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Abstract

Many practical applications, such as Data Warehousing, Market-basket
analysis and Information Retrieval, rely on efficient methods of computing,
storing and querying data cubes. Online-Analytical Processing has been a field
of competing technologies for the past ten years. Recently, a very clever multi-
dimensional index structure termed Dwarf was proposed. It is well known for
achieving dramatic reduction in size and time is Dwarf'. The original work
achieved a Petabyte 25-dimensional cube shrunk to a 2.3 GB Dwarf Cube, in
less than 20 minutes, contriving a 1:400000 storage ratio.

In our thesis we propose an improved implementation of Dwarf build. We
developed a Decision Support Algorithm, in order to evaluate a given set of
views which can be supported by the Dwarf data cube index. This is mainly
based on user’s demands on which views will be requested from the cube. An
efficient algorithm decides on the best permutation of the dimensions of a
given fact table, and then, builds the dwarf cube efficiently. Our purpose is to
be able to built only specific parts of the index cube, thus reduce size.

Also, we have re-implemented the Dwarf index from scratch and
developed an improved memory-mapped disk version, maintaining most of
the original specs, succeeding better size and time reduction, further more than
the original Dwarf algorithm. We also aim to provide query optimization for
processing Dwarf queries fast, as well as provide a mapper-utility for
minimizing the size needed to store data while expanding the input data types,
to achieve additional size reduction. Also, we apply an algorithm decision
based on bitmaps of the dimensions needed for each view. Finally, we

compare with the existing dwarf algorithm times and sizes.

1 Sismanis Yannis, Deligiannakis Antonios, Roussopoulos Nick, and Kotidis Yannis. Dwarf:
Shrinking the PetaCube. In ACM SIGMOD, 2002.
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Chapter 1

Introduction

Data cube has been playing an essential role in improving the efficiency of
fast Online Analytical Processing (OLAP) [6] operations over the past ten years
[11]. Data warehouses are collections of historical, summarized, non-volatile
data, which are accumulated from transactional databases. Since many
practical applications, such as Data Warehousing, Information Retrieval and
Market-basket analysis use online analytical processing, the idea of pre-
computing and storing aggregates has always been necessary. Besides large
data warehouse applications, there are other kinds of applications like
bioinformatics, survey-based statistical analysis, and text processing that need
the OLAP-styled data analysis. Such decision support systems, business
intelligence and data mining, acquire very fast query response on queries that
try to discover trends of patterns in the data set. OLAP queries typically touch
considerable portions of the data. Also, size reduction has been obsolete, while
an enormous amount of data might not be important for the majority of the
users of such systems.

Decision Support Systems, are mainly classified into inputs (factors,

numbers, and characteristics to analyze), user knowledge and expertise (inputs

requiring manual analysis by the user), outputs (transformed data from which
DSS “decisions” are generated and decisions (results generated by the DSS
based on user criteria). In common, a dilemma has plagued DSSs since they
were invented. On one hand, we know that if the data build index pre-

computes everything then users do not have to worry about response times, as



they will get the best possible information no matter the nature of the data. But
on the other hand, by pre-computing everything, we waste space, and
especially in large cubes, huge parts of the calculated cube will or may never
be queried. This leads to create user-defined stored functions can be used to
encapsulate some of business logic and enhance the index performance.

Therefore, data cube construction has been on focus of much research and
many algorithms have been proposed such as BUC [7], H-cubing [8], Star-
cubing [9], multi-way array aggregation [10], CURE [20] etc. Materialization of
a data cube consists of pre-computing and storing multi-dimensional
aggregates so that analysis on any levels of the cube can be performed on the
fly. Therefore, the data cube operator encapsulates all possible groupings for
datasets.

A significant fraction of this work has been on ROLAP techniques, which
are based on relational technology to store and manage warehouse data. This
approach implements multidimensional schemas directly on top of an existing
relational DBMS; however, it extends DBMSs by appropriate indexing
techniques to speed-up query processing. Important extensions were bitmap-
indexes, which were pioneered by Model 204 [12], Sybase IQ [13, 14] and
Oracle. Existing Relational OLAP (ROLAP) and Cubing solutions mainly focus
on “flat” datasets, which do not include hierarchies in their dimensions.
Analytical tools need very fast query response on queries that try to discover
patterns in the data set. Materialized views extension such as the CUBE BY
operator [15], which is a multidimensional extension of the standard GROUP
BY operator, computes all possible combinations of the grouping attributes.

Difficulties with the cube operators are size, both for computing and
storing. A fact table is a table in the data warehouse that contains facts
consisting of numerical performance measures, and foreign keys that tie the
fact data to the dimension tables. Dimension attributes define the constraints of

the Data Warehouse. A fact table can often very large and sparse and



dimensions are often split into hierarchical branches because of the
hierarchical nature of organizations. In such cases, the size of a group-by is
possibly close to the size of the fact table. So the size of a data cube increases

exponentially after computation.

1.1 Problem description

As expected, hierarchies have many complicated matters to solve such as:

* The number of nodes in a cube lattice which increase dramatically

* The number of unique values in the higher levels of a dimension hierarchy
may be very limited, while partitioning data into fragments that fit in
memory and include all entries of a particular value may often be
impossible

* The number of tuples that need to be materialized in the fact cube which

increase dramatically

Computation of data cubes, though valuable for low-dimensional
databases may not be so beneficial for high-dimensional ones. Typically, a
high-dimensional data cube requires massive memory and storage space.
Existing algorithms are unable to materialize the full cube under such
conditions. Since a data cube grows exponentially with the number of
dimensions, it becomes too costly in both computation time and storage space
to materialize a fully high-dimensional data cube.

Dwarf is a highly compressed tree-like structure for computing, storing,
and querying data cubes. Identifies prefix and suffix structural redundancies

and factors them out by coalescing their store. Also, provides a 100% precision



on cube queries and is a self-sufficient structure, which requires no access to
the fact table. A simple pass over the tuples is enough, and as mentioned in
[15] where authors proposed mapping string dimension types to integers for
restoring the storage, it keeps storage consumptions in extremely low levels
considering the size of the fact table. The algorithms are designed to use
bounded amounts of memory and processing.

Suffix redundancy has the dominant factor in sparse cubes. Its elimination
has the highest outcome both in storage and computation time. Reducing the
computation of a number of sub-dwarfs during data cube construction would
improve performance and storage consumption.

Existing dwarf algorithm had an option to pre-compute only aggregates
whose computation would be enough costly to be done on the fly, using the
minimum granularity metric. The authors of the original dwarf structure
propose a Gmin parameter in order to eliminate the creation of sub-dwarfs on
dimensions that contain a number of tuples less than this parameter.

But, a dataset often contains information that some users may never query.
In sparse cubes, dwarf size can be quite larger than the fact table. It would be
essential if data cubes were built based on the demands of the users.

Therefore, eliminating computation of sub-dwarfs on such areas could be
beneficial for:

* Memory requirements

* Construction times

* Cube size

* Query performance

* Update times



1.2 Proposed Solution

This thesis utilizes the original Dwarf as a basic structure of pre-computing
and storing data. We developed the idea of notSafe and Safe dimensions view
computation. NotSafe views are chosen based on a list of given views by the
user. A hybrid algorithm operates before the executions of dwarf build
algorithms. Each View consists of different dimensions over the fact table, in
any order. This thesis proposes some rules defining which dimensions are safe
to compute suffix coalescing. Before the beginning of the built, an additional
algorithm reorders the dimensions and enables the elimination of any
“undesirable” sub-dwarf tree computation, which leads to decreasing the size
and time needed for construction, far more than the original dwarf.

As known, dwarf data cube model calculates and stores every possible
aggregation with 100% precision. A recent work in [2], the authors present a
surprising analytical result proving that the size of dwarf cubes grows
polynomial with the dimensionality of the data set. This polynomial
complexity reformulates the context of cube management, and has already
redefined most of the problems associated with data-warehousing and OLAP
as a full data cube at 100% precision is not inherently cursed by high
dimensionality.

Considering the above, an improvement of dwarf was a motivation for us.
As long as a user might not query every dimension of the fact table, then the
idea of eliminating computations and constructions on some dimensions of the
plan, would improve the performance. Given a set of views to materialize, we
create DWAREF representation that can store these views efficiently. Dwarf is
selected due to huge storage/computation savings against other ROLAP,

MOLAP models. Dwarf has been constructed for materializing ALL views of
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data cube, and again, this research has not been conducted before for

materializing subset of Views in Multidimensional OLAP.

1.3 Contributions of Present Work

The contributions of this work are summarized below:

1. A new version of dwarf algorithm implementation, based on memory
mapping buffered I/O with fast construction times.

2. A decision algorithm for evaluating, sorting, and reordering Dwarf cube
construction order.

3. A generic TupleReader interface, to read input from text and sql-based
source input.

4. A mapper that generates unique integer ID’s for any input data type
enabling the option for storing more data types than integers.

5. A tool for answering Roll-up, Drill-down or point queries on the dwarf

cubes that are generated, with fast response times

1.4 Thesis Outline

In this thesis, we focus on work related to Dwarf indexes, and extend the
functionality for constructing index cubes based on specific view subsets.

Background knowledge and related research are discussed in Chapter 2.
We describe the main aspects of the original dwarf algorithm and a quick
description of the two basic algorithms, whose authors have proposed in [1].

In Chapter 3, the idea and work of this thesis are described. More

specifically, the safe view algorithm decision rules and algorithms are
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proposed, suggested and analyzed. We denote some major aspects of
coalescing limitations of current algorithm, and how they can be avoided in
order to achieve a reduced index cube.

In Chapter 4, we describe some of the major aspects of the current
implementation work, which lead to this dissertation. As current work started
from a memory-based version built, and passed off to a memory-mapped disk
version, we describe some of the main implementation ideas and coding
methods related to this work.

In Chapter 5, our experimental work is presented, both for the original
dwarf as well as for the dwarf constructed for specific views. We attempt to
compare the results with a more recent work presented in 2008 [18], while
maintaining the experimental methodology of [1]. Thus, we scale both
dimensions as well as the number of tuples, concluding in excellent runtime
and size results.

In Chapter 6, query performance of the dwarf index cube is examined,
following a methodology which suggest of creating two workloads, one
including only unrelated queries, and the other, constituted by roll-up or drill-
down queries.

In Chapter 7, conclusions and future work are proposed, as well as a

general outcome of this thesis work.
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Chapter 2

Related Work Analysis

Dwarf index was first presented in SIGMOD 2002 and also patented.
Below we present the main aspects of the algorithm, in order to discuss in-
depth some key points, which lead our research to focus on implementing

dwarf based on view subsets.

2.1 An introduction to original DWAREF algorithm

A data cube is a conceptual n-dimensional array of values. It aids in fast
analysis and manipulation of data contained into dimensions. In the context of
this thesis, each dimension of the cube corresponds to an attribute of the data
in question and each point along the dimension’s axis is a value of the
corresponding attribute. In this section we formalize the redundancies found
in the structure of the cube and explain how they are used in the dwarf
algorithm to achieve a high compression ratio. To explain, we will use Table 1
as an example throughout this thesis, where we have 4 dimensions Store,

Customer, Product and a measure Price.

