
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Error-Correcting Encoding

for Self-Assembly with DNA Tiles

Vasilis Papadimitriou

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Vasilis Samoladas (ECE)

Assistant Professor Aggelos Bletsas (ECE)

Chania, February 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Vasilis Papadimitriou ii Feb 2013

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Κωδικοποίηση Διόρθωσης Σφαλμάτων για

Αυτο-Συναρμολόγηση με Πλακίδια DNA

Βασίλης Παπαδημητρίου

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Βασίλειος Σαμολαδάς (ΗΜΜΥ)

Επίκουρος Καθηγητής ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Χανιά, Φεβρουάριος 2013

http://www.tuc.gr
http://www.ece.tuc.gr

Vasilis Papadimitriou iv Feb 2013

Abstract

As silicon-based computer technology approaches its limits, new computing paradigms,

such as DNA and quantum computing, gain more and more attention from the research

community in light of their potential for solving NP-hard problems by pushing the ex-

ponential time dimension into space. DNA computing investigates the possibility of

encoding data and algorithmic procedures in synthetic DNA strands and exploiting the

complementarity and massive parallelism properties of DNA to perform computations.

Self-assembly of DNA tiles focuses on tiling computations, whereby tiles can attach to

each other through carefully-designed sticky ends to create complex structures that en-

code desired computations. However, current DNA tiling technology is limited by the

lack of reliability and robustness, meaning that during laboratory experiments several

errors occur in the pairing of DNA strands/tiles, ultimately ruining the desired com-

putation. This thesis focuses on a DNA tiling design for EXclusive-OR (XOR)-based

periodic ribbon patterns, which is susceptible to errors that propagate throughout the

entire assembly, and proposes two alternative encodings/designs which implement error

self-correction with different trade-offs between complexity and efficiency. Both designs

rely on introducing redundancy in information representation for detecting errors and

additional levels of tiles for correcting errors. The proposed designs result in a drastic

decrease of the probability that an error will propagate and corrupt the desired ribbon

pattern. The downside of the proposed designs is the larger tile library and the increased

overall size of the assembly lattice compared to the original design. Our simulated as-

sembly results under the proposed designs verify the property of self-correction for many

types of errors and indicate a clear reduction of the probability of error propagation in

the assembly lattice.

Vasilis Papadimitriou vi Feb 2013

Περίληψη

Καθώς η τεχνολογία υπολογιστών που βασίζεται στο πυρίτιο πλησιάζει τα όριά της, νέα

πρότυπα υπολογισμού, όπως οι DNA και οι κβαντικοί υπολογιστές, αποκτούν όλο και πε-

ρισσότερη προσοχή από την ερευνητική κοινότητα υπό το πρίσμα των δυνατοτήτων τους

για επίλυση NP-δύσκολων προβλημάτων σπρώχνοντας την εκθετική χρονική διάσταση στο

χώρο. Ο υπολογισμός με DNA διερευνά τη δυνατότητα της κωδικοποίησης δεδομένων

και αλγοριθμικών διαδικασιών σε συνθετικές έλικες DNA και την αξιοποίηση των ιδιοτήτων

συμπληρωματικότητας και μαζικού παραλληλισμού του DNA για την εκτέλεση υπολογισμών.

Η αυτο-συναρμολόγηση πλακιδίων DNA επικεντρώνεται σε υπολογισμούς πλακόστρωσης,

όπου τα πλακίδια μπορούν να προσαρτώνται το ένα στο άλλο μέσω προσεκτικά σχεδια-

σμένων απολήξεων για να δημιουργήσουν πολύπλοκες δομές που κωδικοποιούν επιθυμητούς

υπολογισμούς. Ωστόσο, η τρέχουσα τεχνολογία αυτο-συναρμολόγησης πλακιδίων DNA

περιορίζεται από την έλλειψη αξιοπιστίας και ανοχής σε σφάλματα, πράγμα που σημαίνει

ότι κατά τη διάρκεια εργαστηριακών πειραμάτων εμφανίζονται πολλά σφάλματα στην αντι-

στοίχιση αλυσίδων και πλακιδίων DNA, καταστρέφοντας τελικά τον επιθυμητό υπολογισμό.

Η παρούσα διπλωματική εργασία επικεντρώνεται σε μια σχεδίαση αυτο-συναρμολόγησης

πλακιδίων DNA για περιοδικά πρότυπα/μοτίβα βασισμένα σε υπολογισμούς EXclusive-OR

(XOR), η οποία είναι επιρρεπής σε σφάλματα που διαδίδονται σε όλη την συναρμολόγηση,

και προτείνει δύο εναλλακτικές κωδικοποιήσεις/σχεδιάσεις που υλοποιούν αυτο-διόρθωση

σφαλμάτων με διαφορετικές αναλογίες μεταξύ πολυπλοκότητας και αποτελεσματικότητας.

Και οι δύο σχεδιάσεις βασίζονται στην εισαγωγή πλεονασμού στην αναπαράσταση πληρο-

φορίας για τον εντοπισμό σφαλμάτων και πρόσθετων επιπέδων πλακιδίων για την διόρθωση

σφαλμάτων. Οι προτεινόμενες σχεδιάσεις έχουν ως αποτέλεσμα τη δραστική μείωση της

πιθανότητας ότι ένα σφάλμα θα διαδοθεί και θα αλλοιώσει το επιθυμητό πρότυπο/μοτίβο.

Το μειονέκτημα των προτεινόμενων σχεδιάσεων είναι η μεγαλύτερη βιβλιοθήκη πλακιδίων

και το αυξημένο συνολικό μέγεθος του πλέγματος συναρμολόγησης σε σχέση με τον αρ-

χικό σχεδιασμό. Τα αποτελέσματα των προσομοιωμένων συναρμολογήσεων σύμφωνα με

τις προτεινόμενες σχεδιάσεις επαληθεύουν την ιδιότητα της αυτο-διόρθωσης πολλών τύπων

σφαλμάτων και δείχνουν μια σαφή μείωση της πιθανότητας διάδοσης σφαλμάτων στο πλέγμα

της συναρμολόγησης.

Vasilis Papadimitriou viii Feb 2013

Acknowledgements

Θα ήθελα γράψω αυτό το κομμάτι στα ελληνικά γιατί στα αγγλικά είναι πολύ πιθανό να

μην το διάβαζε κανένας από αυτούς που θα αναφέρω. Αρχικά θα ήθελα να ευχαριστήσω

την οικογένεια μου για την οικονομική άλλα και ψυχολογική υποστήριξη και κατανόηση που

έδειξαν όλα αυτά τα χρονιά, γιατί χωρίς αυτούς ούτε σε αυτή την σχολή θα ήμουν ούτε θα

είχα καταφέρει να την τελειώσω. Επίσης θέλω να ευχαριστήσω τον καθηγητή μου, για την

υποστήριξη και βοήθεια του και στην επιλογή του θέματος άλλα και στην υλοποίηση του,

καθώς και για τις πολλές και δύσκολες ώρες δουλειάς τις τελευταίες μέρες. Τελευταίους και

καλύτερους θέλω να ευχαριστήσω αυτά τα τρελοκομεία (Μάνο, Δήμο, Στάθη, Τσιάμαλο,

Μπουζού, Κον, Λελέ, Γκμοχ και τον Μεθενίτη εκεί στα ξένα) που έμπλεξα για παρέα αυτά

τα χρονιά. Αφού καταφέραμε να επιβιώσουμε αρτιμελής αυτά τα έξι και χρόνια δεν φοβάμαι

τίποτα. Ευχαριστώ και όσους ξέχασα να γράψω και θα μου κάνουν παράπονα!

Vasilis Papadimitriou x Feb 2013

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Overview . 2

2 Background 5

2.1 DNA . 5

2.2 DNA Computing . 6

2.3 DNA Tiles and DNA Self-assembly . 8

2.3.1 DNA Tiles . 9

2.3.2 DNA Self-Assembly . 10

2.4 Properties of DNA Computers . 15

3 Problem Statement 19

3.1 DNA Self-Assembly for Sierpinski Patterns 19

3.2 Self-Assembly Errors . 23

3.3 Seeking a Self-Correcting Design . 24

4 Our Approach 27

4.1 Redundancy . 27

4.2 First Design . 28

4.2.1 Correction Tiles . 29

4.2.2 Boundary Tiles . 34

4.2.3 Assembly . 37

4.2.4 Positioning . 37

4.2.5 Theoretical Analysis . 41

4.3 Second Design . 46

Vasilis Papadimitriou xi Feb 2013

CONTENTS

4.3.1 Correction Tiles . 46

4.3.2 Boundary Tiles . 47

4.3.3 Assembly . 48

4.3.4 Positioning . 48

4.3.5 Theoretical Analysis . 50

5 Implementation 55

6 Simulation Results 59

6.1 Assembly Scars . 59

6.2 Random Errors . 60

6.3 Identical Errors . 62

6.4 Comparison . 66

7 Conclusion 71

7.1 Advantages and Disadvantages . 71

7.2 Future Work . 72

A Tile Library 73

A.1 First Design . 73

A.1.1 Regular Tiles . 73

A.1.2 Boundary Tiles . 75

A.2 Second Design . 79

A.2.1 Regular Tiles . 79

A.2.2 Boundary Tiles . 81

References 87

Vasilis Papadimitriou xii Feb 2013

List of Figures

2.1 DNA double helix and base pairing (from [1]) 6

2.2 A comparison of CD and DNA densities 7

2.3 DNA origami (top: desired patterns, bottom: actual DNA patterns)(from [2]) 9

2.4 Example of a DNA tile composed of four DNA strands (from [3]) 10

2.5 A example of a two-dimensional assembly with two DNA tiles (from [4]) . 11

2.6 A binary counter implemented with DNA self-assembly (from [4]) 12

2.7 Experimental results of DNA self-assembly for a binary counter (from [5]) 13

2.8 Solving an NP-hard problem using DNA self-assembly (from [4]) 14

2.9 Solving the SAT problem using DNA self-assembly (from [6]) 14

2.10 Constructing a RAM demultiplexer using DNA self-assembly (from [7]) . 16

3.1 Design of DNA tiling for a Sierpinski triangle pattern (from [8]) 20

3.2 Design of DNA tiling for a Sierpinski triangle pattern (from [8]) 21

3.3 Design of DNA tiling for a Sierpinski ribbon pattern (from [8]) 22

3.4 Actual DNA tilings for Sierpinski ribbon pattern and detected errors (from [8]) 24

3.5 Assembly with the original design without errors (four periods) 25

3.6 Assembly with the original design with a single error (marked in cyan) . 25

3.7 Assembly with the original design with random errors (probability=1.4%) 25

4.1 Original XOR tiles (left) and new XOR tiles with redundancy (right) . . 28

4.2 Original design (left) and new design with duplicated tiles (right) 28

4.3 Original design (left) and new design with tripled tiles (right) 28

4.4 Information propagation in the original (left) and the new (right) design 30

4.5 Error-free assembly: original design (left) and new design (middle and right) 31

4.6 New design: error correction in each of the three XOR tiles of a triplet . 32

4.7 First design: example of how the second level of correction works 34

Vasilis Papadimitriou xiii Feb 2013

LIST OF FIGURES

4.8 First design: error correction in each of the three XOR tiles of a triplet . 35

4.9 First design: the general form of a complete assembly 38

4.10 First design: an example of a complete assembly 39

4.11 First design: example of (a) correct and (b) incorrect positioning 40

4.12 Attachment of sticky ends y and w to complementary ends ȳ and w̄ . . . 40

4.13 Correct positioning of tiles in consecutive XOR rows and correction levels 41

4.14 No errors (left), one error (middle), and two errors (right) in a XOR tile . 42

4.15 No errors (left), two errors (middle), and three errors (right) in a triplet . 42

4.16 First design: explaining error propagation through correction levels . . . 44

4.17 Error propagation probability vs. probability of incorrect attachment . . 45

4.18 Assembly differences between first (left) and second (right) designs 47

4.19 Second design: the general form of a complete assembly 49

4.20 Second design: an example of a complete assembly 50

4.21 Correct positioning of tiles in first (left) and second (right) designs 51

4.22 Second design: explaining error propagation through correction levels . . 52

4.23 Error propagation probability vs. probability of incorrect attachment . . 53

5.1 Visualization of self-assembly lattices in MATLAB. 56

5.2 Examples of lattices with different width 56

5.3 Examples of lattices with different seed rows 57

5.4 Examples of how the error probability parameter affects lattices 58

6.1 Example of scars left behind after correction of incorrect tiles 60

6.2 Original design with random errors. 61

6.3 Our designs with random errors at XOR tiles only (XOR view) 61

6.4 Our designs with random errors at XOR tiles only (full view) 62

6.5 First design with random errors allowed at any tile 62

6.6 Second design with random errors allowed at any tile (XOR view) 63

6.7 Second design with random errors allowed at any tile (full view) 63

6.8 Ex. 1: Original design with identical random errors (marked in cyan) . . 64

6.9 Ex. 1: Our designs with identical random errors at XOR tiles (both views) 64

6.10 Ex. 1: First design with identical random errors at any tile (both views) 65

6.11 Ex. 1: Second design with identical random errors at any tile (both views) 65

6.12 Ex. 2: Original design with identical random errors (marked in cyan) . . 66

6.13 Ex. 2: Our designs with identical random errors at XOR tiles (both views) 66

Vasilis Papadimitriou xiv Feb 2013

LIST OF FIGURES

6.14 Ex. 2: First design with identical random errors at any tile (both views) 67

6.15 Ex. 2: Second design with identical random errors at any tile (both views) 67

6.16 Experimental comparison of lattice distortion for p ∈ [0.0, 0.5] 68

6.17 Experimental comparison of lattice distortion for p ∈ [0.00, 0.15] 69

6.18 Experimental comparison of lattice distortion for p ∈ [0.00, 0.05] 70

Vasilis Papadimitriou xv Feb 2013

LIST OF FIGURES

Vasilis Papadimitriou xvi Feb 2013

Chapter 1

Introduction

Moore’s Law states that silicon microprocessors double in complexity roughly every two

years. One day this will no longer hold true, when miniaturization limits are reached. So,

a successor to silicon is required. Fortunately, new technologies rise, such as DNA and

quantum computers, to push computation boundaries further than silicon-based com-

puters. A quantum computer [9] is a computational device that makes direct use of

quantum mechanical phenomena, such as superposition and entanglement, to perform

massive parallel operations on data. In this thesis, we are going to have a closer look at

