

Σχεδιασμός και υλοποίηση γλώσσας ερωτήσεων και
σημασιολογικού συστήματος ανάκτησης γνώσης

για κατανεμημένη P2P Βάση Γνώσης.

Διατριβή για την ολοκλήρωση του μεταπτυχιακού

προγράμματος ειδίκευσης ηλεκτρονικών μηχανικών &

μηχανικών υπολογιστών

Γεώργιος Κοτόπουλος
Οκτώβριος 2010

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Summary

Γεώργιος Κοτόπουλος Page 2

SUMMARY

In the modern economy it is observed a high diversity in the data models among different

companies. Each and every company expresses its business and service models in a different

way and it cannot be foreseen that these models are going to be standardized (even for each

domain) in the near future. In such environment querying data is a difficult task as the system

has to create different queries for each different data structure.

Meta Object Facility (MOF) is a modelling framework by using which one can create and and

manage metamodels, models and data. The work in this thesis is part of the Digital Business

Ecosystem (DBE), an EU/IST project. DBE has a Knowledge Base where SMEs can define (using

MOF) and store business and service models along with appropriate data. This information is

distributed among peers in a P2P fashion. SMEs describe their data not only in terms of

business and service models, but also with ontologies. Moreover, ontologies are not shared

between companies but may differ. The reason is that SMEs may find that something is not

contained in an ontology and add the required structures.

The aim of this thesis is to provide the mechanisms to query structured data (structured by

metamodels and models) with fuzzy algorithms enhanced in such a way that data structured in

different ways can be retrieved as well. In order to achieve this we designed and implemented

the Query Metamodel Language (QML), a language which can pose queries against metamodels,

models and data. The implementation uses the semantics of models and ontologies in order to

provide ranked results. The ranking is done with a fuzzy information model provided. We

implemented algorithms for calculating similarities between ontology elements. These

similarities are used in order to find similar ontology paths to the path of the query terms. The

query is expanded with these similar paths, and thus data structured in different ways can be

retrieved by using the semantics of the structures used.

Summary

Γεώργιος Κοτόπουλος Page 3

CONTENTS

SUMMARY ... 2

LIST OF FIGURES .. 5

LIST OF TABLES .. 7

ACKNOLEDGEMENT ... 8

PUBLICATION .. 9

CHAPTER I – INTRODUCTION .. 10

CHAPTER II – OVERVIEW AND BACKGROUND 16

INTRODUCTION ... 16

THE MOF METADATA ARCHITECTURE .. 16

THE KNOWLEDGE ACCESS MODULE IN DBE ... 18

SUMMARY .. 22

CHAPTER III – KNOWLEDGE ACCESS MODULE ARCHITECTURE ... 23

INTRODUCTION ... 23

THE KNOWLEDGE BASE INFRASTRACTURE .. 23

THE RECOMMENDER MODULE ARCHITECTURE .. 24

The Overall Process ... 27

SUMMARY .. 28

CHAPTER IV – THE QUERY METAMODEL LANGUAGE 29

INTRODUCTION ... 29

QML AS A MOF METAMODEL ... 29

OCL AND QML .. 30

THE QML PACKAGE STRUCTURE ... 32

THE MOF ELEMENTS ... 33

THE EXPRESSIONS PACKAGE .. 34

THE TYPES PACKAGE ... 42

THE CONTEXT DECLARATIONS PACKAGE .. 45

The Query Context Declaration metaclass. .. 46

SEMANTICS OF QUERY EXPRESSIONS AND EXAMPLES ... 48

A Simple QML query .. 49

Aggregating objects ... 51

Querying instances ... 52

A More Complex QML Expression ... 53

EVALUATION ENGINE AND QUERY ANALYSIS .. 56

Query Analysis .. 57

Evaluation Process ... 58

SUMMARY .. 60

CHAPTER V – THE FUZZY MODEL AND THE QUERY FORMULATO R ... 61

INTRODUCTION ... 61

Summary

Γεώργιος Κοτόπουλος Page 4

THE QUERY FORMULATOR ... 61

THE INFORMATION RETRIEVAL TECHNIQUES ... 62

Implementation of the p-norm extended Boolean model using QML ... 64

Improving relevance ranking ... 66

ADVANCED QUERY FORMULATOR ... 67

FORMULATING KEYWORD EXPRESSIONS .. 69

SUMMARY .. 69

CHAPTER VI – QUERY EVALUATION TREES ... 71

INTRODUCTION ... 71

THE QUERY EVALUATION TREE MODEL .. 71

THE EVALUATION TREE CONSTRUCTION ... 73

EVALUATION TREE EXAMPLE .. 74

SUMMARY .. 76

CHAPTER VII – SEMANTIC EXPLOITATION 77

INTRODUCTION ... 77

DEFINING THE PROBLEM .. 78

ONTOLOGY SIMILARITY ANALYZER ... 80

Definition of Ontology Space .. 80

Definition of Ontology Similarity Rules .. 80

RETRIEVING RELATED PATHS .. 83

Formal Definition of Related Paths Discoverer Algorithm ... 85

Relevant Path Retrieving Example .. 87

Calculating Path Distance .. 88

SEMANTIC QUERY EXPANSION ... 93

PARAMETER ESTIMATION ... 96

The first experiment ... 98

The second experiment .. 101

The third experiment .. 107

MAPPING ALGORITHM EVALUATION .. 111

SUMMARY .. 113

CHAPTER VIII – CONCLUSIONS ... 115

APPENDIX A – THE QML FORMULATION API 120

APPENDIX B – MATHEMATICAL PROOFS .. 128

APPENDIX C – THE KEYWORD EXPRESSIONS PARSER GRAMMAR .. 130

GLOSSARY .. 136

BIBLIOGRAPHY .. 139

List of Figures

Γεώργιος Κοτόπουλος Page 5

LIST OF FIGURES

FIGURE 1: THE DBE KNOWLEDGE ACCESS PROCESS FOLLOWS THE FOUR LAYER MOF METADATA ARCHITECTURE. 17

FIGURE 2: THE KNOWLEDGE ACCESS MODULE WITH RESPECT TO THE DBE KB. THE KNOWLEDGE ACCESS MODULE IS A CENTRAL

COMPONENT THAT IS USED BY THE EXPOSED SERVICES OF THE DBE KNOWLEDGE MANAGEMENT INFRASTRUCTURE. THE KB

SERVICE AND SR SERVICE ARE USED IN THE SERVICE FACTORY ENVIRONMENT OR THE EXECUTION ENVIRONMENT RESPECTIVELY.

 ... 21

FIGURE 3: THE ARCHITECTURE OF THE KNOWLEDGE BASE INFRASTRUCTURE. .. 24

FIGURE 4: THE ARCHITECTURE OF THE RECOMMENDER MODULE. ... 25

FIGURE 5: THE QML PACKAGE STRUCTURE. THE CORE QML METAMODEL CONSISTS OF TWO PACKAGES; THE EXPRESSIONS PACKAGE

AND THE TYPES PACKAGE, WHERE THE QML EXPRESSIONS AND TYPES ARE DEFINED RESPECTIVELY. QML ALSO CONSISTS OF A

CONTEXT DECLARATIONS PACKAGE WHICH MAKES USE OF THE CORE QML PACKAGE IN ORDER TO EXPRESS QUERIES AND

CONSTRAINTS SEPARATE FROM THE CORPS OF A MODEL. ... 33

FIGURE 6: THE BASIC STRUCTURE OF THE CORE QUERY METAMODEL FOR EXPRESSIONS. THE QUERY METAMODEL LANGUAGE (QML)

IS BASED ON OCL 2.0 PROPERLY TRANSFORMED TO CONFORM TO MOF 1.4 AND TO EFFECTIVELY SUPPORT QUERIES IN OUR

DBE CONTEXT. THE BASIC STRUCTURE IN THE PACKAGE CONSISTS OF THE CLASSES OCLEXPRESSION, PROPERTYCALLEXP AND

VARIABLEEXP. AN OCLEXPRESSION ALWAYS HAS A TYPE, WHICH IS USUALLY NOT EXPLICITLY MODELED, BUT DERIVED. EACH

PROPERTYCALLEXP HAS EXACTLY ONE SOURCE, IDENTIFIED BY AN OCLEXPRESSION. WE USE THE TERM ’PROPERTY’, WHICH IS A

GENERALIZATION OF FEATURE, ASSOCIATIONEND AND PREDEFINED ITERATING OCL COLLECTION OPERATIONS. FROM THE

METAMODEL IT CAN BE DEDUCED THAT AN OCL EXPRESSION ALWAYS STARTS WITH A VARIABLE OR LITERAL, ON WHICH A

PROPERTY IS RECURSIVELY APPLIED. .. 34

FIGURE 7: THE MODELPROPERTYCALLEXP IN THE EXPRESSIONS PACKAGE. A MODELPROPERTYCALL EXPRESSION IS AN EXPRESSION

THAT REFERS TO A PROPERTY THAT IS DEFINED FOR A CLASSIFIER IN THE MOF MODEL TO WHICH THIS EXPRESSION IS ATTACHED.

ITS RESULT VALUE IS THE EVALUATION OF THE CORRESPONDING PROPERTY. THERE ARE THREE DIFFERENT SUBTYPES OF

MODELPROPERTYCALL ATTRIBUTECALLEXP, ASSOCIATIONENDCALLEXP AND OPERATIONCALLEXP, EACH OF WHICH IS

ASSOCIATED WITH ITS OWN TYPE OF MOF'S MODELELEMENT. .. 38

FIGURE 8: DEFINITION OF IF EXPRESSION. AN IFEXP RESULTS IN ONE OF TWO ALTERNATIVE EXPRESSIONS DEPENDING ON THE

EVALUATED VALUE OF A CONDITION. NOTE THAT BOTH THE THENEXPRESSION AND THE ELSEEXPRESSION ARE MANDATORY. THE

REASON BEHIND THIS IS THAT AN IF EXPRESSION SHOULD ALWAYS RESULT IN A VALUE, WHICH CANNOT BE GUARANTEED IF THE

ELSE PART IS LEFT OUT. ... 40

FIGURE 9: DEFINITION OF LET EXPRESSION. A LETEXP IS A SPECIAL EXPRESSION THAT DEFINES A NEW VARIABLE WITH AN INITIAL

VALUE. A VARIABLE DEFINED BY A LETEXP CANNOT CHANGE ITS VALUE. THE VALUE IS ALWAYS THE EVALUATED VALUE OF THE

INITIAL EXPRESSION. THE VARIABLE IS VISIBLE IN THE IN EXPRESSION. ... 40

FIGURE 10: DEFINITION OF LITERAL EXPRESSIONS. A LITERALEXP IS AN EXPRESSION WITH NO ARGUMENTS PRODUCING A VALUE. IN

GENERAL THE RESULT VALUE IS IDENTICAL WITH THE EXPRESSION SYMBOL. THIS INCLUDES THINGS LIKE THE INTEGER 1 OR

LITERAL STRINGS LIKE ’THIS IS A LITERALEXP’. .. 42

List of Figures

Γεώργιος Κοτόπουλος Page 6

FIGURE 11: THE CORE METAMODEL FOR QML TYPES. THE BASIC TYPE IS THE MOF CLASSIFIER, WHICH INCLUDES ALL SUBTYPES OF

CLASSIFIER FROM THE MOF INFRASTRUCTURE. IN THE MODEL THE COLLECTIONTYPE AND ITS SUBCLASSES AS WELL AS THE

TUPLETYPE ARE CONSIDERED AS SPECIAL DATA TYPES. USERS WILL NEVER INSTANTIATE THESE TYPES EXPLICITLY. CONCEPTUALLY

ALL THESE TYPES DO EXIST, BUT SUCH A TYPE SHOULD BE (LAZILY) INSTANTIATED BY A TOOL, WHENEVER IT IS NEEDED IN AN

EXPRESSION. .. 43

FIGURE 12: THE CONTEXT DECLARATION PACKAGE. IT DOES NOT BELONG TO THE CORE PART OF QML BUT IS RATHER A SET OF

HELPER META-CLASSES. THESE HELPER META-CLASSES ARE USED TO EXPRESS WHERE AN OCLEXPRESSION REFERS TO, THE KIND

OF IT (QUERY, INVARIANT, OPERATION, DEFINITION AND ATTRIBUTE) AND ANY OTHER SPECIFIC INFORMATION NEEDED FOR EACH

KIND. THE QUERYCONTEXTDECL META-CLASS TREATS A QUERY AS A CONSTRAINT ON A MODEL ELEMENT RESULTING A SET OF

VALUES WITH A SPECIFIC TYPE. ... 46

FIGURE 13: PART OF THE CONTEXT DECLARATION PACKAGE, SHOWING THE QUERY CONTEXT DECLARATIONS METACLASS AND ITS

ASSOCIATIONS. ... 47

FIGURE 14: A PART OF THE SERVICE SEMANTICS LANGUAGE (SSL) METAMODEL ... 49

FIGURE 15: QML REPRESENTATION OF THE QUERY: CONTEXT A: SSL::SERVICEPROFILE SIMPLEQUERY A.NAME = “HOTEL” OUT

SERVICEPROFILE: = A. ... 51

FIGURE 16: QML REPRESENTATION OF THE QUERY: CONTEXT SSL:SERVICEPROFILE COMPLEXQUERY: SEMANTICPACKAGE QUERY:

FUNCTIONALITY-> SELECT(NAME="CREDITCARDPAYMENT")-> EXIST(INPUT.NAME="CREDITCARDNUMBER"). THIS FIGURE

PRESENTS THE USE OF ITERATORS IN QML. THIS QUERY RETURNS THE SERVICE MODELS THAT HAVE A FUNCTIONALITY BOTH

NAMED “CREDITCARDPAYMENT” AND HAVING AN INPUT NAMED “CREDITCARDNUMBER”. .. 55

FIGURE 17: THE EVALUATION TREE FOR THE QUERY “HOTEL.CITY=ATHENS AND HOTEL.ROOM.PRICE<100”. IN THE FIGURE THE

SEMANTIC ANNOTATION IS ALSO ILLUSTRATED FROM THE NAVIGATION NODES TO THE ACTUAL BUSINESS ELEMENTS. 75

FIGURE 18: THE ONTOLOGY MAPPINGS STORED FOR THE MAIN PATH. .. 84

FIGURE 19: QUERY EXPANSION EXAMPLE OF THE QUERY TERM WITH PATH <HOTEL, ADDRESS, CITY> WITH ITS RELATED PATHS

<HOTEL2, ADDRESS2, CITY2> AND <HOTEL3, CITY3>. ... 95

FIGURE 20: THE ONTOLOGY HOTELONTO1 USED IN THE FIRST EXPERIMENT. ... 99

FIGURE 21: THE ONTOLOGY HOTELONTO2 USED IN THE FIRST EXPERIMENT. NO EQUIVALENCE EXISTS BETWEEN HOTEL AND HOSTEL

 ... 99

FIGURE 22: THE HOTELONTO3 ONTOLOGY USED FOR THE SECOND AND THIRD EXPERIMENT. .. 101

FIGURE 23: THE HOTELONTO4 ONTOLOGY USED FOR THE SECOND AND THIRD EXPERIMENT. HOTEL AND HOSTEL DO NOT HAVE AN

EQUIVALENCE WHEREAS APARTMENTS AND HOSTEL DO.. 101

List of Tables

Γεώργιος Κοτόπουλος Page 7

LIST OF TABLES

TABLE 1: UML METACLASSES THAT HAVE BEEN DEPRECATED (ENUMERATIONLITERAL, ASSOCIATIONCLASS AND MESSAGES) AS WELL

AS THE ALIGNED UML METACLASSES TO THE MOF ONES. ... 31

TABLE 2: EXAMPLES OF CRITERIA FOR THE QUERY FORMULATOR API ... 62

TABLE 3: DIFFERENT KINDS OF RECOMMENDATION FUNCTIONALITY EXPRESSIBLE BY A GENERAL INFORMATION RETRIEVAL SYSTEM .. 64

TABLE 4: THE VALUE OF THE MATCHING FACTOR A DEPENDING ON THE OPERATION AND THE TYPE OF ORIGINAL QUERY 67

TABLE 5: THE RELATED PATHS OF <HOTEL, ADDRESS, CITY> AND THEIR DISTANCES USING FUNCTIONS FDO AND FVAL. 89

TABLE 6: THE RELATED PATHS OF <HOTEL, ADDRESS, CITY> AND THEIR DISTANCES USING FUNCTIONS FDO, FVAL, AND FPD. 92

TABLE 7: THE NINE PARAMETERS USED IN QUERY EXPANSION ALGORITHMS AND THEIR ABBREVIATIONS. 98

TABLE 8: THE PARAMETERS USED IN THE FIRST EXPERIMENT WITH THEIR RANGE AND STEP. .. 100

TABLE 9: THE GOOD PATH RESULTS OF THE FIRST EXPERIMENT. ... 100

TABLE 10: THE PARAMETERS USED IN THE SECOND EXPERIMENT WITH THEIR RANGE AND STEP. .. 102

TABLE 11: THE GOOD PATH RESULTS OF THE SECOND EXPERIMENT. ... 102

TABLE 12: CORRELATION MATRIX OF PARAMETERS WITH THE MINIMUM PT AND PRECISION RECALL ERROR ON ALL DATA. 103

TABLE 13: CORRELATION MATRIX ON GOOD RESULTS DATA ONLY. ... 103

TABLE 14: CORRELATION MATRIX ON GOOD RESULTS WITH MAX OF TT. FROM THIS MATRIX IS CLEAR THAT AS THE GREATER THE

WEIGHTS ARE THE GRATER THE TT CAN BE.. 104

TABLE 15: CORRELATION MATRIX OF SP AND SB. FROM THIS MATRIX WE CAN CONCLUDE THAT SP AND SB CAN NOT BE BOTH SMALL.

