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Polynomial-Complexity Computation of the M-phase Vector that

Maximizes a Rank-Deficient Quadratic Form

Anastasios Kyrillidis

Abstract

The maximization of a positive (semi)definite complex quadratic form over a finite alphabet isNP-hard and

achieved through exhaustive search when the form has full rank. However, if the form is rank-deficient, the optimal

solution can be computed with only polynomial complexity inthe lengthN of the maximizing vector. In this work,

we consider the general case of a rank-D positive (semi)definite complex quadratic form and developa method that

maximizes the form with respect to aM -phase vector with polynomial complexity. Our method utilizes auxiliary

hyperspherical coordinates and partitions the multidimensional space into a polynomial-size set of regions, where each

region corresponds to a distinctM -phase vector. The vector that maximizes the rank-D quadratic form is shown to

belong to the polynomial-size set of vectors. Therefore, the proposed method efficiently reduces the size of the feasible

set from exponential to polynomial. We also develop an algorithm that constructs the polynomial-size candidate set

in polynomial time and observe that it is fully parallelizable and rank-scalable.

I. I NTRODUCTION

The problem of unconstrained complex quadratic maximization over a finite alphabet captures many problems

that are of interest to the communications and signal processing community. Many recent developments on the

semidefinite relaxation (SDR) technique have indicated that SDR is capable of providing near optimal (and some-

times accurate) approximations in polynomial time [1]. Although SDR algorithm has a theoretical guarantee that

the solution of the quadratic problem has, at worst, moderate approximation accuracy1 [2], in most of the times it

remains an approximation algorithm that does not guaranteethe computation of the optimal solution.

Recently, the authors in [7], based on the seminal work of Goemans and Williamson [8], [9], studied some

approximation algorithms for the class of complex quadratic optimization problems with discrete decision variables:

maximizezHQz s.t. zk ∈ {1, ω, . . . , ωM−1}, k = 1, . . . , n whereM ≥ 2 andω = ej 2π
M . In this work, they prove

that the model presented in [9] for MAX-3-CUT (M = 3) turns out to be a special case of the general model

proposed in [7]. Interestingly, they prove that for∀M ≥ 2 the problem remainsNP-hard.

Interestingly, it has been recently proven that the maximization of a quadratic form with a binary vector argument2

is no longerNP-hard if the rank of the form is not a function of the problem size [3], [4].3 Specifically, based

1Practically, the performance of this algorithm is substantially better than that of the worst case.

2In this work, a vector is called binary if and only if each element of it equals+1 or −1. Contrarily, if each element of it equals0 or 1,

then the vector is said to belong to the0/1 field.

3An obvious example is the maximization of the rank-1 quadratic form where the optimal argument vector is provided by the hard-limiter

output when applied to the maximum-eigenvalue eigenvectorof the matrix parameter.
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on the equivalence of the maximization of any rank-deficientquadratic form over the binary field with the rank-

deficient maximization over the0/1 field [3], it is proved that the latter can be computed optimally and efficiently

in polynomial time through a variety of computational geometry (CG) algorithms, such as the incremental algorithm

for cell enumeration in arrangements [5] and the reverse search [6].4 However, the aforementioned CG algorithms

are studied only for binary phase-shift keying (BPSK) and quaternary phase-shift keying (QPSK) modulations.

From a different perspective, the authors in [10] present analgorithm for the efficient computation of the binary

vector of lengthN that maximizes a rank-D quadratic form with polynomial complexity whereD ≤ N . The

algorithm usesD−1 auxiliary hyperspherical coordinates that partition the multidimensional hypercube into distinct

regions of polynomial size, each of which corresponds to a different candidate vector. Therefore, the method in

[10] reduces the size of the candidate vector set from exponential to polynomial.

In the present work, we modify the algorithm in [10] to serve complex-domain optimization problems such

as, for example, maximum-likelihood sequence detection (MLSD) of uncoded input sequence in the presence of

frequency non-selective/time selective fading with channel state information (CSI) [12], maximum-likelihood (ML)

noncoherent single-input multiple-output (SIMO) detection of arbitrary-orderM -PSK [11], multiuser detection in

M -PSK code-division multiple-access (CDMA) [13]-[16], hard-ML M -PSK detection for multiple-input, multiple-

output (MIMO) channels [17]-[19], blind ML detection of orthogonal space-time block codes (OSTBC) [20] and

quadrature-amplitude modulation (QAM) and PSK codebooks for limited multiple-input multiple-output (MIMO)

beamforming [21]. Specifically, we introduce as many auxiliary hyperspherical coordinates as twice the rank of the

problem reduced by one and partition the multidimensional space into a polynomial-size set of distinct regions,

each of which is associated with a differentM -phase vector. The proposed algorithm turns out to be time and

memory efficient, fully parallelizable and rank-scalable.

The paper is organized as follows. In the following section,we present the original problem and its characteristics.

Section III is devoted to the theoretical developments of the proposed algorithm for the maximization of a rank-

deficient quadratic form with aM -phase vector argument. The implementation of the proposedalgorithm is discussed

in more detail in Section IV. Concluding remarks are found inSection V.

Notation: Upper and lower case bold symbols denote matrices and columnvectors, respectively;xi denotes the

i-th element of vectorx and Ai,j the (i, j)-th entry of matrixA; Ai:j,k:l follows a MATLAB-like notation that

denotes the submatrix ofA that consists of thei-th up toj-th rows andk-th up to l-th columns of it;(·)∗ denotes

conjugation;(·)T transpose;(·)H Hermitian transpose;diag(x) is a diagonal matrix withx on its diagonal;IN×N

the N × N identity matrix;0N×1 the N × 1 vector of all zeros;‖ · ‖ the Frobenius norm;| · | the cardinality of a

set andj ,
√
−1.

4It should be noted that although the incremental algorithm is optimal in terms of the rank-deficient quadratic maximization, it lacks of

parallelizability and memory management efficiency. On theother hand, the reverse search is highly parallelizable, speed and memory efficient

and, as a result, has been utilized for the maximization of a rank-deficient quadratic form over the0/1 field.
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II. PROBLEM STATEMENT

We consider the quadratic expression

sHQs (1)

whereQ ∈ CN×N is a positive (semi)definite matrix ands ∈ AN
M is a M -PSK N -tuple vector argument. We

assumeAM =
{

e
j2πm

M

∣
∣ m = 0, 1, . . . , M − 1

}

as theM -phase alphabet andM ∈ {2k | k = 1, 2 . . .}.

In our problem, we focus on the computation of theM -PSK vector that maximizes the quadratic form

sopt , arg max
s∈AN

M

sHQs. (2)

SinceQ is symmetric, the matrix can be represented in terms of its eigenvalues and eigenvectors using spectral

factorization

Q =

N∑

n=1

λnqnqH
n , λ1 ≥ λ2 ≥ · · · ≥ λN , qn ∈ C

N , ‖qn‖ = 1, qH
n qk = 0, n 6= k, n, k = 1, 2, . . . , N, (3)

whereλn andqn are then-th eigenvalue and eigenvector of the matrixQ, respectively. IfλN > 0, thenQ is full

rank and our problem in (2) becomesNP-hard where the computation ofsopt can be implemented using exhaustive

search over the setAN
M with complexity5 O(MN ) since|AN

M | = MN .

On the other hand, ifλn = λn+1 = · · · = λN = 0, n ∈ {2, 3, . . . , N}, thenQ is rank-deficient. Therefore, in the

following, without loss of generality (w.l.o.g.),Q is assumed a positive (semi)definite complex matrix with rank

D ≤ N , i.e

Q =

D∑

n=1

λnqnqH
n , λ1 ≥ λ2 ≥ · · · ≥ λD > 0. (4)

Furthermore, sinceλn > 0, n = 1, 2, . . . , D, we define the weighted principal component

vn ,
√

λnqn, n = 1, 2, . . . , D, (5)

and the correspondingV ∈ CN×D complex matrix

V ,
[

v1 v2 . . .vD

]

(6)

such thatVVH =
∑D

n=1 vnvH
n =

∑D

n=1 λnqnqH
n = Q. Thus, our initial problem statement in (2) can be

transformed into the following optimization problem

sopt , arg max
s∈AN

M

{

sHVVHs
}

. (7)

We underline thatV is a full rank complex matrix and matricesQ andV have the same rankD ≤ N .

Special emphasis for the binary real case was given recentlyin [10] where an efficient algorithm for the

computation ofsopt ∈ {±1} was developed. In this work, the authors present an algorithm that utilizes auxil-

iary hypershperical coordinates and partitions the multidimensional space into a polynomial-size set of regions

5Since rotated candidate vectorsŝ = sej 2πm
M , m = 0, 1, . . . , M − 1, give the same result in our maximization problem, i.e.ŝHQŝ =

(sej 2πm
M )HQ(sej 2πm

M ) = sHQs, we can focus only on the1
M

-th of the elements ofAN
M . In this case, the complexity of the resulting

maximization quadratic form reduces toO(MN−1), which is still intractable for moderate values ofN .
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|S(VN×D)| =
∑D−1

d=0

(
N−1

d

)
. This set is computed with complexityO(ND) and it is proved that the procedure is

fully parallelizable and rank-scalable.

In parallel, the authors in [22] propose an algorithm using combinatorial geometry where the maximizing argument

of the quadratic formsHQs is computed with polynomial complexity in the lengthN of the parameter vectors if

the rank ofQ is fixed, but in fact exponential inN if observation matrixQ has rank that depends onN . They do

so by applying CG methods to construct a subset ofAN
M whereM ∈ {2, 4} that contains

∑2D−1
i=0

(
N log2(M)−1

i

)

vectors among which one vector is the maximizer ofsHQs. The complexity of the resulting algorithm is of the

orderO(N2D) andO((2N)2D) for BPSK and QPSK, respectively. On the other hand, the proposed method in [11]

relies on the same principles as the CG algorithm devised in [22] but is more general in that it is also applicable to

modulation withM > 4. In that work, the authors do not explicitly recommend an efficient algorithm to generate

the sufficient setT over which the search is performed and identify the incremental algorithm for cell enumeration

in arrangements [5] as a tool for solution.

In the next section, we use the framework presented in [10] and propose a more generalized algorithm for the

maximization of a rank-deficient quadratic form over anyM -ary PSK alphabet whereM ∈ {2k | k = 1, 2 . . . }.

Specifically, we introduce2D−1 auxiliary hyperspherical coordinates and show that there exists a setS(VN×D) ⊂
AN

M which has cardinality|S(VN×D)| =
∑D

d=1

∑d−1
i=0

(
N
i

)(
N−i

2(d−i)−1

)(
M
2

)2(d−i)−2(
M
2 −1

)i

, can be computed in

polynomial time and contains the optimal vectorsopt in (7). The proposed algorithm constructs the reduced-size

candidate set|S(VN×D)| with complexityO((MN
2 )2D) and is fully parallelizable and rank-scalable.

