

Technical University of Crete

Electronic Engineer and Computer Engineer Department
Microprocessor & Hardware Laboratory (MHL)

Design and Implementation of a 5d
Classification Engine

Master’s Thesis

Antonios Nikitakis

Committee: Assist. Professor I. Papaefstathiou (Thesis Advisor)

Professor A. Dollas
Assoc. Professor D. Pnevmatikatos

Chania, Crete 2008

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

2

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

3

Acknowledgments

I have somehow managed to spend some years, working towards my M.Sc.

Through all these years I have been fortunate to interact with many people who

have influenced me greatly. One of the pleasures of finally finishing is this

opportunity to thank them.

First of all I would like to thank my supervisors, Prof. Yiannis

Papaefstathiou and Prof. Dionisios Pnevmatikatos who gave me the

opportunity to work on the subject of packet classification, and whose

expertise, understanding, and patience, added considerably to my graduate

experience. I would like to thank Manos Touloupis, for the assistance he

provided at the level of testing and verification. I would like to give a special

thanks to Vassilios Papaefstahiou whose great previous work on packet

classification inspired me and helped me to compose this thesis. Finally I

would also like to thank all the members and colleagues from the MHL

laboratory (www.mhl.tuc.gr). Special thanks to: Spyros Ninos, Evripidis

Sotiriadis, Kyprianos Papademitriou, Ioannis Ermis, Iosif Koidis, Grigoris

Chrysos, Dimitris Meintanis.

I would also like to thank my family for the support they provided me

through all these years of studies.

http://www.mhl.tuc.gr)

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

4

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

5

Contents

Contents...5

Chapter 1..9

Introduction..9

1.1 Internet and Networking ..9
1.2 QoS in Ethernet ...12
1.3 Longest Prefix Matching [1] ..13
1.4 The Packet Classification Problem...14
1.5 Contributions of this work..17
1.6 Outline of the thesis ...17

Chapter 2..19

Related Work ...19

2.1 Single Field Searching Techniques...19
2.1.1 Exact Matching ..19
2.1.2 B-Trees ..20
2.1.3 Hashing..20
2.1.4 Bloom Filters ...22
2.1.5 Longest Prefix Match ...24
2.1.6 Linear Search ...25
2.1.7 Content Addressable Memory (CAM)....................................25
2.1.8 Trie Based Schemes ...26
2.1.9 Multiway and Multicolumn Search...28
2.1.10 Binary Search on Prefix Lengths ..28
2.1.11 All Prefix Matching (APM)..29
2.1.12 Range Matching ...30
2.1.13 Interval Tree...30
2.1.14 Range to Prefix Conversion..31

2.2 Multi Field Searching Techniques..32
2.2.1 Exhaustive Search ..32
2.2.2 Linear Search ...33
2.2.3 Ternary Content Addressable Memory (TCAM)33
2.2.4 Decision Trees ...34
2.2.5 Grid of Tries ..34
2.2.6 Hierarchical Intelligent Cuttings (HiCuts)36
2.2.7 Fat Inverted Segment (FIS) Trees...38
2.2.8 Decomposition ...40
2.2.9 Parallel Bit Vectors (BV) ...40
2.2.10 Aggregated Bit-Vector (ABV)..42
2.2.11 Recursive Flow Classification (RFC)43

3 Chapter 3..47

Bloom Filter Based Packet Classification ...47

3.1 Real Filter Sets...47
3.2 2sBFCE Design and Description..49

3.2.3 Single Field Operations ..49

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

6

3.2.4 Internally Represented Filters...50
3.2.5 Combining Results ...52
3.2.6 Set Membership Queries with Bloom Filters53
3.2.7 Bloom Filter Tuning...54
3.2.8 False Positives and Filter Tuning..56
3.2.9 FlowID Resolving and bloom filter collisions.........................57

3.3 Indexing the Rules Table and Incremental Updates59
3.4 Improving Memory Access ..59
3.5 Verification..60
3.5.1 Simulation Results ...61
3.5.2 Post place and Route verification ...63

Chapter 4..65

Hardware Implementation of 2sBFCE ..65

4.1 2sBFCE Organization ..65
4.2 Implementing the Bloom Filters [2] ...67

4.2.1 Implementing Bloom Filter Elements (BFE)67
4.2.2 Creating Larger Bloom Filters..68

4.3 Source and Destination IP Classifier Blocks...................................69
4.4 Source and Destination Port Classifier Blocks................................70
4.5 Permutation Engine Block ...71
4.6 Rules Table Addressing Module ..72

4.6.1 Hash_2_gen Module ..72
4.6.2 2nd Stage BF ...73

4.7 Rules Table Block..73
4.8 Implementation Analysis ...74

4.8.1 Storage Requirements ..74
4.8.2 Hardware Device’s Cost & Performance75
4.8.3 Performance Memory efficiency and parallelization...............79
4.8.4 IPv6 Support ..79

Chapter 5..81

Contributions and Future Work ..81

5.1 Summary of Contributions..81

5.2 Publications ..82

5.3 Future Work ...82

References..83

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

7

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

8

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

9

Chapter 1
Introduction

Nowadays, the Internet has emerged as a global communications service of

continuously increasing importance. The ever expanding scope of Internet

users and applications require the network infrastructures to exchange large

volumes of information, augmenting the already challenging performance

constraints.

Due to the rapid growth of traffic in the Internet, backbone links of several

gigabits per second are commonly deployed. To handle gigabit-per-second

traffic rates, the backbone routers must be able to forward millions of packets

per second on each of their ports. After the introduction of Classless Inter-

Domain Routing (CIDR) in 1993, IP address look-up has become a much more

difficult task. That is because now, a router must not only find an exact prefix

match or to choose the Longest Prefix Matching (LPM) according to the IP

destination address but may also have to deal with multiple fields. This thesis

addresses the searching tasks performed by Internet routers in order to forward

packets and apply network services to packets belonging to particular traffic

flows.

Considering that these searching tasks must be performed for each packet

traversing the router, the speed and efficiency of the applied techniques utilizes

determines the performance of the router, and hence the entire Internet.

1.1 Internet and Networking
The Internet is a "network of networks" that consists of millions of smaller

domestic, academic, business, and government networks, which together carry

various information and services, Each of these networks consisting of

heterogeneous hosts, links, and routers. Hosts send and receive packets, or

datagrams, which contain chunks of data - a part of a file, digitized voice

samples, etc.

Packets indicate the sender and receiver of the data similar to a letter in the

postal system. Links connect hosts to routers, and routers to routers. Links may

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

10

be twisted-pair copper wire, fiber optic cable or a variety of wireless radio

technologies. The role of routers is to switch packets from incoming links to

the appropriate outgoing links depending on the destination of the packets.

Packets may traverse many links, called hops, in order to reach its destination.

Due to the impermanent nature of network links (failure, congestion, additions,

removals), routing protocols allow the routers to continually exchange

information about the state of the network so as to decide the forwarding of

packets destined for a particular host, network, or sub-network.

1.1.1 Ethernet Networks

Ethernet is a family of frame-based computer networking technologies for

local area networks (LANs). It is the most widely adopted protocol in the

physical and data link layer of the network. It defines 48-bit addresses, called

MAC addresses, that are unique for each network interface, and uses them in

order to manage the circulation of packets in the physical medium. Ethernet’s

speeds started from 10 Mbps and eventually evolved to 100Mbps, 1Gbps and

recently to 10Gbps.

1.1.2 IP and TCP Protocols
The original Internet protocol comprises mainly of two protocols: the

Internet Protocol (IP) and the Transmission Control Protocol (TCP). The

primary function of the Internet Protocol (IP) is to provide an end-to-end

packet delivery service. This task is accomplished by including information

regarding the sender and receiver inside each packet transmitted through the

network. IP protocol specifies the format of this information which is

prepended to the content of each packet, namely the packet header. In order to

uniquely identify Internet hosts, each host is assigned an Internet Protocol (IP)

address. Currently, the vast majority of Internet traffic utilizes Internet

Protocol Version 4 (IPv4) [4] which assigns 32-bit addresses to Internet hosts.

As shown in Figure 1.1, the IPv4 header of packets includes the IP address of

the source and destination host and many other important fields such as the

protocol which specifies the type of transport protocol used by the sending

application. The type of transport protocol determines the format of the

transport protocol header following the IP header in the packet.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

11

The second protocol produced by the original Internet Architecture project,

the Transmission Control Protocol (TCP), provides a reliable transmission

service for IP packets. Through the use of small acknowledgment packets

transmitted from the destination host to the source host, TCP detects packet

loss and regulates the transmission of packets in order to adjust to network

congestion. When the source host detects a packet loss, it retransmits the lost

packet or packets. At the destination host, TCP provides in-order delivery of

packets to higher level protocols or applications. After the initial development

of TCP, a third protocol, the User Datagram Protocol (UDP), was added to

provide additional flexibility. UDP essentially allows applications or higher

level protocols to control the transmission behaviour. For example, a streaming

video application may wish to ignore packet losses in order to prevent large

breaks in the video stream caused by packet retransmissions. Typically, the

TCP and UDP transport protocols identify applications using 16-bit port num-

bers carried in the transport header as shown in Figure 1.1.

Figure 1.1: IP header format

1.1.3 Internet Addressing

IPv4 is the dominant network layer protocol on the Internet and apart from

IPv6 it is the only standard internetwork-layer protocol used on the Internet.

IPv4 addresses were allocated to organizations in contiguous blocks with the

intention that all hosts in the same network share a common set of initial bits.

This common set of initial bits is referred to as the network address or prefix

and the remaining set of bits is called the host address. This allocation strategy

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

12

provided decentralized control of address allocation and each organization was

free to make allocation decisions for the addresses within its assigned block.

As shown in Figure 1.2, IPv4 addresses were originally divided into classes,

each supporting different sizes of hosts:

• Class A (16 million hosts),

• Class B (64 thousand hosts), and

• Class C (254 hosts).

• Class D addresses for multicast (one-to-many transmission)

• Class E reserved addresses.

Most organizations which required a larger address space than Class C

were allocated a block of Class B addresses; however their network nodes are

assigned only a small portion of the addresses. This waste of available address

space combined with the explosive growth of the Internet resulted in shortage

of unassigned IP addresses. Classless Inter-Domain Routing (CIDR) was

introduced in order to prolong the life of IPv4 [5]. CIDR essentially allows the

“network” part of the address to be an arbitrary length prefix of the IP address,

thus a network’s address space may span multiple Class C networks. CIDR

also allows routing protocols to aggregate network addresses in order to reduce

the amount of packet forwarding information stored by each router. The wide

adoption of CIDR by the Internet community has slowed the deployment of a

more permanent solution, Internet Protocol Version 6 (IPv6) [6].

Figure 1.2: Class Based Internet Addressing

1.2 QoS in Ethernet
Ethernet is, by far the most common network, has the highest number of

installed ports and provides great cost-performance ratio and thus it is making

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

13

a breakthrough in MAN and WAN networks. The deployment of Gigabit

Ethernet networks and their use beyond the tight borders of LANs motivated

the development of QoS mechanisms in the MAC layer of Ethernet networks

such as the VLAN scheme [7]. These QoS mechanisms require identification

of network flows and the classification of Ethernet packets according to their

MAC addresses, VLAN IDs or port numbers. The length of the MAC

addresses, namely 48-bits, is what makes the decisions more difficult since

exact matches in such a big value it not a trivial task. The advantage of

Ethernet networks and equipment is their low cost and thus the classification

solutions should also be cost efficient.

1.3 Longest Prefix Matching [1]
The primary task of routers is to forward packets from input links to the

appropriate output links. In order to do this, Internet routers consult a route

table containing a set of network addresses together with the associated output

link, or next hop, for packets destined for each network. Entries in the route

tables change dynamically according to the state of the network and the

information exchanged by routing protocols. The task of resolving the next hop

from the destination IP address is commonly referred to as route lookup or IP

lookup. Finding the network address given a packet’s destination address

would not be difficult if the early Internet Protocol (IP) address hierarchy was

kept. A simple lookup in three tables, one for each Class of networks, would be

sufficient. However, the wide adoption of CIDR allows the network addresses

in route tables to have variable lengths (prefixes) and thus performing a search

for every possible network address length is not trivial. If we store all the

variable-length network addresses in a single table, a route lookup requires

finding the longest matching prefix in the table for the given destination

address.

A prefix is a set of leftmost bits of a key value, the IP destination address in

the case of route lookups. The key values that share a common prefix have the

same contiguous set of bits starting at the most significant bit. Given a search

key x of size b bits, Longest Prefix Matching (LPM) is a search technique

which selects the prefix pi in the set of prefixes P, such that pi matches x and pi

has the most specified bits. Prefixes can be represented by simply using the *

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

14

character to denote the end of the valid bits in the prefix. An example of

Longest Prefix Matching (LPM) for a 10-bit search key is illustrated in Figure

1.3. The three shaded prefixes match the search key, but 1000011* is the

longest matching prefix. The throughput of an Internet router essentially

depends on the speed that Longest Prefix Matching (LPM) operation can be

performed.

