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Polynomial-Complexity Computation of the M-phase Vectort tha
Maximizes a Rank-Deficient Quadratic Form

Anastasios Kyrillidis

Abstract

The maximization of a positive (semi)definite complex qadidrform over a finite alphabet i8/P-hard and
achieved through exhaustive search when the form has fultl. tdowever, if the form is rank-deficient, the optimal
solution can be computed with only polynomial complexitytiire length/N' of the maximizing vector. In this work,
we consider the general case of a rdnkpositive (semi)definite complex quadratic form and devedlamethod that
maximizes the form with respect to &/ -phase vector with polynomial complexity. Our method &b auxiliary
hyperspherical coordinates and partitions the multidismaral space into a polynomial-size set of regions, whech ea
region corresponds to a distingf-phase vector. The vector that maximizes the rankuadratic form is shown to
belong to the polynomial-size set of vectors. Therefore ptoposed method efficiently reduces the size of the feasibl
set from exponential to polynomial. We also develop an dlgor that constructs the polynomial-size candidate set
in polynomial time and observe that it is fully parallelizatand rank-scalable.

I. INTRODUCTION

The problem of unconstrained complex quadratic maxinoratver a finite alphabet captures many problems
that are of interest to the communications and signal psiitgscommunity. Many recent developments on the
semidefinite relaxation (SDR) technique have indicated 812R is capable of providing near optimal (and some-
times accurate) approximations in polynomial time [1].h&iigh SDR algorithm has a theoretical guarantee that
the solution of the quadratic problem has, at worst, modesgproximation accura&yj2], in most of the times it
remains an approximation algorithm that does not guarahteeomputation of the optimal solution.

Recently, the authors in [7], based on the seminal work ofr@oes and Williamson [8], [9], studied some
approximation algorithms for the class of complex quadrafitimization problems with discrete decision variables:
maximizez"Qz s.t. z; € {1,w,...,w™=1}, k=1,...,n whereM > 2 andw = /3. In this work, they prove
that the model presented in [9] for MAX-3-CUTM = 3) turns out to be a special case of the general model
proposed in [7]. Interestingly, they prove that fok/ > 2 the problem remaing/P-hard.

Interestingly, it has been recently proven that the maxatinn of a quadratic form with a binary vector argunfent

is no longer\/P-hard if the rank of the form is not a function of the problerees{3], [4]3 Specifically, based

Ipractically, the performance of this algorithm is subs#yt better than that of the worst case.

2In this work, a vector is called binary if and only if each eksmh of it equals+1 or —1. Contrarily, if each element of it equalsor 1,
then the vector is said to belong to th¢1 field.

3An obvious example is the maximization of the rank-1 quadriirm where the optimal argument vector is provided by thedHimiter
output when applied to the maximum-eigenvalue eigenveatdhe matrix parameter.



on the equivalence of the maximization of any rank-deficgurdratic form over the binary field with the rank-
deficient maximization over the/1 field [3], it is proved that the latter can be computed optlgnahd efficiently
in polynomial time through a variety of computational gedrp€CG) algorithms, such as the incremental algorithm
for cell enumeration in arrangements [5] and the reverseckda].* However, the aforementioned CG algorithms
are studied only for binary phase-shift keying (BPSK) andtgtnary phase-shift keying (QPSK) modulations.

From a different perspective, the authors in [10] preserdlgorithm for the efficient computation of the binary
vector of length/N that maximizes a ranl? quadratic form with polynomial complexity wher® < N. The
algorithm used) — 1 auxiliary hyperspherical coordinates that partition thdtidimensional hypercube into distinct
regions of polynomial size, each of which corresponds tofeerdint candidate vector. Therefore, the method in
[10] reduces the size of the candidate vector set from exg@id¢o polynomial.

In the present work, we modify the algorithm in [10] to sen@mplex-domain optimization problems such
as, for example, maximum-likelihood sequence detectiob§Bl) of uncoded input sequence in the presence of
frequency non-selective/time selective fading with charstate information (CSI) [12], maximum-likelihood (ML)
noncoherent single-input multiple-output (SIMO) detentof arbitrary-ordel/-PSK [11], multiuser detection in
M-PSK code-division multiple-access (CDMA) [13]-[16], daML M-PSK detection for multiple-input, multiple-
output (MIMO) channels [17]-[19], blind ML detection of twdgonal space-time block codes (OSTBC) [20] and
guadrature-amplitude modulation (QAM) and PSK codeboakdifnited multiple-input multiple-output (MIMO)
beamforming [21]. Specifically, we introduce as many aaxjlihyperspherical coordinates as twice the rank of the
problem reduced by one and partition the multidimensiopalce into a polynomial-size set of distinct regions,
each of which is associated with a differelf-phase vector. The proposed algorithm turns out to be tinte an
memory efficient, fully parallelizable and rank-scalable.

The paper is organized as follows. In the following sectioa,present the original problem and its characteristics.
Section Ill is devoted to the theoretical developments ef phoposed algorithm for the maximization of a rank-
deficient quadratic form with &/-phase vector argument. The implementation of the propalggdithm is discussed
in more detail in Section IV. Concluding remarks are foundsection V.

Notation: Upper and lower case bold symbols denote matrices and colgetors, respectively;; denotes the
i-th element of vectox and 4; ; the (i, j)-th entry of matrixA; A;.; ;. follows a MATLAB-like notation that
denotes the submatrix ok that consists of thé-th up toj-th rows andk-th up toi-th columns of it;(-)* denotes
conjugation;(-)” transpose(-)* Hermitian transposeliag(x) is a diagonal matrix withx on its diagonalIy « x
the N x N identity matrix; 0«1 the N x 1 vector of all zerosj| - || the Frobenius norm;- | the cardinality of a
set andj £ /—1.

41t should be noted that although the incremental algoritsnoptimal in terms of the rank-deficient quadratic maximarat it lacks of
parallelizability and memory management efficiency. Ondtieer hand, the reverse search is highly parallelizableedg@and memory efficient
and, as a result, has been utilized for the maximization afnk-deficient quadratic form over tig'1 field.



Il. PROBLEM STATEMENT

We consider the quadratic expression

s"Qs (1)

whereQ € CV*¥ s a positive (semi)definite matrix and e A%, is a M-PSK N-tuple vector argument. We
assumed,; = {eﬂ)ﬂ# \ m=20,1,...,M — 1} as theM-phase alphabet antl € {2% |k =1,2...}.
In our problem, we focus on the computation of thePSK vector that maximizes the quadratic form
Sopt = arg max s™Qs. )
Since Q is symmetric, the matrix can be represented in terms of gsreialues and eigenvectors using spectral

factorization
N

Q:Z)\nanya )\12)\222)\]\/7 qne(CNa ||qn||:17 quk:Oa n#ka nak:1127aN7 (3)

n=1

where \,, andq,, are then-th eigenvalue and eigenvector of the mai@x respectively. IfAxy > 0, thenQ is full
rank and our problem in (2) becom&&P-hard where the computation sf,; can be implemented using exhaustive
search over the set}; with complexity O(M™") since|AY,| = M.

On the other hand, ik, = A\,y1 =---= Ay =0,n €{2,3,..., N}, thenQ is rank-deficient. Therefore, in the
following, without loss of generality (w.l.0.g.XQ is assumed a positive (semi)definite complex matrix withkran

D <N, ie
D
Q:Z)\nchzqgv AL >X > > Ap > 0. (4)

n=1

Furthermore, since,, > 0,n =1,2,..., D, we define the weighted principal component
vnémqn, n=12,...,D, (5)
and the corresponding € CV*P complex matrix
AV [vl Vo ...VD] (6)

such thatVv? = P v v — P X q.q" = Q. Thus, our initial problem statement in (2) can be

n n=1

transformed into the following optimization problem

Sopt = arg max {SHVVHS}. (7)

se Al
We underline thalV is a full rank complex matrix and matric€d and'V have the same rank < N.
Special emphasis for the binary real case was given recémtfl0] where an efficient algorithm for the
computation ofs.,, € {£1} was developed. In this work, the authors present an algorithat utilizes auxil-

iary hypershperical coordinates and partitions the minfighsional space into a polynomial-size set of regions

5Since rotated candidate vectass= se’ 3" ,m = 0,1,...,M — 1, give the same result in our maximization problem, &Qs =
(se’ e YHQ(se? 2?\?) = s Qs, we can focus only on thq&?-th of the elements ofA}),. In this case, the complexity of the resulting
maximization quadratic form reduces @(M N 1), which is still intractable for moderate values &f.



IS(VNxD)| = 5;01 (Ngl). This set is computed with complexit9(N ) and it is proved that the procedure is
fully parallelizable and rank-scalable.

In parallel, the authors in [22] propose an algorithm usiognbinatorial geometry where the maximizing argument
of the quadratic forns™ Qs is computed with polynomial complexity in the lengh of the parameter vectar if
the rank ofQ is fixed, but in fact exponential itV if observation matrixQ has rank that depends avi. They do
so by applying CG methods to construct a subse#Qf where M € {2,4} that containgy ;7" (Vlee2(M)~1)
vectors among which one vector is the maximizes¥iQs. The complexity of the resulting algorithm is of the
orderO(N?P) andO((2N)?P) for BPSK and QPSK, respectively. On the other hand, the mepanethod in [11]
relies on the same principles as the CG algorithm deviseddhljut is more general in that it is also applicable to
modulation withA > 4. In that work, the authors do not explicitly recommend anceffit algorithm to generate
the sufficient se” over which the search is performed and identify the incraaleaigorithm for cell enumeration
in arrangements [5] as a tool for solution.

