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I. Introduction

A. Multiple Input-Multiple Output (MIMO) Systems & STBCs
High data rate achievement and reliable communications assurance have been principal targets of
modern wireless standards. These features can be afforded by multiple antenna systems that are
proven to attain higher channel capacity than single antenna setups while lowering the error proba-
bility. Elaborate informationtheoretic results tailored to Rayleigh fading prove, that channel capacity
actually grows linearly when the number of receive and transmit antennas increases. However, it is
beyond question that antenna arrays are costly and space demanding, thus being a more plausible
setup at base stations rather than remote terminals. Consequently, primary focus has been set on
transmit diversity techniques, with the first work coming from Siavash Alamouti that delivered the
first full-diversity, full-rate space-time block code (STBC) for two transmit antennas.

B. Orthogonal Space-Time Block Coding
Tarokh, Jafarkhani, and Calderbank generalized the design to more than two transmit antennas in-
troducing a paradigm for the construction of space-time block codes based on orthogonal designs.
The so-called orthogonal STBCs (OSTBCs) are proven to achieve full antenna diversity gain with
linear-complexity single-symbol maximum-likelihood (ML) coherent detection. Moreover, OSTBCs
outperform non-orthogonal designs in terms of error rate. Rate-one full-diversity OSTBCs error-rate
provides a lower bound on the one of quasi-orthogonal STBCs due to lack of intersymbol interference
(ISI). Such an error rate is attainable with linear complexity, if the channel state information (CSI) is
available at the receiver.

However, the nature of wireless channels suggests rapidly varying channel conditions that render
channel estimation inadequate and inefficient. Even when the fading channel coefficients are not fast
varying, channel estimation requires transmission of long pilot symbol sequences, especially for the
cases where large antenna arrays are used, with the direct implication of reduced transmission rate.
Interestingly, the ergodic capacity promised by multiple antenna systems is attained even when CSI
is not available to either transmitter or receiver. The work of Zheng and Tse shows that when CSI
is not available the capacity of multiantenna systems with full CSI knowledge at the receiver under
Rayleigh fading is approached at the high signal-to-noise ratio (SNR) regime, if one transmits equal-
energy symbols and utilizes space-time codes that are mutually orthogonal during each coherence time
interval. Certainly, when OSTBCs are used and the receiver has no CSI, ML noncoherent sequence
detection has to be performed on the entire coherence interval for optimal performance. However, if
sequence detection is performed through exhaustive search among all possible data sequences then
exponential computational complexity is required.

C. ML Noncoherent Detection with Exponential Complexity
The problem of ML noncoherent OSTBC detection under static independent and identically dis-
tributed (i.i.d.) Rayleigh fading was originally expressed as a trace maximization and later proven
to also take the form of a binary quadratic form maximization problem that in the general case is
NP-hard. In [17] it was shown that the ML noncoherent OSTBC detection problem can be solved
optimally by the sphere decoder, certainly an exponential expected complexity approach for any fixed
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SNR. To avoid the exponential complexity of the optimal receiver many suboptimal schemes have
been proposed in the literature. Moreover, the use of pilot symbols has already been proposed to
combat the exponential cost of the optimal noncoherent receiver, at the expense of information rate.
Lately, D. S. Papailiopoulos and G. N. Karystinos in [31] proved that when the transmitted symbols
belong to a BPSK constellation, polynomial-time ML detection complexity is always achievable for
static Rayleigh correlated (in general) channels.

D. Maximum-Likelihood Noncoherent Detection in Polynomial Time
In this work, we consider the case of static Rayleigh channels, consisted of independent and identi-
cally distributed coefficients, prove that ML noncoherent MPSK OSTBC detection can be performed
in polynomial time and define the constraints under which this is achievable. We note that the poly-
nomial complexity order is completely determined by the product of the number of antennas used at
the transmitter and the receiver.

II. System Model and Problem Statement
We consider a MIMO system with Mt transmit and Mr receive antennas that employs orthogonal
space-time coded transmission of size Mt × T and rate R = N

T ,N ≤ T . We assume transmission of

M-ary phase-shift keying (MPSK) data symbols, each one selected from an M-ary alphabet AM
△
=

{e j π
M (2m+1)|m = 0,1, . . . ,M − 1}, that are split into vectors of N elements. Each vector forms a cor-

responding space-time block matrix of size Mt ×T . The Mt ×T space time block C(s) ∈ CMt×T that
corresponds to the N ×1 data vector s ∈ AM

N is given by

C(s) =
N

∑
n=1

(Anℜ{sn}+ jBnℑ{sn}) (1)

where sn denotes the nth element of s, n = 1,2, . . . ,N and {An,Bn}is an amicable orthogonal design
of fixed (in general complex-valued) code matrices of dimension Mt ×T that satisfies the property

C(s)CH(s) = ∥s∥2IMt = EsT IMt , (2)

for any s ∈ AM
N , where Es is he energy of the AM constellation used. Equality (2) denotes orthogo-

nality and according to [9] leads to maximum spatial diversity gain.
The properties that hold for {An,Bn} are :

An,Bn ∈ CMt×T

AnAH
n = BnBH

n = I
AnApH = −ApAH

n ,BnBH
p =−BpBH

n n ̸= p

AnBH
p = BpAH

n .