Figure 1.3: Longest Prefix Match Example

1.4 The Packet Classification Problem
Packet classification enables a number of additional, non-best-effort

network services other than the provisioning of differentiated qualities of

service. One of the well-known applications of packet classification is a

firewall. Other network services that require packet classification include

policy-based routing, traffic rate-limiting and policing, traffic shaping and

billing. In each case, it is necessary to determine which flow an arriving packet

belongs to so as to determine — for example — whether to forward or filter it,

where to forward it to, what type of service it should receive, or how much

should be charged for transporting it. [3]

Typically, the packet classification problem is referred as the process of

identifying the packets belonging to a specific application session or group of

sessions between a source and destination host or sub-network. The route

lookup problem may be also viewed as a sub-problem of the more general

packet classification problem. Applications for Quality of Service, security,

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

15

and monitoring typically operate on flows, thus each packet traversing a router

must be classified in order to be assigned a flow identifier, FlowID.

Packet classification requires searching a table of filters for the highest

priority or the most specific filter that matches the packet. Filters correlate a

flow or set of flows to a FlowID. Note that filters are also referred as rules in

the packet classification literature. Filters contain multiple field values that

specify an exact packet header or a set of headers and the associated FlowID

for packets matching the corresponding field values. The type of field values

are typically prefixes for IP address fields, an exact value or wildcard1 for the

transport protocol and ranges for port numbers. An example filter set is shown

in Table 1.1. In this simple example, filters contain field values for four packet

header fields: 8-bit source (SA) and destination addresses (DA), transport

protocol (PRO), and a 4-bit destination port number (PORT). The packet fields

most commonly used for packet classification are also referred as the IP 5-

tuple and include the 8-bit protocol, 32-bit source address, 32-bit destination

address from the IPv4 header and the 16-bit source port and 16-bit destination

port from the TCP and UDP transport protocol headers.

§ SA § DA § PORT § PRO § FlowID
§ 11010010 § * § [3:15] § TCP § 1
§ 10011100 § * § [1:1] § * § 2
§ 101101* § 001110* § [0:15] § * § 3
§ 10011100 § 01101010 § [5:5] § UDP § 4
§ * § * § [0:15] § ICMP § 5
§ 100111* § 011010* § [3:15] § * § 6
§ 10010011 § * § [3:15] § TCP § 7
§ * § * § [3:15] § UDP § 8
§ 11101100 § 01111010 § [0:15] § * § 9
§ 111010* § 01011000 § [6:6] § UDP § 10
§ 100110* § 11011000 § [0:15] § UDP § 11
§ 010110* § 11011000 § [0:15] § UDP § 12
§ 01110010 § * § [3:15] § TCP § 13
§ 10011100 § 01101010 § [0:1] § TCP § 14
§ 01110010 § * § [3:3] § * § 15
§ 100111* § 011010* § [1:1] § UDP § 16

Table 1.1: Example of a filter set

The packet classification problem may be stated formally as follows:

1 Wildcards are used when we don’t specify a value and want to represent all the possible
values. The symbol used for wildcards is *.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

16

Given a packet P containing fields Pj and a collection of filters F

with each filter Fi containing fields j
iF , select the highest priority or

the most specific filter from the set , where for each filter ∀j : j
iF

matches Pj.

Consider the example of searching Table 1.1 for the best matching filter

and for a packet with the following header field values:

• SA: 1001 1100

• DA: 0110 1010

• PORT: 5

• PRO: UDP

The filters with FlowIDs 4, 6 and 8 match the packet, but FlowID 4 is the

most specific filter in all the fields. Hence, the search should return FlowID 4.

1.4.1 Packet Classification Challenges

Computational complexity is not the only challenge of the packet

classification problem. The increasing traffic in the Internet backbone travels

over links with transmission rates in excess of one billion bits per second (1

Gb/s). Current generation fiber optic links can operate at over 40 Gb/s. The

combination of transmission rate and packet size define the throughput, in

terms of packets per second, routers must support. The majority of the Internet

traffic utilizes the Transmission Control Protocol which transmits 40 byte

acknowledgment packets. In the worst case, a router could receive a long

sequence of TCP acknowledgments, therefore conservative router architects set

the throughput target based on the input link rate and 40 byte packet lengths.

For example, supporting 10 Gb/s links requires a throughput of 31 million

packets per second per port. Modern Internet routers contain tens to thousands

of ports. In such high-performance routers, route lookup and packet

classification is performed on a per-port basis.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

17

1.5 Contributions of this work
Within this work we have studied the classification tasks required by the

modern networks and proposed a hardware solution to meet the delay sensitive

searching tasks required by the network infrastructures. We proposed a

classification engine based on Bloom Filters (2sBFCE). This engine

decomposes multiple-field packet classification, into single-field and combines

them in an efficient way. The innovation of this design is the performance and

simplicity achieved by using Bloom Filters data structures in all stages of the

classification procedure.

1.6 Outline of the thesis
The remainder of the thesis is organized as follows. Chapter 2 provides an

overview of the existing single field search techniques, including Longest

Prefix Matching (LPM) techniques and a survey of multi field searching

solutions that address the packet classification problem. Chapter 3 presents our

Bloom Filter Based Classification scheme (2sBFCE). In Chapter 4 we present

in detail the hardware implementation of 2sBFCE. Finally, in Chapter 5 we

provide a summary of the contributions an a discussion of future work of this

thesis.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

18

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

19

Chapter 2
Related Work

In this chapter we present the most important algorithms and techniques

presented in literature to address the problem of packet classification. We

provide an overview of the single field searching techniques, including the

longest prefix matching and other types of searches dictated by packet

classification. Further, we present the major algorithms and solutions for multi

field searching that are actually used in packet classification.

2.1 Single Field Searching Techniques
A variety of searching problems naturally arise in packet classification due

to the structure of packet filters. As discussed in Chapter 1, filter fields specify

one of the three different match conditions on the corresponding packet header

fields: a fully specified value or exact matching, partially specified value or

prefix matching, a range of values or range matching. In this subsection, we

provide a summary of the existing algorithmic solutions to these three types of

search problems.

2.1.1 Exact Matching
The simplest form of exact matching is the set membership query:

determine whether key x belongs to the set of keys X. Often we wish to store

associated information with each key xi ∈ X such as identifiers or additional

information. In such cases, a search where x ∈ X returns not only a “yes” for

the membership query, but also the information associated with the matching

entry. Exact match search problems naturally arise in packet classification

when filters examine packet fields such as the MAC address in the Data Link

Layer. Due to the constraints on exact match searches in the networking

context, namely the size of the key sets and the speed at which the search must

be performed, non trivial data structures must be used for these applications.

We describe the two classical data structures that attempt to minimize the

number of memory accesses per search, B-trees and hash tables. Both data

structures are capable of supporting set membership queries as well as storing

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

20

additional information with each key. We also provide a brief introduction to

Bloom filters, a data structure designed to efficiently represent a set of keys.

2.1.2 B-Trees

B-Trees were originally designed to limit the number of accesses to direct

access storage units such as disks [8]. In B-trees, internal nodes can have a

variable number of child nodes within some pre-defined range. The reduction

in I/O operations is achieved by organizing keys in a tree data structure where

the nodes of the tree may have many children. The maximum number of

children of each node is referred as the degree of the tree. The number of keys

stored in any tree node (except the root node) is bounded by the minimum

degree of the B-Tree. Specifically, each node in the tree must contain at least

(B − 1) keys and at most (2B − 1) keys, where B ≥ 2. An example of a B-Tree

storing the integer multiples of three is shown in Figure 2.1. The keys stored

in a node are arranged in non-decreasing order and each internal node also

stores a set of pointers between the keys. The child nodes that store keys

greater than the parent key are pointed by the parent’s “left” pointer and the

children with value less or equal to the parent key are pointed by the parent’s

“right” pointer. Finally, the height h of a B-Tree containing n keys is bounded

by:

2
1log +

≤
nh B

Figure 2.1: Example B-Tree data structure

2.1.3 Hashing

A hash function is any well-defined procedure or mathematical function

for turning some kind of data into a relatively small integer, that may serve as

an index into an array. Hashing is a technique using hash functions that can

provide excellent average performance when the number of keys, n, in the set

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

21

X is much less than the maximum number of possible keys K. Assume a set X

that contains 100 keys where the keys may take any value in the range [0 :

65535], i.e. a 16-bit unsigned integer. We could simply allocate a table with

65,536 entries and use the value of the key x as an index into the table, but

obviously this is very wasteful. This technique, direct addressing, is only

efficient when the number of keys n in the set X approaches the number of

possible key values K.

The classical solution to this problem is to map the key value x to a

narrower range of values that can be used to index a smaller table. In order to

perform the mapping function, a hash function, h(x), is computed on the key

value. The resulting value is used as an index into a hash table of size [0: m −

1] where m<<K. Ideally, the hash function uniformly distributes all n keys

across the m slots in the hash table. This search method, called hashing, has

been extensively studied and is given thorough treatment by a number of

computer science textbooks [8].

There is a variety of methods for constructing hash functions. Often, the

low-order bits of key values are uniform in distribution such that the hash

index may be constructed by selecting the low order bits of the key. Such hash

functions are trivial to construct in hardware. Figure 2.2 illustrates an example

of using the four low-order bits of the key as a hash index for the same integer

multiples of three used in the B-Tree example in Figure 2.1.

Note that when n is greater than m or the distribution of keys across the

hash table is not uniform, then collisions occur. In our example, we use a

common collision resolution technique called chaining, where keys that map to

the same hash index form a linked list. The ratio of keys to hash table slots is

referred to as the load factor,
n
ma =

, which specifies the average number of

keys in a chain. Thus, the average number of probes in a hash table where

chaining is used for collision resolution is 1 + α. Moreover, there is a variety

of much more sophisticated hash functions and collision resolution techniques

presented literature and in textbooks [8].

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

22

Figure 2.2: Hash function example

2.1.4 Bloom Filters
A Bloom Filters is a space-efficient probabilistic data structure that is used

to test whether an element (key) is a member of a set. Via implicit

representations of the keys in the set, the data structure supports membership

queries but is not capable of storing additional information for each stored key.

This technique was conceived by Burton H. Bloom in 1970 [9], and has

received renewed attention in the research community for various applications

such as web caching, intrusion detection, and content based routing [10].

A Bloom filter is essentially a bit-vector of length m where a key x is

represented by a subset of the m bits. Given a set of keys X with n members,

we insert a key xi ∈ X into the Bloom filter as follows. An empty Bloom filter

is a bit array of m bits, all set to 0. We compute k hash functions on xi,

producing k values in the range [0 : m−1]. Each of these values addresses a

single bit in the m-bit vector, hence each key xi causes k bits in the m-bit vector

to be set to 1. Figure 2.3 provides an example of inserting two keys into a

Bloom filter. Note that if one of the k hash values specifies a bit that is already

set to 1, that bit is not changed.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

23

Figure 2.3: Bloom Filter Example

Querying the filter in order to determine if a given key x belongs to the set

X is similar to the insertion process. Given key x, we generate k hash indices

using the same hash functions used to insert keys into the filter. We check the

bit locations corresponding to the k hash indices in the m-bit vector. If at least

one of the k bits is 0, then it denotes that the key is not a member of the set. If

all the bits are found to be 1, then we claim that the key belongs to the set with

a certain probability. If we find all k bits to be 1 and x is not a member of X,

then it is said to be a false positive match. This ambiguity in membership

comes from the fact that the k bits in the m-bit vector can be set by any of the n

members of X. Thus, finding a bit set to 1 does not necessarily imply that it

was set by the particular key being queried. However, finding a 0 bit certainly

implies that the key does not belong to the set, since if it was a member then all

k-bits would have been set to 1 when the key was inserted into the Bloom

filter.

The following is a derivation of the probability of a false positive match, f.

The probability that a random bit of the m-bit vector is set to 1 by a hash

function is simply
m
1 . The probability that it is not set is

m
11− . The

probability that it is not set by any of the n members of X is
nk

m

 −

11 . Hence,

the probability that this bit is set is
nk

m

 −−

111 . For a key to be declared a

possible member of the set, all k bit locations generated by the hash functions

need to be 1. The probability that this happens, f, is given by
knk

m
f

 −−=

111

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

24

For large values of m the above equation reduces to
k

m
nk

ef

−≈

−

1

Since this probability is independent of the input key, it is termed the false

positive probability. The false positive probability can be reduced by choosing

appropriate values for m and k for a given size of the member set, n. For a

given ratio of
n
m , the false positive probability can be reduced by adjusting the

number of hash functions, k. In the optimal case, when false positive

probability is minimized with respect to k, we get the following relationship:

= 2ln,2ln

n
m

n
mk

The false positive probability at this optimal point is given by
k

f

=

2
1

It should be noted that if the false positive probability is to be tuned, then

the size of the filter, m, needs to scale linearly with the size of the key set, n.

One property of Bloom filters is that it is not possible to delete a key stored

in the filter. Deleting a particular entry requires that the corresponding k

hashed bits in the bit vector be set to zero, which would disturb other keys

programmed into the filter which hash to any of these bits. In order to solve

this problem the idea of the Counting Bloom Filter was proposed by Fan, et.al.

[11]. A Counting Bloom Filter maintains a vector of counters corresponding to

each bit in the bit-vector. Whenever a key is added to or deleted from the filter,

the counters corresponding to the k hash values are incremented or

decremented, respectively. When a counter changes from one to zero, the

corresponding bit in the bit-vector is cleared. Note that maintaining counters

significantly increases the storage requirements.

