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Abstract

With the advent of personal computers and computer gaming, Real Time

Strategy (RTS) games have vastly gained ground in the last few years, not

only among gamers, but also within the field of Artificial Intelligence (AI), since

they represent a challenging domain for autonomous agents. Unfortunately, the

performance of AI agents in RTS games is still lagging behind, perhaps due

to the fact that most games are commercial and thus companies give more

emphasis to graphics than AI player development. Open-Source RTS games

on the other hand motivate the development of AI agents by providing source

code and documentation that allows users to code their own players. This thesis

investigates the design of Reinforcement Learning (RL) autonomous agents

who learn to play RTS games through interaction with the game itself. In particular,

we have used the well-known SARSA and LSPI algorithms to learn how to

choose among different high-level strategies in the popular free RST gameGlest

with the purpose of winning against the embedded AI opponent. Our learning

agent was able to defeat the opponent after a few games in the intermediate

level (Duel scenario), but could not defeat the opponent at the hardest level

(Tough Duel scenario) where the opponent is cheating against our player. In any

case, our study indicates that RTS fans can elevate their gameplay experience

to a totally new and challenging level, namely that of playing by designing and

programming autonomous players for their favorite games.





Περίληψη

Με την πρόοδο στον χώρο των ηλεκτρονικών υπολογιστών, τα παιχνίδια στρα-

τηγικής πραγματικού χρόνου (real-time strategy games) έχουν κερδίσει πολύ

έδαφος, όχι μόνο μεταξύ των φανατικών του είδους, αλλά επίσης και στο χώρο

της Τεχνητής Νοημοσύνης, καθώς αντιπροσωπεύουν ένα προκλητικό πεδίο για

αυτόνομους πράκτορες. Δυστυχώς, η απόδοση τέτοιων αυτόνομων παικτών σε

παιχνίδια στρατηγικής πραγματικού χρόνου, φαίνεται ακόμη να υστερεί, καθώς

στην πλειοψηφία τους τέτοια παιχνίδια είναι εμπορικά και οι εταιρείες δίνουν

έμφαση στα γραφικά παρά στην ανάπτυξη αυτόνομων παικτών. Η παρούσα

διπλωματική εργασία εξετάζει τη σχεδίαση αυτόνομων πρακτόρων ενισχυτικής

μάθησης (reinforcement learning) που μαθαίνουν να παίζουν παιχνίδια στρα-

τηγικής πραγματικού χρόνου μέσα από αλληλεπίδραση με το ίδιο το παιχνίδι.

Συγκεκριμένα, χρησιμοποιήσαμε τους διαδεδομένους αλγορίθμους SARSA και

LSPI για να μάθουμε πώς να επιλέγουμε μεταξύ διαφορετικών στρατηγικών

υψηλού επιπέδου στο δημοφιλές παιχνίδι ελεύθερου λογισμικού Glest με στόχο

να νικήσουμε τον ενσωματωμένο αυτόνομο αντίπαλο. Ο πράκτοράς μας έμαθε

να κερδίζει τον αντίπαλο μετά από λίγα παιχνίδια στο μεσαίο επίπεδο (σενά-

ριο Duel), αλλά δεν κατάφερε να επιβληθεί πάνω του στο δυσκολότερο επίπεδο

(σενάριο Tough Duel), όπου ο αντίπαλος κλέβει απέναντι στον πράκτορά μας.

Σε κάθε περίπτωση, η μελέτη μας δείχνει ότι οι οπαδοί τέτοιων παιχνιδιών μπο-

ρούν να ανεβάσουν την εμπειρία παιχνιδιού σε ένα άλλο τελείως νέο επίπεδο,

μεγαλύτερης πρόκλησης, όπου οι χρήστες θα παίζουν σχεδιάζοντας και προ-

γραμματίζοντας αυτόνομους παίκτες για τα αγαπημένα τους παιχνίδια.
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Chapter 1

Introduction

Real Time Strategy (RTS) games are games in which several players choose

races and struggle against enemy factions by harvesting resources scattered

over a terrain, producing buildings and units, and fighting one another in order

to set up economies, improve their technological skill and level, and win battles,

until their enemies are extinct. The better balance you get among economy,

technology, and army, themore chances you have to win. Of course, the way you

manage your units in gathering, fighting, and building, as well as path finding,

play a major role in player performance [6, 7, 8, 15, 23, 24, 29]. Nowadays, most

RTS games (or maybe we should say games in general) are commercial, though

free and open software solutions are beginning to gain ground in that field too.

1.1 Artificial Intelligence in RTS games

Despite the great technological progress that has been achieved in the fields

of computer science till today and the fact that RTS games have been around

for more than ten years already, the current performance of Artificial Intelligence

(AI) agents in RTS games is considered to be quite poor.

One good reason why AI performance in RTS games is lagging behind is

that the vast majority of these games are commercial games. This means that

the development of these games follows the rules of market. The main market
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rule is maximizing profit. For this reason, companies prefer to put emphasis on

graphics than on artificial intelligence in the game. The game industry, unfor-

tunately, dictates that more graphics hardware is sold (as games have greater

demands) and more sales of games are made, if the games look more real-

istic. It has been shown that only about 15% of the CPU time and memory is

currently allocated for AI tasks in commercial games. On the other hand, such

phenomena do not occur so often in open and free software games and there is

an obvious tendency for that to change also in commercial games as graphics

hardware is getting faster and memory is getting cheaper.

Another thing that we should note here, is that because AI has not evolved as

much as it could have, in most games hard level of game play means cheating.

Cheating might refer to things like AI player's unristricted access to information

that it should not have (such as enemies' or resources' map positions on unex-

plored areas), faster gathering of resources, or cheaper units' production.

Another reason for the comparatively poor performance of AI agents in RTS

games, is closed-source games. In the past, hardly any company used to give

an Application Programming Interface (API) for their game, something that has

also changed in the last few years, under the pressure of open and free software

games. Users do not only want to be consumers, but also creative developers

during their gameplay experience. Programming, even if it is just scripting, has

a lot to offer to artificial intelligence.

Last, but not least, RTS games contain a great deal of information in the

worlds they describe: environment and map objects, different factions with dif-

ferent kinds of units, buildings, weapons, skills, micro and fast-paced actions

constitute only a part of the whole picture. Players are also faced with imperfect

information, i.e. partial observability of the game state. For instance, the location

of enemy forces is initially unknown. It is up to the players to scout to gather intel-

ligence, and act accordingly based on their available information [6, 7, 8, 23, 24].
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All this means, that RTS games might be among the most demanding and

complex games and RTS users have to put up with a great deal of information

concerning the environment, the state, and the actions (something that adds up

to intense processing), in quest for a better strategy.

1.2 Motivation

As we have already pointed out, the level of play of RTS AI players in general

is weak. We have reffered to cheating and how often it appears in the artificial

intelligence part of RTS games. Usually in most real-time strategy games, there

is a standard or parametric way for the AI to play. This can only be clever, if it

has been tested and seen that it works fine in most cases. But, there is still a

problem.