 ... 104

TABLE 16: CORRELATION MATRIX OF EQ AND SW. FROM THIS MATRIX WE CAN CONCLUDE THAT EQ AND SW CAN NOT BE BOTH

SMALL. ... 104

TABLE 17: THE STATISTICS TABLE OF THE SECOND EXPERIMENT FOR PRECISION RECALL ERROR ZERO. .. 105

TABLE 18: THE CORRELATION MATRIX OF THE SECOND EXPERIMENT FOR PRECISION RECALL ERROR ZERO AND MEAN DEVIATION OF

RESULTS 0.9 WITH ERROR LESS THAN 0.05. ... 106

TABLE 19: THE STATISTICS MATRIX OF THE SECOND EXPERIMENT FOR PRECISION RECALL ERROR ZERO AND MEAN DEVIATION OF

RESULTS 0.9 WITH ERROR LESS THAN 0.05. ... 106

TABLE 20: THE PARAMETERS OF THE THIRD EXPERIMENT AND THEIR VARIANCE. ... 108

TABLE 21: THE CORRELATION MATRIX OF ALL CASES OF THE THIRD EXPERIMENT WHERE WE CAN SEE THE HIGH CORRELATION OF BW

WITH PRECISION RECALL ERROR. ... 108

TABLE 22: THE STATISTICAL MATRIX FOR DATA WHERE PRECISION RECALL ERROR EQUALS TO ZERO FOR THE THIRD EXPERIMENT. ... 109

TABLE 23: THE STATISTICAL MATRIX FOR DATA WHERE PRECISION RECALL ERROR EQUALS TO ZERO AND MEAN DEVIATION ERROR IS

LESS THAN 0.04 FOR THE THIRD EXPERIMENT. .. 109

TABLE 24: THE STATISTICAL MATRIX FOR DATA WHERE PRECISION RECALL ERROR EQUALS TO ZERO AND MEAN DEVIATION ERROR IS

LESS THAN 0.003 FOR THE THIRD EXPERIMENT. .. 110

TABLE 25: THE CALCULATED POSSIBLE AND BEST VALUES OF ALL PARAMETERS. .. 111

TABLE 26: COMPARISON OF ONTOLOGY ELEMENT MAPPINGS WITH MANUAL MAPPINGS. .. 112

Acknoledgement

Γεώργιος Κοτόπουλος Page 8

ACKNOLEDGEMENT

The author would like to thank Prof. Stavros Christodoulakis for supervision and guidance for

the preparation of this thesis, and the important lessons offered him during his work at the

Laboratory of Distributed Information Systems and Applications (MUSIC/TUC).

He would like also to thank the members of this thesis committee Associate Prof. E. Petrakis

and Assistant Prof. V. Samoladas for the time they spent in reading it and for their valuable

comments.

A special thank to his colleagues of MUSIC Fotis Kazasis, Nikos Pappas, George Anestis,

Nektarios Gioldasis, John Kotopoulos, and Anastasia Karanastasi whose timely and sound work

has led to a faster fulfillment of this master thesis and their suggestions and assistance

impacted the design of this work.

This thesis was funded under the European Research Project Digital Business Ecosystems

(DBE), on which participated the laboratory of Distributed Systems and Applications (MUSIC) of

Technical University of Crete.

Publication

Γεώργιος Κοτόπουλος Page 9

PUBLICATION

Part of the work of this thesis was published at the Conference Proceedings of IEEE “Digital

Ecosystems and Technologies” as the main author under the title “Querying MOF Repositories: The

Design and Implementation of the Query Metamodel Language (QML)”.

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 10

CHAPTER I – INTRODUCTION

This thesis describes the mechanisms developed in order to support knowledge access in a

distributed and collaborative environment of SMEs called Digital Business Ecosystem (DBE).

DBE information is hosted in the Knowledge Base (KB). The DBE KB provides a common and

consistent description of the DBE world and its dynamics, as well as the external factors of the

biosphere affecting it. Its content includes:

• Representations of domain specific ontologies (common conceptualization in a

particular domain);

• Semantic Descriptions of the SMEs themselves in terms of business models, business

rules, policies, strategies, views etc.;

• Semantic Description of the SME value offerings (description on how the services may

be called) and the achieved solutions (service chains/compositions) to particular SME

needs.

• Models for gathering usage data and statistics.

• User Profiles where SME’s declare their preferences on the characteristics of demanded

services and partners.

The DBE Knowledge Base (KB) follows the OMG’s Model Driven Architecture (MDA) approach

for specifying and implementing knowledge structuring and organization. The MDA “…defines

an approach to IT system specification that separates the specification of system functionality

from the specification of the implementation of that functionality on a specific technology

platform. The MDA approach and the standards that support it allow the same model specifying

system functionality to be realized on multiple platforms through auxiliary mapping standards, or

through point mappings to specific platforms, and allows different applications to be integrated by

explicitly relating their models, enabling integration and interoperability and supporting system

evolution as platform technologies come and go” (1). Roughly speaking, this is done by

separating the system design into Platform Independent Models (PIM) and Platform Specific

models (PSM). Following this principle, the DBE Knowledge Base specifies the organization of

the DBE knowledge in platform independent models that could be made persistent using many

different platforms. To do that, one has to provide the corresponding Platform Specific Models

and to provide the mapping from PIM to PSM knowledge structures. The DBE Knowledge base

provides a PSM knowledge organization based on XML Data Management System. Other

implementations could be also possible.

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 11

In addition the Knowledge Base follows the OMG’s Meta Object Facility (MOF) (2) approach for

metadata and data1 modelling and organization. The DBE Knowledge Base supports the four

levels of the MOF architecture. The level M0 of the architecture consists of the data that we wish

to describe; the level M1 comprises the metadata that describe the data and are informally

aggregated into models; the M2 level consists of the descriptions that define the structure and

semantics of the metadata and are informally aggregated into metamodels; and the M3 level

consists of the description of the structure and semantics of the meta-metadata. Thus, each

segment of information that is stored in the KB is placed as an instance of a modelling element

of a higher layer of the MOF meta-data architecture. That is, MOF based languages or

mechanisms should be used in the upper levels of the architecture for defining each segment of

information. Different kinds of metamodels2 have been already developed and represented in

the KB:

• the metamodel for Ontology Definition (ODM) (3), which enables the representation

and storage of existing OWL domain ontologies into the KB

• the metamodel for the Semantic Description of Services (SSL) (3), which enables the

representation and storage for the semantics of the services offered by SMEs into DBE.

• the metamodel for the Business Modelling (BML), which enables the representation and

storage of business models, business rules, policies, strategies, views etc by SMEs into

DBE.

• The metamodel for User Profiles (UPM) (4), which enables representation and storage

of user profiles.

• other metamodels for the technical description of single and composite services (SDL,

BPEL)

Thus, the exploitable knowledge spectrum in DBE will range from ontologies, to business

models, to semantic and technical service descriptions, to user profiles, to usage data, etc. Each

one of these knowledge segments will be represented using a different metamodel. Moreover,

the DBE KB supports personalization of services by allowing business differentiation from the

common standards and models. Thus, each SME may use these languages to express itself and

its services but the models and data produced will differ.

1 Although MOF is typically used for describing metadata, it can be also used for specifying data by

defining an instantiation metamodel. This is the approach followed by the DBE Knowledge Base.

2 In the rest of the document the terms MOF Language, Metamodel and MOF Model will be

interchangeably used for the same meaning.

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 12

In order to support efficient knowledge access over all these metamodels there is a need for a

query mechanism that will be quite generic so that it can specify, in a uniform way, knowledge

access requests over all types of knowledge (both data and meta-data) that are kept in the DBE

KB. Such kind of functionality is a prerequisite for implementing explicit querying of DBE

Knowledge (information retrieval / pull-mode) as well as knowledge personalization

(information filtering / push-mode) (5) functionality of the recommender component.

Moreover, in order to address the differentiation in model level there is a need the knowledge

access mechanism to use all semantic information available in the system.

To this end, in this thesis we describe a query mechanism, which is based on a query

metamodel (language) that is quite generic so that the expressions (query models) that form

the instances of this metamodel are capable to query all types of knowledge (models and

corresponding data), which are available in the Knowledge base in a uniform way.

As described, the DBE KB follows the MDA and MOF specifications. Given that MOF is strictly

following the object-oriented paradigm, it is easily understood that, at the PIM level, all the DBE

knowledge is also organized in a manner that follows the object-oriented paradigm (at the PSM

level several implementations can be supported). In order to further support this decoupling

between PIM and PSM knowledge manipulation there is a need for a knowledge access language

that will also follow the same paradigm.

Many technologies have successful and powerful query mechanisms that are widely known,

understood and used. The Structured Query Language (SQL), adopted as an industry standard

in 1986, is a very successful language for relational databases. More recently, SQL-99 (6) has

introduced object-oriented concepts into the language. However, there are significant

differences between the object models of the MOF and of object relational databases (SQL-99 is

also restricted to using only linear recursion). Since MOF models and instances can be mapped

to XML documents (XMI (7)), an XML query mechanism can be easily integrated with MOF

technology. XQuery (8) and XPath (9), standardized by the W3C, are some of the many query

languages for XML documents. The problem of querying in the MOF can be reduced to an

already-solved problem of how to query XML documents. However, the lack of object-

orientation (such as inheritance or polymorphism) in XML would constrain the expressive

power of an XML-based query approach. The Object Query Language (OQL) is a query language

based on SQL defined by the Object Database Management Group (ODMG) as part of the Object

Data Standard (10). However, the standard does not define the language’s abstract syntax nor

formal semantics.

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 13

The approach that was followed was to define an object-oriented knowledge access language,

named Query Metamodel Language (QML), using the same meta-language (MOF) that was used

to define the languages that represent the DBE Knowledge. To achieve as much compliance with

the existing standards, we opted to leverage the Object Constraint Language (OCL2.0), which

has been used as the formal basis of our query metamodel. The choice of OCL was also

motivated from the fact that OMG advocates in the core of its business architecture the use of

MOF and on the top of it the use of Unified Modelling Language (UML), which contains OCL for

specifying constraints in the models. Thus mechanisms that support OCL would be also useful

for efficiently supporting UML in a Knowledge Base that would support also UML functionality.

In the past few years OCL has evolved from being merely an extension of the Unified Modelling

Language (UML) to representing an integral part of it. The latest response to the UML 2.0 OCL

request for proposal (11) contains a completely reworked specification of the OCL which

defines it as a general query language that can be used everywhere in UML models to express

desired properties3. Shortly the OMG adopted OCL supports: Query expressions, Derived values,

Conditions and Business rules. It should be noted that the current OCL is seen as equivalent to

SQL when it comes to querying object models.

In this work the OCL2.0 metamodel has been suitably aligned (i.e. integrated) with the current

adopted MOF version (1.4). In addition the metamodel has been refined in order to better suit

to our needs by subtracting the metamodel’s UML-specific parts (since currently the Knowledge

Base infrastructure is based on MOF) and by enriching it with an appropriate helper meta-class

in order to utilize the metamodel’s internal query-specific elements in a more effective way (i.e.

the usage of this helper is not required since it is transparent to the user). The developed

metamodel is the Query Metamodel Language (QML).

As previously mentioned the knowledge access mechanism aims to satisfy two needs of DBE.

The first refers to support discovery requests in the KB. These requests are instances of the

QML. The additional requirement here is to also support Information Retrieval (IR)-style

approximate matching and allow the ordering of results by their relevance score. The second

refers to mechanisms responsible for matching preferences (user profiles) with business

descriptions and service descriptions. The design and implementation of the mechanisms

utilizes the existing business and service ontologies that capture the semantics of business

models and service descriptions.

3 OCL was originally designed specifically for expressing constraints or restrict values in a UML model.

However, its ability to navigate the model and form collections of objects has also lead to attempts to use

it as query language (Borland’s ECO framework uses OCL for querying as well as constraints, derived

values, etc.).

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 14

At a technical level (implementation and theoretical approach) the knowledge access approach

is uniform for both desired functionalities. The implementation provides a coherent framework

for QML processing that incorporates IR functionality and the theoretical approach is based on

the Extended Boolean Model. For this reason, we have provided in QML the capability to specify

ranking and fuzzy Boolean operators. However, whereas the discovery process is based on

answering the formulated query expressions based on the available metamodel and model

specific information laid in the KB, the recommendation process is based on matching user

(SME) profiles (that include preferences on business and/or service semantics) and the

underlying information. The Query Metamodel also allows the users to express preferences and

as such it could form the basis of user profiles. For that the existence of a MOF User Profile

Metamodel (UPM) is considered as a prerequisite. UPM imports QML and uses its expressions

to form user preferences.

In an open environment such as DBE, where SMEs tend to express their business characteristics

and services using different models (although following common metamodels), there is a need

to bridge differentiated models when querying the KB. QML is a typed language depending on

the structure of the queried terms, thus the solution cannot be part of QML but rather at the

analysis level. The formulated query expressions need to be semantically exploited and

expanded (if needed) as to retrieve relevant information expressed in different model

structures. The semantic query exploitation and expansion process, although it is not an easy

task, is possible to be modelled by using ontologies and the MOF architecture incorporated with

IR framework already used.

The knowledge access mechanism utilizes the functionality for processing valid query

expressions based on the QML (suitably formulated by the Query Formulator API). Such

functionality includes query parsing and analysis, query syntax tree construction, semantic

expansion and code generation using the KB infrastructure. From a technical point of view, the

KB infrastructure is based on a combination of a MOF/JMI-compliant repository and a data

management system. Two alternatives were available: a) the data is queried in MOF object

representation; b) the object-oriented queries are mapped to XQuery statements and executed

by the XML database management system. Although, on the fly execution of QML expressions is

implemented through reflection mechanisms performance issues brought us (the knowledge

base development team) to use as permanent storage system and query facilities an XML

database system. The current implementation of the code generator allows the generation of

XQuery statements (enhanced when needed with fuzzy extensions) that correspond to the

submitted queries and can be executed by the XML data base management system.

Chapter I – Introduction

Γεώργιος Κοτόπουλος Page 15

This work also aims at providing the functionality of finding relevant ontology elements and

ontology paths in the process of semantically exploiting and expanding query expressions. The

major assumption behind the design and implementation of the Recommendation mechanisms

is the existence of powerful business and service Ontologies that capture the semantics of

business models and service descriptions. These Ontologies will be also used to define the

corresponding preferences for businesses and services. The recommender exploits the

ontologies to store mappings between their elements. During the query pre-execution process

relevance paths are found and the original query is expanded.