III. E FFICIENT MAXIMIZATION OF RANK -DEFICIENT QUADRATIC FORM WITH A MPSK VECTORARGUMENT

A. Problem Reformulation

SincesHVVHs = ‖VHs‖2, we can rewrite our problem as

sopt , arg max
s∈AN

M

‖VHs‖. (8)

We have constructedV in such a way that it emerges as a full rankN × D matrix with D ≤ N . W.l.o.g., we

assume that each row ofV has at least one nonzero element, i.e.Vn,1:D 6= 01×D, ∀n ∈ {1, 2, . . . , N}. In opposite

case the value of the maximization argumentsn, n ∈ {1, 2, . . . , N}, related with then-th all-zero row ofVN×D

would have no effect on the maximization procedure. Therefore, assuming that we haveK ∈ {1, 2, . . .N} rows of

V equal to01×D, we can simply ignore these rows, reduce the dimension of ourproblem fromN to N −K and

assign arbitrary values to the elements of the maximizing vector related to theK all-zero rows ofV.

Let φi:j , [φi, φi+1, . . . , φj ]
T . To develop an efficient method for the maximization in (8), we introduce2D− 1

auxiliary hyperspherical coordinatesφ1:2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π] and define the hyperspherical real vector



6

with unit radial coordinater,

c̃(φ1:2D−1) ,

















sin φ1

cosφ1 sin φ2

cosφ1 cosφ2 sinφ3

...
[
∏2D−2

i=1 cosφi

]

sin φ2D−1
[
∏2D−2

i=1 cosφi

]

cosφ2D−1

















2D×1

(9)

according to the following lemma. The proof is provided in the Appendix.

Lemma 1: Let φ1:2D−1 ∈ (−π
2 , π

2 ]2D−2× (−π, π]. Then a spherical coordinate system can be defined in a(2D)-

dimensional Euclidean space where each pointx , [x1 x2 . . . x2D]T ∈ R2D can be described by coordinates

consisting of a radial coordinater

r ,
√

x2
1 + x2

2 + · · · + x2
2D, r ≥ 0, (10)

and2D − 1 angular coordinatesφ1:2D−1 as follows

c̃(φ1:2D−1) ,

















r sin φ1

r cosφ1 sinφ2

r cosφ1 cosφ2 sin φ3

...

r
[
∏2D−2

i=1 cosφi

]

sin φ2D−1

r
[
∏2D−2

i=1 cosφi

]

cosφ2D−1

















2D×1

(11)

Furthermore, we define theD × 1 hyperspherical complex vector

c(φ1:2D−1) , c̃2:2:2D(φ1:2D−1) + jc̃1:2:2D−1(φ1:2D−1)

=











cosφ1 sinφ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sinφ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−2

i=1 cosφi

]

cosφ2D−1 + j
[
∏2D−2

i=1 cosφi

]

sin φ2D−1











=











c1(φ1:2)

c2(φ1:4)
...

cD(φ1:2D−1)











D×1

(12)

From Cauchy-Swartz inequality, we observe that for anya ∈ CD,
∣
∣
∣a

Hc(φ1:2D−1)
∣
∣
∣ ≤ ‖a‖‖c(φ1:2D−1)‖ = ‖a‖, (13)

since‖c(φ1:2D−1)‖ =

√
∣
∣c1(φ1:2D−1)

∣
∣
2

+ · · · +
∣
∣cD(φ1:2D−1)

∣
∣
2

= 1. The equality of (13) is achieved if and only
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if φ1, φ2, . . . , φ2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π] are the hyperspherical coordinates of vectora, i.e. if 6

c(φ1:2D−1) =
a

‖a‖ (14)

since
∣
∣
∣aHc(φ1:2D−1)

∣
∣
∣ =

∣
∣
∣aH a

‖a‖

∣
∣
∣ = ‖a‖. Using the above, a critical equality for our subsequent developments is

sopt = arg max
s∈AN

M

‖VHs‖ = arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

∣
∣
∣s

HVc(φ1:2D−1)
∣
∣
∣. (15)

Furthermore, we observe that for anya ∈ CD and anyθ̂ ∈ (−π, π],

ℜ
{

aHc(φ1:2D−1)e
−jθ̂
}

≤
∣
∣
∣a

Hc(φ1:2D−1)
∣
∣
∣ (16)

with equality if and only if θ̂ = θ whereθ , arg
{
aHc(φ1:2D−1)

}
since in this caseℜ

{

aHc(φ1:2D−1)
︸ ︷︷ ︸

∈C

e−jθ̂
}

=

ℜ
{∣
∣aHc(φ1:2D−1)

∣
∣ejθe−jθ̂

}
θ̂=θ
=
∣
∣
∣aHc(φ1:2D−1)

∣
∣
∣.

It can be easily observed that expressions (13) and (16) are simultaneously satisfied with equality if and only

if φ1, φ2, . . . , φ2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π] are the hyperspherical coordinates of vectora and θ̂ = θ. In this

case, (15) can be further transformed into:

sopt = arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

ℜ
{

sHVc(φ1:2D−1)e
−jθ
}

, (17)

whereθ = arg{sHVc(φ1:2D−1)}.

Now, let φ1:2D−1, φ̂1:2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π] and θ ∈ (−π, π]. Then, for anyφ1:2D−1 and θ, there

always existφ̂1:2D−1 such thatc(φ̂1:2D−1) = c(φ1:2D−1)e
−jθ, i.e. φ̂1:2D−1 are the hyperspherical coordinates

of complex vectorc(φ1:2D−1)e
−jθ . Conversely, for anŷφ1:2D−1 and θ, there always existφ1:2D−1 such that

c(φ1:2D−1) = c(φ̂1:2D−1)e
jθ, i.e. φ1:2D−1 are the hyperspherical coordinates of complex vectorc(φ̂1:2D−1)e

jθ.

Therefore, eq. (17) can be equivalently rewritten as

sopt = arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

ℜ
{

sHVc(φ1:2D−1)e
−jθ
}

(18)

= arg max
s∈AN

M

max
φ̂1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

ℜ
{

sHVc(φ̂1:2D−1)
}

(19)

= arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

ℜ
{

sHVc(φ1:2D−1)
}

(20)

since (20) defines a maximization that runs over the whole domain of the hyperspherical coordinates and for

notational convenience, we redefineφ̂1:2D−1 , φ1:2D−1.

Next, we note the following: assume that for specific hyperspherical coordinatesφ1:2D−1 ∈ (−π
2 , π

2 ]2D−2 ×
(−π, π], the expression in (20) gives as a result aM -PSK vectors ∈ AN

M which, in combination withφ1:2D−1,

constitute the tuple
(
s, ∠c(φ1:2D−1)

)
∈ AN

M ×
[

(−π
2 , π

2 ]2D−2 × (−π, π]
]

. We observe that for∀α ∈ arg{AM}

6We observe that the equality of (13) is also achieved for any rotated version ofc(φ
1:2D−1

), i.e. ejωc(φ
1:2D−1

) = ejω a

‖a‖
for any

ω ∈ (−π, π] since
˛

˛

˛
aHejωc(φ1:2D−1)

˛

˛

˛
=

˛

˛

˛
aHejω a

‖a‖

˛

˛

˛
=

˛

˛

˛
ejω‖a‖

˛

˛

˛
= ‖a‖. But, for clarity reasons, we present the case forω = 0 in the

above statement.
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wherearg{AM} =
{

2πm
M

∣
∣ m = 0, 1, . . . , M − 1

}

, the tuple
(
ejαs, ∠ejαc(φ1:2D−1)

)
=
(
ŝ, ∠c(φ̂1:2D−1)

)
∈

AN
M ×

[

(−π
2 , π

2 ]2D−2×(−π, π]
]

gives the same value as
(
s, ∠c(φ1:2D−1)

)
in the maximization metric of (20) since

ℜ
{

ŝHVc(φ̂1:2D−1)
}

= ℜ
{

(ejαs)HVejαc(φ1:2D−1)
}

= ℜ
{

e−jαsHVejαc(φ1:2D−1)
}

= ℜ
{

sHVc(φ1:2D−1)
}

.

This means that, given any tuple
(
s, ∠c(φ1:2D−1)

)
∈ AN

M ×
[

(−π
2 , π

2 ]2D−2 × (−π, π]
]

, we haveM = |AM |
different rotated versions of thisM -phase vector that belong inAN

M and give the same result in the maximization

metric of (20) for∀α. The value ofα is chosen according to the following proposition. The proofis provided in

the Appendix.

Proposition 1: Given a hyperspherical complex vectorc(φ1:2D−1) andφ2D−1 ∈ (−π, π], there always exists an

angleα ∈ arg{AM} that relocates the angular coordinateφ2D−1 of the hyperspherical vector
{

c(φ1:2D−1)e
jα
}

in the interval(− π
M

, π
M

].

Using proposition 1, w.l.o.g., we chooseα ∈ arg{AM} such thatφ2D−1 ∈ (− π
M

, π
M

]. Thus, (20) becomes

sopt = arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(− π

M
, π

M
]
ℜ
{

sHVc(φ1:2D−1)
}

. (21)

Dropping thearg operator and interchanging the maximizations in (21) we obtain the equivalent problem

max
φ1:2D−1∈Φ2D−2×(− π

M
, π

M
]

N∑

n=1

max
sn∈AM

ℜ
{

s∗nVn,1:Dc(φ1:2D−1)
}

, Φ ,
(

− π

2
,
π

2

]

. (22)

B. Decision Functions and Candidate Vector SetS(VN×D)

We observe that the original maximization problem in (8) is decomposed in a set of symbol-by-symbol maxi-

mization rules for a given set of anglesφ1:2D−1 ∈ Φ2D−2 × (− π
M

, π
M

]. For such a set of angles, the maximization

argument of the sum in (22), e.g. symbolsn, depends only on the corresponding row of matrixV. As φ1:2D−1

vary, the decision in favor ofsn is maintained as long as a decision boundary is not crossed. On aM -PSK complex

unit circle, a decision boundaryBk is defined as a complex exponential of the form

Bk = ejπ 2k+1
M , k = 0, 1, . . . ,

M

2
− 1, (23)

that passes through the origin of the complex unit circle andseparates the alphabetAM into two disjoint sets:

Ȧ(k)
M ⊂ AM andÄ(k)

M ⊂ AM where

Ȧ(k)
M =

{

e
j2πm

M

∣
∣
∣ m ∈

{(
k + 1, . . . , k +

M

2

)
mod M

}
}

, (24)

Ä(k)
M =

{

e
j2πm

M

∣
∣
∣ m ∈

{(
k +

M

2
+ 1, . . . , k + M

)
mod M

}
}

, (25)

andȦ(k)
M ∩ Ä(k)

M = {∅}.