A human player has to play only a few games before he/she finds out how

to beat the AI player. A few games are enough for the human to understand

how the computer plays and find a way to "trick" the AI player and win. But

what would have happened if the AI player did the same thing or almost the

same thing, i.e. learn from the human player in a few games how to play more

efficiently? This is exactly what human players usually want: more and more

challenging games with sophisticated opponents who cannot be beaten easily

by simple tricks [6, 7, 8, 15, 23, 24, 29].

Adopting to human player's behaviour and making AI agents more challeng-

ing was one of the reasons that drove us to this work. Another reason was the

fact that modern methods for constructing intelligent agents, such as reinforce-

ment learning, have been applied widely to many other fields, such as robotics

and even board games, but hardly ever on real-time strategy (RTS) games. This

has been a problem under research (without any great results we could say) only

in the last few years. What could be more challenging than that?
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So, we grew up playing such games and now there is a chance for us to

do what we have always wanted: try to find some way to make games more

clever and show people that we can also be creative in games. Instead of mouse

clicks and fast button presses, now we have some kind of alternative way to

beat computers. Simple, but clever, programming and scripting shows the future

in gaming. Not just players-consumers, but players-programmers. How much

would this have to offer in Artificial Intelligence and computer science really?

We believe a lot and this is only the beginning!

1.3 Our contribution

In our project, we applied two well-known reinforcement learning algorithms

(SARSA and LSPI) on the Free RTS game Glest. In the first scenario (middle

difficulty level), we managed to develop a controller much better than the hand-

coded one used by the game's AI. In the second scenario (harder difficulty level)

however, it was impossible to beat the default AI agent, as he was cheating

while we were only using the standard tactics available to human players. Still,

we managed to improve our AI agent's behaviour. One might think that, if we

were playing with the same cheating tactics as our opponent, we would probably

have achieved to beat him. But, it seems that is not the case! In both scenar-

ios our AI agent learned how to mix three different tactics in order to find the

best strategy possible instead of commiting to one of them. The improvement

achieved in our player's behaviour using reinforcement learning was the most

important outcome. It really indicates that, what we were saying about players-

programmers and the contribution all this would have to computer science is not

an utopic dream, but it could be the future.
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1.4 Thesis overview

This thesis is organized as follows: In Chapter 2 we will provide the neces-

sary theoretical background, which includes a quick introduction to Reinforce-

ment Learning and a brief description of the algorithms we used (Qlearning,

SARSA and LSPI, in particular). In Chapter 3 we provide a more detailed prob-

lem statement, including a description of the game Glest, and an overview of

the related work in the area. In Chapter 4 we describe our approach on applying

reinforcement learning methods for learning good strategies. In Chapter 5 we

present the most important aspects of the implementation of our approach. In

Chapter 6 we report the experimental results of our work, and finally in Chapter

7 we discuss the significance of our results, suggest future work directions, and

draw some conclusions.
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Chapter 2

Background

2.1 Sequential Decision Making

Machine learning [2, 5, 16] is a scientific discipline concerned with the de-

sign and development of algorithms that allow computers to learn based on data,

coming from sensors or stored in databases. A major focus of machine learning

research is to automatically learn to recognize complex patterns and make in-

telligent decisions based on these patterns. Hence, machine learning is closely

related to fields such as statistics, probability theory, data mining, pattern recog-

nition, artificial intelligence, adaptive control, and theoretical computer science.

2.1.1 Terminology

Some terms [1, 5] we must be familiar with in machine learning and that will

help us understand the various ways of approaching our problem are described

here in brief, while others that need to be further analyzed follow in the next

subsections.

Supervised Learning is a kind of machine learning where the learning algo-

rithm is provided with a set of inputs along with the corresponding correct

outputs, and learning involves the algorithm comparing its current actual

output with the correct or target outputs, so that it knows what its error is,
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and modify things accordingly.

Reinforcement Learning is the area of machine learning in which an agent

learns from interaction with its environment, rather than from a knowledge-

able teacher that specifies the action the agent should take in any given

state.

State can be viewed as a summary of the past history of the system, that de-

termines its future evolution. It includes all the information on which action

decisions are based.

Action refers to any of the possible actions an agent can take in a given state

of our system.

Reward is a scalar value which represents the degree to which a state or action

is desirable, considering only the current step. Reward functions can be

used to specify a wide range of planning goals (e.g. by penalizing every

non-goal state, an agent can be guided towards learning the fastest route

to a goal state).

Episodes are the subsequences into which the agent-environment interaction

breaks naturally, such as plays of a game, trips through a maze, or any

sort of repeated interactions. Each episode ends in a special state called

the terminal state, followed by a reset to a standard starting state or to a

sample from a standard distribution of starting states.

Policy is the decision-making function (control strategy) of the agent, which

represents a mapping from states to actions.

Value Function is a mapping from states or from state-action pairs to real num-

bers, where the value of a state represents the long-term reward achieved
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starting from that state(or state-action), and executing a particular pol-

icy. The key distinguishing feature of RL methods is that they learn poli-

cies indirectly, by instead learning value functions. RL methods can be

constrasted with direct optimization methods, such as genetic algorithms

(GA), which attempt to search the policy space directly.

Model-based algorithms compute value functions using a model of the sys-

tem dynamics. Adaptive Real-time Dynamic Programming (ARTDP) is a

well-known example of a model-based algorithm.

Model-free algorithms directly learn a value function without requiring knowl-

edge of the consequences of taking actions. Q-learning is the best known

example of a model-free algorithm.

Temporal Difference (TD) algorithms refer to a class of learningmethods, based

on the idea of comparing temporally successive predictions. Possibly the

single most fundamental idea in all of reinforcement learning.

Monte Carlo methods refer to a class of methods for learning value functions,

which estimate the value of a state by running many trials starting from

that state and then average the total rewards received on those trials.

Stochastic approximation Most Reinforcement Learning algorithms can be

viewed as stochastic approximations of exact Dynamic Programming al-

gorithms, where instead of complete sweeps over the state space, only

selected states are backed up (which are sampled according to the un-

derlying probabilistic model). A rich theory of stochastic approximation (e.g

RobbinsMunro) can be brought to understand the theoretical convergence

of RL methods.

Learning rate determines to what extent the newly acquired information will

override the old information. A factor of 0 will make the agent not learn
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anything, while a factor of 1 would make the agent consider only the most

recent information.

2.1.2 Markov Decision Processes

A Markov Decision Process (MDP) [2, 5, 26, 28] is a probabilistic model of

a sequential decision problem, where states can be perceived exactly, and the

current state and action selected determine a probability distribution on future

states. Essentially, the outcome of applying an action to a state depends only

on the current action and state and not on preceding actions or states.

An MDP can be described as a 4-tuple (S,A,P,R), where:

• S = {s1, s2, . . . , sn} is the (finite) state space of the process. The state s is

a description of the status of the process at a given time.

• A = {a1, a2, . . . , am} is the (finite) action space of the process. The set of

actions are the possible choices an agent has at a particular time.

• P is a Markovian transition model, where P(s, a, s′) is the probability of

making a transition to state s′ when taking action a in state s. A Markovian

transition model, means that the probability of making a transition to state

s′ when taking action a in state s depends only on s and a and not on the

history of the process.