In the next section, we use the framework presented in [18] @mopose a more generalized algorithm for the
maximization of a rank-deficient quadratic form over ahirary PSK alphabet wherd/ ¢ {2* | k = 1,2...}.
Specifically, we introduceD — 1 auxiliary hyperspherical coordinates and show that theigtsea setS(Vyxp) C
A} which has cardinalityS(V v p)| = iy 2o (V) G sy) (%)2<d7i)72(% - 1)i, can be computed in
polynomial time and contains the optimal vectag, in (7). The proposed algorithm constructs the reduced-size

candidate sefS(V yxp)| with complexity O((44¥)2P) and is fully parallelizable and rank-scalable.

I11. EFFICIENT MAXIMIZATION OF RANK-DEFICIENT QUADRATIC FORM WITH A MPSK VECTORARGUMENT
A. Problem Reformulation

Sinces®VV*s = ||[V*s]|2, we can rewrite our problem as

Sopt = arg max Vs (8)
SCAM

We have constructe®¥ in such a way that it emerges as a full rabkx D matrix with D < N. W.l.o.g., we
assume that each row &f has at least one nonzero element, Vg, 1.p # O1xp,Vn € {1,2,..., N}. In opposite
case the value of the maximization argumeptn € {1,2,..., N}, related with then-th all-zero row ofV«p
would have no effect on the maximization procedure. Theegfassuming that we havé € {1,2,... N} rows of
V equal t00, « p, we can simply ignore these rows, reduce the dimension opoalslem fromN to N — K and
assign arbitrary values to the elements of the maximizirgorerelated to theéC all-zero rows ofV.

Let ¢, ; 2 (i, Piv1s- -, ¢;]T. To develop an efficient method for the maximization in (8% introduce2D — 1

auxiliary hyperspherical coordinatés.,p,_, € (—%,2]??~2 x (—n,n] and define the hyperspherical real vector



with unit radial coordinate,
sin gf)l
COs (1 sin o

COS (1 COS (2 Sin @3

[I>

E(451:2D71) (9)

2D—2 .
{ [[;=) ~cos sz} sin gap_1
2D—2
_[Hizl cos sz} oS ¢2p—1 |

according to the following lemma. The proof is provided i thppendix.

2Dx1

Lemma I Let ¢, ,,_; € (—%, 2]?P~2 x (—m, «]. Then a spherical coordinate system can be defined 2g-
dimensional Euclidean space where each p&irt [z; z2 ... z2p]T € R2P can be described by coordinates

consisting of a radial coordinate

r&yJrt+ai+ iy, >0, (10)

and2D — 1 angular coordinate$,.,,_, as follows

7 sin ¢
7 COS (1 Sin o

T COS (1 COS g sin 3

[I>

é(¢1:2D—1) (11)

2D-2 .

T[Hizl cos (bz} sin gap—1
2D—2

_T[Hizl cos ¢z} COS D1 |

2Dx1

Furthermore, we define thB x 1 hyperspherical complex vector
c(¢r.op—1) = €2:2:00(P1.2p—1) + JC1:2:2D 1 (P1.2p 1)

cos ¢1 sin ¢g + j sin ¢ c1(¢1.9)

COS (1 COS (3 COS (3 SiN g + J COS P1 COS P2 Sin @3 co(h1.4)

(12)

[H?fld COS ¢1} cos pap—1 +J [ H?ff2 oS ¢; | Sin ap—1 CD(¢1:2D—1)

From Cauchy-Swartz inequality, we observe that for any C”,

Dx1

[a"e(¢1.20-1)| < llallle(@r2p-1)ll = Jall (13)

since||c(p.op_ 1)l = \/‘cl(quD_l)‘z +-F ’CD(¢1:2D—1)’2 = 1. The equality of (13) is achieved if and only



if ¢1,¢2,...,¢2p-1 € (—3,3]?P~2 x (—m, n] are the hyperspherical coordinates of veetpr.e. if ©

a

(¢1 :2D— 1) (14)

[lal]

since ch(quD_l)‘ = ‘a”i = ||al|. Using the above, a critical equality for our subsequeneti;mments is

llall

Sopt = arg max ||[V7's|| = arg max max s"Ve(diop 1)l (15)
pt < AM ” ” e M¢1 b 1E(— T, %]ZD 2 (=] ( 1:2D 1)
Furthermore, we observe that for aaye C” and anyd € (—, ),

§R{aHC(QSLQDA)‘fje} < ’aHC(¢1:2D71)’ (16)

with equality if and only ifd = 0 whered £ arg {a’'c(¢,.,p_1)} since in this casé%{ a’tc(dy.op 1) e*jé} =
A ec
%{‘aHC((ﬁhw—l)’ewe*jé} = aHC(¢1:2D—1)"
It can be easily observed that expressions (13) and (16)iem@taneously satisfied with equality if and only
if ¢1,02,...,02p-1 € (—%,%]*P~2 x (—m, n] are the hyperspherical coordinates of vectoand 6 = 6. In this

case, (15) can be further transformed into:

Sopt = arg max max ( ]%{SHVc(qﬁlgDil)e*je}, a7)

SEAN ¢1.0p_1€(—5,512P 2% (~
whered = arg{s"Vc(¢,.0p 1)}

Now, let ¢1.op_1, Prop_1 € (%, %]?P~2 x (—7,7] and @ € (—m, 7. Then, for anye,.,,_, andé, there
always existg,.,, ; such thatc(¢..p 1) = c(Pprop 1), i.e. ¢1.op_, are the hyperspherical coordinates
of complex vectorc(¢, .., ;)e 7?. Conversely, for anyp,.,, , and @, there always existy,.,;, ; such that
c(Pprop_1) = c(Pr.op 1)e?, i.e. @105, are the hyperspherical coordinates of complex vect@h,.,, ;)e’.

Therefore, eq. (17) can be equivalently rewritten as

Sopt = arg max max RsMVe(dyon_ e_-j‘g} 18

pt gseAM brap 1 €= BT 202 (] { (¢1.2D 1) (18)

= arg max max %{SHVC(&)LQD_l)} (19)
SEAY ¢1.0p_1€(— 5, 512P 2% (—m,m]

= arg max max RsMVe(dyon_ } 20

B CA, briap 1 €(— 3 51202 x (] { (120-1) (20)

since (20) defines a maximization that runs over the whole alorof the hyperspherical coordinates and for
notational convenience, we redefitg.., | 2 ¢1.0p_ 1.

Next, we note the following: assume that for specific hypeesizal coordinates,.,, ;, € (—35,%*’~2 x
(—m, 7], the expression in (20) gives as a resuld/aPSK vectors € A}, which, in combination withg,..p_1,
constitute the tuples, Zc(¢.op_1)) € AY X [(—%, Z12P=2 (—w,w]} We observe that fova € arg{ Ay}

6We observe that the equality of (13) is also achieved for angted version oic(¢1.55_1), 1-€. €79c(Pr.0p_1) = €7¥ ”2” for any

w € (—m, 7] smce‘ ael“c(py.ap_1 ‘ = ‘a”eJ“’ H:H = ‘eJ“’HaH‘ = ||al|. But, for clarity reasons, we present the casedor 0 in the

above statement.



wherearg{ Ay} = {2’”” | m=0,1,...,M— 1}, the tuple (e7%s, Ze7c(¢1ap_1)) = (8, Zc(Prap_1)) €
ALY x {( 2, 21202 x (-, 7]| gives the same value &s, Zc(¢y.5p_1)) in the maximization metric of (20) since
%{éHVC(Cme—l)} = g%{(ejas)ﬂvejac(qulj_l)} = %{eﬁdsHV‘fj c(P1.2p- 1)} %{S Ve(grap- 1)}
This means that, given any tuple, Zc(¢,.,p_1)) € A x [(—g, Z]2P—2 x (—w,ﬁ]}, we haveM = |Ay|
different rotated versions of this/-phase vector that belong id}; and give the same result in the maximization
metric of (20) forVa. The value ofa is chosen according to the following proposition. The prioprovided in
the Appendix.