2.1.5 Longest Prefix Match

Because each entry in a routing table may specify a network, one

destination address may match more than one routing table entry. The most

specific table entry — the one with the highest subnet mask — is called the

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

25

Longest Prefix Match (LPM). It is called this because it is also the entry where

the largest number of leading address bits in the table entry match those of the

destination address. LPM has received significant attention in the literature

over the past ten years. This is due to the fundamental role it plays in the

performance of Internet routers. Due to the explosive growth of the Internet,

Classless Inter-Domain Routing (CIDR) was widely adopted to prolong the life

of Internet Protocol Version 4 (IPv4) [5]. Use of this protocol requires Internet

routers to search variable-length address prefixes in order to find the longest

matching prefix of the IP destination address and retrieve the corresponding

forwarding information, or “next hop”, for each packet traversing the router.

This computationally intensive task, commonly referred to as IP Lookup, is

often the performance bottleneck in high-performance Internet routers.

2.1.6 Linear Search
Linear Search is one of the most fundamental and simple searching

methods. If the set of prefixes is small, a linear search through a list of the

prefixes sorted in order of decreasing length is sufficient. The sorting step

guarantees that the first matching prefix in the list is the longest matching

prefix for the given search key. Linear search is the most memory efficient of

all LPM techniques and the memory requirements are O(N) where N is the

number of prefixes in the table. Note that the search time is also O(N), thus

linear search is not practical for IP lookup when the set of prefixes is relatively

large.

2.1.7 Content Addressable Memory (CAM)

Content-addressable memory (CAM) is a special type of computer memory

used in certain very high speed searching applications. It is also known as

associative memory, associative storage. Many commercial router designers

have chosen to use CAMs for IP address lookups in order to keep up with the

latest optical link speeds despite their larger size, cost, and power consumption

relative to Static Random Access Memory (SRAM). CAMs minimize the num-

ber of memory accesses required to locate an entry by comparing the input key

against all memory words in parallel; hence, a lookup effectively requires one

clock cycle. While binary CAMs perform well for exact match operations and

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

26

can be used for route lookups in strictly hierarchical addressing schemes [12],

the wide use of address aggregation techniques like CIDR requires storing and

searching entries with arbitrary prefix lengths. In response, Ternary Content

Addressable Memories (TCAMs) were developed with the ability to store an

additional “Don’t Care” state which allows them to ensure single clock cycle

lookups for arbitrary prefix lengths.

2.1.8 Trie Based Schemes

A trie, or prefix tree, is an ordered tree data structure that is used to store an

associative array where the keys are usually strings. Unlike a binary search

tree, no node in the tree stores the key associated with that node; instead, its

position in the tree shows what key it is associated with.Search techniques

which build decision trees use the bits of prefixes to make branching decisions

and allow the worst-case search time to be independent of the number of

prefixes in the set. An example of a binary trie

constructed from a set of

prefixes is shown in Figure 2.4. Shaded nodes denote a stored prefix with the

corresponding next hop shown next to the node. A search is conducted by

traversing the trie using the bits of the address, starting with the most

significant bit. Note that the worst-case search time is now O(W), where W is

the length of the address and maximum prefix size in bits.

Figure 2.4: Binary Trie example

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

27

One of the first IP lookup techniques to employ tries 2 is Sklower’s

implementation of a Patricia trie in the BSD kernel [13]. The Patricia trie is a

binary radix tree that compresses paths with one-way branching into a single

node. It assumes contiguous masks and bounds the worst case lookup time to

O(W). While paths may be compressed, only one bit of the address is

examined at a time during a search resulting in search rates that do not meet

the needs of high-performance routers.

In order to speed up the lookup process, multi-bit trie schemes were

developed which perform a search using multiple bits of the address at a time.

Srinivasan and Varghese introduced two important techniques for multi-bit trie

searches, Controlled Prefix Expansion (CPE) and Leaf Pushing [14].

Controlled Prefix Expansion restricts the set of distinct prefix lengths by

“expanding” prefixes shorter than the next distinct length into multiple

prefixes. This allows the lookup to proceed as a direct index lookup into tables

corresponding to the distinct prefix length, or stride length, until the longest

match is found. The technique of Leaf Pushing reduces the amount of

information stored in each table entry by “pushing” information about the best

matching prefix along the paths to leaf nodes. As a result each leaf node needs

only to store a pointer or next hop information. While this technique reduces

memory usage, it also increases incremental update overhead. The authors also

discuss variable length stride lengths, optimal selection of stride lengths, and

dynamic programming techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE

specifically targeted to hardware implementation [15]. Arguing that DRAM is

such a plentiful and inexpensive resource, their technique spends large

amounts of memory in order to limit the number of off-chip memory accesses

to two or three. Their basic scheme is a two level “expanded” trie with an

initial stride length of 24 and second level tables of stride length eight. Given

that random accesses to DRAM may require up to eight clock cycles and

current DRAMs operate at less than half the speed of SRAMs, this technique

can be out-performed by techniques utilizing SRAM and requiring less than 10

memory accesses.

2 Trie is the term used for trees in information retrieval data structures. It originates from the
word retrieval.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

28

Other techniques such as Lulea [16] and Eatherton and Dittia’s Tree

Bitmap [17] employ multi-bit tries with compressed nodes. The Lulea scheme

essentially compresses an expanded, leaf-pushed trie with stride lengths 16, 8,

and 8. In the worst case, the scheme requires 12 memory accesses; however,

the data structure only requires a few bytes per entry. While extremely

compact, the Lulea scheme’s update performance suffers from its implicit use

of leaf pushing. The Tree Bitmap technique avoids leaf pushing by maintaining

compressed representations of the prefixes stored in each multi-bit node. It also

employs a clever indexing scheme to reduce pointer storage to two pointers per

multi-bit node.

2.1.9 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based

on tries. The Multiway and Multicolumn Search techniques presented by

Lampson, Srinivasan, and Varghese are designed to optimize performance for

software implementations on general purpose processors [18]. The primary

contribution of this work is mapping the longest matching prefix problem to a

binary search over the fixed-length endpoints of the ranges defined by the

prefixes. By specifying a set of contiguous initial bits, prefixes define ranges of

values. For example, if 10∗ is a prefix for a four bit field, then it defines the

range [1000:1011]. Prefixes never define overlapping ranges, only nested

ranges. For example, [0:3] and [2:4] are overlapping ranges, whereas [0:3] and

[1:2] are nested ranges. The authors use this property to develop a binary

search technique over the endpoints of the ranges defined by the prefixes.

2.1.10 Binary Search on Prefix Lengths
The most efficient lookup algorithm known, from a theoretical perspective,

is Binary Search on Prefix Lengths which was introduced by Waldvogel, et.

al.[19]. The number of steps required by this algorithm grows logarithmically

with the length of the address, making it particularly attractive for IPv6, where

address lengths increase to 128 bits. However, the algorithm is relatively

complex to implement, making it more suitable for software rather than

hardware implementation. It also does not readily support incremental updates.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

29

This technique bounds the number of memory accesses via significant pre-

computation of the route table. First, the prefixes are sorted into sets based on

prefix length, resulting in a maximum of W sets to examine for the best

matching prefix. A hash table is built for each set, and it is assumed that

examination of a set requires one hash probe. The basic scheme selects the

sequence of sets to probe using a binary search on the sets beginning with the

median length set. For example: for an IPv4 database with prefixes of all 32

lengths, the search begins by probing the set with length 16 prefixes. Prefixes

of longer lengths direct the search to its set by placing “markers” in the shorter

sets along the binary search path. Accordingly, a 24-length prefix would have a

“marker” in the length 16 set. Therefore, at each set the search selects the

longer set on the binary search path if there is a matching marker directing it

lower. If there is no matching prefix or marker, then the search continues at the

shorter set on the binary search path.

The use of markers introduces the problem of “backtracking”: having to

search the upper half of the trie because the search followed a marker for

which there is no matching prefix in a longer set for the given address. In order

to prevent this, the best-matching prefix for the marker is computed and stored

with the marker. If a search terminates without finding a match, the best-

matching prefix stored with the most recent marker is used to make the routing

decision. The authors also propose methods of optimizing the data structure

based on the statistical characteristics of the route table. For all versions of the

algorithm, the worst case bounds are O(logWdist)time and O(N×logWdist)

space where Wdist is the number of unique prefix lengths. Empirical

measurements using an IPv4 route table resulted in memory requirement of

about 42 bytes per entry.

2.1.11 All Prefix Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix

Matching (APM) problem. Instead of returning just the longest matching

prefix, the APM problem requires that all matching prefixes are returned. This

problem arises when multi-filed search techniques are decomposed into several

instances of single-field search techniques.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

30

Note that most trie-based algorithms easily map to the APM problem. The

algorithm can simply return all matching prefixes along the path to the longest

matching prefix. While the trie-based algorithms easily map to APM, it is im-

portant to note that the Binary Search on Prefix Lengths and Multiway and

Multicolumn Search techniques do not readily support APM. The use of

markers in Binary Search on Prefix Lengths naturally directs searches to longer

prefixes before examining shorter length prefixes. The same consequence is

experienced by the Multiway and Multicolumn Search due to the binary search

over range endpoints. In order to support APM searches using these

techniques, we must use a general technique that allows any LPM algorithm to

perform APM.

2.1.12 Range Matching

Range matching problems naturally arise in many searching problems in

the areas of networking and database design, and there are several forms of

range matching problems. In this subsection we describe the most widely used

approaches to address the following problem that arises in packet

classification: Given a set X of closed intervals [i, j] and a point p, find all the

intervals in X that contain p. This task is an essential part of packet

classification, as packet filters may specify ranges for the source and

destination port numbers in packet headers in order to identify a set of

applications. Solutions to this problem typically employ a variant of the

Interval Tree [20] or convert each closed interval [i,j] into a set of prefixes and

then employ one of the Longest Prefix Matching (LPM) algorithms.

2.1.13 Interval Tree
An Interval Tree, also called a segment tree or segtree, is an ordered tree

data structure to hold intervals. Specifically, it allows one to efficiently find all

intervals that overlap with any given interval or point. It stores a set of closed

intervals X using a balanced binary tree as the underlying data structure [8].

Each node in the Interval Tree stores an interval x ∈ X. The low endpoint of the

interval is used as the key for the node in the balanced binary search tree. In

order to facilitate faster searches, tree nodes typically store additional variables

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

31

such as the maximum value of all the endpoints of the ranges stored in their

sub-tree. An example of an Interval Tree is shown in Figure 2.5.

Figure 2.5: Interval Tree example

Searching for one matching interval for a given point p is straight-forward,

but returning the set S of all matching intervals for p requires a few extra steps.

We first locate the matching interval for p that is stored at the leftmost node in

the tree. From this node, we perform an in-order walk of the tree nodes,

stopping when we arrive at the last node in the tree or a node whose key is

greater than p. An example search for p =4 is shown in Figure 2.5. Letting S

be the number of matching intervals, the search requires O(logX + S) time.

2.1.14 Range to Prefix Conversion
Prefixes define exactly one range on the real numbers. The low and high

endpoints of the range defined by a prefix are the minimum and maximum

points covered by the prefix. For binary numbers, this translates to replacing

the masked bits of the prefix with zeros and ones, respectively. For example,

the four bit prefix 11∗ defines the range [1100:1111] or [12:15]. This

transform operation is not symmetric, as an arbitrary range may specify

multiple prefixes. Specifically, a range defined on the set of b-bit numbers will

specify at most [2 × (b − 1)] prefixes.

For a single-field search on a reasonable number of ranges, this expansion

factor is not prohibitive. As a result, several packet classification techniques

use the range to prefix conversion technique to solve the range matching sub-

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

32

problem [21], [22]. Finally, we note that Feldman and Muthukrishnan [20]

provide a range to prefix conversion technique for the special case of searching

elementary intervals by converting them into prefixes. They show that a set of

(n − 1) elementary intervals can be converted into a set prefixes containing at

most 2n prefixes, where an LPM search is used to select the elementary

interval containing a given point p.

2.2 Multi Field Searching Techniques
In this subsection we provide a summary of the major multiple field search

techniques aimed at packet classification. Due to the complexity of the search,

packet classification is often a performance bottleneck in network

infrastructure and thus it has received significant attention by the research

community. Many algorithms and classification schemes have been proposed

with numerous different approaches. These techniques can be categorized

according to the high level approach of the classification solution. We can

consider that there are three main different high-level approaches:

• Exhaustive Search: examines all entries in the filter set.

• Decision Tree: construct decision trees from the filters in the filter

set and use the packet fields to traverse the decision trees.

• Decomposition: decompose the multiple field search into instances

of single field searches, perform independent searches on each packet

field and then combine the results.

2.2.1 Exhaustive Search
The fundamental solution to any searching problem is simply to search

through all the entries in the set. The two most common exhaustive search

approaches for packet classification are a linear search through a list of filters

or a parallel search over the set assuming that it is divided into a number of

subsets. These are extreme solutions, where the lowest performance option,

linear search, does not divide the set into subsets and the highest performance

option, Ternary Content Addressable Memory (TCAM), completely divides

the set into subsets containing only one entry. We discuss both of these

solutions in detail below.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

33

2.2.2 Linear Search
Performing a linear search through a list of filters has O(N) storage

requirements, but it also requires O(N) memory accesses per lookup. Even in

the smaller filter sets, linear search becomes very slow. It is possible to reduce

the number of memory accesses per lookup by partitioning the list into sub-

lists and pipelining the search where each stage searches a sub-list. The

simplicity of linear search make it as suitable solution for the final stage of a

lookup when the set of possible matching filters has been drastically reduced

[22][23][24].

