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Abstract

As silicon-based computer technology approaches its limits, new computing paradigms,
such as DNA and quantum computing, gain more and more attention from the research
community in light of their potential for solving NP-hard problems by pushing the ex-
ponential time dimension into space. DNA computing investigates the possibility of
encoding data and algorithmic procedures in synthetic DNA strands and exploiting the
complementarity and massive parallelism properties of DNA to perform computations.
Self-assembly of DNA tiles focuses on tiling computations, whereby tiles can attach to
each other through carefully-designed sticky ends to create complex structures that en-
code desired computations. However, current DNA tiling technology is limited by the
lack of reliability and robustness, meaning that during laboratory experiments several
errors occur in the pairing of DNA strands/tiles, ultimately ruining the desired com-
putation. This thesis focuses on a DNA tiling design for EXclusive-OR (XOR)-based
periodic ribbon patterns, which is susceptible to errors that propagate throughout the
entire assembly, and proposes two alternative encodings/designs which implement error
self-correction with different trade-offs between complexity and efficiency. Both designs
rely on introducing redundancy in information representation for detecting errors and
additional levels of tiles for correcting errors. The proposed designs result in a drastic
decrease of the probability that an error will propagate and corrupt the desired ribbon
pattern. The downside of the proposed designs is the larger tile library and the increased
overall size of the assembly lattice compared to the original design. Our simulated as-
sembly results under the proposed designs verify the property of self-correction for many
types of errors and indicate a clear reduction of the probability of error propagation in

the assembly lattice.
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ITepiindn

Kadde n teyvohroyla unoroylotov ou Boaciletar 610 mupitio mhnotdlel ta 6pld tng, Véo
TEOTUTIO. UTOAOYLOUOU, OTwe o DNA xou ot xfavtixol utohoyiotée, anoxtoldv 6Ao xau me-
PLOCOTERT) TEOCOY T OO TNV EQELVNTIXY| XOWVOTNTA UTO TO Tploud TV BUVITOTHTLY TOUG
yio emtivon NP-80oxohwv mpoffAnudtwy ompmyvovtag Tny extdetint| ypovixr dldcTacn o To
yweo. O umohoyiopds e DNA Bigpeuvd T duvatéTTa TS (WwdOTOINoNC BEGOUEVHVY
xou ahyoprduxmy Sladixactwy ot cuvleTixég Eaixec DNA xau tnv a&lomoinon twyv 1blottwy
CUUTANEGUOTIXOTNTOS X0 Yolixol Tapaiiniiouol Tou DNA vy tny extéheon unohoyiopmy.
H auto-cuvapuordynon mhaadiov DNA emxevipoveton o€ UTOAOYLOHOUC TAUXOCTOWOTC,
OToU ToL TAUX(OLYL UTOPOVY VO TEOCUETMVTNL TO €VOL GTO GAAO UEGL TPOCEXTIXG GYEDLO-
OUEVWY AMOANEEWY Y1t VoL SNULOLEYHOOLY TOAUTAOXES BOUES TTOU XWOLXOTOIVY ETIVUNTONS
utoloylopols. 2otdo0o, N TEEYoUcH TEYVOROYIN OUTO-CUVOIEUOAGYNOTNG TAwdiwy DNA
neplopiCetar and TNV EMkewn allomotiog xou avoyhc o€ oQAAuaTY, TEAYUN TOU OTUoiVEL
OTL XoTd TN OLEEXELNL EPY OO TNELIXWY TELUUATWY EUPUVICoVTOL TOAAS GQAAIATH GTNY VT
otobylon aAuoidwy xou Thaadiewy DNA, xatactpépovtag tehxd Tov emduunTtéd UTOAOYIGUO.
H nopodoa Simhwuatind epyacion EMXEVIQOVETUL GE Uiol OYEBIIOT, AUTO-GUVAPUOAOYNONG
mhaadiowv DNA yio nepodind npdtuna/potifa Bootopéva oe unohoytopole EXclusive-OR
(XOR), n omnola eivan emippeniic oe a@diyata mou SLodiBovton o OX1 TNV GUVAPUOAGYNOT),
X0l TEOTEIVEL VO EVOANAXTIXES xw&xonow’paq/GXE&&OELQ TOL LAOTIOL00V auTO-0LOpUWoT)
CQPUNUGTLV UE OLUPORETIXES aVOAOYIEC UETAED TOAUTAOXOTNTOC X0 OTOTEAECUATIXOTNTOG.
Kot o1 800 oyedidoeic Bactlovial oTny EloaywyT| TAEOVUOUO) GTNV UVATUEAC TACT) TANRO-
poplag yior TOV EVIOTUOUO GQUMIATOY %ot TEOCVETOVY ETTEDWY TAWUDILY Yio TNV OLopUno
oaAUdTwY. Ol TPOTEWOUEVEC OYEDUOELS EYOUV WE UTOTEAEOUA TN DpACTXY UElwoT TNg
udavotnrac 6t évo o@dhua Yo StadoVel xan Yo odhotdoer to emduuntd mpdtuno/pot{Bo.
To UEOVEXTNUA TV TEOTEWOUEVKDY OYedIdoEwY elvon 1 peyokitepn BiBAodxn mAmadiony
xou To AUENUEVO GLVOAXO PEYEVOC TOU TAEYUAUTOS CUVOPUOAOYNONG OE OYECT| UE TOV Olp-
X%0 oyedlooud. To amoTEAEGUATA TV TEOCOUOLWUEVGDY CUVAPUOAOYCEWY CUUPOVA UE
TIC TPOTEWOUEVES OYEDLAOELS eMaAndebouy TNV IBLOTNT TNE AUTO-0LOPVWOTE TOAAGY TUTKVY
OQPAUNIGTELV xa Oty vouy Ui oagn peiwon tne miavoTnTag Slddoome GQAUAUETLY GTO TAEY A

NG CUVOPUOAGYTOTG.
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Chapter 1

Introduction

Moore’s Law states that silicon microprocessors double in complexity roughly every two
years. One day this will no longer hold true, when miniaturization limits are reached. So,
a successor to silicon is required. Fortunately, new technologies rise, such as DNA and
quantum computers, to push computation boundaries further than silicon-based com-
puters. A quantum computer [9] is a computational device that makes direct use of
quantum mechanical phenomena, such as superposition and entanglement, to perform
massive parallel operations on data. In this thesis, we are going to have a closer look at
DNA computers. DNA computing [10] is a form of computing which exploits DNA and
technologies from biochemistry and molecular biology, instead of silicon and the tradi-
tional hardware technologies. There are several properties of DNA that make it suitable
for a computational element, such as its size which allows extremely dense information
storage and enormous parallelism, its extraordinary energy efficiency, and primarily its
complementarity. The complementarity of DNA allows to perform computations through
self-assembly. Adleman’s first experiment [10] used DNA strands to solve the Directed
Hamiltonian Path problem, a well-known NP-complete problem. Using DNA strands and
the properties of DNA self-assembly we can compose complex structures and use them as
building units for computational elements. Such assemblies are known as DNA tiles [3]
and, in general, offer more flexibility and robustness compared to plain DNA strands.
DNA strands are still being investigated as substrates for solving computational prob-
lems, however DNA tiles seem to be more promising as candidates for replacing silicon.
DNA tiles are boxed-shaped DNA assemblies with single DNA strands sticking out of its
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1. INTRODUCTION

vertices. Those single strands are called sticky ends [3]. If two tiles have complemen-
tary sticky ends, they can attach to each other. With the proper encoding of the sticky
ends we can generate very complex patterns and encode computations. Although DNA
computing is very promising, we are still far from replacing our silicon-based computers.
This is because there are several problems to be solved, one of them being reliability and

robustness, meaning that occasionally errors occur in the pairing of DNA strands/tiles.

1.1 Thesis Contribution

In this thesis, based on a DNA tiling design introduced for ribbon assemblies [8], we
propose an error-correcting encoding/design for ribbon assemblies with DNA tiles. The
original ribbon assembly design was selected, because it has been experimentally tested
and an error probability per tile is known. We propose two different designs which imple-
ment error-correction with different trade-offs between complexity and efficiency. In both
designs, in order to achieve error correction, first we ensure redundancy of information,
so that we can detect errors. Then, by introducing new (correction) tiles, which are in-
terwoven in the original design, we can correct the detected errors, if any. The proposed
designs result in a drastic decrease of the probability that an error will propagate and
corrupt the desired ribbon pattern. The downside of our design is the increased number
of different tiles needed for the same computation as the original design and the increased
overall size of the assembly lattice compared to the original design. Since experimental
testing of our designs is beyond our capabilities, we implemented a simulation of the pro-
posed self-assembly. The simulation stress test results of our designs were very promising,
clearly indicating a reduction of the probability of error from 1.4% (original design) to
0.94% (first design) and 0.21% (second design).

1.2 Thesis Overview

In Chapter 2 we offer the background needed in order to better understand the rest of the
thesis. We describe definitions such as DNA, DNA tiles, self-assembly, sticky ends, etc.
In Chapter 3 we describe in depth the original design and then we state the problem of
incorrect tile assembly we address. In Chapter 4 we describe our designs, the main ideas

behind them, the new (correction) tiles, their assembly properties, and their theoretical
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1.2 Thesis Overview

analysis. In Chapter 5 we describe the MATLAB code that implements the simulation.
In Chapter 6 we discuss the simulation results. Finally, in Chapter 7 we discuss the
results of this thesis and we suggest some possible future research enhancements and

directions. Appendix A provides the full tile library for our designs.
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Chapter 2

Background

2.1 DNA

DeoxyriboNucleic Acid (DNA) is a nucleic acid containing the genetic instructions used
in the development and functioning of living organisms. The DNA segments carrying
this genetic information are called genes. DNA is a long polymer made from repeating
units called nucleotides characterized by the nucleobases (Adenine, Thymine, Guanine,
Cytosine) [1].