• R is the reward function (scalar real number) of the process. It is Markovian

as well and R(s, a) represents the immediate reward for taking action a in

state s at the current step.

An MDP is often augmented to include γ and D as (S,A,P,R, γ,D), where:

• γ ∈ (0, 1] is the discount factor. When γ = 1 a reward retains its full value

independently of when it is received. As γ becomes smaller, the impor-

tance of rewards in the future is diminished exponentially by γt.
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• D is the initial state distribution. It describes the probability that each state

in S will be the initial state. On some problems most states have a zero

probability, while few states (possibly only one) are candidates for being

an initial state.

The optimization objective in an MDP is to find a way of choosing actions

(policy) that yields themaximization (or minimization, depending on the problem)

of the expected total discounted reward, which is defined as:

π∗ = arg max
π∈Π(A)

Es∼D;at∼π;st∼P;rt∼R

( ∞∑
t=0

γtrt | s0 = s

)

2.1.3 Policies

A policy [2, 5, 26, 28] π is a mapping from states to actions. It defines the

response (which may be deterministic or stochastic) of an agent in the environ-

ment for any state and it is sufficient to completely determine its behavior. In that

sense, π(s) is the action chosen by the agent following policy π.

An optimal policy π∗ also known as an "undominated optimal policy" is a pol-

icy that yields the highest expected utility. That is, it maximizes the expected total

discounted reward under all conditions (over the entire state space). For every

MDP there is at least one such policy although it may not be unique (multiple

policies can be undominated; hence yielding equal expected total discounted

reward through different actions).

The state-action value functionQπ(s, a) for a policy π is defined over all pos-

sible combinations of states and actions and indicates the expected, discounted,

total reward when taking action a in state s and following policy π thereafter:

Qπ(s, a) = Eat∼π;st∼P;rt∼R

( ∞∑
t=0

γtrt | s0 = s, a0 = a

)
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2.2 Reinforcement Learning

Reinforcement Learning is learning in an environment by interaction [20, 26,

28, 30]. It is usually assumed that the agent knows nothing about how the envi-

ronment works (has no model of the underlying MDP) or what the results of its

actions are. Typically, the environment is stochastic, yielding different outcomes

for the same situation. In contrast to supervised learning there is no teacher to

provide examples of correct or bad behavior.

The goal of an agent in such a setting is to learn from the consequences of

its actions, in order to maximize the total reward over time. Rewards are in most

cases discounted, in the sense that a reward early in time is "more valuable"

than a reward later. This is done mainly in order to give an incentive to the agent

to move quickly towards a solution, rather than wasting time in areas of the state

space where there is no large negative reward.

Two related problems fall within Reinforcement Learning: Prediction and

Control. In prediction problems, the goal is to learn to predict the total reward for

a given policy, whereas in control the agent tries to maximize the total reward

by finding a good policy. These two problems are often seen together, when

a prediction algorithm evaluates a policy and a control algorithm subsequently

tries to improve it.

The learning setting is what characterizes the problem as a Reinforcement

Learning problem. Any method that can successfully reach a solution is consid-

ered as a Reinforcement Learning method. This means that very diverse algo-

rithms coming from different backgrounds can be used; and that is indeed the

case. Most of the approaches can be distinguished into Model-Based learning

and Model-Free learning. In Model-Based learning, the agent uses its experi-

ences in order to learn a model of the process and then find a good decision

policy through planning. Model-Free learning on the other hand tries to learn a
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policy directly without the help of a model. Both approaches have their strengths

and drawbacks (guarantee of convergence, speed of convergence, ability to

plan ahead, use of resources).

2.2.1 Q-Learning

Q-learning [12] is a model-free, off-policy, control algorithm that can be used

in an online or off-line setting. It uses samples of the form (s, a, r, s′) to esti-

mate the state-action value function of an optimal policy. The simple temporal

difference update equation for Q-learning is:

Q(s, a)← Q(s, a) + α(r + γ max
a′∈A

Q(s′, a′)−Q(s, a))

Essentially, it is an incremental version of dynamic programming techniques,

which imposes limited computational demands at every step, with the drawback

that it usually takes a large number of steps to converge. It learns an action-

value representation, allowing the agent using it to act optimally (under certain

conditions) in domains satisfying the Markov property.

Q-learning is an off-policy method; samples can be drawn from D in any ar-

bitrary manner, using any exploration policy. One common exploration policy is

the 1−ϵ stochastic policy, where the exploration rate ϵ gradually decreases over

time. Under certain conditions (infinitely many samples for each state-action pair

and appropriately decreasing learning rate), Q-learning is guaranteed to con-

verge to Q∗ with probability one. Once a good estimate of Q∗ has been learned,

a good policy (the optimal policy, in the limit) can be retrieved as the greedy

policy over the learned state-action value function, an operation that needs no

model information. Figure 2.1 shows the Q-learning algorithm.

Q-learning at its simplest uses tables to store data. As expected, tabular Q-

learning works only for small problems. For larger problems, it can be modified

to learn an approximate value function. In this case, it makes use of an approx-
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Q-Learning
Input: D, γ,Q0, α0, σ, π. Learns Q̂∗ from samples
// D: Source of samples (s, a, r, s′)
// γ: Discount factor
// Q0: Initial value function
// α0: Initial learning rate
// σ: Learning rate schedule
// π: Exploration policy
Q̃← Q0;α← α0; t← 0
for each (s, a, r, s′) in D do

Q̃(s, a)← Q̃(s, a) + α

(
r + γ maxa′∈A Q̃(s′, a′)− Q̃(s, a)

)
α← σ(α, α0, t)
t← t + 1

end for
return Q̃

Figure 2.1: The Q-Learning algorithm

imation architecture, which needs to be differentiable with respect to the free

parameters for a well-defined gradient. Unfortunately, Q-learning with approxi-

mation looses its convergence properties mostly due to the non-linearity of the

maximization operation in the update rule.

2.2.2 SARSA

SARSA (State-Action-Reward-State-Action) [3, 28] is amodel-free, on-policy

algorithm for learning policies in uknown Markov Decision Processes. It was in-

troduced in the technical note "OnlineQ-Learning using Connectionist Systems"

by Rummery & Niranjan (1994) where the alternative name SARSA was only

mentioned as a footnote.

This name simply reflects the fact that the main function for updating the Q-

value depends on the current state of the agent st, the action the agent chooses

αt ,the reward rt+1 the agent gets for choosing this action, the state st+1 that

the agent will now be in after taking that action, and finally the next action αt+1

13



the agent will choose in its new state. Taking every letter in the quintuple (st ,

αt , rt+1 , st+1 , αt+1) yields the word SARSA. The temporal difference update

equation for SARSA is:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

A SARSA agent interacts with the environment and updates its own pol-

icy based on actions taken, known as an on-policy learning algorithm. As ex-

pressed above, the Q value for a state-action is updated by an error, adjusted

by the learning rate α. Q values represent the expected reward received in the

next time step for taking action α in state s, plus the discounted future reward

received from the next state-action observation. SARSA was proposed as an

alternative to the existing temporal difference technique, Watkin's Q-learning,

which updates the policy based on the maximum reward of available actions.

