every

step so as to maximize the cumulative reward in the long-term. A policy π is

the “strategy” of the agent, that is a function that chooses an action in each

state. Each policy when adopted for making decisions yields a long-term reward.

The quality of a policy over the state space is characterized by its value function,

which expresses the expected, total, discounted reward:

V π(s) = Eαt∼π:st∼P

(
∞∑
t=0

γtrt
∣∣∣ s0 = s

)
(2.1)

A policy that maximizes the value function over all states in the state space

is called an optimal policy. Provided the full model of an MDP, an optimal

policy can be derived using any of the following methods: Value Iteration, Policy

Iteration, Linear Programming.

2.2.2 Reinforcement Learning

Reinforcement Learning [1, 2, 3] is the problem of learning a good policy in an

unknown enviroment which could be described as an MDP model, but this model

is not availalble. Learning is based on interacting with the environment and ob-

serving the effects (rewards, transitions) of action choices in different states. The

training data in reinforcement learning typically come in the form of (s, a, r, s′)

samples, meaning that at some point in time the agent chose action a in state s,

received a reward r, and observed a transition to state s′. The agent does not

have any prior knowledge so he must try different actions in different states in

order to see which ones are good and which are bad in each state. An action will
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influence the next state of the environment, but it may also influence all succeed-

ing ones. These facts reveal two important aspects of reinforcement learning: the

trial-and-error approach and the delayed reward.

Problems in reinforcement learning come in two flavors: Prediction and Con-

trol. In a prediction problem the agent executes a fixed policy and the goal is to

learn the value function for that policy. On the contrary, in a control problem the

goal of the agent is to learn a good policy that maximizes the expected return.

Reinforcement learning methods are also divided into two categories: on-policy

and off-policy. An on-policy learning method requires the agent to execute the

policy π he is learning about, whereas an off-policy method gives the freedom to

the agent to execute any arbitrary policy.

2.2.3 Value Function Approximation

In both prediction and control problems, the representation of a value function is a

central issue. In finite state spaces, the simplest form of representation is a tabular

form, whereby a big table stores one value of each state. In practical problems

involving huge or continuous state spaces, this approach is simply impractical.

The solution is to approximate the value function in some compact way at the

cost of lost precision. Value function approximation [2, 4] refers to methods of

generalizing a compact value function over the entire state space. In this manner,

V π is not seen as a real-valued vector, but rather as a function that maps values

to states. It is parameterized with a parameter vector w. An alteration in the

vector of parameters, often called weights, changes the whole estimation of V π in

several states. This means that a sample in any specific state may affect a series

of values in other states.

The most common type of value function approximation involves the use of a

linear approximation architecture. In these architectures, the approximate value

is produced as the weighted sum of a number of features or else called basis

functions. The parameters of the approximator are the weights multiplying the

features. Any state s is mapped to a feature vector first:

φ(s) =
(
φ1(s), φ2(s), ..., φk(s)

)>
(2.2)

16



2.2 Sequential Decision Making and Learning

and to a real value as follows:

Ṽ π(s) =
k∑
j=1

φj(s)wj (2.3)

The problem of learning a value function is now reduced to a problem of learning

an appropriate set of parameters (weights). The number of basis functions and

their representation is a lot smaller than the tabular representation of V π and as

a result they are used in cases where the state and action spaces are so big that

its practically impossible to represent.

The basis functions of a linear architecture must be linearly independent to

avoid singularities. The choice of basis functions can be seen as a way to impart

prior knowledge to the system as they capture important knowledge about the

state of the eneviroment.

2.2.4 Temporal Difference Learning

Temporal Difference (TD) learning [2] is an on-policy method for prediction. It

utilizes the fact that value differences between temporally-close states (one step

apart) are observable through the reward received during the transition from one

state to another. The TD update equation for a sample (s, a, r, s′) is the following:

V (s)← V (s) + η (r + γV (s′)− V (s)) (2.4)

where η is a small positive value known as the learning rate. This simple update

equation assumes that the learned value function is stored in a table. If the value

function is approximated by a linear architecture with k features, the update

equation for a sample (s, a, r, s′) is modified as follows to update the weights

directly:

∀i = 1, 2, . . . , k, wi ← wi + ηφi(s)
(
r + γṼ (s′)− Ṽ (s)

)
(2.5)

where Ṽ (s) = φ(s)>w. TD is attractive because of its simplicuty. It has also

been shown that TD converges given a sufficient large number of samples.
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2.2.5 Least Squares Temporal Difference Learning

The Least Squares Temporal Difference Learning (LSTD) algorithm [5, 6]

is another on-policy prediction method, similar to TD learning. The main dif-

ference with TD learning is that LSTD works only with linear approximation

architectures and processes a batch of samples collectively entering them into

a linear system, which is solved at the end to yield the learned weights of the

approximation. The linear system of LSTD corresponds to a fixed-point approx-

imation of the value function; for k features the size of the systems is k × k and

takes the form Aw = b, where A is a (k × k) matrix and b is a (k × 1) vector.

The LSTD update equations are the following for any sample (s, a, r, s′).

A ← A+ φ(s)
(
φ(s)− γφ(s′)

)>
(2.6)

b ← b+ φ(s)r (2.7)

A full description of the LSTD algorithm is shown in Algorithm 3.

LSTD makes efficient use of the samples to find an appropriate set of weights

for the linear architecture without requiring a learning rate parameter and inde-

pendently of the order of sample presentation. Given the same approximation

architecture, in the limit of infinite samples, TD and LSTD will everntually con-

verge to the same solution.

2.3 Learning in Games

The connection between games and learning should now be apparent. Playing a

game is a sequential decision problem. Most games are Markovian and can be

described by an MDP. Following a specific strategy corresponds to executing a

fixed policy. If the opponent is considered to be a “noisy” part of the environment,

then the minimax value on the nodes of the game tree is simply the value function

of our strategy/policy in that state. If the minimax value at the root of the

tree corresponding to state s was backed up from the child of action a coming

from some terminal node corresponding to state s′ and the payoff/reward received

between the two states was r, then we have exactly the samples (s, a, r, s′) needed

to solve the prediction problem of learning a good evaluation function of any given
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game. These connections are exploited in the context of this thesis, as described

in detail in the following chapters.