As first discovered by James D. Watson and Francis Crick [11], the structure of DNA
of all species comprises two helical strands each coiled round the same axis with a pitch of
3.4 nanometers and a radius of 1.0 nanometers (see Figure 2.1). Although each individual
repeating unit is very small, DNA polymers can be very large molecules containing mil-
lions of nucleotides. For instance, the largest human chromosome, chromosome number
1, is approximately 220 million base pairs long.

In a DNA double helix, each type of nucleobase on one strand normally interacts
with just one type of nucleobase on the other strand. This is called complementary
base pairing. Bases form hydrogen bonds between them, with Adenine bonding only to
Thymine and Cytosine bonding only to Guanine. This arrangement of two nucleotides
binding together across the double helix is called a base pair. As hydrogen bonds are not
covalent, they can be broken and rejoined relatively easily. The two strands of DNA in
a double helix can therefore be pulled apart like a zipper, either by mechanical force or
high temperature. As a result of this complementarity, all the information in the double-

stranded sequence of a DNA helix is duplicated on each strand, a property which is vital in
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Figure 2.1: DNA double helix and base pairing (from [1])

DNA replication. Indeed, this reversible and specific interaction between complementary

base pairs is critical for all the functions of DNA in living organisms [12].

2.2 DNA Computing

DNA computing [10] is a form of computing which exploits DNA and technologies from
biochemistry and molecular biology, instead of silicon and the traditional hardware tech-
nologies. Adleman’s first experiment [10] used DNA strands to solve the Directed Hamil-
tonian Path problem, a well-known NP-complete problem. DNA computing, or, more

generally, biomolecular computing, is a fast developing interdisciplinary area. Research
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2.2 DNA Computing

SO0 M3 clata
(7 ©» )

145 grillion Cos

Figure 2.2: A comparison of CD and DNA densities

and development in this area concerns theory, experiments, and applications of DNA
computing.

Moore’s Law states that silicon microprocessors double in complexity roughly every
two years. One day this will no longer hold true, when miniaturization limits are reached.
Intel scientists say it will happen in about the year 2020 [13]. So, a successor to silicon
is required.

DNA is a unique computational element for the following reasons. First, with DNA
we can achieve extremely dense information storage. Figure 2.2 shows one gram of DNA
on a compact disc (CD). The CD can hold about 800 MB of data. The one gram of
DNA can hold about 1 x 10* MB of data. The number of CDs required to hold the
same amount of information, lined up edge to edge, would circle the Earth 375 times.
With bases spaced at 0.35nm along DNA, data density is over a million Gbits per inch
compared to 7 Gbits per inch in typical high performance hard disk drives (HDDs).
One pound of DNA has the capability to store more information than all the electronic
computers ever built. Second, with DNA we can achieve enormous parallelism. A test
tube of DNA contains trillions of strands. Strands do not function sequentially over DNA.

Each operation in a test tube of DNA is carried out on all strands in the tube in parallel!
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2. BACKGROUND

Typically, 300,000,000, 000,000 (300 trillions) molecules are used at any single time step.
Each molecule acts as a very simple CPU executing a specific computation. Third, DNA
has extraordinary energy efficiency. Adleman estimated that his DNA computer was
executing 2 x 10 operations per joule [10]. Last, but not least, is the DNA’s property of
complementarity, which makes it suitable for computation. As mentioned before, DNA

is encoded with four bases:
e A = Adenine
e T = Thymine
e G = Guanine
e C = Cytosine

These bases are like 0’s and 1’s used in silicon computers. DNA bases form two base-pairs:
A-T and C-G. In nature, bases appear only in the form of complementary pairs. For

example, the strand S=ATTACGCG is typically attached to the complementary strand

S=TAATGCGC.

2.3 DNA Tiles and DNA Self-assembly

A key property of DNA is the ability to assemble by itself thanks to the complementar-
ity. Self-assembly involves the spontaneous and autonomous organization of disorganized
interacting components into an organized pattern without direct human or mechanical

interference [14]. The idea of self-assembly arose from three research fields:
1. DNA Computing [10]
2. Tiling Theory [15]

3. DNA Nanotechnology [16]
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2.3 DNA Tiles and DNA Self-assembly

Figure 2.3: DNA origami (top: desired patterns, bottom: actual DNA patterns)(from [2])

2.3.1 DNA Tiles

As stated by Seeman [17], the Watsons-Crick complementarity of DNA molecules al-
lows one to design not only simple double-stranded helices but also complicated woven
structures consisting of many DNA strands. Such assemblies are known as DNA tiles [3].

To create DNA tiles we use a process called DNA folding or DNA origami. DNA
origami [2] is the nanoscale folding of long DNA strands to create arbitrary two and
three dimensional rigid shapes at the nanoscale (see Figure 2.3). A DNA tile or a Double
Crossover DNA molecule is composed of DNA strands folded into a block-shaped molecule
with strands sticking out from its vertices, called sticky ends. Figure 2.4 shows a DNA
tile composed by four interwoven strands (marked in different colors). The circled regions
represent the crossover between the red/green and yellow/purple strands. The yellow and
green strands sticking out on both sides (four, in total) are sticky ends. If two sticky

ends of different tiles are complementary they can attach to each other creating a double
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~12.5 nm
Figure 2.4: Example of a DNA tile composed of four DNA strands (from [3])

strand and resulting in an attachment of the two tiles at the corresponding vertices.

2.3.2 DNA Self-Assembly

Using DNA tiles as building blocks and the right encoding of the sticky ends we can
make complex shapes and encode computations. The sticky ends must be encoded in a
way that allow bonds to be created only between tiles with complementary sticky ends.
Understanding of DNA self-assembly is easier with some simple examples. Figure 2.5
shows a simple assembly with two kind of DNA tiles (A and B). The upper right sticky
end of A tiles is complementary to the bottom left sticky end of B tiles. Likewise, the
upper left sticky end of A tiles is complementary to the bottom right sticky end of B tiles.
In addition, the bottom left sticky end of A tiles is complementary to the upper right
sticky end of B tiles. Finally, the bottom right sticky end of A tiles is complementary
to the upper left sticky end of B tiles. Under this complementarity scheme (shown with
matching colors), tiles A and B can only assemble in a two-dimensional lattice with
alternating columns as shown in the figure.

Figure 2.6 shows a more complex assembly implementing a binary counter [4]. The
counter has been implemented with the use of seven different tiles, three input tiles and

four rule tiles. The different shapes at the edges of each tile represent different sticky
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Figure 2.5: A example of a two-dimensional assembly with two DNA tiles (from [4])

ends and encode information used in the computation. Each tile stores a single bit and
information about a roll-over bit, if any. Particularly, the top side of the tiles encodes the
value of the bit stored in the tile and the left side carries the rollover bit value. The bottom
and the right sides are used to enforce correct matching. The computation is triggered
by a seed tile S and the border tiles offer the initial conditions for the computation. The
width of the assembly (given by the border tiles at the bottom) determines the number
of bits in the counter, while the height of the assembly (given by the border tiles on the
right) determines the number up to which the counter counts. As the assembly grows,
each row represents increasing numbers of the binary counter beginning with 1. The rule
tiles abide to the following logic: if the rollover bit on the right side is 0, then the current
bit will simply copy the value of the bit at the bottom and will not transfer a rollover
bit to its left; if the rollover bit on the right side is 1, then the current bit will be added
to the bit at the bottom, the result (modulo 2) will be stored at the current tile, and if
there is any carry it will be transferred as a rollover bit to its left.

This design for binary counter has been experimentally tested [5] and yields the results
shown in Figure 2.7. Although the desired pattern emerges, several errors (marked in
red) occur due to incorrect attachment of rule tiles or merging of different lattices.

There are two main applications of DNA self-assembly. First, solving NP-hard prob-
lems, such as the Boolean Formula Satisfiability (SAT) problem. NP-complete problems
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Figure 2.6: A binary counter implemented with DNA self-assembly (from [4])

have an exponential number of candidate solutions, therefore it is rather hard to find a
correct solution, but it is typically easy to verify if a candidate solution is correct. With
self-assembly we can generate all possible solutions and filter them out quickly using
chemical methods and the parallelism of DNA. In fact, we are pushing the exponential
dimension of the problem into the volume of the DNA (1 mL DNA = 2% bits of informa-
tion). Figure 2.8 shows an example of how a candidate solution is verified as the correct
solution in an NP-hard problem. We generate input (the candidate solution) as an initial
set of tiles in the first row. Based on the initial set of tiles, the assembly will end, when
the YES or NO tile attaches. If the Y ES tile is attached, then the candidate solution
is verified as a correct one, otherwise, if the NO tile is attached, the candidate solution
is verified as incorrect. Alternatively, assemblies corresponding to incorrect solutions re-

main incomplete. Correct solutions can be read by extracting those assemblies which
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Figure 2.7: Experimental results of DNA self-assembly for a binary counter (from [5])

include a Y E'S tile.