The difference is that SARSA learns the Q values associated with taking the

policy it follows itself, while Watkin's Q-learning learns the Q values associated

with taking the exploitation policy while following an exploration/exploitation pol-

icy.

One of the key ideas in SARSA is that the policy that is being evaluated

is not stationary, but changes slowly from a highly exploratory policy towards

a greedy policy. As a result, SARSA tracks the value function of a policy that

is slowly improving because of its greediness. In a sense, SARSA implements

some sort of policy iteration, where policy evaluation and policy improvement

are interleaved. With an appropriately decreasing schedule for the learning rate

(i.e. 1− ϵ), an appropriate greediness schedule for the policy under evaluation,

and sufficiently many samples, the function Q̃π learned by SARSA converges to

the optimal value function Q∗. The optimal policy π∗ can then be easily retrieved

as the greedy policy over Q∗. Figure 2.2 shows the SARSA algorithm.

This tabular formulation of SARSA works only for small problems. For prob-
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SARSA
Initialize Q(s, a) arbitrarily
repeat {for each episode}
Initialize s
Choose a from s using policy derived from Q (e.g. ϵ-greedy)
repeat {for each step of episode}
Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q (e.g. ϵ-greedy)

Q(s, a)← Q(s, a) + α

(
r + γQ(s′, a′)−Q(s, a)

)
s← s′; α← a′;

until s is terminal
until last episode

Figure 2.2: The SARSA algorithm

lems with a large state space, it can be modified to learn an approximate value

function. The main requirement is that the approximation architecture is differ-

entiable with respect to the free parameters for a well-defined gradient. Let Q̂π

with parameters wπ be a good approximation to the state-action value function

Qπ of policy π. SARSA, in this case, learns a set of parameters w̃, so that the

learned approximate value function Q̂ (with parameters w̃) is close to Q̃π. Given

any sample (s, α, r, s′), the SARSA update equation for the parameters w̃ of the

architecture, in this case, is:

w̃(t+1) = w̃(t) + a
(
∇wQ̂

)(
r + γQ̂(s′, π(s′); w̃(t))− Q̂(s, a; w̃(t))

)
Using a linear architecture as the approximation architecture,

Q̂(s, a; w) =
k∑

i=1

ϕi(s, a)wi = ϕ(s, a)ᵀw,

the SARSA update equation becomes:

w̃(t+1) = w̃(t) + aϕ(s, a)
(
r + γϕ

(
s′, π(s′)

)ᵀ
w̃(t) − ϕ(s, a)ᵀw̃(t)

)
In this case, SARSA tries to approximate stochastically the least-squares fixed

point approximation of Qπ. However, because of the non-stationary nature of
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LSPI
Learns a policy from samples.
Input: samples D, basis ϕ, discount factor γ, error ϵ
Output: weights w of learned value function
Initialize w′ ← 0
repeat

w ← w′, A← 0, b← 0
for each (s, a, r, s′) in D do

a′ = argmaxa′′∈A w⊤ϕ(s′, a′′)

A← A+ ϕ(s, a)
(
ϕ(s, a)− γϕ(s′, a′)

)⊤
b← b + ϕ(s, a)r

end for
w′ ← A−1b

until (∥w − w′∥ < ϵ)

Figure 2.3: The LSPI algorithm

policy π, SARSA is not guaranteed to converge. In practice a well-tuned sched-

ule for the learning rate can help alleviate this problem.

2.2.3 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) [25] is a relatively new, model-free, ap-

proximate policy iteration algorithm for control. It is an off-line, off-policy, batch

training method that exhibits good sample efficiency and offers stability of ap-

proximation. LSPI has met great success in the last few years, applied in do-

mains with continuous or discrete states and discrete actions. LSPI iteratively

learns the weighted least-squares fixed-point approximation of the state-action

value function of a sequence of improving policies π, by solving the (k×k) linear

system

Awπ = b

where wπ are the weights of k linearly independent basis functions. Once all

weights have been calculated, each action-state pair is mapped to a Q value,
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as such:

Q(s, a) =
k∑

i=1

wiϕi(s, a)

and the greedy action choice in each state s is given by

π′(s) = argmax
a∈A

Q(s, a)

LSPI iterates over policies (in fact, weights) until there is no change.

We have to note here that no learning rate is needed in LSPI method in

contradiction to other methods, and the order of presentation of samples does

not affect in any way the learning proccess. Figure 2.3 summarizes the LSPI

algorithm.
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Chapter 3

Problem Statement

3.1 A few things about Glest

Figure 3.1: Glest game

Glest [17, 18] is a free 3D real-time strategy game (Figure 3.1), where you

control the armies of two different factions: Tech, which is mainly composed

of warriors and mechanical devices, and Magic, that consists of mages and

summoned creatures in the battlefield. Glest is not just a game, but also an

engine to create strategy games based on XML and a set of tools.
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3.1.1 TechTree

Though you can adapt the game to whatever you like, there are the following

default races in Glest:

Figure 3.2: Tech Faction

Tech Faction: Uses traditional human warriors and medieval mechanical de-

vices to fight. Strong in hand to hand combat, plays more like other strat-

egy games, but with a few twists. Ideal for new players to get used to the

game, but also deep and challenging for experienced players (Figure 3.2).

Magic faction: Targeted towards more advanced players. Most of their units

are morphed or summoned from others, and it lacks the hand-to-hand

combat strength of the Tech faction. However, it features more versatile

and powerful ranged attackers, which if used properly will match or even

exceed the power of their technician counterparts (Figure 3.3).
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Figure 3.3: Magic Faction

3.1.2 Engine

In Glest modifying everything is quite simple, thanks to the way it is con-

structed. Some of the main features of the game's engine follow.

XML definitions: Every single unit, building, upgrade, faction, resource, and all

their properties and commands are defined in XML files. Just by creating

or modifying the right folder structure and a bunch of XML files, the game

can be completely modded and entire new factions or tech trees can be

created.

G3D models: Glest uses its own 3D format for unit models and animations. A

plugin to export from 3DSMax is provided, but tools for Blender are also

available.

Map editor: A simple and easy to use map editor is also available to the public.
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3.1.3 Technology

The technology used in Glest bears inmind various aspects concerning gam-

ing flexibility and user friendliness. Technology used accomplishes portability,

platform independence, single and multiplayer mode, and high-quality enter-

tainment. A brief description of the technical part of the game follows:

Standard C++: All the code is standard C++ and has been written with porta-

bility in mind, so it can be compiled using either GCC or VS.NET.

OpenGL: Glest uses the cross platform OpenGL API to render 3D graphics. It

uses the fixed pipeline, so only version 1.3 of OpenGL and a few exten-

sions are required.

DirectSound/OpenAL: The game can play static and streaming sounds using

ogg and wav files.

Multiplayer: Online game is possible over LAN/Internet with up to 4 players

simultaneously.

A.I.: Human players can test their skills against challenging AI controlled op-

ponnents. Glest uses the A* pathfinding algorithm and other well known

AI techniques.

