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Abstract  
 
Nowadays, computer science evolves in high rate. Within short time, new 
technologies are invented to respond our ever increasing demands. In order to fulfill 
these needs, the traditional processor architecture has begun to change and new 
remarkable and alternative methods have developed. 
 
Especially, single core processor architecture is at its end while multi core processor 
architecture is evolving. Multi core processors have the ability to execute multiple 
threads at the same time. Due to this capability and in proportion with the 
parallelization that can achieve by each architecture, the performance is multiple.  
Cell Broadband Engine (Cell BE) is one of the new technologies processor and it is 
produced by IBM, Toshiba and Sony.   

 
In this thesis, we endeavor to use the parallelism that is provided by Cell BE so as to 
accelerate the human gait recognition. The algorithm which was studied is Gait 
Baseline Algorithm. This algorithm faces the difficulties in human gait recognition 
and establishes an infrastructure for the experiment methods, the data amount and 
the recognition algorithm with the aim of further evolution of algorithm akin to Gait 
Baseline Algorithm.   
 
The procedure was complicated enough and there were technical difficulties in 
hardware level. Almost all of them were overcome successfully by using alternative 
methods of classic programming or by the specialized capabilities of Cell BE. 
Particularly, we parallelized the algorithm using the function offload method, 
splitting computing intensive functions in multiple Synergistic Processor Elements 
(SPEs). Simultaneously we optimized the code using three optimization techniques 
SIMD, function inline and loop unrolling. 
 
The results were satisfactory as we achieved a considerable improvement of 
performance. The speedup was 5.51 times faster compared to Power Processor 
Element, 2.18 times faster than an Intel E 6400 2.13GHz processor and 3.00 times 
faster compared to an Intel T 2400 1.83GHz or 4.13 times faster at 987MHz. Τhe 
knowledge that was obtained is essential in order to study similar, complex 
computing applications of new methods and architectures 
 

This thesis is based on The HumanID Gait Challenge Problem which is the base of the 
future in gait recognition. Programming modern multi-core processor and gait 
recognition knowledge were demanded. The improved modified code of Baseline 
Algorithm introduces a significant evolution and could be matter for further 
research. 
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Introduction 
 
The goal of this thesis is Gait Baseline Algorithm acceleration through proper 
understanding and use of Cell Broadband Engine (Cell BE) processor capabilities. For 
this reason, the algorithm did not develop from the beginning. We focused on the 
most computing intensive points, in order to parallelize them and insomuch that 
improve the algorithm performance. This thesis is structured by the method we 
follow to reach the problem solution: 
 

 Chapter 1, Cell BE and Playstation 3 capabilities explanation, on which the 
search was based. 

 Chapter 2, The HumanID Gait Challenge Problem (Data Sets, Experiments, 
Baseline Algorithm) description. 

 Chapter 3, analytical description of the implementation 

 Chapter4, reference of search results and the conclusion to which we were 
led. 

 Chapter 5, conclusions and proposals for future implementations.   
 

Contribution 
 

The human gait recognition could be evolved if it is combined with edge technology 
(Cell BE). We face speedup of gait recognition algorithms, aiming to implement the 
algorithm to different processor architectures than those already have been used.  
The HumanID Gait Challenge Problem established new parameters to gait 
recognition and corrected common mistakes of the studies that already have been 
published. These characteristics of the project make the study and its improvement 
important as in fact they underpin the future of gait recognition. To face this issue 
we had to study both programming modern multi-core processor and gait 
recognition. In this thesis it is raised the opportunity to face correctly the gait 
recognition in the future from the aspect of new multi-core processors architectures 
and alternative solutions, such as GPUs and FPGAs. 
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1 Cell Broadband Engine 
 

1.1  Introduction to Cell Broadband Engine 

 

1.1.1 History [2] 

The Cell BE [3] is a product of multi-core processors technology. The Cell BE 
processor is the first implementation of a new multiprocessor family conforming to 
the Cell Broadband Engine Architecture (CBEA). [4] The CBEA and the Cell BE 
processor are the result of collaboration between Sony, Toshiba, and IBM known as 
STI [18], formally begun in early 2001. The STI Design Center opened in March 2001. 
[2] The Cell was designed over a period of four years, using enhanced versions of the 
design tools for the Power4 processor. Over 400 engineers from the three 
companies worked together in Austin, with critical support from eleven of IBM's 
design centers. 
 
In March 2007 IBM announced that the 65 nm version of Cell BE is in production at 
its plant in East Fishkill, New York. Again in February 2008, IBM announced that it will 
begin to fabricate Cell BE processors with the 45 nm process. In May 2008, IBM 
introduced the high-performance double-precision floating-point version of the Cell 
BE processor, the PowerXCell 8i, at the 65 nm feature size. In May 2008, an Opteron- 
and PowerXCell 8i-based supercomputer, the IBM Roadrunner system, became the 
world's first system to achieve one petaFLOPS, and was the fastest computer in the 
world until fall 2009. The world's three most energy efficient supercomputers, as 
represented by the Green500 list, are similarly based on the PowerXCell 8i.The 
45 nm Cell BE processor was introduced in concert with Sony's PlayStation 3 Slim in 
August 2009. In November 2009, an IBM representative said that it has discontinued 
the development of a Cell BE processor with 32 SPUs but they have not halted 
development of other future products in the Cell BE family. [2] 
 

1.1.2 Motivation [1] 

 
Although the Cell BE processor is initially intended for applications in media-rich 
consumer-electronics devices such as game consoles and high-definition televisions, 
the architecture has been designed to enable fundamental advances in processor 
performance. These advances are expected to support a broad range of applications 
in both commercial and scientific fields.  
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The CBEA [4] has been designed to support a very broad range of applications. The 
first implementation is a single-chip multiprocessor with nine processor elements 
operating on a shared memory model, as shown in Figure 1.1. In this respect, the 
Cell BE processor extends current trends in PC and server processors. The most 
distinguishing feature of the Cell BE processor is that, although all processor 
elements can share or access all available memory, their function is specialized into 
two types: the PowerPC Processor Element (PPE) [19] and the Synergistic Processor 
Element (SPE) [20]. The Cell BE processor has one PPE and eight SPEs.  
 
  

The first type of processor element, the PPE, contains a 64-bit PowerPC Architecture 
core. It complies with the 64-bit PowerPC Architecture [19] and can run 32-bit and 
64-bit operating systems and applications. The second type of processor element, 
the SPE, is optimized for running compute-intensive SIMD applications; it is not 
optimized for running an operating system. The SPEs are independent processor 
elements, each running their own individual application programs or threads. Each 
SPE has full access to shared memory, including the memory-mapped I/O space 
implemented by multiple DMA units. There is a mutual dependence between the 
PPE and the SPEs. The SPEs depend on the PPE to run the operating system, and, in 
many cases, the top-level thread control for an application. The PPE depends on the 
SPEs to provide the bulk of the application performance. 
 
  

Figure 1-1 Cell BE Block Diagram 
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The SPEs are designed to be programmed in high-level languages, such as (but 
certainly not limited to) C/C++. They support a rich instruction set that includes 
extensive SIMD functionality. However, like conventional processors with SIMD 
extensions, use of SIMD data types is preferred, not mandatory. For programming 
convenience, the PPE also supports the standard PowerPC Architecture instructions 
and the vector/SIMD multimedia extensions.  
 
To an application programmer, the Cell BE processor looks like a single core, dual 
threaded processor with 8 additional cores each having their own local store. The 
PPE is more adept than the SPEs at control-intensive tasks and quicker at task 
switching. The SPEs are more adept at compute-intensive tasks and slower than the 
PPE at task switching. However, either processor element is capable of both types of 
functions. This specialization is a significant factor accounting for the order-of-
magnitude improvement in peak computational performance and chip-area-and-
power efficiency that the Cell BE processor achieves over conventional PC 
processors.  
 
The more significant 
difference between 
the SPE and PPE lies in 
how they access 
memory. The PPE 
accesses main storage 
(the effective-address 
space) with load and 
store instructions that 
move data between 
main storage and a 
private register file, 
the contents of which 
may be cached. PPE memory access is like that of a conventional processor 
technology, which is found on conventional machines. The SPEs, in contrast, access 
main storage with direct memory access (DMA) commands that move data and 
instructions between main storage and a private local memory, called a local store or 
local storage (LS). An SPEs instruction-fetches and load and store instructions access 
its private LS rather than shared main storage, and the LS has no associated cache. 
This 3-level organization of storage (register file, LS, main storage), with 
asynchronous DMA transfers between LS and main storage, is a radical break from 
conventional architecture and programming models, because it explicitly parallelizes 
computation with the transfers of data and instructions that feed computation and 
store the results of computation in main storage.  
 
  

Figure 1-2 Cell Broadband Engine 
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One of the motivations for this radical change is that memory latency, measured in 
processor cycles, and has gone up several hundredfold from about the years 1980 to 
2000. The result is that application performance is, in most cases, limited by memory 
latency rather than peak compute capability or peak bandwidth. When a sequential 
program on a conventional architecture performs a load instruction that misses in 
the caches, program execution can come to a halt for several hundred cycles 
(techniques such as hardware threading can attempt to hide these stalls, but it does 
not help single threaded applications). Compared to this penalty, the few cycles it 
takes to set up a DMA transfer for an SPE are a much better trade-off, especially 
considering the fact that each of the eight SPEs DMA controller can have up to 16 
DMA transfer in flight simultaneously. Anticipating DMA needs efficiently can 
provide “just in time delivery” of data which many reduce this stall or eliminate them 
entirely. Conventional processors, even with deep and costly speculation, manage to 
get, at best, a handful of independent memory accesses in flight.  
 
One of the SPEs DMA transfer methods supports a list (such as a scatter-gather list) 
of DMA transfers that is constructed in an SPEs local store, so that the SPEs DMA 
controller can process the list asynchronously while the SPE operates on previously 
transferred data. In several cases, this approach to accessing memory has led to 
application performance exceeding that of conventional processors by almost two 
orders of magnitude significantly more than one would expect from the peak 
performance ratio (approximately 10x) between the Cell BE processor and 
conventional PC processors. The DMA transfers can be set up and controlled by the 
SPE that is sourcing or receiving the data or in some circumstances by the PPE or 
another SPE.  
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1.2  Hardware Overview 
 

1.2.1  PowerPC Processor Element [3] 
 

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit 
RISC processor that conforms to the PowerPC Architecture, version 2.02, with the 
vector/SIMD multimedia extensions. Programs written for the PowerPC 970 
processor, for example, should run without modification on the CBEA processors. 
 
The PPE is responsible for overall control of a system. It runs the operating systems 
for all applications running on the PPE and SPEs. The PPE consists of two main units, 
the PowerPC processor unit (PPU) and the PowerPC processor storage subsystem 
(PPSS), shown in Figure 1.3. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The PPU performs instruction execution. It has a level-1 (L1) instruction cache and 
data cache and six execution units. It can load 32 bytes and store 16 bytes, 
independently and memory coherently, per processor cycle. The PPSS handles 
memory requests from the PPU and external requests to the PPE from SPEs or I/O 
devices. It has a unified level-2 (L2) instruction and data cache. The PPU and the PPSS 
and their functional units are shown in Figure 1.4.  