Figure 2.9 shows an example assembly for solution verification in the SAT problem [6].
In this design we have two initial set of tiles. The tiles in the lower left boundary encode
the variables of the formula. In this example, there are only three variables: x1, 9, x3.
The tiles in lower right boundary encode the clauses of the formula that must be satisfied.
Tile S is used to separate the clauses. Specifically, the clauses in this particular 3-SAT
instance are:

(TIVTZVas) ANz VI VI3) A (T1 V xe V 23)

The row of tiles next to the variables boundary (colored in cyan) encodes the candidate
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Figure 2.8: Solving an NP-hard problem using DNA self-assembly (from [4])
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Figure 2.9: Solving the SAT problem using DNA self-assembly (from [6])

solution, a truth assignment to the variables. In this particular example, the encoded
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candidate solution is the following truth assignment:
1 =True x5 = False x3=True

The interior tiles in the assembly (colored in yellow) perform satisfiability checking; they
check if some literal in each clause is satisfied by the chosen assignment. The findings
of this check are propagated to the top left boundary, where the tiles summarize the
satisfiability of each clause. If the candidate solution is a correct one (a satisfying as-
signment), then the assembly will complete and the tile marked with SUCCESS will be
attached at the very end, as shown in the figure. If the candidate solution is an incorrect
one, the assembly will not be able to complete and the SUCCESS tile will not be at-
tached. Satisfying assignments can be read by extracting those assemblies which include
a SUCCESS tile.

The second application of DNA self-assembly is in programmable nanofabrication.
Using self-assembly designs we can fabricate certain shapes, complex patterns, molecular
electronic circuits, etc. An example of nanofabrication [7] is shown in Figure 2.10. Specif-
ically, in this example we construct a RAM demultiplexer. In Figure 2.10 (a) we can see
the required tile set for the implementation of the demultiplexer. The main property of
these tiles is that they have simple logical gates attached on them in order to make an
electronic circuit. Using the given tile set, we can create a band, shown in Figure 2.10 (b),
that follows the design of the simple binary counter described above. With the help of
two such bands as seed rows, the final fabrication for the RAM demultiplexer grows as a

self-assembly, as shown in Figure 2.10 (c).

2.4 Properties of DNA Computers

The key advantage of DNA computers is the potential to supply massive computational
power. A DNA computer can simulate parallel machines, where each processor’s state is
encoded by a set of DNA strands or DNA tiles. DNA computers can perform massively
parallel computations by executing recombinant DNA operations that act on all the
DNA molecules simultaneously. These recombinant DNA operations may be performed
to execute massively parallel local memory read/write operations, logical operations, as
well as basic operations on strings, such as parallel arithmetic, making them suitable for

solving NP-hard problems by parallel verification of candidate solutions.
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Figure 2.10: Constructing a RAM demultiplexer using DNA self-assembly (from [7])

Another advantage of DNA computers is the incredibly light weight of the actual
material used. DNA in weak solution in one liter of water can encode the state of about
10'® processors and, since certain recombinant DNA operations can take several minutes,
the overall potential for a massively parallel DNA computer is about 1,000 tera-ops.
The same solution can encode 107 to 10® tera-bytes, on which we can perform massively
parallel associative searches [18].

Additionally, DNA computers consume extremely low power. The only power needed
is to keep the DNA solution at the right temperature to prevent denaturation. Adleman
estimated that his DNA computer was executing about 2 x 10'? operations per joule [10].

On the other hand, DNA computers suffer from high costs in time. For example, for
a problem that an electronic computer needs three days to compute a solution, a DNA
computer will need about 2 hours, but it may take a week of lab work for preparation.
Thus, today simple problems are solved much faster on electronic computers. Also, with
DNA computers, it may take longer to sort out the answer to a problem than it took
to solve the problem itself. Therefore, DNA computers are generally slower than the
electronic ones, mostly due to slow input/output operations.

Last, but not least, DNA computers have some reliability issues. Occasionally errors
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occur in the pairing of DNA strands/tiles resulting in violations of the strict comple-
mentarity property and/or incomplete assemblies, which eventually yield wrong compu-
tations. This fact represents a major obstacle in advancing the state of the art in DNA
computing and significant research efforts are dedicated in inventing chemical and/or

algorithmic mechanisms that guarantee certain levels of reliability.
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Chapter 3

Problem Statement

3.1 DNA Self-Assembly for Sierpinski Patterns

This thesis focuses on DNA self-assembly (tiling) for ribbon patterns. In order to fully
understand how such a tiling works, we are going to describe a design for Sierpinski
patterns in depth [8]. The Sierpinski triangle was chosen as a test pattern, because it
requires only a small set of tiles, yet it involves all the major assembly mechanisms in
which errors could occur. Each tile “computes” the eXclusive-OR (XOR) @ function of
its inputs (00=0,001=1,1®0=1,1@ 1 = 0) in the sense that a unique tile
will bind at a site corresponding to a particular input pair and will present two identical
outputs representing the XOR of the inputs.

Figure 3.1 (a) shows such tile bindings, whereby the output (right side of the tiles)
is the XOR operation on the inputs (left side of the tiles). A library of four abstract
tiles, shown on the right side of Figure 3.1 (a), implements the correct XOR function for
left-to-right growth. In addition to the rules implemented by the tiles, it is necessary to
provide initial conditions for the assembly. A seed row sets the boundary conditions for
growth by specifying the initial scaffolding where tiles can bind to. An initial row of 0’s
with a single 1 will produce the Sierpinski triangle pattern. Wherever both inputs match
(cases pointed by black arrows), tiles may attach asynchronously to the seed row or to two
adjacent tiles in the assembly. A single match (case pointed by a red arrow) is insufficient
for attachment. When these assembly rules are executed without errors, these tiles grow
from the seed row to produce a Sierpinski pattern, as shown in Figure 3.1 (b-top). If

errors occur, such as those indicated by the two red marks in Figure 3.1 (b-bottom), the
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Figure 3.1: Design of DNA tiling for a Sierpinski triangle pattern (from [8])

pattern in the assembly is disrupted. A single error can result in a widespread change in

the pattern, due to propagation of incorrect information.

Figure 3.1 (c) shows a complete DNA design of the XOR tiles, using a double-crossover

motif [3], and part of the structure of the DNA origami seed implementing the initial

conditions. The sticky ends of the four XOR tiles are 5-bases long and complementary
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Figure 3.2: Design of DNA tiling for a Sierpinski triangle pattern (from [8])

ends are marked with the same color. To fully understand how tiles attach to each other
through the sticky ends, one must consider that in alternating rows tiles are mirrored
(flipped upside-down) for correct attachment, as shown in Figure 3.2, which also illus-
trates the structural differences between tiles with output 0 and tiles with output 1.
Finally, Figure 3.1 (d) shows the cone-shaped Sierpinski assembly produced by error-free
growth from an origami seed specifying the initial row 000000010000000 along with the
actual sizes of the lattice.

In order to allow for larger assemblies, the tile set is augmented with boundary tiles,
so that the assembly can grow as a fixed-width ribbon. The boundary tiles provide
the necessary boundary conditions for the correct growth of the pattern, as shown in
Figure 3.3 (a). This assembly begins with a seed row encoding the input 0101010101010
and results in a pattern with a 28-rows period, containing a total of 406 tiles per repeat.
The boundary tiles consist of two types of single tile and one type of double tile for

each of the two boundary sides (top and bottom), as shown in Figure 3.3 (b). Single
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Figure 3.3: Design of DNA tiling for a Sierpinski ribbon pattern (from [8])

>ARCCT

<AATGG

boundary tiles must be viewed flipped upside-down to realize how they attach to double
boundary tiles. The logic is that each single boundary tile simply copies to the right the
information provided by the non-boundary tile input found on its left in the assembly.
Double boundary tiles on each side simply attach to each other to host the single boundary

tiles and extend the assembly.
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3.2 Self-Assembly Errors

The constraint required for correct growth of the ribbon assembly is that a tile may
attach to a site, if and only if it matches both inputs. This is essential for growth of the
correct pattern; nevertheless, errors may occur. This fact has been verified by numerous
experiments in the lab with actual recombinant DNA tiles, as depicted in Figure 3.4. In
fact, the longer the ribbon, the higher the probability of an error.

A first type of error shows up when a tile becomes attached by just one matching
input. Such a mismatched tile will most likely only transiently attach to a growing
assembly and will eventually be replaced by a correct one. However, occasionally it will
become permanently embedded, especially if other tiles subsequently attach to it and
grow around it. This kind of error is called a growth error and results in a disruption of
pattern formation due to the incorporation and propagation of incorrect information.

A related second type of error results when a tile attaches by a single sticky end,
despite the absence of a tile to provide the other input and then gets locked in place
by subsequent lattice growth. These are called facet nucleation errors [19, 20]. A single
facet nucleation error on a cone-shaped assembly would allow both forward and backward
growth of additional layer of tiles. These new tiles are also likely to contain and propagate
incorrect information, nevertheless this type of error is eliminated by the introduction of
the boundary tiles and the ribbon structure of the assembly, since there are no orphan
sticky ends hanging out of the assembly.

The third type of error, a nucleation error, occurs when several tiles come together
to form a small assembly that initiates further growth in the absence of a seed DNA
origami. Lacking the correct boundary conditions, such assemblies tend to be ill-formed
and therefore pose no severe problems in the formation of correct lattices.