The rest of the document is organized as follows: chapter 0 presents some preliminary issues

concerning the technologies used. The chapter first outlines the MOF metadata architecture

adopted and then the KB infrastructure. Chapter 0 presents the architectures of knowledge

access module that supports the formulation and the evaluation of involved discovery requests

to the KB. The chapter first outlines the overall knowledge base architecture of DBE in order to

provide the interdependencies of the knowledge access module with the rest of the system and

then. Next, in chapter 4 the QML along with representative examples is presented. Chapters 5, 6

present the methodology used for the query formulation process and the construction of

execution plans of the query expressions. Chapter 7 presents the semantic exploitation

mechanism for the semantic query expansion. The last chapter 8 presents the conclusions.

Chapter II – Overview and Background Introduction

Γεώργιος Κοτόπουλος Page 16

CHAPTER II – OVERVIEW AND BACKGROUND

INTRODUCTION

This chapter presents some background issues related to the technologies used in the DBE

Knowledge Base (KB) and discussed throughout the rest of this document. These technologies

refer to the adopted MOF metadata architecture and the Knowledge Access Module.

While MOF is a world standard to represent complex information in different layers, the DBE

Knowledge Base is the P2P distributed implementation of it, and the Knowledge Access Module

a way to query, recommend, and profile the knowledge stored.

The first section describes the MOF Metadata Architecture and the second one, where in the

DBE Knowledge Base the Knowledge Access Module resides, which other module are using it

and for what reason. Note that the concrete architecture of the Knowledge Access Module is

presented in the next chapter.

THE MOF METADATA ARCHITECTURE

MOF is a framework for describing and defining metadata, which uses a layered metadata

architecture with four different abstraction layers. The basis of this architecture is the MOF

meta-model (also called meta-meta-model). Figure 1 shows the DBE Knowledge base

architecture illustrating the metamodels for representing the Knowledge Base information and

the BML models and data. The four layers of this architecture (numbered from M0 to M3) are:

1. The (M0) information layer. It consists of the data that we wish to describe.

2. The (M1) model layer. It comprises the metadata that describe data in the information

layer. Metadata is informally aggregated into models.

3. The (M2) metamodel layer. It consists of the descriptions (i.e., meta-metadata) that

define the structure and semantics of metadata. Meta-metadata constructs are informally

aggregated into metamodels. A metamodel is essentially an “abstract language” for

describing different kinds of data.

4. The (M3) meta-metamodel layer. It consists of the description of the structure and

semantics of meta-metadata. In other words, it is the “abstract language” for defining

different kinds of metadata organizations.

Chapter II – Overview and Background The MOF Metadata Architecture

Γεώργιος Κοτόπουλος Page 17

MOF
Model

Application
Metamodel

Application Metadata

M3 level

M2 level

M1 level

M0 level

A
bs

tr
ac

t M
ap

pi
ng

A
bs

tr
ac

t M
ap

pi
ng

Application Data

BML (Business
Metamodel
Language)

BML (Business
Metamodel
Language)

Business
Models

Business
Data

Figure 1: The DBE knowledge access process follows the four layer MOF Metadata architecture.

As described in the “DBE knowledge representation models” (3), there are various kinds of DBE

Knowledge. Roughly speaking, we distinguish the following kinds:

a) Domain Specific Knowledge. It refers to common conceptualization (ontologies) that

describe the semantics of specific business domains. The Ontology Definition

Metamodel (ODM) is used for representing ontologies in DBE.

b) Organization Specific Knowledge. It refers to organization models, business processes,

rules, etc. that describe the business model of a particular organization (SME) as a

service provider. This kind of knowledge is captured with the use of the Business

Modelling Language (BML).

c) Service Specific Knowledge. It refers to the knowledge about a specific value offering in

DBE. Such knowledge refers to both business and technical level description of a service.

For the business level description the Semantic Service Language (SSL) is used. The

technical description of a service is provided by the Service Description Language (SDL),

and the Business Process Execution Language (BPEL).

It is worthy to mention that the domain specific knowledge is particularly important in

knowledge sharing since BML, SSL, and SDL are all referring to domain ontologies (described

with ODM) for semantic enhancements with common understanding. All the mechanisms

(languages) for representing these kinds of knowledge are defined in terms of the MOF (i.e.

MOF metamodels) and constitute the basis for advanced semantic discovery of partners and

services as well as effective development of recommendation mechanisms.

Chapter II – Overview and Background The Knowledge Access Module in DBE

Γεώργιος Κοτόπουλος Page 18

The Knowledge Base uses XMI documents for information exchange with other DBE

components. The KB is built on top of the Net Beans Metadata Repository4 (12) and the

Berkeley Native XML Database5 (13). The metadata repository offers the functionality of

processing XMI documents and exporting in XMI documents pre-selected content that is stored

in the repository. Appropriate middleware has been developed to provide storage, update,

retrieval and load capabilities from the MDR repository to a stand-alone DBE XML server. The

middleware utilizes the JMI-Java Metadata interfaces for communicating with the repository.

XMI is an implementation of the Stream-Based Model Interchange Format of the OMG

Repository Architecture using XML. In particular, “The main purpose of XMI is to enable easy

interchange of metadata between modelling tools (based on the OMG-UML) and metadata

repositories (OMG-MOF based) in distributed heterogeneous environments.” (7) JMI technology

enables the implementation of a dynamic, platform-independent infrastructure to manage the

creation, storage, access, discovery, and exchange of metadata. Java interfaces are generated

from arbitrary M2 layer metamodels, which are then used to access corresponding M1

instances or to perform necessary operations on them. The JMI 1.0 specification is the result of

a Java Community Process (JCP) effort to develop a standard Java API for metadata access and

management. The advantages to comply with JMI 1.0 are:

• the provision of a standard metadata management API for the Java 2 platform,

• the definition of a formal mapping from any OMG standard metamodel to Java

interfaces,

• the support of advanced metadata services (such as reflection and dynamic

programming) and the interoperability between tools that are based on MOF

metamodels and are deployed in the DBE environment.

THE KNOWLEDGE ACCESS MODULE IN DBE

In this section we present the architectural position of the Knowledge Access Module in the DBE

architecture as deployed in the integrated prototype of DBE. To do this, we firstly recall how the

entire recommender component is positioned in the global DBE environment, and then, with

some more details, how the recommender and its Knowledge Access Module are considered

with respect to the DBE Knowledge Base.

4 MDR is an open source metadata repository which implements the OMG’s Meta Object Facility (MOF

1.4) specification and its interface is compliant with the JMI 1.0 specification

5 The Berkeley XML database project develops open source database technology by Sleepycat Software

which was recently by Oracle Co.

Chapter II – Overview and Background The Knowledge Access Module in DBE

Γεώργιος Κοτόπουλος Page 19

In short in its final form the recommender component encompasses the knowledge access

module augmented with user profiling mechanism and with reasoning mechanisms that are

based on the existing business and service Ontologies that capture the semantics of business

models and service descriptions and on the DBE regulatory framework that determines the

various contexts in which business and services operate.

Furthermore, the implementation of the DBE Knowledge Base has a p2p nature, the

recommender is strongly affected by the p2p Knowledge Base framework that is adopted. In

particular, the following KB related issues, are taken into account for the support of the

recommendation process in the p2p environment:

• Semantic-based indexing schemes that will leverage information retrieval algorithms

for the full indexing of content in order to facilitate enhanced semantic queries and

effective measurement of the similarities between the queries and the underlying

information

• Semantic-based knowledge distribution and mechanisms for knowledge replication that

will be used in order to ensure high information availability

• Ontology mappings between domain and user (local) ontologies that will automate as

much as possible information reasoning

• Storage and maintenance of critical information such as SME profiles and data

The Knowledge Management Infrastructure is used in both the Service Factory Environment

(SFE) and the Execution Environment (ExE). The SFE is the environment where the actual

companies built their business models and data to describe themselves and their implement

their services (if available). The EXE is the environment where the services deployed and

available for execution. The KB’s Model Repository is used at the Service Factory Environment

where existing models (BML, SSL, SDL, etc.) are stored by SMEs. In the ExE, the KB’s Semantic

Registry is deployed. This Semantic Registry keeps knowledge about available (published) SME

services that can be searched, found, and executed in the DBE.

As already mentioned the knowledge access functionality is required for two purposes. It is

needed for pure search functionality (discovery process), as well as for supporting

recommendation mechanisms (recommendation process). Whereas the discovery process is

used for answering the formulated query expressions based on the available metamodel and

model specific information laid in the KB, the recommendation process is used for matching

SME profiles (that include preferences - captured through the user profiling mechanism- on

business and/or service semantics) and the underlying information. It has to be noted that at a

Chapter II – Overview and Background The Knowledge Access Module in DBE

Γεώργιος Κοτόπουλος Page 20

technical level the information filtering/retrieval approach is uniform for both desired

functionalities. The two types of functionality provided by the Knowledge Access Module are

exported in the form of separate services, namely the Knowledge Base/Semantic Registry

services (to support discovery requests) and the Recommender Service (to support

recommendations). All recommendations and discovery requests computed by the Knowledge

Access Module could be considered as similarity based retrieval requests.

Regarding the Recommender Service three candidate use cases are currently foreseen6:

1) Business Matching: Based on the preferences of a specific SME A for possible partner

SMEs, the Recommender Service may find SMEs that match the business preferences of

A.

2) Service Matching: Based on the preferences of a specific SME A for possible services to

be used on more complex services provided by A, the Recommender Service may find

Service Descriptions that match the service preferences of A.

3) Service Searching: Based on the description of a Service S, the Recommender Service

may find Service Descriptions that match the service description of S.

These use cases are applicable in both SFE and EXE environments. The preferences may refer to

existing models (for helping an SME to describe itself or its services), or to existing services for

service consumption (Service Manifests containing models and data). Thus, the Knowledge

Access Module (through its corresponding services) is used in both environments for accessing

the knowledge that is kept in each environment. Although the underlying information is

conceptually different (models of business and service descriptions instead of available SME

services) the Knowledge Access Module component is used in both environments since the

information in both environments constitutes uniform knowledge that can be exploited in the

DBE environment in the scope of the same query or user profile. For example, user preferences

in the SFE may refer only to Models (of businesses and services), while in the ExE may refer to

both models and data.

The Recommender Service acts as an autonomous process that manages SME preferences

(either business preferences or service preferences) and matches theses preferences with

available business descriptions and service descriptions and make recommendations to the

DBE user in a push mode (information filtering). The user profiles may contain preferences

regarding knowledge that is kept in either ExE or the SFE. Thus, the recommender service is the

same in both environments. This Recommender Service is supported by the Recommender

6 The term preferences could be seen as instances of a user (SME) profile or as instances of the QML Metamodel. In both cases it refers to
preferences on business and/or service semantics.

Chapter II – Overview and Background The Knowledge Access Module in DBE

Γεώργιος Κοτόπουλος Page 21

Module, which also exploits the Knowledge Access Module for performing the appropriate

matching of user preferences with the underlying knowledge (in both environments).

Figure 2, describes in more detail the Knowledge Access Module, which is a part of the

recommender component, and a fundamental module of the entire DBE Knowledge

Management Infrastructure as it is currently implemented in the integrated prototype of DBE.

This module through its Query Interface (QI) is used by the exposed services of the DBE

Knowledge Base according to the requirements of the particular architectural environment in

which is used. That is, when this environment is the Service Factory, the KB Service exposes the

provided functionality for accessing the DBE knowledge relying in a KB instance. On the other

hand, when the environment is the Execution Environment, the SR Service exposes the desired

functionality. Both services however utilize the Knowledge Access Module in order to query the

underlying information. It has to be noted that different KB instances (that follow the KB

infrastructure depicted in Figure 2) serve the Service Factory and the Execution environments.

KB Manager

RDBMS
(Apache Derby)

KB Service SR Service

Usage Manager

Model Manager
ODM,SSL,SDL,

SCM,QML

Recommender
Service

KB Infrastructure

Recommender

Knowledge Access Module

Query Analyzer

Query Execution
Plan Constructor

Mapper / Executor
(PSM)

MDR Manager

JMI API

Metadata Repository
(Netbeans MDR)

JDBC-Persistency Layer DB Manager

Figure 2: The Knowledge Access Module with respect to the DBE KB. The Knowledge Access module is a

central component that is used by the exposed services of the DBE knowledge management

infrastructure. The KB Service and SR Service are used in the Service Factory Environment or the

Execution Environment respectively.

Chapter II – Overview and Background Summary

Γεώργιος Κοτόπουλος Page 22

SUMMARY

In this chapter we discussed the basic frameworks this thesis is based on, i.e. the MOF

Metamodel architecture and the DBE Knowledge Access Module.

The MOF Framework has a four layer architecture. On top resides the MOF Model, which is

language designed to define application metamodels. The application metamodels are

languages for a specific application (like business model language, ontology language, business

service language, etc). Once you define an application metamodel you have a concrete way to

define application models like business models (ex. Hotels, Software Companies, etc) or

Ontologies for specific area of interest (as Hotels, etc). With this application models you can

describe in a concrete way the actual data that differentiate each Hotel for example, called

application (business, service, etc) descriptions.

Next we presented the general purpose and application of the Knowledge Access Module. The

Knowledge Base Infrastructure is the implementation of the MOF architecture in DBE, along

with a powerful recommender service, which exploits business and service ontologies in order

to capture semantics of business and service descriptions. We described that the Knowledge

Access Module is distributed in a P2P manner and thus all data is distributed as well. The

information stored includes business models and data, service models and data, and ontologies.

In order to provide knowledge instead of raw data we described that the recommender service

is able to exploit the metadata (and meta-metadata), ontologies stored elaborated with

information retrieval techniques. Special considerations where given to the P2P distributed

manner of knowledge.

While in this chapter presented the general idea of the Knowledge Access Module, the following

one describes in detail the Knowledge Access Module architecture; how the data are stored, and

what mechanisms the recommender service exploits to provide knowledge.

Chapter III – Knowledge Access Module Architecture Introduction

Γεώργιος Κοτόπουλος Page 23

CHAPTER III – KNOWLEDGE ACCESS MODULE ARCHITECTURE

INTRODUCTION

In chapter II we described both the MOF Metamodel Architecture and the how the Knowledge

Model Access Module is used by other DBE components and models in general.

In order the metamodels, models, and data to be useful query mechanisms should exist. The

purpose of this thesis is to provide advance query and recommendation mechanisms upon this

knowledge. In this chapter we will describe the architecture of the recommender module, how

it works, and which modules are implemented in order to provide these advance features,

which will be explained in detail on the following chapters.

Thus, in this chapter, we present the general architecture of the recommender and knowledge

access modules. Special consideration has been given on how the module will operate on the

distributed p2p environment. Moreover, we present what each component is responsible for, in

order to understand how all parts integrated together are able to provide advance knowledge

recommendation services.

The first section describes the Knowledge Base Infrastructure. Internal part of KB

Infrastructure is the Knowledge Access Module, which is presented along with a description for

each sub module and how they cooperate in the second and last section of this chapter.

THE KNOWLEDGE BASE INFRASTRACTURE

The Knowledge Base Infrastructure is the implementation of the MOF Metamodel Architecture

in DBE. It is decentralized in a P2P manner and provides stable storage for metamodels, models,

and data.

Figure 3 shows the architecture of the Knowledge Base (KB) infrastructure. The KB

infrastructure provides a common persistence and knowledge management layer in the digital

ecosystem. It offers a set of APIs and tools for accessing the DBE Knowledge (M1 Model

information and M0 data). The components that comprise the basic KB infrastructure are

described in deliverable D14.3 (14).

Chapter III – Knowledge Access Module ArchitectureThe Recommender Module Architecture

Γεώργιος Κοτόπουλος Page 24

DBE ServENT

Peer Manager

XDB-Server
(XML -Database)

Model Manager
ODM,BML,SSL,SDL,QML,

Recommender Module

Knowledge
Access Module

Semantic
Index

Manager

MDR Manager

JMI API

Metadata Repository
(Netbeans MDR) DB Manager

Replication Manager
 Catalogue Maintenance

P2P Replication Process
Manager

Session Manager
Sessions

DBE Core Service
(KB / SR / RC)

KB Toolkit
Query Formulator API

Profile Manager
Profile Sessions

Query Formulator

KB-toolkit-plugin

DBE Tool

Ontology
Similarity
Analyzer

Profile
Recommendation

Handler

Figure 3: The architecture of the Knowledge Base Infrastructure.