Figure 1-3 PPE Bloch Diagram 
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The PPU executes the PowerPC Architecture instruction set and the vector/SIMD 
multimedia extension instructions [17]. It has duplicate sets of the PowerPC and 
vector user-state register files (one set for each thread) plus one set of the following 
functional units: 
 
 

 
 Instruction Unit (IU) The IU performs the instruction-fetch, decode, dispatch, 

issue, branch, and completion portions of execution. It contains the L1 
instruction cache, which is 32 KB, 2-way set-associative, reload-on-error, and 
parity protected. The cache-line size is 128 bytes. 

 Load and Store Unit (LSU) the LSU performs all data accesses, including 
execution of load and store instructions. It contains the L1 data cache, which 
is 32 KB, 4-way set-associative, write-through, and parity protected. The 
cache-line size is 128 bytes. 

 Vector/Scalar Unit (VSU) The VSU includes a floating-point unit (FPU) and a 
128-bit vector/SIMD multimedia extension unit (VXU), which together 
executes floating-point and vector/SIMD multimedia extension instructions. 

 Fixed-Point Unit (FXU) The FXU executes fixed-point (integer) operations, 
including add, multiply, divide, compare, shift, rotate, and logical 
instructions. 

 Memory Management Unit (MMU) The MMU manages address translation 
for all memory accesses. It has a 64-entry segment lookaside buffer (SLB) and 
1024-entry, unified, parityprotected translation lookaside buffer (TLB). It 
supports three simultaneous page sizes 4 KB, plus two sizes selectable from 
64 KB, 1 MB, or 16 MB. 

 

Figure 1-4 PPE Functional Units 
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The 128-bit VXU operates concurrently with the FXU and the FPU, as shown Figure  
1-5. All vector/SIMD multimedia extension instructions are designed to be easily 
pipelined. Parallel execution with the fixed-point and floating-point instructions is 
simplified by the fact that vector/SIMD multimedia extension instructions do not 
generate exceptions (other than data-storage interrupts on loads and stores), do not 
support complex functions, and share few resources or communication paths with 
the other PPE execution units.  

 
The PPSS handles all memory accesses by the PPU and memory-coherence 
(snooping) operations from the element interconnect bus (EIB). The PPSS has a 
unified, 512 KB, 8-way set-associative, write-back L2 cache with error-correction 
code (ECC). Like the L1 caches, the cache-line size for the L2 is 128 bytes. The cache 
has a single-port read/write interface to main storage that supports eight software-
managed data-prefetch streams. It includes the contents of the L1 data cache but is 
not guaranteed to contain the contents of the L1 instruction cache, and it provides 
fully coherent symmetric multiprocessor (SMP) support. The PPSS performs data-
prefetch for the PPU and bus arbitration and pacing onto the EIB. Traffic between 
the PPU and PPSS is supported by a 32-byte load port (shared by MMU, L1 
instruction cache, and L1 data cache requests), and a 16-byte store port (shared by 
MMU and L1 data cache requests). The interface between the PPSS and EIB supports 
16-byte load and 16-byte store buses. One storage access occurs at a time, and all 
accesses appear to occur in program order. The interface supports resource 
allocation management, which allows privileged software to control the amount of 
time allocated to various resource groups. The L2 cache and the TLB use 
replacement management tables, which allow privileged software to control the use 
of the L2 and TLB. This software control over cache and TLB resources is especially 
useful for real-time programming.  

Figure 1-5 Concurrent Execution of Fixed-Point, Floating-Point, and Vector Extension Units 
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1.2.2  Synergistic Processor Element [3] 
 

The eight Synergistic Processor Elements (SPEs) execute a new single instruction, 
multiple data (SIMD) instruction set, the Synergistic Processor Unit Instruction Set 
Architecture. Each SPE is a 128-bit RISC processor specialized for data-rich, compute-
intensive SIMD and scalar applications. It consists of two main units, the synergistic 
processor unit (SPU) and the memory flow controller (MFC), shown in Figure 1.6. 
 
The SPEs provide a deterministic operating environment. They do not have caches, 
so cache misses are not a factor in their performance. Pipeline-scheduling rules are 
simple, so it is easy to statically determine the performance of code and for software 
to generate high-quality, static schedules. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The intent of the synergistic processor unit (SPU) is to fill a void between general-
purpose processors and special-purpose hardware. General-purpose processors aim 
to achieve the best average performance on a broad set of applications. Special-
purpose hardware aims to achieve the best performance on a single application. The 
SPU, however, aims to achieve leadership performance on critical workloads for 
game, media, and broadband systems. The intent of the SPU and the Cell Broadband 
Engine Architecture (CBEA) is to provide a high degree of control to expert (real-
time) programmers while maintaining ease of programming. 
 
 
 
 
 

Figure 1-6 SPE Block Diagram 
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The SPU implements its own instruction set architecture (ISA). The main 
characteristics of this architecture are: 

 Load-store architecture with sequential semantics, using a set of 128 
registers, each of which is 128 bits wide. 

 Single-instruction, multiple-data (SIMD) capability 
o Sixteen 8-bit integers 
o Eight 16-bit integers 
o Four 32-bit integer or four single-precision floating-point values 
o Two double-precision floating point 

 SPU load and store instructions access only the associated local storage 
register 

 Channel input/output for memory flow controller (MFC) control (used for 
external data access) 

 
The SPU has the following restrictions: 

 No direct access to main storage (access to main storage using MFC facilities 
only) 

 No distinction between user mode and privileged state 
 No access to critical system control such as page-table entries (PowerPC 

Processor Element [PPE] privileged software should enforce this restriction) 
 No synchronization facilities for shared local storage access 

 
The intent of the SPU is to enable applications that require a high computational unit 
density and that can effectively use the instruction set provided. A significant 
numbers of SPU cores in a system, managed by a PPE, allows for cost-effective 
processing over a wide range of applications. [4] 
 
The SPU fetches instructions from its unified (instructions and data) 256 KB local 
storage (LS), and it loads and stores data between its LS and its single register file for 
all data types, which have 128 registers, each 128 bits wide. The SPU has four 
execution units, a DMA interface, and a channel interface for communicating with its 
MFC, the PowerPC Processor Element (PPE) and other devices (including other SPEs). 
 
Each SPU is an independent processor element with its own program counter, 
optimized to run SPU programs. The SPU fills its LS by requesting DMA transfers from 
its MFC, which implements the DMA transfers using its DMA controller. Then, the 
SPU fetches and executes instructions from its LS, and it loads and stores data to and 
from its LS 
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The main SPU functional units are shown in Figure 1.7. These include the synergistic 
execution unit (SXU), the LS, and the SPU register file unit (SRF). The SXU contains six 
execution units. The SPU can issue and complete up to two instructions per cycle, 
one on each of the two (odd and even) execution pipelines. Whether an instruction 
goes to the odd or even pipeline depends on the instruction type. The instruction 
type is also related to the execution unit that performs the function. 

 
The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, non caching 
memory. It stores all instructions and data used by the SPU. It supports one access 
per cycle from either SPE software or DMA transfers. SPU instruction prefetches are 
128 bytes per cycle. SPU data access bandwidth is 16 bytes per cycle, quadword 
aligned. DMA-access bandwidth is 128 bytes per cycle. DMA transfers perform a 
read-modify-write of LS for writes less than a quadword. 
 
The SPU accesses its LS with load and store instructions, and it performs no address 
translation for such accesses. Privileged software on the PPE can assign effective-
address aliases to LS. This enables the PPE and other SPEs to access the LS in the 
main-storage domain. The PPE performs such accesses with load and store 
instructions, without the need for DMA transfers. However, other SPEs must use 
DMA transfers to access the LS in the main-storage domain. When aliasing is set up 
by privileged software on the PPE, the SPE that is initiating the request performs 
address translation.  

Figure 1-7 SPU Functional Units 

 



Technical University of Crete | Microprocessor & Hardware Laboratory |www.mhl.tuc.gr 20 

 

1.2.3  Element Interconnect Bus [5] 
 

The EIB is the communication path for commands and data between all processor 
elements on the Cell BE processor and the on-chip controllers for memory and I/O. 
The EIB supports full memory-coherent and symmetric multiprocessor operations. 
The EIB manages four 16-byte-wide data rings, which interconnect all units on the 
chip. Each ring transfers 128 bytes at a time. Two rings run clockwise, and two rings 
run counterclockwise, Figure 1.8 [6]. Each unit has one on-ramp and one off-ramp. 
Units attached to the rings can drive and receive simultaneously. Multiple transfers 
can be in-process concurrently on each ring. The EIB internal maximum bandwidth is 
96 bytes per processor cycle, and it can support more than 100 outstanding DMA 
memory requests between main storage and the SPEs. The EIB does not support any 
particular quality-of-service (QoS) behavior other than to guarantee forward 
progress. However, the EIB contains a token manager unit, and software can use it to 
regulate the rate at which particular devices are allowed to make EIB command 
requests.  

 

  

Figure 1-8 Element Interconnect Bus Diagram 
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1.3 1.3 PlayStation 3 

1.3.1 Central Processing Unit  

The PS3, Figure 1.9, uses the Cell microprocessor [15], which is made up of one 

3.2 GHz PowerPC-based "Power Processing Element" (PPE) and six accessible 

Synergistic Processing Elements (SPEs). [7] A seventh runs in a special mode and is 

dedicated to aspects of the OS and security, and an eighth is a spare to improve 

production yields. PlayStation 3's Cell CPU achieves 204 GFLOPS single precision float 

and 15 GFLOPS double precision. The PS3 has 256MB of Rambus XDR DRAM, clocked 

at CPU die speed. As of firmware update 2.01, 32MB of the XDR memory is reserved 

by the PS3's XrossMediaBar user interface, more XDR memory is required for 

multiple XMB operations to function at one time.  

 

1.3.2  Graphics Processing Unit 

The graphics processing unit [16], according to Nvidia, is based on the NVIDIA G70 

(previously known as NV47) architecture. The GPU makes use of 256MB GDDR3 RAM 

clocked at 700 MHz with an effective transmission rate of 1.4 GHz and up to 224MB 

of the 3.2 GHz XDR main memory via the CPU (480MB max).  

1.3.3 1Operating System 

The PlayStation 3 in selected models is capable of running Linux as well as other 
operating systems if installed on the console's hard drive. Many distributions are 
compatible with the console. 