It is clear that growth errors pose the most severe threats to correct assemblies.
Previous experiments on algorithmic self-assembly [21, 22] reported growth error rates
between 1% and 10% per tile, although these estimates were imprecise due to highly-
variable crystal growth and selective imaging. More recent statistical experimental data
indicate that the probability of a single error is about 1.4% within the first 15 rows of
the assembly [8]. These findings indicate that, in practice, perfect growth of Sierpinski

patterns is difficult to achieve as a single error may destroy the entire pattern.
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3.3 Seeking a Self-Correcting Design
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Figure 3.5: Assembly with the original design without errors (four periods)
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Figure 3.7: Assembly with the original design with random errors (probability=1.4%)

To illustrate the severity of the problem we conducted a number of simulations of the
assembly with and without errors. Figure 3.5 shows a correct assembly of a Sierpinski
ribbon pattern without errors up to four periods. Figure 3.6 shows the same assembly
with just one error introduced near the beginning; notice how both the structure and
the periodicity of the pattern are corrupted. A new pattern now emerges with a larger
period and there is no hope of recovery. Finally, Figure 3.7 shows the same assembly
with multiple errors, whereby the probability of an error occurring at each tile was taken

equal to the experimentally estimated value 1.4%. In this case, no clear pattern emerges
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and the resulting ribbon nowhere resembles the desired one.

The key question we try to address in this thesis is the following: Is there a different
tile design which allows for recovery from errors? In other words, is it possible to restrict
the influence of a single error locally, leaving only some local scars in the assembly? It is
clear that such a self-correcting property cannot come for free. Some degree of redundancy
will be required and some growth in the size of the assembly is unavoidable. Therefore, a
few related questions are posed: What kind of redundancy is needed? How complex are
the required tiles? How bigger is the required tile library? What is the influence of the
required extra tiles on the size of the assembly? Is there a gain in reliability /robustness of
the assembly in exchange of the required extra space? Starting from the original design
and the experimentally verified error rate, we seek a new design with error correction

properties in order to significantly reduce the overall error in the assembly.
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Chapter 4

Our Approach

4.1 Redundancy

In our quest towards an error-correcting design we realized that we need to employ
redundancy, that is to store some extra information in our tiles, so that we can detect if
any kind of error occurred. We explored several options in order to achieve this kind of
redundancy. For example, we considered using parity bits inside each tile, however the
occurrence of an error would also lead to parity bits matching the wrong data, because
of the design of the tiles. Thus, no error could be detected with just parity information.

We concluded that only some scheme that duplicates correct information would fit
our purpose. We started duplicating the information contained in the original tiles by
making the new tiles larger with more sticky ends (Figure 4.1). This design reduces
the error rate, because for an error to occur two (not just one) sticky ends must attach
incorrectly. Even so, however, the introduction of a single wrong tile will propagate
incorrect information and eventually will alter the entire lattice. The next step was to
duplicate the tiles themselves. So, instead of a single XOR tile for each operation, we
employed two identical tiles (Figure 4.2).

This way if an error would occur at a single tile, the redundant information would
remain intact. But the problem isn’t solved yet, because such a scheme would simply
signal the presence of an error in the best case, but we would not be able to tell how
the correct the error. Fixing the error would boil down to a coin-flip situation to decide

which one of the two tiles is the correct one and which is the incorrect.
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Figure 4.1: Original XOR tiles (left) and new XOR tiles with redundancy (right)
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Figure 4.2: Original design (left) and new design with duplicated tiles (right)
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Figure 4.3: Original design (left) and new design with tripled tiles (right)

In order to avoid the coin-flip situation we tripled the tiles. This way, if an error
occurs, we will have two correct and one incorrect tile. Thus, we can potentially fix the
error. The only way incorrect information can propagate under such a scheme is the

occurrence of two errors simultaneously at two of the three tiles in a group (Figure 4.3).

4.2 First Design

Our first design for a self-correcting assembly succeeds in correcting errors in regular

XOR tiles, but suffers from certain errors occurring in the additional tiles it introduces.
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4.2.1 Correction Tiles

Even now that we have achieved redundancy we still have two problems. Firstly, we
need a way to detect and correct the error. The hardest part in DNA self-assembly
is the correction, because, even if the incorrect tile is precisely detected, it cannot be
just removed. This is true because tiles bind and unbind under precise thermodynamic
control, so the change of environmental conditions in a specific parts of the assembly
where an error occurred is practically impossible. Secondly, we need to make sure that
the information contained in some row of tiles would be correctly propagated to the
next row of tiles including the redundancy. An example will help us understand this
kind of problem. Figure 4.4 (left) shows a simple example of information propagation
between rows in the original design. In the first row, there are three XOR operations
(x =a®by=cdd z= fdyg), leading to two XOR operations in the second row
(e=x®y,w=ydz). By design, the right sticky ends of the tiles in the first row match
the left sticky ends of the tiles in the second row. This way information propagates
correctly from one row to the next. Figure 4.4 (right) shows the same example along
with the desired information propagation between rows under the new design with tripled
tiles. Notice the requirement that the pattern of tripled tiles remains consistent between
rows. The colored lines indicate which bits of information from the first row need to be
transferred to the second row, as well as their exact destination. It is clear that the right
sticky ends of the tiles in the first row cannot match the left sticky ends of the tiles in the
second row. Therefore, in order to achieve this propagation scheme (and possibly correct
errors, if any), we need to use additional intermediate levels of tiles.

In order to address these problems we are going to augment our tile library with a
new set of tiles, called correction tiles, which are going to be inserted between the regular

rows of XOR tiles. These new error-correcting tiles abide to the following template:

SEESEESEESEESHRS
ol€[al8|alo

This template is a 6 x 2 tile with six sticky ends on each side and yields 16 distinct

correction tiles. The left sticky ends are used to detect errors in the last row of XOR
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Figure 4.4: Information propagation in the original (left) and the new (right) design

tiles, while the right sticky ends are used to correct detected errors, if any, and arrange
the outputs so that they match the desired arrangement in the next row of XOR tiles.
The top five inputs come from the same triplet of redundant XOR tiles, therefore they
should be identical, if there is not error. If not, the correct value is restored from the

majority of them. More precisely, correction is implemented by the following rules:

if (x = y = z) then there is no error and ¢ < x
else if (x =y # z) then there is error in z and ¢ < x
else if (x = z # y) then there is error in y and ¢ + x

else if (y = z # x) then there is error in x and ¢ <y

Figure 4.5 illustrates information propagation under the new design. The assembly on
the left with the original design consists of a DNA origami seed encoding the input
0101010101 and two rows of XOR tiles. The same assembly is shown in the middle with
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Figure 4.5: Error-free assembly: original design (left) and new design (middle and right)

the new design. The intermediate level of correction tiles is marked in red. Information
propagates correctly from the first row of XOR tiles to the second one following the
generic scheme shown on the right.

Figure 4.6 illustrates error correction under the new design. The three correspond to

errors (marked in yellow) occurring in each of the three XOR tiles in a triplet. In the left
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Figure 4.6: New design: error correction in each of the three XOR tiles of a triplet

and middle examples, the single error is corrected, whereas in the right example, where
the error occurs in top tile of the triplet, the error propagates to the next row. Therefore,
the new design can only partially correct errors in XOR tiles.

This new design so far fully succeeds in information propagation, but not in error
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correction. To address both problems successfully we introduce an two levels of correction
tiles between consecutive rows of XOR tiles. The first level of correction tiles is similar

to the one described above and abide to the following template:

SN‘N@Q@&

GQ‘EOQO

This template is a 6 x 2 tile with six sticky ends on each side and yields 16 distinct
correction tiles (see Section A.1.1.2). Correction is implemented by the same rules as

above:

if (x =y = z) then there is no error and ¢ <z
else if (z =y # z) then there is error in z and ¢ < x
else if (x = z # y) then there is error in y and ¢ + x

else if (y = z # x) then there is error in z and ¢ <y

The second level of correction tiles abide to the following template:

VR R R K] R
O8I0 &R

This template is a 6 x 2 tile with six sticky ends on each side and yields eight distinct
tiles (see Section A.1.1.3). The second level aims at correcting left-over, propagated errors

from the first level. Correction at this level is implemented by the following rules:

if (y = z) then there is no error and ¢ + y

else if (y # z) then there is error in y and ¢ + z

As shown in Figure 4.7, if an error occurs at the top XOR tile a triplet (a), the error
will be partially corrected by the first level of correction tiles. Specifically, the lower

correction tile in the first level (¢) will correct the error and yield the correct information
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Figure 4.7: First design: example of how the second level of correction works

to the next row, whereas the upper correction tile in the first level (b) is not able to
correct the error, because it has limited access to the lower triplet of XOR tiles, so it
will propagate incorrect information to the next level. When such errors occur, at this
specific point in the first level we always have a tile that has the correct information
and one that does not, so by introducing an additional level with a correction tile that
attaches to both those tiles (d) we can correct the error.

Figure 4.8 illustrates error correction under the complete first design with two levels
of correction tiles. The first example is an error-free assembly. The remaining three
examples correspond to errors (marked in yellow) occurring in each of the three XOR
tiles in a triplet. In all cases, the single error is corrected and information propagates
correctly to the next row of XOR tiles. The only corruption left in the pattern is the

erroneous tile itself.

4.2.2 Boundary Tiles

As described in Chapter 3, boundary tiles are necessary for two reasons. Firstly, to
maintain a fixed width for the lattice shaping it into a ribbon. Secondly, to prevent

merging between different lattices.
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Figure 4.8: First design: error correction in each of the three XOR tiles of a triplet

XOR Boundary Tiles In the first design XOR boundary tiles follow the same prin-
ciples as the boundary tiles in the original design, meaning that their purpose is to
propagate information without changing it. They only difference in our first design is
that the tiles have four sticky ends on each side contrary to the two sticky ends on each
side of the original XOR boundary tiles. Our XOR boundary tiles abide to the following
templates (left: upper boundary, right: lower boundary):

|88
SHERSERSE R
DR[|
R |I8(R

These templates are 4 x 2 tiles with four sticky ends on each side and yield a total of four
distinct tiles (see Section A.1.2.1).