DNA computers. DNA computing [10] is a form of computing which exploits DNA and

technologies from biochemistry and molecular biology, instead of silicon and the tradi-

tional hardware technologies. There are several properties of DNA that make it suitable

for a computational element, such as its size which allows extremely dense information

storage and enormous parallelism, its extraordinary energy efficiency, and primarily its

complementarity. The complementarity of DNA allows to perform computations through

self-assembly. Adleman’s first experiment [10] used DNA strands to solve the Directed

Hamiltonian Path problem, a well-known NP-complete problem. Using DNA strands and

the properties of DNA self-assembly we can compose complex structures and use them as

building units for computational elements. Such assemblies are known as DNA tiles [3]

and, in general, offer more flexibility and robustness compared to plain DNA strands.

DNA strands are still being investigated as substrates for solving computational prob-

lems, however DNA tiles seem to be more promising as candidates for replacing silicon.

DNA tiles are boxed-shaped DNA assemblies with single DNA strands sticking out of its

Vasilis Papadimitriou 1 Feb 2013

1. INTRODUCTION

vertices. Those single strands are called sticky ends [3]. If two tiles have complemen-

tary sticky ends, they can attach to each other. With the proper encoding of the sticky

ends we can generate very complex patterns and encode computations. Although DNA

computing is very promising, we are still far from replacing our silicon-based computers.

This is because there are several problems to be solved, one of them being reliability and

robustness, meaning that occasionally errors occur in the pairing of DNA strands/tiles.

1.1 Thesis Contribution

In this thesis, based on a DNA tiling design introduced for ribbon assemblies [8], we

propose an error-correcting encoding/design for ribbon assemblies with DNA tiles. The

original ribbon assembly design was selected, because it has been experimentally tested

and an error probability per tile is known. We propose two different designs which imple-

ment error-correction with different trade-offs between complexity and efficiency. In both

designs, in order to achieve error correction, first we ensure redundancy of information,

so that we can detect errors. Then, by introducing new (correction) tiles, which are in-

terwoven in the original design, we can correct the detected errors, if any. The proposed

designs result in a drastic decrease of the probability that an error will propagate and

corrupt the desired ribbon pattern. The downside of our design is the increased number

of different tiles needed for the same computation as the original design and the increased

overall size of the assembly lattice compared to the original design. Since experimental

testing of our designs is beyond our capabilities, we implemented a simulation of the pro-

posed self-assembly. The simulation stress test results of our designs were very promising,

clearly indicating a reduction of the probability of error from 1.4% (original design) to

0.94% (first design) and 0.21% (second design).

1.2 Thesis Overview

In Chapter 2 we offer the background needed in order to better understand the rest of the

thesis. We describe definitions such as DNA, DNA tiles, self-assembly, sticky ends, etc.

In Chapter 3 we describe in depth the original design and then we state the problem of

incorrect tile assembly we address. In Chapter 4 we describe our designs, the main ideas

behind them, the new (correction) tiles, their assembly properties, and their theoretical

Vasilis Papadimitriou 2 Feb 2013

1.2 Thesis Overview

analysis. In Chapter 5 we describe the MATLAB code that implements the simulation.

In Chapter 6 we discuss the simulation results. Finally, in Chapter 7 we discuss the

results of this thesis and we suggest some possible future research enhancements and

directions. Appendix A provides the full tile library for our designs.

Vasilis Papadimitriou 3 Feb 2013

1. INTRODUCTION

Vasilis Papadimitriou 4 Feb 2013

Chapter 2

Background

2.1 DNA

DeoxyriboNucleic Acid (DNA) is a nucleic acid containing the genetic instructions used

in the development and functioning of living organisms. The DNA segments carrying

this genetic information are called genes. DNA is a long polymer made from repeating

units called nucleotides characterized by the nucleobases (Adenine, Thymine, Guanine,

Cytosine) [1].

As first discovered by James D. Watson and Francis Crick [11], the structure of DNA

of all species comprises two helical strands each coiled round the same axis with a pitch of

3.4 nanometers and a radius of 1.0 nanometers (see Figure 2.1). Although each individual

repeating unit is very small, DNA polymers can be very large molecules containing mil-

lions of nucleotides. For instance, the largest human chromosome, chromosome number

1, is approximately 220 million base pairs long.

In a DNA double helix, each type of nucleobase on one strand normally interacts

with just one type of nucleobase on the other strand. This is called complementary

base pairing. Bases form hydrogen bonds between them, with Adenine bonding only to

Thymine and Cytosine bonding only to Guanine. This arrangement of two nucleotides

binding together across the double helix is called a base pair. As hydrogen bonds are not

covalent, they can be broken and rejoined relatively easily. The two strands of DNA in

a double helix can therefore be pulled apart like a zipper, either by mechanical force or

high temperature. As a result of this complementarity, all the information in the double-

stranded sequence of a DNA helix is duplicated on each strand, a property which is vital in

Vasilis Papadimitriou 5 Feb 2013

2. BACKGROUND

Figure 2.1: DNA double helix and base pairing (from [1])

DNA replication. Indeed, this reversible and specific interaction between complementary

base pairs is critical for all the functions of DNA in living organisms [12].

2.2 DNA Computing

DNA computing [10] is a form of computing which exploits DNA and technologies from

biochemistry and molecular biology, instead of silicon and the traditional hardware tech-

nologies. Adleman’s first experiment [10] used DNA strands to solve the Directed Hamil-

tonian Path problem, a well-known NP-complete problem. DNA computing, or, more

generally, biomolecular computing, is a fast developing interdisciplinary area. Research

Vasilis Papadimitriou 6 Feb 2013

2.2 DNA Computing

Figure 2.2: A comparison of CD and DNA densities

and development in this area concerns theory, experiments, and applications of DNA

computing.

Moore’s Law states that silicon microprocessors double in complexity roughly every

two years. One day this will no longer hold true, when miniaturization limits are reached.

Intel scientists say it will happen in about the year 2020 [13]. So, a successor to silicon

is required.

DNA is a unique computational element for the following reasons. First, with DNA

we can achieve extremely dense information storage. Figure 2.2 shows one gram of DNA

on a compact disc (CD). The CD can hold about 800 MB of data. The one gram of

DNA can hold about 1 × 1014 MB of data. The number of CDs required to hold the

same amount of information, lined up edge to edge, would circle the Earth 375 times.

With bases spaced at 0.35nm along DNA, data density is over a million Gbits per inch

compared to 7 Gbits per inch in typical high performance hard disk drives (HDDs).

One pound of DNA has the capability to store more information than all the electronic

computers ever built. Second, with DNA we can achieve enormous parallelism. A test

tube of DNA contains trillions of strands. Strands do not function sequentially over DNA.

Each operation in a test tube of DNA is carried out on all strands in the tube in parallel!

Vasilis Papadimitriou 7 Feb 2013

2. BACKGROUND

Typically, 300, 000, 000, 000, 000 (300 trillions) molecules are used at any single time step.

Each molecule acts as a very simple CPU executing a specific computation. Third, DNA

has extraordinary energy efficiency. Adleman estimated that his DNA computer was

executing 2×1019 operations per joule [10]. Last, but not least, is the DNA’s property of

complementarity, which makes it suitable for computation. As mentioned before, DNA

is encoded with four bases:

• A = Adenine

• T = Thymine

• G = Guanine

• C = Cytosine

These bases are like 0’s and 1’s used in silicon computers. DNA bases form two base-pairs:

A–T and C–G. In nature, bases appear only in the form of complementary pairs. For

example, the strand S=ATTACGCG is typically attached to the complementary strand

S̄=TAATGCGC.

2.3 DNA Tiles and DNA Self-assembly

A key property of DNA is the ability to assemble by itself thanks to the complementar-

ity. Self-assembly involves the spontaneous and autonomous organization of disorganized

interacting components into an organized pattern without direct human or mechanical

interference [14]. The idea of self-assembly arose from three research fields:

1. DNA Computing [10]

2. Tiling Theory [15]

3. DNA Nanotechnology [16]

Vasilis Papadimitriou 8 Feb 2013

2.3 DNA Tiles and DNA Self-assembly

Figure 2.3: DNA origami (top: desired patterns, bottom: actual DNA patterns)(from [2])

2.3.1 DNA Tiles

As stated by Seeman [17], the Watsons-Crick complementarity of DNA molecules al-

lows one to design not only simple double-stranded helices but also complicated woven

structures consisting of many DNA strands. Such assemblies are known as DNA tiles [3].

To create DNA tiles we use a process called DNA folding or DNA origami. DNA

origami [2] is the nanoscale folding of long DNA strands to create arbitrary two and

three dimensional rigid shapes at the nanoscale (see Figure 2.3). A DNA tile or a Double

Crossover DNA molecule is composed of DNA strands folded into a block-shaped molecule

with strands sticking out from its vertices, called sticky ends. Figure 2.4 shows a DNA

tile composed by four interwoven strands (marked in different colors). The circled regions

represent the crossover between the red/green and yellow/purple strands. The yellow and

green strands sticking out on both sides (four, in total) are sticky ends. If two sticky

ends of different tiles are complementary they can attach to each other creating a double

Vasilis Papadimitriou 9 Feb 2013

2. BACKGROUND

Figure 2.4: Example of a DNA tile composed of four DNA strands (from [3])

strand and resulting in an attachment of the two tiles at the corresponding vertices.

2.3.2 DNA Self-Assembly

Using DNA tiles as building blocks and the right encoding of the sticky ends we can

make complex shapes and encode computations. The sticky ends must be encoded in a

way that allow bonds to be created only between tiles with complementary sticky ends.

Understanding of DNA self-assembly is easier with some simple examples. Figure 2.5

shows a simple assembly with two kind of DNA tiles (A and B). The upper right sticky

end of A tiles is complementary to the bottom left sticky end of B tiles. Likewise, the

upper left sticky end of A tiles is complementary to the bottom right sticky end of B tiles.

In addition, the bottom left sticky end of A tiles is complementary to the upper right

sticky end of B tiles. Finally, the bottom right sticky end of A tiles is complementary

to the upper left sticky end of B tiles. Under this complementarity scheme (shown with

matching colors), tiles A and B can only assemble in a two-dimensional lattice with

alternating columns as shown in the figure.