 Debian [8] 
 Fedora 8 [9] 
 Gentoo [10] 
 OpenSUSE [11] 
 Ubuntu [12] 
 Yellow Dog Linux [13] 

Any Linux operating system has access to 6 of the 7 Synergistic Processing Elements; 
Sony implements a hypervisor restricting access to the RSX. IBM provides an 
introduction to programming parallel applications on the PlayStation 3. The 
PlayStation 3 Slim model removed the possibility to install Linux or any other 
operating systems using the "Other OS" feature. [7] [15] [16] 

1.3.4 Connectivity 

The PS3 supports numerous SDTV and HDTV resolutions (from 480i/576i up to 

1080p) and connectivity options (such as HDMI 1.3a and component video). In terms 

of audio, the PS3 supports a number of formats, including 7.1 digital audio, Dolby 

TrueHD, DTS-HD Master Audio and others; audio output is possible over stereo RCA 

cables (analog), optical digital cables, or HDMI. For the optical disc drive, a wide 

variety of DVD and CD formats are supported, as well as Blu-ray Discs. A 20, 40, 60, 

80, 120, 160 or 250 GB 2.5 in SATA 150 hard disk is pre-installed. In the 60 GB and 

80 GB configurations, flash memory can also be used, either Memory Sticks; 
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CompactFlash cards; or SD/MMC cards. All models support USB memory devices; 

flash drives and external hard drives are both automatically recognized. However, 

they must be formatted with the FAT32 file system—the PS3 does not support the 

NTFS file system that is the standard in the Windows NT family. For communication, 

the system sported four USB 2.0 ports at the front on the 20 and 60 GB models as 

well as the NTSC 80 GB model, but the 40 GB and 80 GB PAL models only have 2 USB 

ports. All models (80 and 160 GB) released after August 2008 have been reduced to 

two USB ports, as well as dropping CompactFlash and SD card support. One Gigabit 

Ethernet port, Bluetooth 2.0 support, and built-in Wi-Fi are available on the 40, 60, 

80, 120, and 160 GB versions. [15] 

1.3.5 Universal Power Supply  

The power supply [15] can operate on both 60 Hz and 50 Hz power grids. It 
uses a standard C14 IEC connector and a C13 power cord appropriate for the region 
it is being used in. The power supply on the "fat" model is capable of delivering 
approximately 380 W, although the PS3 has never been measured using this much 
power. The power supply was reduced to 250 watts in the 120 GB "Slim" model.  

1.3.6 Disc Drive 

The PlayStation 3 disc drive [15] is an all-in-one type allowing the use of different 
formats. The Blu-ray drive is a 2× speed, the DVD drive is an 8× speed and the 
Compact Disc drive is a 24× speed.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-9 Playstation 3 
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2 The Human Gait Challenge Problem [14] 
 

2.1  Introduction 
 

Gait is the pattern of movement of humans, over a surface (walking). There is a 
variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and 
energetic efficiency. Each human has different gait due to differences in anatomy 
that prevent use of certain gaits, or simply due to evolved innate preferences as a 
result of habitat differences. The complexity of biological systems and interacting 
with the environment make gait distinctions confused at best. Gaits are typically 
classified according to footfall patterns, but recent studies often prefer definitions 
based on mechanics. [37] 
 
The human gait study has launched several years ago. From the aspect of 
Psychology, a seldom recent search proved that people have the ability to recognize 
faster human movement from other kind of movement. Since then several 
experiments have been done in order to show that human can recognize the gender, 
the motion direction even if possible object that may be carried. Especially for gait 
recognition, most of searches have been focused on discriminations of human 
motion kinds, such as running, walking, jogging or climbing stairs.  
 
It is only recently that human gait recognition (HumanID) has attracted the attention 
and been investigated as an active sector of computer vision. The majority of papers 
report results, limited in data set size, less than 30 people, taken indoors or under a 
limited number of conditions. These papers have developed gait recognition from its 
begging. In order to mature and estimate the potential of such a paper, larger and 
more various data sets are required. 
 
HumanID Gait Challenge Problem [14] has been motivated from evolution of gait 
recognition, while the answers of the questions below were one more incentive: 

 Is progress being made in gait recognition of humans? 
 To what extent does gait offer potential as an identifying biometric? 
 What factors affect gait recognition and to what extent? 
 What are the critical vision components affecting gait recognition from 

video? 
 What are the strengths and weaknesses of different gait recognition 

algorithms? 
 
HumanID Gait Challenge Problem has evolved gait recognition by providing a 
foundational framework in reference to these issues. It includes a developed data 
set of 12 experiments and a baseline algorithm. The Baseline Algorithm represents a 
performance report and an initial characterization of automatic gait recognition. 
 
The data sets of HumanID Gait Challenge Problem have collected outdoors. The 
outdoor choice is based on observations that  
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 Several indoor data sets are available, 
 Nearly perfect gait recognition performances have been reported on indoor 

data sets, and 
 Gait biometrics is most appropriate in outdoor at-a-distance settings, where 

other biometric sources are harder to acquire.   
 
 
Each data set corresponds to HumanID Gait Challenge Problem that includes the gait 
variations based on five covariates. These covariates were chosen because they 
affect either human's gait or the extraction of gait features from images. For 
instance, surface type, shoe-wear type, and weight carried affect human gait in 
outdoor. Video data are also affected from the point of view. Furthermore, human 
gait could differ from time to time. It is important to understand the meaning of the 
factors above. These five covariates were selected from a larger list of intended 
factors that affected human's gait. There are also possible interesting covariates such 
as the mood of a person, clothing, speed, and backpack, which were not in view. 
 
Two different conditions were chosen for each of these five covariates:  

 two camera angles,  
 two shoe types,  
 two surfaces (grass and concrete),  
 with and without carrying a briefcase, and  
 two different dates six months apart.  

 
It was attempted to acquire a person’s gait in all possible combinations of these five 
factors and so there are up to 32 sequences for some persons. The baseline 
algorithm is based on spatial-temporal correlation between silhouettes. In order to 
reduce the effects of clothing texture artifacts, comparisons are made with the 
silhouettes. 
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2.2 Data Set [14] 

 
The HumanID gait challenge problem data set was designed to advance the state-of-
the-art in automatic gait recognition and to characterize the effects on performance 
of five conditions. These two goals were achieved by collecting data on a large data 
set consisted of 122 persons that fulfills the requirements of current standards in 
gait.  
 
The individuals were submitted to 32 different conditions, which were the result of 
all possible combinations of the five covariates with two values each. 
Each of the five covariate 
has two values, all 
possible combinations of 
these values are the 32 
different conditions to 
which the individuals 
were submitted. 
  
During the sampling, each 
subject walked several 
times, counterclockwise, 
around each of two 
similar sized and shaped 
elliptical courses. The 
basic setup is illustrated 
in Figure 2.1. The elliptical 
courses were 
approximately 15 meters 
on the major axis and five 
meters on the minor axis. 
Both courses were 
outdoors.  
One course was laid out on a flat concrete walking surface. The other was laid out on 
a typical grass lawn surface. Each course was viewed by two cameras, whose lines of 
sight were not parallel, but verged at approximately 30 degrees, so that the whole 
ellipse was the same visible from each of the two cameras. When a person walked 
along the rear portion of the ellipse, their view was approximately fronto-parallel. 
Figure 2.2 shows one sample frame from each of the four cameras on the two 
surfaces. The orange traffic cones marked the major axes of the ellipses. The 
checkered object in the middle is a calibration object that can be used by future 
algorithms to calibrate the two cameras. 
 
 
 
 
 

Figure 2-1 Camera setup for the gait data acquisition 
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Although data from one full elliptical circuit for each condition is available, the 
challenge experiments on the data are from the rear portion of the ellipse. The 
motivations for the elliptical path are  

 to challenge the development of algorithms that are robust with respect to 
variations in the fronto-parallel assumption and  

 to provide a data sequence that includes all the views of a person, in order to 
assist the future development of 3D model-based approaches or 3D visual 
hull-based approaches.  

 
For such approaches, the calibration object and the two views were imported. 
Cameras capture 30 frames per second with a shutter speed of 1/250 second and 
with autofocus left on. 
The following metadata was collected on each subject: sex (75 percent male), age 
(19 to 59 years), height (1.47 m to 1.91 m), weight (43.1 kg to 122.6 kg), foot 
dominance (mostly right), type of shoes (sneakers, sandals, etc.), and heel height.  
 
 
 
 
 

Figure 2-2 Frames from (a) the left camera for concrete surface, (b) the right camera for concrete 

surface, (c) the left camera for grass surface and (d) the right camera for grass surface 
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Subjects were asked to bring a second pair of shoes so that they could walk the two 
ellipses a second time in a different pair of shoes. A little over half of the subjects 
walked in two different shoe types. In addition, subjects were also asked to walk the 
ellipses carrying a briefcase of known weight (approximately 6 kilograms). Most 
subjects walked both carrying and not carrying the briefcase. The values of each of 
the covariates: 

 Surface type by G for grass and C for concrete, 
 Camera by R for right and L for left, 
 Shoe type by A or B, 
 NB for not carrying a briefcase and BF for carrying a briefcase, and 
 The acquisition time, May and November, simply by M and N. 

 
After processing, video files were stored to computer as one 24-bit, RGB, PPM file 
per frame of 720x480 resolution. Each subject walking several laps of the course. For 
the gait data set, frames from the last complete lap were saved, which are from 600 
to 700 frames in length. It is important to be marked that although the data set 
contains frames from one whole lap, the results in this paper are on frames from the 
back portion of the ellipse. A subject’s size in the back portion of the ellipse is on 
average 100 pixels in height and 25 to 50 pixels in width. 
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2.3 The Challenge Experiments [14] 
 

The second aspect of the challenge problem is a set of 12 challenge experiments. 
The 12 experiments are designed to investigate the effect of five factors on 
performance. The five factors are studied not only individually but also in 
combinations. The results of the baseline algorithm for the 12 experiments provide a 
difficulty ordering of the experiments. 
 
In order to allow comparison among a set of experiments and limit the total number 
of experiments, a gallery was fixed as a control. Then, 12 probe sets were created to 
examine the effects of different covariates on performance. The gallery consists of 
sequences with the following covariates: Grass, Shoe Type A, Right Camera, No 
Briefcase, and collected in May and in November. This set was selected as the gallery 
because it was one of the largest for a given set of covariates. The last two 
experiments were focused on studying the impact of time. The time covariate 
implicitly gave the chance of frames of different shoes and clothes because it was 
not required from subjects to wear the same clothes or shoes in both data 
collections. 
 

2.4 The Baseline Algorithm [14] 
 

The third part of HumanID Gait Challenge Problem was the baseline algorithm that 
concerns future performance improvements. Inspired from the recent success of 
template-based recognition strategies in computer vision, a four-part algorithm that 
relies on silhouette template matching was developed. The first part defines semi-
automatically bounding boxes around the moving person in each frame of a 
sequence. The second part extracts silhouettes from the bounding boxes. The third 
part computes the gait period from the silhouettes. The gait period is used to 
partition the sequences for spatial-temporal correlation. The fourth part performs 
spatial-temporal correlation to compute the similarity between two gait sequences. 
The baseline algorithm does not require the specification of any parameters—it is 
parameter free. 
 