Algorithm 3 Least Squares Temporal Difference Learning Algorithm

wπ := LSTD (D, k, φ, γ, π)

inputs:

D: Set of samples (s, a, r, s′) collected using policy π

k: Number of basis functions

φ: Basis functions

γ: Discount factor

π: Policy whose value function is to be approximated

outputs:

wπ: the parameters of the approximate value function

A← 0 // (k × k) matrix

b← 0 // (k × 1) vector

for all samples (s, a, r, s′) ∈ D do

A← A+ φ(s)
(
φ(s)− γφ(s′)

)>
b← b+ φ(s)r

end for

wπ ← A−1b

return wπ
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Chapter 3

Problem Statement

Even from the the origins of Artificial Intelligence, games played an important

role, as games where thought as complex, demanding, and intriguing environ-

ments that could be used in order to test “intelligent” behavior for an agent.

Reinforcement Learning exploits game in the same way. Many learning algo-

rithms were created with a game as a motivating starting point. Tetris is a game

that has become a standard benchmark in Reinforcement Learning.

3.1 Tetris

Tetris is a video game created in 1984 by Alexey Pajitnov, a Russian computer

engineer. The game is played on a board of dimension 10× 20 using seven kinds

of simple tiles, originally called tetraminoes. All of them are composed of four

colored blocks (minoes) forming a total of seven different shapes (Figure 3.1).

Every tetraminoe has its own unique color. The rules of the game are very

simple. The tiles are falling from the top of the board and the goal is to place

them on the board so that lines are completed without gaps. The player has

six actions available: rotate the tile by 90 degrees clockwise or counterclockwise,

move the tile one step to the right or to the left, drop the tile down, or do nothing.

The player can move the tile as long as it is falling. Once the tile rests on top

of existing tiles in the board it cannot be moved anymore. When a line is fully

completed it is eliminated from the board. The game ends when a resting tile

reaches the top of the board. To prevent this, the player has to complete as many
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Figure 3.1: The seven tetraminoes.

lines as possible. If the player completes more than one lines simultaneously he

is rewarded more than if he completed the same number of lines one by one.

Figure 3.2 shows a snapshot of the board during a typical Tetris game.

Tetris is a very demanding and intriguing game, even though its rules are

very simple. It needs a skillful player, in the sense that it not easy to form a

strategy in this game and it needs a lot of experience in order to perform well.

It is proven by E. D. Demaine, S. Hohenberger, and D. Liben-Nowell [7] that a

strategy that tries to maximize the number of completed rows, to maximize the

number of the lines eliminated simultaneously, to minimize the board height, or

to maximize the number of tetraminoes placed in the board before the game ends

is an NP-complete problem. Furthermore, it is shown that an optimal strategy

is NP-hard, even to approximate it. This inherent difficulty is one of the main

reasons why this game is widely used in order to test Reinforcement Learning

algorithms.

Tetris was first formulated as a Markovian Decision Process (MDP) in 1996

by John Tsitsiklis and Benjamin Van Roy [8]. The state space of the game is

spanned by two binary vectors. One vector has 200 dimensions and represents the

10×20 board. Each bit in this vector is 1, if there is a mino in the corresponding

cell of the board, and 0, if the corresponding cell is empty. The second binary

vector has 7 dimensions and it only has one active bit that represents the falling

tile. In the MDP model there are as many decisions as there are actions, about

40 (10 columns and 4 rotations). If an action is taken in a state which includes

the current board and the falling tile, the next state includes the new board with

the falling tile placed at the corresponding position (less any removed lines) and a

new falling tile. This MDP is deterministic as with a given tile, action and board
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Figure 3.2: Tetris board.

configuration it is definite what the next state will be. The distribution over the

falling tiles is uniform, so the seven tiles are chosen with equal possibilities. The

reward function gives positive numerical values according to the lines completed

by the player exactly as the original game. In this MDP formulation the goal is

to maximize the long-term reward. The only difference with the video game is

that a state does not include any preview information about the falling tile in the

next state.

3.2 Adversarial Tetris

At the recent Reinforcement Learning Competition in 2009 [9] the model of the

MDP by John Tsitsiklis and Benjamin Van Roy [8] was used as a basis for mod-

elling a variation of Tetris, called Adversarial Tetris. This variation has a

number of differences with the original game that was described above. The

main difference is the adversarial aspect of Tetris. At this variation the new

falling tile generator of the environment of the game is replaced by an opponent.

The tiles are not randomly chosen anymore, but are chosen with the motivation
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to hinder the formation of complete lines on the board. The adversary may never

choose a tile, if it helps the player to complete lines.

The MDP model of the Adversarial Tetris was formulated according to the

model of the original Tetris described above. There are some differences though.

The main difference is the fact that the distribution of falling tiles is non-uniform.

Another difference is that the dimension of the board varies in height and width.

A last difference is that the state includes the current position and rotation of

the falling tile in addition to the configuration of the board. This means that the

state is produced like the frames of the video game. For example, a state has

the new falling tile at the top of the board and the configuration of the rest of

the board. The next state will have the same falling tile, but placed one level

down wherever the action of the player moved it from its previous position. If the

player has not dropped the tile, it will be still floating in the board. The game

does not advance to the next time step, unless the player chooses an action first,

therefore in theory the player has infinite time to make an action choice.

The RL-Competition offers a generalized MDP model for Adversarial Tetris

which is fully specified by four parameters (the height and width of the board

and the adversity and type of the opponent). For the needs of the competition

20 instances of this model were specified with the parameters shown in Table 3.2.

It should be noted that the adversity and the type of the opponent were not

known until after the end of the competition and even now it is unclear how the

adversity value and the type number affect the behavior of the opponent.