3.1.4 Modding and features

We should note here that Glest is a Free Software (cross-platform) game,

fully modifiable, and also supported by many Glest users. Glest's fans contribute

to the game, both aesthetically and technically. Many of them have offered tile-

sets1, maps, translations, tools (including the Blender exporter), and many extra

The Glest team has received a few awards, such as the Sony PlayStation ArtFutura (2004),
Mundos Digitales (2005), Ytanium Game of the Year (2004) and others.

1Tilesets are the collection of graphics that are used to display the Glest world
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features. We should not forget the map editor, the g3d viewer, the model ex-

porter for 3DSMax, sample units, tutorials, and other Glest tools that make such

contributions and Glest development possible.

Glest's structure and toolkits available offer extra useful features to the game

concerning:

• Modding

• Modelling (3DSMax, Blender)

• Reference (XML, Folders)

• Map making

• Scenario making (lua)2

• Mods/Maps for Glest

• Compile the source

• Glest Advanced Engine3

3.2 Glest Rules

Glest is a Free Software Real-Time Strategy Game that takes place in an en-

vironment that could be compared to that of the pre-renaissance Europe. Play-

ers build a "town center" type building, collect resources, and build war units. In

Glest, the two teams are humans and mages. Humans include workers, soldiers

and archers. The mages have a small variety of different wizards and witches,

as well as a big tree golem with extremely slow movement but great stamina.
2In newer Glest versions (3.2.0 beta and newer) lua scripting gives opens a new possibility of

scripted scenarios.
3Glest Advanced Engine (GAE) is an advanced mod involving the modification of the Glest

engine. At this time, tentative plans still exist to integrate GAE back into Glest once it has achieved
a portion of it's goals, has integrated all latest Glest features (such as lua scripting and all features
currently in Glest 3.2 beta) and has stabilized.
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Figure 3.4: Glest in action

There are also various types of buildings and constructions, some of them used

as weapons. In Glest someone can play as a warrior using the weapons and

fight, or play as a magician and use spells and magic forces.

A great feature in the game is that you can train your own units on each

other. Killing your own (cheap) units, can transform your simple warriors to elite

soldiers. Another great feature in the game is the way that some of the soldiers

can build other units, such as siege towers, or even better: late-medieval death-

robots. Magical side though is a bit tedious and relies a lot on energy to fight. This

is one of the reasons why the technologists' archers will win pretty much every

time. On the other hand, magicians' attacks are powerful and their buildings look

pretty nice.

What you have to do in short in Glest, is to make your own army, make

archers and weapons, learn new spells, group your people and battle your ad-

versaries. Despite the differences in the two factions, the final goal for both sides

is the same. In order to win, you have to extinct all enemy units. Finish the fight,

or die in shame!
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3.3 Facing the problem

Almost every Real Time Strategy game uses a standard or parametric way

of playing. This means that the AI of such games is usually not very intelligent,

and, if someone finds a certain way to beat this AI, playing the same way every

time would always lead to human player's victory. This does not sound very

challenging for a player, and becomes quite boring after a few games. So, the

problem we come up against is to develop a controller that could adapt to any

player's behaviour and improve gradually through a few games.

3.4 Related research in RTS games

Games always played a major role in the development of Artificial Intelli-

gence. But the sort of games that were usually picked up, were simple games,

mostly board games without hidden information or uncertain environments. But

what happenswith those games that are not fully observable or action explorable?

In the last few years, through the rapid development and evolution of RTS

games, many researchers got involved with that field too, trying to apply Ar-

tificial Intelligence in those games. As a matter of fact, what was tried first,

was the design of opponents who would be able to face any player dynami-

cally, using learning, not just another static strategy. Some researchers used

reinforcement learning, while others chose different AI techniques and machine

learning algorithms, in order to solve "the problem". Some of them adopted a

multi-agent approach to the problem, trying to make the various agents of their

player coordinate appropriately in order to achieve goals, while others had a

more abstract, but easier to handle approach, treating their own player as a

single agent. Guestrin, Koller, Gearhart, and Kanodia (2003) [10] applied rela-

tional Markov Decision Process models for specific RTS game cases, such as

three-on-three combats. Cheng and Thawonmas (2004) [13] proposed a case-
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based plan recognition approach for assisting RTS players, but only for low-level

management tasks. Spronck et al. (2004) [27] and Ponsen and Spronck (2004)

[21] implemented a reinforcement learning (RL) technique appropriate for video

games, called dynamic scripting. Though they got quite good learning perfor-

mance on the challenging task of winning, there was a severe disadvantage

in this approach. Dynamic scripting requires a considerably reduced state and

action space to be able to adapt sufficiently fast. Ponsen and Spronck (2004)

manually designed game tactics (stored in knowledge bases) by evolving high-

quality domain knowledge in the domain of RTS games with an offline evolution-

ary algorithm [22]. Although the approach was able to generate strategies with

surprisingly high fitness values, it needed many experimental games to test the

large number of possible full strategies [15].

Aha, Molineaux, and Ponsen (2005) [14] built on the work of Ponsen and

Spronck (2004) by using their evolved tactics and a case-based reasoning tech-

nique which decides which of those tactics are more appropriate in each case,

given the current state and opponent. This appoach's greatest benefit in compar-

ison to Dynamic Scripting is that it is able to cope well with different opponents,

even with random consecutive opponents [15, 22].

Marthi, Russell, and Latham (2005) [4] applied hierarchical reinforcement

learning in a limited RTS domain. This approach used reinforcement learning

augmented with prior knowledge about the high-level structure of behaviour,

constraining the possibilities of the learning agent and thus greatly reducing the

search space [15]. The action space consisted of partial programs, essentially

high-level preprogrammed behaviors with a number of choice points that were

learned using Q-learning [22].

Ponsen, Muñoz-Avila, Spronck and Aha (2006) [22] introduced the Evolu-

tionary State-based Tactics Generator (ESTG), which uses an evolutionary algo-

rithm to generate tactics automatically. The method in contrast to many previous
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methods focuses on the highly complex learning task of winning complete RTS

games and not only specific restrained scenarios. Experimental results showed

that ESTG improved dynamic scripting’s performance in a real-time strategy

game, concluding that high-quality domain knowledge can be automatically gen-

erated for strong adaptive game AI opponents. The greatest benefit is that ESTG

considerably reduces the time and effort needed to create adaptive AI agents.

Eric Kok, Frank Dignum, and Joost Westra (2008) [15] proposed a multi-

agent approach, in which each agent could autonomously reason on goals and

world belief, using Dynamic Scripting and Monte Carlo methods. To better cope

with opponents that switch strategies, implicit and explicit adaptation was tried

out. This kind of adaptive learning showed that incorporating opponent statistics

into the learning process of a Monte Carlo agent gives the best learning results,

as agents could learn quickly and consistently how to outperform the scripted

fixed and strategy-switching players.