THE RECOMMENDER MODULE ARCHITECTURE

Recommender Module implements the components related to the evaluation of candidate

services and candidate business partners in the process of discovering or composing services

and establishing partnerships respectively. The Recommender Module is responsible for

matching preferences with business descriptions and service descriptions. The major

assumption behind the design and implementation of the Recommendation mechanisms is the

existence of powerful business and service Ontologies that capture the semantics of business

models and service descriptions. These Ontologies are used to define the corresponding

preferences for businesses and services. The recommender exploits Profile Manager to store

preferences and all recommendation mechanisms operate on top of the native XML database to

implement the necessary matching functions between preferences and business/service

descriptions. Figure 4 shows the architecture of the Recommender Module in detail.

Chapter III – Knowledge Access Module ArchitectureThe Recommender Module Architecture

Γεώργιος Κοτόπουλος Page 25

Figure 4: The architecture of the Recommender Module.

Next paragraphs describe what each sub module is responsible for. At the end of section we put

all these modules together to understand how they operate in an integrated way, in order to

provide advance knowledge access.

THE QUERY METAMODEL LANGUAGE

The knowledge access module uses a knowledge access language, the Query Metamodel

Language (QML) that has been specially designed to make use of the semantic information from

metamodels, models, and ontologies. Queries can be formulated by using the Query Formulator

module which automatically constructs fuzzy queries in terms of QML that use senses from

metamodels, models, and ontologies. The query formulator module uses the JMI Reflective API

from the MDR Manager in order to understand the context of the query terms.

THE QUERY ANALUSIS MODULE

The Query Analysis module analyses the QML query in understandable, for the specific peer,

terms. Thus, a query is re-analyzed in each peer and it is reformulated in order to be able to

retrieve as much relevant information as possible. These terms are annotated semantically with

metamodel, model and ontology information located in each peer. In order to provide such

facilities it uses the JMI reflective API of the MDR Manager to access the MDR repository.

Chapter III – Knowledge Access Module ArchitectureThe Recommender Module Architecture

Γεώργιος Κοτόπουλος Page 26

THE QUERY TREE CONSTRUCTOR

The Query Tree Constructor is responsible for creating an execution tree of the query. This

execution tree contains information regarding semantic annotation and fuzzy weights following

the IR fuzzy model defined. This information is retrieved from the metamodels, models, and

ontologies by using the JMI reflective API.

THE SEMANTIC QUERY EXPANDER

The Semantic Query Expander expands the query tree with new query branches which are

semantically equivalent or semantically related to the original query. The information required

for the expansion are provided from the semantic annotation process and the from ontology

elements similarities provided by the Ontology Similarity Analyzer.

THE ONTLOGY SIMILARITY ANALYER

The Ontology Similarity Analyzer parses all ontologies in the system and based on a specific

number of rules and criteria finds and creates similarities between ontology elements with a

respective similarity weight. It also creates and keeps a name index of all ontology elements.

THE CODE GENERATOR

The Code Generator module parses the execution tree and constructs queries that can be

executed in the current data management system. The Knowledge Access Module is now

supported by a powerful native XML database (Berkeley XML DB). This database supports

XQuery language and, thus, the code generator produces XQuery code. In order to produce

XQuery, code generator needs information on how metamodels, models, and data are mapped

into XML. The XMI Mapper module provides this information.

The XMI Mapper module, as mentioned above, is responsible for keeping information of how

metamodels, models, and data are mapped into XML documents. Although we use the XMI

provided functionality for mapping models into XML, which is straightforward, there is a

number of issues that the Code Generator needs to know when producing XQuery that retrieves

XMI documents. These issues refer to knowledge of the models and to the way that the XMI

contains this information. This information is provided partly by the query execution plan and

partly by the Mapper.

Chapter III – Knowledge Access Module ArchitectureThe Recommender Module Architecture

Γεώργιος Κοτόπουλος Page 27

THE QUERY EXECUTOR

The Executor is responsible for executing the query and retrieving the results. Although, the

XQuery engine of the XML database does the actual execution of the XQuery statements, the

Executor provides a common API for all queries and results for the other modules.

THE QUERY FORMULATOR

The Query Formulator module is responsible for creating valid QML queries through an API.

This module wraps the complexity of creating fuzzy QML expressions and using JMI. The Query

Formulator comes into two versions; a simple and an advanced. In the advanced version

reusable templates can be created. The Query Formulator is used by front-end tools, by the

recommender to rewrite user profiles into QML queries, and by SMEs services that need to have

query capabilities.

The KB toolkit contains useful software components and exports APIs for Query Formulation,

Service Manifest processing and other.

THE PROFILE MANAGER

The Profile Manager manages the storage, retrieval and updates of the SME profiles in the

database. The profiles are represented as XMI documents following the User Profile Metamodel

(UPM).

THE OVERALL PROCESS

Three services of DBE use the recommender module. Namely: the Knowledge Base Service (KB),

the Service Registry Service (SR), and the Recommender Service (RC). The first two use these

modules to answer queries posed against them and the latter (RC) uses the modules to provide

recommendations depending on user preferences. All of them are services distributed on the

DBE P2P network, i.e. each peer may have a knowledge base, a service registry, and a

recommender.

As the DBE knowledge (models, services, etc) is distributed in a P2P environment, certain

mechanisms are needed in order to make the query processing efficiently, based on the general

architecture and infrastructure of the DBE. The knowledge access module provides a semantic

indexing mechanism used for the query routing needs. This mechanism makes use of a

completely decentralised semantic index based on a learning process and exploiting the rest of

the DBE infrastructure for knowledge management. The indexing functionality is based on the

Chapter III – Knowledge Access Module Architecture Summary

Γεώργιος Κοτόπουλος Page 28

exploitation of the semantic overlay network and the available infrastructure for searching and

querying with the use of ontologies and the MDA architecture over the P2P physical network.

The overall process consists of the following steps. First of all a query is formulated into QML

with the Query Formulator. Both, a graphical user interface exists and a keyword extractions

and formulation mechanism to formulate QML queries. At next the Recommender parses the

query (it is forwarded to other peers as well) and analysis it. In this step each part of the QML

query is semantically annotated with a term of a metamodel. What follows is query tree

construction with the query branches to be evaluated and merged. Each branch at the next step

is expanded by using semantics of the models. In order to do this information from ontologies is

used. Now, the query pre-processing has finished and XQuery code is generated, which will be

executed at the XML database. Finally, the queries are executed and the results are merged in a

fuzzy model manner. The results are sent back to the originator along with weights which

represent how well the result matched the conditions set. Each peer sends results

asynchronously to the responder and no merging occurs in the Recommender module.

SUMMARY

In this chapter we focused on what each sub module of the Recommender is responsible for and

how all of the work together in order to provide an advanced knowledge access service.

A language (QML) is developed to describe queries by using the MOF construct. An API (along

with a GUI) and Keyword parser is provided to formulate queries into QML. Each QML

expression is annotated using metadata information (semantic annotation process), query

evaluation trees are constructed which are used to semantically expand queries with ontology

terms and constructs from other models. The query tree is transformed into XQuery

expressions and executed on the XML database. Finally, the results are merged using the

evaluation tree.

On the next four chapters each of these sub modules is discussed thoroughly. The next chapter

presents formally the Query Metamodel Language (QML) along with examples.

Chapter IV – The Query Metamodel Language Introduction

Γεώργιος Κοτόπουλος Page 29

CHAPTER IV – THE QUERY METAMODEL LANGUAGE

INTRODUCTION

This chapter discusses in detail the terms of the Query Metamodel Language (QML) and its

placement in the adopted MOF architecture. Along with the formal presentation of the language

indicative examples are given in order to explore the capabilities and functionalities of QML.

Finally in this chapter we discuss the query analysis mechanisms and an evaluation process

developed apart from that inside the DBE Knowledge Base.

QML leverages the Object Constraint Language (OCL2.0), which has been used as the formal

basis of its metamodel. QML supports powerful expressivity of queries on any metamodel and

between them.

QML’s main aim is to be flexible enough to express queries for all MOF metamodels, models, and

data. Moreover, QML’s metamodel should be such that queries can be formally analyzed in

order to make efficient evaluation and semantic expansion possible. Finally, QML should enable

fuzzy queries to be expressed in a simple manner. In order to achieve the first goal we need a

language that is expressed in terms of MOF and defined as a MOF Metamodel that “moves”

between layers and for the second goal we need a strongly typed language. Both requirements

are met by the Object Constraint Language (OCL2.0), which has been used as the formal basis of

QML’s metamodel.

QML AS A MOF METAMODEL

SQL is a language commonly known and understood. We will try to describe where MOF for

layer architecture stands and what we want QML to query with examples coming from

relational databases domain in order the purpose and the needs of QML to be clarified.

A relational schema could be a MOF model (M1 layer) equivalent whereas the data is the MOF

M0 layer. The relation schema obeys the relational model; senses like table, index, varchar, int

exist in the relational model level and may vary between RDBMS implementations (mainly on

supported functions). The relational model is the M2 layer of the MOF architecture. The actual

MOF metamodel could be used to define the relational model constructs and their semantics

(M3 layer). With SQL we can query M0 data using M1 constructs, but we can not query M1

schema information using M2 constructs (e.g. to retrieve the table names which have a column

named “City”: SELECT table.name FROM table, column WHERE table.id = column.table_id AND

Chapter IV – The Query Metamodel Language OCL and QML

Γεώργιος Κοτόπουλος Page 30

column.name = ‘City’). Querying relational schema is something that nobody needs up to now,

while in the MOF environment this is something common (e.g. find the models which have an

element named “Hotel”). Thus, QML should be able to query both M0, M1. Imagine now we

could query the RDBMS relational model and if a function exists to use or if not to do something

else! This would allow us to write cross platform SQL queries! In the same sense QML can be

used to write queries with M3 constructs for M2 metamodels. Thus, with QML we can search for

all the following examples:

• Hotel.City = “Athens” (M1 constructs searching for M0 data)

• BusinessEntity.Name = “Hotel” (M2 constructs searching for M1 models)

• Class.Name = “BusinessEntity” (M3 constructs searching for M2 metamodels)

As it should be clear by now QML should be able to search in all 3 layers. To go from one layer to

the next we instantiate the meta-metamodel (MOF), metamodel (Business Language

Metamodel), and model (Hotel Model) in the same sense we instantiate Objects from Classes in

programming languages. Thus, QML query expressions (like SQL queries) are instances of the

QML model. It might seem quite strange how “one language fits all” but this is possible (as it in

OCL) because the main QML class is both an instance and a sub-class of the main MOF element

called ModelElement. On the next sections this will be seen in more detail. In the MOF

architecture QML stands in both M3 layer (as an extension of MOF) and in M2 layer (as a

Metamodel).

OCL AND QML

The OCL formal semantics are based on UML 1.4. In order to use OCL for querying and/or

applying constraints in the MOF environment we have to align the OCL formal semantics to

MOF 1.4. In our work UML meta-classes referred by the OCL meta-model have been suitably

aligned to MOF meta-classes, using similar ideas as in Loecher at al. at [12]. The elaborated

formal semantics refer to these meta-classes. The differences and the alignment adopted can be

seen in Table 1.

UML Meta-classes (referred from the

OCL2.0 Abstract Syntax metamodel)

MOF1.4 Meta-classes (referred from the QML

metamodel)

ModelElement ModelElement

Classifier Classifier

DataType DataType

Chapter IV – The Query Metamodel Language OCL and QML

Γεώργιος Κοτόπουλος Page 31

PrimitiveType PrimitiveType

Attribute Attribute

AssociationEnd AssociationEnd

Operation Operation

EnumerationLiteral EnumerationType (with multivalued attribute

labels)

AssociationClass MOF does not support it and therefore QML does not

include it.

Messages MOF does not support messages, therefore QML does

not provide messages support.

Table 1: UML meta-classes that have been deprecated (EnumerationLiteral, AssociationClass and Messages) as

well as the aligned UML meta-classes to the MOF ones.

The Query Metamodel Language (QML) is also defined as a M2 MOF metamodel. QML allows

writing query expressions (M1 QML models) using the information provided by the M2

Knowledge Base metamodels in order to obtain M1 Knowledge Base models. To support this,

QML elements are also directly related to MOF elements (through references and

specializations). It should be noted that the granularity of the QML query expressiveness is not

limited to only one metamodel (i.e. it is allowed to combine semantic information from more

than one metamodels).

In addition QML also allows writing constraint expressions for the M3 layer, M2 layer and the

M1 layer Knowledge Base metamodels and models respectively. Since QML is intended to be

used for MOF models only, a MOF version of OCL has been produced in order to allow writing

constraints for MOF models too. This essentially enriches the MOF language with a constraint

language, which is compatible with MOF (and UML which can also be defined using MOF).

Although, OCL is quite powerful it cannot be used directly as a query language for a number of

reasons. The OCL constraints do not have a mechanism for defining result types. Moreover, an

OCL constraint refers to one and only class or object (the so called context), which is a drawback

for complex queries. For these reasons we introduced the Query Context Declaration meta-

class. This meta-class’s semantics are somewhat equivalent to the SQL select statement. For the

rest of its structure QML utilises the concrete and abstract syntax of OCL. By extending the OCL

core QML supports highly expressive queries as it inherits a set of valuable characteristics from

OCL; it is an object-oriented, strongly typed language able to navigate through not only

metamodels (M2 layer) but also on models (M1 layer) – as explained in detail later on.

Chapter IV – The Query Metamodel Language The QML Package Structure

Γεώργιος Κοτόπουλος Page 32

Therefore, a query expression can be semantically analyzed and be able to query both models

and data.

The Most important functionalities of OCL, and therefore QML, are to declare (Let expression)

and use variables (Variable expression), to navigate through model elements (PropertyCall

expression), to loop through collections (Bags, Sets and Sequences) of model elements (select,

collect, exists and forAll operations), to express if-then-else statements and literals. Operations

are defined as a model-element navigation process.

In the following sections the QML abstract syntax is described in detail and a number of

examples of simple and more complex queries are given as to demonstrate the capabilities of

QML.

THE QML PACKAGE STRUCTURE

Figure 5 presents the QML package structure. The core QML metamodel consists of two

packages; the Expressions package and the Types package, where the QML expressions and

types are defined respectively. QML also contains the Context Declarations Package, which

makes use of the Core QML package in order to express queries and constraints separate from

the corps of a MOF model. Furthermore, the QML Core uses the core MOF metamodel, so as to

both refer directly to a MOF model’s elements and express constraints incorporated in a MOF

model (using the Constraint model element of defined in MOF).

The following QML query is used as an example to demonstrate these main principals (we want

to find the Hilton hotels in Athens which have a room cheaper than 100 Euros):

1: Context A: HotelModel#Hotel instanceQuery
2: A.HotelName = “Hilton” and
3: A.HotelAddress.City = “Athens”
4: A.Rooms->exists(Price < 100)
5: out Hotels := A

Lines 1 and 5 define the context and the output (package Context Declarations); lines 2 to 4

define an expression (package Core). The types of each element used are defined in the Types

package and might be either primitive (as “Hilton” is String) or come from a MOF model or

metamodel (like HotelName is a BusinessAttribute (defined in BML metamodel of M2 level) of

the HotelModel (defined at M1 level)). In more detail the example is explained on Context

Declaration Package section.

Chapter IV – The Query Metamodel Language The MOF Elements

Γεώργιος Κοτόπουλος Page 33

We will use the same example as we go through the packages and elements presented. When

the formal presentation ends we will present some examples and how they are formally

represented on QML on both M1 and M2 layers.

Figure 5: The QML package structure. The core QML metamodel consists of two packages; the

Expressions package and the Types package, where the QML expressions and types are defined

respectively. QML also consists of a Context Declarations Package which makes use of the Core QML

package in order to express queries and constraints separate from the corps of a model.

THE MOF ELEMENTS

Some of the MOF elements will be used by QML. These are the ModelElement, the Classifier, the

AssociationEnd, the Operation, and the Attribute.

