
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Narukom

A Distributed, Cross-Platform, Transparent

Communication Framework for Robotic Teams

Evangelos E. Vazaios

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Vasilios Samoladas (ECE)

Assistant Professor Nikolaos Vlassis (DPEM)

Chania, February 2010

http://www.tuc.gr
http://www.ece.tuc.gr

Evangelos E. Vazaios 2 February 2010

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Narukom

΄Ενα Κατανεμημένο, Διαλειτουργικό, Διάφανο

Πλαίσιο Επικοινωνίας για Ρομποτικές Ομάδες

Ευάγγελος Ε. Βαζαίος

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Βασίλειος Σαμολαδάς (ΗΜΜΥ)

Επίκουρος Καθηγητής Νικόλαος Βλάσσης (ΜΠΔ)

Χανιά, Φεβρουάριος 2010

http://www.tuc.gr
http://www.ece.tuc.gr

Evangelos E. Vazaios 4 February 2010

Abstract

Teams participating in a game require means of interaction among their members

in order to coordinate their efforts and achieve a common goal. For human teams

this is a natural skill and comes without much effort, however for robotic teams

communication is not trivial. This thesis describes a distributed communication

framework for robotic teams developed for the Standard Platform League (SPL)

of RoboCup, the annual international robotic soccer competition. During a game,

robot players need to share perceptual, strategic, and other team-related infor-

mation with their team-mates typically over the wireless network. Maintaining a

synchronized copy of each robot’s data on each node of the network is both inef-

ficient and unrealistic for real-time systems. Our proposal suggests a distributed

and transparent communication framework, called Narukom, whereby any node

(robot or remote computer) can access on demand any data available on some

other node of the network in a natural way. The framework is based on the

publish/subscribe paradigm and provides maximal decoupling not only between

nodes, but also between threads on the same node. The data shared between the

nodes of the team are stored on local blackboards which are transparently ac-

cessible from all nodes. To address synchronization needs, which are common in

robotic teams, we have integrated temporal information into the meta-data of the

underlying messages exchanged over the network. Narukom’s distributed nature

and platform independence make it an ideal base for the development of coor-

dination strategies and for distribution of resource-intensive computations over

different nodes. Narukom has been created for and has been successfully used

by our RoboCup team, Kouretes, for exchanging data between the Nao robots

of the team, however it can be used in any distributed network application with

similar communication needs.

Evangelos E. Vazaios ii February 2010

Περίληψη

Κάθε ομάδα που συμμετέχει σε ένα παιχνίδι χρειάζεται κάποιο τρόπο επικοινωνίας

μεταξύ των μελών της προκειμένου αυτά να συντονίσουν τις προσπάθειές τους και να

πετύχουν τον κοινό στόχο τους. Για ανθρώπινες ομάδες, η επικοινωνία είναι τελείως

φυσική διαδικασία και αναπτύσσεται χωρίς ιδιαίτερο κόπο, ωστόσο για ρομποτικές

ομάδες είναι ένα μη τετριμμένο θέμα. Η παρούσα διπλωματική εργασία περιγράφει

ένα κατανεμημένο πλαίσιο επικοινωνίας για ρομποτικές ομάδες που αναπτύχθηκε

για το πρωτάθλημα Standard Platform League του RoboCup, του ετήσιου δια-

γωνισμού ρομποτικού ποδοσφαίρου. Κατά τη διάρκεια ενός αγώνα, οι ρομποτικοί

παίκτες χρειάζονται να μοιράζονται πληροφορίες που σχετίζονται με την αντίληψή

τους, τη στρατηγική τους, ή άλλα στοιχεία της ομάδας με τους συμπαίκτες τους,

κατά κανόνα μέσω του ασύρματου δικτύου. Η διατήρηση ενός πάντα ενημερωμένου

αντιγράφου των δεδομένων του κάθε ρομπότ σε κάθε έναν από τους υπόλοιπους

κόμβους του δικτύου είναι αναποτελεσματική και μη ρεαλιστική προσέγγιση, ειδικά

για τέτοια συστήματα πραγματικού χρόνου. Η πρότασή μας συνιστά ένα εύχρηστο,

κατανεμημένο και διάφανο πλαίσιο επικοινωνίας, με την επωνυμία Narukom, μέσω

του οποίου κάθε κόμβος του δικτύου (ρομπότ ή απομακρυσμένος υπολογιστής) έχει

τη δυνατότητα να προσπελάσει όλα τα διαθέσιμα δεδομένα σε κάποιον άλλο κόμβο

του δικτύου με απλό και φυσικό τρόπο. Το πλαίσιο βασίζεται στο μοντέλο pub-

lish/subscribe, το οποίο προσφέρει τη μεγαλύτερη δυνατή ανεξαρτησία μεταξύ των

κόμβων του δικτύου, αλλά και μεταξύ των νημάτων που τρέχουν σε κάθε κόμβο. Τα

δεδομένα που μοιράζονται μεταξύ τους οι κόμβοι αποθηκεύονται σε τοπικές δομές

(blackboards) που είναι διάφανα προσβάσιμες από τους υπόλοιπους κόμβους. Ε-

πιπλέον, για να αντιμετωπισθεί η ανάγκη συγχρονισμού των δεδομένων, που είναι

συνήθης σε ρομποτικές ομάδες, προθέσαμε χρονική πληροφορία στα μετα-δεδομένα

των μηνυμάτων που διακινούνται στο δίκτυο. Η κατανεμημένη αρχιτεκτονική του

Narukom και η ανεξαρτησία του ως προς την πλατφόρμα εκτέλεσης το καθιστούν

ιδανική βάση για την ανάπτυξη περίπλοκων στρατηγικών συντονισμού και για την

κατανομή απαιτητικών υπολογισμών σε διαφορετικούς κόμβους. Το Narukom δη-

μιουργήθηκε και χρησιμοποιήθηκε με επιτυχία για την ανταλλαγή δεδομένων μεταξύ

των ρομπότ Nao της ομάδας Κουρήτες του Πολυτεχνείου Κρήτης, ωστόσο μπορεί

να χρησιμοποιηθεί και σε άλλες κατανεμημένες εφαρμογές με παρόμοιες ανάγκες

επικοινωνίας.

Evangelos E. Vazaios iv February 2010

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 RoboCup Competition . 5

2.1.1 The Standard Platform League 6

2.1.2 Simulation League . 7

2.1.3 Small Size League . 8

2.1.4 Middle Size League . 8

2.1.5 Humanoid League . 9

2.2 Team Kouretes . 10

2.3 The Aldebaran Nao Robot . 11

2.3.1 Sensors and Actuators . 12

2.3.2 NaoQi . 13

2.4 Communication Technology . 13

2.4.1 UDP . 13

2.4.2 The Publish/Subscribe Paradigm 14

2.4.3 Google Protocol Buffers 14

2.4.4 Blackboard . 15

2.4.5 Monitor . 16

2.4.6 Boost C++ Libraries . 16

3 Commmunication 19

3.1 Need for Communication . 19

3.2 Communication in a team . 19

Evangelos E. Vazaios v February 2010

CONTENTS

3.3 Communication across robots . 20

3.4 Communication in Robocup . 20

4 Narukom 23

4.1 Name . 23

4.2 Concept . 23

4.3 Architecture . 24

4.4 Data Serialization . 25

4.5 Data Synchronization . 27

4.6 Communication within and across nodes 28

4.7 Communication Channels . 28

5 From Theory To Practice 31

5.1 Understanding the basics . 31

5.1.1 Messages . 31

5.1.2 MessageBuffer . 32

5.2 Publish/Subscribe system . 32

5.2.1 Message Queue . 34

5.3 Blackboard and Synchronization 34

5.4 Catalog Module . 35

5.5 Network Communication . 37

5.5.1 Network Channel . 38

5.5.2 UDP Multicast Channel 38

6 Results 41

6.1 Validation . 41

6.2 Synchronization . 42

6.3 User Friendliness . 44

7 Related Work 45

7.1 Shared Memory . 45

7.2 Blackboard/Shared World Model 46

7.3 Message queue and Streams . 46

7.4 Publisher/Subscribe . 47

7.5 Discussion . 47

Evangelos E. Vazaios vi February 2010

CONTENTS

8 Future Work 49

8.1 Alternative Channels . 49

8.2 Narukom outside RoboCup . 49

8.3 Optimization and Debugging . 50

9 Conclusion 51

9.1 Out To The Real World . 51

References 54

Evangelos E. Vazaios vii February 2010

CONTENTS

Evangelos E. Vazaios viii February 2010

List of Figures

2.1 Standard Platform League at RoboCup 2009 in Graz, Austria. . . 6

2.2 3D Simulation League. 7

2.3 Small Size League at Robocup 2009 in Graz, Austria. 8

2.4 Middle Size League game at RoboCup German Open 2009. 9

2.5 Humanoid League at Robocup 2009 in Graz, Austria. 10

2.6 Kouretes at RoboCup 2009. From left to right in the front row are

Eleftherios Chatzilaris (SPL), Evangelos Vazaios (SPL), Alexandros

Paraschos (SPL), and in the back row Professor Michail G. Lagoudakis

(Kouretes Team Leader), Walid Soulakis (Webots Simulation), Profes-

sor Nikos Vlassis (Kouretes Team Leader), and Jason Pazis (SPL). . . 11

2.7 Nao’s field of view. 12

4.1 Narukom’s architecture. 25

5.1 Narukom’s publish/subscribe implementation. 33

6.1 Pinger (back), Ponger (middle), Scorekeeper (front) on three dif-

ferent machines. 42

6.2 Data Synchronization . 43

Evangelos E. Vazaios ix February 2010

LIST OF FIGURES

Evangelos E. Vazaios x February 2010

Chapter 1

Introduction

Communication is a much needed skill, which is met everywhere around us from

a human cell and micro-organisms to vastly advanced animals and humans. Even

the nature reinvents itself, if a communication channel is broken down. Humans,

since the advent of their history, form all kinds of groups striving to achieve a