2.2.3 Ternary Content Addressable Memory (TCAM)

Ternary Content Addressable Memory (TCAM) is a memory technology

which can do a very wide data search in a very short, fixed time period

(~20ns). Alike fully-associative cache memories, TCAM devices perform a

parallel search over all filters in the filter set. TCAMs were developed with the

ability to store a “Don’t Care” state in addition to a binary digit. A typical

TCAM cell is shown in Figure 2.6. Input keys are compared against every

TCAM entry which enables them to ensure single clock cycle lookups for

arbitrary bit mask matches.

Figure 2.6: A typical TCAM cell

Despite their astonishing efficiency, TCAMs have four primary drawbacks:

1. high cost per bit relative to other memory technologies; current

TCAMs cost about 20 times more per bit of storage than DDR SRAMs.

2. storage waste, in addition to the six transistors required for binary digit

storage, a typical TCAM cell requires an additional six transistors to

store the mask bit and four transistors for the match logic, resulting in a

total of 16 transistors; some very efficient solutions use 14 transistors.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

34

3. high power consumption; the massive parallelism in TCAM

architectures is the main source of high power consumption. Each “bit”

of TCAM match logic must drive a match word line which signals a

match for the given key. The extra logic and capacitive loading results

in access times approximately three times longer than SRAM.

Specifically, TCAMs consume 150 times more power per bit than

SRAM.

4. limited scalability to long input keys; TCAMs can only match keys of

maximum length equal to the word size.

2.2.4 Decision Trees

Another popular approach to packet classification on multiple fields is to

construct a decision tree where the leaves of the tree contain filters or subsets

of filters. In order to perform a search using a decision tree, we construct a

search key from the packet header fields. We traverse the decision tree by

using individual bits or subsets of bits from the search key to take branching

decisions at each node of the tree. The search continues until we reach a leaf

node storing the best matching filter or subset of filters. Decision tree

construction is complicated due to the fact that a filter may specify several

different types of searches. The mix of Longest Prefix Match, arbitrary range

match, and exact match filter fields significantly complicates the branching

decisions at each node of the decision tree. A common solution to this problem

is to convert all the filter fields to a single type of match.

2.2.5 Grid of Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the original Grid-of-

Tries algorithm for packet classification [25]. Grid-of-Tries applies a decision

tree approach to the problem of packet classification on source and destination

address prefixes. For filters defined by source and destination prefixes, Grid-

of-Tries improves the directed acyclic graph (DAG) technique introduced by

Decasper, Dittia, Parulkar, and Plattner [26]. This technique is also called set

pruning trees because redundant sub-trees can be “pruned” from the tree by

allowing multiple incoming edges at a node. While this optimization does

eliminate redundant sub-trees, it does not completely eliminate replication as

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

35

filters may be stored at multiple nodes in the tree. Grid-of-Tries eliminates this

replication by storing filters at a single node and using switch pointers to direct

searches to potentially matching filters.

 Consider the filter set shown in Table 2.1 where source and destination

address prefixes for each rule are defined. Moreover, assume we are searching

for the best matching filter for a packet with source and destination addresses

equal to 0011.

§ Filter § Source
§ Address

§ Destination
§ Address

§ F1 § 0* § 10*
§ F2 § 0* § 01*
§ F3 § 0* § 1*
§ F4 § 00* § 1*
§ F5 § 00* § 11*
§ F6 § 10* § 1*
§ F7 § * § 00*
§ F8 § 0* § 10*
§ F9 § 0* § 1*
§ F10 § 0* § 10*
§ F11 § 111* § 000*

Table 2.1: Example filter set for Grid of Tries

In the Grid-of-Tries structure shown in Figure 2.7, we find the longest

matching source address prefix 00* and follow the pointer to the destination

address tree. Since there is no 0 branch at the root node, we follow the switch

pointer to the 0* node in the destination address tree for source address prefix

0*. Since there is no branch for 00* in this tree, we follow the switch pointer to

the 00* node in the destination address tree for source address prefix *. Here

we find a stored filter F7 which is the best matching filter for the packet.

Figure 2.7: Grid of Tries data structure

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

36

Grid-of-Tries bounds memory usage to O(NW) while achieving search

time of O(W), where N is the number of filters and W is the maximum number

of bits specified in the source or destination fields. For the case of searching on

IPv4 source and destination address prefixes, the measured implementation

uses multi-bit tries sampling 8 bits at a time for the destination trie; each of the

source tries starts with a 12 bit node, followed by 5 bit trie nodes. This yields a

worst case of 9 memory accesses; the authors claim that this could be reduced

to 8 with an increase in storage.

2.2.6 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced an innovative technique called

Hierarchical Intelligent Cuttings (Hi-Cuts) [23]. The concept of “cutting”

comes from viewing the packet classification problem geometrically. Each

filter in the set defines a d-dimensional rectangle in d-dimensional space,

where d is the number of fields in the filter. Selecting the decision criteria

translates into choosing a partitioning, or “cutting”, of the space. Consider the

example filter set in Table 2.2 consisting of filters with two fields: a 4-bit

address prefix and a port range covering 4-bit port numbers. This set is shown

geometrically in Figure 2.8.

§ Filter § Address § Port
§ a § 1010 § 2
§ b § 1100 § 5
§ c § 0101 § 8
§ d § * § 6
§ e § 11* § 0-15
§ f § 001* § 9-15
§ g § 00* § 0-4
§ h § 0* § 0-3
§ i § 0110 § 0-15
§ j § 1* § 7-15
§ k § 0* § 11
Table 2.2: Example filter set for HiCuts

HiCuts pre-processes the filter set in order to build a decision tree with

leaves containing a small number of filters bounded by a threshold. Packet

header fields are used to traverse the decision tree until a leaf is reached. The

filters stored in that leaf are then linearly searched for a match. HiCuts

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

37

converts all filter fields to arbitrary ranges, avoiding filter replication. The

algorithm uses various heuristics to select decision criteria at each node that

minimizes the depth of the tree while controlling the amount of memory used.

Figure 2.8: HiCuts geometric representation

A HiCuts data structure for the example filter set in Table 2.2 is shown in

Figure 2.9. Each tree node covers a portion of the d-dimensional space and the

root node covers the entire space. In order to keep the decisions at each node

simple, each node is cut into equal sized partitions along a single dimension.

For example, the root node in Figure 2.9 is cut into four partitions along the

Address dimension. In this example, we have set the thresholds such that a leaf

contains at most two filters and a node may contain at most four children. The

authors describe a number of more sophisticated heuristics and optimizations

for minimizing the depth of the tree and the memory resource requirement.

Experimental results in the two-dimensional case show that a filter set of

20k filters requires 1.3MB with a tree depth of 4 in the worst case and 2.3 on

average. Experiments with four-dimensional classifiers used filter sets ranging

in size from approximately 100 to 2000 filters. Memory consumption ranged

from less than 10KB to 1MB, with associated worst case tree depths of 12 (20

memory accesses). Due to the considerable pre-processing required, this

scheme does not readily support incremental updates.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

38

Figure 2.9: HiCuts Data Structure

2.2.7 Fat Inverted Segment (FIS) Trees
Feldman and Muthukrishnan introduced a scheme for packet classification

using independent field searches on Fat Inverted Segment (FIS) Trees [20].

FIS Trees utilize a geometric view of the filter set and map filters into d-

dimensional space. Projections from the “edges” of the d-dimensional

rectangles specified by the filters define elementary intervals on the axes. N

filters will define a maximum of I =(2N + 1) elementary intervals on each

axis. A FIS Tree is a balanced t-ary tree with k levels that stores a set of

segments, or ranges. Note that t=(2I + 1)1/k is the maximum number of

children a node may have. The leaf nodes of the tree correspond to the

elementary intervals on the axis. Each node in the tree stores a canonical set of

ranges such that the union of the canonical sets at the nodes visited on the path

from the leaf node associated with the elementary interval. Covering a point p

to the root node is the set of ranges containing p.

Using the example filter set shown in Table 2.2 we present an overview of

FIS in Figure 2.10. The scheme starts by building an FIS Tree on one axis. For

each node with a non-empty canonical set of filters, we construct an FIS Tree

for the elementary intervals formed by the projections of the filters in the

canonical set on the next axis (filter field) in the search. The authors propose a

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

39

method of using a Longest Prefix Matching technique to locate the elementary

interval covering a given point. This method requires at most 2I prefixes.

Figure 2.10: FIS example

Figure 2.10 also provides an example search for a packet with address 2,

and port number 11. A search begins by locating the elementary interval

covering the first packet field, interval [2:3] on the Address axis in our

example. The search proceeds by following the parent pointers in the FIS Tree

from leaf to root node. Along the path, we follow pointers to the sets of

elementary intervals formed by the Port projections and search for the covering

interval. Throughout the search, we remember the highest priority matching

filter. The authors performed simulations with real and synthetic 78 filter sets

containing filters classifying on source and destination address prefixes. For

filter sets ranging in size from 1K to 1M filters, memory requirements ranged

from 100 to 60 bytes per filter. Lookups required between 10 and 21 cache-line

accesses which amounts to 80 to 168 word accesses, assuming 8 words per

cache line.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

40

2.2.8 Decomposition
Given the option of efficient single field search techniques, decomposing a

multiple field search problem into several instances of a single field search

problem is a practical approach. Employing this high-level approach has

several advantages. First, each single field search engine operates

independently, thus we have the opportunity to exploit the parallelism offered

by modern hardware. Performing each search independently also offers more

degrees of freedom in optimizing each type of search on the packet field.

Despite these advantages, decomposing a multi-field search problem

creates other complicated issues. The primary challenge is to efficiently

aggregate and combine the results of the single field searches. Moreover, the

longest matching prefix for a given filter field is not sufficient as a result from

the single field search engines. The best matching filter may contain a field

which is not necessarily the longest matching prefix relative to other filters; it

may be more specific or have higher priority in other fields. As a result,

techniques employing decomposition try to take advantage of filter set

characteristics that allow them to limit the number of intermediate results. In

general, solutions using decomposition provide high throughput due to their

parallel hardware implementations. The high level of lookup performance

often comes at the cost of memory waste.

2.2.9 Parallel Bit Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet

classification algorithms targeted to a hardware implementation. Their

technique is commonly referred to as the Lucent bit-vector scheme or Parallel

Bit-Vectors (BV) [26]. The authors make the initial assumption that the filters

are sorted according to priority. Parallel BV utilizes a geometric view of the

filter set and maps filters into d-dimensional space. As shown in Figure 2.11,

projections from the “edges” of the d-dimensional rectangles specified by the

filters define elementary intervals on the axes. Note that we are using the

example filter set shown in Table 2.2 where filters contain two fields: a 4-bit

address prefix and a range covering 4-bit port numbers. N filters define at

maximum (2N+1) elementary intervals on each axis.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

41

Figure 2.11: Parallel Bit Vectors example

For each elementary interval on each axis an N-bit bit-vector is defined.

Each bit position corresponds to a filter in the filter set, sorted by priority. All

bit-vectors are initialized to all ‘0’s. For each bit-vector, we set the bits

corresponding to the filters that overlap the associated elementary interval.

Consider the interval [12:15] on the Port axis in Figure 2.11. Assume that

sorting the filters according to priority places them in alphabetical order.

Filters e, f, i, and j overlap this elementary interval; therefore, the bit-vector for

that elementary interval is 00001100110 where the bits correspond to filters a

through k in alphabetical order. For each dimension d, we construct an

independent data structure that locates the elementary interval covering a given

point, then we return the bit-vector associated with that interval. The authors

utilize binary search, but any range location algorithm is suitable.

Once we compute all the bit-vectors and construct the d data structures,

searches are relatively simple. We search the d data structures with the

corresponding packet fields independently. Once we have all d bit vectors from

the field searches, we simply perform the bit-wise AND of all the vectors. The

most significant ‘1’ bit in the result denotes the highest priority matching filter.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

42

Multiple matches are easily supported by examining the most significant set of

bits in the resulting bit vector.

The authors implemented a five field version with five 128Kbyte SRAMs.

This configuration supports 512 filters and performs one million lookups per

second. Assuming a binary search technique over the elementary intervals, the

general Parallel BV approach has O(logN) search time and O(N2) memory

requirement. The authors have further proposed an algorithm to reduce the

memory requirement to O(NlogN) using incremental reads.

2.2.10 Aggregated Bit-Vector (ABV)
Baboescu and Varghese introduced the Aggregated Bit-Vector (ABV)

algorithm which seeks to improve the performance of the Parallel BV

technique by using statistical observations of real filter sets [28]. Conceptually,

ABV starts with d sets of N-bit vectors constructed in the same manner as in

Parallel BV. The authors leverage the widely known property that the

maximum number of filters matching a packet is inherently limited in real

filter sets. This property causes the N-bit vectors to be sparse. In order to

reduce the number of memory accesses, ABV essentially partitions the N-bit

vectors into A chunks and only retrieves chunks containing ‘1’ bits. Each

chunk is N / A bits in size and has an associated bit in an A-bit aggregate bit-

vector. If any of the bits in the chunk are set to ‘1’, then the corresponding bit

in the aggregate bit-vector is set to ‘1’. Figure 2.12 provides an example using

the filter set in Table 2.2.