Figure 2.6 shows a more complex assembly implementing a binary counter [4]. The

counter has been implemented with the use of seven different tiles, three input tiles and

four rule tiles. The different shapes at the edges of each tile represent different sticky

Vasilis Papadimitriou 10 Feb 2013

2.3 DNA Tiles and DNA Self-assembly

Figure 2.5: A example of a two-dimensional assembly with two DNA tiles (from [4])

ends and encode information used in the computation. Each tile stores a single bit and

information about a roll-over bit, if any. Particularly, the top side of the tiles encodes the

value of the bit stored in the tile and the left side carries the rollover bit value. The bottom

and the right sides are used to enforce correct matching. The computation is triggered

by a seed tile S and the border tiles offer the initial conditions for the computation. The

width of the assembly (given by the border tiles at the bottom) determines the number

of bits in the counter, while the height of the assembly (given by the border tiles on the

right) determines the number up to which the counter counts. As the assembly grows,

each row represents increasing numbers of the binary counter beginning with 1. The rule

tiles abide to the following logic: if the rollover bit on the right side is 0, then the current

bit will simply copy the value of the bit at the bottom and will not transfer a rollover

bit to its left; if the rollover bit on the right side is 1, then the current bit will be added

to the bit at the bottom, the result (modulo 2) will be stored at the current tile, and if

there is any carry it will be transferred as a rollover bit to its left.

This design for binary counter has been experimentally tested [5] and yields the results

shown in Figure 2.7. Although the desired pattern emerges, several errors (marked in

red) occur due to incorrect attachment of rule tiles or merging of different lattices.

There are two main applications of DNA self-assembly. First, solving NP-hard prob-

lems, such as the Boolean Formula Satisfiability (SAT) problem. NP-complete problems

Vasilis Papadimitriou 11 Feb 2013

2. BACKGROUND

Figure 2.6: A binary counter implemented with DNA self-assembly (from [4])

have an exponential number of candidate solutions, therefore it is rather hard to find a

correct solution, but it is typically easy to verify if a candidate solution is correct. With

self-assembly we can generate all possible solutions and filter them out quickly using

chemical methods and the parallelism of DNA. In fact, we are pushing the exponential

dimension of the problem into the volume of the DNA (1 mL DNA = 260 bits of informa-

tion). Figure 2.8 shows an example of how a candidate solution is verified as the correct

solution in an NP-hard problem. We generate input (the candidate solution) as an initial

set of tiles in the first row. Based on the initial set of tiles, the assembly will end, when

the Y ES or NO tile attaches. If the Y ES tile is attached, then the candidate solution

is verified as a correct one, otherwise, if the NO tile is attached, the candidate solution

is verified as incorrect. Alternatively, assemblies corresponding to incorrect solutions re-

main incomplete. Correct solutions can be read by extracting those assemblies which

Vasilis Papadimitriou 12 Feb 2013

2.3 DNA Tiles and DNA Self-assembly

Figure 2.7: Experimental results of DNA self-assembly for a binary counter (from [5])

include a Y ES tile.

Figure 2.9 shows an example assembly for solution verification in the SAT problem [6].

In this design we have two initial set of tiles. The tiles in the lower left boundary encode

the variables of the formula. In this example, there are only three variables: x1, x2, x3.

The tiles in lower right boundary encode the clauses of the formula that must be satisfied.

Tile S is used to separate the clauses. Specifically, the clauses in this particular 3-SAT

instance are:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

The row of tiles next to the variables boundary (colored in cyan) encodes the candidate

Vasilis Papadimitriou 13 Feb 2013

2. BACKGROUND

Figure 2.8: Solving an NP-hard problem using DNA self-assembly (from [4])

x1

x2

x3

x1

x2

x3

x1+ x1+

x1+ x1+

x1+ x1+

x1+ x1+

x2- x2-

x2- x2-

x2- x2-

x2- x2-

BEGIN

VV

VV

VV

VV

x1+ x1+

x1+ x1+

x1+ x1+

x1+ x1+

x1+ x1+

x2- x2-

x2- x2-

x2- x2-

x2- x2-

x2- x2- x1+ x1+

x2- x2-

OKOK

OKOK

OKOK

EE

EE

EE

SUCCESS

x1-x1-

x1-x1- x2- x2-

x3+x3+

SS

x1+ x1+

x2- x2-

x3- x3-

SS

x1-x1-

x2+ x2+

x1+ x1+

x2- x2-

EEx1+ x1+

x1+ x1+

x2- x2-

x2- x2-

SS

x3+x3+

x2- x2-

x3+x3+

SS

x2- x2-

x3- x3-

SS

SS x1-x1-

x3+x3+

SS

SS

x1-x1-

OKOK

x3+x3+

SS

OKOK

x3- x3-

x1-x1- x2+ x2+

x2+ x2+

x3+x3+

SS

x2+ x2+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

x3+x3+

OKOK

x3- x3-

OKOK

SS

OKOK

OKOK

x1-x1-

T T

F F

F F

T T

F F

T T

T T

T T

F F

SS

x1-x1-

F F

F F

T T

F F

C C

Figure 2.9: Solving the SAT problem using DNA self-assembly (from [6])

solution, a truth assignment to the variables. In this particular example, the encoded

Vasilis Papadimitriou 14 Feb 2013

2.4 Properties of DNA Computers

candidate solution is the following truth assignment:

x1 = True x2 = False x3 = True

The interior tiles in the assembly (colored in yellow) perform satisfiability checking; they

check if some literal in each clause is satisfied by the chosen assignment. The findings

of this check are propagated to the top left boundary, where the tiles summarize the

satisfiability of each clause. If the candidate solution is a correct one (a satisfying as-

signment), then the assembly will complete and the tile marked with SUCCESS will be

attached at the very end, as shown in the figure. If the candidate solution is an incorrect

one, the assembly will not be able to complete and the SUCCESS tile will not be at-

tached. Satisfying assignments can be read by extracting those assemblies which include

a SUCCESS tile.

The second application of DNA self-assembly is in programmable nanofabrication.

Using self-assembly designs we can fabricate certain shapes, complex patterns, molecular

electronic circuits, etc. An example of nanofabrication [7] is shown in Figure 2.10. Specif-

ically, in this example we construct a RAM demultiplexer. In Figure 2.10 (a) we can see

the required tile set for the implementation of the demultiplexer. The main property of

these tiles is that they have simple logical gates attached on them in order to make an

electronic circuit. Using the given tile set, we can create a band, shown in Figure 2.10 (b),

that follows the design of the simple binary counter described above. With the help of

two such bands as seed rows, the final fabrication for the RAM demultiplexer grows as a

self-assembly, as shown in Figure 2.10 (c).

2.4 Properties of DNA Computers

The key advantage of DNA computers is the potential to supply massive computational

power. A DNA computer can simulate parallel machines, where each processor’s state is

encoded by a set of DNA strands or DNA tiles. DNA computers can perform massively

parallel computations by executing recombinant DNA operations that act on all the

DNA molecules simultaneously. These recombinant DNA operations may be performed

to execute massively parallel local memory read/write operations, logical operations, as

well as basic operations on strings, such as parallel arithmetic, making them suitable for

solving NP-hard problems by parallel verification of candidate solutions.

Vasilis Papadimitriou 15 Feb 2013

2. BACKGROUND

Figure 2.10: Constructing a RAM demultiplexer using DNA self-assembly (from [7])

Another advantage of DNA computers is the incredibly light weight of the actual

material used. DNA in weak solution in one liter of water can encode the state of about

1018 processors and, since certain recombinant DNA operations can take several minutes,

the overall potential for a massively parallel DNA computer is about 1, 000 tera-ops.

The same solution can encode 107 to 108 tera-bytes, on which we can perform massively

parallel associative searches [18].

Additionally, DNA computers consume extremely low power. The only power needed

is to keep the DNA solution at the right temperature to prevent denaturation. Adleman

estimated that his DNA computer was executing about 2×1019 operations per joule [10].

On the other hand, DNA computers suffer from high costs in time. For example, for

a problem that an electronic computer needs three days to compute a solution, a DNA

computer will need about 2 hours, but it may take a week of lab work for preparation.

Thus, today simple problems are solved much faster on electronic computers. Also, with

DNA computers, it may take longer to sort out the answer to a problem than it took

to solve the problem itself. Therefore, DNA computers are generally slower than the

electronic ones, mostly due to slow input/output operations.

Last, but not least, DNA computers have some reliability issues. Occasionally errors

Vasilis Papadimitriou 16 Feb 2013

2.4 Properties of DNA Computers

occur in the pairing of DNA strands/tiles resulting in violations of the strict comple-

mentarity property and/or incomplete assemblies, which eventually yield wrong compu-

tations. This fact represents a major obstacle in advancing the state of the art in DNA

computing and significant research efforts are dedicated in inventing chemical and/or

algorithmic mechanisms that guarantee certain levels of reliability.

Vasilis Papadimitriou 17 Feb 2013

2. BACKGROUND

Vasilis Papadimitriou 18 Feb 2013

Chapter 3

Problem Statement

3.1 DNA Self-Assembly for Sierpinski Patterns

This thesis focuses on DNA self-assembly (tiling) for ribbon patterns. In order to fully

understand how such a tiling works, we are going to describe a design for Sierpinski

patterns in depth [8]. The Sierpinski triangle was chosen as a test pattern, because it

requires only a small set of tiles, yet it involves all the major assembly mechanisms in

which errors could occur. Each tile “computes” the eXclusive-OR (XOR) ⊕ function of

its inputs (0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0) in the sense that a unique tile

will bind at a site corresponding to a particular input pair and will present two identical

outputs representing the XOR of the inputs.

Figure 3.1 (a) shows such tile bindings, whereby the output (right side of the tiles)

is the XOR operation on the inputs (left side of the tiles). A library of four abstract

tiles, shown on the right side of Figure 3.1 (a), implements the correct XOR function for

left-to-right growth. In addition to the rules implemented by the tiles, it is necessary to

provide initial conditions for the assembly. A seed row sets the boundary conditions for

growth by specifying the initial scaffolding where tiles can bind to. An initial row of 0’s

with a single 1 will produce the Sierpinski triangle pattern. Wherever both inputs match

(cases pointed by black arrows), tiles may attach asynchronously to the seed row or to two

adjacent tiles in the assembly. A single match (case pointed by a red arrow) is insufficient

for attachment. When these assembly rules are executed without errors, these tiles grow

from the seed row to produce a Sierpinski pattern, as shown in Figure 3.1 (b-top). If

errors occur, such as those indicated by the two red marks in Figure 3.1 (b-bottom), the

Vasilis Papadimitriou 19 Feb 2013

3. PROBLEM STATEMENT

Figure 3.1: Design of DNA tiling for a Sierpinski triangle pattern (from [8])

pattern in the assembly is disrupted. A single error can result in a widespread change in

the pattern, due to propagation of incorrect information.

Figure 3.1 (c) shows a complete DNA design of the XOR tiles, using a double-crossover

motif [3], and part of the structure of the DNA origami seed implementing the initial

conditions. The sticky ends of the four XOR tiles are 5-bases long and complementary

Vasilis Papadimitriou 20 Feb 2013

3.1 DNA Self-Assembly for Sierpinski Patterns

Figure 3.2: Design of DNA tiling for a Sierpinski triangle pattern (from [8])

ends are marked with the same color. To fully understand how tiles attach to each other

through the sticky ends, one must consider that in alternating rows tiles are mirrored

(flipped upside-down) for correct attachment, as shown in Figure 3.2, which also illus-

trates the structural differences between tiles with output 0 and tiles with output 1.

Finally, Figure 3.1 (d) shows the cone-shaped Sierpinski assembly produced by error-free

growth from an origami seed specifying the initial row 000000010000000 along with the

actual sizes of the lattice.

In order to allow for larger assemblies, the tile set is augmented with boundary tiles,

so that the assembly can grow as a fixed-width ribbon. The boundary tiles provide

the necessary boundary conditions for the correct growth of the pattern, as shown in

Figure 3.3 (a). This assembly begins with a seed row encoding the input 0101010101010

and results in a pattern with a 28-rows period, containing a total of 406 tiles per repeat.

The boundary tiles consist of two types of single tile and one type of double tile for

each of the two boundary sides (top and bottom), as shown in Figure 3.3 (b). Single

Vasilis Papadimitriou 21 Feb 2013

3. PROBLEM STATEMENT

Figure 3.3: Design of DNA tiling for a Sierpinski ribbon pattern (from [8])

boundary tiles must be viewed flipped upside-down to realize how they attach to double

boundary tiles. The logic is that each single boundary tile simply copies to the right the

information provided by the non-boundary tile input found on its left in the assembly.

Double boundary tiles on each side simply attach to each other to host the single boundary

tiles and extend the assembly.

Vasilis Papadimitriou 22 Feb 2013

3.2 Self-Assembly Errors

3.2 Self-Assembly Errors

The constraint required for correct growth of the ribbon assembly is that a tile may

attach to a site, if and only if it matches both inputs. This is essential for growth of the

correct pattern; nevertheless, errors may occur. This fact has been verified by numerous

experiments in the lab with actual recombinant DNA tiles, as depicted in Figure 3.4. In

fact, the longer the ribbon, the higher the probability of an error.