common goal. Especially, in our time and age, they form teams participating in

games, where success can only be achieved through collaborative and coordinated

efforts. Teams lacking means of communication are doomed to act simply as

a collection of individuals with no added benefit, other than the multiplicity of

individual skills. For human teams, communication is second nature; it is used not

only for teamwork in games, but also in all aspects of life, and takes a multitude

of different forms (oral, written, gestural, visual, auditory). Robots can hardly

replicate all human communication means, since these would require extremely

accurate and robust perceptual and action abilities on each robot. Fortunately,

most modern robots are capable of communicating over data networks, an ability

which is not available to their human counterparts. However, exploiting such

networking means for team communication purposes in an efficient manner that

does not drain the underlying resources and provides transparent exchange of

information in real time is a rather challenging problem.

Evangelos E. Vazaios 1 February 2010

1. INTRODUCTION

1.1 Thesis Contribution

This thesis describes a distributed communication framework for robotic teams,

which was originally developed for the Standard Platform League (SPL) of the

RoboCup (robotic soccer) competition, but can easily serve any other domain

with similar communication needs. During a RoboCup game, robot players occa-

sionally need to share perceptual, strategic, and other team-related information

with their team-mates in order to coordinate their efforts. In addition, during

development and debugging, human researchers need to be in direct contact with

their robots for monitoring and modification purposes. Typically, these kinds of

communication take place over a wireless network. The naive solution of main-

taining a synchronized copy of each robot’s data on each node on the network is

both inefficient and unrealistic for such real-time systems.

Our proposal suggests a distributed and transparent communication frame-

work, called Narukom, whereby any node of the network (robot or remote com-

puter) can access on demand any data available on some other node in a natu-

ral and straightforward way. The framework is based on the publish/subscribe

paradigm and provides maximal decoupling not only between nodes, but also be-

tween threads running on the same node. As a result, Narukom offers a uniform

communication mechanism between different threads of execution on the same

or on different machines. The data shared between the nodes of the team are

stored on local blackboards which are transparently accessible from all nodes.

In real-time systems, such as robotic teams, data come in streams and are be-

ing refreshed regularly, therefore it is important to communicate the latest data

or data with a particular time stamp among the robots. To address such syn-

chronization needs, we have integrated temporal information into the meta-data

of the underlying messages exchanged over the network. Narukom’s distributed

nature and platform independence make it an ideal base for the development

of complex team strategies that require tight coordination, but also for the dis-

tribution of resource-intensive computations, such as learning experiments, over

several (robot and non-robot) nodes.

Evangelos E. Vazaios 2 February 2010

1.2 Thesis Outline

1.2 Thesis Outline

Chapter 2 provides some background information on the RoboCup Competition

and the underlying technologies used to develop Narukom. In Chapter 3 we state

the problem we study and we demonstrate some important aspects of the problem

of communication across robots. Continuing to Chapter 4, the core ideas and an

outline of the architecture of our proposal are discussed. Moving on to Chapter 5,

a thorough discussion about optimization, implementation design and decisions

taken during the development of Narukom is provided. In Chapter 6 we discuss

our results after conducting several experiments in order to evaluate our work.

The following Chapter 7 presents similar systems developed by other RoboCup

teams, including a brief comparison between those systems and ours. Future work

and proposals on extending and improving our framework are the subject of the

Chapter 8. The last Chapter 9 serves as an epilogue to this thesis, including a

small overview of the system and some long terms plans about Narukom.

Evangelos E. Vazaios 3 February 2010

1. INTRODUCTION

Evangelos E. Vazaios 4 February 2010

Chapter 2

Background

2.1 RoboCup Competition

The RoboCup Competition, in its short history, has grown to a well-established

annual event bringing together the best robotics researchers from all over the

world. The initial conception by Hiroaki Kitano (1) in 1993 led to the formation

of the RoboCup Federation with a bold vision: “By the year 2050, to develop a

team of fully autonomous humanoid robots that can win against the human world

soccer champions”. The uniqueness of RoboCup stems from the real-world chal-

lenge it poses, whereby the core problems of robotics (perception, cognition, ac-

tion, coordination) must be addressed simultaneously under real-time constraints.

The proposed solutions are tested on a common benchmark environment through

soccer games in various leagues, with the goal of promoting the best approaches

and ultimately advancing the state-of-the-art in the area.

The RoboCup Soccer event is the flagship competition with the most fans. In

this domain, researchers exploit their technical knowledge in order to prepare the

best robotic soccer team among all participants. Beyond soccer, RoboCup now

includes also competitions in search-and-rescue missions (RoboRescue), home-

keeping tasks (RoboCup@Home), robotic performances (RoboDance), and sim-

plified soccer leagues for K-12 students (RoboCup Junior). Broadening the re-

search areas where RoboCup focuses was a very interesting and clever addition,

which enables more scientists and researchers to combine their expertise in order

to solve real-world problems. A lot of progress has been made so far in many

Evangelos E. Vazaios 5 February 2010

2. BACKGROUND

disciplines of robotics and RoboCup has been established as one of the most

important events around the world.

2.1.1 The Standard Platform League

The Standard Platform League (SPL) of the RoboCup competition is the most

popular league, featuring three humanoid Aldebaran Nao robot players in each

team (Figure 2.1). This league was formerly known as the Four-Legged League

with Sony Aibo robots, which were replaced in 2008 by Aldebaran Nao robots.

Games take place in a 4m × 6m field marked with thick white lines on a green

carpet. The two colored goals (sky-blue and yellow) also serve as landmarks for

localizing the robots in the field. Each game consists of two 10-minute halves

and teams switch colors and sides at halftime. There are several rules enforced

by human referees during the game. For example, a player is punished with a

30-seconds removal from the field if he performs an illegal action, such as pushing

an opponent for more than three seconds, grabbing the ball between his legs for

more than three seconds, or entering his own goal area as a defender.

Figure 2.1: Standard Platform League at RoboCup 2009 in Graz, Austria.

The main characteristic of the Standard Platform League is that no hardware

changes are allowed; all teams use the exact same robotic platform and differ only

in terms of their software. This convention leads to the league’s enrichment with

a unique set of features: autonomous player operation, vision-based perception,

Evangelos E. Vazaios 6 February 2010

2.1 RoboCup Competition

legged locomotion and action. Given that the underlying robotic hardware is

common for all competing teams, research effort has focused on the development

of more efficient algorithms and techniques for visual perception, active localiza-

tion, omni-directional motion, skill learning, and coordination strategies. During

the course of the years, one could easily notice a clear progress in all research

directions.

2.1.2 Simulation League

Every year there is a number of simulation games taking place in RoboCup com-

petitions. These include 2D soccer games, where teams consist of 11 agents

providing the developers with a perfect multi-agent environment to tune and

benchmark their solutions. They also include 3D simulation games (Figure 2.2),

where the usage of physics engines demands more realistic approaches. Simula-

tors offer the ability to control the amount of “negative” realism added to these

environments; thus, it is a great way to allow researchers to focus on multi-agent

cooperation approaches and other state-of-the-art algorithms, abstracting from

real-world problems (gravity, forces, etc).

Figure 2.2: 3D Simulation League.

Evangelos E. Vazaios 7 February 2010

2. BACKGROUND

2.1.3 Small Size League

A Small Size robot soccer game (Figure 2.3) takes place between two teams of

five robots each. Each robot must fit within an 180mm diameter circle and must

be no higher than 15cm, unless they use on-board vision. Robots play soccer on

a 6.05m long by 4.05m wide, green carpeted field with an orange golf ball. Vision

information is either processed on-board the robot or is transmitted back to the

off-field PC. Another off-field PC is being used to communicate referee commands

and position information to the robots, when an extra camera mounted on top

of the field serves as the vision sensor. Typically, off-field PCs are used in the

coordination and control of the robots. Communication is wireless and typically

uses dedicated commercial FM transmitter/receiver units.