Each independent search on the d packet fields returns an A-bit aggregate

bit-vector. We perform the bit-wise AND on the aggregate bit-vectors. For each

‘1’ bit in the resulting bit-vector, we retrieve the d chunks of the original N-bit

bit-vectors from memory and perform a bit-wise AND. Each ‘1’ bit in the

resulting bit-vector denotes a matching filter for the packet. ABV also removes

the strict priority ordering of filters by storing each filter’s priority in an array.

This allows us to reorder the filter in order to cluster ‘1’ bits in the bit-vectors.

This in turn reduces the number of memory accesses. Simulations with real

filter sets show that ABV reduced the number of memory accesses relative to

Parallel BV by a factor of a four. Simulations with synthetic filter sets show

more dramatic reductions by a factor of 20 or more when the filters sets do not

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

43

contain any wildcards. As wildcards increase, the reductions become much

more modest.

Figure 2.12: Aggregated Bit Vector example

2.2.11 Recursive Flow Classification (RFC)

Leveraging observations on real filter sets, Gupta and McKeown

introduced Recursive Flow Classification (RFC) which provides high lookup

rates at the cost of memory inefficiency [29]. The authors introduced a unique

high-level view of the packet classification problem. Essentially, packet

classification can be viewed as the reduction of an m-bit string defined by the

packet fields to a k-bit string specifying the set of matching filters for the

packet or action to apply to the packet. For classification on the IPv4 5-tuple,

m is 104 bits and k is typically on the order of 10 bits. The authors also

performed a rather comprehensive and widely cited study of real filter sets and

extracted several useful properties. Specifically, they noted that filter overlap

and the associated number of distinct regions created in multi-dimensional

space is much smaller than the worst case of O(nd). For a filter set with 1734

filters the number of distinct overlapping regions in four-dimensional space

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

44

was found to be 4316, as compared to the worst case which is approximately

1013.

RFC performs independent, parallel searches on “chunks” of the packet

header, where “chunks” may or may not correspond to packet header fields.

The results of the “chunk” searches are combined in multiple phases. The

result of each “chunk” lookup and aggregation step in RFC is an equivalence

class identifier (classID) which represents the set of potentially matching filters

for the packet. The number of classIDs in RFC depends upon the number of

distinct sets of filters that can be matched by a packet. The number of classIDs

in an aggregation step scales with the number of unique overlapping regions

formed by filter projections.

RFC lookups in “chunk” and aggregation tables utilize indexing; the

address for the table lookup is formed by concatenating the classIDs from the

previous stages as shown in Figure 2.13. The resulting classID has fewer

number of bits than the address, thus RFC performs a multi-stage reduction to

a final classID that specifies the action to apply to the packet. The use of

indexing simplifies the lookup process at each stage and allows RFC to

provide high throughput. This simplicity and performance comes at the cost of

memory inefficiency. The memory usage for less than 1000 filters ranged from

a few hundred kilobytes to over one gigabyte of memory depending on the

number of stages. The authors propose a hardware architecture using two

64MB SDRAMs and two 4Mb SRAMs that could perform 30 million lookups

per second when operating at 125MHz. The index tables used for aggregation

also require significant pre-computation in order to assign the proper classID

for the combination of the classIDs of the previous phases. Such extensive pre-

computation prohibits dynamic updates at high rates.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

45

Figure 2.13: RFC aggregation scheme

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

46

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

47

3 Chapter 3

Bloom Filter Based Packet Classification
In this chapter we present a Bloom Filter Based Packet Classification

scheme. We call it 2 stage Bloom Filter Classification Engine (2sBFCE) and

it is suitable for pipelined hardware implementation. 2sBFCE comprises of a 5-

field search algorithm and decomposes multi-field classification rules into

internal single field rules which are then organized in Bloom filter sets. The

design of 2sBFCE is optimized for the common case based on analysis of real

world filter sets.

3.1 Real Filter Sets
Researchers’ attempts to discover better classification techniques are

mainly focused in analysis of real world sets of classification rules. Many

research groups have studied real classification data from commercial ISPs and

access lists (ACLs) from enterprise networks to exploit the specific

characteristics of these sets. The results from these surveys provide statistical

characteristics of the filter sets and are valuable as a guide for the classification

algorithms’ designers.

The standard packet classifiers are 5-dimensional and their fields come

from the Network Layer (L3) and the Transport Layer (L4) network packet

fields. These fields are the following:

• Source IP address in 32-bits (L3)

• Destination IP address in 32-bits (L3)

• Source Port in 16-bits (L4)

• Destination Port in 16-bits (L4)

• Protocol in 8-bits (L4)

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

48

A filter in a classifier may specify all the fields with prefixes, ranges, exact

values or wildcards3.

There exist several studies of the specific characteristics of the real world

classification rules. Primarily Gupta and McKeown published a number of

observations regarding the characteristics of real filters sets [29], while others

have performed analyses on real filter sets and published their observations

[43][44]. The following key observations are a review of these studies:

I. Current filter sets’ size are small, ranging from tens of filters to less

than 5000 filters. However, it is not clear if the size limitation is

“natural” or a result of the limited performance of packet

classification solutions.

II. The protocol field is restricted to small set of values. TCP, UDP and

wildcarded are the most common specifications.

III. Filters specify a limited number of unique transport port ranges. The

specifications for port ranges vary and have definitions like ‘greater

than 1023’ or ‘20 to 23’.

IV. The number of unique address prefixes matching a given address is

typically five or less.

V. The number of filters matching a given packet is typically five or

less.

VI. Different filters often share a number of the same field values.

VII. The number of single field values is significantly less than the

number of overall filters

To evaluate the performance of classification schemes and algorithms it is

important to test it with representative filter sets. The properties of the filter

sets and the query patterns are essential to benchmark classification schemes

and thus realistic filters and test patterns should both be used. D. Taylor has

created ClassBench [45] to address this problem. ClassBench is a suite of tools

for performance evaluation of classification algorithms and is publicly

available. ClassBench involves a filter set generator that uses seeds from real

filter sets to provide synthetic filter sets that accurately model real filters.

3 Wildcards are used when we don’t specify a value and want to represent all the possible
values. The symbol used for wildcards is *.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

49

Moreover, it includes a packet header generator that produces a sequence of

packet headers to exercise a given filter set. This generator uses the Pareto

Distribution[46] that is widely used to model the Internet traffic.

3.2 2sBFCE Design and Description
2sBFCE design is driven by the observations presented in the last section.

Our approach for packet classification lays on the idea of decomposition where

multiple field searches are divided into many single field searches. The results

of single fields are then combined to produce the final rule/filter match. We

strive to design a packet classifier that supports 5-dimensional rules and

provides the associated FlowID of a matching rule/filter for a given packet.

The fields we use are the standard supported by all 5D classifiers, namely

two 32-bits IP addresses, two 16-bit ports and an 8-bit protocol. For our

implementation we dedicate to the protocol field 2-bits as the common case

includes: TCP, UDP and wildcard. We do this in order to improve the

performance of our system. We allow the database to have at most 4096 of

such rules, which seems enough according to the referenced observations.

Consequently, each rule/filter of the database can be identified by a 12-bit

FlowID value. An example filter set is shown in Table 3.1.

No Src IP Dest IP Src
Port

Dest
Port

Protocol Flow
ID

1 139.91.70.* 147.52.16.* * * TCP 10
2 139.91.*.* 147.102.*.* * 21 TCP 14
3 139.91.*.* 147.27.*.* < 1024 * * 17
4 *.*.*.* 139.91.*.* * 80 UDP 26
5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31
6 139.91.70.36 147.27.*.* < 1024 21 * 45
7 *.*.*.* 147.52.*.* * 23 * 47
8 139.91.*.* 147.52.*.* 135 135 TCP 50
9 139.*.*.* 147.*.*.* * 80 TCP 54

10 139.91.*.* 147.52.*.* * 135 TCP 55
Table 3.1 Filter Set Example

3.2.3 Single Field Operations
Given that 2sBFCE follows the decomposition approach, it is essential to

employ a very efficient single-field scheme supporting both exact and prefix

matches at very high speeds, while utilizing small amounts of memory. Those

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

50

requirements are fulfilled by a bloom filter scheme described in the following

section. Our single-field lookup mechanism not only report the longest prefix

match but, instead, all the prefixes that match, and for each match the

associated match length which is used later on the process.

Based on the observations described in the last subsection the proposed

scheme supports up to 4K 5-tuple rules, therefore, each filter can be identified

by a 12-bit FlowID. The number of supported 5-tuple rules could be easily

increased without affecting either the architecture or the overall performance

of the design. A general overview of the 2sBFCE scheme is presented in

Figure 3.1 where all the discrete components are shown. The idea of 5-tuple

classification is based on single field classification. Therefore, for each field

we perform all prefix match lookup and then using a permutation process we

combine these results.

Figure 3.1 : Overall Architecture of 2sBFCE

3.2.4 Internally Represented Filters
The internal representation of prefix variations in each field is based on the

combination of each IP filed with the corresponding prefix length. No other

internal Id is assigned. This scheme produces a representation of 32+6 bits for

the SourceIP and DestIP prefixes, 16+5 bits for the Source-Port and Dest-Port

prefixes and last 2 bits for the Protocol (no prefix length used). Each of these

representations is applied to an individual Bloom Filter-based classification

engine (sub-engine). Figure 3.2 shows the organization of a Bloom Filter

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

51

engine used in Source and Destination Port sub-engines. Similar Bloom Filters

are also used in the SourceIP and Dest.IP sub-engines. Since Protocol

comprises of just two bits, in our implementation it is treated in a different way

as it will be explained later.

 Figure 3.2: Organization of a Port Sub-Engine

During the store procedure each single field prefix is stored at the

corresponding sub-engine and the matching Bloom Filter (BF) element is set.

In parallel, all these single field representations are combined to a single 120-

bit “rule vector” using the Permutation Engine. This vector is applied to the

second BF Stage in order to store the information of this specific combination

of each single field which is needed for the later query procedure. This 120-bit

“rule vector” is also combined with a unique 12-bit flow ID and kept in the 4K

entry RulesTable. The RulesTable is indexed by a hash function using the 120-

bit vector information as input. This hash indexing scheme introduces a

collision probability during store procedure which could lead to an unwanted

rule overwrite. This problem is described in Section 3.3. Table 3.2. shows an

example of a real-like filter set.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

52

3.2.5 Combining Results
Given the 5 fields of a packet, the 2sBFCE has to find which of the existing

rules best matches all of them. In the first stage, the five single-field engines

provide a number of matching prefixes. The IP address fields, namely Source

IP and Destination IP, are prefix-based and may provide at most 33 matches

each; 32 possible matches for the 32 possible prefix lengths and 1 for the zero-

length wildcard. Similarly, the port fields may provide at most 17 matches. In

the protocol field we have only exact-value and “match-all” searches, resulting

in at most 2 matches. For that reason we don’t dedicate a separate sub-engine

for the protocol filed, we just deal with it at the last stage of the procedure. The

results from every single-field engine should be combined, so as to cover all

the possible permutations, and then it should be determined which of these

permutations are actually valid (i.e. whether such a multi-field rule exists). The

above task is performed during query procedure in the Permutation Engine

module. The Permutation Engine combines all the matches of each single field

into a number of possible matching 120-bit “rule vectors”. Each of these

vectors is examined in the second stage Bloom Filter scheme as explained in

Section E. The total number of possible permutations is equal to the overall

product of the number of matches in every field :

Totalperm = #Src IP * #Dest IP * #Src Port * #Dest Prt

Protocol is not included because we don’t deal with it at this moment,

leaving this check in the end of the process. We are doing this to reduce in half

the number of permutations as it is meaningless a 4-field matching

combination to have two different entries varying only in protocol field. Each

such combination should have either a specific value or a wildcard in protocol

field.

Table 3.2: Example Filter Set [1]

No Src IP Dest IP Src

Port

Dest

Port

Protocol Flow ID

1 139.91.70.* 147.52.16.* * * TCP 10

2 139.91.*.* 147.102.*.* * 21 TCP 14

3 139.91.*.* 147.27.*.* <

1024

* * 17

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

53

4 *.*.*.* 139.91.*.* * 80 UDP 26

5 139.91.70.33 147.52.16.33 135 < 1024 TCP 31

6 139.91.70.36 147.27.*.* <

1024

21 * 45

7 *.*.*.* 147.52.*.* * 23 * 47

8 139.91.*.* 147.52.*.* 135 135 TCP 50

9 139.*.*.* 147.*.*.* * 80 TCP 54

10 139.91.*.* 147.52.*.* * 135 TCP 55

Although the possible number of permutations could be large, in real-world

databases, as it was described in Subsection 3.2, the maximum number of

matches in each field is typically less than five and the rules that match a

certain incoming packet are usually less than five, as well.

3.2.6 Set Membership Queries with Bloom Filters

As mentioned before the combined results from every single-field engine

should be examined so as to find out which of these are actually valid. One of

the most important challenges of 2sBFCE, is how to identify that a

permutation belongs to the given set of rules. Sequential access to the rule

table is prohibitively slow since we may need to access every single entry of it.