First-Level Correction Boundary Tiles These boundary tiles just need to propa-

gate the information without altering it, maintaining at the same time the error detection
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and correction properties of the first level correction tiles. Practically, in order to create
the general form of these boundary tiles, we just need to “cut” the regular first level tiles
to make them smaller. In particular, for the upper boundary tiles we keep the lower part
of the regular tiles, whereas for the lower boundary tiles we keep the upper part of the
regular tiles. Additionally, we need two types of lower and upper tiles, because we have
two different sizes of boundary tiles in each first level of correction tiles. Our first-level
correction boundary tiles abide to the following templates (left two: upper boundary,

right two: lower boundary):

e e

T T
e e

x T
T J

T ele

yly

SEESEESENSE NSRS
o|EIE|E |88

Error correction in the largest of these templates is implemented by the following rules:

if (x =y = z) then no error and w =z
else if (z =y # z) then there is error in z and w < x
else if (x = z # y) then there is error in y and w + x

else if (y = z # x) then there is error in x and w <y

These templates yield a total of 16 distinct tiles (see Section A.1.2.2).

Second-Level Correction Boundary Tiles The boundary tiles for the second level
of correction tiles are created similarly to the first level. Again, we need two types of
lower and upper tiles, because we have two different sizes of boundary tiles in each second
level of correction tiles. Our second-level correction boundary tiles abide to the following

templates (left two: upper boundary, right two: lower boundary):

(& €
T
i
y € | €
T | T

SIS S I NS S T e
Blol8 o8
o RIKIK K
oIR8 IK K8 K
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Error correction in the largest of these templates is implemented by the following rules:

if (y = z) then there is no error and ¢ + y

else if (y # z) then there is error in y and ¢ <y

These templates yield a total of 14 distinct tiles (see Section A.1.2.3).

4.2.3 Assembly

Figure 4.9 illustrates the use of boundary tiles through a complete ribbon assembly with
our first design using the templates described above. Notice that the DNA origami seed
must also be given in triplets of two symbols, following our redundancy scheme, and be
bounded withing the boundary symbols e. At positions 1 and 4, one can see the two
different types of upper boundary tiles for the first level of correction tiles. At positions
6 and 9, the two different types of lower boundary tiles for first level of correction tiles
can be seen. At positions 2 and 5, the two different types of upper boundary tiles for the
second level of correction tiles can be seen. Finally, at positions 7 and 10, the two different
types of lower boundary tiles for the second level of correction tiles can be seen. Position
3 contains an upper boundary tile for a XOR row, whereas position 8 contains a lower
boundary tile for a XOR row. Figure 4.10 shows a specific instance of this (error-free)
assembly originating out of a DNA origami seed of the form e000000101010000000e.

4.2.4 Positioning

For correct lattice growth under our first design we must ensure that tiles attach to
specific valid positions. Figure 4.11 shows examples of correct and incorrect positioning
of a first-level correction tile. Correct positioning can be achieved through the use of
appropriate encoding of the various sticky ends. As mentioned before sticky ends are

single DNA strands usually four- to eight-bases long. When describing a tile in the
Ty
z | w
can attach to each other through complementary sticky ends. For example, if sticky end

abstract form each one of the z, y, z, w labels represents a sticky end. Two tiles

y is AAAGGG, another tile can attach to y through a sticky end complementary to ,
that is y=TTTCCC, as shown in Figure 4.12. Both y and w in the figure may represent

the same symbol, e.g. bit value 1, but in order to enforce correct attachment each one of
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Figure 4.9: First design: the general form of a complete assembly

them may encode that symbol with a different combination of bases at its sticky end. In
order to keep our figures simpler, sticky ends that encode the same symbol with different
combination of bases are colored differently.

Each tile in the first level of correction must attach to four other tiles, namely to
three tiles from a triplet of XOR tiles and one tile from the next XOR triplet. For correct
positioning of the first-level correction tiles, the first tile of each XOR triplet must have

different sticky ends from the other two XOR tiles and the first-level correction tile must
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Figure 4.10: First design: an example of a complete assembly

have complementary sticky ends to those of the XOR tiles, as shown in Figure 4.13.
Different encoding of the sticky ends (black and red) ensure that XOR and first-level
correction tiles attach to each other correctly. Each colored sticky end may represent any
symbol; the difference in color simply implies different encoding of the sticky ends, even
if the represented symbols are identical. Using the same principles, we must ensure that
the second-level correction tiles attach to first level at the precise correct positions. The

two top sticky ends of a first-level correction tile must have different sticky ends from
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Figure 4.11: First design: example of (a) correct and (b) incorrect positioning
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Figure 4.12: Attachment of sticky ends y and w to complementary ends ¢y and w

the remaining sticky ends and the second-level correction tiles must have complementary
sticky ends to them, as shown in Figure 4.13. Once again, we arrange the sticky ends of
the second-level correction tiles so that the XOR tiles attach at the right position. The
first tile of each XOR triplet should have on the left side different sticky ends from the
other two tiles in the triplet, in order to maintain the correct positioning of subsequent

tiles, as shown in Figure 4.13.

Overall, our first design requires five different kinds of sticky ends, each of them
encoding two possible symbols (bits 0 and 1). In addition, two complementary sticky
ends are needed for encoding symbol e at the boundaries. So, in total we need 11 different
single DNA strands and their complementary 11 DNA strands to encode properly all

sticky ends of our tiles.
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Figure 4.13: Correct positioning of tiles in consecutive XOR rows and correction levels

4.2.5 Theoretical Analysis

To assess the properties of our first design, we are going to perform a theoretical analysis
and calculate the probability of an error to propagate given a probability p for a single

sticky end to attach incorrectly at some point in the assembly.

Original Design For an error to propagate in the original design all it takes is an
incorrect output of a XOR tile. In order to have an incorrect output, one of the two left
sticky ends must attach incorrectly (probability p), but not the other (probability (1—p)).
If both of them attach incorrectly, the output would be the correct one, because of the

characteristics of the XOR function! Figure 4.14 shows an example. So, the probability
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Figure 4.14: No errors (left), one error (middle), and two errors (right) in a XOR tile
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Figure 4.15: No errors (left), two errors (middle), and three errors (right) in a triplet

of a propagated error in the original design that will generate a wrong lattice is:

Porig = 2]9(1 - p)

First Design with Errors Only at XOR Tiles Initially, we assume that errors
can occur only at XOR tiles and we calculate the probability per tile for an error to
propagate throughout the assembly. Under our first design, an erroneous output from a
single XOR tile in a triplet will be locally corrected and will not propagate throughout
the assembly. However, an error will propagate, if at least two out of the three XOR
tiles in a triplet give simultaneously incorrect outputs. The probability of one XOR tile
to give incorrect output was calculated above and is denoted as poig. There are three
different combinations of errors occurring simultaneously in exactly two out of the three
XOR tiles in a triplet (probability p2;,(1 — porg) for each one) and one case of errors
occurring simultaneously at all three of them (probability pgrig), as shown in Figure 4.15.
So, the probability for our first design, assuming errors only at XOR tiles, to generate an

a propagated error is:

PXOR = 3p<2)rig<1 - porig) + pgrig = 3pgrig - 2p2rig = pgrig(g - 2porig)
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First Design with Errors at XOR and Correction Tiles We are going to calculate
the probability of propagated errors by focusing on each row/level of tiles separately. In

a row of XOR tiles the probability for the error to propagate is the one calculated above:

Pxor = pgrig(?) - 2p0rig)

At the first level of correction tiles, the top five left sticky ends of a correction tile attach
to a triplet of XOR tiles in order to implement error detection and correction. The
bottom left sticky end attaches to the first tile of the next triplet of XOR tiles to transfer
information for the next XOR operation. So, for an error to propagate, it must occur
under circumstances either in the top five left sticky ends or in the bottom left one.
Specifically, for an error to propagate from the top five sticky ends, the tile must wrongly
detect and correct an error that in fact did not occur. Using Figure 4.16 as a guide,
it is easy to see that this can happen, if at least two of x, y, z end up carrying wrong
information. There are three pairs: Tile 1 and z, Tile 2 and y, Tile 3 and z. End z
will receive wrong information from Tile 1, if only one of them is incorrect, that is either
the output of Tile 1 is incorrect (probability pui.) and x attaches correctly (probability
1 —p), or the output of Tile 1 is correct (probability 1 — porg) and x attaches incorrectly
(probability p). Therefore, the probability of such a mismatch between Tile 1 and =z is:

pl,x = porig(l - p) + (1 - porig)p =p +p0rig - 2pporig

For the remaining two pairs, since y and z appear doubled (two sticky ends each), the
probability of y’s or 2’s being incorrect is p? and the probability of being correct is 1 — p?.

Therefore, the probability of a mismatch for each of these pairs will be
Py = D3,z = Porig(1 = P?) + (1 = Porig)D” = P* + Porig — 2 Porig
Therefore, the probability that an error will propagate through the top five stick ends is:
Dlevell = P1aP2y(1 = P3z) + pra(l — pay)psz + (1 — pre)p2ypsz + P1aepoyps.