Store Customer Product Price
S1 C1 P3 $45
""""" S 1C2P4$10
""""" S 2C3P3$70
""""" S 2C3P4$35

Table 1: Fact Table for cube Sales

13



2.2 Prefix and Suffix Redundancies

Prefix redundancy is the first to be identified by the algorithm, and can be
easily understood why it is used to build indexes over the structure of the
cube. It occurs if a value of a dimension (for example S1 from Store) appears
in more than one group-bys. For example, S1 appears in the following: (S1),
(S1,C2), (S1,C2,P4), (S1,C1), (S1,C1,P3), (S1,P4), (S1,P3)a total of 7 times.
Those group-bys share the prefix of the first dimension. Any prefix of a cube
will appear in 2¢™ group-bys (d is the number of cube’s dimensions and n is
the length of the prefix) [21] and possibly many times in each group-by. Dwarf
stores the corresponding values only once, while avoiding replicating the same
values over the views. This is prefix reduction. In general, this can be extended
on more prefixes, and reduces the amount of storage required for these tuples.

Suffix redundancy occurs when a common suffix if shared between two or
more group-bys. An example is described below: We have three dimensions
(a, b, c). The suffix (b, c) is shared between views (a, b, c)and (b, c). In [1], suffix
redundancy is defined when a set of tuples of the fact table contributes the
exact same aggregates to different groupings. For example, we have
(C1,P3 $45) and (S1,C1,P3 $45). In general, a value of a dimension b, called
b;, will appear in the fact table as (bj,x). Also, for a single value from
dimension a, called ai, the group-bys (ai,bj,x) and (bj,x) will have common
values. This happens whenever two or more partitions share common
participating dimensions and cover the same subset of fact table tuples. During
construction, suffix redundancy is identified and only one copy of the sub-
Dwarfs will be constructed, thus eliminating space.

The original dwarf has no need of any previous information about the
value distribution. It takes as input a sorted data set, and then automatically

identifies prefix and suffix redundancies.
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2.3 A Dwarf Example

First of all we will describe an example of Dwarf structure using data from

table 1 and the aggregate function SUM. Then we briefly define the properties

of Dwarf algorithm.
S1 | 82
(1 Store Dimension
\ \J
C1|C2 » C3 Ct1|Cz2|C3
(2) (6) (8)
__________________________________________________________________________________________________________________________________________________________ Qqstomer Dimension
A \d \J
P3 845 | P4 $10 | 855 P3 8§70 | P4 835 |$105 |= P3 $115 | P4 845 |$160
(5) (7) (9)

»| P3 845 | 845

(3) Product Dimension

Figure 1: The Dwarf Cube for Table 1

To describe the construction of Dwarf, we decided to build the above cube
based on the aggregate function sum. The numbers of nodes correspond to the
creation order. The height of Dwarf is obviously equal to the number of
dimensions of the given fact table. Each node can be either a LeafNode or a
NonLeafNode node. The root node contains cells of the form [key, pointer], one
for each distinct value of the first dimension. The pointer of each cell, points to
the node below containing all the distinct values of the next dimension that are
associated with the cell’s key. LeafNodes are nodes that are found at the last
dimension of the fact table and contain the aggregate value [key, AggValue].
Each cell designates all those nodes that are determined by the cell itself. For

example, cell C3 of Customer Dimension designates the node containing keys
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P3, P4 of Product Dimension. While LeafNodes contain aggregate values, the
NonLeafNodes contain an extra cell called, ALLCell. This is described as a gray
small area at the end of each NonLeafNode. This is an extra pointer, which
contains all the aggregate values of each node.

Following the path from the root to each leaf node is practically a single
tuple of the fact table, which corresponds to one or more aggregate values. For
example (S2, C3, P3) corresponds to the value $70. Also, we may follow the
path (S2, C3, ALL) which corresponds to the LeafNode containing (P3,$70) and
(P4, $35). Those values are the sum of the Prices actually paid by Customer C3.
In addition, the node created on step 7, contains both nodes (P3, $70) and (P4,
$35), as well as the special ALL cell holding the price $105. In general,
leafNodes are of the form [key, aggValue], and if this node contains more than
one key, the new aggValue is summed with the existing values in this node.

If we follow the path (ALL, ALL, ALL) we observe that we reach a
leafNode, which contains all the products P3, P4 that are contained in our fact
table. In addition, we have calculated the total number of Prices. This is also
described as a query of the form (group-by NONE). Following paths (51, C1,
P3), (S1, ALL, P3) and (S1, C1, ALL) , which consist of second raw of the table,
lead to the cell [P4, $10]. These coalescing redundancies are identified by
dwarf, which when published for the first time, completely changed the
perception of a data cube from an unordered collection of distinct groupings,
into a complex network of interleaved groupings and aggregates, that

eliminate both prefix and suffix redundancies.

2.3.1 Properties of Dwarf

We briefly introduce the main Dwarf properties, as described by the

authors in [1]:
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. It is a directed acyclic graph (DAG) with just one root node and exactly D
levels, where D is the number of cube’s dimensions.

. Nodes at the D-th level (leafNodes) contain cells of the form: [key,
aggregateValues].

. Nodes in levels other than D-th level (nonLeafNodes) contain cells of the form:
[key, pointer]. A cell C in non-leaf node of level i points to a node at level i + 1,
which it dominates. The dominated node then has the node of C as its parent
node.

. Each node also contains a special cell, which corresponds to the cell with the
pseudo-value ALL as its key. This cell contains either a pointer to a non-leaf
node or to the aggregateValues of a leaf node.

. Cells belonging to nodes at level i of the structure contain keys that are values
of the cube’s i-th dimension. No two cells within the same node contain the
same key value.

. Each cell Ci at the i-th level of the structure, corresponds to the sequence Si of
i keys found in a path from the root to the cell’s key. This sequence
corresponds to a group-by with (D - i) dimensions unspecified. All group-bys
having sequence Si as their prefix, will correspond to cells that are
descendants of Ciin the Dwarf structure. For all these group-bys, their
common prefix will be stored exactly once in the structure.

. When two or more nodes (either leaf or non-leaf) generate identical nodes
and cells to the structure, their storage is coalesced, and only one copy of
them is stored. In such a case, the coalesced node will be reachable through
more than one path from the root, all of which will share a common suffix.
For example, (S1,C2,P4) and (ALL, C2, P4) share the common suffix (C2, P4).
Any nodes that are dominated by a coalesced node N will also be coalesced,

since they can be reached from multiple paths from the root to the leaf nodes.
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2.3.2 Constructing Dwarf cubes

Two main processes can describe the original Dwarf algorithm: The prefix
expansion and the suffix coalescing. An important condition before the
commencement of the construction is that the tuples are first using a fixed
dimension order, and then they are inserted into the Dwarf structure one by
one. In our previous example (Figure 1) the Store dimension is sorted. Another
interesting point to emphasize is the fact that both algorithms do only a single
scan over the fact table, while building the index, calculating and storing every
possible aggregation with 100% precision.

The prefix expansion sequentially scans over the sorted fact table. Every
time a new tuple is read, all the necessary nodes and cells are created. When a
new tuple is read, the algorithm compares each dimension with the previous
tuple, and when it finds common prefix, it stores the new key values (Figure
2). As we reach the last dimension, a common prefix P between curTuple and
prevTuple is computed. For the first tuple of Table 1, we create |P| + 1 number
of nodes. For D-dimensional cube, new D — |P| — 1 nodes are required. When
a leafNode is closed, the “ALL*” cell is created by aggregating the contents of
the other cells in the node. An aggregation cell maps to a measure. When a
nonleaf node is closed, the “ALL” cell is created and call the suffix coalescing
algorithm presented in Figure 2 to create the sub-Dwarf dominated by this cell.
For a nonLeaf node at level L <D an aggregation cell points to a node at level L
+1. Therefore, the content of a cell belonging to a node N, contains either
aggregateValues (leafNodes) or sub-dwarfs (nonLeafNodes). The suffix
compression turns the tree into a DAG. For instance, if we follow one of the
paths (S1, C1, P3), (S1, ALL, P3), (S1, C1, ALL) or (ALL, C1, P3) we will end up

at the same cell of node (4).
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Algorithm 1 CreateDwarfCube Algorithm

Input: sorted FactTable F, D: MaxDimension
Output: DwarfIndex dwarf
1: //iterate over sorted fact table:
2: Create all nodes and cells for the first tuple
3: last_tuple €< first tuple of the fact tuple
4: while more tuples exist unprocessed do
5 current_tuple € extract next tuple from sorted fact table
6 P € common prefix of current tuple, last tuple
7: if new closed nodes exist then
8 write special cell for the leaf node homeNode where
last tuple was stored
9: For the rest D — |P| — 2 new closed nodes, starting from
homeNode’s parent node and moving bottom-up, create their
ALL cells and call the SuffixCoalesce Algorithm
10: end if
11: Create necessary nodes and cells for current tuple
{ D — |P| — 1 new nodes created }
12:  last tuple € current tuple
13: end while
14: write special cell for the leaf node homeNode where last tuple was
stored
15: For the other open nodes, starting from homeNode’s parent node and
moving bottom-up, create their ALL cells and call the SuffixCoalesce
Algorithm (Algorithm 2)

Figure 2: CreateDwarfCube Algorithm

Algorithm 2 SuffixCoalesce Algorithm

Input: inputDwarfs = set of Dwarfs

1: if only one Dwarf inputDwarfs then

2: return Dwarf in inputDwarfs

3: end if

4: while unprocessed cells exist in the top nodes of inputDwarfs do

5: find unprocessed cells exist in the top nodes of inputDwarfs;

6: toMerge < set of Cells of top nodes of inputDwarfs having keys
with values equal to Keyn ;

7: if already in the last level of structure then

8: curAggr €< calculateAggregate (toMerge.aggregateValues)
9: write cell [Keyim,currAggr]

10: else

11: write cell [Keyim,suffixCoalesce(toMerge.sub-dwarfs)]

12: end if

13: end while

14: create the ALL cell for this node either by aggregation or by calling
SuffixCoalesce, with the sub-Dwarfs of the node’s normal cells as input;

15: return position in disk where resulting dwarf starts

Figure 3: SuffixCoalesce Algorithm
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2.3.3 CreateDwarfCube algorithm execution

During the construction of the first algorithm, we decided to create a
Mapping Utility, in order to save space, and extend the input data types. When
a new tuple is read, the common prefix P is computed, while for each new
value of the tuple, we assign a single Integer to it. This is also described by
using the most compact representation of a unique dimension ID in the form of
an integer. This, of course, simplifies implementation (no different data types
in nodes) and speed (native data type faster to move around and compare).
Therefore, for each new value of a tuple, we hold String to Dimension ID’s
representation of the values, and dwarf is constructed based on those assigned
integers. For each new unassigned value, we add into the mapper list each
new Integer ID. (Move it at efficient cube storage).