ModelElement is a general MOF construct to represent all model elements. Instances of this

class have a name, attributes with a type. The general MOF class to represent types is the

Classifier (the instance of it is a Class or Primitive Type). Instances of MOF Attribute are what its

name stands for: an ModelElement attribute. Instance of ModelElements can be associated with

other instances. Each association has to ends (the two ModelElements) these are called

AssociationEnd and can have a multiplicity argument (0 to many, many to many, etc). Last MOF

element used here is the Operation; instances of this class are the actual operations (like “=”, “<”,

etc).

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 34

THE EXPRESSIONS PACKAGE

Figure 6 shows the core part of the Expressions package. The basic structure in the package

consists of the classes OclExpression, PropertyCallExp and VariableExp. An OclExpression always

has a type, which is usually not explicitly modelled, but derived. Each PropertyCallExp has

exactly one source, identified by an OclExpression. In order to be able to express constraints

incorporated in a model, on a model’s specific element, MOF structure forces us to specialize

MOF’s ModelElement class by OclExpression (since a MOF Constraint is also a specialization of

the ModelElement). In this section we use the term ’property’, which is a generalization of

Feature, AssociationEnd and predefined iterating OCL collection operations.

Figure 6: The basic structure of the core Query Metamodel for Expressions. The Query Metamodel

Language (QML) is based on OCL 2.0 properly transformed to conform to MOF 1.4 and to effectively

support queries in our DBE context. The basic structure in the package consists of the classes

OclExpression, PropertyCallExp and VariableExp. An OclExpression always has a type, which is usually

not explicitly modelled, but derived. Each PropertyCallExp has exactly one source, identified by an

OclExpression. We use the term ’property’, which is a generalization of Feature, AssociationEnd and

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 35

predefined iterating OCL collection operations. From the metamodel it can be deduced that an OCL

expression always starts with a variable or literal, on which a property is recursively applied.

From the metamodel it can be deduced that a QML expression always starts with a variable or

literal, on which a property is recursively applied.

OclExpression

An OclExpression is an expression that can be evaluated in a given environment. OclExpression is

the abstract super-class of all other expressions in the metamodel. It is the top-level element of

the QML Expressions package. Every OclExpression has a type that can be statically determined

by analyzing the expression and its context. Evaluation of an expression results in a value.

Expressions with Boolean result can be used as constraints and queries e.g. to specify an

invariant of a class. Expressions of any type can be used to specify initial attribute values, target

sets, etc.

The environment of an OclExpression defines what model elements are visible and can be

referred to in an expression. At the topmost level the environment will be defined by the

ModelElement to which the QML expression is attached, for example by a Classifier if the QML

expression is used as an invariant. On a lower level, each iterator expression can also introduce

one or more iterator variables into the environment. The environment is not modelled as a

separate meta-class, because it can be completely derived using derivation rules. The complete

derivation rules can be found in chapter 9 (“Concrete Syntax”) on OCL 2.0 specification.

In the example used before, lines 2-4 is a (IsA) OCLExpression. Moreover, each line is a (IsA)

different OCLExpression.

PropertyCallExp

A PropertyCallExp is an expression that refers to a property (operation, attribute, association

end, predefined iterator for collections). Its result value is the evaluation of the corresponding

property. This is an abstract meta-class. The result value of the source expression is the instance

that performs the property call.

In line 2 of the example used before (for convenience A.HotelName = “Hilton”) is a

PropertyCallExp. But also “.HotelName” and “=” are PropertyCallExp. “A” and “Hilton” are not

and we will see next what are they.

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 36

LoopExp

A LoopExp is an expression that represents a loop construct over a collection. It has an iterator

variable that represents the elements of the collection during iteration. The body expression is

evaluated for each element in the collection. The result of a loop expression depends on the

specific kind and its name.

In the “HotelModel” model definition of the example, the “Rooms” “BusinessEntity” is associated

with “Hotel” (“A” stands for “Hotel”) “BusinessEntity” with 1 to many relationship. For that

reason a “Hotel” may have many “Rooms”. In order to loop between the Rooms we use the

LoopExp.

IterateExp

An IterateExp is an expression, which evaluates its body expression for each element of a

collection. It acts as a loop construct that iterates over the elements of its source collection and

results in a value. An iterate expression evaluates its body expression for each element of its

source collection. The evaluated value of the body expression in each iteration step becomes the

new value for the result variable for the succeeding iteration-step. The result can be of any type

and is defined by the result association. The IterateExp is the most fundamental collection

expression defined in the QML Expressions package.

IteratorExp

An IteratorExp is an expression, which evaluates its body expression for each element of a

collection. It acts as a loop construct that iterates over the elements of its source collection and

results in a value. The type of the iterator expression depends on the name of the expression,

and sometimes on the type of the associated source expression. The IteratorExp represents all

other predefined collection operations that use an iterator. This includes select, collect, reject,

forAll, exists, etc. The QML Standard Library defines a number of predefined iterator

expressions. Their semantics is defined in terms of the iterate expression. Refer to the official

adopted OCL 2.0 specification (“Mapping rules for predefined iterator expressions”) for a

complete reference on predefined iterator expressions.

In the example used before the line “A. Rooms->exists(Price < 100)”, “exists” is an IteratorExp,

which iterates between all “Rooms” of “A”.

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 37

VariableExp

A VariableExp is an expression, which consists of a reference to a variable. References to the

variables self and result or to variables defined by Let expressions are examples of such variable

expressions.

In the example used before, a VariableExp is “A”.

VariableDeclaration

A VariableDeclaration declares a variable name and binds it to a type. The variable can be used

in expressions where the variable is in scope. This meta-class represents amongst others the

variables self and result and the variables defined using the Let expression.

In the example used before, “A: HotelModel#Hotel” is the variable declaration

(VariableDeclaration element).

ModelPropertyCallExp

A ModelPropertyCall expression is an expression that refers to a property that is defined for a

Classifier in the MOF model to which this expression is attached. Its result value is the

evaluation of the corresponding property. A ModelPropertyCallExp generalizes all property calls

that refer to Features or AssociationEnds in the MOF metamodel. Figure 7 shows the three

different subtypes of ModelPropertyCallExp, each of which is associated with its own type of

ModelElement.

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 38

Figure 7: The ModelPropertyCallExp in the Expressions package. A ModelPropertyCallExp expression is

an expression that refers to a property that is defined for a Classifier in the MOF model to which this

expression is attached. Its result value is the evaluation of the corresponding property. There are three

different subtypes of ModelPropertyCallExp AttributeCallExp, AssociationEndCallExp and

OperationCallExp, each of which is associated with its own type of MOF's ModelElement.

AssociationEndCallExp

An AssociationEndCallExp is a reference to an AssociationEnd defined in a MOF model. It is used

to determine objects linked to a target object by an association. The expression refers to these

target objects by the role name of the association end connected to the target class.

In the example used before in the line “A.HotelAddress.City = ‘Athens’” the “HotelAddress” is the

name of a MOF AssociationEnd (i.e. how we go from the “Hotel” entity to the “Address” entity)

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 39

Note that the two entities defined in “HotelModel” are not “Hotel” and “HotelAddress” but

rather “Hotel” and “Address”. From “Address” to “Hotel” another AssociationEnd exist named for

example “AddressHotel”. The source OCLExpression of this AssociationEndCallExp is the

VariableExp “A”.

AttributeCallExp

An AttributeCallExpression is a reference to an Attribute of a Classifier defined in a MOF model. It

evaluates to the value of the attribute.

In the same sense “HotelAddress” in the previous paragraph was the AssociationEnd in this

paragraph “HotelName” is the Attribute of the entity “Hotel”. Thus it depends how it is defined

in the model in order to use the appropriate expression.

OperationCallExp

An OperationCallExp refers to an Operation defined in a Classifier. The expression may contain a

list of argument expressions if the operation is defined to have parameters. In this case, the

number and types of the arguments must match the parameters.

In the example used before “=”, “<”, “and” are all MOF Operation instances and, thus, we use an

OperationCallExp. Note here that each OCLExpression has a type (MOF Classifier). Thus,

OperationCallExp should also have. The type is the result of the operation, i.e. in the example

“A.HotelName = City” the result of “=” is Boolean.

IfExp

IfExp is shown in Figure 8. An IfExp results in one of two alternative expressions depending on

the evaluated value of a condition. Note that both the then Expression and the else Expression are

mandatory. The reason behind this is that an if expression should always result in a value,

which cannot be guaranteed if the else part is left out.

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 40

Figure 8: Definition of If expression. An IfExp results in one of two alternative expressions depending

on the evaluated value of a condition. Note that both the thenExpression and the elseExpression are

mandatory. The reason behind this is that an if expression should always result in a value, which cannot

be guaranteed if the else part is left out.

LetExp

A LetExp is a special expression that defines a new variable with an initial value. A variable

defined by a LetExp cannot change its value. The value is always the evaluated value of the

initial expression. The variable is visible in the in expression. The LetExp is shown in Figure 9.

Figure 9: Definition of Let expression. A LetExp is a special expression that defines a new variable with

an initial value. A variable defined by a LetExp cannot change its value. The value is always the

evaluated value of the initial expression. The variable is visible in the in expression.

Chapter IV – The Query Metamodel Language The Expressions Package

Γεώργιος Κοτόπουλος Page 41

 The example used so for does no have a LetExp. The following example demonstrates the use of

it:

Let B := A.HotelName In
B = ‘Hilton’ and A.HotelAddress.City = ‘Athens’

“B := A.HotelName” is the VariableDeclaration and what follows “In” (i.e. “B = ‘Hilton’ and

A.HotelAddress.City = ‘Athens’”) is the OCLExpression where the scope of VariableExp “B” is

valid. The VariableDeclaration “B := A.HotelName” has two parts the varName “B” and the

initExpression “A.HotelName”.

LiteralExp

A LiteralExp is an expression with no arguments producing a value. In general the result value is

identical with the expression symbol. This includes things like the integer 1 or literal strings like

’this is a LiteralExp’. They are shown in figure 10.

Examples of LiteralExp include “Athens”, “Hilton” and “100”.

Chapter IV – The Query Metamodel Language The Types Package

Γεώργιος Κοτόπουλος Page 42

Figure 10: Definition of literal expressions. A LiteralExp is an expression with no arguments producing

a value. In general the result value is identical with the expression symbol. This includes things like the

integer 1 or literal strings like ’this is a LiteralExp’.

THE TYPES PACKAGE

QML is a typed language. Each expression has a type which is either explicitly declared or can be

statically derived. Evaluation of the expression yields a value of this type. A metamodel for QML

types is shown in this section. Note that instances of the classes in the metamodel are the types

themselves (e.g. Integer) not instances of the domain they represent (e.g. -15, 0, 2, 3).

The model depicted in Figure 11 shows the QML types. Note that the QML Types package is the

same with the OCL Types package with the difference that UML Model Elements used in OCL

(like UML Classifier) are aligned to the corresponding MOF elements. The basic type is the MOF

Classifier, which includes all subtypes of Classifier from the MOF infrastructure. QML directly

Chapter IV – The Query Metamodel Language The Types Package

Γεώργιος Κοτόπουλος Page 43

specializes MOF types, as MOF Classifier and DataType, since it has to refer to OCL expression’s

types in a generic way, i.e. a type of an OCL Expression could be either a MOF Class or an OCL

Tuple.

In the model the CollectionType and its subclasses as well as the TupleType are considered as

special data types. One can never instantiate all collection types, because there is an infinite

number, especially when nested collections are taken in account. Users will never instantiate

these types explicitly. Conceptually all these types do exist, but such a type should be (lazily)

instantiated by a tool, whenever it is needed in an expression.

Figure 11: The core metamodel for QML Types. The basic type is the MOF Classifier, which includes all

subtypes of Classifier from the MOF infrastructure. In the model the CollectionType and its subclasses

as well as the TupleType are considered as special data types. Users will never instantiate these types

explicitly. Conceptually all these types do exist, but such a type should be (lazily) instantiated by a tool,

whenever it is needed in an expression.

OclModelElementType

OclModelElementType represents the types of elements that are ModelElements in the UML

metamodel. It is used to be able to refer to states and classifiers in e.g. oclInState(...) and

oclIsKindOf(...)

Chapter IV – The Query Metamodel Language The Types Package

Γεώργιος Κοτόπουλος Page 44

CollectionType

CollectionType describes a list of elements of a particular given type. CollectionType is an

abstract class. Its concrete subclasses are SetType, SequenceType and BagType types. Part of

every collection type is the declaration of the type of its elements, i.e. a collection type is

parameterized with an element type. In the metamodel, this is shown as an association from

CollectionType to Classifier. Note that there is no restriction on the element type of a collection

type. This means in particular that a collection type may be parameterized with other collection

types allowing collections to be nested arbitrarily deep.

BagType

BagType is a collection type, which describes a multiset of elements where each element may

occur multiple times in the bag. The elements are unordered. Part of a BagType is the

declaration of the type of its elements.

OrderedSetType

OrderedSetType is a collection type which describes a set of elements where each distinct

element occurs only once in the set. The elements are ordered by their position in the sequence.

Part of an OrderedSetType is the declaration of the type of its elements.

SequenceType

SequenceType is a collection type, which describes a list of elements where each element may

occur multiple times in the sequence. The elements are ordered by their position in the

sequence. Part of a SequenceType is the declaration of the type of its elements.

SetType

SetType is a collection type which describes a set of elements where each distinct element

occurs only once in the set. The elements are not ordered. Part of a SetType is the declaration of

the type of its elements.

TupleType

TupleType (informally known as record type or struct) combines different types into a single

aggregate type. The parts of a TupleType are described by its attributes, each having a name and

a type. There is no restriction on the kind of types that can be used as part of a tuple. In

particular, a TupleType may contain other tuple types and collection types. Each attribute of a

Chapter IV – The Query Metamodel Language The Context Declarations Package

Γεώργιος Κοτόπουλος Page 45

TupleType represents a single feature of a TupleType. Each part is to uniquely identified by its

name.

VoidType

VoidType represents a type that conforms to all types. The only instance of VoidType is OclVoid,

which is further defined in the standard library. Furthermore OclVoid has exactly one instance

called OclUndefined.

As example of CollectionType in expression “A. Rooms->exists(Price <100)”is the result of the

AssociationEnd “Rooms”, or the result of the “select” IteratorExp in the expression “A. Rooms ->

select(Beds = 2)-> exist(Price < 100)”. The last expression first selects all the rooms with 2 beds

and then searches on them for one with price less that 100.

THE CONTEXT DECLARATIONS PACKAGE

Context declarations are not needed in OCL, because OCL constraints meant to be directly

attached to the model elements they refer to. Nevertheless, a concrete syntax of them is given in

the OCL2.0 specification [12] in order to facilitate the declaration of the OCL expressions in

separate text files. Based on the concrete syntax we developed the Context Declarations

package, which does not belong to the Core part of QML but is rather a set of helper meta-

classes. These helper meta-classes are used to express where an OclExpression refers to, the

kind of it (invariant, operation, definition and attribute) and any other specific information

needed for each kind. For example if we want to create a query we need to take

QueryContextDeclaration or if want to create a constraint on a model element we create an

InvariantContextDecl. The adopted OCL2.0 specification explains in detail the concrete syntax of

Context Declarations (Section 12.13). To express the idea of query as a constraint on a model

element resulting a set of values with a specific type we have added the QueryContextDecl

meta-class. Figure 12 shows the context declarations package with the QueryContextDecl meta-

class.

Chapter IV – The Query Metamodel Language The Context Declarations Package

Γεώργιος Κοτόπουλος Page 46

Figure 12: The Context Declaration Package. It does not belong to the core part of QML but is rather a

set of helper meta-classes. These helper meta-classes are used to express where an OclExpression

refers to, the kind of it (query, invariant, operation, definition and attribute) and any other specific

information needed for each kind. The QueryContextDecl meta-class treats a query as a constraint on a

model element resulting a set of values with a specific type.

THE QUERY CONTEXT DECLARATION METACLASS.

Figure 13 shows only a part of the context declarations package with the QueryContextDecl

meta-class’s syntax which is explained in detail here. It has to be noted that this extension

approach stands outside the QML core metamodel and therefore it does not affect the

compatibility of QML with OCL.