Figure 2.3: Small Size League at Robocup 2009 in Graz, Austria.

2.1.4 Middle Size League

The Middle Size league is more competitive and demanding, having the largest

field dimensions among other leagues (Figure 2.4). Two teams of mid-sized robots

consisting of 5 players each with all sensors on-board play soccer on a field of

dimensions 18m×12m, whereas relevant objects are distinguished by colors only.

Communication among robots (if any) is supported by wireless communications.

Once again, no external intervention by humans is allowed, except to insert or

remove robots in/from the field. These robots are the best players far among

Evangelos E. Vazaios 8 February 2010

2.1 RoboCup Competition

other leagues. The robots’ bodies are heavy enough having powerful motors,

heavy batteries, omni-directional camera, and a full laptop computer running in

every robot; characteristics that make this league a great domain for research.

Figure 2.4: Middle Size League game at RoboCup German Open 2009.

2.1.5 Humanoid League

The Humanoid League is one of the most dynamically progressing leagues and the

one closest to the 2050’s goal. In this league, custom-made autonomous robots

with a human-like body plan and human-like senses play soccer against each other.

In addition to soccer competitions, technical challenges take place. The robots

are divided into the size classes: KidSize (30-60cm height) (Figure 2.5), Teen-

Size (100-160cm height) and AdultSize (130cm and taller). Dynamic walking,

running, and kicking the ball while maintaining balance, visual perception of the

ball, other players, and the field, self-localization, and team play are among the

many research issues investigated in this league. Several of the best autonomous

humanoid robots in the world compete in the RoboCup Humanoid League.

Evangelos E. Vazaios 9 February 2010

2. BACKGROUND

Figure 2.5: Humanoid League at Robocup 2009 in Graz, Austria.

2.2 Team Kouretes

Team Kouretes, is a collaboration of the Intelligent Systems Laboratory at the

Department of Electronic and Computer Engineering and the Intelligent Sys-

tems and Robotics Laboratory at the Department of Production Engineering

and Management. It was the first Greek team over participating in Robocup

competitions, and specializes in the Standard Platform League and the MSRS

Simulation League. The team’s name, Kouretes, comes from the Ancient Greek

Mythology. Our four AIBO and four Nao are robots named Epimedes, Paion-

aios, Iasios, and Idas, after the five Kouretes brothers, who were ancient Cretan

warriors. The fifth brother, Hercules, represents all the human members of the

team (Figure 2.6).

Kouretes have participated in many competitions and exhibitions, but the

highlights of the steep team orbit were the second place in Robocup 2007, Atlanta,

USA in the MSRS Simulation League and the first and third place in Robocup

2008, Suzhou, China in the MSRS Simulation League, and the Standard Platform

League accordingly.

Evangelos E. Vazaios 10 February 2010

2.3 The Aldebaran Nao Robot

Figure 2.6: Kouretes at RoboCup 2009. From left to right in the front row are

Eleftherios Chatzilaris (SPL), Evangelos Vazaios (SPL), Alexandros Paraschos (SPL),

and in the back row Professor Michail G. Lagoudakis (Kouretes Team Leader), Walid

Soulakis (Webots Simulation), Professor Nikos Vlassis (Kouretes Team Leader), and

Jason Pazis (SPL).

2.3 The Aldebaran Nao Robot

Aldebaran Robotics designed and assembled a low-cost, easily programmable

robot, which can be a great, not only scientific, but also entertaiment platform,

focusing on the wide audience of robotics’ researchers and fans. The development

of humanoid robots is a tough initiative that only few universities and companies

have undertaken.

Nao, in its current V3+ version, is a 58 cm, 4.3 Kg humanoid robot. To

this time, Nao has not been released commercially yet, however Aldebaran’s goal

is to eventually promote Nao as an educational robotic platform and a family

entertainment robot affordable to most budgets. The Nao robot carries a full

computer on board with an x86 AMD Geode processor at 500 MHz, 256 MB

Evangelos E. Vazaios 11 February 2010

2. BACKGROUND

Figure 2.7: Nao’s field of view.

SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It

is powered by a 6-cell Lithium-Ion battery which provides about 45 minutes of

continuous operation and communicates with remote computers via an IEEE

802.11g wireless or a wired ethernet link.

2.3.1 Sensors and Actuators

The Nao V3+ robot features a variety of sensors and actuators. Two cameras are

mounted on the head in vertical alignment providing non-overlapping views of

the lower and distant frontal areas (Figure 2.7), but only one is active each time

and the view can be switched from one to the other almost instantaneously. Each

camera is a 30fps, 640 × 480 color camera, provided with a rich API, allowing

many interventions in order to get the best result under any reasonable lighting

conditions. A pair of microphones allows for stereo audio perception. Two ultra-

sound sensors on the chest allow Nao to sense obstacles in front of it and a rich

inertial unit (a 2-axis gyroscope and a 3-axis accelerometer) in the torso provides

real-time information about its instantaneous body movements. Finally, an array

of force sensitive resistors on each foot delivers feedback on the forces aplied to

the feet, while encoders on all servos record the actual joint position at each time

and two bumpers on the feet provide information on collisions of the feet with

obstacles.

The Nao robot has a total of 21 degrees of freedom; 4 in each arm, 5 in each

leg, 2 in the head, and 1 in the pelvis (there are 2 pelvis joints which are coupled

Evangelos E. Vazaios 12 February 2010

2.4 Communication Technology

together on one servo and cannot move independently). Stereo loudspeakers and

a series of LEDs complement its motion capabilities with auditory and visual

actions.

2.3.2 NaoQi

The Nao programming environment is based on the proprietary NaoQi framework

which serves as a middleware between the robot and high-level languages, such

as C, C++, and Python. NaoQi offers a distributed programming and debugging

environment which can run natively on the robot or remotely on a computer

offering an abstraction for event-based, parallel, and sequential execution. Its

architecture is based on modules and brokers which can be executed onboard the

robot or remotely and allows the seamless integration of various heterogeneous

components, including proprietary and custom-made functionality.

2.4 Communication Technology

2.4.1 UDP

The User Datagram Protocol (UDP) is one of the many protocols used in the

Internet. Applications can use UDP to exchange messages (called datagrams,

in UDP terminology) without creating data-paths or other special transmission

channels. UDP is an unreliable service, as it does not offer any guarantee in

terms of reliability, ordering, and data integrity. Thus, datagrams can arrive out

of order, get duplicated, or get lost without notice. UDP’s assumption is that

either error checking is not necessary or it is performed by the receiving appli-

cation. Despite its shortcomings, UDP is used widely in real-time applications

as dropping packages is a more viable policy than blocking an application un-

til an expected message is delivered. Another characteristic of UDP is that it

has no congestion control, so it does not self-regulate itself. As a result, many

applications for on-line gaming or VoIP use UDP to transfer their data. UDP

also allows packet broadcasting (packets sent to all nodes in a local network) and

multicasting (packets sent to members of a group). Multicast is a one-to-many

Evangelos E. Vazaios 13 February 2010

2. BACKGROUND

technique for communication over an IP infrastructure network. Senders do not

have prior information about how many receivers there are or who they are. Mul-

ticast utilizes the network infrastructure by requiring the source to send a packet

only once, even if there are multiple recipients, and then the network nodes are

responsible for relaying the messages, if necessary, to reach all recipients.

2.4.2 The Publish/Subscribe Paradigm

The publish/subscribe paradigm (2) is a messaging paradigm, where publishers

(senders) are ignorant of the recipients of the published messages. Publishers

classify each message into a number of classes. On the other end, subscribers

express interest on one or more of these classes, so they receive messages only

from those classes they are interested in, without any involvement of the senders.

There are two widely-used forms for filtering the messages arriving to subscribers:

content-based and topic-based. In content-based filtering, a message is delivered

to a subscriber, only if certain attributes of the content of the message satisfy the

constraints imposed by the subscriber when subscribed. On the other hand, in

topic-based filtering, publishers tag their messages with a topic and subscribers

subscribe to certain topics which they know they are interested in. There is

also a hybrid approach, whereby publishers tag their messages with topics and

subscribers create content-based subscriptions. Many publish/subscribe systems

use an intermediate broker for dispatching the messages. The broker is responsible

for maintaining the list of subscriptions and forwarding all the published messages

to the appropriate recipients.

2.4.3 Google Protocol Buffers

Google Protocol Buffers (3) are a flexible, efficient, automated mechanism for

serializing structured data. The user defines the data structure once and then

uses the generated source code to write and read the defined structures to and

from a variety of data streams using a variety of programming languages. An-

other great advantage of protocol buffers is that data structures can be updated

without breaking the already deployed programs, which are capable of handling

the old format of the structures. To use protocol buffers one must describe the

Evangelos E. Vazaios 14 February 2010

2.4 Communication Technology

information for serialization by defining protocol buffer messages in .proto files.