The above algorithm (Figure 2) is described by holding dimension level on
every loop of the process. We decided that there is no need to keep dimension
level information except in the outermost loop of the process. When a new
tuple is processed, we search for common prefix between current and previous
tuple, and therefore, the information that we finally need about Dimension

level is only those dimensions where we do not have common prefixes.

2.3.4 Suffix Coalescing algorithm execution

Suffix Coalescing requires as input, a set of Dwarfs and merges them to
construct the resulting Dwarf, called sub-Dwarf. For the root node of the
resulting Dwarf, the sub-Dwarf of the cell with the value k is constructed by
merging all those sub-Dwarfs of the cells in the top nodes of the input Dwarfs
with value k, and the sub-Dwarf of the “ALL*" cell is constructed by merging
the sub-Dwarfs of other cells within the same node.

If the size of nodes that consist a list of nodes toMerge is 1, then it is

obvious that the product of the coalescing will result to the Dwarf itself. If the
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size of nodes toMerge list is greater than 1, continuous recursion of suffix
Coalesce happens, and for all the keys that are into the cellMap (a list of leaf
nodes that are about foMerge), we call suffixCoalesce recursively. This
continues until we reach the last level of the fact table, where we finally call the
aggregate function to SUM all the aggregate values of the leaf-Nodes that are
dominated by the sub-dwarf, and produce the final {ALL *} cell. Of course, our

data cube supports more than one aggregate value on each tuple for example:

Store | Customer | Product | Pricel | Price2 | Price3

51 C2 P4 $10 | $20 | $15
s a P3| $45 | $35 @ $5
s2 F P3  © $70 | #80 | $75
2 PA | $35 | $90 | $30

2.3.5 Memory Requirements

As analyzed in [16] it is easy to understand that dwarf algorithm has no
major memory requirements. CreateDwarf Cube algorithm requires
remembering only the previous read tuple, to compare with current tuple from
the fact table. Suffix Coalesce is designed in order to keep in memory a list of
which nodes are about to merge from each level down to the next. This also
holds the path from the root to the leaf nodes. A memory-mapping version of
the algorithm permits a quick look up procedure of a dimension’s ID for its
indexes into the nodes. It is evident that MaxMemoryNeeded = ¢ * ¥"_, C ard,,
where ¢ is the size of the cell, and D are the levels of the structure from root to

the {ALL =} Cell of the root node.
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Chapter 3

Current Work

3.1 Clustering Dwarf Cubes

In 4.2 [1] the authors describe the idea of clustering the structure. The
original algorithm has 100% precision for storing all the possible group-by’s,
which may be queried. We use the lattice representation [3] of the Data cube to
demonstrate the computational dependencies between the group-by’s of the

cube, using a binary representation.

View Binary . Parents
Representation
abc 000
ab 001 abc
ac 010 abc
a 011 ab, ac
bc 100 abc
b 101 ab, bc
C 110 ac, bc
none 111 a, b, c

Table 3: View ordering example
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Figure 4: Processing Tree of Table 3

In the above lattice, each node corresponds to a group-by. Node (bc)
represents the bc group-by view. It depends on dimensions b and c. Also, the
node (abc) consists of the dimensions a, b and c. Using directed edges, the
authors point out the computational dependencies among all the possible
group-by’s. Such dependencies occur when a group-by can be computed from
another group-by as ac, which is computed by dimension a. The group-by abc,

therefore, can be used to compute any group-by in the lattice.

3.1.1 Introducing the idea of View bitmap

The second column of Table 3, consists of the bitmap of each possible view.
Each dimension is represented by “0” or “1” (False/True), and the total bits
required are equal to the number of dimensions of a given fact table. “0” is
assigned when a dimension is participating, whereas 1» is used when a
dimension does not appear in the view. A simple example is the view bc,
which is represented by “100”, as we have 3 dimensions, or view ac which is

represented by “010”. In general, for every dimension of a view viwe have:
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0 ,if i exists
1 ,if i not exists

VdiEDEIbi:biz{
A view given by user includes one or more dimensions of the fact table. A
bit value (False) indicates the participation of the dimension into the view. For
a total number of 4 dimensions, we create a list of all the possible bitmaps,
starting from the 0000 bitmap which represents the view (A, B, C, D). For a
total of X dimensions, all the possible views are 2%, so we construct a total
number of 16 bitmaps. This binary representation gives us the possibility to
recognize which view can be computed from which, and therefore, eliminate
suffix coalescing computation and construction, by utilizing the fact that a
view may be computed from another earlier during dwarf coalescing.
For example, we introduce the following paradigm, which consists of 4

dimensions, using the ancestor v; with the biggest common prefix for w

(A,B,C,D) and a total of 16 bitmaps:

View Binary . Parents
Representation
ABCD 0000
ABC 0001 ABCD
ABD 0010 ABCD
AB 0011 ABC, ABD
ACD 0100 ABCD
AC 0101 ABC, ACD
AD 0110 ABD, ACD
A 0111 AB, AC, AD
BCD 1000 ABCD
BC 1001 ABC, BCD
BD 1010 ABC, BCD
B 1011 AB, BC, BD
CD 1100 ACD, BCD
C 1101 AC, BC, CD
D 1110 AD, BD, CD
none 1111 A B, C D

Table 4: Bitmap representation with 4 dimensions

24



Based on the above example, we note that the binary representation for
view v; can be derived from a binary representation of w, changing any bit
from true[1] to false[0]. Parents of a view v; are denoted by w, and for each
view, there exists one or more parents, depending on number of true[1] bits.
When a bitmap contains more than one true[l] bit, then the number of
candidate parents is equal to the number of those bits. For example, view
w = 45[0011] contains two true[1] bits. As a consequence, anticipated parent
views are v; = ,5.[0001] and v, = 45,[0010], with {vl(BCD)} < Wgcp)-

Each view ancestor occurs earlier as seen using Binary-Coded Decimal
encoding. For the view w = ,5[0011], both v; = 45,[0001] and v, = ,5,[0010]
exist, with v; having been computed earlier in comparison to v,. Another
example is view w' = 5[1011], with prospective parent views vz = ,5[0011],
vy = pc[0011] and vs = 5p[1010]. The computation order of those views is
vs — v, — v3. The idea of choosing the most recent view as a parent, is based
on the assumption that the most recent computed view, has more possibilities

to be in memory, and caching the nodes will be less time consuming.

View Binary . Parents
Representation
ABCD 0000
ABC 0001 ABCD
ABD 0010 ABCD
AB 0011 ABC, ABD
ACD 0100 ABCD
AC 0101 ABC, ACD
AD 0110 ABD, ACD
A 0111 AB, AC, AD
BCD 1000 ABCD
BC 1001 ABC, BCD
BD 1010 ABC, BCD
B 1011 AB, BC, BD
CD 1100 ACD, BCD
C 1101 AC, BC,CD
D 1110 AD, BD, CD
none 1111 A,B,C, D

Table 5: Ancestors selection based on most recent views are bolded

25



3.1.2 Optimizing view iteration

In OLAP cubes, multidimensional structure is defined as a variation of the
relational model that uses multidimensional structures to organize data and
express the relationships between data [7]. Each cell within a multidimensional
structure contains aggregated data related to elements along each of its
dimensions. According to the algorithm for constructing the Dwarf cube,
certain views may span large areas of the disk. It became obvious that users
tend to query only certain dimensions (based on their views bias) and not the
entire cube, especially over a fact table that contains a considerable number of
dimensions. An efficient algorithm for constructing dwarf cube based on
subset of views would cause the elimination of any sub-dwarfs during the
suffix coalescing of the nodes. Also, it could lead not to compute some
{ALL ¥} nodes. Therefore, our goal is to achieve faster construction, and size
reduction of the cube, by avoiding storing the whole database structure.

Optimizing view iteration refers to ordering the views so that they are
created in order to maximize locality, and optimize query performance. The
cost of answering a query Q, is the number of rows present in the table for that
query, which are coalesced to construct the cube. For example, computing
Vg = {a,ALL ¥} and then v, = {ALL *, ALL *}, instead of doing the closure and
coalescing in their natural order, could save some time in disk access during
build.

Using View-to-Bitmap algorithm, we define for each possible view, the
parents from which it can be computed. The general rule is that we choose as a
parent, the view that is most recently computed based on binary

representation in Table 5.
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Algorithm 3 View-to-Bitmap Mapping Algorithm 3
Input: inputViews = set of Views {vi, va, ..., Vk}
Dims: list of dimensions of the fact table
Output: set of bitMaps
1: while more views exist unprocessed into Input
currentView € extract next view from Input
for(i=1 to Dims.length ) do
if( currentView.contains Dims[i] ) do
bitMap[i] € 0

bitMap[i] € 1
end if
Output € insert bitMap
end while
10: sort Output list based on Binary representation
11: Call SafeView algorithm

2
2
3
4:
5: else
6.
7
8
9

Figure 5: View to Bitmap Mapping Algorithm

Algorithm 3 describes how the bitmap mapper “transforms” views into
binary representation of all views.

Each of these sorted views, probably contain one more common
dimension. These dependencies suggest that some of the views are able to be
computed from others, meaning that for a view v; =[xy, Xy, ..., x, ] and
v; = [xq,%3, ..., X | where k € m, then, if all of the dimensions of v; are
included in v;, it is safe to compute v; from v;. For example, consider view
v, = ¢¢[0010001],, v, = 5epe[0110011], , v5 = zc[0000011],, and a fact table
with dimensions <A,B,C,D,E,F,G>. Then, view v, and v; can be computed from
vy, if v; has already been stored into the build index. Views v, and v; are not
related. Sorting these views from higher to lower binary representation, we
havev, = pcp[0110011], > vy = [0010001], > v5 = ,[0000011],

Therefore, computing only v,, suggests that all the other given views can

be safely answered, as the ALL* nodes that will be queried have already been

computed by the suffix coalescing.
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What happens when a view can be computed from two or more other

views? For example, consider the following views:

Dimensions : {A,B,C,D,E,F, G}

View 1 | {B, D, E, F, G} » (1010001 }
View2 | {A,B,D,F} » {0010101 }
View 3 {B,D} » (1010111}

After sorting the above bitmaps, we have:

|vs = pp[1010111],| > |v; = pperg[1010001],| > |v, = 45pr[0010101],|.

View v3, can be computed equally from {view 1} and/or from {view 2}. But v,
cannot be computed from v; because it contains dimension <A> which does
not exist in vy, alike v; cannot be computed from v, because it contains
dimensions <E,G> which do not exist in v,. Adopting the rule of the most
recent parent, our algorithm will choose as a parent the view that “logically”
would have been most recently computed in sorting order, (as in the example
of table 5) which is v;. The idea of most recent parent is adopted, as it is more
possible that any sub-graphs required for constructing each view, will
probably have already been computed/stored by having materialized a view
whose bitmap is closest to us. Thus, v; can be safely computed from v,. Or, in
Table 5, we can chose as parent view for {a}, one of {ab}, {ac}, {bc}. But,
according to previous assumptions, it is more probable that if we chose to be
computed from {ad}, the data required for view {a} will be found during the

construction of this view.
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3.1.3 Coalescing problem and solution

In this thesis, we introduce the idea of safe and notSafe views. The authors
of dwarf had a criteria deciding that if the algorithm had to coalesce things that
were quite large, then, dwarf exited coalescing on those nodes, and executed a
partial sorting on the fact table. The idea of being safe refers to the fact that all
requested data which any possible query might request, will be available at the
time a suffix coalescing has to be computed. This, of course, is recursive,
denoting that if a view is computed from another which is safe, then all those
data referring to those views, is guaranteed that will be found (safely) while
traversing the tree.