2.4.1  First Part 
 

The BoundingBox (Figure 2.3) definition in each frame is a semiautomatical 
procedure. User defines coordinates on each frame that include human. The 
coordinate values are registered manually in an XML file, which is unique for each 
probe sample. The XML files may have coordinates of frames in which human 
doesn't move fronto-parallel, these coordinates are signed as null. The ReadXML 
function is responsible for reading an XML file in order to rebound coordinates 
values. 
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2.4.2  Second Part 
 

During the second part, the human silhouette is extracted. As silhouette it is defined 
the pixels that consist human Figure 2.4. The procedure is presented on the 
flowchart below and it is explicated further.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-4 Human Silhouette 
 

Figure 2-3 Sample Bounding boxed image data as viewed from (a) left camera on 
concrete, (b) right camera on concrete, (c) left camera on grass and (d) right camera on 

grass 
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Figure 2-5 Baseline Algorithm Flowchart 

 

 
 
As the flowchart presents two executable files are used in order to extract the 
silhouette. The first executive program (Background) computes the 
SuperBoundingBox, a pixel area, the coordinates of which are the maximum and the 
minimum of all not null BoundingBox. Every BoundingBox is included in 
SuperBoundingBox. The next step is the computation of the background pixels 
statistics for each frame. As background pixels, for each frame, are defined the pixels 
that consists the SuperBoundingBox while simultaneously differ from the 
BoundingBox pixels. This procedure is implemented by the CollectStatsFromFile 
function which accesses each frame and loads the RGB values to memory. Each pixel 
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statistics, average and covariance, are computed by calling ComputeStatistics 
function. After computing, statistics of each pixel are saved to a binary file for future 
usage, by calling SaveBackgroundAsBinary. 
 
The second executive program (Difference) loads the BoundingBoxes of each frame 
in memory using ReadXML and the statistics that were computed with Background 
and were saved as binary file using ReadStatistics. After loading all the previous said 
data, the next step is the computation oh Silhouette for each frame separately. 
Firstly, ReadPPMImage function reads the frame and loads the RGB values for each 
pixel in memory. Then, for each one pixel of BoundingBox, PerformDifference 
function computes the Mahalanobis Distance for every pixel value R, G, and B using 
the average which was found with Background. The computation values are saved in 
a new image in memory. The next stage is smooth of image that was produced 
previously. It has been found that if the computed Mahalanobis distance array 
(image) is smoothed by using a 9x9 pyramidal-shaped averaging filter or, 
equivalently, two passes of a 3x3 averaging filter, the visual quality of the silhouette 
and the recognition performance improves. Thus, by calling SmoothDifference 
function the new image is being smooth by a two-pass 3x3 averaging filter. The 
convergence of the EM process is faster with these smoothed distances than 
without, possibly due to a reduction in the noise of the computed Mahalanobis 
distances. The previous procedures have as a result an image, the pixels of which 
include smooth values of Mahalanobis Distance [22]. According to the pixel value, 
there are Background or Foreground pixels. The present version decides adaptively 
on the foreground and background labels for each frame by estimating the 
foreground and background likelihood distributions using the iterative Expectation 
Maximization (EM) procedure. At each pixel, indexed by k, we have a two-class 
problem based on a scalar observation—the Mahalanobis distance, dk. We model 
the observations as a two-class, , Gaussian 
Mixture Model (GMM),  

 

Where the class likelihood 

 

 

For each pixel, we would like to estimate the posterior .We iteratively 
estimate this using the standard EM update equations reproduced below 
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The EM process is initialized by choosing 
 

 

With this initialization strategy, the process stabilizes fairly quickly, within 15 or so 
iterations. It is worth mentioning a few words about pre and post processing steps 
that impact overall performance.  Computing each pixel possibility, it is decided 
using MakeDecision where each pixel belong to, by using a simple comparison 
between  and . First, isolated, small, noisy regions were 
eliminated by keeping only the foreground region with the largest area. Second, this 
foreground region is scaled so that its height is 128 pixels and occupies the whole 
height of the 128x88 pixel-sized output silhouette frames. The scaling of the 
silhouette offers some amount of scale invariance and makes the fast computation 
of a similarity measure easier. The silhouette was also centered along the horizontal 
direction to compensate for errors in the placement of the bounding boxes. The 
silhouette is shifted in the horizontal direction so that the center column of the top 
portion of the silhouette is at column 44. After each frame scaling and shifting, all 
Silhouette frames are saved in a PBM file. 
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2.4.3  Third Part 
 

The next step in the baseline algorithm is gait period detection. Gait period,  is 

estimated by a simple strategy. The number of foreground pixels in the silhouette is 
counted in each frame over time, . This number will reach a maximum when 
the two legs are farthest apart (full stride stance) and drop to a minimum when the 
legs overlap (heels together stance). To increase the sensitivity, the number of 
foreground pixels was considered mostly from the legs, which are selected simply by 
considering only the bottom half of the silhouette. Figure 2.5 shows the number of 
pixels during gait. The two consecutive strides constitute a gait cycle. The median of 
the distances is computed between minima, skipping every other minimum. Using 
this strategy, two estimates of the gait cycle are gotten, depending on whether the 
first minimum is skipped or not. The gait period is estimated by the average of these 
two medians. It is important to note that this strategy works for near fronto-parallel 
views, which is the view of choice for gait recognition and would not work for frontal 
view
s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-6 the number of foreground pixels during gait 
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2.4.4  Forth Part 
 

The output from the gait recognition algorithm is a complete set of similarity scores 
between all gallery and probe gait sequences. Similarity scores are computed by 
spatial-temporal correlation. As a probe sequence of M frames can be denoted by 

 and as a gallery sequence of N frames can be denoted 
by . The final similarity score is constructed out of matches 
of disjoint portions of the probe with the gallery sequence. Specifically, the probe 
sequence is partitioned into disjoint subsequences of  contiguous frames, 

where  is the estimated period of the probe sequence from the previous step. It 

is remarkable the fact that the starting frame of each partition is not constrained to 
be at a particular stance. As a  probe subsequence can be denoted by

. The gallery gait sequence consists of all 

silhouettes extracted in the gallery sequence from the back portion of the elliptical 
path. It is significant to note that this gallery sequence is not partitioned. 
 
Each of the subsequences  is correlated with the entire gallery sequence . 
There are three ingredients to the correlation computations: frame correlation, 
correlation between  and , and similarity between a probe sequence and a 
gallery sequence, comparing and . 
 
At the core of the above computation is the need to compute the similarity between 
two silhouette frames,  which is defined as the ratio of the 
number of pixels in their intersection to their union. This measure is also called the 
Tanimoto similarity measure [21], defined between two binary feature vectors. Thus, 
if the number of foreground pixels can be denoted in silhouette by Num(S), then we 
have,  

 

It is important to be marked the fact that since the silhouettes have been prescaled 
and centered, it is not necessary to consider all possible translations and scales 
during the computing of frame-to-frame similarity. The next step is to use frame 
similarities to compute the correlation between and  

 

The median value of the maximum correlation of the gallery sequence with each of 
these probe subsequences is chosen as more suitable measure of similarity. Other 
choices such as the average, minimum, or maximum did not result in better 
performance.  
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3 Implementation 

3.1 Code Profile 

Understanding of the computing intensive functions is the most important part of 
this thesis. In order to achieve our goal, we used Intel Vtune Performance Analyzer 
9.0 [23] and the clock() C++ function. The results of Vtune Analyzer led us to the 
conclusion that the most computing intensive executable files are Fast Similarity and 
Difference, especially its GMM_EM function. Clock function measures 
simultaneously the total execution time and the clock cycles approximately. 
However, the Vtune Analyzer results of clock cycles were far different from the 
approximate measures. After search, we found out that the hard disk read and write 
calls were responsible for this difference, as Vtune Analyzer does not measure the 
clock cycles which are necessary for the hard disk access. 
 
In order to understand and utilize all Cell BE capabilities, it was decided to be made 
some code modifications. The main code modification was the elimination of hard 
disk access. To achieve this, we had to join the five executable files to a unified 
project. This code development had as a result, a single executable file that 
implements the Baseline Algorithm. We actually keep the results of each part of the 
algorithm into memory instead of using hard disk. The rest code modifications 
concern the elimination of some useless loop branches and more efficient memory 
management.   

 

Figure 3-1 Code improvement 
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Table 3-1 Code improvement  
 

After code improvement and the extract of the hard disk read write calls the new 
executable file demands less execution time. Insomuch that, we studied Cell BE 
capabilities, using the modified code. The diagram below presents a percentage 
depiction of each function execution time. The algorithm executed in three x86 
processors and in Cell BE using only the PowerPC Processing Element (PPE).     
 
 

 
Figure 3-2 The proportion of the functions in the overall execution time of the code.  
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Table 3-2 The execution time of the functions 

 

 

From the diagram above, we conclude that three most computing intensive 
functions are GMM_EM, FastSimilarity and CollectStatsFromFile. The improvement 
of the first two will be presented in next sections. While, the third function, 
CollectStatsFromFile is not easily improvable. This function read the frames and its 
performance is based on the hard disk capabilities. The first program version used to 
read the whole frame. We improved this by constrain reading to the necessary frame 
section only.    
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3.2 Programming Models [26]  

 
There are several types of programming models that use the Cell BE Synergistic 
Processor Elements (SPEs). The most important types of these are:  

 Function-Offload Model,   
 Device-Extension Model,   
 Computation-Acceleration Model,   
 Streaming Model,   
 Shared-Memory Multiprocessor Model,   
 Asymmetric-Thread Runtime Model,   
 User-Mode Thread Model. 

 
Function-Offload Model 
In the Function-Offload Model, the SPEs are used as accelerators for performance-
critical procedures. This model is the quickest way to effectively use the Cell BE with 
an existing application. In this model, the main application runs on the PPE and calls 
selected procedures to run on one or more SPEs. The Function-Offload Model is 
sometimes called the Remote Procedure Call (RPC) Model. The model allows a PPE 
program to call a procedure located on an SPE as if it were calling a local procedure 
on the PPE. This provides an easy way for programmers to use the asynchronous 
parallelism of the SPEs without having to understand the low-level workings of the 
MFC DMA. In this model, we identify which procedures should execute on the PPE 
and which should execute on the SPEs. The PPE and SPE source modules must be 
compiled separately, by different compilers. 
 

Device-Extension Model  
The Device Extension Model is a special case of the Function-Offload Model in which 
the SPEs act like I/O devices. SPEs can also act as intelligent front ends to an I/O 
device. Mailboxes can be used as command and response FIFOs between the PPE 
and SPEs. The SPEs can interact with I/O devices because:  

 all I/O devices are memory-mapped, and  
 The SPEs DMA transfers support transfer sizes of a single byte. 

I/O devices can use an SPEs signal-notification facility to tell the SPE when 
commands complete. When SPEs are used in the Device-Extension Model, they 
usually run privileged software that is part of the operating system. As such, this 
code is trusted and may be given access to privileged registers for a physical device. 
For example, a secure file system may be treated as a device. The operating system’s 
device driver can be written to use the SPE for encryption and decryption and for 
responding to disk-controller requests on all file reads and writes to this virtual 
device. 
 