A first type of error shows up when a tile becomes attached by just one matching

input. Such a mismatched tile will most likely only transiently attach to a growing

assembly and will eventually be replaced by a correct one. However, occasionally it will

become permanently embedded, especially if other tiles subsequently attach to it and

grow around it. This kind of error is called a growth error and results in a disruption of

pattern formation due to the incorporation and propagation of incorrect information.

A related second type of error results when a tile attaches by a single sticky end,

despite the absence of a tile to provide the other input and then gets locked in place

by subsequent lattice growth. These are called facet nucleation errors [19, 20]. A single

facet nucleation error on a cone-shaped assembly would allow both forward and backward

growth of additional layer of tiles. These new tiles are also likely to contain and propagate

incorrect information, nevertheless this type of error is eliminated by the introduction of

the boundary tiles and the ribbon structure of the assembly, since there are no orphan

sticky ends hanging out of the assembly.

The third type of error, a nucleation error, occurs when several tiles come together

to form a small assembly that initiates further growth in the absence of a seed DNA

origami. Lacking the correct boundary conditions, such assemblies tend to be ill-formed

and therefore pose no severe problems in the formation of correct lattices.

It is clear that growth errors pose the most severe threats to correct assemblies.

Previous experiments on algorithmic self-assembly [21, 22] reported growth error rates

between 1% and 10% per tile, although these estimates were imprecise due to highly-

variable crystal growth and selective imaging. More recent statistical experimental data

indicate that the probability of a single error is about 1.4% within the first 15 rows of

the assembly [8]. These findings indicate that, in practice, perfect growth of Sierpinski

patterns is difficult to achieve as a single error may destroy the entire pattern.

Vasilis Papadimitriou 23 Feb 2013

3. PROBLEM STATEMENT

Figure 3.4: Actual DNA tilings for Sierpinski ribbon pattern and detected errors (from [8])

3.3 Seeking a Self-Correcting Design

Motivated by the severity of growth errors in DNA self-assembly for ribbon patterns, we

decided to study the design of the tiles to make the assembly robust against such errors.

Vasilis Papadimitriou 24 Feb 2013

3.3 Seeking a Self-Correcting Design

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Assembly with the original design without errors (four periods)

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.6: Assembly with the original design with a single error (marked in cyan)

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.7: Assembly with the original design with random errors (probability=1.4%)

To illustrate the severity of the problem we conducted a number of simulations of the

assembly with and without errors. Figure 3.5 shows a correct assembly of a Sierpinski

ribbon pattern without errors up to four periods. Figure 3.6 shows the same assembly

with just one error introduced near the beginning; notice how both the structure and

the periodicity of the pattern are corrupted. A new pattern now emerges with a larger

period and there is no hope of recovery. Finally, Figure 3.7 shows the same assembly

with multiple errors, whereby the probability of an error occurring at each tile was taken

equal to the experimentally estimated value 1.4%. In this case, no clear pattern emerges

Vasilis Papadimitriou 25 Feb 2013

3. PROBLEM STATEMENT

and the resulting ribbon nowhere resembles the desired one.

The key question we try to address in this thesis is the following: Is there a different

tile design which allows for recovery from errors? In other words, is it possible to restrict

the influence of a single error locally, leaving only some local scars in the assembly? It is

clear that such a self-correcting property cannot come for free. Some degree of redundancy

will be required and some growth in the size of the assembly is unavoidable. Therefore, a

few related questions are posed: What kind of redundancy is needed? How complex are

the required tiles? How bigger is the required tile library? What is the influence of the

required extra tiles on the size of the assembly? Is there a gain in reliability/robustness of

the assembly in exchange of the required extra space? Starting from the original design

and the experimentally verified error rate, we seek a new design with error correction

properties in order to significantly reduce the overall error in the assembly.

Vasilis Papadimitriou 26 Feb 2013

Chapter 4

Our Approach

4.1 Redundancy

In our quest towards an error-correcting design we realized that we need to employ

redundancy, that is to store some extra information in our tiles, so that we can detect if

any kind of error occurred. We explored several options in order to achieve this kind of

redundancy. For example, we considered using parity bits inside each tile, however the

occurrence of an error would also lead to parity bits matching the wrong data, because

of the design of the tiles. Thus, no error could be detected with just parity information.

We concluded that only some scheme that duplicates correct information would fit

our purpose. We started duplicating the information contained in the original tiles by

making the new tiles larger with more sticky ends (Figure 4.1). This design reduces

the error rate, because for an error to occur two (not just one) sticky ends must attach

incorrectly. Even so, however, the introduction of a single wrong tile will propagate

incorrect information and eventually will alter the entire lattice. The next step was to

duplicate the tiles themselves. So, instead of a single XOR tile for each operation, we

employed two identical tiles (Figure 4.2).

This way if an error would occur at a single tile, the redundant information would

remain intact. But the problem isn’t solved yet, because such a scheme would simply

signal the presence of an error in the best case, but we would not be able to tell how

the correct the error. Fixing the error would boil down to a coin-flip situation to decide

which one of the two tiles is the correct one and which is the incorrect.

Vasilis Papadimitriou 27 Feb 2013

4. OUR APPROACH

a a⊕ b

b a⊕ b

a a⊕ b

a a⊕ b

b a⊕ b

b a⊕ b

Figure 4.1: Original XOR tiles (left) and new XOR tiles with redundancy (right)

a a⊕ b

b a⊕ b

a a⊕ b

b a⊕ b

a a⊕ b

b a⊕ b

Figure 4.2: Original design (left) and new design with duplicated tiles (right)

a a⊕ b

b a⊕ b

a a⊕ b

b a⊕ b

a a⊕ b

b a⊕ b

a a⊕ b

b a⊕ b

Figure 4.3: Original design (left) and new design with tripled tiles (right)

In order to avoid the coin-flip situation we tripled the tiles. This way, if an error

occurs, we will have two correct and one incorrect tile. Thus, we can potentially fix the

error. The only way incorrect information can propagate under such a scheme is the

occurrence of two errors simultaneously at two of the three tiles in a group (Figure 4.3).

4.2 First Design

Our first design for a self-correcting assembly succeeds in correcting errors in regular

XOR tiles, but suffers from certain errors occurring in the additional tiles it introduces.

Vasilis Papadimitriou 28 Feb 2013

4.2 First Design

4.2.1 Correction Tiles

Even now that we have achieved redundancy we still have two problems. Firstly, we

need a way to detect and correct the error. The hardest part in DNA self-assembly

is the correction, because, even if the incorrect tile is precisely detected, it cannot be

just removed. This is true because tiles bind and unbind under precise thermodynamic

control, so the change of environmental conditions in a specific parts of the assembly

where an error occurred is practically impossible. Secondly, we need to make sure that

the information contained in some row of tiles would be correctly propagated to the

next row of tiles including the redundancy. An example will help us understand this

kind of problem. Figure 4.4 (left) shows a simple example of information propagation

between rows in the original design. In the first row, there are three XOR operations

(x = a ⊕ b, y = c ⊕ d, z = f ⊕ g), leading to two XOR operations in the second row

(e = x⊕ y, w = y⊕ z). By design, the right sticky ends of the tiles in the first row match

the left sticky ends of the tiles in the second row. This way information propagates

correctly from one row to the next. Figure 4.4 (right) shows the same example along

with the desired information propagation between rows under the new design with tripled

tiles. Notice the requirement that the pattern of tripled tiles remains consistent between

rows. The colored lines indicate which bits of information from the first row need to be

transferred to the second row, as well as their exact destination. It is clear that the right

sticky ends of the tiles in the first row cannot match the left sticky ends of the tiles in the

second row. Therefore, in order to achieve this propagation scheme (and possibly correct

errors, if any), we need to use additional intermediate levels of tiles.

In order to address these problems we are going to augment our tile library with a

new set of tiles, called correction tiles, which are going to be inserted between the regular

rows of XOR tiles. These new error-correcting tiles abide to the following template:

x c
y c
y w
z c
z w
w c

This template is a 6 × 2 tile with six sticky ends on each side and yields 16 distinct

correction tiles. The left sticky ends are used to detect errors in the last row of XOR

Vasilis Papadimitriou 29 Feb 2013

4. OUR APPROACH

Figure 4.4: Information propagation in the original (left) and the new (right) design

tiles, while the right sticky ends are used to correct detected errors, if any, and arrange

the outputs so that they match the desired arrangement in the next row of XOR tiles.

The top five inputs come from the same triplet of redundant XOR tiles, therefore they

should be identical, if there is not error. If not, the correct value is restored from the

majority of them. More precisely, correction is implemented by the following rules:

if (x = y = z) then there is no error and c← x

else if (x = y 6= z) then there is error in z and c← x

else if (x = z 6= y) then there is error in y and c← x

else if (y = z 6= x) then there is error in x and c← y

Figure 4.5 illustrates information propagation under the new design. The assembly on

the left with the original design consists of a DNA origami seed encoding the input

0101010101 and two rows of XOR tiles. The same assembly is shown in the middle with

Vasilis Papadimitriou 30 Feb 2013

4.2 First Design

Figure 4.5: Error-free assembly: original design (left) and new design (middle and right)

the new design. The intermediate level of correction tiles is marked in red. Information

propagates correctly from the first row of XOR tiles to the second one following the

generic scheme shown on the right.

Figure 4.6 illustrates error correction under the new design. The three correspond to

errors (marked in yellow) occurring in each of the three XOR tiles in a triplet. In the left

Vasilis Papadimitriou 31 Feb 2013

4. OUR APPROACH

Figure 4.6: New design: error correction in each of the three XOR tiles of a triplet

and middle examples, the single error is corrected, whereas in the right example, where

the error occurs in top tile of the triplet, the error propagates to the next row. Therefore,

the new design can only partially correct errors in XOR tiles.

This new design so far fully succeeds in information propagation, but not in error

Vasilis Papadimitriou 32 Feb 2013

4.2 First Design

correction. To address both problems successfully we introduce an two levels of correction

tiles between consecutive rows of XOR tiles. The first level of correction tiles is similar

to the one described above and abide to the following template:

x c
y c
y c
z w
z c
w w

This template is a 6 × 2 tile with six sticky ends on each side and yields 16 distinct

correction tiles (see Section A.1.1.2). Correction is implemented by the same rules as

above:

if (x = y = z) then there is no error and c← x

else if (x = y 6= z) then there is error in z and c← x

else if (x = z 6= y) then there is error in y and c← x

else if (y = z 6= x) then there is error in x and c← y

The second level of correction tiles abide to the following template:

x x
x x
y c
x x
y c
z x

This template is a 6 × 2 tile with six sticky ends on each side and yields eight distinct

tiles (see Section A.1.1.3). The second level aims at correcting left-over, propagated errors

from the first level. Correction at this level is implemented by the following rules:

if (y = z) then there is no error and c← y

else if (y 6= z) then there is error in y and c← z

As shown in Figure 4.7, if an error occurs at the top XOR tile a triplet (a), the error

will be partially corrected by the first level of correction tiles. Specifically, the lower

correction tile in the first level (c) will correct the error and yield the correct information

Vasilis Papadimitriou 33 Feb 2013

4. OUR APPROACH

Figure 4.7: First design: example of how the second level of correction works

to the next row, whereas the upper correction tile in the first level (b) is not able to

correct the error, because it has limited access to the lower triplet of XOR tiles, so it

will propagate incorrect information to the next level. When such errors occur, at this

specific point in the first level we always have a tile that has the correct information

and one that does not, so by introducing an additional level with a correction tile that

attaches to both those tiles (d) we can correct the error.

Figure 4.8 illustrates error correction under the complete first design with two levels

of correction tiles. The first example is an error-free assembly. The remaining three

examples correspond to errors (marked in yellow) occurring in each of the three XOR

tiles in a triplet. In all cases, the single error is corrected and information propagates

correctly to the next row of XOR tiles. The only corruption left in the pattern is the

erroneous tile itself.

4.2.2 Boundary Tiles

As described in Chapter 3, boundary tiles are necessary for two reasons. Firstly, to

maintain a fixed width for the lattice shaping it into a ribbon. Secondly, to prevent

merging between different lattices.

Vasilis Papadimitriou 34 Feb 2013

4.2 First Design

Figure 4.8: First design: error correction in each of the three XOR tiles of a triplet

XOR Boundary Tiles In the first design XOR boundary tiles follow the same prin-

ciples as the boundary tiles in the original design, meaning that their purpose is to

propagate information without changing it. They only difference in our first design is

that the tiles have four sticky ends on each side contrary to the two sticky ends on each

side of the original XOR boundary tiles. Our XOR boundary tiles abide to the following

templates (left: upper boundary, right: lower boundary):

e e
x x
x x
x x

x x
x x
x x
e e

These templates are 4×2 tiles with four sticky ends on each side and yield a total of four

distinct tiles (see Section A.1.2.1).