A protocol buffer message is a small record of information, containing name-value

pairs. The protocol buffer message format is simple and flexible. Each message

type has at least one numbered field. Each field has a name and a value type.

The supported types are integer, floating-point, boolean, string, raw bytes, or

other complex protocol buffer message types, thus hierarchical structure of data

is possible. Additionally, the user can specify rules, if a field is mandatory, op-

tional, or repeated. These rules enforce both the existence and multiplicity of

each field inside the message. As a next step, the user generates code for the

desired language by running the protocol buffer compiler. The compiler produces

data access classes and provides accessors and mutators for each field, as well as

serialization/unserialization methods to/from raw bytes. Officially, Google sup-

ports C++, Java, and Python for code generation, but there are several other

unofficially supported languages.

2.4.4 Blackboard

Blackboard (4) is a software architecture model, in which multiple individual

knowledge sources share a common knowledge base, called blackboard. The

sources can read or update the contents of the blackboard and therefore, as a

result, the sources could cooperate to solve a problem. The Blackboard model

was introduced in order to handle complex, ill-defined problems, whose solution

is the sum of the solutions of simpler problems. Typically, a blackboard system

consists of three main components:

The Knowledge Sources These are modules that perform certain tasks and

contribute to the solution of the problem. Knowledge sources are software

programs which operate independently of each other, which enables the

designer of an application to eventually replace certain sources that become

outdated or slow down the system. This is an important characteristic

especially nowadays when the pace of developing software is rapid and the

necessity of updating individual modules is invaluable.

Evangelos E. Vazaios 15 February 2010

2. BACKGROUND

The Blackboard This is a shared memory area where partial solutions, data,

and any other information contributed by the knowledge sources is stored

and becomes available for access by all knowledge sources. Importantly,

the blackboard can be used as a communication mechanism between the

sources.

The Control Component This is a module that acts as a moderator between

the knowledge sources in order to organize them as effectively as possible.

2.4.5 Monitor

In concurrent programming, a monitor (5) is a thread-safe object. The defining

characteristic of a monitor is that its methods are executed with mutual exclusion.

That is, at each point in time, at most one thread may be executing any of its

methods. This characteristic simplifies the implementation of monitors compared

to code that may be executed in parallel. Monitors also provide a mechanism for

threads to temporarily give up exclusive access, in order to wait for some condition

to be met, before regaining exclusive access and resuming their task. Monitors

also have a mechanism for signaling other threads that such conditions have been

met. Monitors were invented by C.A.R. Hoare and Per Brinch Hansen, and were

first implemented in Brinch Hansen’s Concurrent Pascal language.

2.4.6 Boost C++ Libraries

The Boost libraries (6) are free,peer-reviewed, portable C++ source libraries.

Boost libraries are intended to be widely useful and usable across a broad spec-

trum of applications. Boos Libraries range from general-purpose libraries, like the

smart ptr library to operating system abstractions, like the Boost FileSystem,

to libraries primarily aimed at other library developers and advanced C++ users,

like the meta-programming template (MPL) and the Domain Specific Language

creation (Proto). In order to ensure efficiency and flexibility, Boost makes exten-

sive use of templates. Boost has been a source of extensive work and research

into generic programming and meta-programming in C++.

Evangelos E. Vazaios 16 February 2010

2.4 Communication Technology

The current Boost release contains over 80 individual libraries, including li-

braries for linear algebra, pseudo-random number generation, multi-threading,

regular expressions, unit testing, network programming, and many others. The

majority of Boost libraries are header-based, consisting of inline functions and

templates, and as such do not need to be build in advance of their usage. It must

be noted that Boost Libraries are cross-platform.

Evangelos E. Vazaios 17 February 2010

2. BACKGROUND

Evangelos E. Vazaios 18 February 2010

Chapter 3

Commmunication

3.1 Need for Communication

Communication is the process of transferring information from one entity to an-

other. The need for such a process is obvious as different entities should co-exist

and collaborate with each other. Thus, being able to express feelings, desires,

needs and information is crucial to all living beings from a tiny cell to a human

being. People instinctively gather and form groups with a common goal, either

important (i.e. survival) or not (i.e. soccer). The integrity of these groups is

proportional to the communication between its members.

3.2 Communication in a team

Communication among team members is a crucial ability for any kind of team

striving to achieve a common goal, especially for teams participating in games,

where success can only be achieved through collaborative and coordinated efforts.

Teams lacking means of communication are doomed to act simply as a collection

of individuals with no added benefit, other than the multiplicity of individual

skills. For human teams, communication is second nature; it is used not only

for teamwork in games, but also in all aspects of life, and takes a multitude of

different forms (oral, written, gestural, visual, auditory).

Evangelos E. Vazaios 19 February 2010

3. COMMMUNICATION

3.3 Communication across robots

Robots can hardly replicate all human communication means, since these would

require extremely accurate and robust perceptual and action abilities on each

robot. Fortunately, most modern robots are capable of communicating over data

networks, an ability which is not available to their human counterparts. However,

exploiting such networking means for team communication purposes in an efficient

manner, that does not drain the underlying resources and provides transparent

exchange of information in real time, is a rather challenging problem. Even if data

networks are sufficient for exchanging data between robots and computers, there is

a lot of research on other fields such as computer vision or sound processing, which

could be useful for communication. Research in these areas aims at creating more

human-like robotic platforms, which in the future could be used as a substitute or

assistance to humans. This means that, apart from the network packets, robotic

systems have to be able to handle other types of messages, like sounds or images.

Unification of all these different messages is easier said than done, however a lot

of work has been made in order to have a transparent way of dealing with this

diversity.

3.4 Communication in Robocup

A key aspect of most RoboCup leagues is the multi-agent environment; each

team features 11 (simulation), 5 (small-size), 6 (mid-size), 3 (humanoid), or 3

(standard platform) robots. These robots cannot simply act as individuals; they

must focus on teamwork in order to cope effectively with an unknown opponent

team and such teamwork requires communication. Fortunately, the use of a wire-

less network is allowed in most leagues, however there are strict rules about the

available bandwidth for each team with the maximum bit rate varying between

500Kbps and 2.2Mbps.

A common requirement in almost all RoboCup leagues is that all players must

be able to listen to the so-called game controller (7), which is software that acts as

a game referee and runs on a remote computer. The game controller broadcasts

messages over the wireless network that contain important information about

Evangelos E. Vazaios 20 February 2010

3.4 Communication in Robocup

the state of the game (initial positioning period, game start, game time, game

completion, goal scored, penalty on a player, etc.). Even though this is one-

way communication (the game controller does not expect any messages from the

robots), the ability to receive and decode correctly game controller messages is

a crucial communication component for each team. It has even been suggested

that teams not listening to and obeying the game controller of the league should

be automatically disqualified.

Each robot of an SPL team typically maintains a local perception obtained

through a vision module, a local estimate of self location obtained through a

localization module, a local active role which might be dynamically assigned by

some behavior module, and a local status which indicates the state of the robot

(active, penalized, fallen-down, etc.). To assess the benefits of the ability of

transparent intra-team communication, consider the following scenarios: (a) say

that robot 3 has spotted the ball, whereas robot 2 is scanning for it; robot 2

could be facilitated in locating the ball through a perception.robot[3].ball

query to get the (possibly noisy) ball coordinates from robot 3 and actively

look for it in that direction; (b) say that robot 2 has lost its estimate of self-

location; a perception.robot[*].teammates that returns coordinates of visi-

ble teammates could greatly facilitate recovery of its own location; (c) say that

a robot needs to determine its current role depending on the current forma-

tion of the team; a localization.robot[*].location query could return the

(estimated) locations of all robots in the team and therefore lead to a deci-

sion about role assignment; (d) say that the goalie (robot 1) has fallen down

leaving the goal unprotected; a behavior.robot[1].status could guide a de-

fender to urgently cover the goal in some way. Additionally, the benefits of

communication can be valuable to the human developers during debugging: (a) a

perception.robot[3].camera query could bring the camera stream of robot 3

to a remote computer; (b) a localization.robot[*].location could bring the

(estimated) locations of all robots for display on a remote monitoring computer;

(c) a behavior.robot[*].status query could be used to visualize the status of

each robot. These examples indicate that development and actual game play can

be greatly facilitated by a transparent and efficient communication framework.

Evangelos E. Vazaios 21 February 2010

3. COMMMUNICATION

Evangelos E. Vazaios 22 February 2010

Chapter 4

Narukom

4.1 Name

Before we dive into the technical details about Narukom, we spare a little time to

explain why we gave the name Narukom to our framework. In the beginning, the

name was Kouretes System of Communication (KouSoCom), but after watching

approximately 300 episodes of the popular Japanese cartoon (a.k.a anime) Naruto

in less than ten days, we decided to include the word ”Naruto” in the title. As a

result KouSoCom became Narukom from the combination of the words Naruto,

Kouretes, and Communication.