Guestrin, Lagoudakis, and Parr [11] proposed coordinated reinforcement

learning for cooperative agents. In this approach, agents make co-ordinated

decisions and share information to achieve a principled learning strategy. This

method successfully incorporated the cooperative action selection mechanism

derived by Guestrin et al. [9] into the reinforcement learning framework to allow

for structured communication between agents, each of which has only partial

access to the state description. Three instances of Coordinated RL were pre-

sented: Q-learning, LSPI, and policy search. The initial empirical results demon-

strated that reinforcement learning methods could learn good policies using the

type of linear architecture required for cooperative action selection and that, us-

ing LSPI, could lead to reliably learned policies that were comparable to the best

policies achieved by other methods and close to the theoretical optimal achiev-

able in the test domains.

Finally, we should refer toMichael Chung, Michael Buro, and Jonathan Scha-
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effer (2005) [24] , who described a plan selection algorithm -MCPlan - which was

based on Monte Carlo sampling, simulations, and replanning. Applied to simple

CTF (capture the flag) scenarios MCPlan showed promising initial results.
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Chapter 4

Approaching the problem

In our approach, we tried to formulate our problem in such a way that would

not require keeping all the detailed information contained in our game. For this

reason we used an abstraction method, in order to describe states and actions of

the game.We did not consider states and actions at a primitive level. Instead, we

gathered states and actions and grouped them, in order to compand action and

state spaces, keeping only the important information for processing. We used

two well-known reinforcement learning methods, such as SARSA and LSPI, in

our approach, though we also experimented with Q-learning at the beginning.

Those initial Q-learning experiments lead us to certain conclusions, remapping

of the initial plan, and parameters' initial values for subsequent experimentation.

4.1 Basics

4.1.1 States description

Each state in our problem is described by the values of four variables1: kills,

units, resources, and timer.

Kills refers to the number of kills that the player has achieved.

Units is a variable that counts the units the player has produced.
1All four state variables are discrete.
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Resources refers to the resources the player has harvested.

Timer is a counter, counting game cycles (game time units).

We assumed that those four variables are enough to describe the whole state

without neglecting any important information. That was our state abstraction, as

information concerning the map environment or our position would need a lot of

space and it is something that has to do with the path-finding processes, which

are anyway included and companded in abstract actions.

There is not a definite upper bound for any of the variables' values, as each

bound value depends on the total duration of the game and the actions taken.

All variables are non-negative and the timer value loops at the value of 2400.

In any case, due to the large size of the state space tabular approaches are

inapplicable. Therefore, we have to rely on approximation techniques.

Figure 4.1: Magic vs Magic

4.1.2 Actions structure

Game actions are structured in several levels. The first level consists of many

really primitive low-level actions, such as modifications of basic variables that

describe low-level micro states. A simple example of this would be an action
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that checks whether a single worker is task-free or not and sends him to a spe-

cific location, if he is task free. In the second level of actions, grouped primitive

actions form a more abstract task or rule. There are thirteen different rules in our

game with the following names, discreptive of what each rule does: WorkerHar-

vest, RefreshHarvester, ScoutPatrol, ReturnBase, MassiveAttack, AddTasks,

ProduceResourceProducer, BuildOneFarm, Produce, Build, Upgrade, Expand,

Repair. The third and more abstract level of actions is more like a strategy-tactic

level, consisting of grouped second level actions-rules. The grouping has been

defined with respect to the timer of the game. Each second level action-rule is

associated with a certain time interval. Whether a certain rule will be picked up

and applied by the tactic, depends on the modulo of the timer of the game with

the rule's interval. If this modulo is zero, then the rule is selected and it is ap-

plied in the current time step. In other words, the rule time interval defines the

frequency of occurence for each rule. This check is performed for all thirteen

rules at each time step, therefore any number between 0 and 13 rules could be

executed at once. Due to the fixed rule time intervals the whole strategy eventu-

ally loops over time. The original AI agent of the game consists of such a tactic

with specific rule interval values.

Figure 4.2: Tech vs Tech
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All this lead us to form the three third-level actions-tactics we used. We

wanted a fair play to the original AI agent and for that reason we picked up a

similar logic in our strategies. We did not want to play at different speed (faster

or slower), as this would be in a way "unfair" to the original player. So our way

of playing, used three similar tactics. The first one was exactly the same as the

original. The second and the third were similar, but with the timer shifted by cer-

tain intervals (800 and 1600 timer units) on the modulo calculation. That means

that actions in the second and the third tactics were tried earlier (or much earlier)

than in the first tactic. Without knowing whether an action applied earlier in time

would do us good or bad, what we wanted as outcome of our experiments, was

to find out a specific strategy of mixing all three tactics, in a way that would give

us a better result compared to the original way of playing.

4.1.3 Reward function

In reinforcement learning we have to define a reward function. In Glest the

winner is the player with the highest score, therefore we decided that the reward

given at each discrete step of the game-interface cycle, should be derived from

the way the game score evolves. So what we did was to take the score calcu-

lation function and adopt it to deliver as reward the increase in score from one

step to the next. In particular, the reward for the transition to a new state from

an old state is given by2:

reward = d(kills) + d(units) + d(resources)

2The weights used in the calculation of the reward are exactly those used by Glest to calculate
the score.
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Where:

d(kills) =
[
(kills

(our)
<newstate> − kills

(our)
<oldstate>)

−(kills
(enemy)
<newstate> − kills

(enemy)
<oldstate>)

]
× 100

d(units) =
[
(units_produced

(our)
<newstate> − units_produced

(our)
<oldstate>)

−(units_produced
(enemy)
<newstate> − units_produced

(enemy)
<oldstate>)

]
× 50

d(resources) =
[
(resources

(our)
<newstate> − resources

(our)
<oldstate>)

−(resources
(enemy)
<newstate> − resources

(enemy)
<oldstate>)

]
÷ 10

4.2 Learning

The main learning procedure consists of the adaptation of the SARSA and

LSPI algorithms to our problem formulation, and the use of those two methods

on our design. We need to say here, that the opponent was fixed to the original

high-level tactic in all experiments.

4.2.1 Basis Functions

In both methods of reinforcement learning we finally applied (SARSA and

LSPI) we had to find an appropriate set of basis functions to use. At first we

tried 15 basis functions consisting of the constant term (1), the four simple state

variable terms, the six cross terms, and the four square powers of the simple

state variable terms, but finally we ended up using only 11 basis functions, leav-

ing out the squared terms as this proved to work much better for our case. We

must note here that we normalized the values of all basis functions to [0,1] to

eliminate magnitude differences. We did that by using the proper normalizer3

in each case (finding the maximum values of each simple term and their cross

terms in a proportionate round of dummy-sampling experiments).
3Each one of the max values in the following equations stands for the proper normalizer in

each case
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Therefore, the final set of basis functions was the following:

bf1 = 1

bf2 = resources/max resources

bf3 = units/maxunits

bf4 = kills/max kills

bf5 = timer/max timer

bf6 =
resources× units

max resources×maxunits

bf7 =
units× kills

maxunits×max kills

bf8 =
kills× timer

max kills×max timer

bf9 =
timer × units

max timer ×maxunits

bf10 =
resources× timer

max resources×max timer

bf11 =
resources× kills

max resources×max kills

This block of 11 state-dependent basis functions was repeated separately

for each of the 3 actions. Therefore, the total number of weights in our approxi-

mation was 33, however only one block of 11 basis functions was active at any

time, the one corresponding to the current action.