Chapter IV – The Query Metamodel Language The Context Declarations Package

Γεώργιος Κοτόπουλος Page 47

Figure 13: Part of the Context Declaration Package, showing the Query Context Declarations meta-class

and its associations.

QueryContextDecl

An instance of the QueryContextDecl class represents formally a query which is defined with a

name (simpleName). The query returns a set of MOF objects of type result (may be any

Classifier) that hold for the criteria defined at the OclExpression bodyExpression. Note that the

result type typically is a Collection of Tuples. These types are defined at the Types package of

the OCL specification. The bodyExpression is analogous to the “where” part of an SQL statement

but more powerful. QueryContextDecl has a set of VariableDeclarations as contexts. Contexts

are analogous to the “from” operand of an SQL statement. The context of a query is the object

type where the constraint bodyExpression refers to. An instance of QueryContextDecl may have

any number of contexts which allows queries to combine semantic information from more than

one metamodels or models. The QueryContextDecl also has a set of VariableDeclarations as

input arguments and another set as output arguments. The output arguments are analogous to

the “select” part of an SQL statement. Note that the result type is automatically derived by the

stated output arguments. The input parameters are used in order to make queries reusable and

modular. In this manner, one can form and store query templates and reuse them at any time.

Lets recall the example used throughout this section:

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 48

1: Context A: HotelModel#Hotel instanceQuery
2: A.HotelName = “Hilton” and
3: A.HotelAddress.City = “Athens”
4: A.Rooms->exists(Price < 100)
5: out Hotels := A

“instanceQuery” is the simpleName of the QueryContextDecl object, “A: HotelModel#Hotel” is the

context VariableDeclaration, “Hotels := A” is the out VariableDeclaration. Lines 2 to 4 are the

body OCLExpression.

In the next and in the following subsections we present representative query expressions

formulated with QML. The objective is to give an informal presentation of the semantics of the

QML expressions. The first simple example explains the use and the semantics of the

QueryContextDecl meta-class. The second example makes use of the let expression of OCL to

show how aggregation can be performed. When query expressions refer to M2 (i.e. available M2

metamodels) they obtain, as a result, qualified M1 models. These examples demonstrate also

how to query for models and the last example shows how a query for data can be expressed.

SEMANTICS OF QUERY EXPRESSIONS AND EXAMPLES

This section presents representative query expressions formulated with the QML Query

Metamodel Language. The objective is to give an informal presentation of the semantics of the

QML expressions. The query expressions refer to M2 (i.e. available M2 metamodels) and obtain,

as a result, qualified M1 models. In case that an M2 Metamodel also contains an instantiation

metamodel in order to define elements for M0 instances then the query expressions could also

obtain, as a result M0 instances. We will first examine a simple example that demonstrates the

usage of the QML metamodel. In that simple example the constructs of QML explained so far are

used and demonstrated. Next, we will explore, through more complex examples, the

expressiveness of QML and its support for similarity ranking.

In order to better clarify the query formulation process and the outlined QML examples we will

present some indicative screenshots of the Query Formulator Tool (developed by TUC/MUSIC).

This tool offers an intuitive GUI that facilitates the query formulation allowing the user to

browse/navigate through M2 knowledge base metamodels, choose the desired terms, assign

values and constraints and have a view of his/her query as a tree with filled values and also as a

valid QML expression. The Query Formulator Tool is an initial attempt to transparently expose

the QML metamodel semantics to the user. In its current implementation it is only a tool that

helps to demonstrate the QML functionality (it was used in the 1st review of DBE for that

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 49

purpose). Therefore one should consider the query expressiveness of QML (as outlined below

through the examples) and the query formulation capabilities provided by the tool, as two

separate things.

The following example queries are driven by the Semantic Service Metamodel (SSL) [8] which is

one of the metamodels imported and supported in the DBE knowledge base that allows the

semantic description of services. The following SSL primitives are used to for the formulation of

the example queries and are illustrated at figure 14:

1) ServiceProfile: A service profile is a model according to which a service will be

semantically described. A semantic package may have more than one service profiles

(e.g. for describing the service into different user groups).

2) Attribute: An attribute (of a service profile) defines a slot of semantic information for a

particular profile.

Figure 14: A part of the Service Semantics Language (SSL) metamodel

A SIMPLE QML QUERY

We will first examine a simple example that demonstrates the usage of the QML metamodel. In

next sections, we will explore, through more complex examples, the expressiveness of QML and

its support for similarity ranking.

Consider the following statement which retrieves all the service profiles that appear to have a

name equal to “Hotel”:

Context A: SSL::ServiceProfile simpleQuery
A.name = “Hotel”
out RServiceProfile := A

Figure 15 shows the QML representation of this statement. In terms of the QML metamodel the

semantics of the above query can be intuitively explained as follows: There is a query defined in

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 50

a QueryContextDecl object with the name “simpleQuery”. It has a context VariableDeclaration

named “A” with type the MOF Class “ServiceProfile” of the “SSL” metamodel. It has an output

parameter named “RServiceProfile” that is assigned a value from the variable “A”. Note that, we

can imply from the output parameters the result type (it is initiated as “A” and the type of “A” is

the “ServiceProfile” class defined in the “SSL” metamodel). Moreover, in the case we had

multiple result arguments the type of the query would be implied as TupleType. The body of the

expression is an operation (the “A.name = ‘Hotel’”) on a property (here “A”) of the context. The

context’s body is the expression “A.name = ‘Hotel’”, this expression is further analyzed on an

OperationCallExp (with MOF Operation “=”) which has a source OclExpression (“A.name”) and a

sequence of arguments. Here the sequence contains only one argument the StringLiteralExp

“Hotel”. The source OCLExpression (“A.name”) can be further analyzed into “name” which is an

AttributeCallExp which references the “name” Attribute defined in SSL metamodel. The source

OCLExpression of this AttributeCallExp is “A” which is a VariableExp. “A” VariableExp refers to

the “A” Variable declared at context level.

The following is a QML notation to express all the sentences of the previous paragraph into the

specific QML constructs. It is equivalent to figure 15:

Queried(name: “SimpleQuery”, context:
VarDecl(name = “A”, type: “ServiceProfile”),
body:

OperCE(oper:“=”, source: AttrCE(attrib: “name”,
 source: VarExp(referVar:A)),

 arg: StrLitE(val: “Hotel”)
)

 out: VarDecl(name: “RServiceProfile”,
init: VarExp(referVar:A)
)

)

 The notation is Queried stands for QueryContextDeclaration, all attributes inside (i.e. name,

context, body, out) are the attributes or associations of the QueryContextDeclaration model

element presented earlier. VarDecl stands for the VariableDeclaration model element, the

OperCE for OperationCallExp, the AttrCE for AttributeCallExpression, the AssocEndCE for

AssocationEndCallExp, the StrLitExp for StringLiteralExpression, the VarExp for

VariableExpression, the IterExp for IteratorExp.

It maybe useful at this point before reading the next examples which demonstrate capabilities

and functionalities of QML to jump to the next section Evaluation Engine and Query Analysis.

Next section explains how the QML queries are semantically annotated, validated, and

evaluated against specific models or data.

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 51

Figure 15: QML representation of the query: Context A: SSL::ServiceProfile simpleQuery A.name =

“Hotel” out ServiceProfile: = A.

AGGREGATING OBJECTS

In this and the following examples the aim is not to present formally how the QML constructs

work and how they are used, but rather to investigate capabilities, functionalities, and

limitations of QML.

Many queries involve forming data into groups and applying some aggregation function such as

count or sum to each group. The following example shows how such a query might be

expressed in QML, using the part of the SSL metamodel shown in the previous section.

The following QML query finds all “ServiceProfiles” that are named “Hotel” and have more than

2 ServiceAttributes named “HotelName” and have totally more than two “ServiceAttributes”.

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 52

Context A: SSL::ServiceProfile simpleQuery
let B := A.Attribute in
A.name = “Hotel” and
B->exists(name = “HotelName”) and
B->count() > 2
out RServiceProfile := A,
 NumberOfAttributes := B->count()

Note that “A” bound by the context clause, represents an individual “ServiceProfile”. “B” is

bound by a let clause and represents a set of “ServiceAttribute” items. “Attribute” is the MOF

AssociationEnd connecting the class “ServiceProfile” to the class “ServiceAttribute” with a

cardinality 0 to many. Note that, each MOF Association connects two classes. The two ends

which have a name and multiplicities are the MOF Association Ends. The “Attribute” association

end has a multiplicity of zero to many, and as such the statement “A.Attribute” will result,

instead of a single “ServiceAttribute”, to the set of “ServiceAttribute” Model Elements that

belong to “A”. We generally treat the MOF Associations as join conditions of classes. While the

iterator “exists” iterates on the collection of ServiceAttributes, the “count” OperationCallExp is a

method of the CollectionType class. This is the way one can use aggregation functions in QML.

For grouping objects we follow the same approach with XQuery. SQL like grouping is not

available. There are a number of known limitations on this approach. For example we do not

allow aggregating results and this is mainly due to high complexity in matching elements

(classes, objects, etc) between themselves, as they have properties or depending classes. As it is

discussed on the next chapter about fuzzy queries these limitations are not a drawback; we can

express very complex queries in just these terms. Nevertheless, we focus on addressing these

limitations in later stages of our research when answering more complex problems, as, for

example, how we aggregate results that come from different repositories, etc.

QUERYING INSTANCES

The previous examples showed how QML is used to find models and in this section we will

show how we can query instances of these models. Note that instances of the models are the M0

level data, the actual data. The query has to be expressed in terms of the models. From a

technical point of view this is possible because MOF is defined in terms of itself and, thus, it

resides not only on level M3 but on all levels. That is the reason OCL can be used to express

constraints of the MOF metamodel. The only requirement is the M2 metamodels not only to be

instances of MOF but also extend it, as for example UML (see also [1, 2]).

Consider the following statement that searches for the “Hotels” that have at the “HotelName”

ServiceAttribute the value “Hilton” and are located in “Athens”.

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 53

Context A: HotelModel#Hotel instanceQuery
A.HotelName = “Hilton” and
A.HotelAddress.City = “Athens”
out Hotels := A

The difficulty in this case is that this query is expressed in terms of a specific model (the “Hotel”

model) and may not be able to retrieve the Athens Hilton hotel if it is expressed in terms of

another model, for example “MyHotelModel”, that has a different structure. This is not a critical

problem when searching for models because metamodels are not considered to change. In

order to address this we used the semantic expansion of the query. The query during that

process is expanded with terms of different models and maybe ontologies. The results that

match other models will be ranked lower by using the fuzzy information model explained on

the next chapter.

A MORE COMPLEX QML EXPRESSION

The next example tries to demonstrate some of the powerful capabilities of QML utilizing more

complicated functions. What the next query does is to query both M1 layer model information

and M0 layer data by using models coming from two metamodels: SSL and ODM. ODM is a

metamodel for Ontologies. The example is as follows:

Context SSL:ServiceProfile complexQuery: SemanticPa ckage
Functionality->select(name=”CreditCardPayment”)->
exist(input.name=”CreditCardNumber”)
and
Attribute->select(name=”Address”)->
exists(type=”ODM::HotelDomain::Address” and getType ClassInstance()->
select(type.name=”City”)->exists(TheDTPRange.lexica lForm=“Chania”))

This query is again posed against the SSL metamodel and retrieves all the services of the Hotel

domain that are located in Chania and offer functionality for payments with credit card.

More precisely the query could expressed as (please recall SSL): Find the “SemanticPackages”

that have at least one “ServiceProfile” which has at least one “Functionality” named

“CreditCardPayment” with at least one “input” argument named “CreditCardNumber”. The

“ServiceProfile” should also have an “Attribute” named “Address” with “type” the Ontology Class

of the HotelDomain named “Address” and the instance of that “ServiceAttribute” class has an

attribute named “City” which value is “Chania”.

This example demonstrates how one can formulate a query that refers to elements of an M2

metamodel that also contains an instantiation metamodel in order to define M0 knowledge base

information. This query obtains as a result qualifying M0 instances. The expression

Functionality->select(name=”CreditCardPayment”)-> exist(input.name=”CreditCardNumber”)

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 54

demands that a ServiceFunctionality (through the AssociationEnd Functionality) exists with a

name “CreditCardPayment” and an input name ”CreditCardNumber” (through navigation from

the AssociationEnd “input” and an Attribute “name”). The latter sentence demands that a

ServiceAttribute exists with name “Address”, type “ODM::HotelDomain::Address” and the

instance of this address has a property with name “City” and value “Chania”. One should note

here that the type of the address is obtained by a different context; in particular an ontology

context offered by another M2 knowledge base information metamodel, named ODM7,8 [10].

Another interesting part of the query is the function getTypeClassInstance which is a function of

OclModelElementType (the general type which refers to) and results to retrieving the instances

of the type. In this example it retrieves the instances of “ServiceAttribute” Model Elements

which are named “Address”, etc). With this method it is possible to express a query which can

be posed concurrently on two MOF layers. It is important though to state that this kind of

queries are not supported by the DBE KB, but rather only from the standalone evaluation

engine described on the next section.

A representative part of the above statement is depicted in Figure 16 in QML metamodel

elements.

7 For a detailed description of the Ontology Definition Metamodel (ODM) the reader should refer to the

DBE document “Knowledge Base Design and Implementation Status” authored by TUC.

8 It should be noted that the granularity of the QML query expressiveness is not limited to only one

metamodel (i.e. it is allowed to combine semantic information from more than one metamodels).

Chapter IV – The Query Metamodel Language Semantics of Query Expressions and Examples

Γεώργιος Κοτόπουλος Page 55

Figure 16: QML representation of the query: Context SSL:ServiceProfile complexQuery: SemanticPackage query: Functionality->

select(name="CreditCardPayment")-> exist(input.name="CreditCardNumber"). This figure presents the use of Iterators in QML. This query returns the service

models that have a Functionality both named “CreditCardPayment” and having an input named “CreditCardNumber”.

 Evaluation Engine and Query Analysis

EVALUATION ENGINE AND QUERY ANALYSIS

 Two evaluation engines of QML were built. The first engine evaluates queries on top of

Metadata Repositories (MDR). Thus, all query processing is done in Java. Indexing MDRs

is not able so far, and thus, in the DBE Knowledge Base implementation we could not

follow this approach, as the database was expected to have some thousands of models

and data. In the DBE Knowledge Base we followed the architecture presented on

Chapter IIV. In DBE KB in order to evaluate the QML queries against models and data the

Recommender analyzes them, semantically annotates the terms, constructs an

evaluation tree, semantically expands them with ontology terms, and finally, transforms

them into XQuery queries, which are evaluated against an XML database. As the

complexity of building XQueries from any QML query is very high we had to limit the

QML queries to conform to a certain template. The Query Formulator is responsible for

that. This template supports fuzzy queries and it is presented along with the Query

Formulator in the next chapter. Note that in both implementations the query analysis

and semantic annotation process is common.

The remaining section will describe the query analysis process and how the evaluation

engine of QML against the MDR works. First of all we need to clear what is the Metadata

Repository (MDR) and how it works. The MDR is an implementation of MOF

architecture by Netbeans, where metamodels, models, and data resides. When a

metamodel, model or data document comes into an XMI format (this is an XML

document following the XMI XML Schema proposed by MOF) MDR has the API to parse

it, validate it against its parent, and create the appropriate Java objects for it. When

parsing models it creates Java objects that represent Java Classes, and the data (M0

level) document is represented as Java Objects which are instances of the model’s Java

Classes. All these java objects are stored in an OO database. The functionality of MDR is

based on Refection mechanisms. More information is available at [12].

Something else to point out before going to the Query Analysis and Evaluation process is

that each OCL expression evaluates to its type. For example OperationCallExp of the

operation “=” evaluates to Boolean, while AssociationEndCallExp of the AssociationEnd

Attribute evaluates to a CollectionType of ServiceAttribute elements. This is because in

the SSL metamodel ServiceProfile and ServiceAttribute were connected with an

association. In order to “go” from the ServiceProfile to the ServiceAttribute one has to

“take” the AssociationEnd named “Attribute” which has a cardinality of 0 to many.

Because the cardinality is 0 to many the type of the evaluation is a CollectionType.