An error cannot propagate through the sixth sticky end, because Tile 7 will correct it,
even if wrong information passes through w.
At the second level of correction tiles, errors can propagate only through sticky ends

of type a or ¢, since sticky ends of type b do not transfer information to the output.
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Figure 4.16: First design: explaining error propagation through correction levels

Additionally, errors propagated through a (Tile 7) or ¢ (Tile 6) come only from Tile 5
(outputs d). We have already calculated the probability pievenn of an error being propa-
gated to outputs d. There are two cases from this point on. In the first case, either d
is correct (probability 1 — piever) and a’s are incorrect (probability p®) or d is incorrect
(probability pieverr) and a’s are correct (probability 1 — p*). Therefore, the probability of

error propagation in this case will be

Pda = plevell(l - p3> + (1 - plevell)p3 - p3 + DPlevell — 2p3p1eve11

In the second case, either d is correct (probability 1—pjevenn) and ¢ is incorrect (probability
p) or d is incorrect (probability piever1) and ¢ is correct (probability 1 —p). Therefore, the

probability of error propagation in this case will be

Pdc = pleveH(]- - p) + (1 - pleveH)p = P + Dlevell — 2ppleve11

This type of error is in fact the weak spot of the second level of correction tiles and of the

whole first design. Other things being equal, errors can propagate much easier through c
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Figure 4.17: Error propagation probability vs. probability of incorrect attachment

than through a; this difference is quantified by the difference in probability values p and
p?. In summary, the probability for an error being propagated beyond the second level
of correction tiles under our first design, and therefore to the next row of XOR tiles, is

the probability of the intersection of the two cases mentioned above:

Pfirst = Pd,a + Pd,c — Pd,aPd,c

It is not clear by comparing the three probability expressions (Dorig, Pxor, and prst)
which one is better, given that we wish to make this probability as small as possible.
As shown in Figure 4.17 for small values of p (below 3.5%), our first design has better
chances to build a correct lattice. For larger values of p the original design has better
chances than our design to create a correct lattice, but a complete correct lattice is highly
unlike in this case. Laboratory experimental results with the original design (described
in Chapter 3) showed an average value of error probability per tile of about 1.4% (this
iS porig in our notation), which means that the probability p for a sticky end to attach
incorrectly is p = 0.7%. For this value of p, we have poie = 1.4%, pxor = 0.057%, and
Prest = 0.85%. At this range, our first design is certainly better than the original one.
Moreover, if in our design errors occur only at XOR tiles, the chances for an incorrect

lattice are even less.
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4.3 Second Design

As seen in Figure 4.17 there is significant difference in error propagation probability
between the case where errors occur only at XOR tiles and the case where errors occur
everywhere. For that gap responsible is the weak spot at the second level of correction
tiles, namely the fact that a single incorrect attachment of sticky end ¢ of a correction tile
in the second level (Figure 4.16) directly propagates into the rest of the assembly. Our
second design for a self-correcting assembly aims to fix that particular weak spot of our
first design. This slightly different and more involved design succeeds in correcting errors
in regular XOR tiles, while incurring better control on errors occurring in the additional

tiles it introduces.

4.3.1 Correction Tiles

Similarly to the first design, our second design introduces two levels of correction between
regular XOR rows. The first level of correction tiles is identical to the one in the first
design, described already in Section 4.2.1. Here we focuses only on the second level of
correction tiles which differs. By shifting down the positioning of tiles at this level and by
a slightly different tile design, we can duplicate the weak sticky end (bottom left end in
the first design) to reduce its probability of error and still maintain the desired correction
properties. Therefore, the second level of correction tiles in our second design abide to

the following template:

SIS I R N~ ]
o8 o 8o

This template is a 6 x 2 tile with six sticky ends on each side and yields eight distinct tiles
(see Section A.2.1.3). As before, this second level aims at correcting left-over, propagated

errors from the first level. Correction at this level is implemented by the following rules:

if (y = z) then there is no error and ¢ <y

else if (y # z) then there is error in y and ¢ < z
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Figure 4.18: Assembly differences between first (left) and second (right) designs

In this template all the different sticky ends are duplicated and for an error to propagate
both sticky ends must attach incorrectly. Figure 4.18 will help us understand the way the
lattice assembly has altered with the new tiles. In the assembly under the first design a
single error at the marked sticky end z suffices to alter the triplet of XOR tiles (marked
by 1) in the next row and let the error propagate. By shifting down the green tiles in
the second design we can duplicate the marked sticky ends z. This way we drastically
reduce the probability of an error to propagate, because both sticky ends must attach

incorrectly for the error to propagate.

4.3.2 Boundary Tiles

In our second design the XOR boundary tiles and the first-level correction boundary tiles
are identical to those of the first design, described already in Section 4.2.2.

The second-level correction boundary tiles are created by “cutting” the regular cor-
rection tiles to the right size. Again, we need two types of lower and upper tiles, because

we have two different sizes of boundary tiles in each second level of correction tiles. Our
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second-level correction boundary tiles abide to the following templates (left two: upper

boundary, right two: lower boundary):

SHERSENSEN
olalo o
oIR8 8
oIR8 8

Error correction in the larger template for the upper boundary is implemented by the

following rules:

if (y = x) then there is no error and ¢ < x

else if (y # x) then there is error in y and ¢ <«

These templates yield a total of eight distinct tiles (see Section A.2.2.3).

4.3.3 Assembly

Figure 4.19 illustrates the use of boundary tiles through a complete ribbon assembly with
our second design using the templates described above. Notice that the DNA origami
seed must also be given in triplets of two symbols, following our redundancy scheme, and
be bounded withing the boundary symbols e. At positions 2 and 5, the two different
types of upper boundary tiles for the second level of correction tiles can be seen. Also,
at positions 7 and 10, the two different types of lower boundary tiles for the second level
of correction tiles can be seen. Figure 4.20 shows a specific instance of this (error-free)
assembly originating out of a DNA origami seed of the form e000000101010000000e.

4.3.4 Positioning

Once again we must use different encoding of bits at different tiles so we can ensure the
correct positioning of tiles in the lattice. The XOR tiles and the first-level correction tiles
in our second design are identical to the first design and there is no need for any change
in their sticky ends. We just need to change the sticky ends of the second-level correction
tiles to ensure that they attach to first level at the precise correct positions. This change
is shown in Figure 4.21 in comparison to the first design. The bottom two sticky ends of

the second-level correction tiles must be complementary to the two top sticky ends of a
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Figure 4.19: Second design: the general form of a complete assembly

first-level correction tile. We also arrange the sticky ends of the second-level correction
tiles so that the XOR tiles attach at the right position in the next row.

Overall, our second design requires five different kinds of sticky ends, each of them
encoding two possible symbols (bits 0 and 1). In addition, two complementary sticky ends
are needed for encoding symbol e at the boundaries. So, in total we need 11 different
single DNA strands and their complementary 11 DNA strands to encode properly all

sticky ends of our tiles.
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Figure 4.20: Second design: an example of a complete assembly

4.3.5 Theoretical Analysis

The analysis for the error propagation probability under our second design is identical
to that of the first design up to the first level of correction. Here, we focus only on the
second level of correction.

Using Figure 4.22 as a guide, at the second level of correction tiles, errors can propa-
gate only through sticky ends of type a or ¢, since sticky ends of type b do not transfer
information to the output. Additionally, errors propagated through a (Tile 7) or ¢ (Tile
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Figure 4.21: Correct positioning of tiles in first (left) and second (right) designs

6) come only from Tile 5 (outputs d). We have already calculated the probability pieyen
of an error being propagated to outputs d (see Section 4.2.5). There are two cases from
this point on. In the first case, either d is correct (probability 1 — peven1) and a’s are incor-
rect (probability p?) or d is incorrect (probability piver) and a’s are correct (probability
1—p?). In the second case, either d is correct (probability 1 — pieverr) and ¢’s are incorrect
(probability p) or d is incorrect (probability pieverr) and ¢’s are correct (probability 1—p?).

Therefore, the probability of error propagation is the same in each of theses cases:

Pd,ac = plevell(1 - p2) + (1 - plevell)p2 = p2 + Dlevell — 2p2plevell

Finally, the probability for an error being propagated beyond the second level of correction
tiles under our second design, and therefore to the next row of XOR tiles, is the probability

of the intersection of the two cases mentioned above:

2
Psecond = de,ac — Pd.ac
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Figure 4.22: Second design: explaining error propagation through correction levels

As shown in Figure 4.23 our second design significantly improves over the first design.
For values of p below 7.5%, our second design has better chances to build a correct lattice
than both the original and our first design. More specifically, for the experimentally
verified value of p = 0.7% we have poig = 1.4%, pxor = 0.057%, past = 0.85%, and
Psecond = 0.16%. At this range, our second design is clearly a winner over the first design

and the original one.
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Figure 4.23: Error propagation probability vs. probability of incorrect attachment
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Chapter 5

Implementation

Unfortunately, real experimental evaluation of our designs is beyond our capabilities due
to lack of expertise and facilities. In order to test our designs in some informative way,
we implemented a simulation of self-assembly in MATLAB. The idea for the simulation
is simple. We represent the lattice with a two dimensional array. Every cell in the array
represents a sticky end, e.g. a XOR tile with two sticky ends on each side is represented
by a 2 x 2 sub-array in the lattice array. Similarly, we define the tile library, so that each
tile is given as a two-dimensional array. We allow for an infinite number of each kind
of tile and we let them shuffle and attach to each other starting at the first row of the
lattice representing the seed. In order to see the results of the simulation we print the
two-dimensional lattice with either imagesc (each sticky end is a pixel in the image) or
surf (each sticky end is a cell in the grid), as shown in Figure 5.1.

The function that simulates the self-assembly accepts the following parameters:

Size X - The width of the lattice in tiles.

Size Y - The length of the lattice in periods.

Seed row - An array of size 1 x 2X representing the seed row of the lattice.