4.2.2 SARSA

SARSA is an online policy algorithm. That means that the policy is updated

from game to game, and therefore learning takes place while the game is being

played.

What we did in our algorithm while applying SARSA, step by step was:
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Figure 4.3: Advanced Magic

• Formulation of tactics (timer dependent)

• Selection of tactic (randomly picked or by Q-value maximization criterion

for state)

• Application of the selected tactic.

• Calculation of reward(score differences).

• Application of the SARSA update rule.

These steps were repeatedly applied in each game cycle till the end of the

game.

We must also note here that in terms of exploration and exploitation we used

a sigmoid function for exploration discounting while exploitation rose. Here, fol-

lows the expression of the sigmoid function we used to determine the criterion

(ϵ), according to which we pick up the best (most highly valued) tactic of the

three (if random generator gives us a number smaller than 1− epsilon) or just a

tactic in random (otherwise):

ϵ =
1

1 + e
δ×(gNo−tNg)

2

,

where δ = 0.1, gNo is the game number, and tNg is the total number of games.
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4.2.3 LSPI

LSPI on the other hand is an off-line policy algorithm. That means that we

used a collection of samples (both randomly and from SARSA's collection) we

got from a few games that we played before using LSPI to extract the learned

policy. We used the Phoenix framework and Jason Pazis' work [19] in order

to develop the system we needed by writing the proper environment, domain,

experiment and approximator classes for Glest.

Figure 4.4: Tech in Duel scenario

What we did in LSPI was to take the sample set we mentioned before and

begin iterating in an attempt to converge to a good policy. Epsilon's (conver-

gence criterion) value was set to 10−6, while the limit of iterations was set to 30

in order to ensure convergence, though it turned out that this was not needed

as LSPI usually converged in 5 or 6 iterations.
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Chapter 5

Implementation

5.1 Speaking Glest's language

The Glest game is mainly written in C++. This is the main reason why we

also implemented most of our work in C++. Besides, we needed a language

quite compact, object-oriented, and surely a language that would allow us to

manage memory as best as possible. Writing our code in C++ would satisfy

these requirements and would also allow us to incorporate our work into the

Glest's system.

It took us quite a long time to study and understand Glest's source code and

we had to modify many files and classes in order to achieve what we wanted.

But, it was worth it. Besides, learning how to "speak" the "language" of Glest,

the whole procedure made us love it even more!

Finally, we must say that we wrote many tools and scripts concerning exter-

nal work in python and shell script, taking advantage of each language at what

is best.

5.2 Implementation Technology

For Glest compilation we used Glest tools and mainly jam (which makes use

of g++). We also used the netbeans IDE for the development of source code
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and gdb for the debbuging process. The operating system we used was Linux

(Slackware at the initial phase of the project and Ubuntu during the last few

months), though it could have even been Windows, as everything concerning

Glest is cross-platform (from dependency-libraries to Glest tools). As for plots,

we used gnuplot and pygnuplot through clever python and shell scripting. For the

LSPI part, we also used the Phoenix framework as we have already mentioned

and the whole "Glest experiment" took place on a 2.26Ghz dual core processor

- 4GB memory laptop, almost totally dedicated to science, at least for the last

few months.

Of course, it goes without saying that great care and work has been put

into our project, giving high priority to performance, memory management and

compact, nicely-indented source code.

5.3 Interventions in the Structure of Glest

Glest's code is structured in various levels (directories) which correspond to

different functionalities of the whole game. The AI level for example is concerned

with the AI functions of the game, while the menu level is related to option trees,

and the sound level describes the sound container and renderer. Levels consist

of classes (in different files), each one implementing an individual part of the

level. Client and Server Interface classes for example, implement the respective

interface parts of the network level.

The main modifications that we performed in Glest's structure were mostly

related to the AI level. In the ai class, a member function was added in order to

be able to play policy testing games when needed, as well as an extra module

for the human interface's behaviour update. In the ai interface class, we also

added an additional class function which decides whether to call our ai update

or play a policy testing game, depending on the value of a specific AI interface
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class variable.

Some additional modifications were made in the Game class of the Game

level in order to avoid message boxes and increase the speed at which the game

plays. A few more changes were also made in the update controller of the Game

class, so that the human interface plays according to our ai update module.

Bypassing of menus, scenarios selections and game iterations were all au-

tomated by modifying the main menu class's constructor in the menu level.

Modifications were also made in the afforementioned classes' constructors

for weights', states', and parameters' initialisations. Changes in those classes'

destructors were made in order to store data values needed for subsequent

games, and destroy redundant data structures after the end of each game.
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Chapter 6

Results

6.1 Experimental Methodology

The reinforcement algorithms we chose were both applied in two scenarios

(Duel and Tough Duel), in order to see how they behave in different environ-

ments and levels of game difficulty. Both for SARSA and LSPI we played test

games after every 10 learning games, assuming that progress of learning would

be notifiable after such a number of games.

Figure 6.1: Magic vs Tech

The final learned policy in each case was a mixture of the three tactics. The

percentage of time each tactic was used in a full game changed from game to

game during learning, till convergence to a certain mixed-strategy was achieved.
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In order to calculate the performance in each game, we initially calculated the

difference between our score and the enemy's score on the first game where

only the first-default tactic was used by our player. Then we found the difference

between our score and enemy score on the current game where the current

learned policy was used by our agent. The final performance was calculated

by substracting the two score differences and dividing with the first score dif-

ference to get the percentage of performance increase. Finally, we must also

mention here that the values of the various parameters, such as the discount

factor (0.999), the number of learning games (200), the delta (0.1), the learning

rate (0.1), were determined by taking into account typical values of these pa-

rameters in other kinds of reinforcement learning problems, as well as empirical

information.

6.2 Performance Evaluation

In this chapter, we show the results of the SARSA and LSPI algorithms ap-

plied on the Glest problem. We compare the two algorithms' performance, in

terms of relative improvement (negative improvement values when difference

declines). We also show the percentage of each tactic's contribution to a full

game, i.e. to the final performance of our algorithms in each game.

We check results for two different scenaria: Duel and Tough Duel - different

environments and difficulty levels. We have to note, that in the second scenario

the basic tactics of our player are not changed. However, the opponent's way

of playing is not the same as in the previous scenario. As a matter of fact, the

opponent player is cheating in this level of difficulty (hard and Cpu-Ultra con-

trol), the hardest level on a one-on-one Glest scenario. Harvesters gathering

resources much faster, units having greater stamina, and unit producing being

much "cheaper" than usual are only some of the new "features" in our enemy's
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behaviour. But our intension in this project was not to prove that we always win

no matter what goes on, just by applying our method. Our point was to show

that applying our method on Glest could always lead to a better strategy for our

player than the initial hand-coded AI strategy.

6.3 Duel scenario

Duel is a medium difficulty level scenario and the simplest of the two cases

we studied. In Figures 6.2, 6.3, and 6.4 we can see the scores achieved using

SARSA and LSPI in the 20 test games played. Recall that each policy (testing)

game is played after every 10 games of learning.

Figure 6.2: SARSA: policy scores on the Duel scenario.