First-Level Correction Boundary Tiles These boundary tiles just need to propa-

gate the information without altering it, maintaining at the same time the error detection

Vasilis Papadimitriou 35 Feb 2013

4. OUR APPROACH

and correction properties of the first level correction tiles. Practically, in order to create

the general form of these boundary tiles, we just need to “cut” the regular first level tiles

to make them smaller. In particular, for the upper boundary tiles we keep the lower part

of the regular tiles, whereas for the lower boundary tiles we keep the upper part of the

regular tiles. Additionally, we need two types of lower and upper tiles, because we have

two different sizes of boundary tiles in each first level of correction tiles. Our first-level

correction boundary tiles abide to the following templates (left two: upper boundary,

right two: lower boundary):

e e
x x

e e
x x
x y
x x
y y

x w
y w
y w
z w
z w
e e

x x
x x
e e

Error correction in the largest of these templates is implemented by the following rules:

if (x = y = z) then no error and w = x

else if (x = y 6= z) then there is error in z and w ← x

else if (x = z 6= y) then there is error in y and w ← x

else if (y = z 6= x) then there is error in x and w ← y

These templates yield a total of 16 distinct tiles (see Section A.1.2.2).

Second-Level Correction Boundary Tiles The boundary tiles for the second level

of correction tiles are created similarly to the first level. Again, we need two types of

lower and upper tiles, because we have two different sizes of boundary tiles in each second

level of correction tiles. Our second-level correction boundary tiles abide to the following

templates (left two: upper boundary, right two: lower boundary):

e e
y x
x x

e e
x x
y c
x x
y c
z x

x x
x x
x x
x x
e e

x x
e e

Vasilis Papadimitriou 36 Feb 2013

4.2 First Design

Error correction in the largest of these templates is implemented by the following rules:

if (y = z) then there is no error and c← y

else if (y 6= z) then there is error in y and c← y

These templates yield a total of 14 distinct tiles (see Section A.1.2.3).

4.2.3 Assembly

Figure 4.9 illustrates the use of boundary tiles through a complete ribbon assembly with

our first design using the templates described above. Notice that the DNA origami seed

must also be given in triplets of two symbols, following our redundancy scheme, and be

bounded withing the boundary symbols e. At positions 1 and 4, one can see the two

different types of upper boundary tiles for the first level of correction tiles. At positions

6 and 9, the two different types of lower boundary tiles for first level of correction tiles

can be seen. At positions 2 and 5, the two different types of upper boundary tiles for the

second level of correction tiles can be seen. Finally, at positions 7 and 10, the two different

types of lower boundary tiles for the second level of correction tiles can be seen. Position

3 contains an upper boundary tile for a XOR row, whereas position 8 contains a lower

boundary tile for a XOR row. Figure 4.10 shows a specific instance of this (error-free)

assembly originating out of a DNA origami seed of the form e000000101010000000e.

4.2.4 Positioning

For correct lattice growth under our first design we must ensure that tiles attach to

specific valid positions. Figure 4.11 shows examples of correct and incorrect positioning

of a first-level correction tile. Correct positioning can be achieved through the use of

appropriate encoding of the various sticky ends. As mentioned before sticky ends are

single DNA strands usually four- to eight-bases long. When describing a tile in the

abstract form
x y
z w

each one of the x, y, z, w labels represents a sticky end. Two tiles

can attach to each other through complementary sticky ends. For example, if sticky end

y is AAAGGG, another tile can attach to y through a sticky end complementary to y,

that is ȳ=TTTCCC, as shown in Figure 4.12. Both y and w in the figure may represent

the same symbol, e.g. bit value 1, but in order to enforce correct attachment each one of

Vasilis Papadimitriou 37 Feb 2013

4. OUR APPROACH

Figure 4.9: First design: the general form of a complete assembly

them may encode that symbol with a different combination of bases at its sticky end. In

order to keep our figures simpler, sticky ends that encode the same symbol with different

combination of bases are colored differently.

Each tile in the first level of correction must attach to four other tiles, namely to

three tiles from a triplet of XOR tiles and one tile from the next XOR triplet. For correct

positioning of the first-level correction tiles, the first tile of each XOR triplet must have

different sticky ends from the other two XOR tiles and the first-level correction tile must

Vasilis Papadimitriou 38 Feb 2013

4.2 First Design

Figure 4.10: First design: an example of a complete assembly

have complementary sticky ends to those of the XOR tiles, as shown in Figure 4.13.

Different encoding of the sticky ends (black and red) ensure that XOR and first-level

correction tiles attach to each other correctly. Each colored sticky end may represent any

symbol; the difference in color simply implies different encoding of the sticky ends, even

if the represented symbols are identical. Using the same principles, we must ensure that

the second-level correction tiles attach to first level at the precise correct positions. The

two top sticky ends of a first-level correction tile must have different sticky ends from

Vasilis Papadimitriou 39 Feb 2013

4. OUR APPROACH

Figure 4.11: First design: example of (a) correct and (b) incorrect positioning

Figure 4.12: Attachment of sticky ends y and w to complementary ends ȳ and w̄

the remaining sticky ends and the second-level correction tiles must have complementary

sticky ends to them, as shown in Figure 4.13. Once again, we arrange the sticky ends of

the second-level correction tiles so that the XOR tiles attach at the right position. The

first tile of each XOR triplet should have on the left side different sticky ends from the

other two tiles in the triplet, in order to maintain the correct positioning of subsequent

tiles, as shown in Figure 4.13.

Overall, our first design requires five different kinds of sticky ends, each of them

encoding two possible symbols (bits 0 and 1). In addition, two complementary sticky

ends are needed for encoding symbol e at the boundaries. So, in total we need 11 different

single DNA strands and their complementary 11 DNA strands to encode properly all

sticky ends of our tiles.

Vasilis Papadimitriou 40 Feb 2013

4.2 First Design

Figure 4.13: Correct positioning of tiles in consecutive XOR rows and correction levels

4.2.5 Theoretical Analysis

To assess the properties of our first design, we are going to perform a theoretical analysis

and calculate the probability of an error to propagate given a probability p for a single

sticky end to attach incorrectly at some point in the assembly.

Original Design For an error to propagate in the original design all it takes is an

incorrect output of a XOR tile. In order to have an incorrect output, one of the two left

sticky ends must attach incorrectly (probability p), but not the other (probability (1−p)).

If both of them attach incorrectly, the output would be the correct one, because of the

characteristics of the XOR function! Figure 4.14 shows an example. So, the probability

Vasilis Papadimitriou 41 Feb 2013

4. OUR APPROACH

0 1

1 1

1 0

1 0

0 0

0 0

1 1

0 1

Figure 4.14: No errors (left), one error (middle), and two errors (right) in a XOR tile

0 1

1 1

0 1

1 1

0 1

1 1

0 0

0 0

1 0

1 0

0 1

1 1

0 1

1 1

1 0

1 0

0 0

0 0

0 0

0 0

0 1

1 1

0 0

0 0

0 0

0 0

1 0

1 0

0 0

0 0

Figure 4.15: No errors (left), two errors (middle), and three errors (right) in a triplet

of a propagated error in the original design that will generate a wrong lattice is:

porig = 2p(1− p)

First Design with Errors Only at XOR Tiles Initially, we assume that errors

can occur only at XOR tiles and we calculate the probability per tile for an error to

propagate throughout the assembly. Under our first design, an erroneous output from a

single XOR tile in a triplet will be locally corrected and will not propagate throughout

the assembly. However, an error will propagate, if at least two out of the three XOR

tiles in a triplet give simultaneously incorrect outputs. The probability of one XOR tile

to give incorrect output was calculated above and is denoted as porig. There are three

different combinations of errors occurring simultaneously in exactly two out of the three

XOR tiles in a triplet (probability p2
orig(1 − porig) for each one) and one case of errors

occurring simultaneously at all three of them (probability p3
orig), as shown in Figure 4.15.

So, the probability for our first design, assuming errors only at XOR tiles, to generate an

a propagated error is:

pXOR = 3p2
orig(1− porig) + p3

orig = 3p2
orig − 2p3

orig = p2
orig(3− 2porig)

Vasilis Papadimitriou 42 Feb 2013

4.2 First Design

First Design with Errors at XOR and Correction Tiles We are going to calculate

the probability of propagated errors by focusing on each row/level of tiles separately. In

a row of XOR tiles the probability for the error to propagate is the one calculated above:

pXOR = p2
orig(3− 2porig)

At the first level of correction tiles, the top five left sticky ends of a correction tile attach

to a triplet of XOR tiles in order to implement error detection and correction. The

bottom left sticky end attaches to the first tile of the next triplet of XOR tiles to transfer

information for the next XOR operation. So, for an error to propagate, it must occur

under circumstances either in the top five left sticky ends or in the bottom left one.

Specifically, for an error to propagate from the top five sticky ends, the tile must wrongly

detect and correct an error that in fact did not occur. Using Figure 4.16 as a guide,

it is easy to see that this can happen, if at least two of x, y, z end up carrying wrong

information. There are three pairs: Tile 1 and x, Tile 2 and y, Tile 3 and z. End x

will receive wrong information from Tile 1, if only one of them is incorrect, that is either

the output of Tile 1 is incorrect (probability porig) and x attaches correctly (probability

1− p), or the output of Tile 1 is correct (probability 1− porig) and x attaches incorrectly

(probability p). Therefore, the probability of such a mismatch between Tile 1 and x is:

p1,x = porig(1− p) + (1− porig)p = p + porig − 2pporig

For the remaining two pairs, since y and z appear doubled (two sticky ends each), the

probability of y’s or z’s being incorrect is p2 and the probability of being correct is 1−p2.

Therefore, the probability of a mismatch for each of these pairs will be

p2,y = p3,z = porig(1− p2) + (1− porig)p2 = p2 + porig − 2p2porig

Therefore, the probability that an error will propagate through the top five stick ends is:

plevel1 = p1,xp2,y(1− p3,z) + p1,x(1− p2,y)p3,z + (1− p1,x)p2,yp3,z + p1,xp2,yp3,z

An error cannot propagate through the sixth sticky end, because Tile 7 will correct it,

even if wrong information passes through w.

At the second level of correction tiles, errors can propagate only through sticky ends

of type a or c, since sticky ends of type b do not transfer information to the output.

Vasilis Papadimitriou 43 Feb 2013

4. OUR APPROACH

Figure 4.16: First design: explaining error propagation through correction levels

Additionally, errors propagated through a (Tile 7) or c (Tile 6) come only from Tile 5

(outputs d). We have already calculated the probability plevel1 of an error being propa-

gated to outputs d. There are two cases from this point on. In the first case, either d

is correct (probability 1 − plevel1) and a’s are incorrect (probability p3) or d is incorrect

(probability plevel1) and a’s are correct (probability 1− p3). Therefore, the probability of

error propagation in this case will be

pd,a = plevel1(1− p3) + (1− plevel1)p3 = p3 + plevel1 − 2p3plevel1

In the second case, either d is correct (probability 1−plevel1) and c is incorrect (probability

p) or d is incorrect (probability plevel1) and c is correct (probability 1− p). Therefore, the

probability of error propagation in this case will be

pd,c = plevel1(1− p) + (1− plevel1)p = p + plevel1 − 2pplevel1

This type of error is in fact the weak spot of the second level of correction tiles and of the

whole first design. Other things being equal, errors can propagate much easier through c

Vasilis Papadimitriou 44 Feb 2013

4.2 First Design

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

probability p

p orig

p XOR

p first

Figure 4.17: Error propagation probability vs. probability of incorrect attachment

than through a; this difference is quantified by the difference in probability values p and

p3. In summary, the probability for an error being propagated beyond the second level

of correction tiles under our first design, and therefore to the next row of XOR tiles, is

the probability of the intersection of the two cases mentioned above:

pfirst = pd,a + pd,c − pd,apd,c

It is not clear by comparing the three probability expressions (porig, pXOR, and pfirst)

which one is better, given that we wish to make this probability as small as possible.

As shown in Figure 4.17 for small values of p (below 3.5%), our first design has better

chances to build a correct lattice. For larger values of p the original design has better

chances than our design to create a correct lattice, but a complete correct lattice is highly

unlike in this case. Laboratory experimental results with the original design (described

in Chapter 3) showed an average value of error probability per tile of about 1.4% (this

is porig in our notation), which means that the probability p for a sticky end to attach

incorrectly is p = 0.7%. For this value of p, we have porig = 1.4%, pXOR = 0.057%, and

pfirst = 0.85%. At this range, our first design is certainly better than the original one.