4.2 Concept

After the adoption of the Nao platform, our team did not have a framework to

share information between the robots. The majority of the messages was based

on quick hacks developed by different people which made the code maintenance

infeasible, thus the need for a well-defined, easy-to-use framework emerged. The

proposed communication framework, Narukom, tries to address the communica-

tion needs of robotic teams by providing an efficient, flexible, and simple way of

exchanging messages between robots, without imposing restrictions on the type

of the data transferred over the network.

Evangelos E. Vazaios 23 February 2010

4. NARUKOM

4.3 Architecture

Narukom’s main idea is a topic-based publish/subscribe system for exchanging

messages locally or over the network1. On each node there is only one instance

of an intermediate broker (Message Queue), that temporarily stores published

messages and delivers copies to the interested subscribers. The Message Queue

holds a hierarchical topic tree, which is used for subscribing to messages on a

particular topic (on topic) or on a topic and its ancestors (above topic) or on

a topic and its descendants (below topic).

A robotic agent is composed of modules that implement different concrete

functionalities. The idea that modules produce data for other modules and use

data from other modules comes quite natural, as, for example the behavior module

depends on data from the localization module and the object recognition module

uses color-segmented image from the image segmentation module. In our team’s

architecture, modules that operate on the same data are grouped in a thread.

Threads are perceived as publishers or subscribers (or both), which could publish

data on certain topics or receive data by subscribing to certain topics. In order

to simplify the way threads or modules share such data, Narukom introduces a

distributed Blackboard design, whereby modules from different threads on the

same or even different network nodes access transparently the desired data.

A Blackboard module in the context of the publish/subscribe paradigm is sim-

ply a subscriber, which serves other modules’ requests for data stored internally

and published by modules or threads on the same or on a remote node. There

could be either one blackboard for all the modules/threads of a robot or multiple

blackboards, one for each thread running on the robot. Our team adopted the

latter design, because of the synchronization problems occurring on the former.

A graphical overview of the Narukom architecture is shown in Figure 4.1. A sim-

ple interface is given to the user to access data; requests have the following form:

publisher.robot[X].type of message. This differs from the anticipated form

1 Apart from robot-to-robot communication, Narukom is used also for robot-to-computer

communication, so we refer to both systems (robots and computers) as network nodes, or simply

nodes.

Evangelos E. Vazaios 24 February 2010

4.4 Data Serialization

Figure 4.1: Narukom’s architecture.

of robot[X].publisher.type of message, but it was a design decision that will

be explained in the next chapter.

4.4 Data Serialization

Serialization is a well-known issue when exchanging data over the network be-

tween heterogeneous systems. This issue was a major concern while designing

Narukom, consequently several frameworks were examined according to four cri-

teria:

Language support Support for both C++ and Python was a hard constraint

as these two languages are now used on the Nao platform.

User friendliness Users should have the ability to describe easily and quickly

new data structures.

Cross-platform Narukom aims to be a cross-platform framework.

Efficiency The selected framework must be efficient and robust.

There were five main candidate solutions that were extensively reviewed: XML,

CORBA, boost serialization library, Google’s Protocol Buffers and a custom se-

rialization method. Here, follows a brief comparison between those alternatives

Evangelos E. Vazaios 25 February 2010

4. NARUKOM

in order to make clear why we chose Protocol Buffers over the other frameworks.

XML met all our needs, but efficiency, as extensive parsing of XML files is a

resource draining procedure on a real-time system, such as a robotic system. Al-

though CORBA does meet all the criteria, it is not the ideal solution in terms of

efficiency. Continuing to the boost library, it failed in the terms of user friendli-

ness requiring users to write their own serialization methods and at the same time

there was no simple way to define new messages. The procedure is not tedious,

but it was preferred to adopt a solution, where messages could be declared and

described independently of a specific programming language. The development of

our own serialization method, as tempting as it sounds, it would introduce serious

debugging and code maintenance problems, not to mention that optimizing the

whole procedure is a long and painful path to follow. Finally, as far as Protocol

Buffers are concerned, they cover all our needs. Definition of messages is simple

and intuitive, C++ and Python are officially supported by Google, and last, but

not least, the code is heavily tested and optimized. All these made Protocol

Buffers the ideal tool for constructing our hierarchical message structures. Ev-

ery message definition in Narukom takes the following form with five mandatory

attributes in its preamble:

message xxxMessage{

required string host = 1 [default = "localhost"];

required string publisher = 2 [default = ""];

required string topic = 3 [default = "global"];

required int32 timeout = 4 [default = 0];

required string timestamp = 5 [default = ""];

< attributes specific to the xxxMessage type >

}

These five attributes can be characterized as the metadata of every message re-

quired by Narukom in order to provide its services accurately. A short explanation

of each of these attributes follows:

• host is the unique name of the node sending the message

• publisher is the name of the publisher that generated the message

Evangelos E. Vazaios 26 February 2010

4.5 Data Synchronization

• topic is the topic to which the message belongs

• timeout is a 32-bit integer indicating the amount of time (in milliseconds)

after which the message expires and should be discarded from the Black-

board

• timestamp is a string indicating the absolute time at which the message

was published and is used for synchronization purposes between publishers

and subscribers.

4.5 Data Synchronization

Synchronization among the modules of a robot is vital for accurate operation2.

Narukom, in order to address the decoupling between publishers and subscribers,

adds some synchronization information in the meta-data of each message (timeout

and timestamp). Under this convention, the Blackboard’s original interface had

to be slightly altered to provide modules with synchronized data, should the need

arises. If a module queries the Blackboard with a certain time stamp value, the

Blackboard will have to find and return the data with the closest timestamp

value in the Blackboard. The timestamp attribute is the absolute time at which

the message was published to the Message Queue and the timeout attribute is

the (relative) amount of time (in milliseconds) indicating how long a subscriber

should keep the message in its own Blackboard, counting from the time of arrival.

The timeout mechanism is necessary for avoiding excess amounts of expired, use-

less data on the Blackboard. It should be stretched that these synchronization

rules cannot be imposed and every subscriber has the flexibility to comply or

not with those rules. Narukom’s distributed Blackboard implementation utilizes

these two attributes in each message to achieve a balance between the length of

the synchronization period and the amount of memory needed for this purpose,

allowing different settings for each message type.

2Anecdotal evidence for this claim includes our team’s performance at RoboCup 2009, where

the camera images processed by our vision module were not in synch with the robot head pose

recorded by the behavior module, thus yielding erroneous object perceptions with catastrophic

consequences on the robot’s behavior.

Evangelos E. Vazaios 27 February 2010

4. NARUKOM

4.6 Communication within and across nodes

Communication between threads running on the same node is implemented simply

through the Message Queue of the node, as described already above. Commu-

nication between different nodes adopts a somewhat different approach. Given

the publish/subscribe nature of Narukom, it is clear that the only missing part

for communication over the network is a module, which subscribes to all topics

and broadcasts over the network messages destined for other nodes, and at the

same time listens to broadcast traffic on the network and publishes the relevant

messages on the local Message Queue. To this end, Narukom introduces the Cat-

alog module. This module maintains contact information about the other nodes

on the network and the type of data other nodes might be interested in. The

question we should address is why it is important to have this functionality. In

a distributed system, especially in a robotic environment, agents must be aware

of all the on-line team members in order to utilize all the available resources for

exchanging data across nodes and facilitating the development of complex behav-

iors and distributed algorithms. Moreover, Catalog Module provides Narukom

with extendibility, as user-defined channels can be used as part of Narukom’s

infrastructure.

4.7 Communication Channels

A multi-purpose robot, such as Nao, has multiple means of interacting with its

environment, either sensors or actuators. Sensors (camera, network adapter,

microphones, etc.) sense the robot’s environment, whereas actuators (motors,

network adapter, speakers, etc.) affect the robot’s environment. If the effect of

a robot’s actuator is observable by another robot’s sensor, this pair of actua-

tor/sensor offers a possible communication channel. Narukom tries to integrate

different channels into the framework. To accomplish that, it introduces a gen-

eralized Catalog module, which is responsible for holding contact information

about any available peer in Narukom’s framework and at the same time is re-

sponsible for controlling all the channels available between peers, which are also

implemented in Narukom.

Evangelos E. Vazaios 28 February 2010

4.7 Communication Channels

By default, the Catalog module establishes two channels: one listening for

network-broadcast data from other peers and another one for broadcasting data

to all the reachable peers through the network. Both channels use the UDP

transmission protocol. The Catalog module establishes an extra incoming channel

for interacting specifically with the game controller, wherever there is such a need.

Evangelos E. Vazaios 29 February 2010

4. NARUKOM

Evangelos E. Vazaios 30 February 2010

Chapter 5

From Theory To Practice

This section describes all the optimizations, implementation decisions, and details

of Narukom. The primary goal of Narukom is to be used as a communication

framework in robotic environments, so most of our choices were in favour of real-

time embedded systems focusing on the needs of the Standard Platform League

environment. However, those implementation choices do not restrict Narukom’s

possible uses.