Let s(i) denote the data vector contained in the i-th transmitted code block, i = 1,2, . . . ,P, where P is
the total number of transmissions. The form of the corresponding OSTBC code matrix is

C(s(i)) =
N

∑
n=1

(Anℜ{s(i)n }+ jBnℑ{s(i)n }). (3)
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We observe that (3) can be rewritten as

C(s(i)) =
N

∑
n=1

(Ǎns(i)n + B̌ns(i)
∗

n ), (4)

for code matrices {Ǎ, B̌} that satisfy

Ǎn =
An +Bn

2

B̌n =
An −Bn

2
.

Based on the algorithm proposed in [34], we can create and use square (i.e. Mt = T ) complex or-
thogonal designs, which have either “conjugate” or “non-conjugate” rows1. This means, that the code
matrices, for all the transmissions, have the same rows “conjugate” or “non-conjugate”.

According to the consideration above, for a certain row of C(s) – let it be the xth – either the
xth row of all Ǎn’s or the xth row of all B̌n’s is non-zero. In our developments, we regard that all
the transmitted code matrices belong to this set of complex orthogonal designs and we propose the
following lemma.

Lemma 1: Having fixed x ∈ {1, . . . ,Mt}, either
[

Ǎ1 . . . ǍNP
]

x,: or
[

B̌1 . . . B̌NP
]

x,: can be
non-zero.

�
Moreover, from equation (4) we obtain

C(s(i)) =
N

∑
n=1

[
Ǎn B̌n

]
(

[
s(i)n

s(i)
∗

n

]
⊗ IT )

△
=

N

∑
n=1

Xn(s̃
(i)
n ⊗ IT )

=
[

X1 · · · XN
] s̃1

(i)⊗ IT
...

s̃N
(i)⊗ IT


△
= X(

 s̃1
(i)

...
s̃N

(i)

⊗ IT )

△
= X(s̃(i)⊗ IT ) (5)

where s̃(i)n =

[
s(i)n

s(i)
∗

n

]
, s̃(i)=

 s̃1
(i)

...
s̃N

(i)

,∀n∈{1, . . . ,N} and ∀i∈{1, . . . ,P}, and X △
=
[

X1 . . . XN
]
∈

CMt×2T N .
1For convenience of explanation, let us say a row in an orthogonal design is conjugate (non-conjugate) if all symbols

except zeros in this row have (do not have) complex conjugate.
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The downconverted and pulse-matched equivalent ith received block of size Mr ×T is

Y(i) = H(i)C(s(i))+V(i). (6)

In (6), H(i) ∈CMr×Mt represents the Rayleigh channel matrix between the Mt transmit and Mr receive
antennas for the ith transmission. Note that in the following derivations we consider the channel to
remain stable for a fixed number of transmissions. In the sequel we assume that H(i) consists of inde-
pendent and identically distributed (i.i.d.) coefficients that are modeled as circular complex gaussian
random variables and account for flat fading. In addition V(i) ∈ CMr×T denotes zero mean additive
spatially and temporally white circular complex Gaussian noise with variance σ2

v . The channel and
noise matrices H(i) and V(i), respectively, i = 1,2, . . . ,P, are independent of each other.

If the receiver has knowledge of the channel matrix, then coherent ML detection simplifies to one-shot
block decisions according to

ŝ(i)opt = arg min
s(i)∈AM

N
∥Y(i)−H(i)C(s(i))∥2

F , (7)

for i = 1,2, . . . ,P. In this work we consider the channel matrices H(i), i = 1,2, . . . ,P, to be unavailable
to the receiver. Hence, coherent detection in (7) cannot be utilized and the ML receiver takes the form
of a sequence detector. We consider a sequence of P space-time blocks consecutively transmitted by
the source and collected by the receiver, say Y(1),Y(2), . . . ,Y(P), and form the Mr ×T P observation
matrix

Y △
=
[

Y(1) . . . Y(P)
]
=
[

H(1)C(s(1)) . . . H(P)C(s(P))
]
+
[

V(1) . . . V(P)
]
. (8)

Based on the convention that the channel remains stable for P consecutive transmissions, (8) can be
written as

Y △
= H

[
C(s(1)) . . . C(s(P))

]
+
[

V(1) . . . V(P)
]
. (9)

In the following section, we present ML noncoherent detection developments.