Due to the structure ofAM and given the definitions above, theM
2 decision boundaries for the determination of

sn are given by

Vn,1:Dc(φ1:2D−1) = Aejπ 2k+1
M , A ∈ R − {0}, k = 0, 1, . . . ,

M

2
− 1, (26)
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or equivalently

ℑ
{

e−jπ 2k+1
M Vn,1:Dc(φ1:2D−1)

}

= 0, k = 0, 1, . . . ,
M

2
− 1. (27)

For n = 1, 2, . . . , N andk = 0, 1, . . . , M
2 − 1, we can write (27) in matrix form

ℑ






















e−j π
M VN×D

...

e−jπ M−1
M VN×D








︸ ︷︷ ︸

V̂MN
2

×D

c(φ1:2D−1)















= 0MN
2 ×1 ⇔ (28)

ℑ
{[

ℜ(V̂) + jℑ(V̂)
][

c̃2:2:2D(φ1:2D−1) + jc̃1:2:2D−1(φ1:2D−1)
]}

= 0MN
2 ×1 ⇔ (29)

ℜ(V̂)c̃1:2:2D−1(φ1:2D−1) + ℑ(V̂)c̃2:2:2D(φ1:2D−1) = 0MN
2 ×1 ⇔ (30)

ṼMN
2 ×2D c̃(φ1:2D−1) = 0MN

2 ×1 ⇔ (31)

Ṽl,1:2D c̃(φ1:2D−1) = 0, l = 1, 2, . . . ,
MN

2
(32)

where

Ṽ:,1:2:2D−1 = ℜ
(
V̂
)

and Ṽ:,2:2:2D = ℑ
(
V̂
)
. (33)

From the construction of̃VMN
2 ×2D, it can be easily observed that each row ofV is rotated by each of theM2

exponentialse−jπ 2k+1
M that represent the decision boundariesBk, k = 0, 1, . . . , M

2 − 1. Therefore, using the rows

of Ṽ, we can defineN different groupsG(n), n ∈ {1, 2, . . . , N}, where each group is related to then-th row of

V and consists ofM2 rows, each of which comes from a different rotated version ofthe n-th row of V. Thus, we

have

G
(n) ,












Ṽn,1:2D

Ṽ(n+N),1:2D

...

Ṽ(
n+( M

2 −1)N
)
,1:2D












M
2 ×2D

, ∀n ∈ {1, 2, . . . , N}. (34)

For a given pointφ1:2D−1 ∈ (−π
2 , π

2 ]2D−2×(− π
M

, π
M

] and according to (32), each row ofG
(n), n ∈ {1, 2, . . . , N},

defines a decision expression forsn

G
(n)
i,1:2D c̃(φ1:2D−1) ≷ 0, i = 1, 2, . . . ,

M

2
, (35)
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that separatesAM into two distinct sets,Ȧ(i−1)
M andÄ(i−1)

M as defined in (24)-(25), and indicates in which setsn

belongs to. LetR(n)
i ∈ {Ȧ(i−1)

M , Ä(i−1)
M } be the set such thatsn ∈ R(n)

i for i ∈ {1, 2, . . . , M
2 }, according to (35).

Then, the final decision aboutsn is taken by computing the intersection ofR(n)
i for ∀i = 1, 2, . . . , M

2 , i.e.

sn =

M
2⋂

i=1

R(n)
i . (36)

Motivated by the statements above and the inner maximization rule in (22), for eachD × 1 complex vectorv

we define the decision functions that mapsφ1:2D−1 to AM according to

s(vT ; φ1:2D−1) , arg max
s∈AM

ℜ{s∗vT c(φ1:2D−1)}. (37)

Furthermore, for the givenN ×D complex observation matrixV, we can construct the vector decision functions

using (37) where each pointφ1:2D−1 ∈ Φ2D−2 × (− π
M

, π
M

] is mapped to a candidateM -PSK vector according to

s(VN×D; φ1:2D−1) ,











s(V1,1:D; φ1:2D−1)

s(V2,1:D; φ1:2D−1)
...

s(VN,1:D; φ1:2D−1)











=











arg maxs∈AM
ℜ{s∗V1,1:Dc(φ1:2D−1)}

arg maxs∈AM
ℜ{s∗V2,1:Dc(φ1:2D−1)}

...

arg maxs∈AM
ℜ{s∗VN,1:Dc(φ1:2D−1)}











(38)

= arg max
s∈AN

M

ℜ{sHVc(φ1:2D−1)}. (39)

Computings(VN×D; φ1:2D−1) for ∀φ1:2D−1 ∈ Φ2D−2 × (− π
M

, π
M

], we collect allM -phase candidate vectors

into a set

S(VN×D) ,
⋃

φ1:2D−1∈Φ2D−2×(− π
M

, π
M

]

{

s(VN×D; φ1:2D−1)
}

⊆ AN
M . (40)

Sinceφ1:2D−1 take values from the setΦ2D−2 × (− π
M

, π
M

], our problem in (7) becomes

sopt , arg max
s∈S(V)

{

sHVVHs
}

, (41)

i.e. theM -phase candidate vectorsopt that maximizes the expression above belongs into the setS(VN×D).

In the following, we(i) show that|S(VN×D)| =
∑D

d=1

∑d−1
i=0

(
N
i

)(
N−i

2(d−i)−1

)(
M
2

)2(d−i)−2(M
2 − 1

)i
and (ii)

develop an algorithm for the construction ofS(VN×D) with complexityO((MN
2 )2D).

C. Hypersurfaces and Cardinality ofS(VN×D)

According to eq. (32), we can deriveMN
2 different decision rules that separate theΦ2D−2×(− π

M
, π

M
] space (and

moreover the spaceΦ2D−2 × (−π, π]) into distinct regions, each of which is associated with a different M -PSK

candidate vectors. More specifically, the rows of̃VMN
2 ×2D determineMN

2 hypersurfacesH(Ṽ1,1:2D),H(Ṽ2,1:2D),

. . . ,H(ṼMN
2 ,1:2D) that partition the(2D− 1)-dimensional hypercubeΦ2D−2 × (− π

M
, π

M
] into K non-interleaving

cells C1, C2, . . . , CK such that the union of all cells is equal toΦ2D−2 × (− π
M

, π
M

] and the intersection of any

two distinct cells, sayCk, Cj for k 6= j, is empty. Each cellCk corresponds to adistinct sk ∈ AN
M in the sense

that s(VN×D; φ1:2D−1) = sk for any φ1:2D−1 ∈ Ck andsk 6= sj if k 6= j, k, j ∈ {1, 2, . . . , K}.
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Before we present some further results on the behavior of such hypersurfaces, it is illustrative to present some

partitions ofΦ2D−2 × (− π
M

, π
M

] for various values ofD, M andN . As first example, we setD = 2, N = 4 and

M = 8 and draw an arbitrary rank-2 complex matrixV4×2 with Vn,1:2 6= 01×2, n = 1, 2, ..., N . Since we study

the caseφ2D−1 ∈ (− π
M

, π
M

], we are interested only in cells that belong into the regionφ1:3 ∈ Φ2 × (−π
8 , π

8 ].

According to the decision boundary rule in (32), we plot in Fig. 1(a) the hypersurfaceH(Ṽ1,1:4) described by

the expressionφ1 = tan−1
(

− Ṽ(1,2:4) c̃(φ2:3)

Ṽ(1,1)

)

= tan−1
(

− Ṽ(1,2) sin φ2+Ṽ(1,3) cos φ2 sin φ3+Ṽ(1,4) cos φ2 cos φ3

Ṽ(1,1)

)

that

originates from the first row ofV4×2. As (35) states, the hypersurface creates two non-overlapping regions in

the three-dimensional space. In Figs. 1(b) and 1(c), we add two more hypersurfaces,H(Ṽ2,1:4) andH(Ṽ3,1:4),

originating from the second and third row ofV4×2, respectively. We observe that the hypersurfaces intersect to a

single pointφ(V4×2; {1, 2, 3}) and the three-dimensional space is partitioned into regions (cells) each of which

corresponds to a distinctM -phase candidate vectors ∈ S(V4×2).7

Two basic properties of such intersections are presented inthe following proposition. The proof is given in the

Appendix.

Proposition 2: Let ṼMN
2 ×2D be a real matrix constructed from a rank-D complex matrixVN×D with Vn,1:D 6=

01×D, ∀n ∈ {1, 2, . . .N}. The following hold true.

(i) Each subset of
{

H(Ṽ1,1:2D),H(Ṽ2,1:2D), . . . ,H(ṼMN
2 ,1:2D)

}

that consists of2D−1 hypersurfaces has either

a single or uncountably many intersections inΦ2D−2 × (− π
M

, π
M

].

(ii) Each combination of2D − 1 hypersurfaces from the set
{

H(Ṽ1,1:2D),H(Ṽ2,1:2D), . . . ,H(ṼMN
2 ,1:2D)

}

has

a unique intersection point that constitutes a vertex of a cell if and only if no more than two hypersurfaces

originate from the same row of the matrixV.

Let I2D−1 , {i1, i2, . . . , i2D−1} ⊂ {1, 2, . . . , MN
2 } denote the subset of2D − 1 indices that correspond to

hypersurfacesH(Ṽi1,1:2D),H(Ṽi2,1:2D), . . . , H(Ṽi2D−1,1:2D). We detect the following cases:

(a) Intersections of2D − 1 hypersurfaces where at most two surfaces originate from thesame row ofV.

(b) Intersections of2D − 1 hypersurfaces where at least three surfaces originate fromthe same row ofV.

According to Proposition 3, Part(ii), combinations of the form(b) do not have a unique intersection point but

infinitely many intersection points; thus no cell is createdand these combinations can be ignored. Extending the

previous example, we present in Fig. 2 the intersection ofM
2 hypersurfaces that originate from the first row of

V4×2 and are related with the decision of arguments1. Such an ensemble of hypersurfaces partitions the hypercube

Φ2D−2 × (− π
M

, π
M

] into M regions, each of which is mapped to a unique element of theAM alphabet. A very

important observation for our subsequent developments is presented in the following corollary.

Corollary 1: All M
2 hypersurfaces originating from the same row ofV intersect to a common axis.

For example, in Fig. 2 all hypersurfaces have uncountably many intersection points that form a common line

intersection. The dimensionality of the common axis depends on the rankD of the observation matrixV and equals

7For visualization purposes, we do not plot the complete partition.
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(a) (b)

B

A

C

φ (V4×2; {1, 2, 3})

(c)

E

B

C

DA

φ (V4×2; {2, 4, 8, 12, 16})

(d)

Fig. 1.

to 2(D − 1). Thus, hypersurfaces coming from the same row ofVN×D intersect to a common one-dimensional

line if D = 2, to a common four-dimensional hyperplane ifD = 3, etc.8

On the other hand, combinations of the form(a) have a unique intersection pointφ(VN×D; I2D−1) ∈ Φ2D−2×
(− π

M
, π

M
] that leadsQ cells, sayC1(VN×D; I2D−1), C2(VN×D; I2D−1), . . . , CQ(VN×D; I2D−1), Q ∈

{

(M
2 −

1)0, (M
2 −1)1, . . . , (M

2 −1)D−1
}

and each cell is associated with a distinctM -phase candidate vectorsq(VN×D; I2D−1),

q = 1, 2, . . . ,Q, in the sense thatsq(VN×D; φ2D−1) = sq(VN×D; I2D−1) for all φ1:2D−1 ∈ Cq(VN×D; I2D−1)

andφ(VN×D; I2D−1) is a single point ofCq(VN×D; I2D−1) whereφ2D−1 is minimized. We underline that not

any such combination intersects into the region of interestΦ2D−2 × (− π
M

, π
M

]; thus there are combinations of

hypersurfaces that intersect at a single pointφ(VN×D; I2D−1) where φ2D−1 /∈ (− π
M

, π
M

]. As described later,

8For D ≥ 3, we cannot visualize the resulting partitions and the common intersection axes.
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Fig. 2.

any such case can be ignored since there always exists a combination of hypersurfaces withφ(VN×D; I2D−1) ∈
Φ2D−2 × (− π

M
, π

M
] which “leads” cells associated with equivalent candidate vectors. The number of cellsQ “led”

by an intersection point depends on the number of participating pairs of hypersurfaces that originate from the same

row of matrix V. More specifically,

• if none pairs of hypersurfaces come from the same row ofV (i.e. all hypersurfaces originate from different

rows of V), then the intersection point “leads” only one cell,

• if just one pair of hypersurfaces comes from the same row ofV, then the intersection point “leads”
(

M
2 − 1

)

cells,

• . . .