Computation-Acceleration Model 
The Computation-Acceleration Model is an SPE-centric model that provides a 
smaller-grained and more integrated use of SPEs. The model speeds up applications 
that use computation-intensive mathematical functions without requiring significant 
rewrite of the applications. Most computation intensive sections of the application 
run on SPEs. The PPE acts as a control and system-service facility. Multiple SPEs work 
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in parallel. The work is partitioned manually by the programmer, or automatically by 
the compilers. The SPEs must efficiently schedule MFC DMA commands that move 
instructions and data. This model either uses shared memory to communicate 
among SPEs, or it uses a message-passing model. 
 

Streaming model  
In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes 
data that streams through. The PPE acts as a stream controller, and the SPEs act as 
stream-data processors. For the SPEs, on-chip load and store bandwidth exceeds off-
chip DMA-transfer bandwidth by an order of magnitude. If each SPE has an 
equivalent amount of work, this model can be an efficient way to use the Cell 
Broadband Engine because data remains inside the Cell Broadband Engine as long as 
possible. 
 

Shared-Memory Multiprocessor Model  
The Cell BE can be programmed as a shared-memory multiprocessor, using two 
different instruction sets. The SPEs and the PPE fully interoperate in a cache-
coherent Shared-Memory Multiprocessor Model. All DMA operations in the SPEs are 
cache-coherent. Shared-memory load instructions are replaced by DMA operations 
from shared memory to local store (LS), followed by a load from LS to the register 
file. The DMA operations use an effective address that is common to the PPE and all 
the SPEs. Shared-memory store instructions are replaced by a store from the register 
file to the LS, followed by a DMA operation from LS to shared memory. The SPEs 
DMA lock-line commands provide the equivalent of the PowerPC Architecture 
atomic-update primitives (load with reservation and store conditional). A compiler or 
interpreter could manage part of the LS as a local cache for instructions and data 
obtained from shared memory. 
 

Asymmetric-Thread Runtime Model  
Threads can be scheduled to run on either the PPE or on the SPEs, and threads 
interact with one another in the same way they do in a conventional symmetric 
multiprocessor. The Asymmetric-Thread Runtime Model extends thread task models 
and lightweight task models to include the different instruction sets supported by 
the PPE and SPE. Scheduling policies are applied to the PPE and SPE threads to 
optimize performance. Although preemptive task-switching is supported on SPEs for 
debugging purposes, there is a runtime performance and resource-allocation cost. 
FIFO run-to-completion models, or lightweight cooperatively-yielding models, can be 
used for efficient task-scheduling. A single SPE can run only one thread at a time; it 
cannot support multiple simultaneous threads. The Asymmetric-Thread Runtime 
Model is flexible and supports all of the other programming models described in this 
chapter. Any program that explicitly calls spe_context_create and spe_context_run is 
an example of the Asymmetric-Thread Runtime Model. 
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User-mode thread model  
The User-Mode Thread Model refers to one SPE thread managing a set of user-level 
functions running in parallel. The user-level functions are called microthreads (and 
also user threads and user-level tasks) . The SPE thread is supported by the operating 
system. The microthreads are created and supported by user software; the 
operating system is not involved. However, the set of microthreads can run across a 
set of SPUs. The SPU application schedules tasks in shared memory, and the tasks 
are processed by available SPUs. For example, in game programming, the tasks can 
refer to scene objects that need updating. Microthreads can complete at any time, 
and new microthreads can be spawned at any time. One advantage of this 
programming model is that the microthreads, running on a set of SPUs under the 
control of an SPE thread, have predictable overhead. A single SPE cannot save and 
restore the MFC commands queues without assistance from the PPE.  
 
In this thesis, for the Baseline Algorithm we choose the Function-Offload Model. This 
choice was selected because there is already an implementation. With this model we 
simply replace the computing intensive functions with SPEs calls. This model does 
not change the sense of algorithm, it just improve the performance with parallelism. 
We developed the GMM_EM and FastSimilarity functions by this model. It was the 
best and the fastest way to improve the performance. 
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3.3 Development Model 

 
This section presents the development model which was followed in order to 
develop the SPEs code so as to be joined to PPE program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3-3 Development Model Flow Chart 
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Port to PPE 
A C++ program is easily executable by the PPE. The only requirement is a compiler 
change into the makefile and the addition of some necessary libraries.    
 
Data Partitioning 
The second part which was important to be studied by using Function-Offload model 
was the appropriate data partitioning. The code conversion to SIMD demands careful 
data partitioning. As we know the number of the available SPEs and the data amount 
that is going to be transferred, the simplest way of data partitioning is the division of 
data amount with the number of SPEs. It is also essential, the data amount that 
would be transferred to each SPE must be multiple of the data that could exist in a 
SIMD instruction.  Insomuch that, the data amount is usually a little bit larger than 
the quotient of the total amount divide by the number of SPEs.  Thus, we transferred 
to the last SPE some useless data that are skipped during program execution.  
 
DMA Transfer 
The transfer way was also studied as there are constrains. All data was memory 16-
byte aligned as it is required by MFC DMA transfers [27]. The data were transferred 
directly, if they were small enough, and they were used repeatedly. Or they were 
transferred by a double buffer, if they were numerous.    
DMA transfers are limited to 16 KB data amount per instruction and the size can only 
be 1, 2, 4, 8, 16 or multiple of 16 bytes. With the double buffer method we achieve 
the better performance for the data transfer, as it can be executed simultaneously 
with the rest code execution. By this way, we transfer the first data and during their 
process we transfer the next. The same way is used for their store back in shared 
memory. There are two ways of MFC DMA transfers. Either the PPE initiates 
transfers data or the SPEs initiate. The second way was selected as it is faster and 
leaves the PPE available for other functions.  
 
SPEs Synchronization 
Sometimes, the results of each SPE must be used from other SPEs. For this reason, 
we store the SPEs results in the main memory, whereas each SPE notifies the others, 
with signals [27], that processing and storing have been completed. In order to 
establish a way of communication among SPEs, the PPE has to map SPEs signals area 
(effective address) to main storage and then send each SPE the effective address of 
the others ESP's signals area. These signals are actually a variation of DMA transfers. 
 
Scale Code 
After we completed all the previous mentioned stages, the simplest part of 
implementation is the code of the process that we have to develop to the SPEs. This 
code is the same with the one that was existed to PPE. Sometimes, some changes 
must be done if there are PPE process instructions with different name from the SPE 
one. Finally, we check if the results and the performance improvement are 
prospective. The ideal improvement is achieved when execution time is as many 
times faster as the SPEs number.  
 
SPE Code optimization  
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For the improvement of the code which was developed till now for the SPEs, we use 
3 methods: Function Inline, SIMD, Loop Unrolling. 
 
An inline function is one for which the compiler copies the code from the function 
definition directly into the code of the calling function rather than creating a 
separate set of instructions in memory. Instead of transferring control to and from 
the function code segment, a modified copy of the function body may be substituted 
directly for the function call. These include the branch and set link for function-call 
entry, and the branch indirect for function-call return. 
 
Generally, the branch avoidance at SPEs is an appropriate method, as the branch 
prediction is computing intensive for the SPEs. In order to achieve this, we use the 
flag-Winline into makefile so as to make the compiler to develop code with function 
inlining.   
 
We can execute the same instruction for more data, using the Single Instruction 
Multiple Data (SIMD) [24] [25]. A general example is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If during the data partitioning the amount of data that is transferred is multiple of 
the data that are used in SIMD instruction, the code conversion is typical. The 
conversion from scale to SIMD code requires attention especially as far as it 
concerns loop branches decrement. If the code results are the desirable, the 
conversion was succeeded. Then, we studied if the required execution time is the 

Figure 3-4 SIMD example 
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ideal. In this case, the ideal time is submultiple of the initial time as many times as 
amount data of the SIMD instruction multiplied with the SPEs number.     
 
We can reduce the number of loop branches by using the Loop Unrolling function. As 
SPEs are computing intensive as far as it concerns branch prediction, we can 
discriminate execution time significantly. 
  
Join with Baseline Algorithm 
We adjust SPEs code to the initial one. As the program is executed by the SPEs, the 
PPE is inactive and waits the execution to be completed, during this time, we can 
make PPE to execute another code part until SPEs complete their execution. By this 
way we achieve even wider parallelization. Finally, we check the time and total 
program results. If they are not the desirable we move on probable improvements.        
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3.4 GMM_EM Development 

 

3.4.1 Port to PPE and Analysis 

 
The GMM_EM function requires a large enough data amount. Also according to 
Vtune Analyzer, there are eight commands that require several clock cycles to 
execute. As first thought we had considered to transfer data for such instructions 
and their execution. But to complete the process, those instructions should be 
executed thousands of times as they are in loop iteration.  But the call of the SPEs in 
each iteration is not beneficial. Calling the SPEs requires a time which is quite large 
compared to the time of execution. Also it is large enough and the time of data 
transfer. To begin with, we implemented a model function in PPE and tried to 
transfer it in SPE. 
  

3.4.2 Data Flow Analysis and Data Partitioning 

 
We are going to estimate the data amount that is required by GMM_EM so as to be 
executed. Then, we are going to search how we can decrease the data amount. The 
function has some thousands double precision numbers, as entry, which consist the 
R level of each pixel. The number of pixel per frame is different and proportional 
with the BoundingBox of each frame. As this number is not constant, we compute 
the minimum and maximum number of pixels that are included in the data frames, 
which we are going to process and the average as well.      
 

 
Table 3-3 GMM_EM Data Flow Analysis for double precision 

 

Having the R value of each pixel we have to compute the observed distance and the 
initialization of posterior probability. Then, we compute the average, mean and 
covariance of posterior probabilities. Once we have all the necessary variables, we 
continue to the calculation of posterior probabilities. If we want to achieve only the 
calculation of posterior probabilities in the SPEs, the amount of data that must be 
transferred is at least three times the amount of R values of pixels. Since the SPEs are 
quite fast in their calculations, it is preferable to load the R of each pixel and 
continue from there the calculations at the SPEs. But data partitioning is quite 
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complicated. Insomuch that, it is preferable to calculate the observed distance 
values for each pixel in the PPE and then transfer to the SPEs to continue his 
calculation. 
 
The amount of data is such that allows us to keep all values for each frame in the 
local memory (LS). In order to have enough local memory (LS) for each frame, it must 
be available at least three SPEs. Having at our disposal at least three SPEs the Data 
Partitioning is quite easy and fast. Thus each SPE will load the data, the amount of 
which will be submultiple of the SPEs number on a SIMD command data. The data 
that may have an instruction SIMD double precision is two. However, due to the fact 
that data implementation is possible, even if just for experimentation, in the form of 
single precision, we consider that data in a SIMD is four. 

 
Table 3-4 GMM_EM Data Flow Analysis for single precision 

 

 

3.4.3 DMA Transfer  

 
Having calculated the Data Partitioning, we must calculate the way of data 
transferring. We will call the DMA transfer command from the SPEs, not only 
because the Data Partitioning allows us to, but also because they are faster. Also, as 
it was decided earlier, all calculations of the function will take place in the SPEs. In 
this way we face a major problem. The problem is how the SPEs will have all the 
addresses that are located the data for each Frame. 
 