III. Maximum Likelihood Noncoherent Detection
We consider a time-invariant Rayleigh fading MIMO channel and prove that the complexity of the
ML detector at the receiver can be polynomial in the sequence length P if the rank of the channel
covariance is not a function of the sequence length. Interestingly, the order of the polynomial com-
plexity depends strictly on the rank of the channel covariance matrix and therefore on the number of
antennas used at the transmitter and the receiver.
Due to Rayleigh fading, the vectorized single-transmission channel matrix h is a zero-mean circu-
lar complex Gaussian vector of length MrMt with covariance matrix Ch = E{hhH} = aIMrMt , where

a
△
= σh

2 is the variance of the channel. The covariance matrix is such, due to the independence and
identical distribution of the channel coefficients, and has rank D = MrMt . Given the Mr × T P ob-
servation matrix Y, the ML detector for the symbol sequence s =

[
(s(1))T . . . (s(P))T

]T ∈ AM
NP
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maximizes the conditional probability density function of Y given s. Thus, the optimal decision is
given by

ŝopt = arg max
s∈AM

NP
f (Y|s) = arg max

s∈AM
NP

f (vec(Y)|s) = arg max
s∈AM

NP
f (y|s) (10)

where y △
= vec(Y)∈CMrMtP and f (·|·) represents the pertinent matrix/vector probability density func-

tion of the channel output conditioned on a symbol sequence.
We define the concatenated matrix of the transmitted G =

[
C(s(1)) . . . C(s(P))

]
∈ CMt×T P and

note that it satisfies the orthogonality property since

G(s)GH(s) = (
[

C(s(1)) . . . C(s(P))
]
)(
[

C(s(1)) . . . C(s(P))
]
)H

=
P

∑
i=1

C(s(i))CH(s(i))

= EsT PIMt . (11)

Then, the received matrix in (9) becomes

Y △
= HG(s)+V ∈ CMr×T P (12)

As stated in [25]

vec(ABC) = (CT ⊗A)vec(B). (13)

Due to (13) we obtain

y = vec(HG(s)+V) = vec(IMrHG(s))+vec(V) = (GT (s)⊗ IMr)h+v (14)

where v = vec(V) ∈ CMrT P and operator ⊗ denotes the Kronecker tensor product. Then, it can be
proven that y given s is a complex Gaussian vector with mean E{y|s} = E{(GT (s)⊗ IMr)h+v|s} =
(GT (s)⊗ IMr)E{h}+E{v}= 0MrT P and covariance matrix

Cy(s) = E{((GT (s)⊗ IMr)h+v)((GT (s)⊗ IMr)h+v)H |s}
= E{(GT (s)⊗ IMr)hhH(G∗(s)⊗ IMr)|s}+E{vvH |s}
= (GT (s)⊗ IMr)Ch(G∗(s)⊗ IMr)+σ2

v IMrT P

= a(GT (s)⊗ IMr)(G
∗(s)⊗ IMr)+σ2

v IMrT P. (15)

Therefore, the optimization problem in (10) is rewritten as

ŝopt = arg max
s∈AM

NP

1
πMrT P|Cy(s)|

exp{−(y− (GT (s)⊗ IMr)µµµ)
HC−1

y (s)(y− (GT (s)⊗ IMr)µµµ)}

= arg max
s∈AM

NP

1
πMrT P|Cy(s)|

exp{−yHC−1
y y}. (16)

A natural approach to (16) would be an exhaustive search among all MNP data sequences s ∈ AM
NP,
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but such a receiver is impractical even for moderate values of P, since its complexity grows expo-
nentially with P. In the sequel, we prove that we can appliy an efficient algorithm that performs the
maximization of (16) with O((MNP

2 )2D) calculations.

Using Sylvester’s determinant theorem and Sherman-Morrison-Woodbury formula for the inverse of
a rank-deficient update [26], we compute

|Cy(s)| = |σ2
v IMrT P||ID +

a
σ2

v
(G∗(s)⊗ IMr)(G

T (s)⊗ IMr)|

= |σ2
v IMrT P||ID +

a
σ2

v
(G∗(s)GT (s)⊗ IMr)|

(11)
= σ2MrT P

v |ID +
aEsT P

σ2
v

(IMt ⊗ IMr)|

= σ2MrT P
v |ID +

aEsT
σ2

v
ID|

= σ2MrT P
v |aEsT P+1

σ2
v

ID| (17)

and

C−1
y (s) =

1
σ2

v
IMrT P −

a
σ2

v
(GT (s)⊗ IMr)((ID +

a
σ2

v
(G∗(s)⊗ IMr)(G

T (s)⊗ IMr))
−1(G∗(s)⊗ IMr)