Another point that needs to be noted, although it is not a difference, is that the

reward for eliminating multiple lines at once is greater than the reward for elim-

inating the same number of lines one by one. The competition reward function

assigns positive numerical values to eliminating lines but the reward given differs

from MDP to MDP, so that the total reward from all MDP can be normalized

and fitted to the difficulty of every MDP. However, the competition framework

does not penalize the agent for losing a game. Another important aspect is that

there is no time restriction on making decisions.

In the 3rd RL-Competition the cumulative reward of the agent was being

tracked for any number of steps involving multiple continuous games. Partici-

pation in the competition was achieved through a test run, which required the
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MDP Number Width Height Adversity Type

0 6 16 0.194066 1

1 10 21 0.554109 1

2 7 19 0.172945 0

3 7 21 0.437863 1

4 11 22 0.474675 2

5 6 18 0.020393 2

6 6 19 0.027500 1

7 8 21 0.067066 2

8 9 21 0.232561 1

9 6 21 0.337115 3

10 9 25 0.587398 1

11 9 20 0.228675 3

12 9 20 0.039145 2

13 7 18 0.475067 3

14 11 22 0.241642 2

15 6 21 0.324070 2

16 7 22 0.402114 2

17 10 24 0.152057 2

18 10 24 0.025430 3

19 6 20 0.278261 2

Table 3.1: The 20 instantiations of the generalized MDP used for the competition.

learning agent to play continuously for a large number of steps (in the order of

millions) and accumulate as much reward as possible, while the underlying MDP

was being switched in some unknown way. The purpose was to demonstrate suc-

cessfull learning over a wide range of game variations represented by the above

MDPs and rapid adaptation to a changing environment. Every team in order to

compete had to complete only one testing run.

The competition ended on June 8, 2009. Due technical difficulties only two

teams were able to successfully participate. The results were announced at the

RL-Competition Workshop on June 18, 2009 in Montreal, Canada during the
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International Conference on Machine Learning. The winner was the team of

Rutgers University, USA with a score of 1,500,000, followed by the team from the

Nanjing University, China with a score of about 1,300,000.

3.3 Thesis Goal

In this thesis we try to address the problem of learning for Adversarial Tetris

as descibed above with one difference. As mentioned, in the competition the

cumulative reward of the agent is being tracked for any number of steps involving

multiple continuous games. This leads to an agent that has only one goal, to

maximize the number of completed lines over a number of steps independently of

how many games he lost. There lies the alteration of our approach to this problem.

In our case the agent is penalized for losing a game. In this manner, the agent

has to achieve a more complex goal, to complete as many lines as possible, but

within a single game. This formalization is closer to the task a human player has

to achieve when playing this game. This modification, however, does not affect

the use of the environment and the experiments given by the RL-Competition.

It only affects the criteria that drive the agent’s behavior. The environment and

experiments that we used are those given by the RL-Competition committee.

3.4 Related Work

There is a lot of work on Tetris since its formulation as an MDP in 1996 till now.

Tsitsiklis and Van Roy [8] created the model in order to apply their Approximate

Value Iteration algorithm using a linear architecture with a few basis functions for

value function approximation. On the same route was the work of Bertsekas and

Tsitsiklis in 1996 [10]. Also, Bertsekas and Ioffe [11] in the same year introduced

a Temporal-Difference Policy Iteration algorithm that also used a linear architec-

ture in order to approximate a cost function. In 2001, Kakade [12] introduced a

gradient-descent method, named natural policy gradient, and applied it to Tetris.

In 2002, Lagoudakis, Parr, and Littman applied Least-Squares approach to Tetris.

Another approach to Tetris was taken by Ramon and Driessens [13] who modeled
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it as a relational reinforcement learning problem and applied a regression tech-

nique using Gaussian processe to predict Q values. Another approach to Tetris

was that of de Farias and Van Roy in 2006 [14] who used the technique of ran-

domized constraint sampling in order to approximate the optimal cost function

with the aid of a linear architecture of basis functions. The same year Szita and

Lőrincz introduced the noisy cross-entropy method [15] for reinforcement learning

problems and applied it to Tetris in order to prove its efficiency. In the context

of the Second Reinforcement Learning Competition in 2008 Thiery [16] used λ

-Policy Iteration to solve a linear architecture based on the features of D. P.

Bertsekas and Ioffe [11]. This approach outperformed all previous work at the

time.

The work described above was done based on the original form of Tetris game.

There has been unpublished work on Adversarial Tetris in the context of the Third

RL Competition in 2009. The only published part of this work was presented

at the ICML Workshop in 2009 [17] by the team of Rutgers University. They

applied look-ahead tree search algorithm where the opponent in each MDP was

taken as a fixed probability distribution over falling tiles learned from data and

the cross entropy method for the approximation of the value function. There is

also unpublished work by the team of Nanjing University, China.
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Chapter 4

Our Approach

4.1 Player Actions

In the original form of the video game of Tetris the player has a time limit for his

decision, which is the time a tile needs to fall completely. In Adversarial Tetris

the tile is falling one step downwards every time the agent chooses an action and

the agent has no time restrictions in order to make a decision. The action can be

one from the six available low-level actions for the step-by-step manipulation of

the tile, meaning that the player can move the falling tile only one step at a time

and the environment adds a downward move of one step to the player’s move.

The player has six low-level choices: move the tile left or right, rotate it clockwise

or counterclockwise, drop it, and do nothing. Using a sequence of these actions

the player can place the tile to any desired position. There is no unique sequence

of such actions in order to place a tile to a specific position and with a certain

rotation. For starters, there are many equivalent rotations for most of the tiles,

in addition to the fact that one clockwise rotation is equivalent to two clockwise

rotations on the same tile and so on. Furthermore, the player can reach a certain

position by moving left and right, but also by moving right and then left, or by

repeating this pattern a couple of times. There is no restriction apart from the

configuration of the board for the agent’s choise of low-level actions.