Error prob - Error probability of a sticky end to attach incorrectly.
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Figure 5.1: Visualization of self-assembly lattices in MATLAB.
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Figure 5.2: Examples of lattices with different width
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Figure 5.3: Examples of lattices with different seed rows

The simulation function returns the following two-dimensional arrays:
e correct - Lattice of the original design without errors
e incorrect - Lattice with random errors occurring consistently with prob

e first - Lattice implemented with the first design with the same errors as the

incorrect lattice at the XOR tiles and random errors at the rest of the tiles.
e second - Lattice implemented with the second design similarly to the first lattice.

A key parameter in the simulation is the value of the error probability. Figure 5.4

illustrates the effect of prob on the resulting lattices.
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Figure 5.4: Examples of how the error probability parameter affects lattices
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Chapter 6

Simulation Results

Using our assembly simulation, we tested our designs on numerous examples. Some rep-
resentative examples are presented in this chapter. All simulations have been conducted
with error probability p = 0.7% for a sticky end to attach incorrectly. This value has been
chosen, because it has been experimentally determined through laboratory experiments,
as described in Chapter 3. All simulation lattices are 14 tiles wide for the original design
and 42 tiles wide for our design (three times wider because of the redundancy) and 4 pe-
riods long. Therefore, each assembly with the original design contains about 1600 tiles,
whereas each assembly with our designs contains about 8000 tiles. In each example we
present performance of (a) the original design, (b) our designs with errors only at XOR
tiles, and (c) our first and second designs with errors at all tiles. Also, in our designs we
show two different views. The first (XOR view) shows the full lattice really is, whereas
the second (full view) shows only the nominal XOR tiles (without the redundant tiles

and the correction levels), so that a comparison to the original design can be made.

6.1 Assembly Scars

Our designs can detect an error and prevent it from propagating, however it is impossible
to detach an incorrectly attached tile. As a result such incorrect tiles remain in the lattice
and leave some kind of “scars” in the lattice pattern, as shown in Figure 6.1. These scars

will be visible in the examples that follow, even if all errors are detected and corrected.
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(¢) New design with random (corrected) errors unmarked (scars are visible)

Figure 6.1: Example of scars left behind after correction of incorrect tiles

6.2 Random Errors

In this set of experiments, each design faces (different) random errors, which appear with
fixed probability p at each sticky end. Figure 6.2 shows the performance of the original
design. Errors propagate and the lattice pattern is completely gone. Figure 6.3 shows the
performance of our designs (in XOR, view for comparison). In the top example, several
errors have occurred, but all of them have been detected and corrected. In the contrary,

in the bottom example, near the end of the first period, errors occurred at two out of
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Figure 6.2: Original design with random errors.
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Figure 6.3: Our designs with random errors at XOR tiles only (XOR view)

the three XOR tiles in a triplet and the error propagated ruining the correct pattern.
Figure 6.4 shows the same examples in full view. It is worth noting the presence of scars
in both views. The full view contains more scars because it shows errors at all redundant
XOR tiles, whereas the XOR views shows only errors occurring at the nominal XOR tiles.

The next set of experiments involves random errors allowed to occur at any tile.
Figure 6.5 shows an example with the first design presented in both views. Even though
the generation of a completely correct lattice is almost impossible, the results are still
better than the original design. It can be clearly seen that the pattern maintain its period

for a long time, before it is finally interrupted by propagated errors. Figure 6.6 shows
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Figure 6.5: First design with random errors allowed at any tile

two examples with the second design in XOR view. In the top example, several errors
occurred and were detected and corrected, but at same point before second period an
error propagated and interrupted the correct pattern. In contrast, in the bottom example
all errors were corrected and the correct lattice was generated. Figure 6.6 shows the same

examples in full view.

6.3 Identical Errors

In this section, we present in detail two examples where errors occur at exactly the same
positions in the lattices for all designs. The aim of these experiments is to compare the

performance of the different designs on equal (identical) terms. The procedure we adopted
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Figure 6.7: Second design with random errors allowed at any tile (full view)

is as follows. First, we run an assembly with the original design with the errors occurring
in random as before, but this time we store the exact positions where errors occurred.
Then, we run an assembly with our proposed designs with errors only at XOR tiles, but
we intentionally insert the recorded errors to the first tile of each triplet triplet, while
the other two tiles in the triplet suffer randoms errors independently. Again, we store all
error positions. Next, we run an assembly with our first design with errors at any tile.
This time, the errors in XOR triplets are the recorded ones, while correction tiles suffer

randoms errors independently. Once again, we store all positions where errors occurred
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Figure 6.9: Ex. 1: Our designs with identical random errors at XOR tiles (both views)

and finally we run an assembly using the recorded errors in XOR rows and first levels of
correction, while the second-level correction tiles suffer randoms errors independently.
Regarding the first example, Figure 6.8 shows the performance of the original design,
whereas Figure 6.9 shows the performance of our designs, when errors occur only at
XOR tiles. It can be clearly seen that all the errors were corrected and the pattern of the
lattice was maintained. The scars of the corrected errors are visible. Figure 6.10 shows
the performance of our first design, when errors occur at any tile. Although the overall
behavior of the first design is better than the original one, in this example there is no real
improvement from the original design. This is because of the weak spot at second level of
correction tiles discussed in previous chapters. Figure 6.11 shows the performance of our
second design, when errors occur at any tile. As we can see, all the errors were corrected

and the pattern of the lattice was maintained. Once again, the scars of the corrected
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Figure 6.11: Ex. 1: Second design with identical random errors at any tile (both views)

tiles are visible.

Regarding the second example, Figure 6.12 shows the performance of the original
design, whereas Figure 6.13 shows the performance of our designs, when errors occur
only at XOR tiles. Errors were corrected and the pattern of the lattice was maintained.
Figure 6.14 shows the performance of our first design, when errors occur at any tile,
whereas Figure 6.15 shows the performance of our second design, when errors occur at
any tile. In this example, in contrast to the previous one, the lattice generated by the

second design is still incorrect, but still better than the original. Specifically, the design
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Figure 6.12: Ex. 2: Original design with identical random errors (marked in cyan)
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Figure 6.13: Ex. 2: Our designs with identical random errors at XOR tiles (both views)

corrected several errors and almost three period of the pattern is correct. This proves

the overall better behavior of our second design.

6.4 Comparison

In order to have a comparative view of the simulation results we ran a stress test for
all designs. Specifically, we ran 1000 simulated assemblies for each design for all error
probability values ranging from 0% to some large value with step 0.1%. In each case, we
counted how many tiles are different compared to the ones in the correct lattice and we
calculated the percentage difference between the resulting lattice under each design and
the correct lattice.

Figure 6.16 shows the comparison results for values of p ranging from 0% to 50%.
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Figure 6.15: Ex. 2: Second design with identical random errors at any tile (both views)

The first design and the original one have the same behavior for values of p less than
2.5%, after which point our design has slightly better behavior. The second design has
significantly better results than the first and the original ones and it is close to the ideal,
but unrealistic, scenario, where errors occur only at XOR tiles. Also our designs have as
upper bound the 25% difference from the correct lattice in contrast to the original design
that exhibits a linear growth.

Figure 6.17 shows the comparison results for values of p ranging from 0% to 15%. It

also includes the 95% confidence interval bars. Again we see that the first design and
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Figure 6.16: Experimental comparison of lattice distortion for p € [0.0,0.5]

the original one have the same behavior for low values of p, whereas the second design
exhibits significantly better results than both of them.

Figure 6.18 shows the comparison results for values of p ranging from 0% to 5%. It
also includes the 95% confidence interval bars. Even in this tiny range, the performances

of the different designs follow the same pattern, however differences are amplified.
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Figure 6.17: Experimental comparison of lattice distortion for p € [0.00,0.15]
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Figure 6.18: Experimental comparison of lattice distortion for p € [0.00, 0.05]
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Chapter 7

Conclusion

Error-correction in DNA self-assembly can be challenging, because to achieve it requires
some kind of trade-off. In our case, the trade-off was between reliability and complexity.
We achieved better reliability by reducing the probability of error propagation, but we
sacrificed the simplicity of the original design. However, it seems that this error correction

cannot be achieved without increased complexity.

7.1 Advantages and Disadvantages

Our proposed designs offer several advantages:

Reliability The incorporation of error correction reduces the rate of error propagation
(slightly for the first design, significantly for the second design). With our designs
a single error cannot corrupt the entire pattern, so they have better chances to

generate a correct lattice.

Reusability Our proposal for error correction tiles fits other designs, not just XOR
operations on which we focused on. Specifically, if both output sticky ends of
the non-error-correcting tiles are the same, then we can use the exact same error
correction tiles that we used for the XOR function. Even if the output sticky ends
are different the same design can be used to implement error correction by minor

changes only in the tile library.

On the other hand, our proposed designs come with some disadvantages:
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Assembly Size Our designs increase the area of the lattice by a factor of three in each
dimension. We increased the width of the ribbon by tripling the number of XOR
tiles to achieve redundancy and we tripled the length of the ribbon by introducing

two levels of error correction tiles.

Number of Tiles Our designs increase of the number of tiles in the lattice. For the same

computation we need five times as many tiles compared to the original design.

Tile Library Our designs increase the size of the tile library. For the original design we
needed 10 different tiles, whereas for our first design we need a total of 66 tiles and

for our second design a total of 58 different tiles.