Chapter IV – The Query Metamodel Language Evaluation Engine and Query Analysis

Γεώργιος Κοτόπουλος Page 57

Moreover, because AssociationEnd “ends” to the ServiceAttribute model element the

type of the evaluation of the AssociationEndCallExp will be a CollectionType of

ServiceAttribute elements.

As a guide through both the analysis and the evaluation steps we will use the following

simple query:

Context A: SSL::ServiceProfile
A.name = “Hotel”
and
A.Attribute->exists(name=”Pool”)
Out sProf := A

First of all variable A is evaluated, which means we take each ServiceProfile found in the

MDR and put it in an object A (A has the Type ServiceProfile). Note here that the body

OCLExpression of the Query Context is the OperationCallExp “and” this is how the body

expression will look like in terms of QML:

OperCE(oper: “and”, source:
OperCE(oper:“=”, source: AttrCE(attrib: “name”,

 source: VariableE(referVar:A)),
 arg: StringLiterE(val: “Hotel”)
)

 arg: IteratorE(name=”exist”,
source: AssocEndCE(assocEnd=”Attribute”,

source:VariableE(referVar:A)),
 body: OperCE(oper: “=”,

 source: AttributeCE(attrib: ”name”),
 arg: StringLiterE(val: ”Pool”)

)
)
)

QUERY ANALYSIS

The QML query first of all is analyzed. During analysis the query is parsed, it is validated

against the metamodel (or model), and it is semantically annotated. All these three

happen together. The analysis process is top down. For the previous example this would

mean that the process starts from the OperCE “and” and goes through all other OCL

expressions until the Literal expressions are reached. In this process the result types of

each evaluation are calculated, and the QML query is annotated with the actual MOF

Model Elements, Operations, Attributes and AssociationEnds. The result is the above

query but semantically annotated with the information coming from the SSL Metamodel.

Everything is a specific model element rather than a string. Query validation against the

SSL metamodel occurs during this process. If when searching for an attribute named

Chapter IV – The Query Metamodel Language Evaluation Engine and Query Analysis

Γεώργιος Κοτόπουλος Page 58

“name” under the model element of SSL ServiceProfile and it is not found the processing

ends. The query is not valid it tries to search something that is not modelled. Another

validation check is the type checking. The operation “=” for example expects the source

and the argument to have the same type. If the type of the of the expression “A.name”

(i.e. the type of Attribute name of the ServiceProfile) is String, the analyzer expects the

argument to also be of type String or a Sub-class of String. StringLiteralExp has as type

String thus this type checking is correct. If someone tries to apply an iterator expression

to a non Collection type there is a violation. Another validation check is if an operation is

supported by an object. If we wrote “A.name < 3” this would not be valid. Operations and

types are found dynamically by using the java reflection.

The query analysis can be seen as an evaluation process against metamodel. Evaluates

that all the model elements exist, finds them, and annotates the query tree. This process

is not necessary for the stand alone evaluation engine as it can run “on the fly” (while

processing the query against actual data). For the DBE KB engine, on the other hand, it is

vital as the semantic information will be needed on the next steps (evaluation tree and

semantic expansion) and in no other step we can see if the query is valid. This can be

done only with QML against the MDR where the metamodel (or model if the query is for

M0 data) is loaded.

EVALUATION PROCESS

When the query analysis process ends we have the query of the example above

validated and semantically annotated. Evaluation process will run for each model

element defined in the context. Again a top down approach is used starting from the

OperCE “and” until the Literal Expressions are evaluated into their values (quite simple).

Note the actual evaluation OperCE “and” into true or false will occur after the literal

evaluation. If the evaluation result of the body expression is true then the output

parameters are evaluated with the same process. If it is false, that ServiceProfile will not

be in the result set.

Now we will go through the evaluation of the body expression step by step. We start

from the OperCE “and”. In order to evaluate this expression we evaluate first the source

expression which is the OperCE(“=”, A.name, “Hotel”). Again in order to evaluate it we

try to evaluate the source of it, which is the AttrCE(name, A). Again we go deeper until

the variable A is reached. A evaluates to one ServiceProfile and now we can evaluate the

AttrCE (name, A). This evaluates to the value of attribute name (for example

Chapter IV – The Query Metamodel Language Evaluation Engine and Query Analysis

Γεώργιος Κοτόπουλος Page 59

“CarCompany”). Because name attribute has the type String, the type of the evaluation is

String. Now the argument of OperCE(“=”, A.Name, “Hotel”) should be evaluated. It is the

String Literal Expression StrLitE(val: “Hotel”) which a evaluates to the String “Hotel”.

Now the operation “=” of the type String should be evaluated. The evaluator searches on

the java String for a method name “equals” with one argument of type “String”. If found

(it should be found because it passed validation) it is called and the result of it is the

result of the evaluation of the OperCE(“=”, A.name, “Hotel”). Note here that the type

String mentioned so far is not the Java Lang String but rather the MOF Primitive Type

String.

After the OperCE(“=”, A.name, “Hotel”) evaluates to false the OperCE “and” of type

evaluates again to false. For another ServiceProfile which will have the attribute “name”

valued as “Hotel” the body expression of the OperCE “and” will be true and the

evaluation process will try to evaluate the argument of “and” the IterExp “exists”. In

order to do that the evaluation process evaluates the source expression of this

IteratorExp (i.e. the “A.Attribute”) with similar way like it did with “A.name” before. This

evaluation results into a Collection (CollectionType) of ServiceAttribute model elements.

Now the iteration between all ServiceAttributes found starts and for each of them the

body OCL expression is evaluated (i.e. name=”Pool”). The type of the body expression

should be Boolean (it is in this example). When the first evaluates to true IterExp

“exists” evaluates to true. If the body of no ServiceAttribute is evaluated to true the

IterExp evaluates to false. The way the body is evaluated is similar the OperCE(“=”,

A.name, “Hotel”), but there is a vital difference; this source of OperCE(“=”, name, “Pool”),

i.e. the AttrCE(name) does not have a variable expression as a source like the other.

AttrCE(name) does not have a body expression at all, against which object will be

evaluated? The answer is the current context. In this example the current context of the

body expression of “exists” is not the global one, but rather it is each object the iteration

occurs (i.e. the first ServiceAttribute, then the second, etc).

Generally when evaluating an we have a Global Context (or many but with variable

names) and each expression has its own context. For example of “City” in the expression

“A.Address.City” is an address. Some contexts are specifically mentioned and are

represented in QML as the body expressions and evaluation is against them. Some other

contexts are implied as in “exists(name=”Pool”)” and if no special exists the expression

is evaluated against the global context. We could rewrite the above query like this:

Chapter IV – The Query Metamodel Language Summary

Γεώργιος Κοτόπουλος Page 60

Context A: SSL::ServiceProfile
name = “Hotel”
and
Attribute->exists(name=”Pool”)
Out sProf := A

“A” variable is implied as body of AttrCE(name). No other context exists.

SUMMARY

In this chapter we presented the formal declaration of QML along with a set of examples

to show how it is used.

The Query Metamodel Language (QML) is actually an alignment of OCL 2.0 to MOF (OCL

is bounded to UML). It is defined in terms of the MOF architecture as a M2 layer

Metamodel and can query data on M2, M1, and M0 layer. It can also express constraints

for M3 MOF Meta-metamodel. QML is very powerful as it is not bound neither to specific

models or metamodels but has a generic way to express queries.

We discussed how the queries are semantically annotated and validated against the

model or metamodel used into the query during the Query Analysis process. We

explored the abilities and the limitations of each the two evaluation engines proposed in

this thesis. The first one is the DBE KB where QML is used in a strict way (because

XQueries need to be automatically generated by the QML queries), but the

implementation is scalable and fast because data is stored in an XML repository. The

second implementation, not used in DBE, is an evaluation engine on top of the MDR.

While the second implementation makes full use of QML, the MDR is not scalable and

does support indexes. Thus, in DBE we formalized the kind of queries to be supported.

These query templates are constructed using the Query Formulator in order to support

fuzzy information retrieval techniques. They are discussed in the next chapter.

In the next chapters we will examine how QML is used to express fuzzy queries (queries

with weighted terms), how can one create QML queries with an API (the Query

Formulator), how the QML queries are transformed to query evaluation trees and how

exactly the queries are executed. On chapter VII, we will see how the MOF and QML

terms are used in order to semantically expand the query.

Chapter V – The Fuzzy Model and The Query Formulator Introduction

Γεώργιος Κοτόπουλος Page 61

CHAPTER V – THE FUZZY MODEL AND THE QUERY

FORMULATOR

INTRODUCTION

In the last chapter we presented QML and should be clear to the reader that while QML

offers many capabilities it is a complex language with complex constructs. For that

reason we developed a set of formulation APIs (the Query Formulator, the Advanced

Query Formulator and the Keyword Formulator denoted all together as Query

Formulator). These APIs can be used from legacy systems or GUIs to query the DBE

Knowledge Base. These APIs are responsible to create QML queries with respect to an

information retrieval model, where each query term may have a weight.

This chapter presents the information retrieval techniques (the fuzzy model) elaborated

and how QML queries are formulated using the Query Formulator, note that QML

queries can be directly created and executed, but we offer this module to make the

process simpler as QML is quite complex. This chapter also presents how fuzzy queries

are formulated and how keyword queries are analyzed. The advanced query formulator

module used to offer simpler and more advanced capabilities to users, is also presented

here.

THE QUERY FORMULATOR

The Query Formulator module is responsible for producing fuzzy QML queries based on

a set of weighted criteria. The criteria may be structured, semi-structured, or

unstructured (as in keyword-based search). A criterion is described by five parameters,

which are shown in Table 2. Context is the model element (in either M1 or M2 level) that

must exist and conform to the criterion. Path is the path from the context to an attribute

(i.e. name, price, etc). We do not want for example any price to be less than 70 but only

the room price of a Hotel element. The operation is the operation of the criterion. The

supported operations vary depending on the type of attribute (numeric types support

“<”, “>”, etc and string type support “=”, “like”, etc); for a complete reference of available

operations please refer to OCL2.0 specification (11). Value refers to the value that the

attribute must have exact, greater than, etc. Finally, weight refers to how important this

criterion is for the general query. The results of a query come to a ranked order of

Chapter V – The Fuzzy Model and The Query FormulatorThe Information Retrieval Techniques

Γεώργιος Κοτόπουλος Page 62

relevance, user may define which criteria are more important and which not. The weight

value ranges from 0 to 1.

Context Path Opera

tion

Value Weight Description

ServiceProfile [attribute,

name]

= “Address” 0.5 a structured

criterion searching

for models

Hotel [rooms, price] < 70 1.0 A structure criterion

searching for data

 [rooms, price] < 70 1.0 A semi-structured

criterion searching

for data

 “Finland” 1.0 A unstructured

criterion

Table 2: Examples of criteria for the query formulator API

When users formulate all the criteria into QML expressions, they create the general

expression by joining the simple expressions with disjunctions and conjunctions. The

general expression is then formulated, along with the result arguments, into the final

QML query.

When value is of string type it can either be a single word or a phrase. The value “Los

Angeles” will formulate a query searching for the phrase “Los Angeles” and not for the

two words “Los” and “Angeles”. If users require the second option they can create

queries with two criteria. The case of values is preserved during the formulation process

and it is up to the execution engine on how to handle it.

The idea of fuzzy queries construction is explained in the next sub-section.

THE INFORMATION RETRIEVAL TECHNIQUES

In this section are presented the information retrieval techniques that were used to

support fuzzy queries and a demonstrative example of how queries are formulated into

QML. Note that this framework is independent of metamodels. Thus, if DBE evolves and

Chapter V – The Fuzzy Model and The Query FormulatorThe Information Retrieval Techniques

Γεώργιος Κοτόπουλος Page 63

uses new metamodels, this framework is not needed to change on both design and

implementation levels.

Query results and recommendations in an environment where information is modelled

with different metadata structures even in the same domain have poor precision and

recall. As a result we needed to apply techniques and concepts from Information

Retrieval (IR) with relevance rank into QML. Many of the known techniques are

platform specific and therefore not applicable in our context.

A framework was developed for QML processing that incorporates Information

Retrieval functionality and that is based on the Extended Boolean Model. This extension

stands outside the QML metamodel and therefore it does not affect the compatibility of

QML with OCL.

The knowledge access context that we consider is twofold. It is related to pure search

functionality as well as to recommendation mechanisms. At a technical level the

information filtering/retrieval approach is uniform for both desired functionalities. All

recommendations and discovery requests computed by the Query Service could be

considered as similarity based retrieval requests and can be modelled using the same

general mathematical framework based on information retrieval theory. This

framework is summarised here and the implementation of this framework on top of a

MDA repository is given.

A generalised request for retrieving items, which belong to the universe of items I that is

described in terms of a feature space F, corresponds to a query q that consists of a

structured set of features F’, which is a subset of F. This general scheme can be used to

describe the kinds of functionality (see the “Interpretation” column) shown in Table 3.

The objective here is to define a generalised information retrieval framework that could

be used in all of the above scenarios. Moreover, taking into account that the

correspondence between information items and features, as well as queries and

features, could be implemented in a MDA-based repository, we extended the generalised

framework to work on such a system and developed mechanisms that use pure QML in

order to support all kinds of recommendation functionalities.

Chapter V – The Fuzzy Model and The Query FormulatorThe Information Retrieval Techniques

Γεώργιος Κοτόπουλος Page 64

Universe I Feature space F Queries Q Interpretation

Models and
Data

Metamodel and
Model features

Preferences of the model
in terms of possible
partners or a user profile

Retrieve models and data that
are similar to some
preferences

Models Metamodel
features

Desired metamodel
features

Retrieve models that are
similar to a given query

Data Model features Desired model features Retrieve data that are similar
to a given query

Table 3: Different kinds of Recommendation functionality expressible by a general information retrieval

system

IMPLEMENTATION OF THE P-NORM EXTENDED BOOLEAN MODEL USING QML

The Extended Boolean Model is a generalization of the Boolean logic based on the fuzzy

set theory. It provides formulae for the evaluation of complex Boolean expressions so

that the qualifying information items can be given a rank in the range of [0, 1] instead of

just a Boolean true/false result. Various studies(15) prove its superior performance in

comparison with the traditional information retrieval models.

In order to actually evaluate the queries, one should give the evaluation functions fNOT,

fAND, and fOR. There are numerous possible definitions of these functions. Study (15)

presents the definitions that correspond to the p-Norm Extended Boolean Model, which

is the most general one. Note that the functions fAND, and fOR are n-ary instead of binary.

This is due to the fact that these evaluation functions are not commutative as their

Boolean counterparts.

There are numerous strategies for the implementation of Extended Boolean Model on

top of a RDBMS (16), (17). But we need an implementation that is platform independent,

and as such we need to implement it on top of QML. However, there is a straightforward

implementation of the p-Norm by using QML in case that the queries that are accepted

by the system have a simple form (either conjunctive or disjunctive queries).

To demonstrate the technique, let us assume that the queries accepted by the system are

simple disjunctive queries. Let us further assume that Items are the Model elements or

Objects depending on the level the query refers to (i.e. M0 or M1). Features are the

elements connected with the Items. Note that a Model Element may be a Feature for

another Model Element or an Item. Depending on the query context the Items are

resolved. Every connection between an Item and a Feature is a path from the Item to

Feature and the Feature’s value. This path can be defined by a QML path expression and

has a weight denoting how relevant the Feature is for the Item. Every query consists of

Chapter V – The Fuzzy Model and The Query FormulatorThe Information Retrieval Techniques

Γεώργιος Κοτόπουλος Page 65

query terms (tqi) which are QML path expressions and a query weight (wi) denoting how

important the term is for the overall query. Thus, every term must match a feature item

path. In other words, if an Item (i.e. Model Element) is connected to a Feature with the

query term (i.e. the QML path expression) a weight (ai) is returned on how “strong” this

connection is. For example if an Item has the same path to the Feature as the query term

the weight 1 is returned; if the path is “alike” the query term an intermediate weight is

returned denoting how relevant the two paths are; and if the Item-Feature path has

nothing to do with the Query path zero is returned. This weight is the Item-Feature

weight. Equation 4-1 is the fOR evaluation function of the p-norm model.