The problem was solved by giving the data in a fixed amount array. Because we 
know the maximum amount of data we can use this array. Of course it requires time 
for the initialization and zeroing the unused elements of array. This term is quite 
small compared to the gain time. So we load to the SPEs the address of the fixed 
array. 
 
The next step is to choose whether to load all the data directly or if we use the 
method of double buffer. Because we need all the data to calculate the average at 
the beginning and it is not very computing intensive, necessarily we load all data 
directly and not with the double buffer method. 
 



  47 Microprocessor & Hardware Laboratory |www.mhl.tuc.gr | Technical University of Crete 

 

3.4.4  Synchronization 

 
The way with which we decided to implement the process creates a problem. How 
the SPEs would know that data, which they have to load, have been initialized and 
that they must start their execution. To solve this problem we use mailboxes. Each 
SPE can receive and send mail of 32bit size to and from the PPE. Once we have 
calculated the required data by the SPEs with the above array, the PPE sends a mail 
to each SPE. The SPEs in order to start the process they wait until the mail 
received. Once they complete the process, they send mail to PPE for updating and 
continuing the program. 
  
SPEs should have all the data to calculate the mean, average and covariance. But due 
to the Data Partitioning the data are divided in SPEs. Thus, we calculate the sum of 
the data in each SPE and the result was stored in the main memory. One of the SPEs 
loads the results and calculates the final values. Finally, they are stored back into 
main memory from where they can be uploaded by the SPEs. 
 
Upon completion of the addition, the SPEs send a signal to original SPE that they 
have completed this process and saved the value in main memory. The first SPE 
loads these values and calculates the average and covariance. The data amount is 
very low, 96 - 256 byte. At the end of the calculation the first SPE communicate with 
other SPEs and in the same way as before the other SPEs take the values. It was 
preferred the values to be stored in main memory, because the transfer between 
local memory was not very stable and requires a complex synchronization. The time 
difference between the two methods is negligible compared to the total 
optimization. 
 

3.4.5 Scale Code 
 

The GMM_EM consists of three parts.  The first two compute the average and the 
covariance of data. The third part of GMM_EM calculates new values for our data 
without any dependence. So there is no communication between the 
SPEs. Theoretically the results should be the same and we would continue the 
optimization of SPEs. But the results were not the same, they were varied after the 
tenth digit of decimal point.  During the SPEs using, we had to change the order of 
addition. Due to the fact that the floating point numbers addition is not associative, 
it was displayed a round-off error from the tenth digit after the decimal point.  
 
At this point we wanted to check if there is deterioration in the performance of the 
algorithm due to this difference. For each pixel, we count two possibilities, whether 
it is foreground or background. In following function, the two probabilities were 
compared, and whichever is longer and takes the final price. So compare the pixels 
values of the new and the old implementation. The comparison was carried out at 
double precision and single precision and if precision was not important, we could 
accelerate even more the function by using single precision numbers. 
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Table 3-5 Different pixels due to order of addition 

 
Table 3-6 Different frames due to order of addition 

 

 

 
From the results, we observe that the differences are few and most pixels have no 
difference either in implementation of double precision or in single 
precision. Observing visually the differences, we can see that the varying pixels are 
located borderline of the silhouettes which means that probably is not part of it. The 
results of the algorithm change in such level that do not impact its performance. 
 
  

Figure 3-5 a) Original silhouette frame b) silhouette frame with double precision and addition error 
c) silhouette frame with single precision and addition error 
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3.4.6  SPE Optimization  

 
In order to improve the speed of SPEs we used the function inline method. The 
difference was not evident as there were not many improvements that could be 
made.  
 
Also we used SIMD instructions. The data transferred to the SPEs, they are placed in 
vectors and the amount is multiple of the data vectors either they are double 
precision or they are single precision. In the original process data was in double 
precision form. At this point we had a problem with the implementation speed of 
double precision vector SIMD instructions. Double precision operations have latency 
13 clock cycles. The first six cycles are actually stalls in which no other instruction can 
be issued. The SPU is not only able to process multiple values at once through its 
pipeline, it can also dual-issue instructions through different pipelines. The SPU has 
two pipelines, even (sometimes called pipeline 0 or the execute pipeline) and odd 
(sometimes called pipeline 1 or the load pipeline). While SPU execute a double 
precision operation, Dual-issue is not allowed with these instructions either. [32] 
 
That is why we tested the choice of the data being in single precision. As we saw 
earlier the change in precision is not important. By using single precision form 
instead of double precision, we dramatically increase the speed and the results were 
consistent with the main theory of the processor. Also, the processor is made so as 
to perform known mathematical operations SIMD, such as square root, even faster. 
 
Finally, we did not see any particular increase in the implementation speed of the 
program by the method of Loop Unrolling, as there were not many miss predicted 
branches and the loop branches were few. Particularly, we develop some loops 25 
times and some other completely. 
 

3.4.7  Join Code 

 
Although the final result is much faster than the original, the time of the SPEs data 
process is not negligible. Once the SPEs process data, the PPE remains inactive. But, 
there is the possibility to continue with the program execution. In order to improve 
even further the performance speed we used the inactive period to run another 
process. Specifically, using the buffer logic, we execute a process that initializes data 
for the SPEs. 
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Figure 3-6 GMM_EM Flow Chart 
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3.5 Fast Similarity Development 

 

3.5.1 Port to PPE and Analysis 

 
The second and quite computing intensive process is the comparison of the probe 
samples experiments with the samples of the Gallery. And more specifically, during 
the finding of correlations between the sequences of frames sample and the Gallery 
sample. In comparison there is no dependence between the data and for this reason 
it could easily be parallelized. This part was from the beginning, a separate 
executable file. So we worked on it as a model to convert it from the PPE code to 
SPE. 
 

3.5.2 Data Flow Analysis and Data Partitioning 

 
The frames of the sample are divided into sequences and each sequence frame is 
compared with the entire Gallery sample frames. Separation of sequences in Frames 
is based on the period of human gait. The sequences of these may be from 4 to 7. So 
each core loads one sequence. In case that the sequences are more than the 
available cores, the latter is loaded on the first SPE. Even if this option is not the 
most appropriate in terms of complexity, it was accepted because the difference in 
the duration of this mode and the same data amount sharing is not important. Also 
in this way we can have an easily executable algorithm. 
 

 
Table 3-7 Fast Similarity Data Flow Analysis 

 
Each sample has not a fixed number of frames. The samples have an average of 204 
frames. Each frame size is 1,408 Byte, forming an image of 11,264 bits or 128x88 
pixels. So any comparison of samples, it has to be loaded about 562 KByte total. Each 
SPE loads approximately about 34 frames that represent a sequence of 204 probe 
sample frames and 204 frames of a Gallery sample, a total of about 327 KByte. 
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3.5.3 DMA Transfers 

 
According to the Data Partitioning, we notice that all data that must be loaded on a 
SPE are not fit to be stored in the Local Store. To reduce the transfer time we use the 
method of buffer transfer and we transfer the Gallery of Frames per pieces. Since 
the sequences are fragmented into period frames, we load the frames and a period 
from samples of the Gallery. During the correlation, we transfer the next package. 
Thus, we have every time approximately 68 frames loaded in the Local Store, about 
93,5 KByte. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5.4 Scale Code 

 
The SPEs running a process with data that are not dependent on anything else. So no 
need for synchronization between the SPEs. By moving the code to scale form and by 
running we marked that we get the desired results, so we move to optimization. 

 
  

Figure 3-7 DMA Transfer with double buffer method 
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3.5.5 SPE Code Optimization  

We used through the makefile the method Function Inline, but due to the limited 
code we did not expect significant improvements. It was also developed a full loop 
unrolling in an important section of code and in another 22 times, but we had no 
significant improvement. 
 
Finally we used SIMD instructions. The data was already correctly distributed and the 
1,408 byte is a multiple of a 16 byte character SIMD instruction. Because the data is 
in the form of character (1 byte) we can achieve 16 times faster results. The SIMD 
instructions are limited in terms with character data, we encountered a problem and 
some instructions do not exist. Especially, after the comparison of the entire vector 
elements with zero we could not have resulted how many of them were zero and 
how many they are not. So we used a different instruction that if an element is other 
than zero then it converts all bits to one (255 in decimal). After adding all the 
elements and dividing by 255, we could see how many of them are not zero. 

3.5.6  Join Code 

The association with the PPE code was very simple and had no specificity. As this is 
the last piece of code was not something that can be executed in the PPE during the 
performance of SPEs. 
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Figure 3-8 Fast Similarity Flow Chart 
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4 Performance 

4.1 Measurement  
 

To measure performance and run-time of parallelized Baseline Algorithm, we used 
both the Playstation 3 and the IBM Full System Simulator for Cell BE [30] [31]. We 
used the dynamic profiling method using the hardware counters in order to measure 
on Hardware. The Cell BE has two software-visible 64-bit time-base registers in PPE: 
Time Base Register (TB). This SPR register contains the time-base count value 
Time Base Register (TBR). This memory-mapped I/O (MMIO) register specifies the 
timebase sync mode and the internal reference clock divider setting 
and eleven software-visible 32-bit decrementers (down-counters), three in the PPE 
and one in each SPE. We used one of two 64-bit time-base register to count the PPE 
and the SPEs a decrementer for each one. The frequency is not the same with the 
processor. It is equal to 79.8 MHz In time computing, we simply divide the result of 
registers, clockticks, with their frequency. 
 

The IBM Full System Simulator for Cell B.E. provide to us all the information of the 
program implementation. But due to the slow performance was only used for small 
pieces of code and to perform specific functions modeled on SPEs. The SPEs do not 
complete their process simultaneously. For this reason we chose the largest of the 
times. 
 
For a general view of the Cell BE  performance compared to current technologies, we 
measured also the modified code on two processors from Intel. In this part, the 
performance was measured using the function clock () of library time.h. 
 

During the program execution, it had been removed all calls of printf () to avoid 
possible interferences. All experiments were carried out five times in order to avoid 
extreme values and we took their average. 
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4.2 GMM_EM model Performance 
 

The first measurement that we made was the function GMM_EM one. Firstly, we 
wanted to see the performance difference if we would change the data from double 
precision to single precision to x86 processors.  

 

 

 

 

 

 

 

 

 

Table 4-1 Intel CPUs double/float 

 The results showed that there is no difference in the performance of the algorithm 
when the data is single precision on Intel processors. For this reason we will keep the 
data in double precision for measurements below. 
 
 
 
 
  

0,00

5,00

10,00

15,00

20,00

25,00

30,00

se
co

n
d

s

GMM_EM

Figure 4-1 Intel CPUs double/float 
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Then, we count the execution time of GMM_EM adding also our implementations by 
using 6 SPEs, SIMD instructions, and loop unrolling. 
 