A view is a set of dimensions, which belong to the whole data set of a given
fact table. Supposing we have a data set of N dimensions, one view Vi includes
a set of x dimensions, where x < N. Another view V2 may include a set of y
dimensions, not identical to x. If both Vi and V2 contain the same dimensions,
they are identical. Generally, each view corresponds to answering queries on
specific dimensions, and supporting group-by’s on those levels. Our idea is
based on utilizing the existing dwarf cube to support each view, and also
maintain the option of point queries.

We propose a decision algorithm based on the dimensions each view
contains. Our idea is to construct dwarf index cube able to support each given
view before the build. We maintain the plan of the cube, which means that
users are able to execute point queries over the fact table, and Roll-up or Drill-
down queries will be supported only on dimensions, which are defined by the
views.

What was interesting was to manipulate how each dimension that does not

appear in a view, could be bypassed in cases that we would have to coalesce
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things, or create sub-dwarfs, or avoid computing the “ALL#*" cell on each level.
This should also support the idea of being safe.

As we know, dwarf of a node X that is dominated by some cell of N is
called sub-dwarf of N. Each sub-dwarf contains nodes of lower levels, as well
as their aggregated “ALL*" nodes, which support the group-by’s aggregations.
Indeed, there are cases when, during coalescing of a dimension, the
construction algorithm might need to follow a path of an “ALL*” node in
order to compute a sub-dwarf of a given dimension, which might not have
been computed.

One of the main problems, which occur during coalescing, is the fact that if
we decide not to store all possible views, then, there are great possibilities that
we may end up in sub-tree areas where the desired data might be missing. To
be more specific, during prefix coalescing on higher levels of the tree, we
merge nodes, which correspond to some group-by’s. Each node has a prefix in
the tree, which is the path to be followed until the node is reached, from the
root of dwarf.

If we decide to follow a path from the root to the tree, and a specific
coalescing has been dismissed/not created, then, the area where the index will
try to read, may point to null, and therefore, not able to answer correct a query.
Thus, to be computed from some other view Vi, then on each of respective
levels, there must exist the aggregate cell for every sub-tree.

For example, in figure 6, the original Dwarf [1], would build the “ALL*”
on dimension 2, [C1, C2, C3]. This, of course, as the dimensions grow, has
great effect on size cost. Node [C1, C2, C3] is accessed by the “ALL*” node of
root, leading to data from group-by’s which can not be defined on their first
dimension, or again, not having {*} in first dimension.

To support a view Vi with prefix Pi whose prefix contains 1% dimension but
not 2", (bitmap: [01...]), then both [C2, C3] and [C2] would have to build their

{*x} during suffix coalescing. If none of the other views in the safe list has
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defined dimensions [11...] over P, then, we only need to follow the path from
the “ALL#"” of dimension 1 2 “ALL%"” of dimension 2, to reach dimension 3.
Let's assume an output permutation from algorithm 3, with plan
<A,B,C,D,E,F,G>, which produces maximum number safe views. Also, one of
them is view v:1 = <D, F>. In such case we are willing to override intermediate
dimension {E} (of course none of the other views has prefix on {E}), only
keeping the paths of the nodes which point from {D} to the next {E} level, and
of course from {E} to {F}. The bitmap of v: = <D, F>is [111010].
During construction, we traverse the path from the root ALLx* {A} =
ALLx* (B} & ALL=* {C} > ALLx* {D}, then create coalescing over the nodes of {E}->
ALLx {F}, and finally, as we have reached leaf nodes on last level, coalescing

over the nodes of {G}.

F {all*} ( 0 )

Figure 6: Traverse of a path for [1111010]

It can be understood more clearly in figure 7, and in particular when
coalescing on level 3 occurs. As we can see on this simple dwarf cube, D4
appears twice on level 3. Thus, D4 points to F4, F5 and F3, and possibly more

sub-dwarfs on a more complex cube.
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Figure 7: A more complex Dwarf example

During closure of D4 node, it coalesced F4 and F5, which could be sub-dwarfs
and not simple leaf nodes. This possible coalescing into an intermediate
dimension of our view cannot be overridden easily.

In such case, a solution to override {E}, would be to create a node below {E}
to accommodate all the nodes of {F} dimensions or point straight to the fact
table. In addition, it would require creating a copy of the sub-tree and compute
the ALL* nodes on-the-fly if requested (for example the ALL* nodes of {F}).

Computing on the fly the {ALL*} nodes of a dimension when requested,
suggests that we will have to compute also the sub-dwarfs of the {ALLx} of {F}.

This means that for the extra dimension between {D, F} for example, we
coalesce, ensure that we have computed the {ALL#} for that dimension, and if
not, compute on the fly, and finally continue traversing down the path till we

reach the leaf nodes.
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Generally, we coalesce nodes and build their ALL cell, on dimensions
where a given view will request a group-by on those nodes. If not, just
compute the ALL cell containing every node on this dimension, in order to
maintain the path of the tree to reach other nodes on lower levels.

Now, consider the following dwarf, which has been constructed to hold all

the tuples of the fact table, for the view V = {a,b,c}.

Store Dimension

(G ———

Customer Dimension

P3 $70 | P4 835

(9)

Product Dimension

If a query Q = {*, b, *} appears, then, we need to traverse the path from
Store dimension down to Customer Dimension, through the {ALL *} cell of (1)
node. In our case, this is not possible, as we have decided to omit building the
corresponding nodes. As a consequence, the query Q cannot be answered, and
probably we will need to compute it on-the-fly, using lazy updates.

Again, we have to come up against problems such as:

1. Not having materialized subgraphs of Dwarf due to the fact of not
having materialized some views.

2. Traversing the tree can lead to areas where “ALLx" is not computed

3. Data or node pointers might be missing (null)

4. Problems in computation (cannot merge a subgraph that is not

computed)
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5. Queries (not able to find requested data, thus compute it on the fly

using lazy updates).

3.2 Safe and Not Safe Views decision algorithm

To confront the above problems, we needed a rule that guarantees that
each view in the dwarf is computed SAFELY. This denotes that during
coalescing, all sub-dwarfs needed are stored. The problem of storing specific
views is much harder than it seems, because as mentioned before, coalescing
can lead to “bad” areas (not fully computed) in many cases.

After conducting further research, we purpose the following rules for
examining which views need to be materialized and which require a more
complex process. Redundancies between views occur, as denoted on 3.1.1,

when view v; contains dimensions, which are found also in a view v,.

> Rule 1:

Suppose a view Vi containing a number of dimensions X; and V; containing
Y; number of dimensions.

Ifax; : X;,=1{d,, d,,ds,..d;}and

Y, ¢ Y, ={dy,dy ds,..d;} where |i + 1| = ||

Then Viis candidate to be Safely computed from V;.

> Rule 2:
Having two views Viand V; :
3 V; 2 Vi ={dn,, dn,, . dn,},

3Vt V; ={dm,, dm,, ...dm,} where |k|=|i+1]
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If the last not stated dimension D,,, in V; is stated in V; and Rule (1) is valid,
then V; is safe to be computed from V;.
For example:

(01110 > 01100)
(01101 > 01100)

For example, supposing that view Vi={*, 2,% 4, 5 } is safe, then :
Vs={%2, % x,5}issafe
Vi={%2, %4, = }is safe

Vs={x, x, x,4, 5} is not safe (this is only computed from { *, ¥,3,4,5})

Another example:

Supposing Vi={*, %, 3, 4, 5 } is safe then:
Va={%, %, 3,4, *}is safe

Va={%, % %,4,5}is safe

Va={%, %, 3, %, 5}issafe

Supposing Vi = { x, 2, %, %, 5} is safe, then this view produces only one safe

view Vi={%, 2, %, %, = }.

For a given set of views, it is necessary to disintegrate which views are safe
and which are not, and then build dwarf. Below, we analyze this process.

The process starts by transforming each view, into a binary representation,
based on the plan of the fact table as stated in (3.1.2). Then, it begins by
comparing each view from the highest binary representation towards the plan
(lowest binary representation), each time by confronting two views. When a
view is characterized as “safe” it is removed from the list. As we have started
from the highest binary number, the lowest binary representation will

definitely be the view of the plan; Vyun = {A, B, C, D, E, F, G...} is represented
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by {0,0,0,0,0,0,0,...}. This enables the option to compare all possible views,

while maintaining the idea of choosing most recent parent introduced in

(3.1.1). Until all views are safe, the algorithm creates all possible permutations

of the dimensions of the fact table.

Suppose we have the following views:

Vi =11,2,3,4,5,6,7,8]

V> =[3,5,7]

Vs =[2,3,5,7,6]

Vi =[2,3,5]

Vs =[3,5,6,7]

Ve =[2,3,5,6]

V7 =[1,3,6]

Vs=1[2,3,5,6,7]

Vo =[2,3,4,5,6,7]

Vio =11,2,3,4,5,6,7]

Table 6: Example of 10 possible views

Our permutation generator, has decided that the above views are safe from

permutation [8, 1, 4, 5, 3, 7, 6, 2]. The ordering of the views is based on their

binary representation from lowest to highest bitmap as shown below:

PLAN (View 1) View 10 | View7 | View9 | View 8 | View5 | View2 | View6 | View4 | View 3
8 0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1
4 0 0 1 0 1 1 1 1 1 1
5 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 1 1 1
6 0 0 0 0 0 0 1 0 1 1
2 0 0 1 0 0 1 1 0 0 1

Table 7 : Example of binary representation of Views for permutation
[811/4151317I6I2]
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Finally, our algorithm starts comparing views starting from View2 as
described below (Table 7), comparing from right to left until we reach the plan.
If the view is not found to be safe, then the algorithm characterizes it as notSafe,

removing it from the list.

current permutation plan OF DWARF IS : [8, 1, 4, 5, 3, 7, 6, 2]
Sorted bitMaps of Safe Views:

[1-0000000, 10=10000000, 9=11000000, 8=11100000, 5=111000001, 6=11100100,
4=11100111, 3=11100111]

The above procedure is repeated by changing the ordering of the plan. For
each permutation we examine all the views, and if all are found to be safe, then
we terminate the process, and start building dwarf based on the “perfect”
permutation plan. If not, we examine safe views from all the remaining, create
support-Dwarfs with less dimensions if a dimension does not appear in any of

the remaining views, until all views are finally safe.
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Algorithm 4 SafeView Algorithm 4

1
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:

16:

Input: inputViews ( set of Binary representation {vi, va, ..., Vk} )
S: Fact Table, NS: other views Except S

StarsToCompute: where to build {ALL*}

Permutations: 2"Dims

Output: Permutation, Safe Views, StarsToCompute

: check all Views in NS if are safe

: if( NS.size() == 0 ) then

call CreateDwarf for SafeViews Algorithm for S, S.StarsToCompute
end if
while ( NS.size() >0 ) do
find best permutation X for all views in NS
copy all safe views of X in S
remove all safe views from NS
end while
call CreateDwarf for SafeViews Algorithm for X, X.StarsToCompute
while ( NS.size() != <empty> ) do
find best permutation Y for all views left in NS
copy all safe views of Y in S
remove all safe views from NS
call CreateDwarf for SafeViews Algorithm for supportDwarf cube for
permutation on Y, Y.StarsToCompute
end while

Figure 8: Safe Views Decision Algorithm

3.3 Permutation Generator

In our java implementation, the PermutationGenerator Java class

systematically generates permutations. It relies on the fact that any given set

with n elements can be placed in one-to-one correspondence along with the

set {1,2,3, ..., n}. We implemented the algorithm described in [4] to generate

all possible permutations for a given plan. In order to accelerate the

procedure, all those dimensions, which do not appear in any views, are

placed at the prefix side of the first combination. This accelerates the

procedure, as we are able to search for the best permutation only among the
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dimensions that are required to produce a safe Dwarf. The total number of
permutations for x dimensions is x! . Reducing the dimensions, speeds up the
generator, as less combinations are required.