Proposition 1 Given a hyperspherical complex veci(fp,..,_;) and¢,,_; € (—n, 7], there always exists an

anglea € arg{ Ay} that relocates the angular coordingtg,_1 of the hyperspherical vectchc(qbl;QD_l)e-ja}

in the interval(— {7, 17]. [ |
Using proposition 1, w.l.o.g., we choosec arg{.Ays} such thatp,, ; € (—4;, 7). Thus, (20) becomes

Sopt = arg max max %{SHVC 10D } 21

pt gseAMdleD S i I (b1.2p-1) (21)

Dropping thearg operator and interchanging the maximizations in (21) weaiobthe equivalent problem

™ T

max Z max 3‘%{8 Vi.1.0¢(@1.0p— 1)} o= (——,—]. (22)

$1.2D-1€P2P-2x(— I sn€AM 2°2

B. Decision Functions and Candidate Vector S¢V y . p)

We observe that the original maximization problem in (8) é&@mposed in a set of symbol-by-symbol maxi-
mization rules for a given set of angles.,, ; € ®*?~2 x (-1, 7%]. For such a set of angles, the maximization
argument of the sum in (22), e.g. symbg), depends only on the corresponding row of maWix As ¢,.5p_;
vary, the decision in favor of,, is maintained as long as a decision boundary is not crossed.Xd-PSK complex
unit circle, a decision boundaty; is defined as a complex exponential of the form

_ M
By = eI ™5 E=01,...,5 1, (23)

that passes through the origin of the complex unit circle separates the alphabgt,; into two disjoint sets:
AW Ay and A © An where

A;Z)z{e”i}m ‘me{(k+1,...,k+g) modM}}, (24)

A%’?:{epi}m me{(k+%+1,...,k+M)modM}}, (25)

and A% n A = (0},
Due to the structure afl;; and given the definitions above, t% decision boundaries for the determination of
s, are given by

; M
Viipe(@rap 1) = AT ACR—{0}, k=0.1,.... 5~ 1, (26)



or equivalently

) M
%{e—ﬁ%vn,wc(%w_l)} =0, k=01,..., 5~ L 27)
Forn=1,2,...,Nandk =0,1,..., % — 1, we can write (27) in matrix form
e I Vnyp
S c(@r2p-1) | = 0a ;& (28)
eI Vingp
V%XD
3{ [%(V) + J%(V)] [62:2:2D(¢1:2D71) + jé1:2:2D71(¢1:2D71)]} = OTle < (29)
%(v)é1:2:2D71(¢1:2D71) + C\\Y(\Af)é2:2:2D(¢>1:2D71) =0uv, ) = (30)
Vs o p€($r2p-1) = 0a g & (31)
~ - MN
Vi1:2p€(p1:20p-1) =0, 1=1,2,..., 5 (32)
where
V.i22p-1 = R(V) and V. 000 = 3(V). (33)

From the construction OV@XQD, it can be easily observed that each row\ofis rotated by each of thél
2k+
M

* that represent the decision boundafgsk = 0,1,..., % — 1. Therefore, using the rows

of V, we can defineV different groupsg(”),n € {1,2,...,N}, where each group is related to theth row of

exponentials: =™

V and consists o% rows, each of which comes from a different rotated versiothefrn-th row of V. Thus, we

have
vn,1:2D
N V(n+N),l:2D
g & Vne{l,2,...,N}. (34)
| (n+ (X -1)N) 122D | M oD
For a given point,,,p_; € (— %, Z]?P~2x(~ I ] and according to (32), each rowgf™, n € {1,2,...,N},

defines a decision expression for

gz(',nl):2Dé(¢l:2D—1) 20, i=12,...,

¥, (@)
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that separates!,, into two distinct sets, A 1) andA =1 as defined in (24)-(25), and indicates in which sgt

belongs to. LetR ) e {A M } be the set such that, € Rl(.") forie {1,2,..., 4}, according to (35).
Then, the final decision aboutz is taken by computing the intersection ﬁif") forvi=1,2,..., 2 , 1.€e.
=N R, (36)

Motivated by the statements above and the inner maximizatite in (22), for eachD x 1 complex vectorv

we define the decision functionthat mapse,.._; to Ay according to

s(v 7¢1 :22D— 1) = arg max R{s"v C(¢’1 2p-1)}- (37)

€AM

Furthermore, for the give®W x D complex observation matri¥’, we can construct the vector decision function

using (37) where each poirt,.,,_, € P2 x (-, Z] is mapped to a candidafe/-PSK vector according to

s(Vi,1:p;P1.0p-1) argmaxse 4, R{s*"Vi1.0¢(d1.0p_1)}
5(V2,1;D; ®1.20p-1) argmaXse Ay, 8?{5*V2,1:DC((Z51;21%1)}
s(VNxD;®1.9p 1) £ . = " . (38)
s(VN,1:D; P1.9p—1) argmaxse 4, {5V 1.0¢(¢1.9p_1)}
= arg max §R{SHVC(¢1:2D71)}' (39)
SG.AAN/I

Computings(Vy«p; @1.0p_1) for Ve .op_y € @2P~2 x (— L, L], we collect allM-phase candidate vectors
into a set
S(Vixp) 2 U {s(Vxpidrap_1)} € AN (40)
100 1€EP2P 2 (=7 f7]

Since¢,.,p_; take values from the se&?”~2 x (— ., =], our problem in (7) becomes

Sopt = arg g}szg(,) {SHVVHS}, (41)

i.e. the M-phase candidate vectsy,,;, that maximizes the expression above belongs into th& &€ty «p).
In the following, we (i) show thatlS(Vaxxp)| = X7, 280 (V) (1) (4) ™7 (3 —1)" and (id)

develop an algorithm for the construction 8fV . p) with complexity O((25%)2P).

C. Hypersurfaces and Cardinality &f(V xxp)

According to eq. (32), we can derl\Aéz— different decision rules that separate th&’ 2 x (— +7> 77 space (and
moreover the spac@?”~2 x (—m,n]) into distinct regions, each of which is associated with ffedént //-PSK
candidate vectas. More specifically, the rows dVMN 9D determineXY hypersurface%{(Vl 1:2D), H(VQ_MD),

.,H(V@J:w) that partition the(2D — 1)-dimensional hypercubéw*2 X (=47, 77) into K non-interleaving
cells Cy, Cs, ..., Cx such that the union of all cells is equal "2 x (—Z, =] and the intersection of any
two distinct cells, sayCy, C; for k # j, is empty. Each celC}, corresponds to distincts;, € A}, in the sense

thats(Vnxp; ¢dr.op_1) =sk forany ¢,.op_; € Cr andsy #s; if k# j,k,j € {1,2,...,K}.
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Before we present some further results on the behavior df Bypersurfaces, it is illustrative to present some

partitions of 2P~2 x (-, 7] for various values ofD, M and N. As first example, we seb = 2, N = 4 and

M = 8 and draw an arbitrary rank-2 complex mathk o with V,, 1.2 # 01x2,n = 1,2, ..., N. Since we study

the casepop_1 € (—47. 77), We are interested only in cells that belong into the regign, € 2 x (—%, Z].

According to the decision boundary rule in (32), we plot ig.FL(a) the hypersurfac’d(f/171:4) described by

\7(1,214)5(¢2:3)) — tan~! ( N ‘7(1,2) sin ¢2+\7(1,3) 005432 Sin¢3+‘7(1,4) cos ¢2 cos ¢3) that
Va,n Va,n

the expressiony; = tan~! ( —
originates from the first row oV ,.-. As (35) states, the hypersurface creates two non-overigmegions in
the three-dimensional space. In Figs. 1(b) and 1(c), we aadmore hypersurfaced{ (Vs 1.4) and H(Vs 1.4),

originating from the second and third row ¥f,.., respectively. We observe that the hypersurfaces inteteea
single pointe(Vax2;{1,2,3}) and the three-dimensional space is partitioned into reggells) each of which

corresponds to a distindt/-phase candidate vectsrc S(Vx2).’

Two basic properties of such intersections are presentdikiriollowing proposition. The proof is given in the
Appendix.

Proposition 2 Let waw be a real matrix constructed from a rabkeomplex matrixV y . p with V,, 1.p #
0:1xp,Vn € {1,2,...N}. The following hold true.

(i) Each subset O{H(Vl,l;g[)), H(Vg,l;w), . ,H(V@J:w)} that consists o2 D — 1 hypersurfaces has either
a single or uncountably many intersectionsdifi® —2 x (=37 77)-
(i4) Each combination oD — 1 hypersurfaces from the S{W(VLLQD),H(VZMD), . ,H(V@J:QD)} has
a unique intersection point that constitutes a vertex of laitand only if no more than two hypersurfaces
originate from the same row of the matr\. |
Let Top—1 £ {i1,i2,...,52p—1} C {1,2,..., 24X} denote the subset &fD — 1 indices that correspond to
hypersurface$t(V,, 1.p), H(Vi, 1:20); - - - » H(Vi,,_,1:20). We detect the following cases:

(a) Intersections oRD — 1 hypersurfaces where at most two surfaces originate fronsanee row ofV.

(b) Intersections oD — 1 hypersurfaces where at least three surfaces originate thenrsame row oV.
According to Proposition 3, Pafti), combinations of the fornjb) do not have a unique intersection point but
infinitely many intersection points; thus no cell is createdl these combinations can be ignored. Extending the
previous example, we present in Fig. 2 the intersectior#‘é—fohypersurfaces that originate from the first row of
V4«2 and are related with the decision of argumentSuch an ensemble of hypersurfaces partitions the hypercub
O2P—2 (=47 77} into M regions, each of which is mapped to a unique element of4he alphabet. A very
important observation for our subsequent developmentseisepted in the following corollary.