 

Figure 4-2 GMM_EM model execution time  

 

 

 

Table 4-2 GMM_EM model execution time  
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From the above results, we noticed that the PPE execution is too slow, even though 
its frequency is by far the greatest (3.2 GHz). Also, we marked that the optimization 
of double precision using SIMD is very small and worst than this of Intel 
processors. On the other hand, we see that by using single precision, the speedup 
became too large, around 30 times faster than the PPE. Also, the performance is 
quite good over the E6400, approximately at 11.44 times better. This large 
performance increase is explained by the fact that the SPEs are made to perform 
common mathematical operations faster than other processors.  

Figure 4-3 Speedup over PowerPC 
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Figure 4-4 SPE float Speedup 
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To this point, we present measurements of modeled function GMM_EM to note the 
improvement in the method of Loop Unrolling. 
 
 

 

 

 

 

 

 
 
 
 
As we predicted in theory, the improvement by the loop unrolling method has no 
significant impact, as loop branches are not so time consuming as the other 
computing intensive pieces of code. 
 
Finally, the measurements of Cell BE processors with more than 6 cores present 
some interest. The measurements that have been taken using the IBM Full System 
Simulator, as Playstation provides to developers only 6 cores. 
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Figure 4-5 Loop Unrolling performance in seconds 

Figure 4-6 Execution time with multiple SPEs 
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With these results, we can see that there is a significant increase in performance 
using 4 SPEs instead of 3. The performance is improved by using more SPEs, but as 
we can see from figure 4.5, after the 8-core, theoretical, performance does not 
increase significantly. 
 

4.3 Fast Similarity Performance 
 

Fast Similarity is the second and the last function that was optimized. In this case, it 

did not exist a separate model function as originally it was constituted as a separate 

single executable file. Also, it includes optimization of character SIMD instructions 

which is not common enough. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 4-3 Fast Similarity Execution time 
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The results show that there is a significant improvement in the performance of Fast 

Similarity. Particularly, the 12.89 times improvement over the PPE is quite important and 

close to the 16 times theoretical one. If we consider also the time needed to transfer data 

with some calculated data that can be vectorized, then the result is entirely satisfactory. Also 

quite good is the performance of SPEs compared to the E6400. The 2.62-time faster 

execution is a good result. 

  

Figure 4-8 Speedup over PowerPC 
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Figure 4-9 SPE Speedup 
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4.4 Total Performance 

 
 
After the completion of the two computing intensive functions of the Baseline 
Algorithm and having the desired results, we pass the overall efficiency of the 
algorithm calculation. Although the measurements that were taken from the two 
functions were much better than the rest, the overall plan we will see whether the 
functions that were not achieved at SPEs affect. This is because until now we have 
noticed that the PPE on his own has the worst performance. 
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Table 4-4 Functions Execution time 

 
From the above results, we noticed that the functions, which were not implemented 
in SPEs, are slower. In order to reduce the execution time of the previous mentioned 
functions we did another parallelization. While SPEs are executing the code, PPE 
stays inactive. Instead of leaving PPE inactive, we use it to execute another function. 
Particularly, the function ReadPPMImage is executed by the PPE while the SPEs are 
calculating GMM_EM. This parallelization technique almost eliminated the 
ReadPPMImage execution time. Otherwise, this function will last more than in other 
processors. Finally, we note that the functions implemented in SPEs have been 
joined well and the results are as well as the results we got from the models. 
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Table 4-5 Baseline Algorithm Execution time 
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Figure 4-13 Baseline Algorithm SPE float speedup 

 

From the total execution time of the algorithm, we concluded that the final 
optimization using the SPEs is quite far from the performance we had on individual 
functions. The execution speed of the rest of the PPE program reduces significantly 
the performance. Despite this reduction, the final results are satisfactory based on 
the capabilities of the Cell BE. The 5.51-time faster execution of the PPE is a result 
that is consistent with the original theory, it should be 6 times faster by using 6 
SPEs. We also achieve a much better performance than the E6400 one. The 2.18-
time faster execution leaves us satisfied to some extent by the capabilities of Cell BE. 
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Figure 4-12 Baseline Algorithm speedup over PowerPC 
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4.5  Hardware and Software, Tools and Problems 
 

In this thesis, we used the IBM SDK for Multicore Acceleration Version 3.0 which was 
installed in a desktop PC with a processor Intel E 6400 2.13 GHz, 2 GB RAM and 
Western Digital SATA II 7.200 rpm 250 GB hard drive. Due to the requirements of the 
functional simulator, Fedora 7 was used. The OS is old and does not support many of 
the parts may have a new pc. The 3.1 version of the SDK, even though is supported 
by the Fedora 9, could not be installed because there was a bug on Intel 
processors. With the Simulator, we can get very good measurements and move the 
debugging in-depth. Its disadvantage is the slow run in cycle mode which performs a 
complete simulation. Particularly, the final project would take months to complete 
an execution. But it was helpful in order to get measurements for more than 6 cores 
of Playstation 3, but only for small pieces of code. 
 
The execution of experiments and the implementations became mainly in real 
hardware based on a Playstation 3 (2009 model). Although this model had a 80 GB 
hard disk, we replaced this with a hard drive Seagate SATA II 7.200 320 GB one for 
best performance. The Cell BE processor that contains the Playstation 3 provides the 
use of 6 SPEs. The OS that was installed was YDL 6.0 as it was considered as the most 
friendly to the case. The code was cross compiled and executed to the PC and the 
Playstation 3. 
 
The hard disk of the Playstation 3 is quite slow for two reasons. Due to the standards 
and due to the Hypervisor that is installed on the Playstation 3. The Hypervisor is like 
a virtual machine that connect the OS with hardware. The first problem was 
overcame by changing the hard disk. Beyond this, by the careful optimization of the 
code, we accomplish to use negligibly the disk and achieve similar performance of a 
PC. 
 
In GMM_EM, we tried to store the values calculated by the cores at the beginning 
(average, mean, covariance) to the LS and the other SPEs load them from there. This 
was accomplished and worked at IBM SDK simulator but a problem presented in the 
performance of the hardware. It presented a conflict error to calculation completion 
between the transfer value and the signal sending. Finally, we implement it by using 
the main memory for storing and we overcame this problem without having 
significant losses in performance and execution time. 
 
During the SPEs using, we had to change the order of addition. Due to the fact that 
the floating point numbers addition is not associative, it was displayed an round-off 
error from the tenth digit after the decimal point. In this thesis, this error does not 
appear significant affection to the result and it can be ignored. 
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For the calculation of computing intensive points, it was used the Intel Vtune 
Analyzer 9. Although it is supported by fedora 9 and subsequent versions, it was 
installed and worked perfectly in Fedora 7 without any problems. 
 
The computers used for measurements were a desktop PC with a processor Intel E 
6400 2.13 GHz, 2 GB RAM and Western Digital SATA II 7.200 rpm 250 GB hard drive 
and a laptop with a processor Intel T2400 1.83 GHz/987MHz, 2 GB RAM and 
hard Disk Seagate SATA II 7.200 320 GB.  Fedora 7 had been installed to all. 
 
Double precision operations have latency 13 clock cycles. The first six cycles are 
actually stalls in which no other instruction can be issued. The SPU is not only able to 
process multiple values at once through its pipeline, it can also dual-issue 
instructions through different pipelines. The SPU has two pipelines, even (sometimes 
called pipeline 0 or the execute pipeline) and odd (sometimes called pipeline 1 or the 
load pipeline). While SPU execute a double precision operation, Dual-issue is not 
allowed with these instructions either. [32] 
 

4.6 Verification 
 

At this point we mention the verification procedure of the modified code. There were four 

verification stages. The verification was simple, we examined if the similarity value was 

equal to the values of the original code. The first stage we had to examine the results after 

porting the code to PPE only. In the next stage we verified the results of GMM_EM and Fast 

Similarity separately. During GMM_EM results verification there were some differences, 

which were caused by the order of addition, but as we mentioned they were not important. 

On the other hand, Fast Similarity verification was successful. At the final verification stage 

we examined the similarity values, while we were using optimized GMM_EM and Fast 

Similarity. The values were equal to the initial similarity values.  
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5 Conclusions and Future Work 
 

5.1 Conclusions 
 

Having as main objective of this thesis to study and develop the capabilities of Cell 
BE through the Baseline Algorithm, we can say that this was succeeded to a large 
extent. The parallelization of computing intensive functions implemented achieving a 
very good performance. 
 
The Cell BE programming is quite difficult and requires very good knowledge of 
programming, hardware and proper management of memory. During the 
implementation several problems were faced both at the software and hardware 
level. Most of these were confronted and many of these that they have failed to be 
solved were overcome with alternative methods. 
 
The final result was satisfactory and the change of data from double precision to 
single precision did not play any role. Otherwise the results would not be 
satisfactory. This is a disadvantage of the Cell BE as most scientific applications 
require high precision. 
 
While the Cell BE was designed for gaming, it may eventually be used for scientific 
purposes. But an important prerequisite for a project in order to have very good 
performance and very good results is to be completely designed on this processor 
from the beginning. 
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5.2  Future Work 
 

The final performance that we got for the Baseline Algorithm compared to a modern 
processor was just satisfactory. The improvement of double precision execution 
speed and the existence of double vector in PPE would help the algorithm 
improvement. This thesis has as main method the Function-offload method. Maybe, 
the choice of another model, such as Streaming model, have better 
results. However, the complexity of such a model usage is large. 
 
A different approach to the problem could be done with two equally modern 
methods: the algorithm programming to GPU or the implementation of a FPGA. A 
CPU vendor has been forced to integrate multiple cores onto a single die by 
difficulties in scaling single-thread performance without undue power dissipation. 
On the contrary, General Purpose computing on Graphics processing Units and Field-
Programmable Gate Array, that are based on software/hardware co-design [33], are 
becoming increasingly popular in order to assist general purpose processors in 
performing complex and intensive computations on accelerator hardware.  
 

5.2.1 General Purpose Programming using GPU’s 

Future computer systems will certainly include some accelerators and particularly  
the GPU. Today, accelerators are primarily available as add-in boards. In the future 
they will probably be located on-chip with the CPU, so as to reduce communication 
overhead. [33] 
 

GPUs have a lot of advantages as they are fast, cheap, low-power (watts per flop), 
and amplify the streaming method which is the future, as it is commonly accepted. 
On the other hand, they are still enough specialized, hard to program and they deal 
some bandwidth problems.  Nowadays, GPUs score performance over 500  Gflops, 
Cell BE scores approximately 100 Gflops while a current processor can reach the 
performance of about 70Gflops (Intel Core i7 965 XE) 
GPU Architecture is faster because:  

 it has simplified pipeline architecture, 
 it is highly paralleled,  
 its memory is near the processor in order to reduce the cache needs, 
 it allows scaling by hiding its true parallelism, that can increase number of 

processors  
 and finally it allows to a system having a lot of GPUs [34] 

  
CUDA, (Compute Unified Device Architecture) is a parallel computing architecture 
developed by NVIDIA, and CAL (AMD Compute Abstraction Layer) are new language 
APIs and development environments for programming GPUs without the need to 
map traditional OpenGL and DirectX APIs to general purpose operations. Domain 
specific parallel libraries, such as a recent scan primitives implementation can be 
used as building blocks to ease parallel programming on the GPU. 
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GPUs are inexpensive, commodity parallel devices with huge market penetration. 
They have already been employed as powerful coprocessors for a large number of 
applications including games and 3-D physics simulation. The main advantages of the 
GPU as an accelerator stem from its high memory bandwidth and a large number of 
programmable cores with thousands of hardware thread contexts executing 
programs in a single program, multiple data (SPMD) fashion. Moreover, GPUs are 
flexible and easy to program using high level languages and APIs which abstract away 
hardware details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2 CPU Block Diagram versus GPU Block Diagram [35] 

Figure 5-1 Simplified Block Diagram of GPU Architecture [35] 
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Furthermore, GPUs have their own off-chip device memory, and data must be 
transferred from main memory to device memory via the PCI-Express bus. Memory 
transfer from system memory to GPU memory (host to device and device to host) 
remains relatively slow and can often be a bottleneck in the applications. Most 
current GPUs offer support for only single precision, while many scientific 
applications require double precision support. However, using CUDA's streaming 
interface, programmers can batch kernels that run back to back, and increase 
program execution efficiency by overlapping computations with data 
communication. 
 