1
σ2

v
(11)
=

1
σ2

v
IMrT P −

a
σ2

v
(GT (s)⊗ IMr)(ID +

aEsT P
σ2

v
IMt ⊗ IMr)

−1(G∗(s)⊗ IMr)
1

σ2
v

=
1

σ2
v

IMrT P −
a

σ4
v
(GT (s)⊗ IMr)(

aEsT P+1
σ2

v
ID)

−1(G∗(s)⊗ IMr)

=
1

σ2
v

IMrT P −
a

(aEsT P+1)σ2
v
(GT (s)⊗ IMr)(G

∗(s)⊗ IMr)

=
1

σ2
v

IMrT P −b(GT (s)⊗ IMr)(G
∗(s)⊗ IMr) (18)

where b
△
= a

(aEsT P+1)σ2
v

. We observe that |Cy(s)| is independent of the transmitted sequence s, drop it
from the maximization in (16), and substitute (18) in (16) to obtain

ŝopt = arg max
s∈AM

NP
{−yH(

1
σ2

v
IMrT P −b(GT (s)⊗ IMr)(G

∗(s)⊗ IMr))y}

= arg max
s∈AM

NP
{− 1

σ2
v

yHy+byH(GT (s)⊗ IMr)(G
∗(s)⊗ IMr)y}

= arg max
s∈AM

NP
{yH(GT (s)⊗ IMr)(G

∗(s)⊗ IMr)y}

△
= arg max

s∈AM
NP
{zHz}. (19)

We continue our algorithmic developments by defining the matrices S =
[

s(1) · · · s(P)
]
∈ AM

N×P,
S̃ =

[
s̃(1) · · · s̃(P)

]
∈ AM

2N×P.
Note that

S̃ =
[

s(1) · · · s(P)
]
⊗
[

1
0

]
+
[

s(1) · · · s(P)
]∗⊗[

0
1

]
= S⊗

[
1
0

]
+S∗⊗

[
0
1

]
11



and

G(s) =
[

C(s(1)) · · · C(s(P))
]

=
[

X(s̃(1)⊗ IT ) · · · X(s̃(P)⊗ IT )
]

= X(
[

s̃(1) · · · s̃(P)
]
⊗ IT )

△
= X(S̃⊗ IT ). (20)

We also observe that

s △
= vec(S) ∈ AM

NP

and

s̃ △
= vec(S̃) = vec(S)⊗

[
1
0

]
+vec(S∗)⊗

[
0
1

]
△
= s⊗

[
1
0

]
+ s∗⊗

[
0
1

]
.

In addition, vector z that appears in the maximization problem in (19) is re-expressed as

z = (G∗(s)⊗ IMr)y = vec(YGH(s)IMt ) = (IMt ⊗Y)vec((S̃H ⊗ IT )XH). (21)

We denote by X̃m the matrix that contains the mth rows of all N space-time matrices, that

X̃m
△
=


[

X1
]

m,:
...[

XN
]

m,:

 ∈ CN×2T (22)

and observe that

XH =
[

XH
1 · · · XH

N
]T

=
[

vec(X̃H
1 ) · · · vec(X̃H

Mt
)
]

and

vec(XH) = vec(
[

XH
1 · · · XH

N
]T
) = vec(

[
vec(X̃H

1 ) · · · vec(X̃H
Mt
)
]
)

= vec(
[

X̃H
1 · · · X̃H

Mt

]
).

Then,

vec((S̃H ⊗ IT )XH) =

 IP ⊗ (([1 0]⊗ IT )X̃H
1 )

...
IP ⊗ (([1 0]⊗ IT )X̃H

Mt
)


︸ ︷︷ ︸

ZH
A

s∗+

 IP ⊗ (([0 1]⊗ IT )X̃H
1 )

...
IP ⊗ (([0 1]⊗ IT )X̃H

Mt
)


︸ ︷︷ ︸

ZH
B

s

△
= ZH

A s∗+ZH
B s = [ZH

A ZH
B ]

[
s∗
s

]
△
= ŽH ṡ. (23)
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A proof of (23) is provided in the Appendix.
Substituting (23) in (21) , we obtain

z = (IMt ⊗Y)ŽH ṡ. (24)

Due to (24), the maximization argument in (19) becomes

ṡHŽ(IMt ⊗YH)(IMt ⊗Y)ŽH ṡ. (25)

and by setting V △
= Ž(IMt ⊗YH), maximization in (19) can be written as

ŝopt = arg max
s∈AM

NP
{ṡHVVH ṡ}. (26)

In this point, we introduce the 2D−1 spherical coordinates 2

ϕ1 ∈ (−π,π],ϕ2, . . . ,ϕ2D−1 ∈ (−π
2
,
π
2
]

and define the spherical coordinate vector

ϕϕϕ △
=
[

ϕ1 ϕ2 . . . ϕ2D−1
]

as well as the 2D×1 hyperpolar vector

c̃(ϕϕϕ 1:2D−1) =



sinϕ1
cosϕ1 sinϕ2

cosϕ1 cosϕ2 sinϕ3
...