Of course, as the dimensions and the views grow, this procedure can take
up to 77 seconds for 254 views on 8 dimensions. During the process, if we
have not found any perfect permutation to minimize the number of notSafe
Views, then we keep in memory the permutation which produces a minimum
number of notSafe Views. After we have finished building the first dwarf, we
start a new search, this time only on the dimensions contained into notSafe
Views, and not the whole plan.

At query time, when any roll-up or drill-down query needs to be
executed, the query utility handles each request by searching on either the

main Dwarf cube, or the supportDwarfs created.

3.4 Efficient reducing of sub-Dwarfs

In 3.2 we described the difficulties caused by interaction of the different
dimensions appearing into a specific view, keeping the initial ordering. Using
the permutations generator, the rules, the list of useful dims and, of course,
the list of Safe Views, we start constructing dwarf.

e All useful dimensions are moved in front of the plan, and new sorting of
the fact table is executed based on the first dimension of the new
permutation-plan.

e NonLeafNodes contain an extra [cell] to store new aggregateValues

e For every node that is about to be closed, we examine if we have to
compute its “ALL+” value. This is decided based on the following: During

construction of DWAREF, each node has a prefix, which is actually the path
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from the root to this node. If the path contains traversed dimensions and
not “ALL+" cells, then our prefix has “0” on each level, instead it contains
“1”. At building runtime of the “ALL*”, we compare the current path,
which we have followed, with all the views, which are about to be built. If
a view has the same prefix with us, and contains “1” at the same level
where we are about to build the “ALLx*” node, then we build it.
Otherwise, the building algorithm skates over this node.

To avoid during query times, traversing the tree down to the leafNodes in
order to fetch the requested aggregate values (of the current nodes which
are about toMerge (Algorithm 2 SuffixCoalesce)), we store on higher levels
the aggregate values of a sub-dwarf, depending on the list of safe Views. If
not required, we write null.

Algorithm 5 and 6 (Updated_CreateDwarfCube Algorithm) are executed
(modified for safe Views), using an extra input array of useful
Dimensions. While Updated_CreateDwarfCube compares each tuple with
the previous one, coalescing occurs only on useful dimensions. Again, the
builder identifies dimensions, and decides for every level, which nodes
should compute their “ALL*"” cell, or write null. This depends on the fact
that for every safe view, there are often dimensions, which are never
queried.

If a view has stated a dimension, for that level we follow the path to the
nodes below (level+l), and compute their “ALL*”, and if required,
compute the newAggr (line 12: algorithm 7). Thus, we are able to answer to
specific group-by’s on that dimension.

If for none of the views, a dimension is not stated, we maintain the path by
computing the final “ALL*” on a level (bottom-up computation (line 9:
algorithm 6) in order to keep the pointers of the nodes and maintain the

path of the total dwarf index tree.
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In general, we compute “ALL*" cell of a node iff there exists a view to be
stored which
e Starts by the same prefix, and

e (Contains “ALL*” in the dimension of the node

For example, let’s assume that we have constructed the following

DWAREF for supporting the views {000},{010}, {011}, {100}.

Store Dimension

Customer Dimension

Product Dimension

When we have to compute node (3), we are about to build a node with
prefix {01}, and need to compare this path with the given views. As there
exists no other view containing the prefix {011...} we decide not to build the
node (3), and for the same reasons, we do not build nodes (1) and (2).

With the above procedure, common dimensions are only recognized, and
safe Views are used to reduce the number of sub-dwarfs stored. In addition,
we preserve the path of the root to the nodes, overriding computation and
storing of some “ALL*” cells. Moving all the useless dimensions at the
backend of the plan, gives us the advantage of avoiding traversing the whole
tree index.

As mentioned above, coalescing may lead to undesirable conditions in

arbitrary cases. Based on our rules, we will never construct nodes containing
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“ALL+” cell, but no other regular cells (with their corresponding subdwarfs).
But may not completely rule out cases of having not calculated “ALLx*" cells
due to coalescing multiple levels above. Thus, we cannot simply compute
“ALL+” cells based on the worst-case assumptions of coalescing, as size of
Dwarf would explode and lead to storing the entire data cube, and again, if a
query hits a dwarf region where an “ALL+" cell is not computing, then we
may compute the data missing on the fly.

Also, storing extra aggregates on nonLeafNodes cells, reduces the cost of
traversing the tree down to the leafNodes, saves time and space compared to
the original suffixCoalescing procedure. Suffix Coalesce is a major cause for
latency, and, recognizing as early as possible which dimensions are not safe,
accelerates the procedure. Suffix redundancy now is enabled only when

required. Below we demonstrate the above procedures (Algorithm 5, 6, 7).

Algorithm 5 CreateDwarf for Safe Views Algorithm 5
Input: Permutation = order of Dimensions, S = ordered SafeViews,
stars = StarsToCompute
Output: finalPlan, notSafeDims, SafeViews
1: NotSafeDims € Compute useless Dims from SafeViews and Permutation

2: Move all NotSafeDims.elements() at the end of Permutation
3: call Updated CreateDwarfCube Algorithm

Figure 9: CreateDwarf for Safe Views Algorithm 5
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Algorithm 6 Updated CreateDwarfCube Algorithm 6

Input: SortedFactTable = finalPlan,

NSF = notSafeDims,
SafeViews = Safe Views from Algorithm 4

Output: DwarfIndex dwarf

1: sort Fact Table on first non-useless Dim of SortedFactTable
2: //iterate over sorted Fact Table based on SortedFactTable

3: last_tuple €< first tuple of the SortedFactTable

4: while more tuples exist unprocessed do

5:
6:

10:
11:
12:

13:
14
15:

16:

current_tuple € extract next tuple from SortedFactTable

P € common prefix of current_tuple, last_tuple only
on Dimensions not included in NSF.array()

if new closed nodes exist then
write special cell for the leaf node homeNode where
last tuple was stored
For the rest D - |P| - 2 new closed nodes starting from
homeNode’s parent node and moving bottom-up,
create their ALL cells and call SuffixCoalesce New Algorithm

end if

Create necessary nodes and cells for current_tuple

{D - |P| - 1 new nodes created}

last tuple €< current tuple

end while

write special cell for the leaf node homeNode where last tuple was
stored

For the other open nodes, starting from homeNode’s parent node and
moving bottom-up, create their ALL cells and call the
SuffixCoalesce_ New Algorithm (Algorithm 7)

Figure 10: Updated CreateDwarfCube Algorithm 6
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Algorithm 7 SuffixCoalesce New Algorithm

Input: inputDwarfs = set of Dwarfs, NSF = safe Views

1: if only one Dwarf inputDwarfs then

2: return Dwarf in inputDwarfs

3: end if

4: while unprocessed cells exist in the top nodes of inputDwarfs do

5: find unprocessed cells exist in the top nodes of inputDwarfs;

6: toMerge < set of Cells of top nodes of inputDwarfs having keys with values

equal to Keyin ;

7: if NSF.contains(currentLevel +1) then

8: if already in the last level of structure then

9: curAggr € calculateAggregate(toMerge.aggregateValues)

10: write cell [Keyin, curAggr |

11: else

12: newAggr& calculateAggregate for corresponging leafNode aggValues
by traversing the path down to the last level, and copy their values

13: write cell [Keyuin, suffixCoalesce New(toMerge.sub-dwarfs),
newAggr]|

14: end if

15: else

16: write cell[Key,», suffixCoalesce New(toMerge.sub-dwarfs), nu//]

17: end if

18: end while

14: create the ALL cell for this node either by aggregation or by calling
SuffixCoalesce New, with the sub-Dwarfs of the node’s normal cells as input;

15: return position in disk where resulting dwarf starts

Figure 11: SuffixCoalesce New Algorithm 7
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Chapter 4

Efficient Cube Storage

4.1 Input Mapper Utility

The data cube operator described in [15] performs the computation of one
or more aggregate functions, for all possible combinations of grouping
attributes. The data source may contain strings or other scalar data types
(dates, lengths of time, days of the week, GPS coordinates, etc). The authors of
[15] also provided some useful hints for cube computations including the use
of mapping string dimension types to integers for reducing the storage. In our
implementation we used this idea, creating a TupleReader generating integer
ID’s to map each different dimension attributes (strings). A string-to-integer
mapping class creates an extra mapping file containing all the mappings for
each one generated dwarf cube, stored together with the cube. This simplifies
implementation, as it does not store different data types in nodes, and build
and query speed times are improved (native data type faster to move around
and compare). Later on, when we query the cubes, the mappings are read and
used to translate strings to unique IDs. There is a warm-up time each time a
cube is opened to read those maps and keep them in memory for fast
translation. Each query has to look up in those maps prior to exploring the
cube to look up the result. The experiments showed a dramatic improvement
on both built and query times, with 1000 queries to be answered in under 1
second on hot cache experiments, even with 25 dimensions of dwarf cube
index.

This extends the input possibilities, as it is not depending on what type of
input a user decides to use. New applications include an increasing number

of dimensions, and the explosion on the size of the cube is a real problem. We
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decided to use double as aggregate data values. Float would halve the size of
the data portion of the nodes, but would also loose precision, which is

important for a sufficient number of OLAP application tools.