Corollary 1: All % hypersurfaces originating from the same row\éfintersect to a common axis. |
For example, in Fig. 2 all hypersurfaces have uncountablgymatersection points that form a common line

intersection. The dimensionality of the common axis depamdthe rankD of the observation matri¥ and equals

“For visualization purposes, we do not plot the completeitjmart
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to 2(D — 1). Thus, hypersurfaces coming from the same rowNof, p intersect to a common one-dimensional
line if D =2, to a common four-dimensional hyperplanelif= 3, etc®

On the other hand, combinations of the fofa) have a unique intersection poiV x« p; Zop_1) € ®?P~2 x
(=%, 7] that leadsQ cells, sayCy(Vyxp;Zop—-1), C2(VnxpiZep—1),---,Co(VNxpiZop—1), Q € {(% -
DO (2-1)t,..., (%—1)17—1} and each cell is associated with a distinétphase candidate vectef(V n« p; Zop—1),
¢g=1,2,...,9, in the sense that,(VNxp; $op_1) =S¢(Vnxp;Zop—1) for all ¢p,.5p_1 € Cq(VNxp;Zop—-1)
and¢(Vnxp;Zap-1) is a single point ofC,(V nxp; Zap—1) Wheregap_1 is minimized. We underline that not
any such combination intersects into the region of intefgst—2 x (-7, I-]; thus there are combinations of

hypersurfaces that intersect at a single pahV xxp;Zop-1) Where gap 1 ¢ (—7;7, 77)- As described later,

8For D > 3, we cannot visualize the resulting partitions and the comintersection axes.
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any such case can be ignored since there always exists a ratiohi of hypersurfaces with(Vy«p;Zop-1) €
P2P=2 x (-, ] which “leads” cells associated with equivalent candidagetors. The number of cell@ “led”
by an intersection point depends on the number of particigadairs of hypersurfaces that originate from the same

row of matrix V. More specifically,

« if none pairs of hypersurfaces come from the same roWafi.e. all hypersurfaces originate from different
rows of V), then the intersection point “leads” only one cell,
« if just one pair of hypersurfaces comes from the same row pthen the intersection point “Iead:{’% — 1)
cells,
« if D—1 pairs of hypersurfaces come from the same roWwothen the intersection point “IeadQ’% — )D_1
cells.
To better understand the above statements, we present fieoedt examples. For this purpose, we consider
the same complex matri¥ € CV*P as the previous example whefé = 4,D = 2 and M = 8 and assume
the intersection depicted in Fig. 1(c). Since all hyper@tes participating in the intersection come from different

rows of V there is no other hypersurface from the $¢tV 1.2p), H(V2.1.2p), ...,H(V@)MD) that passes
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through this intersection poifitLet g3 = arg {d(Vaxe;{1,2,3})}. In Figs. 3([a b c]), we plot the hypersurfaces
depicted in Fig. 1(c) fors = ¢5 and in Fig. 3(d), we sketch the same hypersurfacegfor ¢3 + d¢ wheredg

is an arbitrary small positive quantity. We observe thabasncreases, curve = 3 moves away from intersection
®(Vy4x2;{1,2}), thus creating a new cell [see the highlighted cell in Figd)Bthat corresponds to distinct
sk € AY.

To illustrate an example with one pair of hypersurfacesioating from the same row of the observation matrix,
we assume the intersecti@f{Vx2; {2, 6,3}) of two hypersurfaceﬁ(V2,1;4),H(V6,1;4) coming from the second
row of Vsy-.and one hypersurfac’é(({f&M) from the third row of V4o and plot in Figs. 4([a b c]) these
hypersurfacesr{ = 1, n = 2 andn = 3, respectively) forps = ¢3 where ds = argy, (#(Vax2;{2,6,3}). But,

as corollary 1 states, since d]} hypersurfaces originating from a specific row ¥fy« p intersect at a common

°In the sequel, we consider the most computationally demandase of distinct intersections.
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axis, we observe that al{ hypersurface%{(gfi)A) = {H(Va14), H(V6.1.4), H(V10.1:4), H(V14.1.4)} Originating
from the second row oV 4> pass through the intersection poihtVxo;{2,6,3}); these additional curves are
depicted with dashed lines in Fig.4(c) [see= 4 andn = 5 respectively]. Asps increases, thé‘21 hypersurfaces
continue to intersect to a single poiitVx2;{2, 6,10, 14}) but the hypersurface = 3 curves away, thus creating
% — 1 new cells. These cells are highlighted in Fig. 4(d).
Since each cell is associated with a distin¢tPSK candidate vector, we can collect all these vectors into
J(Vyxp) = U {S(VNxD;I2D—1)} C A% (42)

Z2D—1C{172,---,#}7
S(VNxDiZoap—1)ER*P 2 X (— &, ]

Several properties of the decision functi{V x x p; ¢1.5p_1) are presented in the following proposition. The proof
is provided in the Appendix.

Proposition 3 For any¢,.,p_;, € ®*’72 x (-, %] the following hold true:
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(l s(VNxD;®1.0p-2, —77) = e'j%S(VNxD§¢I1~2D727%) for 30m9¢,1;2D72 € o2,
VNxD; 1003, 5, $2D-1) = S(VNx(D-1); P1.2p—3)5

VNsD; ®10p—3, — 5 d20-1) = —S(VNxD; ~Prop_s: 5 Sap_1), Vbop_1 € (— 55, &I,
(Z’U sS(VNxD; ®1.0p— 3aiga¢2D 1)—S(VN><D7¢12D 3vi27¢2D 1) W’zD 16( L %]

(
(
(
(

Taking into consideration only cells into the region of it >°~2 x (-7, T], we observe that

[T (Vnxp)| = Di (JD (2@15)2'_ 1)) %Q(D_i)_z <% - 1) (43)

=0
i.e. there aré.7 (Vnxp)| candidate vectors in P2 x (— ., ] associated with cells each of which minimizes
¢2p_1 component at a single point that constitutes the interseaif the correspondingD — 1 hypersurfaces. We
also note that there exist cells that are not associated suith a vertex and contain uncountably many points of
the form (¢1,...,¢2p—2, —47). However, according to Proposition 3, P&}, every such a cell can be ignored
since there exists another cell that contains points of @i (¢, , ..., ¢y o, i7), is associated with a rotated

equivalent candidate vector and is “led” by a vertex-irget®n that lies ind2P~2 x (- =] (thus, it belongs

M’ M
to J(Vnxp)) unless the initial cell contains a point withhp > = +7, as Proposition 3, Paitiv) mentions.

For example, in Fig. 1(c) such cells are identified fgr= —1; M=8 —g- TheseM-phase candidate vectors are

equivalent rotated versions of the vectors determinedsfor ¢, hence the former ones can be ignored.

In addition, if p2p_2 = =7 for a particular cell, then this cell “exists” for anjep 1 € (— 27 ]’CI] implying

that we can ignor@,p_; (or set it to an arbitrary valuéw_l), setgap o to £7, and consider cells defined on
P2P=3 x {+7} x {¢,p,_, }. Finally, due to Proposition 3, Paftii), the cells that are defined wheap_, = — 2
are associated with vectors which are opposite to the \ethtat are associated with cells defined whep o> = 7.

Therefore, we can ignore the cagep 2 = —7, Setgep 2 = 3, ignore ¢p_1, and, according to Proposition

3, Part(i7), identify the cells that are determined by theduced-sizematrix V. (p_1) over the hypercube

P20~ x (=%, 7). As an example, in Fig. 1(c) we s¢t = £ and¢, = 5 and examine the cells that appear on

the leftmost vertical edge of the cube for € (—%, §].
Hence,S(Vnxp) = J(Vnxp) US(Vnx(p-1)) and by induction,

S(VNXd) - j(VNXd) U S(VNX(dfl))a d= 27 31 ey Da (44)
which implies that
S(Vnxp) =T (VNxp)UT(VNx(p-1)) U - UT(VNx1) (45)
D-1
= J I(Vaxo-a)- (46)

d=0
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As a result, the cardinality af(Vy«p) is

IS(VNxp)| = |j(VN><D | + |j(VN><(D71))| + -+ T (Vx)] 47)
d-1 ) L i
Z< >< —z)l 1> (%)z(d | (71 (48)

=11:=0

- (9(( 2D1>. (49)

We observe that in ca®® is full rank, i.e.D = N, the expression (48) returns as many elements as the clitsdina
of the setA}, !, i.e. A}, ' = |[S(Vnxp)|, as the following proposition staté$.The proof is provided in the
Appendix.

Proposition 4 If D = N, then the computation of,,; is N’P-hard and can be implemented by applying
exhaustive search or the proposed algorithm among all eieog AL, " since|AY ™! = |S(Vxp)| = MV,
|

To summarize the results, we have utiliz2d — 1 auxiliary hyperspherical coordinates, partitioned thpdrgube
$2P~=2 x (-, Z] into a finite number of cells that are associated with distiiephase vectors which constitute
S(Vyxp) C AL, and proved thas,,. € S(Vnxp). Therefore, the initial problem in (8) has been converted in

numerical maximization off V’ts|| among all vectors € S(Vxxp).

IV. ALGORITHMIC DEVELOPMENTS

In this section, we present the basic steps of the propoggttitdm for the construction ofS(V x«p)| for
arbitrary N, D e N, D < N andM € {2 | k =1,2...}. LetC, be the set that contains &l (V nx4)| combina-

tions of 2d — 1 hypersurfaces that intersect to a single intersectiontpoi®?¢—2 x ford=1,2,...,D,

( ]\I’ ]M]
i.e. Zog—1 = {i1,i2,...,i24—1} € Cq if and only if the intersection of hypersurfac@S(Vil_lzgd) H(VZ-Q_LM)

.., H(Vi,, ,1.24) constitutes a vertex of one or more cells 7?2 x (— 7> 77)- Furthermore, we define
Nz,, , € {1,2,...,N} as the set of indices of rows froM related with the2d — 1 hypersurfaces that participate
in the intersection poinb(V v xq; Z24—1)- From eq. (46), we observe that the initial problem of theedatnation of
|S(Vnxp)| can be divided into smaller parallel construction problehk7 (Vi «q4)| ford=1,..., D. Moreover,
the construction of7(Vy«aq))| can be fully parallelized since the candidate vectos($) nxq4; Z2q—1) can be
computed independently for ea@h,;_1 € C4. Therefore, in the sequel we concentrate only on the cortipataf
the candidate vector(s\Vnxd; Zoda—1), ¥Zoa—1 € Cq andVd € {1,2,..., D}.