Playing at the level of the six low-level actions ruins the idea of a two-player

alternating game, as the opponent’s turn is only once after several turns of the

player. Also, the branching factor of six in each choice of the player would lead to
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an intractable game tree, even before the falling tile reaches a permanent position

in the tree. Finally, this aspect of having many sets of low-level actions leading

to the same configuration of the board and thus repeated states in the game tree

would lead to another unnecessary growth of the tree. These observations lead us

to consider an abstraction of the player’s moves, high-level actions, that are the

actions that bring the tile from the top of the board to its final position. These

actions referred as high-level actions are interpreted by the agent to a sequence of

low-level actions that are selected only by the criteria to be the minimum action

set that can be created for the desired position.

The importance of this abstraction is more evident when looking at the game

tree. We assume that Max is our player and Min the opponent. The game

tree for alternating playing is formed by creating the nodes that represent the

actions of Max followed by the nodes that represent the actions of Min and so on.

However, if there was no abstraction, Max would have to make an arbitrary set

of moves till the tile was placed and then it would be Min’s turn. As a result, the

game tree would not a balanced structure. Moreover, all these nodes that would

be created in between the first occurence of the new tile till its final placement

would not provide the game tree with any more useful information than the final

node representing the node with the tile’s final position.

On the other hand, the opponent (Min) does not only decide which tile will

be the next falling tile in the board, but also with which rotation it will be placed

at the top of the board. This means that the opponent has as many actions as

there are tiles multiplied by the number of possible rotations to these tiles, which

is 4× 7 = 28. However, not all these actions are needed in order to represent the

opponent’s moves, as the player (Max) can use low-level actions to rotate the tile

to another configuration. For the great majority of cases the original rotation

of a tile does not affect the final placement of the tile. This is not true only for

a small number of board configurations, where the pile of the tiles has almost

reached the board’s top. The number of those cases is so small and their effect

on the agent’s game play is minimal, as these conditions will inevitably lead to

a loss within a short time. Consequently, the drawback of ommitting them is

negligible compared to the benefit of reducing the braching factor at Min nodes
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from 28 to just 7. This reduction becomes even more imperative, given that the

branching factor of Max is already high.

In summary, both players will choose high-level moves. There are 7 choices

for the Min (the 7 tiles) and at most 40 choices for the Max (10 columns, 4

rotations).

4.2 Minimax Game Tree

The Minimax Game Tree represents all the possible paths of action sequences

of the two players Max and Min playing in alternating turns. The game tree

is needed in order for the player to form a strategy against its opponent, so its

formation should take place when it is the agent’s turn to play. Therefore, our

player forms a new tree every time the opponent make his move choosing a tile.

Max using the high-level actions has as many possible actions as are the

possible placements of the falling tile on top of the board configuration. The

number of these placements, however, varies according to the height and width

of the board, the falling tile and its number of minimum rotations, and the

configuration of the board. These conditions define a varying branching factor

for Max, which in our case is our agent. This factor may vary from 0 for the

terminal states, were there are no places left in the board for the falling tile

to the maximum numerical value for given board dimensions, tile and an empty

board. For example, in an empty board of size 10×20 there are 9 places available

for the square tile and since its shape does not differentiate over rotations, there

are going to be 9 actions available. An approximation of the upper bound of

the board’s branching factor for Max is 4× width and taking into consideration

the rotations that have no effect to the tiles posture the branching factor for an

empty board is 19×width− 28 - this is computed on the bases of the shape and

the meaningful rotations.

Since we have declared what the actions of each player are and when the game

tree needs to be created we can now describe the procedure of its formation. The

initial state of the game tree is the current board configuration in addition to the

falling tile, where Min has already played and it is Max’s turn to play, so the

root of the tree is a Max node. The successor function for a Max node creates all
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Figure 4.1: Adversarial Tetris MiniMax game tree.

of its children by placing the falling tile to all legal positions of the board. For

each of these nodes, according to the Minimax Search algorithm, the successor

function creates 7 children one for every choice of action of Min. Figure 4.1 depicts

a partial game tree for Adversarial Tetris. The expansion of the tree continues

until the cut-off depth of the tree is reached. The cut-off depth is the depth where

the algorithm stops expanding. The utility of the nodes at the cut-off depth is

estimated by an evaluation function described below.

The computation of the Minimax Value is done with the aid of the Alpha-

Beta Pruning in order to prune any nodes and sub-trees that do not contribute

to final decision of the player. However, the pruning of nodes by the Alpha-Beta

Pruning algorithm does not eliminate the effect of such a big branching factor of

the game tree and the depth that our computational resources permit does not
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exceed the cut-off depth 3.

4.3 Evaluation Function Approximation

The estimation of a board configuration whether in favor or against our agent

is done by an evaluation function, which also implicitly determines the agent’s

policy. It is the means of the agent to perceive the effects of its actions and learn

how to perform well in this environment. In order to learn a good evaluation

function that suits our goals we apply Reinforcement Learning for learning a

state value function V . This value function in this environment with the large

state space can not be computed but must be approximated.

We are using a linear architecture in order to approximate the value function.

This linear architecture is formed by a set of basis functions φ(s), and a set

of weights w. We have issued two possible sets of basis functions with different

properties which will eventually lead to two different agents. The first set includes

6 basis functions for characterizing the board as shown in Table 4.3.

Feature Description

1.0 a constant term

hmax the maximum height of the board

h̃ the mean height of the board

L holes, the total number of cells below placed tiles on the board∑
i |hi − hi+1| the sum of absolute column differences in height

G gaps, the empty cells above placed tiles up to max height

Table 4.1: Set of State Features

The second set of basis functions uses a separate block of the 6 basis functions

described above for each one of the 7 tiles of Tetris, giving a total of 42 basis

functions. This is proposed because with the previous set the agent learns which

boards and actions are better for him, but does not associate them to the falling

tiles that these actions manipulate. The same action on different tiles, even if the

board is unchanged, may have a totally different effect; ignoring the type of tile

falling in the current board leads to a less efficient behavior. This second set of
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basis functions take into account both the board and the falling tile and therefore

is appropriate for evaluating Max nodes. It should be noted that only one block

of size 6 is active in any state, the block corresponding to the falling block.