∏2D−2
i=1 cosϕi sinϕ2D−1

∏2D−1
i=1 cosϕi


2D×1

.

We also define the complex vector of hyperspherical coordinates

c′(ϕ1:2D−1) = c̃2:2:2D(ϕ1:2D−1)+ j c̃1:2:2D(ϕ1:2D−1)

=


cosϕ1 sinϕ2 + j sinϕ1

∏3
i=1 cosϕi sinϕ4 + j cosϕ1 cosϕ2 sinϕ3

...
∏2D−1

i=1 cosϕi + j ∏2D−2
i=1 cosϕi sinϕ2D−1


D×1

=


c′1(ϕ1:2D−1)
c′2(ϕ1:2D−1)

...
c′D(ϕ1:2D−1)


2We recall that D = MrMt .
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and separate it in Mt subvectors

c′(ϕϕϕ) =

 c′(1)(ϕϕϕ)
...

c′(Mt)(ϕϕϕ)

 . (27)

Subsequently, we map each one of the above subvectors c′(x),∀x∈ {1, . . . ,Mt}, to a new vector c(x)(ϕϕϕ)
according to the following rule:
∀x ∈ {1, . . . ,Mt}

• if x ∈ X, then c(x)(ϕϕϕ) = c′(x)(ϕϕϕ)

• if x ∈ Y, then c(x)(ϕϕϕ) = c′(x)∗(ϕϕϕ)

where X is the set of the “non-conjugate” rows of the COD and Y is the set of “conjugate” rows of
the COD. Note that X≡ Ȳ.

So, the maximization problem of (26) can be written as

ŝopt = arg max
s∈AM

NP
max

ϕ1∈(−π,π]
max

ϕ2:2D−1∈(− π
2 ,

π
2 ]

2D−2
|ṡHVc(ϕϕϕ)|. (28)

Due to Cauchy-Schwartz Inequality which states that, for any v ∈ R2D,

vHc(ϕϕϕ 1:2D−1)≤ |vHc(ϕϕϕ 1:2D−1)| ≤ ∥v∥∥c(ϕϕϕ 1:2D−1)∥.

Since,

∥c′(ϕϕϕ 1:2D−1)∥ = ∥c(ϕϕϕ 1:2D−1)∥

=
√
|c1(ϕ1:2D−1)|2 + · · ·+ |c2D(ϕ1:2D−1)|2

=

√
cos2 ϕ1sin2ϕ2 + sin2 ϕ1 +

3

∏
i=1

cos2 ϕisinϕ4 + cos2 ϕ1cos2ϕ2sin2ϕ3 + . . .

=

√
sin2 ϕ1 + cos2 ϕ1(sin2 ϕ2 + cos2 ϕ2(sin2 ϕ3 + . . .)))

=
√

1 = 1

the above Cauchy-Schwartz Inequality can be written as

|vHc(ϕϕϕ)| ≤ ∥v∥. (29)

The equality of (29) is achieved if and only if ϕ1,ϕ2, . . . ,ϕ2D−1 are hyperspherical coordinates of v.
So, (28) becomes

ŝopt = arg max
s∈AM

NP
max

ϕ1∈(−π,π]
max

ϕ2:2D−1∈(− π
2 ,

π
2 ]

2D−2
ℜ{ṡHVc(ϕϕϕ)}. (30)
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Equivalently,

ŝopt = arg max
s∈AM

NP
max

ϕ1∈(−π,π]
max

ϕ2:2D−1∈(− π
2 ,

π
2 ]

2D−2

2NP

∑
n=1

ℜ{ṡ∗nVn,1:Dc(ϕϕϕ)}

= arg max
s∈AM

NP
max
ϕ1:2D−1

2NP

∑
n=1

ℜ{ṡ∗nVn,1:Dc(ϕϕϕ)}. (31)

By interchanging the maximizations in (31) we obtain

ŝopt = argmax
ϕ1:2D−1

2NP

∑
n=1

max
sn∈AM

ℜ{ṡ∗nVn,1:Dc(ϕϕϕ)}

= argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

ℜ{ṡ∗nVn,1:Dc(ϕϕϕ)+ ṡ∗n+NPVn+NP,1:Dc(ϕϕϕ)}.