• if D−1 pairs of hypersurfaces come from the same row ofV, then the intersection point “leads”
(

M
2 −1

)D−1

cells.

To better understand the above statements, we present two different examples. For this purpose, we consider

the same complex matrixV ∈ CN×D as the previous example whereN = 4, D = 2 and M = 8 and assume

the intersection depicted in Fig. 1(c). Since all hypersurfaces participating in the intersection come from different

rows of V there is no other hypersurface from the setH(Ṽ1,1:2D),H(Ṽ2,1:2D), . . . ,H(ṼMN
2 ,1:2D) that passes
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Fig. 3.

through this intersection point.9 Let φ̂3 = argφ3
{φ(V4×2; {1, 2, 3})}. In Figs. 3([a b c]), we plot the hypersurfaces

depicted in Fig. 1(c) forφ3 = φ̂3 and in Fig. 3(d), we sketch the same hypersurfaces forφ3 = φ̂3 + dφ wheredφ

is an arbitrary small positive quantity. We observe that asφ3 increases, curven = 3 moves away from intersection

φ(V4×2; {1, 2}), thus creating a new cell [see the highlighted cell in Fig. 3(d)] that corresponds to adistinct

sk ∈ AN
M .

To illustrate an example with one pair of hypersurfaces originating from the same row of the observation matrix,

we assume the intersectionφ(V4×2; {2, 6, 3}) of two hypersurfacesH(Ṽ2,1:4),H(Ṽ6,1:4) coming from the second

row of V4×2and one hypersurfaceH(Ṽ3,1:4) from the third row ofV4×2 and plot in Figs. 4([a b c]) these

hypersurfaces (n = 1, n = 2 and n = 3, respectively) forφ3 = φ̂3 where φ̂3 = argφ3
(φ(V4×2; {2, 6, 3}). But,

as corollary 1 states, since allM
2 hypersurfaces originating from a specific row ofVN×D intersect at a common

9In the sequel, we consider the most computationally demanding case of distinct intersections.
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Fig. 4.

axis, we observe that allM2 hypersurfacesH(G
(2)
:,1:4) = {H(Ṽ2,1:4),H(Ṽ6,1:4),H(Ṽ10,1:4),H(Ṽ14,1:4)} originating

from the second row ofV4×2 pass through the intersection pointφ(V4×2; {2, 6, 3}); these additional curves are

depicted with dashed lines in Fig.4(c) [seen = 4 andn = 5 respectively]. Asφ3 increases, theM2 hypersurfaces

continue to intersect to a single pointφ(V4×2; {2, 6, 10, 14}) but the hypersurfacen = 3 curves away, thus creating

M
2 − 1 new cells. These cells are highlighted in Fig. 4(d).

Since each cell is associated with a distinctM -PSK candidate vector, we can collect all these vectors into

J (VN×D) ,
⋃

I2D−1⊂{1,2,..., MN
2 },

φ(VN×D;I2D−1)∈Φ2D−2×(− π
M

, π
M

]

{

s(VN×D; I2D−1)
}

⊆ AN
M . (42)

Several properties of the decision functions(VN×D; φ1:2D−1) are presented in the following proposition. The proof

is provided in the Appendix.

Proposition 3: For anyφ1:2D−1 ∈ Φ2D−2 × (− π
M

, π
M

] the following hold true:
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(i) s(VN×D; φ1:2D−2,− π
M

) = ej 2π
M s(VN×D; φ

′

1:2D−2,
π
M

) for someφ
′

1:2D−2 ∈ Φ2D−2,

(ii) s(VN×D; φ1:2D−3,
π
2 , φ2D−1) = s(VN×(D−1); φ1:2D−3),

(iii) s(VN×D; φ1:2D−3,−π
2 , φ2D−1) = −s(VN×D;−φ1:2D−3,

π
2 , φ

′

2D−1), ∀φ
′

2D−1 ∈ (− π
M

, π
M

],

(iv) s(VN×D; φ1:2D−3,±π
2 , φ2D−1) = s(VN×D; φ1:2D−3,±π

2 , φ
′

2D−1), ∀φ
′

2D−1 ∈ (− π
M

, π
M

].

Taking into consideration only cells into the region of interestΦ2D−2 × (− π
M

, π
M

], we observe that

|J (VN×D)| =
D−1∑

i=0

(
N

i

)(
N − i

2(D − i) − 1)

)
M

2

2(D−i)−2
(

M

2
− 1

)i

, (43)

i.e. there are|J (VN×D)| candidate vectorss in Φ2D−2×(− π
M

, π
M

], associated with cells each of which minimizes

φ2D−1 component at a single point that constitutes the intersection of the corresponding2D− 1 hypersurfaces. We

also note that there exist cells that are not associated withsuch a vertex and contain uncountably many points of

the form (φ1, . . . , φ2D−2,− π
M

). However, according to Proposition 3, Part(i), every such a cell can be ignored

since there exists another cell that contains points of the form (φ
′

1, . . . , φ
′

2D−2,
π
M

), is associated with a rotated

equivalent candidate vector and is “led” by a vertex-intersection that lies inΦ2D−2 × (− π
M

, π
M

] (thus, it belongs

to J (VN×D)) unless the initial cell contains a point withφ2D−2 = ±π
2 , as Proposition 3, Part(iv) mentions.

For example, in Fig. 1(c) such cells are identified forφ3 = − π
M

M=8
= −π

8 . TheseM -phase candidate vectors are

equivalent rotated versions of the vectors determined forφ3 = π
8 , hence the former ones can be ignored.

In addition, if φ2D−2 = ±π
2 for a particular cell, then this cell “exists” for anyφ2D−1 ∈ (− π

M
, π

M
], implying

that we can ignoreφ2D−1 (or set it to an arbitrary valueφ
′

2D−1), setφ2D−2 to ±π
2 , and consider cells defined on

Φ2D−3 ×{±π
2 }× {φ′

2D−1}. Finally, due to Proposition 3, Part(iii), the cells that are defined whenφ2D−2 = −π
2

are associated with vectors which are opposite to the vectors that are associated with cells defined whenφ2D−2 = π
2 .

Therefore, we can ignore the caseφ2D−2 = −π
2 , set φ2D−2 = π

2 , ignoreφ2D−1, and, according to Proposition

3, Part (ii), identify the cells that are determined by thereduced-sizematrix VN×(D−1) over the hypercube

Φ2D−4 × (− π
M

, π
M

]. As an example, in Fig. 1(c) we setφ3 = π
8 andφ2 = π

2 and examine the cells that appear on

the leftmost vertical edge of the cube forφ1 ∈ (−π
8 , π

8 ].

Hence,S(VN×D) = J (VN×D) ∪ S(VN×(D−1)) and by induction,

S(VN×d) = J (VN×d) ∪ S(VN×(d−1)), d = 2, 3, . . . , D, (44)

which implies that

S(VN×D) = J (VN×D) ∪ J (VN×(D−1)) ∪ · · · ∪ J (VN×1) (45)

=
D−1⋃

d=0

J (VN×(D−d)). (46)
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As a result, the cardinality ofS(VN×D) is

|S(VN×D)| = |J (VN×D)| + |J (VN×(D−1))| + · · · + |J (VN×1)| (47)

=

D∑

d=1

d−1∑

i=0

(
N

i

)(
N − i

2(d − i) − 1

)(M

2

)2(d−i)−2(M

2
− 1
)i

(48)

= O
(
(MN

2

)2D−1
)

. (49)

We observe that in caseQ is full rank, i.e.D = N , the expression (48) returns as many elements as the cardinality

of the setAN−1
M , i.e. |AN−1

M | = |S(VN×D)|, as the following proposition states.10 The proof is provided in the

Appendix.

Proposition 4: If D = N , then the computation ofsopt is NP-hard and can be implemented by applying

exhaustive search or the proposed algorithm among all elements ofAN−1
M since|AN−1

M | = |S(VN×D)| = MN−1.

To summarize the results, we have utilized2D−1 auxiliary hyperspherical coordinates, partitioned the hypercube

Φ2D−2 × (− π
M

, π
M

] into a finite number of cells that are associated with distinct M -phase vectors which constitute

S(VN×D) ⊆ AN
M and proved thatsopt ∈ S(VN×D). Therefore, the initial problem in (8) has been converted into

numerical maximization of‖VHs‖ among all vectorss ∈ S(VN×D).

IV. A LGORITHMIC DEVELOPMENTS

In this section, we present the basic steps of the proposed algorithm for the construction of|S(VN×D)| for

arbitraryN, D ∈ N, D ≤ N andM ∈ {2k | k = 1, 2 . . .}. Let Cd be the set that contains all|J (VN×d)| combina-

tions of2d− 1 hypersurfaces that intersect to a single intersection point in Φ2d−2 × (− π
M

, π
M

] for d = 1, 2, . . . , D,

i.e. I2d−1 = {i1, i2, . . . , i2d−1} ∈ Cd if and only if the intersection of hypersurfacesH(Ṽi1,1:2d),H(Ṽi2,1:2d),

. . . ,H(Ṽi2d−1,1:2d) constitutes a vertex of one or more cells inΦ2d−2 × (− π
M

, π
M

]. Furthermore, we define

NI2d−1
⊂ {1, 2, . . . , N} as the set of indices of rows fromV related with the2d− 1 hypersurfaces that participate

in the intersection pointφ(VN×d; I2d−1). From eq. (46), we observe that the initial problem of the determination of

|S(VN×D)| can be divided into smaller parallel construction problemsof |J (VN×d)| for d = 1, . . . , D. Moreover,

the construction of|J (VN×d))| can be fully parallelized since the candidate vector(s)s(VN×d; I2d−1) can be

computed independently for eachI2d−1 ∈ Cd. Therefore, in the sequel we concentrate only on the computation of

the candidate vector(s)s(VN×d; I2d−1), ∀I2d−1 ∈ Cd and∀d ∈ {1, 2, . . . , D}.