Therefore, a data structure that can efficiently represent a given rule set and

support quick set membership queries, is needed. Hash tables and B-Trees are

widely used for this type of queries but we use Bloom Filters. The main

advantage of those filters, when compared to the other data structures, is that

they can easily be implemented in hardware while supporting set-membership

queries at extremely high rates. The disadvantage of Bloom filters is that they

sometimes reports that a certain item is part of the set, even though it does not

actually belong to this set (i.e. false-positive error). This happens due to the

hash-based structure they use. As a result, for every combination which is a

positive match in the second BF stage, we consider this combination as a

possible multi-field matching rule. We still say “possible” because there is a

false positive probability as mentioned before. We deal with this false positive

scenario in the last stage of RulesTable. In the Table 3.3 we see a number of

possible permutations but only permutation No19 is a valid one. Note that ID

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

54

Numbers represents different prefixes values in order to be readable and they

don’t have any use in the real procedure mechanism.

Table 3.3 : Example of total possible permutations [1]

Src

IP

Dest

IP

Src

Port

Dest

Port

Protocol
Perm

No
ID ID ID ID ID

1 12 47 10 26 10

2 12 47 10 26 17

3 12 47 10 31 10

● ● ● ● ● ●

● ● ● ● ● ●

18 54 47 10 10 17

19 54 54 10 26 10

20 54 54 10 26 17

● ● ● ● ● ●

● ● ● ● ● ●

35 23 62 10 10 10

36 23 62 10 10 17

A similar scenario could also happen during the single field query

procedure. These false positive results don’t affect the final result because they

are automatically resolved during the second BF stage. However, they do

affect the overall performance of the lookup as described in subsection F.

3.2.7 Bloom Filter Tuning
In the 2sBFCE, in order to efficient support classification databases with up

to 4K rules, we employ a suitable Bloom Filter. A very important characteristic

of the Bloom Filter is that its false positive rate can be tuned, as discussed in

[47]. In order to keep this rate low, we have carefully chosen the size of the

Bloom filter bit-vector and then calculated the corresponding optimal number

of hash functions that set the filter’s individual bits. Based on an analysis

presented in detail in [1] we ended-up with a bit vector which is 3*214 bits

wide (we used 3 identical BF Elements -BFE). Based on this same analysis the

optimal number of hashing functions that set the bits on this vector is 2. Given

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

55

those parameters, the produced BF has a theoretical false positive probability

of 2.36 %.

The bit-vector of the BF is relatively large to be kept in registers/flip-flops,

and therefore it is stored in a memory array. Having 2 hash functions means

that we have to set 2 bit positions in the bit vector and 2 bits at each access.

Due to the fact that the bit-vector is to be stored in a memory array we may

require up to two memory accesses to locate each of the 2 bits. Thus, in order

to avoid sequential accesses, and since the array is quite small and can easily

be kept on-chip. For that reason we use the dual-port Memory modules of the

Xilinx Virtex-4 FPGA. These modules have appropriate configured to have

1bit of width and to each port we assign a different hash function. This allows

us to implement the accesses in parallel and decide in a single parallel memory

access if the current permutation belongs to our set. Additionally, this splitting

prevents the hash functions from setting the same bit to the bit vector.

After careful analysis of the classification databases and the Bloom Filter

properties, we have defined a hash function based on H3 Class of Universal

Hash Functions [1]. As it is supported, this class of hash functions, is suitable

for hardware applications because of its computational simplicity and its high

level of parallelism. The following formula describes the function we used:

hq(x):A→B (A: key space, B: address space)

)()()2()2()1()1()(... iqixqxqxxh q •⊕⊕•⊕•=

where • denotes the biwise AND operation and ⊕ the bitwise XOR

operation. The q(i) derives from a randomized vector. Figure 3.3 shows an

example of producing a 2-bit hash value for a 3-bit Key and demonstrates how

such a hash value is generated in hardware [1].

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

56

Figure 3.3: A hash function producing a 2-bit hash value for a 3-bit Key

[1]

3.2.8 False Positives and Filter Tuning
Although the false positive matches in the first level of the single filed

classifiers are easily resolved by the second bloom filter level, they produce a

large number of redundant permutations. This can result in decreased

performance. For that reason we have appropriate adjusted the parameters of

the BF in order to reduce the false positive rate. For the IP fields (source ,

destination) we chose to use some dedicated filters. Each of those classifier

module uses 1 dedicated bloom filter for the most common prefix lengths

(16,24,32). A statistic analysis was performed in real-like data Rules Tables

generated by ClassBench tool [45]. ClassBench involves a filter set generator

that uses seeds from real filter sets to provide synthetic filter sets that

accurately model real filters. According to this analysis in Table 3.4 we

distributed 6 Bloom filter elements (BFE) for the “32-prefix length” filter, 4

BFE for the “24-prefix length” filter and finally 3 BFE for the “16-prefix

length” filter. For the rest 28 (=33-3) different prefix lengths we use a 6 BFE

arrangement as these prefix lengths sum up to 20% of the total rules. The zero

prefix length corresponds to an all match case (* wildcard) which doesn’t

affect the overall false positive probability of the filter. Figure 3.4 depicts the 3

dedicated Bloom Filters used for the source and destination IP fields.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

57

Table 3.4: Prefix Length Distribution

Prefix

length

0 16 24 32

SOURCE-

IP

Prefixes No 3255 876 1902 5993

% 21,51 5,79 12,5 39,60

 DEST-IP

Prefixes No 1948 395 1247 9469

% 12,87 2,61 8,24 62,57

Total set size

(rules) 15133

Figure 3.4: Dedicated Bloom Filters

3.2.9 FlowID Resolving and bloom filter collisions
To locate the FlowID we use the 4K-entry RulesTable that give us the

matched FlowID. As mentioned in subsection 3.2.6, once we have a valid

permutation we use a hash indexing scheme to locate the appropriate

RulesTable entry. After this we should determine whether it is a false positive

match and in case it is not, we have to return the corresponding FlowID. In

order to accomplish this task efficiently, during the store procedure, we keep

the whole information of the rule in the RulesTable in combination with its

FlowID. In that way, for each valid permutation, we read the whole rule from

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

58

the appropriate entry of the Rules Table and then we compare each field with

the corresponding field of each permutation. If we have a full match then we

send the 12-bit FlowID to the output pins; in the opposite case a false positive

match has occurred. Then, we continue with the testing of the rest of the

permutations. At this specific stage of the procedure we deal with the protocol

field, by comparing as described before, the appropriate fields. More specific

we compare the information carried in the packet (proto field) with this stored

in each valid rule (including wildcard). If this field is a match (as well the as

the other fields) then we have a valid rule match. Figure 3.5 demonstrates the

whole procedure.

Figure 3.5: Organization of Rules Table scheme

Valid R
ule

N
ot m

atch

In a single query it is possible to have more than one matching rules. To

find out which of these matching rules is the best-matching we have to set

some priorities among the 5-tuples first. These priorities may change from time

to time so we leave this additional check to an upper lever of control. For that

reason our classifier could reply with more than one matching result, until a

Query_Done signal is set to 1.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

59

3.3 Indexing the Rules Table and Incremental
Updates

Indexing the Rules_Table requires a hash function and obviously this

function may produce collisions. Resolving these collisions can be performed

by using variable size blocks (such as in [49]) that hold the colliding FlowIDs.

In the proposed implementation and for simplicity we have just one memory

block where we put all the colliding FlowID and in case there is a collision we

search all of them sequentially. In the next version of the classifier we plan to

adopt a scheme similar to [49].

A property of Bloom filters is that it is “very hard to delete a message

stored in the filter” [50]. This happens due to the hash based structure of BF

which may causes collisions to some specific hashed bits in the bit vector.

Deleting a particular entry requires that the corresponding hashed bits in the bit

vector to be set to zero. This could disturb other messages programmed into

the filter which hash to any of these bits. Therefore, in the current scheme we

don’t support incremental updates. In the next version and in order to cope

with this problem we plan to maintain a vector of counters. Whenever a

message is added to or deleted from the filter, the counters corresponding to

the k hashed values are incremented of decremented, respectively. We delete a

particular entry only when the corresponding counter reaches zero.

3.4 Improving Memory Access
As described in the last section, the lookup performance of the proposed

scheme mainly depends on the set-membership queries in the Bloom filters.

This is because the set-membership derives from the overall product of the

single field results. In contrast the performance of the single field sub-engines

remains practically constant as it needs 30-33 on-chip memory accesses. About

1 cycle for each prefix number which is examined and all the queries run in

parallel.

In the implemented scheme we used a rather different scheme: instead of 1

we dedicate 2 bloom filter sets (BF1, BF2) for each of the SourceIP and

Dest.IP sub-engines. This optimized scheme, improves the performance of

these two sub-engines by 16 clock cycles as it splits the 32 possible prefix

lengths in two smaller sets. Each set is consisted of 16 possible prefix lengths

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

60

and is applied to a separate Bloom filter. Thus the whole single-field query

process finishes in about 17 cycles. The other two sub-engines (source &

destination. port) always produce their results in at most 17 clock cycles. As a

result, the whole single-field query procedure finishes in about17 clock cycles.

Figure 6 shows the organization of our optimized IP Sub-Engine.

Figure 3.6: Optimized IP Sub-Engine

The second stage, as explained in Section C, needs one on-chip memory

access per each permutation produced, as we dedicate one Bloom Filter for the

entire set of permutations. Therefore the whole number of permutations

depends on the data applied to the system. Simulation of real-world filter sets

shows that the second stages needs 10-15 clock cycles in average.

3.5 Verification
In order to measure the efficiency of our scheme we employed a large

number of realistic filter sets and test patterns.

During the early stages of the design we have used many custom made

VHDL testbenches in order to check each component separately, such as the

single field classifiers, the permutation engine, the BFs etc. Then, after the

whole scheme was completed we have used more custom made testbenches

with a few rules (from 10 to 100) in order to check that our system gives the

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

61

correct output for any given incoming packet. Thus for any given number of

rules we have stored in our classifier we tried about the double number of

packets during the query process in order to check the cross-matching rules

and the wildcards as well. After this stage we were sure that our classifier was

able to give the correct results for any given rule/packet. The next stage of the

verification had to involve the performance factor when dealing with realistic

sets as the performance of the algorithm we implement is dependent on the

Rules Table characteristics.

For that reason, we used Taylor’s ClassBench [44] which is a suite of tools

for performance evaluation of classification algorithms and is publicly

available. ClassBench contains a filter set generator that uses seeds from real-

world filter sets in order to provide synthetic databases which model real filters

in an accurate manner. ClasshBench produces 5d rules utilizing arbitrary

ranges both on the Source Port and Destination Port field. This would be a

problem for our scheme as it only supports prefix based rules. Thus, we had to

transform the arbitrary ranges to prefixes and we chose to do this in an

approximate manner in order to avoid the prefix expansion problem. Therefore

we utilized a simple algorithm which transforms ranges to prefixes using only

the one endpoint of each range.

 ClasshBench, includes a packet header generator as well that produces a

sequence of packet headers based on a given filter set. As we will explain in

the next subsection we don’t use this feature due to the approximate

conversion of ranges we have made on each Rule Set before testing it in our

system.

3.5.1 Simulation Results
In this subsection we discuss the simulation results based on synthetic filter

sets and present our results on speed (clock cycles/packet). By using the

ClassBench tool and the seeds from real filter sets that are provided by this tool

we are able to generate sets that represent the most common filter formats:

Access Control Lists (ACL), Firewall (FW) and IP Chain (IPC). We use all the

real filter seeds and generate 8 synthetic filter sets of various sizes. Each of

these testbenches is divided in two parts: at the first part we load the Rule Set

in our scheme and at the second part we perform the query of all the rules one

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

62

by one in order to examine that our scheme gives the correct matching results.

During the query we assume that each Rules Set generated with the

ClassBench tool represents also the corresponding packet header file having

one packet per rule. This assumption is possible if we exclude from the Rules

Set file the all prefix length information and feed it back to the system as a

packet header file. We expect that each packet from this file will match at least

with the corresponding rule of the Rules Set we previously loaded in the

classifier.

We did this because as mentioned before, we have modified all the Rules

Sets in a way that each ClassBench generated packet header will no longer

matches the corresponding Rules Set.

In Table 3.5 we see the performance results in clock cycles per packet

according to each filter set we use. All the results are referred to the optimized

design. We compute the performance of the first matching rule as well as the

overall average performance according to the last matching result. We provide

the performance of the first matching rule as some of the previous

classification schemes are based on this performance.

Table 3.5 System performance using various filter sets

Filter name No of Rules

Overall Average
performance (last

result)
optimized design

(cycles per packet)

Average
performance (first

result)
optimized design

(cycles per packet)
acl1 1192 56 26
ipc1 979 47 21
ipc2 618 35 27
fw1 975 42 21
fw2 653 36 21
fw3 692 34 21
fw4 1300 42 28
fw5 869 39 21

By studying the results we can draw the following conclusions:

1. The Rules Table characteristics affect the performance. As each Rules

Set has a different number of overlapping prefixes per field we expect to

give a different number of single field results. For example if a Rule Set

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

63

gives many single field matches in both Source and Destination IP field

we expect that the overall permutations will be far more than a set that is

dealing mostly with the Destination IP field. This explains the increased

performance of the fw* sets.

2. As the rules table size increases the performance is slightly decreased.

According to the previous observation we expect that the increased size

of the Rules Set will also increase the single field matches. This happens

not because of the Bloom Filter’s performance as we have adjusted all

BFs to a minimum FPP. It happens due to the natural increase of the

overlapping prefixes per field as the Rules Table getting larger.

3.5.2 Post place and Route verification

We performed a post-place and route simulation otherwise known as timing

simulation on our design to verify that the functionality is correct after the

place and route. This process uses the post-place and route simulation model (a

structural SIMPRIM-based VHDL file) and a standard delay format (SDF) file

generated by NetGen. The SDF file contains true timing delay information of

the design.