4.1 Memory-Mapped 1/O

My search in dwarf algorithm started by constructing a memory-based
version of Dwarf. After testing the performance, it soon became inherent the
need to build a disk version of the cube as it was impossible to create cubes of
large datasets. Finally, my advisor suggested continuing building a memory-
mapping version, in order to execute buffered writes to disk and improve
performance. The original paper mentions a considerable amount of tuning in
the implementation, and as I coded in java (Eclipse IDE), I decide to use NIO
collection (new I/O) of Java programming language APIs, which offers
features and libraries for intensive I/O operations. It was introduced with the
J2SE 1.4 release of Java by Sun Microsystems to complement the existing

standard I/O. The APIs of NIO were designed to provide features such as:

e Buffers for data of primitive types,
e Channels, a new primitive I/O abstraction,
e A File interface that supports locks and memory mapping of files

up to INTEGER.Max_Value Bytes (2 GiB).

The String-Integer mapper works entirely in memory with hash tables,
and it was not the source of any performance difference. The main focus of
my work was on the FileManager class. It provides support for the Dwarf cube
tile format. The format is a series of chunks that are memory mapped. Each
chunk is as close in size as possible to Integer.MAX VALUE-4. To avoid

nodes crossing maps boundaries, sometimes it can be a bit less. The file
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begins with the length of the chunk, followed by the chunk data, etc. At the
beginning of the first chunk is the cube meta data, containing
e Location of root node
e Number of dimensions
e Number of Facts
¢ Gmin factor, minimum number of leaf cells necessary to store the
total.

Data is appended always at the end of the last byte buffer. When the last
buffer capacity is going to be exhausted, a new one is added to the list, and
the file offset is increased by the size of an Integer, to store the size of the next
buffer. The next buffer always starts following this Integer, and the size of the
buffer does not take into account this Integer. We use a byteBuffer to read the
next chunk of the file into a pre-allocated byteBuffer, update the size of the last
chunk and close the last chunk.

Also, we used bitwise operator (AND, XOR) and bit masking technique,
in order to encode the headers of each node, containing;

1. node type: LeafNode / NonLeafNode
2. number of keys of each node

3. position index of each offset
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Chapter 5

Experiments and performance analysis

5.1 Outline of Experiments

This thesis experimental work will examine three principal features of
Dwarf indexes such as index size, time construction and query performance.
Also, we will extend our experiments to study the performance of the Dwarf
index, when built for specific Views as described in Chapter 3, randomly
generated. We will repeat the most important experiments of [1] and also
compare the results with a more recent research conducted in 2008 which is
described in [17]. This is due to the fact that researchers in [17] used hardware
configuration for their experiments similar to ours, also implemented in Java
using memory-mapped I/O. Our attempt is to give the best understanding on
Dwarf index scaling for certain scenarios, and of course, analyze our thesis

work performance

5.2 Hardware Experimental Setup

We performed several experiments with different datasets and sizes to
validate our storage and performance expectations. All tests in this section
were run on a 2.4 GHz Intel Core 2 Duo processor running on 4 GB of RAM of
a 2008 MacBook pro). We used a 500 GB SATA Hard disk rotating at 7200
rpms (Seagate Momentus), able to cache at about 16MB/sec, and a transfer
rate of 3GB/sec. The operating system was Macintosh Snow Leopard 10.6.8.

All code was implemented using java version 1.6. Still, our hardware is of
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course better than the hardware available in 2002. In [1], authors used a 700
MHz Celeron processor running Linux 2.4.12 with 256 MB of RAM. The hard
disk used was a 30GB disk rotating at 7200 rpms, able to write at about 8
MB/sec and read at about 12 MB/sec. The average disk seek time was not
specified. Obviously, due to improved hardware we expect our runtime
measurements for index construction and query response times to be always
by a factor better than the results reported by the inventors in [1], conducted
in 2002. Also, we compare our tests with a more recent research on [18]
conducted in 2008. Researchers used a memory-mapped version of Dwarf,
implemented in java, using improved hardware; two 2.4 GHz Dual Core
AMD Opteron 280 processors, i.e., four cores in total, and 6 GB of main
memory. Their operating system was Linux 2.6.9, and used a 300 GB ATA/133
hard disk with 16 MB Cache (Maxtor 61.300R0).

Other optimizations are:

1) Efficient I/O. As the I/O-classes of java.io are rather inefficient, we used
the newer I/O-classes of java.NIO. These classes perform considerably
better than the old java.io. In our implementation, non-leaf nodes
contain integer offsets (using the mapper utility) pointing to nodes in
the memory-mapped array. We map integer arrays than byte arrays.

2) Support Dwarfs. When the algorithm decides to build extra dwarfs to
support all given views, we construct the supportDwarfs based only
on given dimensions contained in the views. For each useless
dimension, amount of size required has major impact on size and time

reduction
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5.3

Data Sets

Synthetic. We used synthetic data sets. Similarly to [1] we used data

dimensions values follow either a uniform, a self-similar 80-20 [18], or a

zipfian distribution over a given cardinality, and did not use any correlations

among the dimensions. Random numbers were generated using the same

generators as the authors in

[1].

Authors

FastMersenneTwister for random numbers.

5.4

in

[18] mention using

Index Construction Experiments

The following index construction experiments are based on scaling:

» number of Dimensions,

» number of Tuples.

54.1

Scaling Dimensions

In this section, our goal is to examine Dwarf index construction times, and

index sizes using (1) synthetic datasets and (2) constructing Dwarf cubes for

the whole plan. Our first set of experiments is based on scaling the number of

dimensions from a range of 10 to 30. We used synthetic data of 100,000 tuples.

F. Uniform
b Table Size [MB] Time [sec]

Size | 1 varf[1] | Dwarf[18] | NEW | Dwarf[1] | Dwarf[18] NEW

[MB] 2core ; lcore
10| 49 62 55 85 26 11 56 | 64
15| 68 153 141 219 68 22 107 | 125
20| 88 300 283 441 142 42 19 | 215
25 | 10.7 516 495 774 258 66 30 | 35
30 | 127 812 790 1236 | 424 102 46 | 506

Table 8: Storage and Creation time vs #Dimensions for Uniform
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80-20

F.
- Table Size [MB] Time [sec]
Si NEW
2 | Dwarf[1] | Dwarf[18] | NEW | Dwarf[1] | Dwarf[18]
[MB] 2core | 1lcore
10| 4.6 115 152 156 46 26 7.2 8.5
15| 6.4 366 1293 517 147 195 17.7 19.8
20| 8.1 840 7779 1221 351 1123 38 41.3
25| 9.9 1788 n/a 2390 866 n/a 85 91.3
30 | 11.7 3063 n/a 4146 1529 n/a 206 225
Table 9: Storage and Creation time vs #Dimensions for 80-20
F Zipf=0.95
Table Size [MB] Time [sec]
b Size NEW
[MB] Dwarf[1] | Dwarf[18] | NEW Dwarf[1] Dwarf[18] score | Leore
10 4 n/a 118 180 n/a 22 8.4 9.7
15| 55 n/a 515 773 n/a 85 27.9 30
20 7 n/a 1570 2328 n/a 234 81 84
25 | 85 n/a 3851 5660 n/a 548 242 263
30 | 10 n/a 8272 11958 n/a 1153 680 776

Table 10: Storage and Creation time vs #Dimensions for Zipf = 0.95

In tables 8 9, 10 are demonstrated repeats and complements of

experiments shown in Table [4] from [1]. Cardinalities for all dimensions are

equal to 1,000 and Fact table contained 100,000 tuples. The dimension values

were either uniformly distributed, or 80-20 Self-Similar, of zipfian (0 = 0.95)

distributions over the same cardinality. As noted in [18], researchers made the

experiments using one core of the processor. We show that differences

between using 1 or 2 cores in our implementation, does not provoke any

stupendous time differences.
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Comparing the above results, we observe that in construction times, there
are big differences from [18] and [1]. We did not impose any correlation

among the dimensions.

We observe the following;:

» Dwarf Index for Uniform Data.

For a wuniform distribution, our results have greatly improved
constructions times against to [1] and [18]. Similar to [18] we used one core
processor, and hardware was almost identical. Prefix redundancy elimination
is obvious, having a Dwarf index always bigger than the fact table. For D = 10,
our Dwarf takes 85 MB, while the fact table takes 4.9 MB, a 17:1 expansion
ratio. For D = 30, Dwarf takes 1236 MB for a 12.7 MB fact table, resulting in an
expansion ratio of 97:1. Uniform distribution posts the highest savings. For
example for D = 30 we have 1236 MB, in comparison to Zipfian distribution
where we have 11958 MB of dwarf index. In general, our implementation
achieves 2x faster time construction against [18], and 9x against [1] at
conditions of D = 30. From size comparison, for D =20 or D = 25 we observe a

factor of 1.5 larger size index than reported by [1] and [18].

= Dwarf Index for Self-Similar Data.

Using a 80-20 distribution, we have great savings when compared to [18].
For D = 20, in [18] is reported an index size of 7779 MB while our
implementation outputs 1221 MB index size, obviously a factor of 6
compressed index. In [18] authors also mention a factor 3 to 9 larger size than
the original dwarf, while our implementation maintains a factor 1.5 larger
than reported both for all dimension scaling. From time savings, it is again

our implementation a winner as for D = 20 we complete dwarf index built in

52



38 seconds, while [1] in 351 seconds (9:1), and [18] is unexpectedly slow
reporting 1123 seconds (29:1). It is certain that suffix redundancy is clearly the
dominant factor in the overall performance, and creation time is proportional
to the Dwarf size. In addition, [18] suffers from a major disadvantage by not

supporting any index size over 16 GB.

= Dwarf Index for Zipf Data.

Following [18] comparison tests, we generated datasets given of zipf
factor theta O = 0.95. This was chosen by the authors [18] in order to generate
a distribution which presents a significant skew while still having less skew
than the self-similar 80-20 distribution. In table 4 of [1] authors do not imply
any results, so we only compare only with [18]. Although we obtain faster
construction times again, (for D = 10 we achieve construction time of 9.7
second while [18] post 180 seconds [20:1]), size elimination is more efficient in
[18], as their savings in size is by a factor of 1.4 smaller.

In general, Dwarf produces smaller indexes for less skewed distributions.
The denser areas benefit from prefix elimination, which is smaller, and

sparser areas have less suffix redundancy to eliminate.
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Figure 16: Results of #dimensions vs size for 80-20

For 80-20 self-similar data distributions, our implementation wins [18] and
seems to be in sync with [1] regarding size reduction as shown in figures (15,

16). Figures (12,13,14) show fast runtime performance of our algorithm.

The next experiment examines the behavior of having more than one
aggregate value in a data set. We generated 100,000 tuples, cardinality = 1,000
for each dimension, both for uniform and self-similar distribution. The results

are shown below.
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Figure 17: Scaling #dimensions and aggregate values

Increasing the number of aggregate values does not have any
“interesting” impact on the generated dwarf size index. From our tests,
scaling the number of dimensions and the number of aggregates, adds about
30-60 Mbytes while for self — similar data, we observe an additional 30 - 270

MBytes of extra size cost.