For the following statements, we assume a certain value ford ∈ {1, 2, . . . , D} and a certain set of indices

I2d−1 = {i1, i2, . . . , i2d−1} ∈ Cd. According to the derivations in the previous section, the combination of hyper-

surfacesH(Ṽi1,1:2d),H(Ṽi2,1:2d), . . . ,H(Ṽi2d−1,1:2d) intersects at a single pointφ(VN×d; I2d−1) that “leads”Q
cellsC1(VN×d; I2d−1), C2(VN×d; I2d−1), . . . , CQ(VN×d; I2d−1) associated withQ differentM -phase candidate

10According to the cardinality derivation, we have ignored rotated candidate vectors and thus the cardinality of the candidate set drops from

|AN
M | to |AN−1

M
|.
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vectorssq(VN×d; I2d−1), q = 1, 2, . . . ,Q. As already stated, the number of cellsQ depends on the numberp

of pairs of participating hypersurfaces passing throughφ(VN×d; I2d−1) that originate from the same row ofV

and equals to(M
2 − 1)p. To identify sq(VN×d; I2d−1), q ∈ {1, 2, . . . ,Q}, we detect one-by-one itsN elements

separately according to the following rules11:

(i) For anyn ∈ {1, 2, . . . , N} andn /∈ NI2d−1
, the corresponding element of candidate vectorsq(VN×d; I2d−1)

maintains its value atφ(VN×d; I2d−1), hence it is determined by

sq,n(VN×d; I2d−1) = s(Vn,1:d; φ(VN×d; I2d−1)), (50)

for ∀q ∈ {1, 2, . . . ,Q}.

(ii) For anyn ∈ NI2d−1
such that there is only one hypersurface, sayH(Ṽik,1:2d), that is related with then-

th row of V and participates in the intersection, the corresponding element ofsq(VN×d; I2d−1) cannot be

determined atφ(VN×d; I2d−1). However, it maintains its value at the intersection of the remaining2d −
2 hypersurfacesH(Ṽi1,1:2d−1),H(Ṽi2,1:2d−1), . . . ,H(Ṽik−1,1:2d−1),H(Ṽik+1,1:2d−1) . . . ,H(Ṽi2d−1,1:2d−1),

hence it is determined by

sq,n(VN×d; I2d−1) = s(Vn,1:d; φ(VN×d; I2d−1 − {ik})), (51)

whereℑ{Vn,d} = 0 for ∀q ∈ {1, 2, . . . ,Q}.

(iii) For any n ∈ NI2d−1
such that there is a pair of hypersurfaces with indicesik, im ∈ I2d−1, ik 6= im,

say H(Ṽik ,1:2d),H(Ṽim,1:2d) ∈ H(G
(n)
:,1:2d) that participate in the intersection, the corresponding element

of sq(VN×d; I2d−1) cannot be determined atφ(VN×d; I2d−1). However, it is observed that the value ofsn in

the associated cellCq(VN×d; I2d−1) can be evaluated by computing the ambiguities at the intersection points

of the remaining2d− 3 hypersurfacesH(Ṽi1,1:2d−1), H(Ṽi2,1:2d−1), . . . ,H(Ṽik−1,1:2d−1), H(Ṽik+1,1:2d−1)

H(Ṽim−1,1:2d−1), H(Ṽim+1,1:2d−1) . . . ,H(Ṽi2d−1,1:2d−1) with the hypersurfaces that “construct” the cell

Cq(VN×d; I2d−1), say12 H(Ṽ
i
′

k
,1:2d

), H(Ṽi
′

m,1:2d) ∈ H(G
(n)
:,1:2d), and finding the commonM -PSK element

of these ambiguities. Hence it is determined by

sq,n(VN×d; I2d−1) =

s
(

Vn,1:d; φ(VN×d; I2d−1 − {ik, im}) + {i′k}
) ⋂

s
(

Vn,1:d; φ(VN×d; I2d−1 − {ik, im}) + {i′m}
)

,

(52)

whereℑ{Vn,d} = 0 for ∀q ∈ {1, 2, . . . ,Q}.

The above statements suggest the following construction ofsq(VN×d; I2d−1), q ∈ {1, 2, . . . ,Q}. Assuming dis-

tinct intersections of hypersurfaces, the2d−1 participating hypersurfacesH(Ṽi1,1:2d),H(Ṽi2,1:2d), . . . ,H(Ṽi2d−1,1:2d)

pass through the “leading” vertexφ(VN×d; I2d−1) of cell Cq(VN×d; I2d−1). If n ∈ {1, 2, . . . , N} \ NI2d−1
, i.e.,

none of the2d − 1 hypersurfaces originates from then-th row of V, then none of the hypersurfacesH(G
(n)
:,1:2d)

11In the following rules, we denote then-th element ofsq assq,n.

12We underline thati
′

k
, i

′

m may be equal toik , im.
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passes throughφ(VN×d; I2d−1), implying that the decision forsq,n with respect to the partition of the hy-

percubeΦ2d−2 × (− π
M

, π
M

] by H(G
(n)
:,1:2d) is the same as the decision forsq,n at any point of the cell of

interestCq(VN×d; I2d−1) with respect to the same partition. As a result, the value of the correspondingM -phase

elementsq,n(VN×d; I2d−1) is well-determined at the “leading” vertex, as (50) states.For example, in Fig. 1(c),

s4(V4×2; {1, 2, 3}) is well determined atφ(V4×2; I2d−1) through (50) and maintains its value in the associated

cell C(V4×2; {1, 2, 3}).
On the other hand, ifn ∈ NI2d−1

such that there is only one hypersurface, sayH(Ṽik,1:2d) related to the

n-th row of V, then, H(Ṽik,1:2d) passes throughφ(VN×d; I2d−1) leading to an ambiguous decision about

s(Vn,1:d; φ(VN×d; I2d−1)) between two neighbouringM -phase elements of theM -PSK alphabet, separated by

the decision boundaryB related toH(Ṽik ,1:2d). For example, in Fig. 1(c), the hypersurfacesH(Ṽ1,1:4), H(Ṽ2,1:4)

andH(Ṽ3,1:4) pass throughφ(V4×2; {1, 2, 3}) leading to ambiguous decisions ofs(V1,1:2; φ(V4×2; {1, 2, 3})),
s(V2,1:2; φ(V4×2; {1, 2, 3})) ands(V3,1:2; φ(V4×2; {1, 2, 3})). In such case, ambiguity is resolved if we exclude

H(Ṽik,1:2d) and consider the intersection of the remaining2d− 2 hypersurfaces atφ2d−1 = π
M

. Indeed, the value

of sq,n at any point of the cell of interestCq(VN×d; I2d−1) with respect toH(Ṽik,1:2d) is the same as the value

of sq,n at φ(VN×d; I2d−1−{ik}) with respect to the same hypersurface. Therefore, the valueof the corresponding

M -PSK elementsq,n(VN×d; I2d−1) is well-determined through (51). For example, in Fig. 1(c) the ambiguity

with respect tos1(V4×2; {1, 2, 3}), s2(V4×2; {1, 2, 3}) ands3(V4×2; {1, 2, 3}) at intersectionφ(V4×2; {1, 2, 3})
is resolved through (51) atC = φ(V4×2; {2, 3}), A = φ(V4×2; {1, 3}) andB = φ(V4×2; {1, 2}), respectively.

Finally, if n ∈ NI2d−1
such that there is a pair of hypersurfaces, sayH(Ṽik,1:2d),H(Ṽim,1:2d), originating from

the n-th row of V, then, according to corollary 1, all hypersurfaces ofH(G
(n)
:,1:2d) pass throughφ(VN×d; I2d−1).

Thus, φ(VN×d; I2d−1) is a point on the common intersection axis of the family of hypersurfacesH(G
(n)
:,1:2d)

and thus we have ambiguity forsq,n among all elements of theM -PSK alphabet (there is no preference be-

tween two specificM -PSK symbols like in case(ii)). The ambiguity is resolved if we exclude hypersurfaces

H(Ṽik,1:2d),H(Ṽim,1:2d) and compute the intersection point of the remaining2d − 3 hypersurfaces with each

of the surfaces fromH(G
(n)
:,1:2d) that “construct” the cellCq(VN×d; I2d−1) at φ2d−1 = π

M
. Since each cell

Cq(VN×d; I2d−1), q = 1, 2, . . . ,Q, is “constructed” by hypersurfaces fromH(G
(n)
:,1:2d) rotated by consecutive

decision boundariesB, these interesection points lead to ambiguous decision sets aboutsq,n between neighbouring

elements of theM -PSK alphabet. The intersection of these sets determines the value of the correspondingM -

phase elementsq,n(VN×d; I2d−1), as (52) states. For example, in Fig. 1(d), we use an arbitraty rank-2 complex

matrix V4×2 for M = 8 and depict the intersection of hypersurfacesH(Ṽ4,1:4), H(Ṽ8,1:4) andH(Ṽ2,1:4) [curves

n = 1, n = 2 and n = 3 respectively] whereH(Ṽ4,1:4), H(Ṽ8,1:4) ∈ H(G
(4)
:,1:4). According to corollary 1, the

remaining hypersurfacesH(Ṽ12,1:4), H(Ṽ16,1:4) of the setH(G
(4)
:,1:4) pass throughφ(V4×2; {2, 4, 8}) [depicted

asn = 4, n = 5 respectively]. We observe thatφ(V4×2; {2, 4, 8}) “leads” (M
2 − 1) cells, described by the points

{A, B, E, φ(V4×2; {2, 4, 8})}, {B, C, E, φ(V4×2; {2, 4, 8})} and{C, D, E, φ(V4×2; {2, 4, 8})}. Each one of the

aforementioned cells is related with a differentM -PSK candidate vector. Taking as example the cell that contains

the points{A, B, E, φ(V4×2; {2, 4, 8})}, the ambiguity ofs4(V4×2; {2, 4, 8}) in this cell is resolved by computing
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the ambiguity decision sets at pointsA andB with respect tos4 and finding the commonM -PSK element of these

sets, as (52) states. The same procedure is repeated for the other two cells.

To obtain the vector of hyperspherical coordinatesφ(VN×d; I2d−1), I2d−1 ∈ Cd efficiently, we just need to

compute the zero right singular vector of̃VI2d−1,1:2d and calculate its spherical coordinates. More specifically,

according to the proof of Proposition 2, Part(i), for a full-rank(2d−1)×2d real matrix, the system that represents

the intersection ofH(Ṽi1,1:2d),H(Ṽi2,1:2d), . . . ,H(Ṽi2d−1,1:2d), i.e.

ṼI2d−1,1:2dc̃(φ1:2d−1) = 0(2d−1)×1, (53)

has a unique solutionφ(VN×d; I2d−1) ∈ Φ2d−2 × (− π
M

, π
M

] which consists of the hyperspherical coordinates of

the zero right singular vector of̃VI2d−1,1:2d. Therefore, to obtainφ(VN×d; I2d−1) we just need to compute the

zero right singular vector of̃VI2d−1,1:2d and calculate its hyperspherical coordinates.