After getting the timing simulation model of our design we were able to run

the same tetbenches we ran during the functional verification of the design and

verify the correct results.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

64

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

65

Chapter 4
Hardware Implementation of 2sBFCE

In this chapter we present a reference hardware implementation of the

2sBFCE classification scheme that was described in Chapter 3. We provide a

detailed description of all the internal blocks of the system and the hardware

resources utilized. We also present the hardware of the final design. We

decided to implement the final design in an FPGA platform so as to prove the

feasibility and scalability of the architecture, even when limited hardware

resources are available. The FPGA platform we use is a Xilinx Virtex-4 [35].

4.1 2sBFCE Organization
The 2sBFCE consists of many internal blocks as shown in Figure 4.1. The

system receives the packet information from the outside world (Network Layer)

and gives as output a possible Rule Id match. Two separate function modes are

supported by the system: the store and the query procedure. During the store

procedure the L3_Data signal combined with the rule_id_in signal and provide

the necessary information for each rule is stored in the system by the user.

During query the L3_Data signal information is extracted from the incoming

IP packet. After query is finished rule_id_out signal shows the rule id number

(could be more than one) which matches to the incoming packet.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

66

Figure 4.1: 2sBFCE core interface diagram

Figure 4.2: 2sBFCE module overview

The operation of the system is coordinated by the control block as shown in

Figure 4.2. Upon a query procedure is started Source IP Classifier, Destination

IP Classifier, Source Port Classifier and Destination Port Classifier are

working in parallel to a single-field query (the above classifiers may referred

also as Single-Field Classification Engines or sub engines). All the 4 single

field classifiers are connected to the Permutation Engine Block in order to

reconstruct all the possible 5-tuple rules that could be part of our rule set. The

2nd Stage Bloom Filter is responsible for filtering all these possible matching

rules to only those which are valid, according to our rules set. In order to

implement all the single field classification engines and the 2nd Stage BF as

well, it was necessary to implement BF structures in hardware with adjustable

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

67

properties. The following section explains how a BF structure can be

implemented using modern FPGAs.

4.2 Implementing the Bloom Filters [2]

4.2.1 Implementing Bloom Filter Elements (BFE)

In order to reduce the false positive probability considerably, a long bit

vector is required. Even for supporting the programmability for hundreds of

prefixes, many thousand bits are required. The cost of using the on-chip flip-

flops for this purpose is too high. However, modern FPGAs have on-chip

RAMs with more than one port (typically dual port) that can be exploited to

create the Bloom filter vector [52]. For instance, the Xilinx Virtex 4 VFX140

chip has 552 on-chip RAMs [53] each with two ports and with the ability to

operate at 333 Mhz. Each Block RAM can be configured as a single bit wide

and 16,384 bits long vector requiring two 14-bit addresses and giving a bit

look-up throughput of 2 bits per clock cycle. We now describe how these on-

chip RAMs can be used for building the basic Bloom Filter.

Figure 4.3: Dual Port Block Ram used as a Bloom Filter Element

Figure 4.3 shows how a Block RAM can be used to construct a Bloom

filter. The Block RAM is configured as a single bit wide and 16,384 bits long

bit array. It has two read/write ports, both of which can be used to look-up the

bit values corresponding to two distinct hash functions. Thus, this Bloom filter

can support k=2 hash function, m=16,384 in the array and hence can support

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

68

678,52ln)(=⋅=
k
mn prefixes with

P(false positive) = (1/2)2

We call this Bloom filter as a Bloom Filter Element (BFE) since multiple

such Bloom filters are needed to create a Bloom filter with smaller false

positive probability (P) [52] (or with larger number of supporting prefixes with

the same false positive probability).

4.2.2 Creating Larger Bloom Filters
By using multiple BFE to store the same set of strings, the false positive

probability can be reduced as explained previously. For instance, if two BFEs
are used then the false positive probability will be

()() ()422 2121 =

If three BFEs are used then the false positive probability will be

()() ()632 2121 =

and so on.

For this reason we use arrangements of 3, 4 and 6 BFEs in order to create a

Bloom filter with smaller false positive probability. Figure 4.4 shows the

schematic of a BF constructed of 5 BFEs. We use exactly the same idea we

previously used in the BFE scheme (Figure 4.5) as we configure multiple BFE

to act as single bit wide and n x 16,384 bits long bit array. This 5-element BF

with a given a capacity of 5678 prefixes has a false positive probability of :

()() ()1052 2121 = ,
instead of ()221 of a single-Element BF with the same capacity. In our

scheme some of the BF used in IP-sub engines storing only a part of the rules

which means that the false positive probability for these BFs decreases more .

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

69

Figure 4.4: An example of a 5-element BF arrangement

4.3 Source and Destination IP Classifier Blocks
Source and Destination IP blocks are 2 identical BF based sub-engines.

They use two separate BF compositions, “Primary IP BF” and “Secondary IP

BF”. Primary IP BF uses three dedicated BFs and handles prefixes: 16, 24, 32.

The remaining prefix lengths are treated in the Secondary IP BF module which

utilizes a single BF. A FIFO holds the results for both modules (33 results at

the maximum). The FIFO’s output is connected to the Permutation Engine

module as described in the next section.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

70

Figure 4.5: Organization of an IP Sub-Engine

 Figure 4.5 presents a general overview of an IP sub Engine. The three

dedicated BFs are referred as the “Primary IP BF”. The remaining prefix

lengths are treated in the Secondary IP BF module which utilizes a single BF.

The Secondary IP BF is composed of a Hash Generator configured to address

a 6 element BF (12x14=168 bit address) and a counter (length gen. counter)

responsible for producing all the rest prefix lengths which are not examine in

the Primary IP BF. A FIFO holds the results for both modules (33 results at

the maximum). The FIFO’s output is connected to the Permutation Engine

module as described in Section [4.4].

4.4 Source and Destination Port Classifier Blocks
A port sub Engine works in a similar manner as an IP sub-engine; the only

difference is that the port sub engine doesn’t have dedicated Bloom Filters for

certain prefix lengths, it has only one BF which treats all prefix lengths from 0

to 16. A single Port BF Sub-Engine is composed of a Hash Generator (hash

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

71

function), a Bloom Filter, a Length Generator (counter) and a simple FIFO.

The hash function is properly configured to address our BF (12x14=168 bit

address) using the Port information (16bits) combined with the corresponding

prefix length (5bits). The Length Generator is used to provide all the possible

prefix lengths during a given query. Each generated length is combined with

the port information and examined through the BF. The matched results are

stored in a FIFO which holds at most 17 results (16 possible prefix lengths plus

wildcard). The FIFO’s output is connected to the Permutation Engine module

as described in next section.

Figure 4.6 Port Bloom Filter Organization

4.5 Permutation Engine Block
Figure 4.7 shows the organization of the second stage of the query

modules. The permutation engine produces all the possible matching “rule

vectors” (permutation vectors) which are examined in the second stage Bloom

Filter. The input of the Permutation Engine is connected to the output of all the

Single Field Engines. The Hash_2_Gen module is a hash function properly

configured to address the Bloom Filter (2nd Stage BF). The permutation vector

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

72

information is needed at the last part of the procedure in order to compare the

stored rule with the possible matching “permutation vector” as explained in

Chapter 3.

Figure 4.7: Organization of Permutation Engine and 2nd stage BF

4.6 Rules Table Addressing Module
Rules Table Addressing Module hashes the permutation information in

order to address the Rules Table memory in the last stage of the procedure.

This hash function is similar to those used in BF addressing and uses an 118

bit input to produce a 12 bit address.

4.6.1 Hash_2_gen Module
Hash_2_gen Module as mentioned before is a H3 clash hash function

which is properly configured to address the 2nd Stage BF. It takes a 118 bits

input an produces a 84 bits hash output.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

73

4.6.2 2nd Stage BF
The 2nd Stage BF is a Bloom Filter data structure composed of 3 more

simple Bloom Filter Elements (BFE). This BF examines each permutation

vector to find out if it is actually valid. As explained in previous Chapter, there

is always a false positive probability introduced by the BF which will be

examined it the last part of the procedure.

4.7 Rules Table Block
Rules Table block locates the FlowID information from a possible

matching permutation vector. It is composed of a 4K-entry Table and a

comparator module as explained in Section 3.2.9 The 4K-entry Table is 12 bit

addressable and 132 bits wide as the next Figure shows. Apart from the stored

ruled information (120 bits) we reserve 12 bits for the FlowID.

The comparator module compares the 5-tuple information produced in the

permutation process with this stored in each valid rule (including wildcard). If

all fields are a match then we have a valid rule match.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

74

Figure 4.8: Rules Table and Comparator Block

4.8 Implementation Analysis

4.8.1 Storage Requirements
One of our main concerns, when designing the proposed framework, was to

be very memory efficient. In this subsection we present the storage

requirements of 2sBFCE for all the generated filter sets. To calculate the total

storage for 2sBFCE we measure the storage requirements of the single field

Sub-engines, the storage of the second stage Bloom Filter and finally the size

of the RulesTable. Table 4.1 shows the 2sBFCE memory requirements.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

75

Table 4.1: Storage Requirements

Component

No of

Bloom

Filter

Elements

Memory

Entries

Width

(bits)
Total

Source IP 19 16K 1bit 304Kbits

Destination

IP

19 16K 1bit 304Kbits

Source Port 6 16K 1bit 96Kbits

Destination

Port

6 16K 1bit 96Kbits

2nd Stage

BF

6 16K 1bit 96Kbits

BF Total 896Kbits

Rules

Table

 4K 132bits 528Kbits

 1.424Mbits

178KBytes

Our scheme employs only 178 KB of on-chip SRAM, and as Table 4.4

demonstrates, it is the most memory efficient when comparing with other

classification schemes.

4.8.2 Hardware Device’s Cost & Performance

The proposed scheme has been Synthesized and Placed and Routed in

FPGA technology and it works at 153MHz (6.56ns clock period). The target

device was a Xilinx Virtex 4, 4vfx40ff672. Table 4.2 shows the utilization of

the device.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

76

Table 4.2: 2sBFCE resource utilization

Selected Device :

Xilinx Virtex 4, 4vfx40ff672 (speed grade -12)

Number of Slices: 8067 out of 18624 43%

Number of Slice Flip

Flops:

7570 out of 37248 20%

Number of 4 input

LUTs:

14585 out of

37248

39%

Number of

FIFO16/RAMB16s:

83 out of 144 57%

Tables 4.3a, 4.3b present the network performance (overall average

performance and first result average performance respectively) of the

optimized 2sBFCE which is by 16 cycles faster per query compared with the

initial design. We assume 6.56ns (153 MHz) per clock cycle and it is counted

both in Millions of Packets Per Second (Mpps) and in Gigabit Per Second

(Gbps). If we assume the device processes only minimum-size IP-Packets (40

bytes) we get the worst case performance. Obviously, in case our classifier is

employed in a real-world environment it will process IP packets with a mean

size much greater than 100 bytes, as reported in [45] , and therefore it would

easily be able to support network rates of 3 Gbps or higher.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

77

Table 4.3a: Overall Average performance for the optimized 2sBFCE.

Overall
Average

performance

Gbps Gbps

(cycles per
packet)

(worst case) (100 byte
packet)

acl1 1192 56 2,72 0,87 2,18
ipc1 979 47 3,24 1,04 2,59
ipc2 618 35 4,36 1,39 3,48
fw1 975 42 3,63 1,16 2,90
fw2 653 36 4,23 1,36 3,39
fw3 692 34 4,48 1,43 3,59
fw4 1300 42 3,63 1,16 2,90
fw5 869 39 3,91 1,25 3,13

average 909,75 41,38 3,78 1,21 3,02

Filter
name

No of
Rules

Mpps

Table 4.3b: Average performance of the first result for the optimized

2sBFCE.

Average
performance
of first result

Gbps Gbps

(cycles per
packet)

(worst case) (100 byte
packet)

acl1 1192 26 5,86 1,88 4,69
ipc1 979 21 7,26 2,32 5,81
ipc2 618 27 5,65 1,81 4,52
fw1 975 21 7,26 2,32 5,81
fw2 653 21 7,26 2,32 5,81
fw3 692 21 7,26 2,32 5,81
fw4 1300 28 5,44 1,74 4,36
fw5 869 21 7,26 2,32 5,81

average 909,75 23,25 6,66 2,13 5,32

Filter
name

No of
Rules

Mpps

In order to make the comparison with other schemes easier we normalize

the throughput at 100 Mhz as the compared schemes are implemented using

different technologies. Furthermore we introduce the ratio Throughput @

100MHz/Mbyte to show how memory efficient is each scheme.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

78

According to Table 4.4, it is clear that, despite the fact that RFC has the

best throughput, its performance is based on large memory utilization, while it

supports at most 1700 rules. On the other hand ABV does provide the highest

number of Mpps/Mbytes, but it supports 80% less rules than our scheme.