4.4 Incremental Least-Squares Temporal Differ-

ence Learning

We applied a variation of Least-Squares Temporal Difference Learning

algorithm in order to learn a good set of parameters for our value function. The

need for modifying the original LSTD algorithm stems from the fact that the

underlying agent policy is determined through the values given to states by our

evaluation function, which are propagated to the root; if these values changes,

so does the policy, therefore it is important to discard old data and use only the

recent ones for learning. To this end, we used the technique of exponential

windowing. According to this technique, the weights are updated in regular

intervals called epochs; each epoch may last for several decision steps. During

an epoch the underlying value function and policy remain unchanged, therefore all

data collected are inserted into the matrices A and b of LSTD. At the completion

of the epoch, the system is solved and the weights are updated. In the next epoch,

the matrices A and b of LSTD are not initialized to 0, but to the A and b matrices

of the previous epoch discounted by a parameter µ. This initialization is useful

because the previous data are not completely eliminated, but are weighted less

and less as they become older and older. Their influence to the solution of the

system varies according to the numerical value of µ which takes values between 0

(no influence) to 1 (full influence). A value of 0 leads to singularity problems due

to the shortage of samples within a single epoch, however a value around 0.95

offers a good balance between recent and old data with exponentially decayed

weights. We call this variation Incremental LSTD; a full description of the

algorithm is given in Algorithm 4 (t indicates the epoch number).

In order to accomodate a wider range of objectives we used a rewarding scheme

that encourages line completion (positive reward), but discourages loss of a game

(negative reward). We balanced these two objectives by given a reward of +1 for
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4.4 Incremental Least-Squares Temporal Difference Learning

Algorithm 4 Incremental Least Squares Temporal Difference Learning

wt, At, bt := incLSTD (Dt, k, φ, γ, wt−1, At−1, bt−1, µ)

inputs:

Dt: Samples (s, a, r, s′) collected using policy πt−1 derived from wt−1

k: Number of basis functions

φ: Basis functions

γ: Discount factor

wt−1: the parameters of the approximate value function at epoch t− 1

At−1: (k × k) matrix A at epoch t− 1

bt−1: (k × 1) vector b at epoch t− 1

µ : the exponential windowing factor

outputs:

wt: the parameters of the approximate value function at epoch t

At: matrix A at epoch t

bt: matrix b at epoch t

if t == 0 then

At ← 0

bt ← 0

else

At ← µAt−1

bt ← µbt−1

end if

for all samples (s, a, r, s′) ∈ D do

At ← At + φ(s)
(
φ(s)− γφ(s′)

)>
bt ← bt + φ(s)r

end for

wt ← At
−1
bt

return wt, At, bt
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each completed line and a penalty of −10 for each game lost. We set the discount

factor to 1 (γ = 1) since rewards/penalties do not loose value independently of

when they occur.
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Chapter 5

Implementation

5.1 RL-Glue Framework and the RL-Competition

RL-Glue [18] is an open-source framework that provides an interface that differ-

ent agents, environments and experiments can ran together without the need to

be written at the same programming language. It is a set of common guidelines

provided to the reinforcement learning community in order to share and compare

different agents and environments without much effort. The main functionality of

it is that it is generalized, which means that the basic interface of an experiment,

an agent or an experiment is available. This helps so that the code in order to

connect the agent, the environment and the experiment.

The RL-Glue interface includes RL-Glue Core Project. The Core Project

provides software in order to produce direct-compile project or a stand-alone

server for running socket projects. The latter is used in order experiments, agents

and environments to be linked over a socket protocol locally or over the Internet.

RL-Glue Extensions is a separate project that includes multi-language sup-

port. In direct compile mode all the components of a Reinforcement Learning

Project are compiled together into a single executable program if it is written

in C/C++. The other mode that is available, is the socket mode. The socket

mode is a mode that involves linking of the an agent, an environment and an

experiment over the Internet or locally. These three components can be written

in any language from those supported. The language-specific software that allows

programs from different languages to connect via the RL-Glue interface is called
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5. IMPLEMENTATION

codec. The available codecs are the following: C/C++, Java, Matlab, Python

and Lisp.

The RL-Glue Project uses the task specification language, task spec [19] .

The basic notion of task spec language is to have a task specification standard. It

is a string generated by the environment and is given to the agent as a parameter

in agent-init. It is the representation of the interaction of the environment and

the agent. It gives the information to the agent that is needed in order to form

the “perception” of the environment. More specifically, it gives a representation

of the observations, the actions and the range of rewards.

This thesis is based on the domain of the RL-Competition of Adversarial

Tetris. The RL-Competition utilized the open-source project of RL-Glue. This

provided an interface for the agent, the environment and the experiments. The

environment and the experiments are software programs provided by the com-

petition. The agent interface was provided from the RL-Glue Project; based on

that a sample agent was made available from the competition organizing team.

The technical details [9] of the competition software refer to the observation

and the action space. The observation space is high dimensional and a discrete

valued space. It contains a representation of the current configuration of the board

as a binary bit map, a bit vector for the falling piece and two integers that

declare the board size, the number of rows and columns. The action space is

one dimensional and discrete. It defines the manipulation of the falling piece. All

actions have one integer value.

5.2 The agent architecture

The agent was written in Java programming language as it is supported by RL-

Glue. The agent is based on the sample code given by the RL-Competition team

and is compatible with the RL-Glue agent interface. The Eclipse IDE [20]

was used at the development of the code and the Sun Java Platform JRE

version 6 [21]. The operating system that it was programmed and used was a

Debian based Distribution of Linux, Ubuntu [?]. This program has needs at

least 2 GB RAM to run and preferably more than 3Gb. It was run to 64-bit

systems but it can run in 32-bit systems also. It can run in any platform that
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5.2 The agent architecture

RL-Glue does. Which means in all operating systems and in any kind of system.

The drawback is that it cannot be parallelized fully but it was tested and run to

the Grid of the university.

The agent interface has the methods of init, start, step, end, clean up,

freeze and message available to be used for the connection with the environment

and the experiment. In our implementation the methods init, step, end and clean

up were implemented and used. There were some classes in order for the game

tree to implemented and for board to be represented as an entity. The methods

of the agent analyzed the observation of the environment given by task spec.