For the following statements, we assume a certain valueifar {1,2,..., D} and a certain set of indices
Tog—1 = {t1,12,...,i24-1} € Cq. According to the derivations in the previous section, thenbination of hyper-
surfacesH (Vi 1.24), H(Viy1:24), - - - » H(Viy, , 1:04) iNtersects at a single poidt(V x xa; Zzq—1) that “leads”Q

cellsC1(Vnxda; Zod—1)s C2(VNxd; Toda—1), - - -» Co(V nxa; Zoa—1) associated withQ different M/ -phase candidate

10According to the cardinality derivation, we have ignoretated candidate vectors and thus the cardinality of theidated set drops from
N-1
|A11§1 to [Ay, .
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vectorss,(Vnxa; Zoa—1), ¢ = 1,2,...,Q. As already stated, the number of ce{lsdepends on the number
of pairs of participating hypersurfaces passing thro¢dWV x «4; Zo4—1) that originate from the same row &f

and equals tc(% — 1)?. To identify s,(Vnxa;Z2da-1), ¢ € {1,2,...,Q}, we detect one-by-one it elements
separately according to the following rutés

(i) Foranyn € {1,2,...,N} andn ¢ Nz,, ,, the corresponding element of candidate vest@V y xa; Zoa—1)

maintains its value ab(V yx4;Z24—1), hence it is determined by

Sqn(VNxd; Toa—1) = $(Vn,1:a5 @(VNxd; T2da—1))s (50)

forvg e {1,2,...,0Q}.

(ii) For anyn € Nz,, , such that there is only one hypersurface, $&V;, 1.24), that is related with the:-
th row of V and participates in the intersection, the correspondiegeht ofs,(Vxa4;Z24—1) cannot be
determined aip(V nxa;Z24—1). However, it maintains its value at the intersection of teenaining2d —
2 hypersurfaces((Vi, 1.24-1), H(Vis 1:2d0-1)s -+ - s H(Vip_112a-1)s H(Vig 1 1:2d-1) s H(Vigy 1 1:24-1),

hence it is determined by

Sqn(Vnxd; Zod—1) = $(Vin1:4; @(VNxd; Zoa—1 — {ik})), (51)

whereS{V,, 4} =0 for Vg € {1,2,..., Q}.

(144) For anyn € Nz,, , such that there is a pair of hypersurfaces with indi¢gs,, € Zog—1,ik # im.
say H(Vi, 1:24), H(Vi, 1:24) € H(gfﬁ)gd) that participate in the intersection, the correspondiregmeint
of s4(V nxa; Z2qa—1) cannot be determined &tV n x4; Z24—1). However, it is observed that the value%fin
the associated cell’;(V nxq; Z24—1) can be evaluated by computing the ambiguities at the intBosepoints
of the remaining2d — 3 hypersurface$t(V;, 1.24—1), H(Viy1:2a-1)s - - - H(Vi 1 1:2d0-1)s H(Vigss 1:2a-1)
H(Vi, 1 12a-1)s H(Vi, 1 124-1) -y H(Viyy 1 1:24-1) With the hypersurfaces that “construct” the cell
Cy(Vnsd; Toa—1), say? H(VZ.;_Md), H(Viiwwd) € H(gfﬁ)ﬂd), and finding the commoni/-PSK element

of these ambiguities. Hence it is determined by

Sgn(Vnxd; T2d—1) =
S(Vn,1zd; d(Vnxa; Zoa—1 — {ik, im}) + {Z;c}) ﬂ S(Vn.,lzd; d(Vnxa; Zoa—1 — {ik, im}) + {Zlm})7
(52)
whereS${V,, 4} =0 for Vg € {1,2,...,O}.
The above statements suggest the following constructiany &f n xa; Z2a—1),¢ € {1,2, ..., Q}. Assuming dis-
tinct intersections of hypersurfaces, thé-1 participating hypersurfacéﬂs(\?il,l;gd), H(Viz,l;gd), . ,H(Vi2d71,1;2d)
pass through the “leading” vertef(V n xq4; Z2q—1) 0f cell Cq(Vnxa; Zoa—1). f n € {1,2,...,N}\ Nz,, ,, i.e.,

none of the2d — 1 hypersurfaces originates from theth row of V, then none of the hypersurfacés(g:(ﬁ)gd)

Hin the following rules, we denote the-th element ofs, as sq,n.

. A . .
12We underline that, ,,, may be equal tdy, im.
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passes througlp(V nxa;Z2q—1), implying that the decision fos,, with respect to the partition of the hy-
percube ®2?~2 x (-7, ] by H(gfﬁ)ﬂd) is the same as the decision fey, at any point of the cell of
interestC, (V nxq; Z2q4—1) With respect to the same partition. As a result, the valudhefdorrespondind/-phase
elements, »,(Vnxa; Z2a—1) is well-determined at the “leading” vertex, as (50) states: example, in Fig. 1(c),
$4(Vyx2;{1,2,3}) is well determined ath(V4x2;Z24—1) through (50) and maintains its value in the associated
cell C(Vax2;{1,2,3}).

On the other hand, ifi € Nz,, , such that there is only one hypersurface, %Wik,lzgd) related to the
n-th row of V, then,H(\N/'ik_ylzgd) passes throughp(V y«a;Z24—1) leading to an ambiguous decision about
$(Vp1:0; @(Vnxa; Z2a—1)) between two neighbouring/-phase elements of th&/-PSK alphabet, separated by
the decision boundar related toH(V;, 1.24). For example, in Fig. 1(c), the hypersurfadééV 1.4), H(V2.1.4)
and H(V3 1.4) pass throughp(Vix2;{1,2,3}) leading to ambiguous decisions 8fV 1.0; ¢(Vaxa; {1,2,3})),
$(Va,1.2; 0(Vax2;{1,2,3})) ands(Vs1:2; #(Vaxe; {1,2,3})). In such case, ambiguity is resolved if we exclude
H(Vik,l;gd) and consider the intersection of the remainiat- 2 hypersurfaces at2;1 = ;. Indeed, the value
of s, at any point of the cell of interest, (V nxq; Z2qa—1) With respect td"{(vikﬂl:gd) is the same as the value
of sq.n at (V nxa; Z2a—1 — {ix}) With respect to the same hypersurface. Therefore, the \dltlee corresponding
M-PSK elements, ,,(V nxa; Z24—1) is well-determined through (51). For example, in Fig. 1(e¢ ambiguity
with respect tos; (Vaxa;{1,2,3}), s2(Vax2; {1,2,3}) and s3(Vax2; {1,2,3}) at intersectionp(Vax2;{1,2,3})
is resolved through (51) &' = ¢(Vax2;{2,3}), A = ¢(Vaxe;{1,3}) and B = ¢(Vax2; {1,2}), respectively.

Finally, if n € Nz,,_, such that there is a pair of hypersurfaces, wwikyl;Qd),H(Vim_’LQd), originating from
the n-th row of V, then, according to corollary 1, all hypersurfaces%dfgfﬁ):m) pass throughp(V iy xa; Zaa—1)-
Thus, ¢(V nxa;Z2q4—1) IS @ point on the common intersection axis of the family of éimrfaceS)'—[(g:(ﬁ)Qd)
and thus we have ambiguity for, , among all elements of thé/-PSK alphabet (there is no preference be-
tween two specificM-PSK symbols like in caséii)). The ambiguity is resolved if we exclude hypersurfaces
H(Vik,l;gd),H(le:gd) and compute the intersection point of the remainiag— 3 hypersurfaces with each
of the surfaces fronﬁ(gfﬁ)gd) that “construct” the cellCy(Vxa;Zaa—1) at ¢2a-1 = ;. Since each cell
Cq(Vnxa;Toa-1),9g = 1,2,...,Q, is “constructed” by hypersurfaces from(gfﬁgd) rotated by consecutive
decision boundarieB, these interesection points lead to ambiguous decisienad®iuts, ,, between neighbouring
elements of thelM/-PSK alphabet. The intersection of these sets determireevalue of the correspondingy -
phase elemend, ,,(Vnxa;Z2a—1), as (52) states. For example, in Fig. 1(d), we use an anpiteatk-2 complex
matrix V 4,.» for M = 8 and depict the intersection of hypersurfadé&V, 1.4), H(Vs1.4) andH(Vy,1.4) [curves
n=1,n =2 andn = 3 respectively] where” (V4 1.4), H(Vs1.4) € H(gfﬁ):él). According to corollary 1, the
remaining hypersurfaceH(Vlg,M), H(V1671;4) of the setH(gfﬁ)A) pass throughp(V4x2;{2,4,8}) [depicted
asn = 4,n = 5 respectively]. We observe that(V..2;{2,4,8}) “leads” (& — 1) cells, described by the points
{A,B,E,$(Vax2;{2,4,8})}, {B,C,E, d(Vax2;{2,4,8})} and{C, D, E, »(Vix2;{2,4,8})}. Each one of the
aforementioned cells is related with a differevit-PSK candidate vector. Taking as example the cell that amta
the points{ A, B, E, $(Vax2; {2, 4,8})}, the ambiguity ofss(V4x2; {2,4,8}) in this cell is resolved by computing
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the ambiguity decision sets at poimsand B with respect tos, and finding the common/-PSK element of these
sets, as (52) states. The same procedure is repeated fothdretwo cells.