Considering that 4K rule set size or more is the upcoming standard, our

scheme is one of the best proposed schemes along with B2PC (ASIC) [1]

Table 4.4 : Summary of Classification Schemes

Scheme
Working

Frequency

(MHz)

Number

of

Rules

Storage

Requirements

(Number of

memories)

Throughput

(Mpps)

Throughput

(Mpps)

@

100Mhz

Throughput

(Mpps)

@

100Mhz

Per MByte

2sBFCE last

result (average)

153 4k 178Kbytes 3.78 2.47 14.2

2sBFCE first

result (average)

153 4k 178Kbytes 6.66 4.35 25.0

BV[27] 33 512 640KB (5) 1 3 4,8

ABV[28] “based on BV” 26,5

RFC[29] 125 1700 976 KB (2) +

15,6 MB (2)

30 24 14,5

B2PC

(FPGA, off chip

memory) [1]

75 3300 540 KB (4) 2,7 3,6 6,8

B2PC

(ASIC, on chip

memory) [1]

400 3300 540 KB (4) 42,5 10,6 20,1

Therefore, we claim that our scheme provides the optimal bandwidth-to-

memory approach, for any device that supports a few thousand rules.

Obviously, if performance is the only issue RFC would be more appropriate, or

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

79

for embedded, very low-memory, devices the low-memory scheme of [51]

would probably be preferable. Moreover, for devices supporting relatively

small filter sets ABV seems to be the natural case.

4.8.3 Performance Memory efficiency and parallelization
As 2sBFCE uses very low amounts of memory it gives us the capability of

parallelization if we utilize multiple cores per chip. We easily managed to fit a

dual-core implementation of our scheme in a Xilinx Virtex 4 (4vfx60ff672-12)

device which almost doubled the throughput at 151 Mhz while maintaining the

same latency. Table 4.5 shows the utilization of our dual-core 2sBFCE version.

Table 4.5: 2sBFCE dual core resource utilization

Selected Device :

Xilinx Virtex 4, 4vfx40ff672 (speed grade -12)

Number of Slices: 8067 out of 18624 43%

Number of Slice Flip Flops: 7570 out of 37248 20%

Number of 4 input LUTs: 14585 out of

37248

39%

Number of

FIFO16/RAMB16s:

83 out of 144 57%

4.8.4 IPv6 Support
As Bloom Filters are hash-based data structures they could easily be

adjusted to support inputs of a different length. The IPv4 addresses are 32-bits

long and the IPv6 addresses are defined to be 128-bit. Thus, with slight

modifications in our hash functions input, our scheme can easily support IPV6

without further modifications in BFs arrangement.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

80

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

81

Chapter 5
Contributions and Future Work

5.1 Summary of Contributions
We have extensively studied packet classification problem in 5-d in

comparison with the related literature and worked on an efficient hardware

scheme. We followed the decomposition approach of multi-field classification

rules into internal single-field rules which then are combined using multi-level

bloom filters.

We designed, simulated and proposed a classification solution that exploits

the most important information existing in the packet headers. We have

designed and implemented hardware schemes that can support high speed

packet classification based on the packet’s headers of network layers 3,4

(IP/TCP headers) .

In general, the efficiency of the proposed scheme comes from the fact that

it takes advantage of all the specific features of the current real-world filter

databases, while it has been designed from the beginning for efficient hardware

implementation. The algorithm proposed may be less efficient in throughput

than the other algorithms found in the literature, in worst-case scenarios, but

the hardware implementation of this scheme is the most efficient one

demonstrated so far when memory requirements, number of rules and

bandwidth are all taken into account. Moreover, its hardware cost (in terms of

silicon covered) is very low making it an even more promising approach for

low cost classification engines.

In Chapter 3 we propose an innovative classification scheme for the IP 5-

tuple. The proposed solution, 2 stage Bloom Filter Classification Engine

(2sBFCE), approaches the packed classification problem in a decomposed

manner. Hence single field matches of each packet field are combined to

identify the matching rule. 2sBFCE uses independent Bloom Filters to provide

efficient single field (all prefix) matches of 5d classification rules. In addition

it represents 5d classification rules using a second-level Bloom Filter scheme

so as to provide fast and efficient set membership queries.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

82

In Chapter 4 we describe in more detail the overall hardware scheme and

how it is implemented using FPGA technology. Our FPGA implementation of

2sBFCE uses on-chip BRams and operates at 153 MHZ while utilizes only

178KB of memory. That gives us a throughput of 3.78 Mpps or 3 Gbps while

supporting up to 4k rules. As 2sBFCE uses very low amounts of memory it

gives us the capability of parallelization utilizing multiple cores per chip. We

easily managed to fit a dual core implementation of our scheme in a Xilinx

Virtex 4 (4vfx60ff672-12) device which doubled the throughput maintaining

the same latency.

5.2 Publications
 We had the following two publications as full papers in IEEE ICC and

IEEE FCCM Conferences:

• Antonis Nikitakis, Ioannis Papaefstathiou: “A memory-efficient FPGA-

based classification engine”, IEEE ICC 2008

• Antonis Nikitakis, Ioannis Papaefstathiou: “A Multi Gigabit FPGA-

based 5-tuple classification system”, IEEE FCCM 2008

5.3 Future Work
Even though our packet classification solution, not only supports a few

thousand rules, but it is scalable to larger rules sets, its performance is very

dependent on rules sets characteristics. It would be rather interesting if we tried

to utilize a 3-level BF architecture in order to achieve a more stable

performance irrelevant to the rules set’s characteristics. A 3-level architecture

apart from the single-field searches will support set membership queries using

two fields and then in the next level covering all the 5 fields. This means that

the Source IP and Destination IP would have to “match” together as well as the

Source and Destination Port before we try matches on 5 fields. In that way we

will radically reduce the total number of permutation in those cases we have

many single field results as most of the permutations will be “excluded” due to

this intermediate filtering level.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

83

References
[1] Vassilios Papaefstathiou “Design and Implementation of Network Packet

Classification Engines”, Master’s Thesis, March 2005 Heraklion, Greece

[2] Marios A. Eliofotou “Hardware for IPv6 Longest Prefix Matching”,

Diploma Thesis, Technical University Of Crete, Chania, Greece

[3] Pankaj Gupta “ALGORITHMS FOR ROUTING LOOKUPS AND

PACKET CLASSIFICATION”. Ph.D. Thesis, Stanford University,

December 2000

[4] “Internet Protocol”, RFC 791, September 1981.

[5] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing

(CIDR): an address assignment and aggregation strategy”, RFC 1519,

September 1993.

[6] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)

Specification”, RFC 2460, December 1998.

[7] IEEE 802.1q Standard, “Virtual Bridged Local Area Networks”,
http://standards.ieee.org/getieee802/download/802.1Q-2003.pdf

[8] D. E. Knuth, “Sorting and Searching, vol. 3 of The Art of Computer

Programming”, Addison- Wesley, 1973.

[9] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable

Error”, Communications of the ACM, vol. 13, pp. 422–426, July 1970.

[10] Broder and M. Mitzenmacher, “Network applications of bloom filters: A

survey”, in Proceedings of 40th Annual Allerton Conference, October

2002.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A

scalable wide-area web cache sharing protocol”, IEEE/ACM

Transactions on Networking, vol. 8, pp. 281–293, June 2000.

[12] J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMs”,

in IEEE Infocom, 1993.

[13] K. Sklower, “A tree-based routing table for Berkeley Unix”, Tech. Rep.,

University of California, Berkeley, 1993.

[14] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled

Prefix Expansion”, in IEEE Sigmetrics, 1998.

http://standards.ieee.org/getieee802/download/802.1Q-2003.pdf

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

84

[15] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at

Memory Access Speeds”, in IEEE Infocom, 1998.

[16] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding

Tables for Fast Routing Lookups”, in ACM SIGCOMM, 1997.

[17] W. N. Eatherton, “Hardware-Based Internet Protocol Prefix Lookups”,

MSc thesis, Washington University in St. Louis, 1998.

[18] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using

Multiway and Multicolumn Search”, IEEE/ACM Transactions on

Networking, vol. 7, no. 3, pp. 324–334, 1999.

[19] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high

speed IP routing table lookups”, in Proceedings of ACM SIGCOMM

’97, pp. 25–36, September 1997

[20] Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification”,

in IEEE Infocom, March 2000.

[21] J. van Lunteren and T. Engbersen, “Fast and scalable packet

classification”, IEEE Journal on Selected Areas in Communications, vol.

21, pp. 560–571, May 2003.

[22] T. Y. C. Woo, “A Modular Approach to Packet Classification:

Algorithms and Results”, in IEEE Infocom, March 2000.

[23] P. Gupta and N. McKeown, “Packet Classification using Hierarchical

Intelligent Cuttings”, in Hot Interconnects VII, August 1999.

[24] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification

Using Multidimensional Cutting”, in Proceedings of ACM

SIGCOMM’03, August 2003. Karlsruhe, Germany.

[25] V. Srinivasan, S. Suri, G. Varghese, and M.Waldvogel, “Fast and

Scalable Layer Four Switching”, in ACM SIGCOMM, June 1998.

[26] D. Decasper, G. Parulkar, Z. Dittia, and B. Plattner, “Router Plugins: A

Software Architecture for Next Generation Routers”, in Proceedings of

ACM SIGCOMM, September 1998.

[27] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet

Forwarding Using Efficient Multi-dimensional Range Matching”, in

ACM SIGCOMM, September 1998.

[28] F. Baboescu and G. Varghese, “Scalable Packet Classification”, in

ACM SIGCOMM, August 2001.

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

85

[29] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields”,

in ACM SIGCOMM, August 1999.

[30] IEEE 802.1p Standard, “LAN Layer 2 QoS/CoS Protocol for Traffic
Prioritization”.

[31] http://www.ncasia.com/rfq/24port_0303.cfm?rfq=Enterprise_24-

port_rack-mount_switch

[32] N. McKeown, B. Prabhakar, “Lectures on Packet Switch Architectures II

– Address Lookup and Classification”,

http://www.stanford.edu/class/ee384y/Handouts/EE384y_lookups_1.pdf

[33] R. Jain, "A Comparison of Hashing Schemes for Address Lookup in

Computer Networks", IEEE Transactions on Communications, Vol. 40,

No. 3, October 1992, pp. 1570-1573

[34] IEEE OUI and Company_id Assignments,

http://standards.ieee.org/regauth/oui/index.shtml

[35] XilinxVirtex-4 Multi-Platform FPGA,

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/in

dex.htm

[36] Cypress CY7C1371C, “512K x 36 Flow-Through SRAM with NoBL™

Architecture”.

[37] Xilinx Tutorial, “Designing Custom OPB Slave Peripherals for

MicroBlaze”.

[38] Synopsys Corporation, “Design Compiler”,

http://www.synopsys.com/products/logic/design_compiler.html

[39] Internet Performance Measurement and Analysis (IPMA) project,

http://www.merit.edu/~ipma/

[40] Nen-Fu Huang, Shi-Ming Zhao, “A novel IP-routing lookup scheme and

hardware architecture for multigigabit switching routers.” IEEE

Journal on Selected Areas in Communications June 1999: 1093 -1104

[41] J. van Lunteren - IBM Zurich , “Searching very large routing tables in

fast SRAM”, in Proceedings of 10th International Conference on

Computer Communications and Networks, 2001 : 4-11

[42] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4)” , RFC1771,
March 1995

[43] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.Campbell.

“Directions in Packet Classification for Network Processors”. 9th

http://www.ncasia.com/rfq/24port_0303.cfm?rfq=Enterprise_24
http://www.stanford.edu/class/ee384y/Handouts/EE384y_lookups_1.pdf
http://standards.ieee.org/regauth/oui/index.shtml
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/in
http://www.synopsys.com/products/logic/design_compiler.html
http://www.merit.edu/~ipma/

Design and Implementation of a 5d Classification Engine, Chania 2008

Microprocessor and Hardware Lab

86

International Symposium on High-Performance Computer Architecture,

February 2003.

[44] F. Baboescu, S. Singh, and G. Varghese, "Packet classification for core

routers: Is there an alternative to CAMS?" in INFOCOM, 2003.

[45] David Taylor and Jonathan Turner , “ClassBench: A Packet

Classification Benchmark”, Proceedings of Infocom, March 2005.

[46] Pareto Distribution , http://en.wikipedia.org/wiki/Pareto_distribution

[47] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Sproull, John

W. Lockwood, “Deep Packet Inspection using Parallel Bloom Filters”,

IEEE Micro, January 2004

[48] Lixia Zhang, Stephen Deering, and Deborah Estrin, “RSVP: A New

Resource ReSerVation Protocol”, IEEE network, 7, September 1993.

[49] I. Papaefstathiou, V. Papaefstathiou, “An innovative low-cost

Classification Scheme for combined multi-Gigabit IP and Ethernet

Networks”, in IEEE ICC’06, June 2006

[50] S. Dharmapurikar, P. Krishnamurthy, D.E. Taylor, “Longest Prefix

Matching Using Bloom Filters”, in ACM SIGCOMM’03, August 2003

[51] Xuehong Sun, S.K. Sahni, Y.Q. Zhao, “Packet classification consuming

small amount of memory”, in IEEE/ACM Transactions on Networking,

Volume: 13, Issue: 5, pp 1135- 1145, Oct. 2005

[52] Sarang Dharmapurikar, Michael Attig and John Lockwood, “Design and

Implementation of a String Matching System for Network Intrusion

Detection using FPGA-based Bloom Filters”. Technical Report,

Washington University in Saint Louis, March 2004.

[53] Datasheets Xilinx Virtex-4 Series FPGAs. http://www.xilinx.com/virtex4. Winter 2005.

http://www.xilinx.com/virtex4