The complete algorithm for the construction ofS(VN×D) is provided in Table I. The algorithm visits inde-

pendently|S(VN×D)| = O
(
(MN

2 )2D−1
)

intersections and computes the candidateM -phase vector(s) associated

with each intersection. The calculation of the zero right singular vector ofṼI2d−1,1:2d costsO(d2), the conversion

to spherical coordinates costsO(d) and the operationmaxs∈AM
ℜ{s∗Vn,1:dc(φ1:2d−1)} costsO(d). For each

I2d−1 ∈ Cd, the cost of the algorithm isO
(

MN
2

)
. Therefore the overall complexity of the algorithm for the

computation ofS(VN×D) with fixed D ≤ N becomesO
(
(MN

2 )2D−1
)
O
(

MN
2

)
= O

(
(MN

2 )2D
)
. We recall that

the corresponding complexity of the algorithm proposed in [22] is of the orderO(N2D) andO
(
(2N)2D

)
for BPSK

and QPSK, respectively.

In Fig. 5 we draw the complexity of the proposed algorithm (blue line) and the complexity of the exhaustive

search (green line) forD = 2, M = 8, 32 (Fig. 5(a)-(b)) and forD = 3, M = 8, 32 (Fig.5(c)-(d)). We observe that as

the sequence length grows, the complexity of the exhaustivesearch grows exponentially and becomes impractically

large even for moderate sequence lengths. Whereas, the complexity of the proposed algorithm grows polynomially

with respect toN , is much faster than exhaustive search and remains practical for moderate sequence lengths.

We observe that the computation of the candidate vectors ofS(VN×D) is performed independently from cell

to cell, which implies that there is no need to store the data that have been used for each candidate and we only

have to store the “best” vector that has been met. Therefore,the proposed method is fully parallelizable and its

memory utilization is efficiently minimized, in constrast to the incremental algorithm in [5]. We also mention that

if the initial problem is of a high rank that makes the optimization intractable, then the matrixQ in (2) can be

approximated by keeping theD strongest principal components of it. In such a case, as seenin (46), the proposed

method is rank-scalable.

V. CONCLUSION

In this paper, we presented a more generalized algorithm forthe computation of the maximizing argument of a

rank-deficient quadratic form over anyM -ary PSK alphabetAN
M . We do this by utilizing auxiliary hyperspherical

coordinates that separate the multidimensional space intoa polynomial-size set of cells, each of which is associated
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Fig. 5. Proposed algorithm complexity (blue line) Vs. exhaustive search complexity (green line).

with a distinct candidate vector. We have showed that its computational complexity is polynomial in the lengthN of

the maximizing argument if the rank of the observation matrix Q in the quadratic formsHQs is independent ofN .

We continued by developing an algorithm that computes the set S(VN×D) of candidate vectors in polynomial time,

is fully parallelizable, rank-scalable and time and memoryefficient. Thus, without loss of optimality, the proposed

algorithm serves as an efficient alternative approach to exhaustive search for the computation of the maximizing

M -ary phase vectors in the quadratic formsHQs.
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APPENDIX

A. Proof of Lemma 1

Assume arbitrary vectorx ∈ R2D, x = [x1 x2 . . . x2D]T with radial distance‖x‖ =
√

x2
1 + x2

2 + · · · + x2
2D =

r, r ≥ 0. We want to prove that there are unique hyperspherical coordinatesφ1:2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π]

that can fully describe vectorx. At first, assume that the spherical coordinates ofx are

c̃(φ1:2D−1) ,

















r sin φ1

r cosφ1 sinφ2

r cosφ1 cosφ2 sin φ3

...

r
[
∏2D−2

i=1 cosφi

]

sin φ2D−1

r
[
∏2D−2

i=1 cosφi

]

cosφ2D−1

















2D×1

(54)

Then

c̃(φ1:2D−1) = x ⇒

















r sin φ1

r cosφ1 sin φ2

r cosφ1 cosφ2 sin φ3

...

r
[
∏2D−2

i=1 cosφi

]

sin φ2D−1

r
[
∏2D−2

i=1 cosφi

]

cosφ2D−1

















=

















x1

x2

x3

...

x2D−1

x2D

















⇒

















φ1

φ2

φ3

...

φ2D−1

φ2D−1

















=



















sin−1
(

x1

r

)

sin−1
(

x2

r cos φ1

)

sin−1
(

x3

r cos φ1 cos φ2

)

...

sin−1
(

x2D−1

r

[
Q2D−2

i=1 cos φi

]

)

cos−1
(

x2D

r

[
Q2D−2

i=1 cos φi

]

)



















(55)

We observe that given the fact that coordinatesφ1:2D−2 lie in (−π
2 , π

2 ]2D−2, the values ofφ1, φ2, . . . , φ2D−2 can

be uniquely determined using the equations in (55) sequentially, i.e. φ1 can be determined fromsin−1
(

x1

r

)

, φ2

can be determined fromsin−1
(

x2

r cos φ1

)

using previously computedφ1, etc. But the value ofφ2D−1 cannot be

determined uniquely just using one of the two equations ofφ2D−1. More specifically, using equationφ2D−1 =

sin−1
(

x2D−1

r

[
Q2D−2

i=1 cos φi

]

)

, we have ambiguity between two solutions ofφ2D−1 since φ2D−1 ∈ (−π, π]. But the

ambiguity is resolved if we simultaneously solve the last equation in (55) and choose asφ2D−1 the intersection of

the solutions provided by the last two equations. Therefore, any vectorx ∈ R2D can be uniquely described using

unique hyperspherical coordinates as defined in (54) and thus c̃(φ2D−1) is the hyperspherical coordinate vector that

describes the whole(2D)-dimensional Euclidean space.
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B. Proof of Proposition 1

Let c(φ1:2D−1) be a hyperspherical coordinate complex vector as defined in (12) for arbitrary hyperspherical

coordinatesφ1:2D−1 ∈ (−π
2 , π

2 ]2D−2 × (−π, π]. We are interested in proving that there always exists an angle

α ∈ arg{AM} that relocates the angular coordinateφ2D−1 of the hyperspherical vector
{

c(φ1:2D−1)e
jα
}

in the

interval ( π
M

, π
M

]. Since we are interested only in coordinateφ2D−1 of the rotated complex coordinate vector

c(φ1:2D−1)e
jα =











c1(φ1:2)

c2(φ1:4)
...

cD(φ1:2D−1)











ejα =











cosφ1 sin φ2 + j sinφ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sinφ3

...
[
∏2(D−1)

i=1 cosφi

]

cosφ2D−1 + j
[
∏2(D−1)

i=1 cosφi

]

sin φ2D−1











ejα

we focus on the last rowcD(φ1:2D−1)e
jα =

(
[
∏2(D−1)

i=1 cosφi

]

cosφ2D−1 + j
[
∏2(D−1)

i=1 cosφi

]

sin φ2D−1

)

ejα.

Using Euler’s formula,cD(φ1:2D−1) can be transformed intocD(φ1:2D−1) = ℜ{cD(φ1:2D−1)}+jℑ{cD(φ1:2D−1)} =

rejω wherergeq0 and

ω = arctan

(

ℑ{cD(φ1:2D−1)}
ℜ{cD(φ1:2D−1)}

)

= arctan

(
[
∏2(D−1)

i=1 cosφi

]

sin φ2D−1
[
∏2(D−1)

i=1 cosφi

]

cosφ2D−1

)

= arctan

(

sin φ2D−1

cosφ2D−1

)

= arctan
(

tanφ2D−1

)

= φ2D−1.

Thus, cD(φ1:2D−1) = rejφ2D−1 . Multiplying this term with ejα we get: cD(φ1:2D−1)e
jα = rej(φ2D−1+α) =

rej(φ̂2D−1). Now, sinceα ∈ arg{AM} =
{

2πm
M

∣
∣ m = 0, 1, . . . , M − 1

}

, we observe that multiplication of

cD(φ1:2D−1) with ejα leads to relocation ofφ2D−1 of c(φ1:2D−1) into one of theM slices of length2π
M

described

in the set
{
(

− π

M
,

π

M

]

,
( π

M
,
3π

M

]

, . . . ,
((2M − 5)π

M
,
(2M − 3)π

M

]

,
( (2M − 3)π

M
,
(2M − 1)π

M

]
}

.

W.l.o.g., we choose the value ofα such that the last coordinate of the rotated hypersphericalcomplex vector
{

c(φ1:2D−1)e
jα
}

belongs in the interval
(
− π

M
, π

M

]
.

C. Proof of Proposition 2

(i) ConsiderI2D−1 = {i1, i2, . . . , i2D−1} and2D−1 hypersurfacesH(Ṽi1,1:2D),H(Ṽi2,1:2D), . . . , H(Ṽi2D−1,1:2D)

that correspond to2D − 1 rows of ṼMN
2 ×2D. Since each hypersurfaceH(Ṽi,1:2D) is described by equation

Ṽi,1:2Dc(φ1:2D−1) = 0, i ∈ {i1, i2, . . . , i2D−1}, their intersection(s) will satisfy the system of equations










Ṽi1,1:2Dc(φ1:2D−1) = 0

Ṽi2,1:2Dc(φ1:2D−1) = 0
...

Ṽi2D−1,1:2Dc(φ1:2D−1) = 0











.
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The above system is rewritten as̃VI2D−1,1:2Dc(φ1:2D−1) = 0(2D−1)×1. Therefore, the solutionφ1:2D−1 is such

thatc(φ1:2D−1) belongs to the null space of̃VI2D−1,1:2D, denoted byN (ṼI2D−1,1:2D), and has dimension greater

than or equal to one, sincerank(ṼI2D−1,1:2D) ≤ 2D − 1. Let

ṼI2D−1,1:2D = Ũ(2D−1)×(2D−1)Λ(2D−1)×2DUT
(2D)×(2D)

be the singular value decomposition ofṼI2D−1,1:2D, whereŨ andU are orthogonal matrices,

Λ = [diag(λ1, λ2, . . . , λ2D−1) 0(2D−1)×1],

and w.l.o.g.λ1 ≥ λ2 ≥ · · · ≥ λ2D−1 ≥ 0.

We consider two cases.

(i) If λ2D−1 > 0, then N (ṼI2D−1,1:2D) = {αU1:2D,2D : α ∈ R}, which implies thatc(φ1:2D−1) =

U1:2D,2D

‖U1:2D,2D‖ or c(φ1:2D−1) = − U1:2D,2D

‖U1:2D,2D‖ . Since we requireφ1:2D−1 ∈ Φ2D−2×(− π
M

, π
M

], only one solution

± U1:2D,2D

‖U1:2D,2D‖ is valid and the hyperspherical coordinate vector we look for is uniquely determined by the

hyperspherical coordinates ofU1:2D,2D

‖U1:2D,2D‖ or − U1:2D,2D

‖U1:2D,2D‖ .

(ii) If λ2D−1 = 0, thendimN (ṼI2D−1,1:2D) ≥ 2 which implies that there are uncountably many solutions for

c(φ1:2D−1) that satisfy the requirementφ1:2D−1 ∈ Φ2D−2 × (− π
M

, π
M

].

(ii) For arbitraryD, M, N and given complex matrixVN×D, we construct̂VMN
2 ×D as in (28). Then,̃VMN

2 ×2D

is given by

Ṽ =
[
ℜ(V̂:,1) ℑ(V̂:,1) ℜ(V̂:,2) ℑ(V̂:,2) . . . ℜ(V̂:,D) ℑ(V̂:,D)

]
.