To obtain the vector of hyperspherical coordinat®sV n xa; Z2d—1),Z2a—1 € Cq efficiently, we just need to
compute the zero right singular vector ﬁTIqu_,l:Qd and calculate its spherical coordinates. More specifically
according to the proof of Proposition 2, Péit}, for a full-rank (2d — 1) x 2d real matrix, the system that represents
the intersection of(Vi, 1.24), H(Viy1:2a)s - - -, H(Vigy 1 1:24), 1€

Vi, 1 1:2a€(h1.94 1) = O0(2a-1)x1 (53)

has a unique solutiogh(V xxa; Zog_1) € ®2172 x (=47 17) which consists of the hyperspherical coordinates of
the zero right singular vector 676712%171:2,1. Therefore, to obtairp(V iy «a;Z2q4—1) We just need to compute the
zero right singular vector OVZ2d7171:2d and calculate its hyperspherical coordinates.

The complete algorithm for the construction 8{V v« p) is provided in Table |. The algorithm visits inde-
pendently|S(Vnxp)| = O((#X)?P~1) intersections and computes the candidafephase vector(s) associated
with each intersection. The calculation of the zero righgsiar vector ofVz,, , 1.24 costsO(d?), the conversion
to spherical coordinates cost3(d) and the operatiomaxsc 4,, R{s*Vy 1.0¢(¢1.04_1)} cOStsO(d). For each
Tsq—1 € Cg4, the cost of the algorithm |a§’)(@) Therefore the overall complexity of the algorithm for the
computation ofS(V . p) with fixed D < N becomesO((24¥)2P=1)O(MN) = O((24X)2P). We recall that
the corresponding complexity of the algorithm proposecij s of the ordelO(N2P) andO((2N)?P) for BPSK
and QPSK, respectively.

In Fig. 5 we draw the complexity of the proposed algorithnuébline) and the complexity of the exhaustive
search (green line) fab = 2, M = 8, 32 (Fig. 5(a)-(b)) and folD = 3, M = &, 32 (Fig.5(c)-(d)). We observe that as
the sequence length grows, the complexity of the exhaustigech grows exponentially and becomes impractically
large even for moderate sequence lengths. Whereas, thdedtyppf the proposed algorithm grows polynomially
with respect taNV, is much faster than exhaustive search and remains prafiicenoderate sequence lengths.

We observe that the computation of the candidate vecto$(®y«p) is performed independently from cell
to cell, which implies that there is no need to store the da#d have been used for each candidate and we only
have to store the “best” vector that has been met. Therefoeeproposed method is fully parallelizable and its
memory utilization is efficiently minimized, in constrast the incremental algorithm in [5]. We also mention that
if the initial problem is of a high rank that makes the optiatian intractable, then the matri® in (2) can be
approximated by keeping thB strongest principal components of it. In such a case, as ise@®), the proposed

method is rank-scalable.

V. CONCLUSION

In this paper, we presented a more generalized algorithnthfecomputation of the maximizing argument of a
rank-deficient quadratic form over ady-ary PSK alphabet};. We do this by utilizing auxiliary hyperspherical

coordinates that separate the multidimensional spaceipynomial-size set of cells, each of which is associated
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Fig. 5. Proposed algorithm complexity (blue line) Vs. exdtaue search complexity (green line).

with a distinct candidate vector. We have showed that itsprdational complexity is polynomial in the lengith of

the maximizing argument if the rank of the observation mafiin the quadratic forns”* Qs is independent ofV.

We continued by developing an algorithm that computes th&6€  « p) of candidate vectors in polynomial time,

is fully parallelizable, rank-scalable and time and memefficient. Thus, without loss of optimality, the proposed

algorithm serves as an efficient alternative approach taestive search for the computation of the maximizing

M-ary phase vectos in the quadratic forns™Qs.
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APPENDIX

A. Proof of Lemma 1

Assume arbitrary vectax € R?P, x = [v1 22 ... x2p|T with radial distance|x|| = /22 + 22 + -+ + 22, =
r,r > 0. We want to prove that there are unique hyperspherical to@ese®,.,,_, € (=%, 5]*P 72 x (-, 7]

that can fully describe vectot. At first, assume that the spherical coordinatex afre

7 8in ¢
7 COS ¢ sin ¢g

7 COS (b1 COS (9 Sin 3

&(Prap-1) = (54)
T [ 127 cos sz} sin gap—1
2D-2
r|[[;Z; * cos¢i| cospap_
L |:1_.['L_1 ¢z} $2p-1]
Then
[ rsin ¢y 1 i 1 i
7 COS ¢1 Sin ¢ o
7 COS (b1 COS 2 sin P3 T3
¢(Prop_1) =x = : =
D— .
T[H?ZI ? Cos ¢l:| S ¢2D71 Top—1
2D—2
_T{Hizl cos@-] cos ¢2p—1 | | zop |
_ _ B -1 1_1) T
sin
P1 ( v
win—1
¢2 s (TC§52¢1)
=1 :
¢3 Sin (r cos (;1’3(:05 b2 )
:> . = . (55)
-1 T2p-—1
S _ Tepo1
o] |7 (i)
$2p-1 -1 (12713)
L i _cos T2 % cos 9] / |
We observe that given the fact that coordinatgs,, . lie in (=%, 3]2P~2, the values ofp1, ¢2, ..., ¢2p—_2 can

be uniquely determined using the equations in (55) secpiBpti.e. ¢; can be determined fromin ! (””1) 02

T

can be determined fromin~! ( L2 ) using previously computed,, etc. But the value ofysp_; cannot be

T COS P1
determined uniquely just using one of the two equationgn_;. More specifically, using equatiotop 1 =

sin~! (%) we have ambiguity between two solutions &fp_1 since gop_1 € (—m,w|. But the
T i—1 cos¢;

ambiguity is resolved if we simultaneously solve the lasiaipn in (55) and choose @sp_; the intersection of
the solutions provided by the last two equations. Therefang vectorx € R?P can be uniquely described using
unique hyperspherical coordinates as defined in (54) arsléifas 1) is the hyperspherical coordinate vector that

describes the whol€ D)-dimensional Euclidean space. |
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B. Proof of Proposition 1

Let c(¢;.0p_1) be a hyperspherical coordinate complex vector as defined 2 for arbitrary hyperspherical
coordinatesp,.,p_; € (—%,%*’~2 x (—m,w]. We are interested in proving that there always exists arfeang
a € arg{Am} that relocates the angular coordinatg,_; of the hyperspherical vect rc(qsl:w,l)eja} in the

interval (-, =-]. Since we are interested only in coordindtg,_; of the rotated complex coordinate vector

M> M
c1(d1.2) €OS ¢1 Sin ¢ + j sin ¢
. c2(Pr.4) . COS (b1 COS (2 COS ¢3 Sin P4 + J COS P COS P2 sin 3 _
c(Prop_1)e’" = . e’ = . e’
cp(@1.2p-1) {H?g_l) cos ¢z} cosgap-1+J {H?g_l) cos @} sin gap—1

we focus on the last rowp (¢,.5p_1)e’® = <{Hfﬁ€’_l) cos sz} coS pap—1+7 [Hffl’_l) cos gbl} sin gap_1 |e7*.

Using Euler’s formulagp (¢,.55_1) can be transformed intay (¢1.5p_1) = R{cp(P1.0p_1) }+iS{cp(P10p_1)} =

rel“ wherergeq0 and

_ S{cp(@rap-1)} ) _ [Hfiﬁ)il) cos sz} sin ¢ap—1
w = arctan | ———==—"— | = arctan
R{cp(@r.op-1)} [Hfifl’—l) oS sz} €08 Gop_1

sin _
= arctan (ﬂ> = arctan (tanngD_l) = ¢ap_1-

COS P2p—_1
Thus, cp(@,.0p_1) = re®2p-1. Multiplying this term with ¢/* we get: cp(¢.op_,)el® = rei(Pzo-1te) —
red(#20-1) Now, sincea € arg{Ay} = {%Tm | m =0,1,...,.M - 1}, we observe that multiplication of
cp(¢1.0p_1) With €7 leads to relocation ofop—1 of ¢(¢,.,,_1) into one of theM slices of length?Z described

in the set

i G o (2 A (e e

W.l.o.g., we choose the value af such that the last coordinate of the rotated hypersphecioalplex vector
{c(qSl:QD,l)eja} belongs in the interva( — ., ]. [ |

C. Proof of Proposition 2

(i) Considetlap 1 = {i1,iz,...,iap_1} and2D—1 hypersurface®((V, 1.op), H(Viy.1:20), - -, H(Viyp_, 1:2D)
that correspond t@D — 1 rows of V@Xw. Since each hypersurfadd(ffm:w) is described by equation

Vii2pc(@i.0p_1) = 0,4 € {i1,42,...,72p—_1}, their intersection(s) will satisfy the system of equasion
Vi171:2DC(¢1:2D—1) =0
=0

Vi2,1:2Dc(¢1:2D71)

Visp_11:20¢(P1.0p—1) =0
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The above system is rewritten a&7,, | 1.o0¢(¢1.0p 1) = 0@2p—1)x1- Therefore, the solutiokp,.,,_; is such
thatc(¢,.p_,) belongs to the null space &fz,,, , 1.2p, denoted byV(Vz,,_, 1.2p), and has dimension greater

than or equal to one, sinaank(\?szl,l;gp) < 2D — 1. Let
Vi, 112D = ﬁ(2D—1)><(2D—1)A(2D—1)><2DU{2D)><(2D)
be the singular value decomposition8&2»171:2[), whereU andU are orthogonal matrices,
A = [diag(A1, A2, ..., Aep—1) O2D—1)x1);

and w.l.o.g A1 > Xy > - > Aop_1 > 0.
We consider two cases.