5.1 Understanding the basics

5.1.1 Messages

The exchanged data between the threads are protocol buffers messages defined by

the user. Narukom requires to include in each message definition some attributes

that are of outmost importance in order for Narukom to work properly and handle

every message. As mentioned before, every message definition in Narukom takes

the following form with five mandatory attributes in its preamble:

message xxxMessage{

required string host = 1 [default = "localhost"];

required string publisher = 2 [default = ""];

required string topic = 3 [default = "global"];

required int32 timeout = 4 [default = 0];

required string timestamp = 5 [default = ""];

Evangelos E. Vazaios 31 February 2010

5. FROM THEORY TO PRACTICE

< attributes specific to the xxxMessage type >

}

Narukom includes a definition of a basic structure called BasicMessage in order

to deal with all the messages. Each attribute serves a purpose,

• host, publisher are attributes used to distinguish messages from each

other,

• topic is the topic in which each message should be published, and

• timeout, timestamp is the temporal information needed for synchroniza-

tion purposes.

5.1.2 MessageBuffer

The Message Buffer is thread-safe structure and, as its name suggests, is a buffer

in which protocol buffer messages are stored. Apart from the simple vector that

holds the messages, the structure has a string attribute named owner, which

denotes the name of the owner of the buffer. It must be noted that a message

buffer is implemented as a monitor.

5.2 Publish/Subscribe system

Our Publish/Subscribe system implementation is shown in Figure 5.1. Both

publishers and subscribers have one message buffer through which the exchange

of data takes place. The Message queue periodically checks all the publishers’

buffers and copies them to the buffers of all interested subscribers. This approach

minimizes the race conditions when accessing messages, at the cost of high decou-

pling between the publishers and subscribers, which in real-time systems could

a be source of undesirable behavior. In the next section, it is described how

this problem is addressed. Continuing with the publish/subscribe system, classes

that use the infrastructure provided by Narukom, should inherit from either the

Publisher or the Subscriber class (or from both). Although there is a default

implementation of the interfaces for both classes, it is recommended for derived

Evangelos E. Vazaios 32 February 2010

5.2 Publish/Subscribe system

Publisher

Subscriber and
Publisher

Subscriber

Message

Topic tree

Publisher or
Subscriber

Message Queue

Message Buffer

Figure 5.1: Narukom’s publish/subscribe implementation.

classes not to rely on the default implementation as it might have undesired effects

on the behavior of the system. The Publisher class requires the implementation

of the method:

void publish(google::protobuf::Message* msg)

The default implementation of this method just adds the message msg to the

buffer, which in the majority of the scenarios would be sufficient for sending

a message. On the other hand, classes derived from the Subscriber class are

strongly encouraged to provide their own implementation of the method:

void process_messages()

The default implementation of process messages() is provided just as a ref-

erence. Through this function incoming messages should be read and processed.

Evangelos E. Vazaios 33 February 2010

5. FROM THEORY TO PRACTICE

5.2.1 Message Queue

Message queue performance affects directly the overall performance of our system,

thus several optimizations have been made to this class. The most important

optimization is that the internal topic tree is used as a reference structure, while

the actual data structure used is a hash table on all the topics included in the

tree. The configuration of the tree is done via an XML file on each node; at

the initialization of the message queue the file is parsed and the tree is created.

The hash table allows for quick retrieval of the list of subscribers to which the

arrived message must be delivered. Furthermore, when it comes to reading the

message’s meta-data, a cast to BasicMessage type is used, overriding the normal

way of accessing data in protocol buffers. It must be stressed that this approach

is used ONLY for reading and ONLY in Blackboard and Message Queue

classes. Under no circumstances is it recommended as the normal way

for accessing the meta-data required by Narukom. This is considered a

hardcore optimization which could stop working after a new release of Protocol

Buffers. Last, but not least, instead of keeping pointers to the publisher or

subscriber, a message buffer pointer is used in order to avoid the small overhead

of calling an extra method every time the Message Queue needs to access a buffer.

As insignificant as these optimizations may seem, in SPL, where software makes

the difference, they could decide the winner of a game.

5.3 Blackboard and Synchronization

The implemented publish/subscribe system maximizes the decoupling between

publishers and subscribers, thus many synchronization issues may arise between

threads running locally on a node. This problem is dealt with by adding two

attributes in the meta-data of each message timeout and timestamp. Narukom

introduces some conventions for each message: (a) when a message is published

a timestamp is assigned (at least in the default implementation of publish),

(b) when a subscriber receives a message she should check the validity of the

data by ensuring that those data are not expired, and (c) on data expiration

subscribers are advised to dispose those messages in order to limit the excess and

Evangelos E. Vazaios 34 February 2010

5.4 Catalog Module

useless information on a node. It should be noted that these are conventions of

Narukom that are used internally and cannot be imposed on subscribers; each

subscriber is free to comply or not with them. Narukom’s blackboard utilizes the

time information to minimize memory allocation and provide synchronization

services to the higher-level system. The Blackboard implementation creates two

indexes over the stored messages, one to provide fast access for data requests and

another to provide fast cleanup time. The latter index is an ordered list in terms

of absolute timeout and is calculated whenever new messages are stored in the

blackboard. Frequently, the blackboard cleans up all the expired data.

5.4 Catalog Module

Communication between the nodes of Narukom is achieved through channels,

which are well-defined pairings between actuators (motors, speakers, network

adapter) and sensors (camera, microphones, network adapters). Narukom was

designed to be able to utilize all the individual channels and integrate those

channels in the framework.

The Catalog module could be characterized as the address book of each node

in Narukom, since it holds all the contact information of all the reachable peers

by the node itself. Furthermore, the Catalog module is responsible for creating

and destroying the various channels that the node is able to use in order to

communicate with other nodes. The idea behind this module is that in distributed

environments a node must be aware of all the available nodes and what type

of services they provide. In detail, the information stored in a Catalog module

includes the names of all reachable peers, the channels through which these nodes

are available, and the kind of data (topics) they are interested in. Moreover, the

Catalog module holds a list of all the usable channels on the node and has the

ability to start, stop, or filter the type of messages that are sent through each

channel. The filtering is done by sending commands that a channel can interpret

as one of the above functions. These commands consist of a Protocol Buffers

message with the following attributes

message ChannelCommand{

Evangelos E. Vazaios 35 February 2010

5. FROM THEORY TO PRACTICE

required string type = 1 [default = ""];

required string element = 2 [default = "none"];

required string options = 3 [default = "none"];

}

There are four different types of commands

• subscribe: when this type of message is received, a channel must subscribe

to a certain topic.

• unsubscribe: when this type of command is received by a channel, it must

unsubscribe from a certain topic.

• enable: this command is used to enable a specific type of message to be

sent through the channel; by default after the subscription of a channel all

the incoming messages are enabled.

• disable: obviously, this is the opposite of the enable command.

The attribute element is in accordance with the command type. In case of

(un)subscribe, it should hold the topic, whereas when sending an enable or

disable command it must be the type of message to be enabled or disabled.

Channels should implement a simple interface, which is:

• bool start(): with this function the Catalog module starts a channel.

• bool stop(): this function is used to stop a channel.

• list of hosts available peers(): the Catalog module asks for all the

information about the reachable peers with this function.

• list of strings preferred message(): with this function the Catalog

module is informed about what messages could be produced from this chan-

nel.

• bool process command(const ChannelCommand cmd): this function is used

to send a command over a channel.

Evangelos E. Vazaios 36 February 2010

5.5 Network Communication

These four functions are adequate for Catalog to control a channel and provide

the system with all the required information about a channel. Before closing this

section, it should be noted that all these are conventions are used by Narukom

to provide users with a unified way of controlling the behavior of a node in terms

of communication with other reachable nodes. Narukom does not require this

functionality, but should a programmer decide to extend Narukom’s capabilities

by creating a customized channel, this channel should be treated as an integrated

part of the rest of the system. However, there could be a channel which does not

implement the required interface; this does not raise any problem for the rest of

the system, as it would be treated as any other module on the system. Finally,

the options attribute is used for additional information that may be required for

example, in case of subscribe what mode should be used (on topic, below topic,

above topic).

5.5 Network Communication

Network communication is the first and most important way of exchanging data

between nodes. Protocol buffers messages are serialized and if their size makes

it impossible to send them as one message they are chopped to several network

packets. The definition of the NetworkPacket structure follows:

message NetworkHeader

{

required uint32 message_num = 1 ;

required uint32 packet_num = 2 [default = 1];

required uint32 number_of_packets = 3 [default = 1];

required string timestamp = 4 [default = ""];

required uint32 timeout = 5 [default = 1000];

required string host = 6;

required string type = 7;

}

message NetworkPacket{

required NetworkHeader header = 1;

Evangelos E. Vazaios 37 February 2010

5. FROM THEORY TO PRACTICE

required bytes byte_buffer = 2;

}

A network message acts as a buffer for NetworkPackets. On the other end, net-

work messages are stored in network message buffers.