Moreover, if in our design errors occur only at XOR tiles, the chances for an incorrect

lattice are even less.

Vasilis Papadimitriou 45 Feb 2013

4. OUR APPROACH

4.3 Second Design

As seen in Figure 4.17 there is significant difference in error propagation probability

between the case where errors occur only at XOR tiles and the case where errors occur

everywhere. For that gap responsible is the weak spot at the second level of correction

tiles, namely the fact that a single incorrect attachment of sticky end c of a correction tile

in the second level (Figure 4.16) directly propagates into the rest of the assembly. Our

second design for a self-correcting assembly aims to fix that particular weak spot of our

first design. This slightly different and more involved design succeeds in correcting errors

in regular XOR tiles, while incurring better control on errors occurring in the additional

tiles it introduces.

4.3.1 Correction Tiles

Similarly to the first design, our second design introduces two levels of correction between

regular XOR rows. The first level of correction tiles is identical to the one in the first

design, described already in Section 4.2.1. Here we focuses only on the second level of

correction tiles which differs. By shifting down the positioning of tiles at this level and by

a slightly different tile design, we can duplicate the weak sticky end (bottom left end in

the first design) to reduce its probability of error and still maintain the desired correction

properties. Therefore, the second level of correction tiles in our second design abide to

the following template:

x x
y c
x x
y c
z x
z c

This template is a 6×2 tile with six sticky ends on each side and yields eight distinct tiles

(see Section A.2.1.3). As before, this second level aims at correcting left-over, propagated

errors from the first level. Correction at this level is implemented by the following rules:

if (y = z) then there is no error and c← y

else if (y 6= z) then there is error in y and c← z

Vasilis Papadimitriou 46 Feb 2013

4.3 Second Design

Figure 4.18: Assembly differences between first (left) and second (right) designs

In this template all the different sticky ends are duplicated and for an error to propagate

both sticky ends must attach incorrectly. Figure 4.18 will help us understand the way the

lattice assembly has altered with the new tiles. In the assembly under the first design a

single error at the marked sticky end z suffices to alter the triplet of XOR tiles (marked

by 1) in the next row and let the error propagate. By shifting down the green tiles in

the second design we can duplicate the marked sticky ends z. This way we drastically

reduce the probability of an error to propagate, because both sticky ends must attach

incorrectly for the error to propagate.

4.3.2 Boundary Tiles

In our second design the XOR boundary tiles and the first-level correction boundary tiles

are identical to those of the first design, described already in Section 4.2.2.

The second-level correction boundary tiles are created by “cutting” the regular cor-

rection tiles to the right size. Again, we need two types of lower and upper tiles, because

we have two different sizes of boundary tiles in each second level of correction tiles. Our

Vasilis Papadimitriou 47 Feb 2013

4. OUR APPROACH

second-level correction boundary tiles abide to the following templates (left two: upper

boundary, right two: lower boundary):

e e

e e
y c
x c
x c

x x
x x
x x
e e

e e

Error correction in the larger template for the upper boundary is implemented by the

following rules:

if (y = x) then there is no error and c← x

else if (y 6= x) then there is error in y and c← x

These templates yield a total of eight distinct tiles (see Section A.2.2.3).

4.3.3 Assembly

Figure 4.19 illustrates the use of boundary tiles through a complete ribbon assembly with

our second design using the templates described above. Notice that the DNA origami

seed must also be given in triplets of two symbols, following our redundancy scheme, and

be bounded withing the boundary symbols e. At positions 2 and 5, the two different

types of upper boundary tiles for the second level of correction tiles can be seen. Also,

at positions 7 and 10, the two different types of lower boundary tiles for the second level

of correction tiles can be seen. Figure 4.20 shows a specific instance of this (error-free)

assembly originating out of a DNA origami seed of the form e000000101010000000e.

4.3.4 Positioning

Once again we must use different encoding of bits at different tiles so we can ensure the

correct positioning of tiles in the lattice. The XOR tiles and the first-level correction tiles

in our second design are identical to the first design and there is no need for any change

in their sticky ends. We just need to change the sticky ends of the second-level correction

tiles to ensure that they attach to first level at the precise correct positions. This change

is shown in Figure 4.21 in comparison to the first design. The bottom two sticky ends of

the second-level correction tiles must be complementary to the two top sticky ends of a

Vasilis Papadimitriou 48 Feb 2013

4.3 Second Design

Figure 4.19: Second design: the general form of a complete assembly

first-level correction tile. We also arrange the sticky ends of the second-level correction

tiles so that the XOR tiles attach at the right position in the next row.

Overall, our second design requires five different kinds of sticky ends, each of them

encoding two possible symbols (bits 0 and 1). In addition, two complementary sticky ends

are needed for encoding symbol e at the boundaries. So, in total we need 11 different

single DNA strands and their complementary 11 DNA strands to encode properly all

sticky ends of our tiles.

Vasilis Papadimitriou 49 Feb 2013

4. OUR APPROACH

Figure 4.20: Second design: an example of a complete assembly

4.3.5 Theoretical Analysis

The analysis for the error propagation probability under our second design is identical

to that of the first design up to the first level of correction. Here, we focus only on the

second level of correction.

Using Figure 4.22 as a guide, at the second level of correction tiles, errors can propa-

gate only through sticky ends of type a or c, since sticky ends of type b do not transfer

information to the output. Additionally, errors propagated through a (Tile 7) or c (Tile

Vasilis Papadimitriou 50 Feb 2013

4.3 Second Design

Figure 4.21: Correct positioning of tiles in first (left) and second (right) designs

6) come only from Tile 5 (outputs d). We have already calculated the probability plevel1

of an error being propagated to outputs d (see Section 4.2.5). There are two cases from

this point on. In the first case, either d is correct (probability 1−plevel1) and a’s are incor-

rect (probability p2) or d is incorrect (probability plevel1) and a’s are correct (probability

1−p2). In the second case, either d is correct (probability 1−plevel1) and c’s are incorrect

(probability p) or d is incorrect (probability plevel1) and c’s are correct (probability 1−p2).

Therefore, the probability of error propagation is the same in each of theses cases:

pd,ac = plevel1(1− p2) + (1− plevel1)p2 = p2 + plevel1 − 2p2plevel1

Finally, the probability for an error being propagated beyond the second level of correction

tiles under our second design, and therefore to the next row of XOR tiles, is the probability

of the intersection of the two cases mentioned above:

psecond = 2pd,ac − p2
d,ac

Vasilis Papadimitriou 51 Feb 2013

4. OUR APPROACH

Figure 4.22: Second design: explaining error propagation through correction levels

As shown in Figure 4.23 our second design significantly improves over the first design.

For values of p below 7.5%, our second design has better chances to build a correct lattice

than both the original and our first design. More specifically, for the experimentally

verified value of p = 0.7% we have porig = 1.4%, pXOR = 0.057%, pfirst = 0.85%, and

psecond = 0.16%. At this range, our second design is clearly a winner over the first design

and the original one.

Vasilis Papadimitriou 52 Feb 2013

4.3 Second Design

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

probability p

p orig

p XOR

p first

p second

Figure 4.23: Error propagation probability vs. probability of incorrect attachment

Vasilis Papadimitriou 53 Feb 2013

4. OUR APPROACH

Vasilis Papadimitriou 54 Feb 2013

Chapter 5

Implementation

Unfortunately, real experimental evaluation of our designs is beyond our capabilities due

to lack of expertise and facilities. In order to test our designs in some informative way,

we implemented a simulation of self-assembly in MATLAB. The idea for the simulation

is simple. We represent the lattice with a two dimensional array. Every cell in the array

represents a sticky end, e.g. a XOR tile with two sticky ends on each side is represented

by a 2× 2 sub-array in the lattice array. Similarly, we define the tile library, so that each

tile is given as a two-dimensional array. We allow for an infinite number of each kind

of tile and we let them shuffle and attach to each other starting at the first row of the

lattice representing the seed. In order to see the results of the simulation we print the

two-dimensional lattice with either imagesc (each sticky end is a pixel in the image) or

surf (each sticky end is a cell in the grid), as shown in Figure 5.1.

The function that simulates the self-assembly accepts the following parameters:

• Size X - The width of the lattice in tiles.

• Size Y - The length of the lattice in periods.

• Seed row - An array of size 1× 2X representing the seed row of the lattice.

• Error prob - Error probability of a sticky end to attach incorrectly.

Vasilis Papadimitriou 55 Feb 2013

5. IMPLEMENTATION

20 40 60 80 100 120

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(a) Self-assembly lattice printed with imagesc

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Self-assembly lattice printed with surf

Figure 5.1: Visualization of self-assembly lattices in MATLAB.

20 40 60 80 100 120

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

(a) Lattice 14-tiles wide and 4-periods long

50 100 150 200 250 300

10

20

30

0

0.5

1

(b) Lattice 19-tiles wide and 7-periods long

Figure 5.2: Examples of lattices with different width

Vasilis Papadimitriou 56 Feb 2013

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.3: Examples of lattices with different seed rows

The simulation function returns the following two-dimensional arrays:

• correct - Lattice of the original design without errors

• incorrect - Lattice with random errors occurring consistently with prob

• first - Lattice implemented with the first design with the same errors as the

incorrect lattice at the XOR tiles and random errors at the rest of the tiles.

• second - Lattice implemented with the second design similarly to the first lattice.

A key parameter in the simulation is the value of the error probability. Figure 5.4

illustrates the effect of prob on the resulting lattices.

Vasilis Papadimitriou 57 Feb 2013

5. IMPLEMENTATION

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Examples of how the error probability parameter affects lattices

Vasilis Papadimitriou 58 Feb 2013

Chapter 6

Simulation Results

Using our assembly simulation, we tested our designs on numerous examples. Some rep-

resentative examples are presented in this chapter. All simulations have been conducted

with error probability p = 0.7% for a sticky end to attach incorrectly. This value has been

chosen, because it has been experimentally determined through laboratory experiments,

as described in Chapter 3. All simulation lattices are 14 tiles wide for the original design

and 42 tiles wide for our design (three times wider because of the redundancy) and 4 pe-

riods long. Therefore, each assembly with the original design contains about 1600 tiles,

whereas each assembly with our designs contains about 8000 tiles. In each example we

present performance of (a) the original design, (b) our designs with errors only at XOR

tiles, and (c) our first and second designs with errors at all tiles. Also, in our designs we

show two different views. The first (XOR view) shows the full lattice really is, whereas

the second (full view) shows only the nominal XOR tiles (without the redundant tiles

and the correction levels), so that a comparison to the original design can be made.

6.1 Assembly Scars

Our designs can detect an error and prevent it from propagating, however it is impossible

to detach an incorrectly attached tile. As a result such incorrect tiles remain in the lattice

and leave some kind of “scars” in the lattice pattern, as shown in Figure 6.1. These scars

will be visible in the examples that follow, even if all errors are detected and corrected.

Vasilis Papadimitriou 59 Feb 2013

6. SIMULATION RESULTS

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Original design with random errors marked in cyan

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) New design with random (corrected) errors marked in cyan

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) New design with random (corrected) errors unmarked (scars are visible)

Figure 6.1: Example of scars left behind after correction of incorrect tiles

6.2 Random Errors

In this set of experiments, each design faces (different) random errors, which appear with

fixed probability p at each sticky end. Figure 6.2 shows the performance of the original

design. Errors propagate and the lattice pattern is completely gone. Figure 6.3 shows the

performance of our designs (in XOR view for comparison). In the top example, several

errors have occurred, but all of them have been detected and corrected. In the contrary,

in the bottom example, near the end of the first period, errors occurred at two out of

Vasilis Papadimitriou 60 Feb 2013

6.2 Random Errors

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Original design with random errors.

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

5

10

15

20

25

 0

0.2

0.4

0.6

0.8

1

Figure 6.3: Our designs with random errors at XOR tiles only (XOR view)

the three XOR tiles in a triplet and the error propagated ruining the correct pattern.

Figure 6.4 shows the same examples in full view. It is worth noting the presence of scars

in both views. The full view contains more scars because it shows errors at all redundant

XOR tiles, whereas the XOR views shows only errors occurring at the nominal XOR tiles.

The next set of experiments involves random errors allowed to occur at any tile.