By the definition given for ṡ we know that , ∀i : 1 ≤ i ≤ NP, ṡi = s∗i and ṡi+NP = si .
Thus, we get

ŝopt = argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

ℜ{snVn,1:Dc(ϕϕϕ)+ s∗nVn+NP,1:Dc(ϕϕϕ)}

= argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

{ℜ{snVn,1:Dc(ϕϕϕ)}+ℜ{s∗nVn+NP,1:Dc(ϕϕϕ)}}

= argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

{ℜ{snVn,1:Dc(ϕϕϕ)}+ℜ{snV∗
n+NP,1:Dc∗(ϕϕϕ)}}.

Hence,

ŝopt = argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

ℜ{sn
[

Vn,1:D V∗
n+NP,1:D

]︸ ︷︷ ︸
Wn,1:2D

[
c(ϕϕϕ)
c∗(ϕϕϕ)

]
︸ ︷︷ ︸

d(ϕϕϕ)

}

= argmax
ϕ1:2D−1

NP

∑
n=1

max
sn∈AM

ℜ{snWn,1:2Dd(ϕϕϕ)}

= arg max
s∈AM

NP
max
ϕ1:2D−1

ℜ{sT Wd(ϕϕϕ)}. (32)

where W △
=
[

V1:NP,: V∗
1+NP:2NP,:

]
∈ CNP×2D.

As already stated, V = Ž(IMt ⊗YH) and Ž =

[
ZA
ZB

]
. Let us now divide V into two submatrices V1

and V2 as

V1
△
= V1:NP,: = ZA(IMt ⊗YH)

V2
△
= VNP+1:2NP,: = ZB(IMt ⊗YH),

15



and separate the matrices ZA and ZB into Mt submatrices each. Every submatrix will have NP rows
and PT columns.

ZA =
[

Z(1)
A . . . Z(Mt)

A

]
and

ZB =
[

Z(1)
B . . . Z(Mt)

B

]
Lemma 2: Having fixed x ∈ {1, . . . ,Mt}, either Z(x)

A or Z(x)
B is non-zero.

• if x ∈ X, then Z(x)
A is non-zero.

• if x ∈ Y, then Z(x)
B is non-zero.

�

As defined in (32), W gets constructed from V as

W = [V1 V∗
2] = [ZA(IMt ⊗YH) Z∗

B(IMt ⊗YT )]

= [Z(1)
A YH . . .Z(Mt)

A YH Z(1)∗
B YT . . .Z(Mt)∗

B YT ].

In this point, we separate W in 2Mt submatrices as

W = [W(1) . . .W(2Mt)]

where ∀x ∈ {1, . . . ,Mt}, W(x) = Z(x)
A YH and W(x+Mt) = Z(x)∗

B YT .

Lemma 3: Having fixed x ∈ {1, . . . ,Mt}, either W(x) or W(x+Mt) is non-zero.

• if x ∈ X, then W(x) is non-zero.

• if x ∈ Y, then W(x+Mt) is non-zero.

�

We also separate d(ϕϕϕ) in 2Mt subvectors as

d(ϕϕϕ) =

 d(1)(ϕϕϕ)
...

d(2Mt)(ϕϕϕ)

 .

Note that ∀x ∈ {1, . . . ,Mt}, d(x)(ϕϕϕ) = c(x)(ϕϕϕ) and d(x+Mt)(ϕϕϕ) = c(x)∗(ϕϕϕ).
Hence, the maximization in (32) can be rewritten as

ŝopt = arg max
s∈AM

NP
max
ϕ1:2D−1

ℜ{sT [W(1) . . .W(2Mt)]

 d(1)(ϕϕϕ)
...

d(2Mt)(ϕϕϕ)

}
= arg max

s∈AM
NP

max
ϕ1:2D−1

ℜ{sT (
Mt

∑
x=1

W(x)c(x)(ϕϕϕ)+
Mt

∑
x=1

W(x+Mt)c(x)
∗
(ϕϕϕ))}. (33)

According to lemma 3 and the definition of vector c(ϕϕϕ), for a specific x, we get two disjoint cases
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• if x ∈ X, then W(x) will be non-zero and c(x) = c′(x).

• if x ∈ Y, then W(x+Mt) will be non-zero and c(x)∗ = c′(x).