Particularly for the Baseline Algorithm, GPU usage as accelerator would be ideal. As 
it is not demanded double precision usage neither to GMM_EM nor to Fast Similarity 
we can overlook the disadvantage of some GPUs which do not support double 
precision. In addition, the data amount which must to be transferred to GPU 
memory is quite little for both functions. GPU can eliminate this problem by using 
some API, like CUDA.  
 
Generally, it could be succeeded larger performance acceleration, than the one we 
succeeded with Cell BE, as we would use a faster control processor that PPE and GPU 
would score a higher performance than the SPEs one. The last point that should be 
mentioned is the complexity of the code development, it is as difficult on CUDA API 
as for Cell BE.  
 
 

5.2.2 Field-Programmable Gate Array (FPGA) Programming 

 
FPGAs are essentially high density arrays of uncommitted logic and are very flexible 
in that developers can directly steer module-to-module hardware infrastructure and 
trade-off resources and performance by selecting the appropriate level of parallelism 
to implement an algorithm. In the FPGA co processing example, the hardware fabric 
is used to approximate a custom chip. [33] FPGAs consist of hundreds of thousands of 
programmable logic blocks and programmable interconnects that can be used to 
create custom logic functions, and many FPGA products also include some hardwired 
functionality for common functions. For instance, the Xilinx Virtex II Pro FPGA also 
integrates up to two 32-bit RISC PowerPC405 cores. The dataflow of an application is 
exploited in FPGAs through parallelism and pipelining.  
 
Moreover, FPGAs accelerate high performance computing applications by their 
ability to exploit the parallelism inherent in the algorithms employed. [36] There are 
several levels of parallelism to address. A good starting point is to structure the high 
performance computing application for multi-threaded execution suitable for 
parallel execution across a grid of processors. This is task-level parallelism, exploited 
by cluster computing. There are software packages available that can take legacy 
applications and transform them into a structure suitable for parallel execution. A 
second level of parallelism lies at the instruction level. Conventional processors 
support the simultaneous execution of a limited number of instructions. 
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Furthermore, FPGAs offer much deeper pipelining, and therefore can support a 
much larger number of simultaneously executing “in-flight” instructions. Data 
parallelism is a third level that FPGAs can readily exploit. The devices have a fine-
grained architecture designed for parallel execution. Thus, they can be configured to 
perform a set of operations on a large number of data sets simultaneously. This 
parallel execution performs the equivalent work of numerous conventional 
processors all in a single device. 
 
FPGA applications are mostly programmed using hardware description languages 
such as VHDL and Verilog. Recently there has been a growing trend to use high level 
languages such as SystemC and Handel-C which aim to raise FPGA programming 
from gate-level to a high-level, modified C syntax. 
 
The reconfiguration overhead for FPGAs needs to be taken into account. The 
reconfiguration (or initialization) process generally takes on the order of seconds for 
applications on the FPGA boards. To reduce the impact of this overhead, developers 
can potentially overlap reconfiguration with other non-conflicting tasks. 
Furthermore, users may not need to reconfigure after initialization, in which case the 
configuration is represented by a small, onetime cost.  An FPGA coprocessor 
programmed in order to hardware-execute key application tasks can typically 
provide a 2X to 3X system performance boost while simultaneously reducing power 
requirements 40% as compared to adding a second processor or even a second core. 
Fine tuning of the FPGA to the application’s needs can achieve performance 
increases greater than 10X. 
 
It is generally accepted that FPGAs is the best solution for high performance 
computing applications. The same applies in the case of the Baseline Algorithm. The 
data amount of computing intensive functions is not large enough to create big 
overhead by using FPGA. Considering that desirable results could be suceeded by 
single precision operations, the chip space of necessary operations is being reduced, 
while the simultaneous operation number is being increased. Finally, this method 
disadvantages are still the cost production and the highly demanding code 
development.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  73 Microprocessor & Hardware Laboratory |www.mhl.tuc.gr | Technical University of Crete 

 

6 References 
 

[1] IBM “Programming the Cell Broadband Engine: Examples and Best Practices” 
December 2007, p. 3-6. 
 
[2] “Wikipedia - Cell(microprocessor) History”, 
http://en.wikipedia.org/wiki/Cell_microprocessor 
 
[3] IBM Corporation; Sony Computer Entertainment Incorporated; Toshiba 
Corporation “Cell Broadband Engine Programming Handbook Including the 
PowerXCell 8i Processor” 12 May 2008, p. 51-54, 65-67. 
 
[4] IBM Corporation; Sony Computer Entertainment Incorporated “Cell Broadband 
Engine Architecture” 11 October 2007 
 
[5] Sony Computer Entertainment Incorporated/Toshiba/IBM “Cell Broadband 
Engine CMOS SOI 65 nm Hardware Initialization Guide” 8 June 2007, p. 21. 
 
[6] Dr. J. Nieplocha, Dr. A. Marquez, Dr. F. Petrini, and Dr. D. Chavarria 
“UNCONVENTIONAL ARCHITECTURES for High-Throughput Sciences”  
http://www.scidacreview.org/0703/html/hardware.html 2007 
 
[7]” Wikipedia Playstation 3 Hardware” 
http://en.wikipedia.org/wiki/PlayStation_3_hardware 
 
[8] Kiran “Debian-Installer for PLAYSTATION 3”, 
http://www.keshi.org/moin/PS3/Debian/Installer 24 November 2008 
 
[9] Fedora PS3 PlayStation Port of Fedora, http://fedoraproject.org/wiki/PlayStation, 
2 November 2009 
 
[10] Gentoo “Gentoo Linux for PS3 Development” 6 February 2008 
 
[11] OpenSuse “Open Suse on PS3”, 
http://www.gentoo.org/proj/en/base/ppc64/ps3/  20 January 2010 
 
[12] Ubuntu “psubuntu.com Linux on a Playstation 3”, http://psubuntu.com/ 
 January 2010 
 
[13] YellowDogLinux “A place for Yellow Dog Linux users”, 
http://www.yellowdoglinux.com/  January 2010 
 
[14] S. Sarkar, P. J. Phillips, Z. Liu, I. Robledo Vega, P. Grother, K. W. Bowyer, The 
“HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis”, IEEE 
Transactions on pattern analysis and machine intelligence, vol. 27, no. 2, February 
2005, p.  162-169.  

http://www.keshi.org/moin/PS3/Debian/Installer
http://fedoraproject.org/wiki/PlayStation
http://www.gentoo.org/proj/en/base/ppc64/ps3/
http://en.opensuse.org/PS3
http://www.gentoo.org/proj/en/base/ppc64/ps3/
http://psubuntu.com/
http://psubuntu.com/
http://www.yellowdoglinux.com/
http://www.yellowdoglinux.com/


Technical University of Crete | Microprocessor & Hardware Laboratory |www.mhl.tuc.gr 74 

 

 
[15] Sony Computer Entertainment Inc. “PlayStation 3 "Safety & Support" manual” 
http://www.playstation.com/manual/pdf/PS3-01-1.6_1.pdf 2007 
 
[16] “PlayStation 3 Secrets” http://www.edepot.com 
 
[17] IBM, “VectorSIMD Multimedia Extension Technology,” October 2006. 
 

[18] IBM Corporation; Sony Computer Entertainment Incorporated; Toshiba 
Corporation “STI Center of Competence for the Cell Broadband Engine Processor” 
http://sti.cc.gatech.edu/index.html 
 
[19] Wetzel/Poughkeepsie/IBM “PowerPC User Instruction Set Architecture” Version 
2.02 Joe 28 January 2005 
 
[20] IBM Corporation; Sony Computer Entertainment Incorporated; Toshiba 
Corporation ”Synergistic Processor Unit Instruction Set Architecture” 27 January 
2007 
 
[21] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2001. 
 
[22] Teknomo, Kardi. “Similarity Measurement” “Mahalanobis distance” 2006 
 
[23] Intel Corporation.” Intel® VTune™ Performance Analyzer 9.1 for Linux” 2009. 
 
[24] SCEI , Toshiba , IBM “C/C++ Language Extensions for Cell Broadband Engine 
Architecture” 27 February 2008 
 
[25] IBM “SIMD Math Library API Reference” 2007 
 
[26] IBM “SDK for Multicore Acceleration, Programming Tutorial 3.1” 2008, p. 123-
126 
 
[27] IBM “CBEA JSRE Series: SPE Runtime Management Library Version 2.3” October 
2008 
 
[30] IBM “Performance Analysis with the IBM Full-System Simulator” September 2007 
 
[31] IBM “IBM Full-System Simulator User’s Guide” September 2007 
 
[32] Jonathan Bartlett “Programming high-performance applications on the Cell BE 
processor, Part 4: Program the SPU for performance” 
http://www.ibm.com/developerworks/power/library/pa-linuxps3-4/index.html   
6 March 2007  
 
[33] S. Che, J. Li, J. W. Sheaffer, K. Skadron, John Lach “Accelerating Compute-
Intensive Applications with GPUs and FPGAs” 

http://www.playstation.com/manual/pdf/PS3-01-1.6_1.pdf
http://www.edepot.com/playstation3.html#PlayStation_3_Hardware
http://sti.cc.gatech.edu/
http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html
http://www.ibm.com/developerworks/power/library/pa-linuxps3-4/index.html
http://www.ibm.com/developerworks/power/library/pa-linuxps3-4/index.html


  75 Microprocessor & Hardware Laboratory |www.mhl.tuc.gr | Technical University of Crete 

 

 
[34] Tomas Oppelstrup  “Introduction to GPU programming” 2008 
 
[35] Wolfgang Banzhaf “Accelerating Evolutionary Computation through Graphics 
Processing Units” 2009 
 
[36] XtremeData, Inc. “FPGA Acceleration in HPC: A Case Study in Financial Analytics” 
November 2006 
 
[37] “Wikipedia – Gait Definition”, http://en.wikipedia.org/wiki/Gait 