5.5.1 Network Channel

The NetworkChannel class is a class which encapsulates all the communication

functionality provided by any network channel (i.e. TCP-based, UDP-based,

etc.). This class is a derived class of Channel and provides implementation for

all the methods of its base class. In addition, it introduces new functionality

provided mainly in a network, such as resolve host or notify on events, like sent

or timeout, etc.

5.5.2 UDP Multicast Channel

The only channel that is so far implemented in Narukom is a simple multicast

channel over UDP. A sharp reader could easily infer that UdpMulticastChannel

class is simply a child class of NetworkChannel. The implemented channel is not

reliable, meaning that there is no guarantee that, when sending a message through

this channel it would reach its destination, but provides a partial guarantee that

if a part of the message arrives on one node, then the whole message should be

delivered. The algorithm that ensures that a whole message will be delivered is

the following:

receive packet from the network =>

add packet to the appropriate network message =>

Is the network message complete?

a) yes: then recreate the original message

and publish it then remove it from the buffer

b) no: if the packet is out of order send NACK Messages

for all the pending packets

At first sight, it might be a wrong decision to use an unreliable channel for

our transmissions, but in real-time systems the described behavior is preferred

Evangelos E. Vazaios 38 February 2010

5.5 Network Communication

over a bandwidth-consuming approach (i.e. TCP). The UdpMulticastChannel

subscribes by default to the global topic, where important information interest-

ing to all the nodes on the network is published. Finally, the Catalog module

under certain circumstances (during a RoboCup game) initializes another UDP

Multicast Channel in order to listen to the game controller.

Evangelos E. Vazaios 39 February 2010

5. FROM THEORY TO PRACTICE

Evangelos E. Vazaios 40 February 2010

Chapter 6

Results

The evaluation of the proposed approach was made on the following subjects:

Validation To validate that Narukom works properly we carried out experi-

ments testing both inter-process and intra-process communication.

Synchronization In order to test the synchronization capabilities of Narukom

a simple multi-threaded application was developed.

User friendliness A small group of developers was asked to create a simple

chat application to assess the user-friendliness of our framework.

6.1 Validation

Narukom has been tested successfully for both inter-process communication on a

single node and inter-thread communication across different nodes using a simple

threaded application which simulates a ping-pong (table tennis) game. There

are two threads for the two players and two message types (Ping and Pong),

one for each player. These two threads communicate through Narukom’s pub-

lish/subscribe infrastructure, which is used to deliver the Ping and Pong messages

between them. Apart from the two players, there is a scorekeeper, another thread

which is responsible for keeping the score, as its name suggests. The player who

has the ball picks randomly a side (left or right) to which the ball should be sent

and publishes a message to declare the completion of his move. On the other side

Evangelos E. Vazaios 41 February 2010

6. RESULTS

Figure 6.1: Pinger (back), Ponger (middle), Scorekeeper (front) on three different

machines.

of the table, the other player picks the side where his racket will be placed (left or

right) and listens for the opponent’s move (he subscribes to opponent messages).

If the side he chose for the racket matches the side to which the opponent sent

the ball, the game continues with the next move. If the sides of the racket and

the ball do not match, a point is awarded to the player who sent the ball and the

game continues with the next move. The scorekeeper subscribes to both types of

messages and continuously prints out the current score. Note that these threads

could be running on different nodes and these nodes do not have to be identical

platforms. Screenshots of the three processes (pinger, ponger, scorekeeper) run-

ning on three different Linux machines (64-bit native on laptop, 32-bit virtual

on laptop, and 64-bit native on pc respectively) communicating using Narukom

over a wireless network are shown in Figure 6.1. Live action of this experiment

is available at http://tinyurl.com/robocup2010submission101.

6.2 Synchronization

In order to ensure that Narukom’s synchronization capabilities are adequate for

SPL, we developed an application where two threads run at different frequencies

Evangelos E. Vazaios 42 February 2010

http://tinyurl.com/robocup2010submission101

6.2 Synchronization

Figure 6.2: Data Synchronization

and a third thread which operates on the data published by those two threads. In

more detail, there is one thread (Fast) running approximately every 10 millisec-

onds and another (Slow) running every 100 milliseconds. Both threads increase

a counter every time they are scheduled. The third thread (Ratio) reads the lat-

est available data of Slow from the blackboard, then according to the message’s

timestamp, it queries the blackboard for the produced data by fast. Finally, the

Snapshot outputs the ratio of the two counters. The Figure 6.2 demonstrates the

results of the experiment. The Ratio is close to the ideal value 10, the difference

can be explained by the fact that the three threads are approximately scheduled

on time.

Evangelos E. Vazaios 43 February 2010

6. RESULTS

6.3 User Friendliness

Nowadays, ease of use plays an important role in the adoption of a product, thus

we decided to conduct a limited (in terms of the number of people) survey to

assess the level of user friendliness of our framework. After a short presentation

of Narukom, we asked a small group of developers to create a simple chat appli-

cation. Afterwards, we asked them to write a brief description of their thoughts

working with Narukom.

The results of this survey were more than satisfactory. All the participants

were able to complete the required task within an acceptable time period (1 hour

on average). It must be noted that 65% of the participants had little experience

with C++, let alone network programming in this language. However, everyone

agreed that the framework was easy to use, but it lacked an adequate tutorial.

Moreover, after concluding the exercise all participants acquired good under-

standing of how Narukom works underneath and the services it can (or could in

the future) provide, and by suggesting new exciting uses.

Evangelos E. Vazaios 44 February 2010

Chapter 7

Related Work

In this section we give a short overview of what other RoboCup teams have pub-

lished to our knowledge about their communication system and compare their

work to ours. There are various approaches for sharing information among pro-

cesses on a robot and among processes on different robots. These approaches can

be summarized into the a few main ideas.

7.1 Shared Memory

The main idea here is to define a shared memory area on each node, which holds

information about the current world model. Each module can write to and/or

read data from this shared location. Under this scheme, different nodes use a

simple UDP protocol to exchange important data. This is quite similar to our

approach, however communication is mainly point-to-point and lacks the organi-

zation and efficiency imposed by the hierarchical topic-based publish/subscribe

scheme. Furthermore, depending on the implementation, problems with cor-

rupted data could be appear, if no lock and safety mechanisms are implemented.

This idea with variations has been adopted by teams as Austin Villa (8) and

BreDoBrothers (9).

Evangelos E. Vazaios 45 February 2010

7. RELATED WORK

7.2 Blackboard/Shared World Model

This is a similar idea with the previous, however different components access the

central storage data via well-defined interfaces, providing the mechanisms that

might be absent from the approach above. Team robots share the information

of their blackboards creating a joint world model composed of the individual

robots’ perceptions. There is one variation from GTCMU (10) where validity flags

are added to the objects stored in order to declare them as ”use with caution”

when the objects are not updated for a long period of time. For intra-robot

or debugging purposes, custom communication systems are used over UDP or

TCP. The purpose of data exchange suggests the protocol used, for example

for debugging purposes TCP is used, while when in game UDP transmission is

preferred. The shared model is close to Narukom’s implementation of distributed

blackboard, but the exchange of newly created data requires from the programmer

writing code for sending and receiving those data, whereas on Narukom newly

declared Messages are immediately ready for network transfer. The vast majority

of RoboCup teams, such as Zadeat (11) and rUNSWift (12) use a slight variation

of this approach.

7.3 Message queue and Streams

This idea has been advocated recently by team B-Human (13) and earlier by

the German Team (14). It is based on using message queues for constructing

three different types of cross-platform communication streams: (a) inter-process

communication between the cognition and the motion module, (b) debug commu-

nication between robots and remote computers for debugging purposes, and (c)

information exchange between the robots. The first type is similar to Narukom’s

inter-process communication. The other two types are implemented differently

in Narukom, but they serve the same purposes. Again, this idea lacks the organi-

zation and efficiency of Narukom. It must be noted, however that a lot of effort

has been put into creating a fully-featured Stream library to support the required

functionality, whereas in Narukom this functionality is provided for free through

the Google protocol buffers.

Evangelos E. Vazaios 46 February 2010

7.4 Publisher/Subscribe

7.4 Publisher/Subscribe

This idea is based on the publish/subscribe paradigm and has been adopted

only the Austrian Kangaroos (15) team. The idea is to use a publish/subscribe

architecture for exchanging data between the threads on the same machine by

triggering signals in all connected modules, if a subscribed memory location is

altered. This design allows an IRQ-like implementation of service calls at a high

system level. Network communication is done via SOAP wrapped functions calls,

which generally are considered heavy compared to Narukom’s approach. On the

other hand, in this approach each module has a more direct access to remote

data, simply by subscribing to remote memory locations.