Our next experiment is reproducing the results of scaling Dwarfs as
found in Figures 3 and 4 in [1]. A fact table containing 250,000 tuples created
by either a uniform or a 80-20 self similar distribution. The dimensions are
ranging from 4 to 10 in [1], and we extend the experiment to 30 dimensions.
As the authors do not imply any cardinality for each dimension, we will use a
cardinality of 1000. In figure 5 from [18] (a), (b), (c) authors compare storage
space, construction time and expansion ratio towards the number of

Dimensions.
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This experiment shows that, as the original evaluation, Dwarf index ratio
expansion remains modest when compared to the size of the fact table. As we
can see below in Figures (18, 19, 20), and under 10 dimensions, both uniform
and self-similar times, storage and construction ratio, are fluctuated on same
levels. As the dimensions grow, for skewed distributions, both index sizes
and construction times grow exponentially, reaching a ratio of 169:1 for
Uniform and 427:1 for Self-Similar 80-20. Again, in comparison to [18] the

authors could not scale further than 17 dimensions, reporting 473:1 for 80-20,

Cardinality for each Dimension Attribute = 1000,
Tuples = 250,000
Dimensions Size [MB] Time [sec]
[f. Table : Dwarf Index]

Uniform 80-20 Uniform 80-20
4 6.4:27 6.1:24 3 2.8
6 83:75 7.9:88 5 5
8 10.3 : 152 9.6: 211 9 10
10 12.2 : 268 11.4:416 14 17
12 14.2 : 430 13.2:728 20 27
14 16.1: 646 15:1168 27 41
16 18.1:924 16.8: 1763 38 62
18 20:1271 18.6 : 2535 50 87
20 22 :1696 20.3: 3513 71 128
22 23.9:2205 22.1:4719 103 220
24 25.9: 2808 23.9:6184 156 342
26 27.8 : 3512 25.7 : 7934 180 518
28 29.8 : 4328 27.5:9994 224 667
30 31.7: 5255 29.3:12390 362 932

Table 11

which is greater than our expansion ration in 30 dimensions.
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5.4.2 Scaling Tuples

30

The next experiments to follow are based on scaling the number of tuples.

In Table 5 of [1] authors post Dwarf storage and computation time for a 10-

dimensional cube. The number of tuples

100,000 to 1,000,000. More specific, we have:

of each dimension varies from

Dim1

Dim?2

Dim3

Dim4

Dimb5

Dimé6

Dim7

Dim8

Dim9

Dim10

#card

30,000

5,000

5,000

2,000

1,000

1,000

100

100

100

10

60




Uniform

F.
Table Size [MB] Time [sec]
#Tuples Size
[MB] Dwarf[1] | Dwarf[18] NEW Dwarf[1] | Dwarf[18] | NEW
100,000 4 62 53 66 27 8 5
200,000 8 133 113 142 58 19 9
400,000 17 287 239 324 127 43 17
600,000 25 451 372 491 202 64 26
800,000 34 622 509 684 289 90 35
1,000,000 42 798 651 873 387 114 45
Table 12
F. Self-similar 80-20
Table Size [MB] Time [sec]
#Tuples Size
[MB] Dwarf[1] | Dwarf[18] NEW Dwarf[1] | Dwarf[18] | NEW
100,000 4 72 94 83 31 16 6
200,000 8 159 195 182 69 35 10
400,000 17 351 400 432 156 70 21
600,000 25 553 608 669 250 109 32
800,000 34 762 818 932 357 146 43
1,000,000 42 975 1031 1173 457 188 56
Table 13
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Graphical Comparison: we observe impressive savings in time (figures 21,

23). We manage to obtain similar scaling behavior in size as [18], but in

comparison to [1] both our index sizes and expansion ratios are greater than

those posted in [1], and much similar to [18] (figures 22, 24). One aspect of this

result is the fact that our generators, using cardinalities [30000, 5000, 5000,

2000, 1000, 1000, 100, 100, 100, 10], and uniform parameters, in fact, produced

larger data files than those stated in Figure 7 of [18]. Below, we show these

variances in size. In [18] they report smaller sizes in fact tables against those

that we used. Thus, we decided to compare expansion ratios as shown below:

#Tuples

Fact Table Size [MB]

[18] Uniform 80-20
100,000 4 4.8 4.6
200,000 8 9.7 9.1
400,000 17 19.3 18.2
600,000 25 29 27.3
800,000 34 38.6 36.5
1,000,000 42 48.3 45.6
035 T T T T T T
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I
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Figure 25: #Tuples vs Expansion Ratio Size for [18] and NEW
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From the above (figure 25) it is clear that for 80-20 distributions, we
achieve at most cases smaller size expansion and of course better size
reduction. Tables 12 and 13 show results as reported by [1], [18] and our
results (NEW). The results for uniform data show that the index sizes
obtained by NEW are slightly bigger than the other two. This might be caused
because our fact table sizes for the reported number of tuples, were larger
than those described. However, index creation times are shown in figures 16
and 18 to be the fastest compared to the other two methods, as NEW is by a

factor 5-8 faster than [1], 2 - 3.5 runtimes faster than [18] (figure 26, 27).
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Figure 26: #Tuples vs Time [sec] for [1], [18] and NEW
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For the next experiment will keep a cardinality of 1,000 over 15

dimensions, and repeat the experiments scaling the tuples from 1,000,000 to

10,000,000. We will compare the results by repeating the experiment of

various cardinalities, (30000, 20000, 5000, 5000, 5000, 2000, 2000, 2000, 2000,

1000, 1000, 100, 100, 100, 10)

Uniform 80-20
E. Size [MB] Time [sec] Size [MB] Time [sec]
#Tuples | Table Size . . . )
[MB] Scaling 1000 Scaling 1000 Scaling 1000 Scaling 1000
card. card card. card card. card card. card
100,000 7.2 182 219 11 12 202 300 11 13
200,000 14.4 392 564 20.5 24 448 758 23 29
400,000 28.7 862 1553 42 62 1010 1893 47 71
600,000 43.1 1387 2835 67 113 1640 3186 76 174
800,000 57.5 1932 4307 114 296 2318 4568 121 444
1,000,000 71.8 2520 5897 176 539 3036 6004 265 711

Table 14: Experiments scaling #Tuples for Uniform and 80-20 self similar
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Figure 29: #Tuples vs Size [MB] for Table 14 (80-20 data)
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Figure 31: #Tuples vs Time[sec] for Table 14 (80-20 data)
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From the above figures, we observe that keeping cardinalities at 1,000
each, Dwarf index sizes as well as index construction times are considerably
larger than having a various number of cardinalities on each dimension. This
clearly is in total sync with the fact that cardinalities have major impact on

construction size and times. Expansion index ratios are shown below:

Expansion ratios for uniform
90

I caling cardinalities
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0L
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20 L
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0 )
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g
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Expansion Ratios

Figure 32: #Tuples vs Expansion Ratios for Uniform Data
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Figure 33: #Tuples vs Expansion ratios for 80-20 Data

In summary, all the experiments showed that both for uniform and 80-20
data, our results have faster time construction, and smaller expansion ratios.

The index sizes increase as we produce data sets with denser prefix and suffix

areas.
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5.5 Safe Views Index Construction Experiments

Our next experiments are performed given a number of views. For a
scaling of dimensions from 6 to 30, we repeat the above experiments, in order
to evaluate the performance on creating index cubes based on specific views.
For this purpose, we use a view’s generator to randomly pick dimensions of
the fact table. The above experiments will be repeated in order to evaluate
size and time construction. Each dimension had exactly 50% probability of
appearing in each view. Of course, as the dimensions will grow, the generated
views will also grow. We generated 500,000 tuples, over a cardinality of 1000,
both for uniform and 80-20 distribution.

One optimization we made, in order to accelerate the process of finding
best permutation, was to detect which are useful dimensions contained into
the randomly generated views. We know that for a given set n of dimensions,
the total permutations are n!. Reducing the number of possible dimensions,
which contribute on safe views, accelerates the process due to the fact that we
have much less number of permutations to generate and check.

As dimensions grow, building support dwarfs becomes more contingent.
Again, we used synthetic data as described in 6.3 for uniform and 80-20 self-

similar data distribution.

5.5.1 Scaling Views
At tirst, we will try to investigate the behavior of the algorithm, by scaling
the number of views for a number of dimensions). As total views and
dimensions grow, the permutation generator and safe view discovery become
more and more time—-consuming. Thus, we decided to check only a specific

random number of permutations, for each experiment. Also, as views grow,
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we add only new randomly picked to the previously selected, and random

permutations to check, remain the same.

For the first experiment, we used an 8-dimensional fact table, followed by
uniform distribution, 1,000 cardinalities for each dimension, and 500,000
tuples. For our experiments, we used 1,000 random permutations to search

for safe views and the results are shown in table 15.

#Views I,;T;nel #Sl:f(: Size Dwarf Time Size Support Time Support
. [MB] Dwarf [sec] Dwarf [MB] Dwarf [sec]
[sec] Views

15 4.6 13 13.3 4.8 49.5 5
30 9.4 24 42.2 7 42.2 4.8
45 13 29 49.5 5.1 42.2 4.6
60 14 30 121.6 9.7 35 5.6
75 16.6 35 175 10 175 10
90 23 40 350 21 175 17
105 26 39 416 25 350 23
120 29 37 416 28 416 27.5
135 34 34 416 21 416 25
150 32 34 416 22 416 21
165 47 32 416 22 416 20
180 43 31 416 24 416 21
195 62 28 416 25 121 14.3
210 57 21 416 23 49.9 12.6
225 69 9 416 25 121 9.9
240 85 52 416 24 37 4.9
254 1 0 416 21.5

ORIG - - 41(61\;[]23(;'4 18.5 (sec) - -

Table 15
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Our next experiment contains nine dimensions using 500,000 tuples at

uniform distribution:

#Views I,;T;IZ #Not Safe | Size Dwarf Time Size Support Time Support
[sec] Views [MB] Dwarf [sec] Dwarf [MB] Dwarf [sec]
30 9.9 25 92 7.6 66 6.9
60 21 39 226 14 90 8
90 25 52 226 12 226 14
120 36 66 226 14 280 15.6
150 52 75 260 15 395 17.3
180 62 80 226 11.8 395 16.7
210 97 86 395 17.4 226 15
240 111 81 600 31 600 30
270 128 81 600 29 600 30
300 153 91 600 28 600 30
330 187 72 600 30 600 30
360 198 61 600 32 470 25
390 238 54 600 31 600 30
420 257 41 600 32 240 13.6
450 272 30 600 31 226 11
480 295 10 600 31 90 9
510 1.7 0 600 28.7
600 : 28
ORIG - - (MB) 18.5 - -
Table 16

We observe that for more than 100 views, we are constructing two full

cubes, which is totally expected, due to the “strict” rules for safeness and

construction. As views grow, more and more dwarf chunks are forced to be

build. If we decide to extend the rules and offer more flexibility, would lead

to produce more safe views per dwarf. Iff the dwarf index size could be

predicted, we would be able to rule out cases of not computing two full

dwarfs, instead overcome the safe views and build a full dwarf containing all

possible views.
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As it can be clear from the above figures (35, 37), we have been able to
reduce size of index cube for a various number of views. As more views are
added, the more partitions of dwarf tree index need to be built, leading to a
tull cube. At peak, we unfortunately, as expected, are forced to create two full
dwarf cubes. The most size reduction is reported when we input randomly a
small number of views (max 15 — 90 for the above experiments figures 35, 37).
This is due to the fact that, the less views are inserted, it is more unlikely that
a full index cube will be requested to be built to support them.