For LSPI algorithm we have results for two kinds of experiments. One case

where we used the same games' samples that were extracted and used in

SARSA and one with the games' samples were extracted using a totally ran-

41



dom tactic selection at each game cycle.
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Figure 6.3: LSPI: policy scores on the Duel scenario (SARSA's game samples).

Figure 6.4: LSPI: policy scores on the Duel scenario (random game samples).
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In Figures 6.5, 6.6, and 6.7 we see the improvement or decline of relative

performance with respect to the default Glest tactic.

Figure 6.5: SARSA: improvement on the Duel scenario.
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Figure 6.6: LSPI: improvement on the Duel scenario (SARSA's game samples).

Figure 6.7: LSPI: improvement on the Duel scenario (random game samples).
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Finally, for the Duel scenario Figures 6.8, 6.9, and 6.10 show for each test

game, the percentage of each tactic's contribution to action choices throughout

a full test game.

Figure 6.8: SARSA: tactics' contribution to a game, on the Duel scenario.
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Figure 6.9: LSPI (SARSA's game samples): tactics' contribution to a game, on
the Duel scenario.

Figure 6.10: LSPI (random game samples): tactics' contribution to a game, on
the Duel scenario.
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6.4 Tough Duel scenario

Tough Duel is a high difficulty level scenario. As a matter of fact Tough Duel's

difficulty level is the hardest of all, on a one-on-one player Glest game. In this

subsection, we show the results we got from ToughDuel's scenario experiments.

As we have already said, it is totally natural to loose all games we played in

this scenario, as the opponent cheated and we were not. We played fairly, with

exactly the same basic tactics used in Duel scenario (even though a different

combination of them was learned).

In Figures 6.11, 6.12 and 6.13 we can see the scores achieved using SARSA

and LSPI in the 20 test games played. Recall that each test game is played after

every 10 games of learning.

Figure 6.11: SARSA: policy scores on the Tough Duel scenario.
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Figure 6.12: LSPI: policy scores on the Tough Duel scenario (SARSA's game
samples).

Figure 6.13: LSPI: policy scores on the Tough Duel scenario (random game
samples).
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In Figures 6.14, 6.15 and 6.16, we can see, as before (but for Tough Duel

scenario this time), the improvement or decline of the relative performance over

the default Glest tactic.

Figure 6.14: SARSA: improvement on the Tough Duel scenario.
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Figure 6.15: LSPI: improvement on the Tough Duel scenario (SARSA's game
samples).

Figure 6.16: LSPI: improvement on the Tough Duel scenario (random game
samples).
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Finally for Tough Duel scenario, Figures 6.17, 6.18, and 6.19) show for each

policy game, the percentage of each tactic's contribution, to action choices through-

out a full test game.

Figure 6.17: SARSA: tactics' contribution to a game on the Tough Duel scenario.
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Figure 6.18: LSPI (SARSA's game samples): tactics' contribution to a game, on
the Tough Duel scenario.

Figure 6.19: LSPI (random game samples): tactics' contribution to a game, on
the Tough Duel scenario.

53



6.5 Discussion

It is easily seen from the results, that in all cases (both SARSA and LSPI

algorithms) there were a few test games, where the behaviour of the learning

player was improved significantly. That could possibly be a first indication that

reinforcement learning is applicable to RTS games too, and even in an abstract-

macroscopic way of approaching the problem.

As we see in the Duel scenario's results, the peak performance of SARSA

(129.49%), is a little better than LSPI's when using random samples (122.77%).

We also see that both SARSA's and LSPI's (with random samples) peak is

achieved after 20 learning games (or at the 2nd test game).

LSPI with SARSA's samples, on the other hand, achieves its best score im-

provement (85.60%) after 150 learning games (or at the 15th test game). Its

first positive score improvement is achieved after 20 learning games (2nd test

game), whereas SARSA's and LSPI's with random samples first positive score

improvement is achieved after 10 learning games (1st test game).

In the Tough Duel scenario's results, we see that SARSA's best score im-

provement (22.30%), is much better than LSPI's with random samples (1.91%).

The peak performance of LSPI with random samples though, is achieved a little

sooner (after 40 learning games, i.e. at the 4th test game) than SARSA's (after

50 learning games, i.e. at the 5th test game).

Finally, we see that LSPI with SARSA's samples is better than both SARSA

and LSPI with random samples. Its best score improvement is 35.71% achieved

after 160 learning games (16th test game) and its first positive score improve-

ment is achieved after 10 learning games (1st test game), whereas SARSA's

first positive score improvement is achieved after 30 learning games (3rd test

game) and LSPI's with random samples after 40 learning games (4th test game).

Unfortunately, we did not observe convergence to a stable good policy over
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an increasing number of learning games. This phenomenon could be due to the

fact that a lot of state information (geographic deployment, opponent status) is

hidden and therefore the Markovian assumption might be violated.

55



Chapter 7

Conclusions

7.1 Unrolling results' secrets

Experimental results always show things about the nature of a problem.

Sometimes they come to assure a theoritical hypothesis, whereas other times

they give us indications about various things we should improve in our theoritical

model. Sometimes they help us understand whether a theoritical model or algo-

rithm is applicaple to a specific problem or not. In our experiments the results

we got, almost proved what we expected.

From what we saw in the Duel scenario, SARSA achieves the best improve-

ment of all three methods used. LSPI's peak performance, when using random

samples, is quite close to SARSA's though. Both SARSA and LSPI using ran-

dom samples reach their peak a lot sooner than LSPI with SARSA samples in

this scenario. In the Tough Duel scenario, we saw that LPSI with SARSA's sam-

ples has a much better behaviour (in terms of performance) than the other two

methods. All these could possibly mean that LSPI with the apropriate samples

could give us generally good results for Glest in all cases.

In both scenarios' results, we also saw that mixed tactics which make use of

all three tactics during a game can get us higher scores than the default or any

other tactic alone. This is a general rule in RTS games. Finding a good balance

among different tactics is almost always the key to victory.
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In our project we have proved that reinforcement learning is applicable to

RTS games without having to approach the problem in a microscopic way. So,

we have fulfilled our first target and that is a reward in RL terms for us to continue

in that direction, till the next subgoal.

7.2 Future work

This project was just one small step towards the study of reinforcement learn-

ing in RTS games. There is a lot to be done in the future, such as the use of other

RL algorithms for learning or the use of other basis functions (such as RBFs or

Tile Coding) in both SARSA and LSPI. We can also carry out similar experiments

but with various tactics, totally different in reasoning from the ones we tried. For

example, tactics which have been formed by choosing rule time intervals in a

random way, might be quite interesting to use.

Further study of supervised learning1 or use of reinforcement learning meth-

ods for dynamic adaptation to opponent's behaviour could also be our next chal-

lenging field to explore. Another good idea for further research, as online (or

multiplayer) gaming is a great feature provided by most RTS games (Glest in-

cluded), might be reinforcement learning with samples collected from different

opponents through the network or online adaptation to network opponents using

reinforcement learning methods.

1A great feature we have added in system's functionality is the capability given to users to
intervene and manually select actions while a reinforcement learning method is used, in order to
improve system behaviour or exploration further.
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