Thus, the maximization above is equivalent to

ŝopt = arg max
s∈AM

NP
max
ϕ1:2D−1

ℜ{sT (
Mt

∑
x=1

(
W(x)+W(x+Mt)

)
︸ ︷︷ ︸

W̌(x)

c′(x)(ϕϕϕ))}

= arg max
s∈AM

NP
max
ϕ1:2D−1

ℜ{sT (
Mt

∑
x=1

W̌(x)c′(x)(ϕϕϕ))}

= arg max
s∈AM

NP
max
ϕ1:2D−1

ℜ{sT W̌c′(ϕϕϕ)}. (34)

Due the Cauchy-Schwartz Inequality [26]

ℜ{sT W̌c′(ϕϕϕ)} ≤ |sT W̌c′(ϕϕϕ)| ≤ ∥W̌Hs∗∥∥c′(ϕϕϕ)∥= ∥W̌Hs∗∥= ∥W̌T s∥,

the maximization of (26) can be rewritten as

ŝopt = arg max
s∈AM

NP
∥W̌Hs∗∥= arg max

s∈AM
NP
∥W̌T s∥= arg max

s∈AM
NP
∥ΓΓΓHs∥= arg max

s∈AM
NP

sHΓΓΓΓΓΓHs (35)

where ΓΓΓ △
= W̌∗ ∈ CD×NP.

The computation of ŝopt in (35) can be implemented with complexity O((MNP
2 )2D) if we follow

the multiple-auxiliary-angle methodology that has been introduced in [32] for the problem of rank-
deficient quadratic form maximization.
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Figure 1: BER versus SNR for ML coherent OSTBC receivers and proposed pilot-assisted (“blind”
and “supervised”) ML noncoherent OSTBC receivers with sequence length P = 4 and P = 22 upon
static Rayleigh channel.

IV. Simulation Studies
We consider a 2× 1 MISO system that employs Alamouti space-time coding (with rate R = N

T = 1
since N = T = 2) to transmit binary data in an unknown Rayleigh fading channel environment. Space-
time ambiguity induced by the rotatability of the Alamouti code is resolved by means of pilot-assisted
transmission. In Figure 1 we study the Rayleigh fading channel (i.i.d. channel coefficients) case and
present the bit error rate (BER) of the one-shot coherent ML receiver and the pilot-assited ML non-
coherent receiver implemented by the proposed algorithm as a function of the information SNR for
sequence lengths P = 4 and P = 22. The rank of the channel covariance matrix is 2 since it is a scaled
version of I2. Therefore, the overall complexity of the proposed pilot-assisted ML receiver becomes
O((MNP

2 )2D). We present results averaged over 300 channel realizations.
Note that, for comparison purposes, we apply both “blind” and “supervised” pilot-assisted trans-

mission. In the first one (“blind” pilot-assisted transmission), we regard the transmitter to send N
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Figure 2: Complexity versus sequence length P.

pilot symbols only in the start of the symbol sequence. The receiver uses this knowledge to make a
correct decision for the following NP symbols; in the following received symbol sequences it is the
last N detected symbols from the previous one which are considered as pilot symbols. In the second
one (“supervised” pilot-assisted transmission), the receiver has knowledge over the first N symbols
of every transmission. This means that P pilot symbol sequences are being used and the data rate
decreases considerably, while performance improves.
However, a quite interesting observation in Figure 1 is that the longer the symbol sequence is, the
smaller the loss that the “blind” pilot-assisted ML noncoherent receiver exhibits in comparison with
the “supervised” one. For example, for P = 22 the SNR loss of the “blind” pilot-assisted receiver is
approximately 0.5 dB in comparison to the “supervised”. Moreover, by increasing the length of the
symbol sequence, the SNR loss of the “blind” pilot-assisted receiver in contrary to the ML coherent
one decreases as well.
Figure 2 demonstrates the significant complexity gain offered by the proposed algorithm. For exam-
ple, for P = 22 conventional ML noncoherent detection would demand an exhaustive search among
MNP = 444 = 288 (for QPSK Alamouti 2×1) binary vectors, while a receiver which applies the pro-
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Figure 3: BER versus sequence length P.

posed algorithm would search among (MNP
2 )2D = 884 ≈ ⌈225.8⌉ binary vectors.

In Fig. 3, we set the SNR to 6 dB and present BER curves of the proposed ML noncoherent receiver
versus sequence length P. We observe that, if the “blind” pilot-assisted receiver operates with the
same complexity with the “supervised” pilot-assisted receiver, then its performance becomes better
as the sequence length P increases. The BER of the coherent ML receiver is also presented as a
performance lower bound.