The agent used a model of the environment in order to produce the possible

future states of the environment and form the game tree. Since the states of the

MDPs represented at every time step the current placement of the falling piece

and the actions were done at each time steps the agent did not make a decision

at each time step. The agent needed to make a decision every time there was

a new falling piece. As a result, the game tree was produced at that time so

did the update of the learning algorithm. The decision of the agent was not an

action but a placement of the new piece. In that way, the agent’s decision was

a strategy that included the minimum set of actions in order to place the piece

to the desired placement on the board. The set was actions is referred above as

“minimum” because there are many equivalent actions that can lead a piece to

one specific placement with a specific orientation, the set that was used was the

one with the less steps needed for the placement to be completed.

The learning algorithm’s computation of the vector of weights was done at

specified intervals of steps not games. The updates needed to be done only when

new experience was offered to the agent and that was the case only when a

decision was to be made and an estimation of the current board configuration.

In order for the linear system to be solved a Java API was used, Jama package

[22].

It is pointed out several times in this thesis that the negative payoff for losing

a game is not given by the environment. The numerical value of this was given

to the agent at the game tree. At the game tree we defined its value and there

it contributed to the decision making of the agent. Also the cut off depth of the

tree is defined there. The agent was tested at cut off depth one, three and five.
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At cut off depth three the game tree was nothing more than a generator of the

model of the environment.

The agent through its step method selected an action at a time as far as the

environment is concerned, regardless of the fact that all the sequence of actions

for a piece was already decisioned. The agent is able to perform in all the MDP’s

of the environment and to run in all the experiments that were given from the

RL-Competition.

5.3 Environment and Experiments

The environment and the experiments were implemented by the organizing com-

mittee of the RL-Competition [9]. The environment includes the board, the

pieces distribution and the opponent, the generator of the pieces’ distribution.

At the time that the agent was completed we had no knowledge of the opponent

and its behavior apart from its goal. After the ending of the competition this code

was released to publicity and we could see that there were more than one agents

that played the role of the opponent with a sort of a scaling to their “evilness”.

However till this date we have no specific information about these opponents

that varied from an MDP to another. The Adversarial Tetris was generalized

as there were parameters that specified a certain MDP of the generalized problem.

There were twenty parameters from zero to nineteen, at each of them another

MDP was specified with different dimensions of board and opponent hardness.

Most of our experiments are done at the MDP with parameter 1, as its board

dimensions were similar to the original Tetris board.

The experiment software included a console trainer for Java, a GUI trainer

and there was the proving software and the testing software. Unfortunately,

because this agent did not compete at the competition and there were no local

test runs done, there are not any results from that experiment software. Exactly

because the formalization of this game is episodic the experiments were done in

episodes. Every episode was a game. Every game was independent from the other

as an episodic task would demand.
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Chapter 6

Results

6.1 Experimental Design

Our learning experiments were conducted over a period of 400 epochs, where each

epoch is a series of 8, game steps. At the end of each learning epoch the LSTD

system is solved and the weights of the value function are updated. Therefore, the

total learning steps were 3,200. Learning was conducted only on MDP 1 which

has board dimensions that are closer to the board dimensions of the original

Tetris. The exponential windowing parameter was set to 0.95. Learning takes

place only at the root of the tree in each move, as learning to the internal nodes

leads to a great degree of repetition biasing the learned evaluation function.

The agent with the first set of basis functions (= 6) learns by backing up

values from depth 1 and from depth 3. This choice is dictated by the fact that

this set of basis functions ignores the choice of the Min and therefore it would

be meaningless to expand the tree beyond Min nodes which are found at odd

depths. The second agent with the larger set of basis functions (k = 42) learns

by backing up values from depth 2. This set of basis functions takes the action

choice of the Min explicitly into account and therefore it makes sense to cut-off

the search at Max nodes, which are found at even depths.

The testing experiments involved playing 500 games per MDP. The first agent,

who learned with cut-off depth 1, was tested for cut-off depths 1 and 3. The same

agent, who learned with cut-off depth 3, was tested for cut-off depths 1 and 3.
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The second agent, who learned with cut-off depth 2, was tested for minimax tree

cut-off depths 2 and 4.

6.2 Experimental Results

6.2.1 Learning Performance

Learning performance for the agent with the first set of 6 basis functions.

The first learning experiment is the agent to learn using a game tree with cut

off depth 1 shown in figure 6.1. The second learning experiment is the same

agent learning using a game tree with cut off depth 3 as shown in figure 6.2.

Learning Results for the agent with the second set of basis functions that

combine the previous 6 basis functions with the falling piece is shown in Figure

6.3 .

6.2.2 Playing performance

In order to test the playing performance of the first agent we have run the follow-

ing experiments. The first experiment was the agent with the 6 basis functions

utilizing the weights learned at cut-off depth 1 play in all MDPs with cut-off

depth 1 and then with cut-off depth 3. Another experiment was the same agent

but this time utilizing the weights learned at cut-off depth 3 play in all MDPs

with cut-off depth 1 and afterwards with cut-off depth 3. The average perfor-

mance of this agent is 544 steps and 44 lines for all MDPs and 366 steps and 16

lines at MDP 1. In the table 6.2.2 all the results of the testing runs are shown.

The second agent proposed played in the environment of the adversarial tetris

for all MDPs available utilizing the weights learned at the cut off depth 2 of the

minimax tree, having cut off depth of the minimax tree 2 while playing. The has

an average performance of 222 steps and 44 lines per game over all MDP’s and

197 steps and 16 lines on MDP 1. Analytically the performance of the agent is

shown in the table 6.2.2.