7.5 Discussion

Generally speaking, Narukom integrates features that support efficiently any com-

munication need in the SPL; these features are not found collectively in any

other existing communication system. One may argue that Narukom’s function-

ality could be implemented using the infrastructure provided by the proprietary

NaoQi middle-ware offered by Aldebaran Robotics with the Nao robots. This

is true, however Narukom’s purpose is to provide a communication system that

does not depend on proprietary technology and can be used widely on many

different robotic teams, apart from Nao robots, and other real-time distributed

systems. Narukom also represents our efforts in departing from the dependence

on the NaoQi framework towards platform-independent customizable software

architecture for robotic teams.

Evangelos E. Vazaios 47 February 2010

7. RELATED WORK

Evangelos E. Vazaios 48 February 2010

Chapter 8

Future Work

Our work is just a small, but well-founded, step towards our notion of the ideal

communication framework for robotic teams and other similar distributed sys-

tems. Thus, there are plans for extending, adding, and optimizing further the

proposed framework.

8.1 Alternative Channels

The typical communication channel is certainly the one that utilizes the network

adapter as both sensor and actuator and this is the only communication chan-

nel currently implemented in Narukom. However, other communication channels

can be realized using other pairings, for example messages encoded into motions

using the sender’s joints and decoded through the receiver’s camera or messages

encoded into sounds using the sender’s speakers and decoded through the re-

ceiver’s microphones. Narukom can treat all these channels transparently as long

as appropriate coders/decoders (drivers) for these channels are provided. Despite

the great difficulty associated with the implementation of such interfaces, their

importance to true human-like robot autonomy is clearly high.

8.2 Narukom outside RoboCup

The use of Narukom outside the context of Robocup is also an important goal

for us. During the implementation of Narukom, decisions were made in order

Evangelos E. Vazaios 49 February 2010

8. FUTURE WORK

to develop a robust communication system for a RoboCup team, however it is

possible to alter some implementation decisions in order to make Narukom a more

suitable candidate for other distributed environments. To achieve this, a wider

range of network channels should be implemented. Moreover a basic query-like

language could be used to access the blackboard.

8.3 Optimization and Debugging

Every project, no matter how well it is tested and optimized during the devel-

opment phase, may contain bugs and bottlenecks. Our intention and desire is to

continue actively developing Narukom in order to meet the needs of as many peo-

ple as possible. As a result a constant procedure of optimizing, debugging, and

testing is needed to ensure that Narukom is a robust and easy-to-use framework.

Evangelos E. Vazaios 50 February 2010

Chapter 9

Conclusion

Narukom is an attempt to address a lot of communication problems our team had

during the last four years in Robocup SPL. At the same time, it is a first step

towards a cross-platform architecture used in robotic agents. Our journey does

not end here; our Narukom has, hopefully, a long way, yet to go. The first real

world test will be the Robocup 2010 in Singapore where both our inter-process,

inter-robot, and team communication will be based on our framework.

9.1 Out To The Real World

Narukom is based on open-source projects, so the least we could do is to open its

source in the near future. We believe that Narukom can contribute to the open-

source community as a cross-platform, distributed, transparent communication

framework for everyone willing to use it. I, personally, would be more than

happy to assist anyone dare to use our framework. Additionally, any suggestions,

comments, critiscisms, improvements, and modifications are at least welcomed.

By open sourcing Narukom we try to achieve two goals: (a) to encourage new

coders to make available to the open-source community their code in order to

advance the collaboration between programmers and (b) to protect developers

from reinventing the wheel every now and then.

Evangelos E. Vazaios 51 February 2010

9. CONCLUSION

Evangelos E. Vazaios 52 February 2010

References

[1] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 5

[2] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many

faces of publish/subscribe. ACM Computing Surveys 35(2) (2003) 114–131

14

[3] Google Inc.: Protocol Buffers. (2010) code.google.com/apis/

protocolbuffers. 14

[4] Hayes-Roth, B.: A blackboard architecture for control. Artificial Intelligence

26(3) (1985) 251–321 15

[5] Hoare, C.A.R.: Monitors: an operating system structuring concept (1974)

16

[6] Boost.org: Boost C++ Libraries. (2010) www.boost.org. 16

[7] Petters, S., Meriçli, T.: RoboCup Game Controller Open-Source Software.

(2010) sourceforge.net/projects/robocupgc. 20

[8] Hester, T., Quinlan, M., Stone, P.: UT Austin Villa 2008: Standing on two

legs (2008) Only available online: www.cs.utexas.edu/~AustinVilla. 45

[9] Czarnetzki, S., Hauschildt, D., Kerner, S., Urbann, O.: BreDoBrothers team

report for RoboCup 2008 (2008) Only available online: www.bredobrothers.

de. 45

Evangelos E. Vazaios 53 February 2010

code.google.com/apis/protocolbuffers
code.google.com/apis/protocolbuffers
www.boost.org
sourceforge.net/projects/robocupgc
www.cs.utexas.edu/~AustinVilla
www.bredobrothers.de
www.bredobrothers.de

REFERENCES

[10] Veloso, M., Philips, M.: Gtcmunited’08: Calibrated motion, modular vision,

and accurate behaviors (2008) Only available online: www.tzi.de/spl/pub/

Website/Teams2008/GTCMU.pdf. 46

[11] Ferrein, A., Steinbauer, G., McPhillips, G., Niemüller, T., Potgieter, A.:

Team Zadeat - team report (2009) Only available online: www.zadeat.org.

46

[12] Collien, D., Huynh, G.: The transition from 4legged to 2legged robot soccer.

Master’s thesis, University of New South Wales School of Computer Science

and Engineering (2008) 46

[13] Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E.,

Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck,

A., Sieverdingbeck, I., Worch, J.H.: B-Human team report and code release

2009 (2009) Only available online: www.b-human.de/download.php?file=

coderelease09_doc. 46

[14] Rofer, T., Laue, T., Weber, M., Burkhard, H.D., Jungel, M., Gohring, D.,

Hoffmann, J., Krause, T., Spranger, M., von Stryk, O., Brunn, R., Dassler,

M., Kunz, M., Oberlies, T., Risler, M., Schwiegelshohn, U., Hebbel, M.,

Nistico, W., Czarnetzki, S., Kerkhof, T., Meyer, M., Rohde, C., Schmitz,

B., Wachter, M., Wegner, T., Zarges, C.: GermanTeam 2005 (2005) Only

available online: www.germanteam.org/GT2005.pdf. 46

[15] Bader, M., Hofmann, A., Schreiner, D.: Austrian Kangaroos team descrip-

tion paper (2009) Only available online: www.austrian-kangaroos.com. 47

Evangelos E. Vazaios 54 February 2010

www.tzi.de/spl/pub/Website/Teams2008/GTCMU.pdf
www.tzi.de/spl/pub/Website/Teams2008/GTCMU.pdf
www.zadeat.org
www.b-human.de/download.php?file=coderelease09_doc
www.b-human.de/download.php?file=coderelease09_doc
www.germanteam.org/GT2005.pdf
www.austrian-kangaroos.com

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 RoboCup Competition
	2.1.1 The Standard Platform League
	2.1.2 Simulation League
	2.1.3 Small Size League
	2.1.4 Middle Size League
	2.1.5 Humanoid League

	2.2 Team Kouretes
	2.3 The Aldebaran Nao Robot
	2.3.1 Sensors and Actuators
	2.3.2 NaoQi

	2.4 Communication Technology
	2.4.1 UDP
	2.4.2 The Publish/Subscribe Paradigm
	2.4.3 Google Protocol Buffers
	2.4.4 Blackboard
	2.4.5 Monitor
	2.4.6 Boost C++ Libraries

	3 Commmunication
	3.1 Need for Communication
	3.2 Communication in a team
	3.3 Communication across robots
	3.4 Communication in Robocup

	4 Narukom
	4.1 Name
	4.2 Concept
	4.3 Architecture
	4.4 Data Serialization
	4.5 Data Synchronization
	4.6 Communication within and across nodes
	4.7 Communication Channels

	5 From Theory To Practice
	5.1 Understanding the basics
	5.1.1 Messages
	5.1.2 MessageBuffer

	5.2 Publish/Subscribe system
	5.2.1 Message Queue

	5.3 Blackboard and Synchronization
	5.4 Catalog Module
	5.5 Network Communication
	5.5.1 Network Channel
	5.5.2 UDP Multicast Channel

	6 Results
	6.1 Validation
	6.2 Synchronization
	6.3 User Friendliness

	7 Related Work
	7.1 Shared Memory
	7.2 Blackboard/Shared World Model
	7.3 Message queue and Streams
	7.4 Publisher/Subscribe
	7.5 Discussion

	8 Future Work
	8.1 Alternative Channels
	8.2 Narukom outside RoboCup
	8.3 Optimization and Debugging

	9 Conclusion
	9.1 Out To The Real World

	References