V. Conclusion
We proved that ML noncoherent sequence detection is polynomially solvable with respect to the
sequence length for OSTBC and static Rayleigh channels (i.i.d) and presented the constraints under
which this is achievable. Complexity exponent is only a function of the rank of the product of the
number of antennas at the transmitter and the receiver. This work comes as an expansion of [31]
of D. S. Papailiopoulos and G. N. Karystinos and generalizes the idea of building a ML OSTBC
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polynomial-complexity detector when an MPSK instead of a BPSK constellation is being utilized.
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Appendix

Proof of Lemma 2
Let us fix x ∈ {1, . . . ,Mt}. Then ∀i ∈ {1, . . . ,NP} and ∀k ∈ {1, . . . ,N}, either

x ∈ X or x ∈ Y
⇔ [Ǎk]x,: ̸= 0T

T or [B̌k]x,: ̸= 0T
T

⇔ [Xk]x,1:T ̸= 0T
T or [Xk]x,T+1:2T ̸= 0T

T

⇔ [X̃x]k,1:T ̸= 0T
T or [X̃x]k,T+1:2T ̸= 0T

T

⇔
[
[X̃x]:,1:T

]
k,: ̸= 0T

T or
[
[X̃x]:,T+1:2T

]
k,: ̸= 0T

T

⇔ [X̃x(

[
1
0

]
⊗ IT )]k,: ̸= 0T

T or [X̃x(

[
0
1

]
⊗ IT )]k,: ̸= 0T

T

⇔ IP ⊗ [X̃x(

[
1
0

]
⊗ IT )]k,: ̸= 0T

PT or IP ⊗ [X̃x(

[
0
1

]
⊗ IT )]k,: ̸= 0T

PT

⇔ [Z(x)
A ]i,: ̸= 0T

PT or [Z(x)
B ]i,: ̸= 0T

PT

⇔ Z(x)
A ̸= 0NP×PT or Z(x)

B ̸= 0NP×PT .

Proof of Lemma 3
Consider a fixed x ∈ {1, . . . ,Mt}. Then, W(x) = Z(x)

A YH and W(x+Mt) = Z(x)
B YT .

As stated in lemma 2, either Z(x)
A or Z(x)

B is non-zero.
Thus, either W(x) or W(x+Mt) are non-zero.
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Proof of (23)

vec((S̃H ⊗ IT )XH) = vec(
[
(S̃H ⊗ IT )vec(X̃H

1 ) · · · (S̃H ⊗ IT )vec(X̃H
Mt
)
]
)

= vec(

 ((SH ⊗ [1 0]+ST ⊗ [0 1])⊗ IT )vec(X̃H
1 )

...
((SH ⊗ [1 0]+ST ⊗ [0 1])⊗ IT )vec(X̃H

Mt
)

)
= vec(

 (SH ⊗ [1 0]⊗ IT )vec(X̃H
1 )+(ST ⊗ [0 1]⊗ IT )vec(X̃H

1 )
...

(SH ⊗ [1 0]⊗ IT )vec(X̃H
Mt
)+(ST ⊗ [0 1]⊗ IT )vec(X̃H

Mt
)

)
= vec(

 (SH ⊗ [1 0]⊗ IT )vec(X̃H
1 )

...
(SH ⊗ [1 0]⊗ IT )vec(X̃H

Mt
)

)+vec(

 (ST ⊗ [0 1]⊗ IT )vec(X̃H
1 )

...
(ST ⊗ [0 1]⊗ IT )vec(X̃H

Mt
)

)
=

 (SH ⊗ [1 0]⊗ IT )vec(X̃H
1 )

...
(SH ⊗ [1 0]⊗ IT )vec(X̃H

Mt
)

+

 (ST ⊗ [0 1]⊗ IT )vec(X̃H
1 )

...
(ST ⊗ [0 1]⊗ IT )vec(X̃H

Mt
)


=

 vec(([1 0]⊗ IT )X̃H
1 S∗)

...
vec(([1 0]⊗ IT )X̃H

Mt
S∗)

+

 vec(([0 1]⊗ IT )X̃H
1 S)

...
vec(([0 1]⊗ IT )X̃H

Mt
S)


=

 IP ⊗ (([1 0]⊗ IT )X̃H
1 )

...
IP ⊗ (([1 0]⊗ IT )X̃H

Mt
)

s∗+

 IP ⊗ (([0 1]⊗ IT )X̃H
1 )

...
IP ⊗ (([0 1]⊗ IT )X̃H

Mt
)

s.

Sylvester’s Determinant Theorem
Consider a M×N matrix A and a N ×M matrix B. Then,

|IM +AB|= |IN +BA|.

Sherman-Morrison-Woodbury Formula
Consider a N ×N matrix A, a N ×K matrix U, a K ×K matrix C and a K ×N matrix V.
Then,

(A+UCV)−1 = A−1 −A−1U
(
C−1 +VA−1U

)−1 VA−1.

This formula can be derived using blockwise matrix inversion.
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