As a second performance testing, the second agent proposed played in the

adversarial environment for all MDPs available utilizing the weights learned at
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Figure 6.1: Learning performance for the agent with 6 basis functions learning

at game tree cut-off depth 1
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Figure 6.2: Learning performance for the agent with 6 basis functions learning

at game tree cut-off depth 3
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Figure 6.3: Learning performance for the agent with 42 basis functions learning

at game tree cut-off depth 2
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the cut off depth 2 of the minimax tree, having cut off depth of the minimax tree

4 while playing.
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0 0 28.44 133 0 5.61 29 37 246.39 936

1 0 16.08 66 0 8.45 36.66 98 366.26 1048

2 0 31.81 180 0 6.55 37.34 54 348.13 1589

3 0 27.79 112 0 6.39 26.84 69 327.41 1035

4 0 21.93 93 0 10.9 46.67 76 514.77 1628

5 0 54.90 249 0 8.7 39.56 38 431.95 1726

6 0 41.78 202 0 6.62 32.59 38 344.68 1395

7 3 91.18 497 0.68 21.15 115.56 122 997.59 4928

8 0 54.15 284 0 16.43 86.52 68 755.15 3380

9 0 27.71 145 0 6.12 34.17 61 261.95 1041

10 1 22.62 95 0.36 9.97 43.48 109 426.77 1286

11 0 43.2 163 0 15.41 55.21 52 614.33 2

12 1 103.83 455 0.25 27.26 119.72 104 1312.71 5381

13 0 25.15 114 0 6.19 29.58 41 288.34 1047

14 0 54.47 258 0 20.23 97.32 117 1001.05 4127

15 1 24.22 122 0.14 5.34 26.44 72 241.97 917

16 0 27.26 106 0 7.81 30.39 54 328.99 1002

17 1 65.74 271 0.33 26.25 115.37 118 1047.04 3823

18 0 82.94 440 0 30.86 168.16 121 1273.60 6013

19 2 40.73 178 0.33 6.89 30.03 79 343.23 1276

Table 6.1: Testing results for the first agent playing at depth 1 with weights

learned with a game tree with cut-off depth 1
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0 0 2.97 16 0 0.48 3.22 25 66.56 164

1 0 0.82 8 0 0.37 3.98 67 127.22 236

2 0 2.07 12 0 0.41 2.42 29 76.78 181

3 0 2.31 14 0 0.51 3.35 39 86.63 201

4 0 1.01 9 0 0.45 4.66 67 150.91 306

5 0 4.04 23 0 0.62 3.51 32 81.70 217

6 0 3.59 16 0 0.55 2.45 31 80.93 178

7 0 3.02 18 0 0.68 4.07 44 119.23 274

8 0 2.32 17 0 0.66 4.92 47 121.08 349

9 0 3.65 14 0 0.61 2.36 33 88.55 167

10 0 1.59 8 0 0.59 3.95 53 122.81 246

11 0 1.93 9 0 0.56 4.64 48 111.05 221

12 0 2.52 15 0 0.64 3.86 47 120.88 290

13 0 2 16 0 0.42 4.05 30 73.312 196

14 0 1.39 10 0 0.51 3.67 61 158.16 318

15 0 3.21 14 0 0.54 2.70 32 84.99 168

16 0 2.19 11 0 0.48 2.75 37 87.54 188

17 0 1.65 14 0 0.57 5.29 81 162.19 359

18 0 1.82 14 0 0.61 4.80 79 163.78 349

19 0 4.10 18 0 0.68 3.12 32 87.95 199

Table 6.2: Testing results for the first agent playing at depth 3 with weights

learned with a game tree with cut-off depth 1
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0 0 15.16 63 0 2.40 10.4 28 156.93 507

1 0 8.72 50 0 3.91 21.64 66 265.43 798

2 0 14.07 45 0 2.79 9.08 38 202.7 479

3 0 15.63 48 0 3.43 10.74 39 228.1 505

4 0 9.61 49 0 4.17 22.91 74 328.21 931

5 0 20.77 90 0 3.11 14.05 44 202.26 675

6 0 19.35 74 0 2.91 11.63 42 196.1 544

7 0 19.64 79 0 4.41 18.09 43 295.57 882

8 0 17.29 70 0 4.98 21.70 67 323.6 970

9 0 17.61 58 0 2.93 11.78 51 194.01 468

10 0 11.83 41 0 4.42 16.53 57 296.83 641

11 0 16.12 96 0 4.74 27.35 42 300.63 1241

12 0 24.21 120 0 6.19 30.9 48 394.72 1517

13 0 13.80 44 0 2.89 9.52 49 195.59 432

14 0 16.81 59 0 5.92 21.67 67 424.62 1141

15 1 16.73 51 0.14 2.69 9.24 46 189.1 435

16 0 15.65 57 0 3.38 12.16 53 232.94 563

17 0 22.32 75 0 7.82 28.43 66 463.86 1151

18 0 21.95 78 0 7.31 26.91 74 461.57 1217

19 0 19.97 83 0 3.22 13.62 43 202.03 630

Table 6.3: Testing results for the first agent playing at depth 1 with weights

learned with a game tree with cut-off depth 3
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0 0 2.99 14 0 0.47 2.64 26 71.62 165

1 0 1.68 11 0 0.76 6.18 43 157.71 306

2 0 3.36 14 0 0.67 2.83 33 107.05 217

3 0 3.72 15 0 0.83 3.35 28 121.41 235

4 0 1.73 13 0 0.76 7.64 46 176.41 407

5 0 3.64 17 0 0.56 2.75 31 83.18 189

6 0 3.42 17 0 0.52 2.6 32 83.88 187

7 0 4.16 19 0 0.93 4.52 40 149.14 315

8 0 3.67 16 0 1.05 4.34 34 162.41 337

9 0 3.2 16 0 0.55 3.09 37 91.79 192

10 0 2.98 14 0 1.11 5.39 50 181.88 333

11 0 3.42 17 0 0.97 6.19 33 151.79 351

12 0 4.08 16 0 1.03 4.12 33 160.99 334

13 0 3.45 16 0 0.73 3.44 24 102.31 213

14 0 2.28 13 0 0.83 4.77 38 185.73 430

15 0 2.92 15 0 0.49 3.13 36 88.57 184

16 0 3.71 18 0 0.79 3.92 43 125.59 259

17 0 2.88 16 0 0.99 5.29 50 201.3 425

18 0 3.16 13 0 1.04 4.48 53 210.37 386

19 0 4.33 20 0 0.71 3.28 33 96.81 223

Table 6.4: Testing results for the first agent playing at depth 3 with weights

learned with a game tree with cut-off depth 3
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0 0 10.80 44 0 1.7 7.32 26 120.81 369