7.2 Future Work

Our work can be extended in multiple ways. First, it may be tested on other self-assembly
schemes, including binary operations and/or computations beyond XOR, such as the
binary counter and the RAM demultiplexer assemblies described in Chapter 2. Second,
it could be tried on non-ribbon assemblies; indeed, much of the added complexity in our
proposed designs stems from the variety and the multitude of the required boundary
tiles. Third, it could serve as a motivating factor for investigating experimentally the
construction of DNA tiles with the properties adopted here (large size, multiple sticky
ends, multiple inputs and outputs). Are they feasible? Are they reliable? Are assemblies
less/more susceptible to errors? Finally, another direction would be to investigate the
possibility of pushing redundancy to a third dimension, e.g. parallel lattices, instead of

pushing it into the main assembly.
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Appendix A

Tile Library

A.1 First Design

A.1.1 Regular Tiles

A.1.1.1 XOR Tiles

Original tiles

Template: T T8y
y| Dy
Number: 4
) 010 011 111 110
Tiles: =575 11 01 1[0

Redundancy tiles

Template: T TDY
ylrxdy
Number: 4
) 010 011 111 110
Tiles: =575 11 01 1[0
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A. TILE LIBRARY

A.1.1.2 1st-level correction tiles

Template:

SEESEESESESN RS

SElo|lfo|olo

Number: 16

Tiles:

if (x =y = z) then no error and ¢ = x

else if (x =y # z) then there is error in z and ¢ < z
else if (x = z # y) then there is error in y and ¢ + x
else if (y = z # x) then there is error in z and ¢ < y

No error detection and correction tiles (4 tiles)

00 0]0 111 111
0]0 0]0 111 11
00 0]0 111 11
0]0 01 1|1 10
00 00 11 111
00 11 11 00
Error detection and correction tiles (12 tiles)
110 0]0 0]0 110
0]0 110 00 0]0
00 110 00 00
00 00 110 01
0]0 0]0 110 00
0]0 0]0 0]0 111
00 00 01 11
110 0]0 111 01
110 0]0 111 01
01 111 111 1|1
00 110 111 1|1
111 111 111 1|1
11 01 111 1|1
111 111 01 1|1
111 111 01 1|1
01 110 110 00
01 111 111 01
11 00 0]0 0]0
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A.1 First Design

A.1.1.3 2nd-level correction tiles

else if (y # z) then there is error in y and ¢ <y

T x
T x _
v if (y = 2) then no error and ¢ =y
Template:
r x
Yy c
Z T
Number : 8
Tiles:
No error detection and correction tiles (4 tiles)
00 0 0 11 11
00 0 0 11 11
00 11 0 0 11
00 0 0 11 11
00 11 0 0 11
00 10 0 1 11
Error detection and correction tiles (4 tiles)
0 0 11 11 0 0
0 0 11 11 0 0
0 1 10 0 1 10
0 0 11 11 0 0
0 1 10 0 1 10
10 0 1 11 0 0
A.1.2 Boundary Tiles
A.1.2.1 XOR boundary Tiles
Upper Boundary
ele
Template: ol
x| @
x| @
Number: 2
el e ele
: 1)1 00
Tiles: 111 010
1)1 00
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A. TILE LIBRARY

Lower Boundary

T |z
Template: I
T |z
el e
Number: 2
111 010
) 111 010
Tiles: BE 00
ele ele

A.1.2.2 1st-level correction boundary tiles

First Type Upper Boundary

e | e
Tr | x

Template:

Number: 2

€| e

. ele
Tiles: 00 e

Second Type Upper Boundary

ele
x|
Template: || z | y
x|
yly
Number: 4
ele ele ele ele
0]0 111 00 111
Tiles: || 0|0 111 01 110
0]0 111 00 111
0]0 111 111 00

First Type Upper Boundary
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A.1 First Design

T | w
v | w if (x =y = z) then no error and w = x
v [ w else if (x =y # z) then there is error in z and w «+ x
Template: - Tw else if (x = z # y) then there is error in y and w + x
T else if (y = z # x) then there is error in z and w < y
el e
Number: 8
0]0 111 110 00
0]0 111 010 110
: 00 11 00 110
Hiles: 77570 11 00 00
0]0 111 010 00
ele ele ele ele
0]0 01 111 171
0]0 111 01 111
00 111 01 171
110 111 111 01
110 1171 1171 01
ele ele ele ele

Second Type Lower Boundary

T | x
Template: || x | x
ele
Number: 2
010 11
Tiles: 1
ele ele

A.1.2.3 2nd-level correction boundary tiles

First Type Upper Boundary

e e
Template: = =z
x

Number: 2
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A. TILE LIBRARY

e e
Tiles: | 0 1 0 11
00 1 1

Second Type Upper Boundary

e e
Tz
| if (y = z) then no error and c =y
Template: g else if (y # z) then there is error in y and ¢ <y
Yy c
z x
Number: 8
e e e e e e e e
00 11 00 1 1
. 00 111 111 0 0
less 757 11 0 0 11
00 11 11 0 0
0 0 11 10 0 1
e e e e e e e e
0 0 11 0 0 11
10 0 1 0 1 10
0 0 11 0 0 1 1
1.0 0 1 0 1 10
00 11 10 0 1

First Type Lower Boundary

T T
T T
Template: | = =z
T T
e e
Number: 2
0 0 111
0 0 11]1
Tiles: | 0 | 0 11
0 0 1]1
el e el e
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A.2 Second Design

Second Type Lower Boundary

Template:

Number: 2
Tiles:

X

A.2 Second Design

A.2.1 Regular Tiles

A.2.1.1 XOR Tiles

Original tiles

Template: T T8y
y| Dy
Number: 4
Tilos: 010 011 111 110
R 11 01 1[0

Redundancy tiles

Template: T|T9Y
ylrxdy
Number: 4
Tiles: 010 011 11 110
RS 0T 11 01 110

A.2.1.2 1st-level correction tiles

Template:

SERSEESEESHNSEES

Slol€lolaolo

Number: 16

Tiles:

if (x =y = z) then no error and ¢ = x

else if (x = y # z) then there is error in z and ¢ < z
else if (z = z # y) then there is error in y and ¢ < x
else if (y = z # x) then there is error in x and ¢ <y

No error detection and correction tiles (4 tiles)
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A. TILE LIBRARY

010 010 1)1 1)1
010 010 1)1 1)1
010 010 1)1 1)1
00 01 1)1 110
010 00 1)1 171
010 1)1 1)1 010
Error detection and correction tiles (12 tiles)
110 010 010 110
010 110 010 010
010 110 010 010
010 010 110 01
010 00 110 00
010 010 010 111
010 010 01 1|1
110 010 1)1 01
110 00 1)1 01
01 1)1 1|1 171
010 110 1)1 171
1)1 1)1 1)1 1)1
1)1 01 1)1 1)1
1)1 1)1 01 111
1)1 1)1 01 111
01 110 110 010
01 1)1 1|1 01
11 010 010 010

A.2.1.3 2nd-level correction tiles

if (y = #) then no error and c =y
else if (y # z) then there is error in y and ¢ <y

Template:

NRR IR 8 R
SEECEESEECHESNIE

Number : 8
Tiles:

No error detection and correction tiles (4 tiles)
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A.2 Second Design

0 0 0 0 11 11
0 0 0 0 11 11
0 0 11 0 0 11
0 0 0 0 11 11
0 0 11 0 0 11
0 0 170 0 1 1 1
Error detection and correction tiles (4 tiles)
0 0 11 11 0 0
0 0 11 11 0 0
0 1 170 0 1 170
0 0 11 11 0 0
0 1 10 0 1 1 0
170 0 1 11 0 0

A.2.2 Boundary Tiles
A.2.2.1 XOR boundary Tiles

Upper Boundary

ele
Template: I
x| T
x| T
Number: 2
ele ele
. 111 00
Tiles: 111 0o
111 00
Lower Boundary
x|
Template: Gl
T |T
ele
Number: 2
111 00
. 111 00
Tiles: 111 010
ele ele
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A. TILE LIBRARY

A.2.2.2 1st-level correction boundary tiles

First Type Upper Boundary

Template: °le
T | x
Number: 2
el e
Tiles:
iles 00

Second Type Upper Boundary

ele
T |
Template: || x | y
x|
yly
Number: 4
ele ele ele ele
00 111 010 111
Tiles: || 0|0 111 0]1 110
00 111 00 11
0]0 111 111 00

First Type Upper Boundary

T | w
v | w if (x =y = z) then no error and w = x
v [ w else if (x =y # z) then there is error in z and w + x
Template: o else if (x = z # y) then there is error in y and w + x
T else if (y = z # x) then there is error in  and w < y
el e
Number: 8
010 111 110 00
010 171 00 110
. 0]0 111 00 110
les: 17510 11 00 00
0]0 1)1 00 00
ele ele ele ele
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A.2 Second Design

010 01 111 111
0]0 111 01 111
0]0 111 01 111
110 111 111 0]1
110 111 111 0]1
el e el e el e el e

Second Type Lower Boundary

T | x
Template: | z | x
ele
Number: 2
010 11
Tiles: || 0
ele ele

A.2.2.3 2nd-level correction boundary tiles

First Type Upper Boundary Tiles

e
v | ¢ if (y = x) then there is no error and ¢ < x
Template: o else if (z # y) then there is error in y and ¢ <z
T c
Number: 4
e e e e e e e e
. 0 0 11 0 1 1.0
Hles: g g 11 11 00
0 0 11 11 0 0

Second Type Upper Boundary Tiles

Template:
Number: 1
Tiles:

ele

ele

First Type Lower Boundary Tiles
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A. TILE LIBRARY

Tz
Template: i
T
e e
Number: 2
00 1 1
) 00 1 1
Tiles: 00 11
e e e e

Second Type Lower Boundary Tiles

Template: H e ‘ e ‘
Number: 1
Tiles:

Lele]
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