Let K ∈ {3, 4, . . . , M
2 } and IK , {i1, i2, . . . iK} ⊂ {0, 1, . . . , M

2 − 1}, ik 6= im for k 6= m, denote a set ofK

hypersurfaces which are rotated versions of the same, arbitrary chosen, row ofV. W.l.o.g., we choose surfaces

originating from the first row of the observation matrixV. Motivated by the definition of groups in (34), we define

groupG
(1)

G
(1) ,












Ṽ1,1:2D

Ṽ(1+N),1:2D

...

Ṽ(
1+( M

2 −1)N
)
,1:2D












=











G
(1)
1,1:2D

G
(1)
2,1:2D

...

G
(1)
M
2 ,1:2D











M
2 ×2D

which is related with the first row ofV. To prove proposition 2(ii), we define the following system of equations

for arbitraryK,










G
(1)
i1,1:2D

G
(1)
i2,1:2D

...

G
(1)
iK ,1:2D











c̃(φ1:2D−1) = 0IK×1 ⇒ (56)
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









ℜ
(
V(1,1)e

−j
2πi1

M

)
ℑ
(
V(1,1)e

−j
2πi1

M

)
. . . ℜ

(
V(1,D)e

−j
2πi1

M

)
ℑ
(
V(1,D)e

−j
2πi1

M

)

ℜ
(
V(1,1)e

−j
2πi2

M

)
ℑ
(
V(1,1)e

−j
2πi2

M

)
. . . ℜ

(
V(1,D)e

−j
2πi2

M

)
ℑ
(
V(1,D)e

−j
2πi1

M

)

...

ℜ
(
V(1,1)e

−j
2πiK

M

)
ℑ
(
V(1,1)e

−j
2πiK

M

)
. . . ℜ

(
V(1,D)e

−j
2πiK

M

)
ℑ
(
V(1,D)e

−j
2πiK

M

)











︸ ︷︷ ︸

(A)

c̃(φ1:2D−1) = 0IK×1. (57)

W.l.o.g., we assumei1 < i2 < · · · < iK . Therefore, expression (A) in (57) can be further transformed into13











ℜ
(
V(1,1)e

−j
2πi1

M

)
. . . ℑ

(
V(1,D)e

−j
2πi1

M

)

ℜ
(
V(1,1)e

−j
2πi1

M e−j
2π(i2−i1)

M

)
. . . ℑ

(
V(1,D)e

−j
2πi1

M e−j
2π(i2−i1)

M

)

...

ℜ
(
V(1,1)e

−j
2πi1

M e−j
2π(iK−i1)

M

)
. . . ℑ

(
V(1,D)e

−j
2πi1

M e−j
2π(iK−i1)

M

)











=











ℜ
(
V(1,1)e

−j
2πi1

M

)
. . . ℑ

(
V(1,D)e

−j
2πi1

M

)

ℜ
(
V(1,1)e

−j
2πi1

M [cos 2π(i2−i1)
M

− j sin 2π(i2−i1)
M

]
)

. . . ℑ
(
V(1,D)e

−j
2πi1

M [cos 2π(i2−i1)
M

− j sin 2π(i2−i1)
M

]
)

...

ℜ
(
V(1,1)e

−j
2πi1

M [cos 2π(iK−i1)
M

− j sin 2π(iK−i1)
M

]
)

. . . ℑ
(
V(1,D)e

−j
2πi1

M [cos 2π(iK−i1)
M

− j sin 2π(iK−i1)
M

]
)











and by lettingαd , ℜ
(
V(1,d)e

−j
2πi1

M

)
, βd , ℑ

(
V(1,d)e

−j
2πi1

M

)
for d ∈ {1, 2, . . . , D} and ωl , 2π(il−i1)

M
for

l ∈ {1, 2, . . . , K} we get










[α1 cosω1 + β1 sin ω1] . . . [βD cosω1 − αD sinω1]

[α1 cosω2 + β1 sin ω2] . . . [βD cosω2 − αD sinω2]
...

[α1 cosωK + β1 sinωK ] . . . [βD cosωK − αD sin ωK ]











.

Thus, eq. (57) becomes











[α1 cosω1 + β1 sinω1] . . . [βD cosω1 − αD sin ω1]

[α1 cosω2 + β1 sinω2] . . . [βD cosω2 − αD sin ω2]
...

[α1 cosωK + β1 sin ωK ] . . . [βD cosωK − αD sinωK ]



























sin φ1

cosφ1 sin φ2

cosφ1 cosφ2 sin φ3

...
[
∏2D−2

i=1 cosφi

]

sin φ2D−1
[
∏2D−2

i=1 cosφi

]

cosφ2D−1

















= 0IK×1.

Solving the above system of equations with respect toφ1, we get:

13For the sake of simplicity and space, from now on we shall onlyinclude the first and last element of each row in the equations.
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












tan φ1 = − (β1 cos ω1−α1 sin ω1) sin φ2+···+(αD cos ω1+βD sin ω1)
Q2D−2

i=2 cos φi sin φ2D−1+(βD cos ω1−αD sin ω1)
Q2D−1

i=2 cos φi

(α1 cos ω1+β1 sin ω1)

...

tan φ1 = − (β1 cos ω2−α1 sin ω2) sin φ2+···+(αD cos ω2+βD sin ω2)
Q2D−2

i=2 cos φi sin φ2D−1+(βD cos ω2−αD sin ω2)
Q2D−1

i=2 cos φi

(α1 cos ω2+β1 sin ω2)

...

tanφ1 = − (β1 cos ωK−α1 sin ωK) sin φ2+···+(αD cos ωK+βD sin ωK)
Q2D−2

i=2 cos φi sin φ2D−1+(βD cos ωK−αD sin ωK)
Q2D−1

i=2 cos φi

(α1 cos ωK+β1 sin ωK)














. (58)

Running over the whole domain forφ2:2D−1 ∈ Φ2D−3 × (− π
M

, π
M

], the equations in (58) defineK different

hypersurfaces as functions ofφ1. To show that two or more hypersurfaces originating from thesame row of the

observation matrixV have the same intersection, it suffices to show that the intersection of any combination of two

equations from the above system is independent of their phase rotation differenceωl, l ∈ {1, 2, . . . , K}. Choosing

randomly two equationsm, n ∈ {1, 2, . . . , K}, m 6= n from the above system of equations and computing their

intersection, we get

−











β1 cosωm − α1 sin ωm

...

αD cosωm + βD sin ωm

βD cosωm − αD sin ωm











T 









sin φ2

...
∏2D−2

i=2 cosφi sinφ2D−1

∏2D−1
i=2 cosφi cosφ2D−1











(α1 cosωm + β1 sin ωm)
= −











β1 cosωn − α1 sin ωn

...

αD cosωn + βD sin ωn

βD cosωn − αD sin ωn











T 









sin φ2

...
∏2D−2

i=2 cosφi sin φ2D−1

∏2D−1
i=2 cosφi cosφ2D−1











(α1 cosωn + β1 sin ωn)
⇒











(α2
1 + β2

1)(cosωm sin ωn − cosωn sin ωm)
...

(β1αD − α1βD)(cosωm sin ωn − cosωn sin ωm)

(α1αD + β1βD)(cosωm sin ωn − cosωn sin ωm)











T 









sin φ2

...
∏2D−2

i=2 cosφi sinφ2D−1

∏2D−1
i=2 cosφi cosφ2D−1











= 0 ⇒

sin(ωm − ωn)











α2
1 + β2

1

...

β1αD − α1βD

α1αD + β1βD











T 









sin φ2

...
∏2D−2

i=2 cosφi sinφ2D−1

∏2D−1
i=2 cosφi cosφ2D−1











= 0 ⇒











α2
1 + β2

1

...

β1αD − α1βD

α1αD + β1βD











T 









sin φ2

...
∏2D−2

i=2 cosφi sin φ2D−1

∏2D−1
i=2 cosφi cosφ2D−1











= 0

Since the above equation is satisfied for any combination of two equations in the system (56), we ought to assume

that the intersection of any two or more rotated hypersurfaces is common and independent of their phase rotation

differenceωl, l ∈ {1, 2, . . . , K}.
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D. Proof of Proposition 3

Given that

c(φ1:2D−1) =











cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−2

i=1 cosφi

]

cosφ2D−1 + j
[
∏2D−2

i=1 cosφi

]

sin φ2D−1











D×1

(59)

we use the following lemma in the subsequent derivations:

Lemma 2: Let c(φ1:2D−2,− π
M

) be a hyperspherical complex vector whereφ1:2D−2 ∈ Φ2D−2. Then, the

following expression holds true

ej 2π
M c(φ1:2D−2,−

π

M
) = c(φ

′

1:2D−2,
π

M
), for someφ

′

1:2D−2 ∈ Φ2D−2. (60)

�

Proof: According to (59),c(φ1:2D−2,− π
M

) equals to

c(φ1:2D−2,−
π

M
) =











cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sinφ3

...
[
∏2D−2

i=1 cosφi

]

cos(− π
M

) + j
[
∏2D−2

i=1 cosφi

]

sin(− π
M

)











.

Rotatingc(φ1:2D−2,− π
M

) by phasorej 2π
M , we get

ej 2π
M c(φ1:2D−2,−

π

M
) =













ej 2π
M (cosφ1 sin φ2 + j sinφ1)

ej 2π
M (cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3)

...

ej 2π
M

(
[
∏2D−2

i=1 cosφi

]

cos(− π
M

) + j
[
∏2D−2

i=1 cosφi

]

sin(− π
M

)

)













=











cosφ
′

1 sin φ
′

2 + j sin φ
′

1

cosφ
′

1 cosφ
′

2 cosφ
′

3 sin φ
′

4 + j cosφ
′

1 cosφ
′

2 sin φ
′

3

...
[
∏2D−2

i=1 cosφ
′

i

]

cosφ
′

2D−1 + j
[
∏2D−2

i=1 cosφ
′

i

]

sin φ
′

2D−1











= c(φ
′

1:2D−1)

i.e. φ
′

1:2D−1 are the hyperspherical coordinates of complex vectorej 2π
M c(φ1:2D−2,− π

M
). Calculating explicitly the
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values ofφ
′

1:2D−2, we have

sin φ
′

1 = ℑ{ej 2π
M (cosφ1 sin φ2 + j sin φ1)} ⇒

φ
′

1 = sin−1
(
cos

2π

M
sin φ1 + sin

2π

M
cosφ1 sin φ2

)
∈ (−π

2
,
π

2
], (61)

sin φ
′

2 = ℜ{ej 2π
M (cosφ1 sin φ2 + j sin φ1)} ⇒

φ
′

2 = sin−1
(cos 2π

M
cosφ1 sin φ2 − sin 2π

M
sin φ1

cosφ
′

1

)

∈ (−π

2
,
π

2
], (62)

sin φ
′

3 = ℑ{ej 2π
M (cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sinφ3)} ⇒

φ
′

3 = sin−1
(cos 2π

M
cosφ1 cosφ2 sin φ3 + sin 2π

M
cosφ1 cosφ2 cosφ3 sin φ4

cosφ
′

1 cosφ
′

2

)

∈ (−π

2
,
π

2
], (63)