Figure 6.5 shows an example with the first design presented in both views. Even though

the generation of a completely correct lattice is almost impossible, the results are still

better than the original design. It can be clearly seen that the pattern maintain its period

for a long time, before it is finally interrupted by propagated errors. Figure 6.6 shows

Vasilis Papadimitriou 61 Feb 2013

6. SIMULATION RESULTS

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 6.4: Our designs with random errors at XOR tiles only (full view)

100 200 300 400 500 600 700

20

40

60

80

0

0.5

1

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.5: First design with random errors allowed at any tile

two examples with the second design in XOR view. In the top example, several errors

occurred and were detected and corrected, but at same point before second period an

error propagated and interrupted the correct pattern. In contrast, in the bottom example

all errors were corrected and the correct lattice was generated. Figure 6.6 shows the same

examples in full view.

6.3 Identical Errors

In this section, we present in detail two examples where errors occur at exactly the same

positions in the lattices for all designs. The aim of these experiments is to compare the

performance of the different designs on equal (identical) terms. The procedure we adopted

Vasilis Papadimitriou 62 Feb 2013

6.3 Identical Errors

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6: Second design with random errors allowed at any tile (XOR view)

100 200 300 400 500 600 700

20

40

60

80

0

0.5

1

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 6.7: Second design with random errors allowed at any tile (full view)

is as follows. First, we run an assembly with the original design with the errors occurring

in random as before, but this time we store the exact positions where errors occurred.

Then, we run an assembly with our proposed designs with errors only at XOR tiles, but

we intentionally insert the recorded errors to the first tile of each triplet triplet, while

the other two tiles in the triplet suffer randoms errors independently. Again, we store all

error positions. Next, we run an assembly with our first design with errors at any tile.

This time, the errors in XOR triplets are the recorded ones, while correction tiles suffer

randoms errors independently. Once again, we store all positions where errors occurred

Vasilis Papadimitriou 63 Feb 2013

6. SIMULATION RESULTS

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.8: Ex. 1: Original design with identical random errors (marked in cyan)

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 6.9: Ex. 1: Our designs with identical random errors at XOR tiles (both views)

and finally we run an assembly using the recorded errors in XOR rows and first levels of

correction, while the second-level correction tiles suffer randoms errors independently.

Regarding the first example, Figure 6.8 shows the performance of the original design,

whereas Figure 6.9 shows the performance of our designs, when errors occur only at

XOR tiles. It can be clearly seen that all the errors were corrected and the pattern of the

lattice was maintained. The scars of the corrected errors are visible. Figure 6.10 shows

the performance of our first design, when errors occur at any tile. Although the overall

behavior of the first design is better than the original one, in this example there is no real

improvement from the original design. This is because of the weak spot at second level of

correction tiles discussed in previous chapters. Figure 6.11 shows the performance of our

second design, when errors occur at any tile. As we can see, all the errors were corrected

and the pattern of the lattice was maintained. Once again, the scars of the corrected

Vasilis Papadimitriou 64 Feb 2013

6.3 Identical Errors

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80

0

0.5

1

Figure 6.10: Ex. 1: First design with identical random errors at any tile (both views)

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 6.11: Ex. 1: Second design with identical random errors at any tile (both views)

tiles are visible.

Regarding the second example, Figure 6.12 shows the performance of the original

design, whereas Figure 6.13 shows the performance of our designs, when errors occur

only at XOR tiles. Errors were corrected and the pattern of the lattice was maintained.

Figure 6.14 shows the performance of our first design, when errors occur at any tile,

whereas Figure 6.15 shows the performance of our second design, when errors occur at

any tile. In this example, in contrast to the previous one, the lattice generated by the

second design is still incorrect, but still better than the original. Specifically, the design

Vasilis Papadimitriou 65 Feb 2013

6. SIMULATION RESULTS

10 20 30 40 50 60 70 80 90 100 110 120

5

10

15

20

25

 0

0.2

0.4

0.6

0.8

1

Figure 6.12: Ex. 2: Original design with identical random errors (marked in cyan)

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80
0

0.2

0.4

0.6

0.8

1

Figure 6.13: Ex. 2: Our designs with identical random errors at XOR tiles (both views)

corrected several errors and almost three period of the pattern is correct. This proves

the overall better behavior of our second design.

6.4 Comparison

In order to have a comparative view of the simulation results we ran a stress test for

all designs. Specifically, we ran 1000 simulated assemblies for each design for all error

probability values ranging from 0% to some large value with step 0.1%. In each case, we

counted how many tiles are different compared to the ones in the correct lattice and we

calculated the percentage difference between the resulting lattice under each design and

the correct lattice.

Figure 6.16 shows the comparison results for values of p ranging from 0% to 50%.

Vasilis Papadimitriou 66 Feb 2013

6.4 Comparison

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80

0

0.5

1

Figure 6.14: Ex. 2: First design with identical random errors at any tile (both views)

20 40 60 80 100 120

5

10

15

20

25

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700

20

40

60

80

0

0.5

1

Figure 6.15: Ex. 2: Second design with identical random errors at any tile (both views)

The first design and the original one have the same behavior for values of p less than

2.5%, after which point our design has slightly better behavior. The second design has

significantly better results than the first and the original ones and it is close to the ideal,

but unrealistic, scenario, where errors occur only at XOR tiles. Also our designs have as

upper bound the 25% difference from the correct lattice in contrast to the original design

that exhibits a linear growth.

Figure 6.17 shows the comparison results for values of p ranging from 0% to 15%. It

also includes the 95% confidence interval bars. Again we see that the first design and

Vasilis Papadimitriou 67 Feb 2013

6. SIMULATION RESULTS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p − probability for incorrect sticky end attachment

D
iff

re
nc

e
fr

om
 c

or
re

ct
 la

tti
ce

Original Design
New Design only XOR error
1st Design
2nd Design

Figure 6.16: Experimental comparison of lattice distortion for p ∈ [0.0, 0.5]

the original one have the same behavior for low values of p, whereas the second design

exhibits significantly better results than both of them.

Figure 6.18 shows the comparison results for values of p ranging from 0% to 5%. It

also includes the 95% confidence interval bars. Even in this tiny range, the performances

of the different designs follow the same pattern, however differences are amplified.

Vasilis Papadimitriou 68 Feb 2013

6.4 Comparison

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p − probability for incorrect sticky end attachment

D
iff

er
en

ce
 fr

om
 th

e
co

rr
ec

t l
at

tic
e

Original Design
New design with errors at XOR tiles
1st New Design
2nd New Design

Figure 6.17: Experimental comparison of lattice distortion for p ∈ [0.00, 0.15]

Vasilis Papadimitriou 69 Feb 2013

6. SIMULATION RESULTS

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p − probability for incorrect sticky end attachment

D
iff

er
en

ce
 fr

om
 c

or
re

ct
 la

tti
ce

Original Design
New Design only XOR error
1st Design
2nd Design

Figure 6.18: Experimental comparison of lattice distortion for p ∈ [0.00, 0.05]

Vasilis Papadimitriou 70 Feb 2013

Chapter 7

Conclusion

Error-correction in DNA self-assembly can be challenging, because to achieve it requires

some kind of trade-off. In our case, the trade-off was between reliability and complexity.

We achieved better reliability by reducing the probability of error propagation, but we

sacrificed the simplicity of the original design. However, it seems that this error correction

cannot be achieved without increased complexity.

7.1 Advantages and Disadvantages

Our proposed designs offer several advantages:

Reliability The incorporation of error correction reduces the rate of error propagation

(slightly for the first design, significantly for the second design). With our designs

a single error cannot corrupt the entire pattern, so they have better chances to

generate a correct lattice.

Reusability Our proposal for error correction tiles fits other designs, not just XOR

operations on which we focused on. Specifically, if both output sticky ends of

the non-error-correcting tiles are the same, then we can use the exact same error

correction tiles that we used for the XOR function. Even if the output sticky ends

are different the same design can be used to implement error correction by minor

changes only in the tile library.

On the other hand, our proposed designs come with some disadvantages:

Vasilis Papadimitriou 71 Feb 2013

7. CONCLUSION

Assembly Size Our designs increase the area of the lattice by a factor of three in each

dimension. We increased the width of the ribbon by tripling the number of XOR

tiles to achieve redundancy and we tripled the length of the ribbon by introducing

two levels of error correction tiles.

Number of Tiles Our designs increase of the number of tiles in the lattice. For the same

computation we need five times as many tiles compared to the original design.

Tile Library Our designs increase the size of the tile library. For the original design we

needed 10 different tiles, whereas for our first design we need a total of 66 tiles and

for our second design a total of 58 different tiles.

7.2 Future Work

Our work can be extended in multiple ways. First, it may be tested on other self-assembly

schemes, including binary operations and/or computations beyond XOR, such as the

binary counter and the RAM demultiplexer assemblies described in Chapter 2. Second,

it could be tried on non-ribbon assemblies; indeed, much of the added complexity in our

proposed designs stems from the variety and the multitude of the required boundary

tiles. Third, it could serve as a motivating factor for investigating experimentally the

construction of DNA tiles with the properties adopted here (large size, multiple sticky

ends, multiple inputs and outputs). Are they feasible? Are they reliable? Are assemblies

less/more susceptible to errors? Finally, another direction would be to investigate the

possibility of pushing redundancy to a third dimension, e.g. parallel lattices, instead of

pushing it into the main assembly.

Vasilis Papadimitriou 72 Feb 2013

Appendix A

Tile Library

A.1 First Design

A.1.1 Regular Tiles

A.1.1.1 XOR Tiles

Original tiles

Template:
x x⊕ y
y x⊕ y

Number: 4

Tiles:
0 0
0 0

0 1
1 1

1 1
0 1

1 0
1 0

Redundancy tiles

Template:
x x⊕ y
y x⊕ y

Number: 4

Tiles:
0 0
0 0

0 1
1 1

1 1
0 1

1 0
1 0

Vasilis Papadimitriou 73 Feb 2013

A. TILE LIBRARY

A.1.1.2 1st-level correction tiles

Template:

x c
y c
y c
z w
z c
w w

if (x = y = z) then no error and c = x
else if (x = y 6= z) then there is error in z and c← x
else if (x = z 6= y) then there is error in y and c← x
else if (y = z 6= x) then there is error in x and c← y

Number: 16

Tiles:

No error detection and correction tiles (4 tiles)

0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 1
0 0
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 0
1 1
0 0

Error detection and correction tiles (12 tiles)

1 0
0 0
0 0
0 0
0 0
0 0

0 0
1 0
1 0
0 0
0 0
0 0

0 0
0 0
0 0
1 0
1 0
0 0

1 0
0 0
0 0
0 1
0 0
1 1

0 0
1 0
1 0
0 1
0 0
1 1

0 0
0 0
0 0
1 1
1 0
1 1

0 1
1 1
1 1
1 1
1 1
1 1

1 1
0 1
0 1
1 1
1 1
1 1

1 1
1 1
1 1
0 1
0 1
1 1

0 1
1 1
1 1
1 0
1 1
0 0

1 1
0 1
0 1
1 0
1 1
0 0

1 1
1 1
1 1
0 0
0 1
0 0

Vasilis Papadimitriou 74 Feb 2013

A.1 First Design

A.1.1.3 2nd-level correction tiles

Template:

x x
x x
y c
x x
y c
z x

if (y = z) then no error and c = y
else if (y 6= z) then there is error in y and c← y

Number : 8

Tiles:

No error detection and correction tiles (4 tiles)

0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
1 1
0 0
1 1
1 0

1 1
1 1
0 0
1 1
0 0
0 1

1 1
1 1
1 1
1 1
1 1
1 1

Error detection and correction tiles (4 tiles)

0 0
0 0
0 1
0 0
0 1
1 0

1 1
1 1
1 0
1 1
1 0
0 1

1 1
1 1
0 1
1 1
0 1
1 1

0 0
0 0
1 0
0 0
1 0
0 0

A.1.2 Boundary Tiles

A.1.2.1 XOR boundary Tiles

Upper Boundary

Template:

e e
x x
x x
x x

Number: 2

Tiles:

e e
1 1
1 1
1 1

e e
0 0
0 0
0 0

Vasilis Papadimitriou 75 Feb 2013

A. TILE LIBRARY

Lower Boundary

Template:

x x
x x
x x
e e

Number: 2

Tiles:

1 1
1 1
1 1
e e

0 0
0 0
0 0
e e

A.1.2.2 1st-level correction boundary tiles

First Type Upper Boundary

Template:
e e
x x

Number: 2

Tiles:
e e
0 0

e e
1 1

Second Type Upper Boundary

Template:

e e
x x
x y
x x
y y

Number: 4

Tiles:

e e
0 0
0 0
0 0
0 0

e e
1 1
1 1
1 1
1 1

e e
0 0
0 1
0 0
1 1

e e
1 1
1 0
1 1
0 0

First Type Upper Boundary

Vasilis Papadimitriou 76 Feb 2013

A.1 First Design

Template:

x w
y w
y w
z w
z w
e e

if (x = y = z) then no error and w = x
else if (x = y 6= z) then there is error in z and w ← x
else if (x = z 6= y) then there is error in y and w ← x
else if (y = z 6= x) then there is error in x and w ← y

Number: 8

Tiles:

0 0
0 0
0 0
0 0
0 0
e e

1 1
1 1
1 1
1 1
1 1
e e

1 0
0 0
0 0
0 0
0 0
e e

0 0
1 0
1 0
0 0
0 0
e e

0 0
0 0
0 0
1 0
1 0
e e

0 1
1 1
1 1
1 1
1 1
e e

1 1
0 1
0 1
1 1
1 1
e e

1 1
1 1
1 1
0 1
0 1
e e

Second Type Lower Boundary

Template:
x x
x x
e e

Number: 2

Tiles:
0 0
0 0
e e

1 1
1 1
e e

A.1.2.3 2nd-level correction boundary tiles

First Type Upper Boundary

Template:
e e
x x
x x

Number: 2

Vasilis Papadimitriou 77 Feb 2013

A. TILE LIBRARY

Tiles:
e e
0 0
0 0

e e
1 1
1 1

Second Type Upper Boundary

Template:

e e
x x
y c
x x
y c
z x

if (y = z) then no error and c = y
else if (y 6= z) then there is error in y and c← y

Number: 8

Tiles:

e e
0 0
0 0
0 0
0 0
0 0

e e
1 1
1 1
1 1
1 1
1 1

e e
0 0
1 1
0 0
1 1
1 0

e e
1 1
0 0
1 1
0 0
0 1

e e
0 0
1 0
0 0
1 0
0 0

e e
1 1
0 1
1 1
0 1
1 1

e e
0 0
0 1
0 0
0 1
1 0

e e
1 1
1 0
1 1
1 0
0 1

First Type Lower Boundary

Template:

x x
x x
x x
x x
e e

Number: 2

Tiles:

0 0
0 0
0 0
0 0
e e

1 1
1 1
1 1
1 1
e e

Vasilis Papadimitriou 78 Feb 2013

A.2 Second Design

Second Type Lower Boundary

Template:
x x
e e

Number: 2

Tiles:
0 0
e e

1 1
e e

A.2 Second Design

A.2.1 Regular Tiles

A.2.1.1 XOR Tiles

Original tiles

Template:
x x⊕ y
y x⊕ y

Number: 4

Tiles:
0 0
0 0

0 1
1 1

1 1
0 1

1 0
1 0

Redundancy tiles

Template:
x x⊕ y
y x⊕ y

Number: 4

Tiles:
0 0
0 0

0 1
1 1

1 1
0 1

1 0
1 0

A.2.1.2 1st-level correction tiles

Template:

x c
y c
y c
z w
z c
w w

if (x = y = z) then no error and c = x
else if (x = y 6= z) then there is error in z and c← x
else if (x = z 6= y) then there is error in y and c← x
else if (y = z 6= x) then there is error in x and c← y

Number: 16

Tiles:

No error detection and correction tiles (4 tiles)

Vasilis Papadimitriou 79 Feb 2013

A. TILE LIBRARY

0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 1
0 0
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 0
1 1
0 0

Error detection and correction tiles (12 tiles)

1 0
0 0
0 0
0 0
0 0
0 0

0 0
1 0
1 0
0 0
0 0
0 0

0 0
0 0
0 0
1 0
1 0
0 0

1 0
0 0
0 0
0 1
0 0
1 1

0 0
1 0
1 0
0 1
0 0
1 1

0 0
0 0
0 0
1 1
1 0
1 1

0 1
1 1
1 1
1 1
1 1
1 1

1 1
0 1
0 1
1 1
1 1
1 1

1 1
1 1
1 1
0 1
0 1
1 1

0 1
1 1
1 1
1 0
1 1
0 0

1 1
0 1
0 1
1 0
1 1
0 0

1 1
1 1
1 1
0 0
0 1
0 0

A.2.1.3 2nd-level correction tiles

Template:

x x
x x
y c
x x
y c
z x

if (y = z) then no error and c = y
else if (y 6= z) then there is error in y and c← y

Number : 8

Tiles:

No error detection and correction tiles (4 tiles)

Vasilis Papadimitriou 80 Feb 2013

A.2 Second Design

0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
1 1
0 0
1 1
1 0

1 1
1 1
0 0
1 1
0 0
0 1

1 1
1 1
1 1
1 1
1 1
1 1

Error detection and correction tiles (4 tiles)
0 0
0 0
0 1
0 0
0 1
1 0

1 1
1 1
1 0
1 1
1 0
0 1

1 1
1 1
0 1
1 1
0 1
1 1

0 0
0 0
1 0
0 0
1 0
0 0

A.2.2 Boundary Tiles

A.2.2.1 XOR boundary Tiles

Upper Boundary

Template:

e e
x x
x x
x x

Number: 2

Tiles:

e e
1 1
1 1
1 1

e e
0 0
0 0
0 0

Lower Boundary

Template:

x x
x x
x x
e e

Number: 2

Tiles:

1 1
1 1
1 1
e e

0 0
0 0
0 0
e e

Vasilis Papadimitriou 81 Feb 2013

A. TILE LIBRARY

A.2.2.2 1st-level correction boundary tiles

First Type Upper Boundary

Template:
e e
x x

Number: 2

Tiles:
e e
0 0

e e
1 1

Second Type Upper Boundary

Template:

e e
x x
x y
x x
y y

Number: 4

Tiles:

e e
0 0
0 0
0 0
0 0

e e
1 1
1 1
1 1
1 1

e e
0 0
0 1
0 0
1 1

e e
1 1
1 0
1 1
0 0

First Type Upper Boundary

Template:

x w
y w
y w
z w
z w
e e

if (x = y = z) then no error and w = x
else if (x = y 6= z) then there is error in z and w ← x
else if (x = z 6= y) then there is error in y and w ← x
else if (y = z 6= x) then there is error in x and w ← y

Number: 8

Tiles:

0 0
0 0
0 0
0 0
0 0
e e

1 1
1 1
1 1
1 1
1 1
e e

1 0
0 0
0 0
0 0
0 0
e e

0 0
1 0
1 0
0 0
0 0
e e

Vasilis Papadimitriou 82 Feb 2013

A.2 Second Design

0 0
0 0
0 0
1 0
1 0
e e

0 1
1 1
1 1
1 1
1 1
e e

1 1
0 1
0 1
1 1
1 1
e e

1 1
1 1
1 1
0 1
0 1
e e

Second Type Lower Boundary

Template:
x x
x x
e e

Number: 2

Tiles:
0 0
0 0
e e

1 1
1 1
e e

A.2.2.3 2nd-level correction boundary tiles

First Type Upper Boundary Tiles

Template:

e e
y c
x c
x c

if (y = x) then there is no error and c← x
else if (x 6= y) then there is error in y and c← x

Number: 4

Tiles:

e e
0 0
0 0
0 0

e e
1 1
1 1
1 1

e e
0 1
1 1
1 1

e e
1 0
0 0
0 0

Second Type Upper Boundary Tiles

Template: e e

Number: 1

Tiles: e e

First Type Lower Boundary Tiles

Vasilis Papadimitriou 83 Feb 2013

A. TILE LIBRARY

Template:

x x
x x
x x
e e

Number: 2

Tiles:

0 0
0 0
0 0
e e

1 1
1 1
1 1
e e

Second Type Lower Boundary Tiles

Template: e e

Number: 1

Tiles:

e e

Vasilis Papadimitriou 84 Feb 2013

References

[1] Egli, M., Saenger, W.: Principles of Nucleic Acid Structure. Springer-Verlag (1984)

xiii, 5, 6

[2] Rothemudn, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature

440 (2006) 297–302 xiii, 9

[3] Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13)

(1993) 3211–3220 xiii, 1, 2, 9, 10, 20

[4] Winfree, E.: Algorithmic self-assembly of DNA: Theoretical motivations and 2d as-

sembly experiments. Journal of Biomolecular Structure and Dynamics 11(2) (2000)

263–270 xiii, 10, 11, 12, 14

[5] Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives

for algorithmic self-assembly: Copying and counting. Nano Letters 5(12) (2005)

2586–2592 xiii, 11, 13

[6] Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. In:

Proceedings of the 5th DIMACS Workshop on DNA Based Computers. (1999) 141–

154 xiii, 13, 14

[7] Winfree, E.: DNA computing by self-assembly. In: Frontiers of Engineering: Re-

ports on Leading-Edge Engineering from the 2003 NAE Symposium on Frontiers of

Engineering. (2003) 105–118 xiii, 15, 16

[8] Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable

algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern.

Nano Letters 8(7) (2007) 1791–1797 xiii, 2, 19, 20, 21, 22, 23, 24

Vasilis Papadimitriou 85 Feb 2013

REFERENCES

[9] Lloyd, S.: Quantum-mechanical computer. Scientific American 273(4) (1995) 350–

356 1

[10] Adleman, L.M.: Molecular computation of solutions to combinatorial problems.

Science 266(5187) (1994) 1021–1024 1, 6, 8, 16

[11] Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature

171(4356) (1953) 737–738 5

[12] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walters, P.: Molecular

Biology of the Cell. 4th edn. Garland Science (2002) 6

[13] Kanellos, M.: New life for Moore’s law. CNET News.com (April 2005) http:

//news.cnet.com/New-life-for-Moores-Law/2009-1006_3-5672485.html. 7

[14] Whitesides, G.M., Grzybowski, B.: Self assembly at all-scales. Science 295(5564)

(2002) 2418–2421 8

[15] Grunbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York

(1987) 8

[16] Seeman, N.C.: Nucleic acid junctions and lattices. Journal of Theoretical Biology

2(99) (1982) 237 8

[17] Seeman, N.C.: Nanotechnology and the double helix. Scientific American 6(290)

(2005) 64–75 9

[18] Kari, L., Gloor, G., Yu, S.: Using DNA to solve the bounded post correspondence

problem. Theoretical Computer Science (2000) 16

[19] Chen, H.L., Goel, A.: DNA Computing, Error Free Self-assembly Using Error Prone

Tiles. Volume 10 of 3384. Springer Berlin Heidelberg (2005) 23

[20] Chen, H.L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during

algorithmic self-assembly. Nano Letters 7(9) (2007) 2913–2919 23

[21] Yan, H., Park, S., Finkelstein, G., Reif, J., LaBean, T.: DNA-templated self-

assembly of protein arrays and highly conductive nanowires. Science 301(5641)

(2003) 1882–1884 23

Vasilis Papadimitriou 86 Feb 2013

http://news.cnet.com/New-life-for-Moores-Law/2009-1006_3-5672485.html
http://news.cnet.com/New-life-for-Moores-Law/2009-1006_3-5672485.html

REFERENCES

[22] He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.J.: Design and construction of

double-decker tile as a route to three-dimensional periodic assembly of DNA. Journal

of the American Chemical Society 127(35) (2005) 12202–12203 23

Vasilis Papadimitriou 87 Feb 2013

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Overview

	2 Background
	2.1 DNA
	2.2 DNA Computing
	2.3 DNA Tiles and DNA Self-assembly
	2.3.1 DNA Tiles
	2.3.2 DNA Self-Assembly

	2.4 Properties of DNA Computers

	3 Problem Statement
	3.1 DNA Self-Assembly for Sierpinski Patterns
	3.2 Self-Assembly Errors
	3.3 Seeking a Self-Correcting Design

	4 Our Approach
	4.1 Redundancy
	4.2 First Design
	4.2.1 Correction Tiles
	4.2.2 Boundary Tiles
	4.2.3 Assembly
	4.2.4 Positioning
	4.2.5 Theoretical Analysis

	4.3 Second Design
	4.3.1 Correction Tiles
	4.3.2 Boundary Tiles
	4.3.3 Assembly
	4.3.4 Positioning
	4.3.5 Theoretical Analysis

	5 Implementation
	6 Simulation Results
	6.1 Assembly Scars
	6.2 Random Errors
	6.3 Identical Errors
	6.4 Comparison

	7 Conclusion
	7.1 Advantages and Disadvantages
	7.2 Future Work

	A Tile Library
	A.1 First Design
	A.1.1 Regular Tiles
	A.1.2 Boundary Tiles

	A.2 Second Design
	A.2.1 Regular Tiles
	A.2.2 Boundary Tiles

	References