1 0 4.76 24 0 2.13 11.04 55 196.67 476

2 0 7.12 36 0 1.44 7.06 33 124.53 378

3 0 8 35 0 1.79 7.83 38 143.93 403

4 0 5.24 23 0 2.25 11.46 42 241.19 566

5 0 18.52 69 0 2.84 10.54 30 185.38 529

6 0 18.22 69 0 2.8 10.86 33 186.11 525

7 0 14.81 61 0 3.34 14.02 46 251.56 712

8 0 12.17 47 0 3.51 13.6 51 273.32 674

9 0 15.47 47 0 2.53 8.69 42 176.31 404

10 0 8.29 28 0 3.08 10.06 58 253.34 484

11 0 10.01 50 0 2.77 16.77 47 234.89 721

12 0 10.87 50 0 2.98 16.77 50 246.18 721

13 0 16.01 62 0 4.1 15.96 49 313.44 848

14 0 6.55 29 0 1.37 6.08 31 115.92 322

15 0 10.78 38 0 3.9 13.96 34 343.41 768

16 0 15.84 46 0 2.53 8.53 36 180.83 394

17 0 7.71 35 0 1.66 8.24 40 143.81 410

18 0 12.16 42 0 4.15 14.21 80 336.82 788

19 0 14.14 69 0 4.67 23.38 72 365.78 1144

Table 6.5: Testing results for all MDPs for the second agent at minimax tree cut

off depth 2
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MDP Lines Reward Steps

Min Ave Max Min Ave Max Min Ave Max

0.0 0.0 1.284 12.0 0.0 0.199 1.904 24.0 45.924 135.0

1 0.0 1.122 12.0 0.0 0.504 5.300 50.0 133.298 307.0

2 0.0 1.026 11.0 0.0 0.207 2.422 33.0 64.134 176.0

3 0.0 1.250 10.0 0.0 0.278 2.237 32.0 76.544 163.0

4 0.0 1.468 10.0 0.0 0.660 5.940 53.0 169.338 352.0

5 0.0 1.740 15.0 0.0 0.264 2.291 27.0 58.624 164.0

6 0.0 2.0 11.0 0.0 0.305 1.683 31.0 64.206 150.0

7 0.0 1.910 13.0 0.0 0.431 2.940 43.0 102.744 242.0

8 0.0 1.896 13.0 0.0 0.548 3.762 45.0 124.496 279.0

9 0.0 2.292 17.0 0.0 0.385 3.093 36.0 74.544 194.0

10 0.0 1.806 10.0 0.0 0.673 3.953 57.0 151.252 280.0

11 0.0 1.754 12.0 0.0 0.494 4.386 44.0 117.140 259.0

12 0.0 1.912 15.0 0.0 0.494 3.862 37.0 116.302 294.0

13 0.0 1.048 10.0 0.0 0.219 2.026 28.0 59.220 156.0

14 0.0 1.952 13.0 0.0 0.712 5.141 42.0 177.108 415.0

15 0.0 2.016 13.0 0.0 0.333 3.269 34.0 73.500 168.0

16 0.0 1.268 9.0 0.0 0.262 2.549 38.0 81.708 172.0

17 0.0 2.142 12.0 0.0 0.746 3.967 60.0 176.402 364.0

18 0.0 2.420 21.0 0.0 0.820 7.367 75.0 179.514 447.0

19 0.0 2.298 15.0 0.0 0.379 2.462 32.0 70.230 176.0

Table 6.6: Testing results for all MDPs for the second agent at minimax tree cut

off depth 4
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Chapter 7

Discussion, Conclusions and
Future Work

7.1 Discussion

Adversarial Tetris is a game which witholds the complexity of Tetris and combines

it with adversity. In this thesis we proposed an agent that will use a tree search

algorithm in order to form the game tree and enable it to confront the adversary

of the game. However, because of the very large action and state space the tree

cannot be expanded to a great depth. In this thesis we did not expand the

tree beyond the cut off depth of 4. The great state and action space has also a

great effect to the evaluation function. We propose a linear architecture for the

approximation of the State-Value Function as the computation of the State Value

function would have been impractical. The linear architecture that we issue are

two sets of basis functions that we have been experimented on. The first set of

basis functions involves the features that we have provided to the agent in order

to evaluate the utility of a board and the second combines these features with the

currently falling piece. The policy of the agent derives from the Value Function

approximation at every decision step, as the approximation is improving, the

policy of the agent also improves, until a point where the approximation has

converged and the quality of the policy does not change any more. The learning

algorithm in order for this improvement in policy to be achieved is a variation

of the Least-Squares Temporal Difference Learning that involves one parameter
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µ which alters the behavior of the algorithm according to its numerical value.

If µ is 0 the Incremental Least-Squares Temporal Difference is exactly the same

with the original form of LSTD. In our case µ is non-zero as we use exponential

windowing in order to weight the older samples in respect to the newer samples.

7.2 Future Work

The work that has been done in this thesis can have many expansions and ex-

perimentations for the future. A lot of experimentation can be done as far as

the basis functions sets are concerned. It can be explored more how to achieve a

better approximation of the State Value-Function. What is not included in this

thesis because we could not overcome some technical difficulties is a testing run

with the environment of the competition, however is one of our first future goals.

7.3 Conclusions

The results of this work have not gone far beyond the results of the Reinforcement

Learning Competition as we can estimate at the time, however we can say that

this work has proposed an architecture of an agent that has a good learning

performance and because the opponent of the MDP that it was tested had one

of the harder opponents it can play equally well and even better to othe MDPs

regardless of the board dimensions. The sets of basis functions although that

have a very small number enable the agent to form a good approximation of the

State Value Function and the learning algorithm is able to converge in a relatively

small number of iterations.
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