(i) If Xop_1 > 0, then N (Vz,, ,1.2p) = {aUiepap : « € R}, which implies thatc(¢,..p_ ;) =

Ui:2p,2D _ Ui:2p,2D ; ; 2D—2 T ¢
TOananTl orc(¢y.op_q) = —TOanso Since we required, ,p ; € ¢ x (=45, 751, only one solution
i% is valid and the hyperspherical coordinate vector we loakiouniquely determined by the

. P VPi2p.2Dp ~ Uisppep
nUl:zD,lel or U1:2p,20] "
hyperspherical coordinates @

(73) If dap—1 = 0, then dimN(\NfImflyl;QD) > 2 which implies that there are uncountably many solutions for
c(¢1.0p_1) that satisfy the requiremewt.,, ; € ®*P~2 x (-, &
(1) For arbitraryD, M, N and given complex matri¥ n x p, we construct\?@ﬂ, as in (28). Thenff%m,
is given by

V= [R(V.1) S(Vi1) R(V.2) S(V.2) ... R(V.p) S(V.p)l.

Let K € {3,4,.... 4} andZg £ {i1,ia,...ix} C {0,1,..., 2 — 1}, ik # iy, fOr k # m, denote a set of
hypersurfaces which are rotated versions of the same rampithosen, row ofV. W.l.o.g., we choose surfaces

originating from the first row of the observation matNkx Motivated by the definition of groups in (34), we define

groupg
vl,l:QD gg.];i:QD
g 2 Vagn)1:2D B ggi:w
\/ (1)
_V(1+(%—1)N),1;2D_ 9y 12D M yop

which is related with the first row oV. To prove proposition @i), we define the following system of equations
for arbitrary K,
1
ggl,)l:2D
1
ggg,)l:QD

¢(@1.2p-1) = Ozx1 = (56)

1
g( )1:2D

1K,



R(Vane 7)) $(Vie ) R(Vpye ) $(Vpe?7)

R(Vane 7)) S(Ve ) R(V1,pye ™7 5) S(Vio,pye ™ 1)

R(Vye d 5°) $(Vaped o) R(V(,pye d 5°) $(Vpye o)
)
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é(¢1:2D71) = Ok x1- (57)

W.l.0.g., we assumé < iy < --- < ix. Therefore, expression (A) in (57) can be further transtarinto®

R(V

27y

%(V(l)l)eﬁ eV

2mig

%(V(Ll)e*]Te

R(V e 5)

27T(i2—i1)

%(V(l)l)e_j% [cos =37

. 2miy 2 (ig —i1)

%(V(Ll)e*JT[cos AT — jsin 7 ])
and by lettingay 2 R(Vyge ), By 2
le{l,2,...,K} we get

[aq coswy + By sinwn]
[a1 coswa + B sinws]
[a1 coswg + f1sinwg]

Thus, eq. (57) becomes

[011 coswi + 51 sinwl]

[011 CcOoswg + 51 sin WQ]

[a1 coswg + P1sinwi]

— jsin

3(
3

2#(1';4—1'1) ])

271'(’L'K7’L'1)

[Bp coswi — ap sinws|

[Bp coswa — ap sinwa)

[ﬁD COSWK — Op sinwK]

Va,pye

(V(l)D)e_j% [cos

%(V(l)D)e*JT [cos

11
|1

Solving the above system of equations with respectitowe get:

L 2miq 2mig
e N e
Lye ) S(V,pye™? )
2w (ig—ig) _2miy L 2m(ig—ig)
) S(Vapye @ e 70
2w —i1) _omiy L 2m(ig —ip)
i) S(Va,pye /e i)

L 2mig

)
27T(i2 —il )
M

. 2miy 2 (ig —i1)

M

%(V(l)d)e*j%) for d € {1,2,...,D} andw,

[Bp coswy — ap sinw;|

[Bp cosws — ap sinws]

[Bp coswk — ap sinwg]

sin (bl
COs 1 Sin o

COS (1 COS ¢ sin 3

2D—-2
=1
2D—2

cos ¢z} sin ¢ap 1

— jsin

— jsin

i=1 COS ¢1} cos ¢2D71_

271'(1‘]1‘(471'1) ])

A 2m(i—i)
I for

=07y x1-

13For the sake of simplicity and space, from now on we shall émiyude the first and last element of each row in the equations
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tan (b _ (B1 coswy—a sinwy) sin ¢pa+-+(ap coswi+LBp sinwi) ?5272 cos ¢ sin pap_1+(Bp coswi —ap sinwi) H?E{l cos ¢;
1= (o1 coswi+061 sinwy)
tan (b _ (B1 cos wa —a1 sinwa) sin ¢pa++++(ap coswa+LBp sin wa) H?:D;2 cos ¢ sin pap—1+(Bp coswa—ap sinws) H?:szl cos ¢; (58)
1= (a1 cos wa+B1 sinws) '
tan (bl _ (B1coswg —ay sinwg ) sin ¢pa+--+(ap coswg +Bp sinwg ) Hf:D;2 cos ¢ sinpap_1+(Bp coswg —ap sinwgk ) H?E{l cos ¢;

(o1 cos wxc+1 sin wi)
Running over the whole domain fap,.,, ; € >~ x (-4, {;], the equations in (58) defin& different
hypersurfaces as functions ¢f. To show that two or more hypersurfaces originating from shene row of the
observation matri®vV have the same intersection, it suffices to show that thesetgion of any combination of two
equations from the above system is independent of theireptaation differencev;,! € {1,2,..., K'}. Choosing
randomly two equationsy,n € {1,2,..., K}, m # n from the above system of equations and computing their

intersection, we get

_ oT - - - oT - _
(1 COS Wiy, — Qr1 SIN Wy, sin ¢o (1 cosw, — aq Sinw, sin ¢o
. 2D—2 . . 2D—2 .
ap CoSwy, + Bp sinw,, Hi:Q Cos ¢; Sin pap—_1 ap coswy, + Bp sinw, Hi:Q Cos ¢; Sin pap—_1
ﬁD COS W, — aup SIN Wy | _Hff;l COS ¢; COS (bgD,l_ B ﬁD coswp, — ap Sinwy, | _Hff;l COS ¢); COS (bgD,l_ N
(a1 oS Wy, + B1 sinwyy,) o (a1 coswy, + Prsinwy,)
T
(a2 + 32)(cos Wy, sinw, — coswy, sinwy,) sin ¢
2D—2 =0=
(Brap — a18p)(cos wy, sinw,, — coswy, sinwy,) [[;=5 “cos¢;singap_1
(crap + B18p)(cos wy, sinwy, — coswy, Sin wyy,) H?:DQ_l cos ¢; cos pap_1
T
ot + 33 sin ¢
sin(wy, — wy,) ' ' =0=
2D—2 .
Biap — a1 fp [[;=5 ~cos¢isingap 1
2D—1
ajap + £16p [[;=;  cos;cospap_1
T
ot + 32 sin ¢o
2D—2 =0
Brap — a1 8p [[;=5 “cos¢;singap 1
2D—1
ajap + B18p [[;=5 ~ cos ;s cospap—1

Since the above equation is satisfied for any combinatiowofequations in the system (56), we ought to assume
that the intersection of any two or more rotated hypersedds common and independent of their phase rotation

differencew;,l € {1,2,..., K}. [ ]
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D. Proof of Proposition 3
Given that

€Os ¢1 sin @2 + 7 sin ¢

COS (1 COS (hg COS ¢3 Sin ¢4 + J COS P71 COS P2 sin P
c(P12p-1) = : (59)

_[H?fo oS ¢; | oS P2p—1 + J[H?fo cos (bz} sin ¢ap 1 |

we use the following lemma in the subsequent derivations:

Dx1

Lemma 2 Let c(¢y.0p o, —7;) be a hyperspherical complex vector whepe,, , € ®*P~2. Then, the
following expression holds true

™

c27 ’ i / _
el c(@1.2p—2; _M) = c(¢1.2p—2; M)’ for some,.,p 5 € P72 (60)

O

Proof: According to (59).c(¢,..p o, —77) €quals to

coS ¢ sin ¢o + j sin ¢

- COS (b1 COS (2 COS (3 Sin Pq + J €OS 1 COS P2 Sin @3

c(@1.2p—2 _M) =

[H?ffz CoS ¢; cos(—%) +j Hffo cos (bz} sin(—%)

Rotatingc(¢y.5p_2, — %) by phasore’/#, we get

I 37 (cos ¢y sin ¢y + j sin 1)

el 5 (cos ¢1 cos g oS ¢3 Sin Py + j cOS P1 €OS P2 sin P3)
, T

27
el c(Pr.2p_2:— M)

E+ <[H?ﬂz cos ¢; | cos(—7) +J [ IT:2 cos (bl} sin(—%))

cos ¢/1 sin ¢/2 + jsin (bll

cos (bll cos ¢,2 cos ¢,3 sin ¢; + j cos ¢,1 cos ¢,2 sin ¢,3

2D—2 / / [ 1r2D-2 o

L ILiz: COS@} cosgyp_y + | [[izs COS@} Sln(bQD—l_
’