. . .

sin φ
′

2D−2 = ℜ
{

ej 2π
M

(
[ 2D−3∏

i=1

cosφi

]

sinφ2D−2 + j
[ 2D−4∏

i=1

cosφi

]

sinφ2D−3

)}

⇒

φ
′

2D−2 = sin−1
(cos 2π

M
[
∏2D−3

i=1 cosφi] sin φ2D−2 − sin 2π
M

[
∏2D−4

i=1 cosφi] sin φ2D−3
∏2D−3

i=1 cosφ
′

i

)

∈ (−π

2
,
π

2
]. (64)

For the last hyperspherical coordinateφ
′

2D−1 we have the following system of equations








sin φ
′

2D−1 = ℑ
{

ej 2π
M

(
[
∏2D−2

i=1 cosφi

]

cos(− π
M

) + j
[
∏2D−2

i=1 cosφi

]

sin(− π
M

)

)}

cosφ
′

2D−1 = ℜ
{

ej 2π
M

(
[
∏2D−2

i=1 cosφi

]

cos(− π
M

) + j
[
∏2D−2

i=1 cosφi

]

sin(− π
M

)

)}









⇒






sinφ
′

2D−1 =
cos 2π

M

[
Q2D−2

i=1 cos φi

]
sin(− π

M
)+sin 2π

M

[
Q2D−2

i=1 cos φi

]
cos(− π

M
)

Q2D−2
i=1 cos φ

′

i

cosφ
′

2D−1 =
cos 2π

M

[
Q2D−2

i=1 cos φi

]
cos(− π

M
)−sin 2π

M

[
Q2D−2

i=1 cos φi

]
sin(− π

M
)

Q2D−2
i=1 cos φ

′

i




 .

Dividing these two equations, we have

sin φ
′

2D−1

cosφ
′

2D−1

=

cos 2π
M

[
Q2D−2

i=1 cos φi

]
sin(− π

M
)+sin 2π

M

[
Q2D−2

i=1 cos φi

]
cos(− π

M
)

Q2D−2
i=1 cos φ

′

i

cos 2π
M

[
Q2D−2

i=1 cos φi

]
cos(− π

M
)−sin 2π

M

[
Q2D−2

i=1 cos φi

]
sin(− π

M
)

Q2D−2
i=1 cos φ

′

i

⇒

tan φ
′

2D−1 =

[∏2D−2
i=1 cosφi

](
cos 2π

M
sin(− π

M
) + sin 2π

M
) cos(− π

M
)
)

[∏2D−2
i=1 cosφi

](
cos 2π

M
cos(− π

M
) − sin 2π

M
) sin(− π

M
)
) ⇒

tan φ
′

2D−1 =
sin(2π

M
− π

M
)

cos(2π
M

− π
M

)
= tan

π

M
⇒

φ
′

2D−1 =
π

M

Therefore,φ
′

1:2D−2 ∈ Φ2D−2 andφ
′

2D−1 = π
M

and, hence, we have proved the equation (60). �
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(i) s(VN×D; φ1:2D−2,−
π

M
) = arg max

s∈AN
M

ℜ{sHVc(φ1:2D−2,−
π

M
)}

Lem. 2
= arg max

s∈AN
M

ℜ
{

(sej 2π
M )HV ej 2π

M c(φ1:2D−2,−
π

M
)

︸ ︷︷ ︸

c(φ
′

1:2D−2, π
M

)

}

= e−j 2π
M arg max

s∈AN
M

ℜ
{

sHVc(φ
′

1:2D−2,
π

M
)

}

= e−j 2π
M s(VN×D; φ

′

1:2D−2,
π

M
), for someφ

′

1:2D−2 ∈ Φ2D−2.

(ii) s(VN×D; φ1:2D−3,
π

2
, φ2D−1) = arg max

s∈AN
M

ℜ{sHVc(φ1:2D−3,
π

2
, φ2D−1)}

= arg max
s∈AN

M

ℜ







sHV














cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−3

i=1 cosφi

]

sin π
2 + j

[
∏2D−4

i=1 cosφi

]

sinφ2D−3
[
∏2D−3

i=1 cosφi

]

cos π
2 cosφ2D−1 + j

[
∏2D−3

i=1 cosφi

]

cos π
2 sin φ2D−1




















= arg max
s∈AN

M

ℜ







sHVN×(D−1)











cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−4

i=1 cosφi

]

cosφ2D−3 + j
[
∏2D−4

i=1 cosφi

]

sin φ2D−3

















= s(VN×(D−1); φ1:2D−3).

(iii) s(VN×D; φ1:2D−3,−
π

2
, φ2D−1) = arg max

s∈AN
M

ℜ{sHVc(φ1:2D−3,−
π

2
, φ2D−1)}

= arg max
s∈AN

M

ℜ







sHV














cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−3

i=1 cosφi

]

sin(−π
2 ) + j

[
∏2D−4

i=1 cosφi

]

sin φ2D−3
[
∏2D−3

i=1 cosφi

]

cos(−π
2 ) cosφ2D−1 + j

[
∏2D−3

i=1 cosφi

]

cos(−π
2 ) sin φ2D−1




















= arg max
s∈AN

M

ℜ







sHVN×(D−1)











− cos(−φ1) sin(−φ2) − j sin(−φ1)

− cos(−φ1) cos(−φ2) cos(−φ3) sin(−φ4) − j cos(−φ1) cos(−φ2) sin(−φ3)
...

−
[
∏2D−3

i=1 cos(−φi)
]

− j
[
∏2D−4

i=1 cos(−φi)
]

sin(−φ2D−3)
















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= arg max
s∈AN

M

ℜ







sHVN×D














− cos(−φ1) sin(−φ2) − j sin(−φ1)

− cos(−φ1) cos(−φ2) cos(−φ3) sin(−φ4) − j cos(−φ1) cos(−φ2) sin(−φ3)
...

−
[
∏2D−3

i=1 cos(−φi)
]

sin π
2 − j

[
∏2D−4

i=1 cos(−φi)
]

sin(−φ2D−3)

−
[
∏2D−3

i=1 cos(−φi)
]

cos π
2 cosφ

′

2D−1 − j
[
∏2D−3

i=1 cos(−φi)
]

cos π
2 sin φ

′

2D−1




















= arg max
s∈AN

M

ℜ







−sHVN×D














cos(−φ1) sin(−φ2) + j sin(−φ1)

cos(−φ1) cos(−φ2) cos(−φ3) sin(−φ4) + j cos(−φ1) cos(−φ2) sin(−φ3)
...

[
∏2D−3

i=1 cos(−φi)
]

sin π
2 + j

[
∏2D−4

i=1 cos(−φi)
]

sin(−φ2D−3)
[
∏2D−3

i=1 cos(−φi)
]

cos π
2 cosφ

′

2D−1 + j
[
∏2D−3

i=1 cos(−φi)
]

cos π
2 sin φ

′

2D−1




















= −s(VN×D;−φ1:2D−3,
π

2
, φ

′

2D−1).

(iv) s(VN×D; φ1:2D−3,±
π

2
, φ2D−1) = arg max

s∈AN
M

ℜ{sHVc(φ1:2D−3,±
π

2
, φ2D−1)}

= arg max
s∈AN

M

ℜ







sHV














cosφ1 sin φ2 + j sinφ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sinφ3

...
[
∏2D−3

i=1 cosφi

]

sin(±π
2 ) + j

[
∏2D−4

i=1 cosφi

]

sin φ2D−3
[
∏2D−3

i=1 cosφi

]

cos(±π
2 ) cosφ2D−1 + j

[
∏2D−3

i=1 cosφi

]

cos(±π
2 ) sin φ2D−1




















= arg max
s∈AN

M

ℜ







sHVN×(D−1)











cosφ1 sin φ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sin φ4 + j cosφ1 cosφ2 sin φ3

...

±
[
∏2D−4

i=1 cosφi

]

cosφ2D−3 + j
[
∏2D−4

i=1 cosφi

]

sin φ2D−3

















= arg max
s∈AN

M

ℜ







sHV














cosφ1 sinφ2 + j sin φ1

cosφ1 cosφ2 cosφ3 sinφ4 + j cosφ1 cosφ2 sin φ3

...
[
∏2D−3

i=1 cosφi

]

sin(±π
2 ) + j

[
∏2D−4

i=1 cosφi

]

sin φ2D−3
[
∏2D−3

i=1 cosφi

]

cos(±π
2 ) cosφ

′

2D−1 + j
[
∏2D−3

i=1 cosφi

]

cos(±π
2 ) sin φ

′

2D−1




















= s(VN×D; φ1:2D−3,±
π

2
, φ

′

2D−1).
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E. Proof of Proposition 4

AsssumingD = N , observation matrixV becomes a full rank symmetric complex matrix and thusVVH =
∑N

n=1 vnvH
n =

∑N

n=1 λnqnqH
n = Q. In this case, the cardinality expression in (48) can be rewritten as

|S(VN×N )| =

N∑

d=1

d−1∑

i=0

(
N

i

)(
N − i

2(d − i) − 1

)(M

2

)2(d−i)−2(M

2
− 1
)i

.

Interchanging summations and making some variable substitutions, we can transform the above equation in the

following equivalent form14

|S(VN×N )| =

N∑

i=0

N−i∑

d=0,
d odd

(
N

i

)(
N − i

d

)(M

2

)d−1(M

2
− 1
)i

=
(M

2

)−1 N∑

i=0

N−i∑

d=0,
d odd

(
N

i

)(
N − i

d

)(M

2

)d(M

2
− 1
)i

=
(M

2

)−1 N∑

i=0

(
N

i

)(M

2
− 1
)i

N−i∑

d=0,
d odd

(
N − i

d

)(M

2

)d

. (65)

Definition: According to binomial formula, for∀a, b ∈ R andn, k ∈ N

(a + b)n =
n∑

k=0

(
n

k

)

akbn−k. (66)

�

Corollary 2: The sum of the coeffcients of the odd terms of the expansion(a + b)n is equal to the sum of the

coefficients the even terms. �

Using the binomial formula and according to the corollary 2,

N−i∑

d=0,
d odd

(
N − i

d

)(M

2

)d

=
1

2

N−i∑

d=0

(
N − i

d

)(M

2

)d

.

Therefore, (65) becomes:

|S(VN×N )| =
(M

2

)−1 N∑

i=0

(
N

i

)(M

2
− 1
)i

N−i∑

d=0,
d odd

(
N − i

d

)(M

2

)d

=
(M

2

)−1 N∑

i=0

(
N

i

)(M

2
− 1
)i 1

2

N−i∑

d=0

(
N − i

d

)(M

2

)d

= (M)−1
N∑

i=0

(
N

i

)(M

2
− 1
)i

N−i∑

d=0

(
N − i

d

)(M

2

)d

14As in most binomial and multinomial proofs, quantities of the form 00 are assumed to be equal to 1.
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(66)
= (M)−1

N∑

i=0

(
N

i

)(M

2
− 1
)i(M

2
+ 1
)N−i

= (M)−1
(M

2
− 1 +

M

2
+ 1
)N

= (M)−1MN = MN−1.
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