Again, we create the sub-dwarfs of the “ALL” nodes following each path
of input views. We have managed to store aggregateValues on levels, as well as
be able to overcome the coalescing issues we described above. Avoiding
writing to disk the outcomes of suffixCoalescing on level paths where we do
not want “ALL” values has been a major factor. Thus, we have reduced the
size of Dwarf, while we maintain the path of the nodes through the tree

index.

5.5.2 Scaling Dimensions
For our next experiments, we decided to use a more realistic number of
views, and scale the number of dimensions. Thus, we will use 30-60-90 views,
for a scale of dimensions from 10 — 14 to see the results. We generated 300,000
tuples uniform distribution, over a cardinality of 1,000. Each experiment will

be repeated 3 times, using different random views and permutations each

time.
# Dimensions - Uniform distribution,
# Tuples = 300,000, Card = 1000
#Views 10 12 14
30 69 |30 79 J| 63 | 61 | 60 §Jl 88 | 98 | 98
60 144 | 60 | 82 J123 | 98 | 72 § 93 | 95 | 132
90 162 | 90 | 228 §| 312 | 216 | 216 §{ 112 | 252 | 113
ORIG (MB) 290:14.7 360:17 840:19.4
Table 17
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It can be clearly shown that we succeed to reduce the size of the dwarf

(figures 38, 39, 40). Of course, those index do not support every possible view.

Thus, for those views that finally safe, the requested dwarf index is smaller

than the actual cube. We manage to reduce the index cube by a factor of 4 to 9.

The percentage of size reduction relies on a various number of factors for the

above experiments such as:

#Views vs #Dimensions
Amount of not safe views

Distribution of the fact table
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Chapter 6

Query Performance

In this section we will reproduce the experiments both in [1] and [18]
whose purpose is to evaluate the query performance of the cube. We created
two workloads of 1000 queries followed by the following probabilities: Prewg,
Piim, Ppointg. We range the dimensions from 4 to 30.

* Puewg refers to the probability that a new query will not be related to the
previous one. Thus, in [1] mention the authors assign a (1-Prewg)/2 for a roll-up
query, (1-Prew)/2 for a drill-down query, and Prewo for a new query. Workload
A is generated having roll-up or drill-down queries equal to 0.33. Workload
B, contains only unrelated queries

* Pain is the probability that each dimension will be selected to participate
in the new query. A p = 0.4 means 4 dimensions on average for a 10-
dimensional cube, or 12 on average for a 30-dimensional cube.

* Ppointg refers on how selective the queries will be: a value of 1 produces
only point queries, while a value of 0 produces queries with range query on
every dimension. Using low parameter p = 0.2, we achieve for most queries to
return more tuples, while a high value of this parameter would lead to return
very few tuples.

Range specifies the range of values contained in the queries. If the data set
is generated with a cardinality of 1000, a range of 20% forces the queries to

hold only 200 values.
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Probabilities Range
Workload #Queries Prewq Piim Phointq Max Min
A 1000 0.34 0.4 0.2 20% 1
B 1000 1 0.4 0.2 20% 1

Table 18 : Workload Characteristics for “Dwarfs vs Full Table Scans” Query
Experiment ( see Table 7 in [1])

As described in 6.1 [18], we generated a 250,000 tuples fact table, using

uniform distribution, with cardinalities in each dimension = 1,000. For each

experiment, in order to avoid pre-caching of the dwarf index cube on

memory, for each dimension, we followed the following experiment

procedure:

1. Create a new data set for each dimension

2. Build the full cube for this data set
3. Create workload A
4. Run the query test
5. Delete the full cube and rebuilt it for the same data set
6. Create workload B
7. Run the query test
Uniform Data 80-20 data
. ) Workload A Workload B Workload A Workload B
Dimensions
Hot Cold Hot Cold Hot Cold Hot Cold
4 0.36 0.4 0.3 0.24 0.3 0.7 0.3 0.9
5 0.35 1.3 0.32 0.8 0.35 0.87 0.32 1.49
6 0.39 0.6 0.35 2.3 0.37 2.1 0.35 3.7
7 0.4 2.2 0.38 2.5 0.41 2.8 0.38 5
8 0.43 1.5 0.39 4.8 0.43 3.5 0.38 6.6
9 0.43 3.6 0.4 4.26 0.43 4.3 0.4 7.3
10 0.48 2.8 0.43 6.9 0.46 5.3 0.44 8.1
15 0.5 6.6 0.5 8.9 0.67 9.7 0.52 11.8
20 0.6 8 0.58 10.5 0.62 13.2 0.58 15.6
25 0.64 9.9 0.60 12.3 0.65 14.1 0.65 17.5
30 0.7 12.5 0.65 14.6 0.7 15.9 0.69 18.7

Table 19: Runtime performance for Workload A/B
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Effect on Uniform Data: Figures 41, 42 show the results for uniform data to
process workload A and B. The above results reveal that [18] was faster in
query performance in contrast to our results. The authors do not mention if
the results they demonstrate are based on “hot” or “cold” caching of the
dwarf index. As a consequence, we decided to plot both query process times.
The results show that Dwarf performs well: for workload A and 30
dimensions, it needs up to 12.5 seconds to process 1000 queries (while in [18]
mention 4 seconds). For workload B it needs up to 14.6 seconds to process
workload B ([18] mention 5.3 seconds). This is because workload B contains
only new unrelated queries, while workload A contains roll-up and/or drill-
down queries. Comparing our implementation to the original Dwarf
algorithm [1], from figures 45, 46, and for dimensions range 4 to 10, our
results much faster. For example, to process workload A [1] needs up to 27
seconds for 10 dimensions, while our tests process in 3.8 seconds, and to
process workload B, up to 31 seconds against our 6.9 seconds of our
implementation. In summary, our tests show a factor of 4 - 7 faster than [1],
and (if the authors demonstrate cold cache times, we are by a factor of 3

slower than [18]).

Effect on Self-Similar Data: Figures 43, 44 show results for 80-20 self-similar
data. Here, although for uniform data [18] report quite good performance
runtimes, for 80-20, the performance characteristics are unpredictable.
According to [18], their algorithm is not able to respond to queries for more
than 15 dimensions. In our opinion, this is a huge disadvantage of [18]
algorithm, which suggests that they might have not implemented correctly
dwarf algorithm. They report that for more than 15 dimensions, the Dwarf
index built for the 16 MB size fact table does not fit into the 5 GB available
main memory anymore and has to perform considerable I/O. Our assumption

is that they probably have not completely managed to implement a “correct”
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memory-disk based dwarf as they have previously claimed. In general, our
implementation has not any major memory requirements, as every I/O is
memory-mapped buffered on disk. Although in previous experiments (Figure
7(a) from [18]), they report building dwarf index cube for 1,000,000 tuples
over 80-20 self similar distribution, we do not clearly understand how it can
be possible not to be able to answer queries from a dwarf index supporting
250,000 for more than 15 dimensions. For 15 dimensions and workload A, our
algorithm takes up to 9.7 seconds against 13.2 of [18], and for workload B, our
algorithm takes up to 11.8 against 21 seconds of [18]. Comparing with original
Dwarf, for 10 dimensions our runtimes are 5.3 for workload A, and 8.1 for
workload B, while authors in [1] report 33 and 59 seconds respectively
(figures 47, 48). This is by a factor of 6 — 7 faster. In general, for self — similar
data, we observe slightly slower performance due to the fact that the index
dwarf cubes are larger, and the query utility needs more time to serve the
workloads. Especially for workload B, performance is slower, again, due to

the fact that each query is not related to the previous queried.
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Chapter 7

Conclusions and Future Work

In this thesis, we focus on work related to Dwarf indexes. An in-depth
discussion of the differences among the performance results reported by the
inventors [1] and [18] is provided in Chapters 5 and 6. In general, our
contribution was to achieve high performance build and query times both for
dwarf index, as well as for the built based on specific views subsets. We tried
to study the comportments of prefix and suffix coalescing, which are major
factors that induce the size of the cube. Also, we created decision rules and
additional algorithms for organizing the input views. During the conduction
of this dissertation, we decided to encapsulate a set of rules in order to
synchronize with our implementation of original Dwarf. Finally, we extended
input possibilities, supporting text and sql-based input of any type of data
(strings) through a mapping process. Our experiments for uniform and 80-20
self similar data indicate that the behavior of Dwarf index seem to be in sync
with [1] and [18], while for skewed data our implementation outperformed
[18] performance. Current results in Chapters 5 and 6, reveal an impressive
achievement to maintain Dwarf expansion ratios and runtimes in low levels,
while scaling the number of dimensions even up to 30.

Even in the area of constructing Dwarf for views, the size reduction is
quite interesting, as soon as the users tend to query only a limited number of
dimensions on each dataset. Future work would include more flexibility of
efficiently sorting safe views. In cases of building more than the actual dwarf
cube, future work would include a decision criteria based on the upper limit

of not safe views vs the size of index to be constructed.
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Further improvements would be to extend the possibilities of dwarf
algorithm for supporting more aggregate functions. Also, we would like to
support the Gmin parameter as described in 4.1 [1]. This could improve size
reduction both for the original dwarf implementation, and safeView cube built,
as in sparse cubes, storage-space and query performance are critical. Also, we
could extend this work, by encapsulating extra decision rules. Authors
mention that, during coalescing of nodes to build an {ALL*} node, if it’s size
exceeded a size limit (larger than main memory), then they executed partial
sorting from fact table, to avoid reading big chunk from disk. Using this, we
could improve size reduction when building for dwarf for subset of views.
Supporting range queries was beyond the limits of this thesis, and would be
interesting to be supported. Also, a future work would include the ability to
compute any dismissed {ALL*} nodes when not existing during query time,
by copying the relevant tree data on-the-fly from the fact table (lazy-updates).

As far as today’s applications demand tremendous space and time
benefits from OLAP applications, we believe that Dwarf can be extended to
support an extensive scale of applications, as far as it is generated over a
single pass over the data, and requires no deep knowledge of the value
distributions. It offers 0% loss of data, providing both storage and indexing
mechanism for high dimensional data. Also, a more recent analytical and
algorithmic framework [2] derived the surprising result that the coalesced
cube grows polynomially w.r.t the dimensionality. This result has changed
the establish state that the cube is exponential on the number of dimensions
and. In terms of updating performance, dwarf by far outperforms the closes
competitor for storing the full data cube, and is good for periodic, large
updates, as well as good for online 1-1 updates due to the fast built dimes we
achieved.

In general, supporting specific view subset we extend the applicability of

DWAREF to a much wider area.
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App

endix A

Class Diagram of Dwarf implementation
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