=c(¢1.2p-1)

ie. d)ll:2D—1 are the hyperspherical coordinates of complex veetdt ¢(¢,..p o, —+7)- Calculating explicitly the
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’
values of¢,..H_,, We have

sing; = S{e/ (cos ¢y siny + jsingy)} =
/ 2 2
¢, = sin! (cosﬂﬁsingbl +sinMﬁcos ¢1sin¢y) € (—g, g], (61)
sing, = %{ej% (cos ¢ singy + jsingy)} =
¢; _ ! (cos%cosqﬁl sin(bg/— sin%sinqﬁl) c (_f, 1]7 (62)
cos ¢, 2°2
sin (blg = C\‘y{ej%r (cos ¢1 cos g cos ¢3 sin Py + j cos ¢1 cos ¢o sin ¢3)} =
27 : 27 .
(blg — ain! (cos 37 €OS @1 COS P2 8in 3 + s{m o c,os @1 COS (3 COS @3 sin (;54) c (_27 K]a (63)
COS ¢} COS Pqy 2°2
2D-3 2D—4
’ - 270
sinop_o = %{eﬂM <[ H cos gbl} sin ¢gap_o +j[ H cos gbl} sin ¢2D3> } =
i=1 i=1
, . _q [COS QW” [H?£1_3 €OS ¢;] sin o p_o — sin QW” [H?£1_4 oS ¢;| sin ap_3 T
¢2D72 = Ssm ( 2D—3 , ) € (__a _]' (64)
[Ti=; " cos ¢ 2

For the last hyperspherical coordina;f@Df1 we have the following system of equations

sindyp = 0] i ([H?ﬂ‘2 cos 6] cos(— ) + 5[ [1255 cos ] sin(~ )

=y

!’
cospyp_1 = N3 e’

=
<[H?£712 cos gbl-] cos(—47) +Jj {Hffo cos (bi} sin(—4%)

2D—2 : : 2D -2
cos 2% [Hi:l cos ¢i] sin(— 7% )+sin 37 [Hi:l cos ¢i} cos(— 4

. ’
s ¢2D—1 = ?5172 cos qb;

’ __cos i—’; [H?]:3f2 cos ¢i] Cos(—ﬁ)—sin ?T}' [H?£f2 cos d)l} sin(—ﬁ
COSPop_1 = 302

i=1 COS ¢’;
Dividing these two equations, we have

) , cos 2% [ ?5172 cos qbl] sin(— %) +sin 27 [ ?5172 cos qbl} cos(—77)
S1I ¢2D7 1 ?2172 cos qb/i

7 = 27 2D—2 ) . :‘_ 2 oD—2 - N - =

COS ¢2D—1 cos 31 [Hi:l cos tbz} cos(—47)—sin 5F [1_[,5:1 cos ¢J sin(— 7%
H?£172 cos ‘i’i

tand. _ [TI252 cos ¢i] ((cos 2 sin(— =) + sin 27) cos(— ) .

2D-1 [TI252 cos ¢i] ((cos 22 cos(— &) — sin 2%) sin(— 1))

! sin(37 — 47) T
tan¢2D_l = m = tanﬁ =

' T

¢2D71 = M

Therefore¢,.,,,_, € ®2P~2 and bop_1 = - and, hence, we have proved the equation (60). O



(i) s(VNxD; P1.9D—2 —ﬁ)

Lem. 2

= arg max R{s""Vec(¢i.0p_o, —
se A%

™

ol

argslélj%i %{(seﬁ&’)ﬂv I (Prap_ o —%) }
(@120 2077)
= ¢ 7% arg max %{SHVc(qb;:QDQ, 1)}
seAY, M

_2m /
=e ' Ws(VNupiProp_o,

™

M)’ for some@,.,p_, € P72,

.. ™ i
(i) sS(VNxD;Prop_3: =+ d2p—1) = arg max R{s""Ve(py.op_5, = d2p-1)}
2 sc AN 2

M

COs ¢1 sin ¢o + 7 sin ¢

COS (b1 COS (pg COS ¢3 Sin ¢4 + J COS P71 COS P2 sin 3

= arg max R<{ s"V :

seA 2D-3 2D—4

[Hi:l CO8 ¢z} sin % +J [ Hi:1 coS (bz} sin gap—3
2D— [ yr2D- .
_[Hizl 3 cos gbl} COS 5 COS Pap—1 + J [Hizl ® cos gbl} cos 5 sin gap_1 |
cos ¢1 sin ¢ + j sin ¢
COS (1 COS (3 COS (3 Sin g + J COS p1 COS P2 SiN P3

= arg max R SHVNX(D,l)

se AN,

2D—4
i=1

2D—4
i=1

cos gbl} cospap_3+ |1

II

oS ¢; | sin ¢ap_3

= S(VNx(D—l); ®1.2p-3)-

T T
(i) s(VNxD;®1.0p_3 o $p2p—1) = arg rélj)ls 8%{SHVC(¢’1:2D737 o $2p-1)}
seAMm

coS ¢ sin ¢o + j sin ¢

COS (p1 COS (2 COS (3 SiN Py + J COS (1 COS P2 Sin @3

=arg max RS s"V

se AN

T2 cos o sin(—5) + 5[ TE2,* cos o sin g2
_[H§£1—3 coS d)l-] cos(—%) cospap—1+J {Hf£1_3 coS gbl} cos(—%) sin (bgD,l_

— cos(—¢1) sin(—¢2) — jsin(—¢1)
— cos(—¢1) cos(—d2) cos(—¢s3) sin(—p4) — j cos(—p1) cos(—d2) sin(—¢p3)

= arg max R SHVNX(D—I)
se AN

2D-3
i=1

2D—4
i=1

—11 cos(—qﬁi)} —j[]_[ cos(—¢;)| sin(—d2p_3)



) — jsin(—¢1)
1) — J cos(—¢1) cos(—¢2) sin(—¢3)

[ 25) 4cos( qﬁl)} sin(—¢g2p—3)

cos(—gbl-)} COs 5 oS O j[ 2? % cos(— (bz)} cos 7 sin ¢;D71_

(—=p2) + jsin(—¢1)
(=¢a) + j cos(—¢1) cos(—¢2) sin(—¢3)

cos(—gbi)} sin & +]{ 2? 4cos(—¢i)} sin(—¢op_3)

cos(—gbi)} Cos 5 oS bop 1 -‘rj[ 25) % cos(— (;51)} cos & sin (;5’2D_1_

— cos(—¢1) sin(—¢z
— cos(—¢1) cos(—g2) cos(—@3) sin(—¢
=arg max R s Vyyup :
se AN, D3
— [Hi:l cos(—@)} sin § —
_ [HQD—?,
i=1
[ cos(—¢q ) sin
cos(— 1) cos(—gp2) cos(—ap3) sin
=arg max R{ —s"Vyyp
seAN I
hye=
[H2D—3
L 1Li=1
™ ’
= —s(VNxD; —P1.0p_3s 3 Pap_1)-
(iv) s(VNxD;®1.0p_3, ig, $p2p—1) = arg Igjﬁg §R{SHVC(¢1:2D737 :I:g, $2p-1)}

2D-3
i=1

2D—4
(154

coS ¢ sin ¢o + j sin ¢

COS (b1 COS (2 COS (3 Sin Pq + J €OS P1 €OS P2 Sin @3

cos gbl-] sin(:l:%) +]{H?D1_4 cos (;51} sin ¢ap_3
D 3

e
cos ¢i] cos(+%) cos pap—1 +J[

coS ¢ sin ¢o + j sin ¢
COS (p1 COS (2 COS (3 SiN Py + J COS 1 COS P2 Sin @3

cos (bz} cospap_3+ ] H?£174

cos @} sin ¢ap_3
coS ¢ sin ¢o + j sin ¢

COS (b1 COS (2 COS (3 SiN g + J COS 1 COS P2 Sin @3

cos (;51} cos(+7%) sin $2p-1]

= arg max N{ sV
se AN

[T

= arg max R SHVNX(D,l)
se AN,

= arg max N{ sV
se AN,
2D-3
114

=s(VNxD;Pr.0p_3,

[HQD—B
i=1
cos ¢i] cos(£7) cos ¢2D

i ’
157 ¢2D—1)'

cos (;51} sin(£3) +j {H?Df4

Cos éf%} sin ¢2p_3

2P73 cos (;51} cos(+7%) sin bop_ 1

1+J{

30
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E. Proof of Proposition 4

AsssumingD = N, observation matrix¥ becomes a full rank symmetric complex matrix and tAGY 7t =
Zﬁ;l v Vit = 27]:]:1 Anadnaq? = Q. In this case, the cardinality expression in (48) can be iteras

st =23 (V) ey L) E )

d=11=0
Interchanging summations and making some variable subistis, we can transform the above equation in the

following equivalent form®

e (& G-
-HrEO)E-YE e )

dd
Definition: According to binomial formula, foka,b € R andn,k € N

(a+b)" = kzzo <Z> akbn k. (66)
0

Corollary 22 The sum of the coeffcients of the odd terms of the expan&ion b)" is equal to the sum of the
coefficients the even terms. O

Using the binomial formula and according to the corollary 2,

G IC R S G ICO

Therefore, (65) becomes:

S () A ()
s (NG -0 ()G

14As in most binomial and multinomial proofs, quantities oé ttorm 0° are assumed to be equal to 1.



32

@ o3 (V) (F-) )"

1=0
M M AN
= (F -1+ 5 +1)

=(M)""MN = MmN
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