∞≤≤







⋅ ∑∑

==

pwwa
pn

i

p
i

n

i

pp
i i

1/
/1

11

 (V-1)

To join all the query terms with the fuzzy OR operation, we have to calculate the fuzzy

OR evaluation function following the p-Norm model from equation (V-1).

An example of a QML query expression that implements the abovementioned ideas is

shown below:

Context A: SSL::ServiceProfile
Let fe1:= A.Attribute->exists(name = “HotelName”),
 fc1:= A.Attribute->exists(name.contains(“HotelName ”)),
 fe2:= A.Attribute->exists(name = “Address”),
 fc2:= A.Attribute->exists(name.contains(“Address”)),
 a1 := if (fe1) then 1 else if (fc1) then 0.5 else 0,
 a2 := if (fe2) then 1 else if (fc2) then 0.5 else 0,
 r := pow (pow(a1*w1, p)+ pow(a2*w2, p), 1/p)
in(fe1 or fc1 or fe2 or fc2) and r>0
out Rank := r, ServiceProfile := A

ServiceProfile is the Model Element that plays the role of context and Item. The path

A.Attribute->exists(name = “HotelName”) plays the role of Item-Feature relation. The

variables fe1, fc1 and fe2, fc2 as pairs are needed for calculating the Item-Feature weight

(i.e. a) for each query term. The evaluation function for this calculation is that if the

value “HotelName” (for the first case) exists in this path return 1, otherwise if is a

substring of the Feature return 0.5, and otherwise zero. This function is calculated in

variable a1. The final rank comes form the evaluation of the fuzzy OR function at

variable r.

It is quite easy to develop a similar QML query in case that the queries recognised by the

system are simple conjunctive queries.

Chapter V – The Fuzzy Model and The Query FormulatorThe Information Retrieval Techniques

Γεώργιος Κοτόπουλος Page 66

IMPROVING RELEVANCE RANKING

As it was demonstrated in the previous section, the formulated query of the example

does not retrieve only ServiceProfiles that have exactly the name “Hotel” but it also

retrieves those that have a name like “Hotel” (for example “HotelReservation”). The

latter do not have the same weight as those of the exact mach. This is done in order to

improve the recall of the system.

This section presents the policy we follow in all cases in order to produce the argument

a of equation (V-1).

Generally, the argument a represents how relevant is the feature i to the query term. In

many applications, the value of this argument is 0 if the feature does not exist and 1 if it

exists. In our application, this value can vary from 0 to 1 depending on a set of criteria

which are shown in table 4. The weight of qualifying operations is always 1.0 and of non-

qualifying operations is always 0. Note that if a model has more than one features that

qualify or semi-qualify – for example two room prices – then if between them a

qualifying feature exists a is assigned the value 1 and the semi-qualifying features are

ignored. If, on the other hand, all the features returned are semi-qualifying the weight is

assigned a value depending on all of them.

The string operators either finds an exact match or a sub-string match assigning to a the

values 1 and 0,5 respectively. For numerical operations the semi-qualifying value of a is

closer to 1 as closer to user’s best value the found value(s) is. The formulae which

results the weight of the numeric semi-qualifying operation is:








>−−

−−

=
0||1,

||1

otherwise,0

uesavgSemiValbestif
best

uesavgSemiValbest

anumeric , (V-2)

where best is the user’s numerical value (either upper or lower bound) and

avgSemiValues is the average of the values resulted from the semi-qualifying operation.

Chapter V – The Fuzzy Model and The Query Formulator Advanced Query Formulator

Γεώργιος Κοτόπουλος Page 67

Type Operator Qualifying
Operator

Semi-
qualifying
Operator

Value of a for
semi-qualifying
operator

String = = like 0.5

String like = like 0.5

Numeric = = != Larger as closer to
best value (eq. V-2)

Numeric < <= > Larger as closer to
best value (eq. V-2)

Numeric > >= < Larger as closer to
best value (eq. V-2)

Table 4: The value of the matching factor a depending on the operation and the type of original

query

Moreover, the relevance of a feature can be aligned not only to its relevance to the value

of a query term, but also to how exact the mach of the feature path to the query is term’s

one. For example, if we look for the path: Hotel.City and the feature has the path

Hotel.Address.City then the feature, with what we have describe so far, would have a

relevance value 0. Keep in mind that in Chapter VII – Semantic Exploitation, where the

semantic exploitation of the query will be discussed, a different value will be assigned to

parameter a.

ADVANCED QUERY FORMULATOR

The advanced query formulator was designed to provide a more sophisticated way to

formulate queries. It introduces reusable components called templates. In each template

the contexts and the attributes of the query, result types and join conditions are

declared. It is common that most queries use the same main attributes of the many

offered by a model or a metamodel and the template realises this idea.

Advanced query formulator offers the ability to create templates and store them. Later

they can be used to build queries by just adding criteria on the attributes. These criteria

may form conjunctions and/or disjunctions.

Templates and advanced query formulator are used by sophisticated user interfaces for

building queries or user preferences. They can be used by other SME services for

common queries. For example a service from a Travel Agent that needs to search for

Hotels could create a standard template with all the needed attributes and reuse it at all

queries made by the system. Code Snippet 1 shows a usage example for the travel agent.

Chapter V – The Fuzzy Model and The Query Formulator Advanced Query Formulator

Γεώργιος Κοτόπουλος Page 68

Code Snippet 1: A usage example of advanced query formulator API for a travel agent searching

for Hotels.

Template template = new Template();

//Adds a template element named "location" searchin g

//on the BML path "Hotel/Locality" of type String

template.addTemplateElement(new TemplateElement("lo cation",

 "Hotel::Locality", "String"));

template.addTemplateElement(new TemplateElement("co untry",

 "Hotel::Country", "String"));

template.addTemplateElement(new TemplateElement("st arCategory",

 "Hotel::StarCategory", "Integer"));

template.addTemplateElement(new TemplateElement("ro omPrice",

 "Hotel::Rooms::Price", "Integer"));

…

//Create a Query formulator

AdvancedQueryFormulator form = new AdvancedQueryFor mulator(

 (QmlPackage)qmlTool.getModelPackage(),
 AdvancedQueryFormulator.INSTANCE_QUERY);

//Initialise the formulator with the static query T emplate created earlier.
form.setTemplate(template);

//Create a query expression for each criteria (if e xists) and added to a

Vector exprs = new Vector();

//Note the last number is a weight of how important query expression is

QueryExpr expr = new QueryExpr("=", "location", "Ta mpere", 1.0);

exprs.add(expr);

QueryExpr expr = new QueryExpr("<", "starCategory", "5", 1.0);

exprs.add(expr);

//make an array of query expressions

QueryExpr[] queryExprs = new QueryExpr[exprs.size()];

…

//put the expressions inside the formulator

form.getQuery(queryExprs);

Chapter V – The Fuzzy Model and The Query Formulator Formulating Keyword Expressions

Γεώργιος Κοτόπουλος Page 69

FORMULATING KEYWORD EXPRESSIONS

This section discusses how keyword expressions can be formulated into valid queries.

Keyword expressions consist of query terms which can either be unstructured (ex. just

“Athens” and not Hotel.City=”Athens”) or semi-structured (ex. City=”Athens”) as was

shown at Table 2.

Unstructured query terms refer to those that include only a single word. Examples of

those query terms include “Hotel” and “Finland” and while the first one refers to a

feature of a model or ontology, the second refers to instance data. The mechanism of

keyword formulation makes sure that the keyword expression is queried against both

layers i.e. models and instances.

Semi-structured query terms refer to those that provide a path (not full path), an

operation, and a value. Examples of this case include: Country=”Finland” and

Hotel/Room/Price<100. It is assumed that the path refers to a model path and the value

to an instance of that path. Thus, the keyword query mechanism searches for services

that the model path expressed exists and has as instance the value of the expression.

Both the path and the value may not mach exactly but with a similarity rank.

The general keyword query may include any number of both unstructured and semi-

structured keyword query terms. The mechanisms expressed in this chapter that refer

to the similarity rank also hold for this case while each query term may have a weight

denoted as float after the query term (i.e. Hotel^0.5 or Country=Finland^0.9). If no

weight is assigned then value 1.0 is assumed.

The parsing of the text into a query expression is done by a java parser produced by

JavaCC application based on the grammar shown in Appendix C.

This keyword query is also exploited and expanded using ontology information

explained in Chapter VII – Semantic Exploitation.

SUMMARY

In this chapter we presented the Query Formulator and information retrieval

techniques. Query Formulator is developed as an API for creating QML expressions; a

GUI used this API to create QML expressions. On top of the Query Formulator an

Advance version of it was created to offer in an easy to use manner complex constructs.

Query templates can be created and reused to create queries. This module offers the

Chapter V – The Fuzzy Model and The Query Formulator

Γεώργιος Κοτόπουλος Page 70

ability to create template for example for querying hotel data based on a model by an

expert. This template can then be distributed and be used by many either by legacy

systems to query DBE Knowledge Base or by simpler user interfaces. For example with

the Query Formulator you have to select the term Hotel.City and then enter values like

“Athens” and “Volos”, while with the Advanced Query Formulator someone has selected

the main parts of querying hotels and created a template. Then the user enter just

“Athens” on the City field.

While both Query Formulator and Advanced Query Formulator are used to construct

structured QML queries the Keyword Formulator is used to parse semi structured (ex.

room.price < 70) and unstructured (ex. “Hotel” or “Finland”) query expressions and

formulate them into QML queries.

All the query terms are expressed inside QML with weights. The final results are ranked

with information retrieval techniques explained in this chapter. Specifically the p-norm

model was used to rank the results. An information retrieval model for the specific

application was given. This model expands the result set with close values ranked with

smaller values. For example for the query Hotel.Room.Price < 70 the result set will be

expanded with Rooms with price greater than 70 with less rank.

Note that the queries will be further expanded semantically (i.e. with similar terms of

other (or the same) models) by using ontologies. For example Hotel.Room.Price < 70

will be expanded with Motel.Room.Price < 70 coming from another model with smaller

weight. This is discussed on Chapter VII – Semantic Exploitation.

Next chapter discusses how this QML formulated queries will be transformed into query

evaluation trees. These trees are the heart of the recommender module. By using these

constructs we can break down query terms, semantically exploit them, and merge result

sets with information retrieval techniques discussed here.

Chapter VI – Query Evaluation Trees Introduction

Γεώργιος Κοτόπουλος Page 71

CHAPTER VI – QUERY EVALUATION TREES

INTRODUCTION

This chapter presents the methodology used for the construction of evaluation trees of

QML query expressions. These expressions refer to M2 or M1 knowledge base

information (i.e. available M2 metamodels, M1 models). The evaluation process has the

goal of extracting the semantic information residing in the query model (an instantiation

of the Query Metamodel specifying a query) into an evaluation tree. The evaluation tree

can be easily parsed later on by execution engines, or other modules (e.g. the XQuery

code generator).

Next sections describe the query evaluation model (the object model in the object

oriented sense), with which rules from a QML expression an evaluation tree is

constructed, and, finally, an example of an evaluation tree for a QML expression.

THE QUERY EVALUATION TREE MODEL

A QML query consists of QML expressions with fuzzy operations. The evaluation process

extracts semantic information of the model elements used in the query expressions and

constructs a hierarchy of operations to be executed into the evaluation tree. The process

of extracting semantic information is called semantic annotation and refers to defining

the model (or metamodel) elements of the knowledge base a query expression is using.

The process of placing the operations used in QML query into a hierarchy refers to

defining the order in which the operations of the query should be executed and join the

partial results in order to produce the final results. Keep in mind that each item

evaluated as relevant result is assigned a weight and when joining a standard procedure

should be followed on assigning a final weight.

The evaluation tree consists of nodes each one denoting different functions that should

be applied when evaluating the whole query. A query, as discussed already in the

previous chapter, is composed by query terms. A query term is a basic query expression, a

criterion to be evaluated. For example the query “Hotel.City=’Athens’ and

Hotel.Room.Price<100” consists of two query terms: “Hotel.City=’Athens’” and

“Hotel.Room.Price<100”, while the “and” is the operation between them, although it is a

QML query expression, it is not referred as a query term but just as an operation.

Chapter VI – Query Evaluation Trees The Query Evaluation Tree Model

Γεώργιος Κοτόπουλος Page 72

Thus, each query term qt consists of several characteristics taking into account that it is

a fuzzy criterion. Namely a query term qti consists of a path expression (pi), an operation

(opi), a literal value (vi) and a weight (wi) denoting the user importance on this term. The

following formula describes this:

qti = (pi, opi, vi, wi) (VI-1)

Moreover, queries are composed by query terms using operations which do not have

fuzzy weights but are responsible for joining the ranked results from query terms

assigning new ranks on the results following the p-norm fuzzy model explained in the

previous chapter.

To model these needs an evaluation tree model was proposed consisting of nodes of the

following types: ContextNode, OperationNodes, NavigationNodes and LiteralNodes. The

root node of the syntax tree is the ContextNode, which provides the information about

the context of the query (ex. “HotelBusinessModel”) and the result type of the result set.

The query terms of the evaluation tree are OperationNodes that provide information

about the operation to be evaluated (ex. “<”) and its parameters (ex.

“Hotel.Rooms.Price”, “100”, and the weight “0,5”). But not all OperationNodes are query

terms; for example OperationNode can be the “and” operation between two query terms.

The parameters of OperationNodes can be either OperationNodes, NavigationNodes, or

LiteralNodes. Only NavigationNodes and LiteralNodes can be leaves of the evaluation

tree. NavigationNodes provide information about a navigation path from the context of

the query through the specific metamodel or model elements9 (ex. “Hotel.Rooms.Price”

where “Hotel” is the specific model element of the Context model etc.). In case that a

metamodel element is abstract (e.g. it generalizes various model elements’ types), then

the type of the specialization element is also needed to define the navigation path in a

concrete way. An example is if “Accommodation” is an abstract element which has as

sub-elements “Hotel” and “Motel” then two different NavigationNodes will be created for

the term “Accommodation.City” one as “Accommodation[Hotel].City” and another as

“Accommodation[Model].City”. The type of the path elements is known in the QML

query and is therefore determined and assigned as the semantic annotation process.

LiteralNodes provide information about explicit literal values used in the query model,

e.g. 100, ‘Athens’ etc.

9 it refers to the knowledge base metamodel against which the specific query is posed.

Chapter VI – Query Evaluation Trees The Evaluation Tree Construction

Γεώργιος Κοτόπουλος Page 73

THE EVALUATION TREE CONSTRUCTION

The construction process consists of several rules, which when applied to a query model

an evaluation tree is generated. The rules are summarized below for each of the main

expressions of the query metamodel:

• For each OperationCallExp found add an OperationNode in the current node with

children the source (expression that supports this method) and the arguments.

The weight is found by extracting the appropriate information. The children

might be any of:

o A NavigationNodes and a LiteralNode if it is a query term or

o OperationNodes if it is a complex query expression (e.g. and).

• For each LiteralExp (StringLiteralExp, etc) create a LiteralNode containing the

specified value.

• For a navigation path of PropertyCallExp (apart from IteratorExp and

OperationCallExp) construct a single NavigationNode. For example

Attribute.name is translated to a single NavigationNode with two

elements: Attribute and name.

• The IteratorExp is transformed to a complex representation of Operation,

Navigation and Literal nodes of the Syntax Tree. In particular exists is added to

the current NavigationNode with no other special meaning. For example

Attribute-> exists(name = “Something”) is transformed into an OperationNode

(for “=”) with two children: A StringLiteralNode (for “Something”) and a

NavigationNode (with two elements: Attribute and name). Other Iterator

expressions as select or forAll may be transformed in similar ways. For the case

of select it may be transformed in an AND OperationNode. For example

Functionality-> select(name = “a”)-> exists(input.name = “b”) is the same as

Functionality-> exists(name = “a”) and Functionality-> exists(input.name = “b”).

Such transformations may also exist for the rest of the Iterators (forAll etc).

Another type of node is the query branch which is a specialization of the OperationNode

and is used when semantically expanding the query terms. It will be discussed in the

following chapter with the query expansion.

Chapter VI – Query Evaluation Trees Evaluation Tree Example

Γεώργιος Κοτόπουλος Page 74

EVALUATION TREE EXAMPLE

In this section a usage example is demonstrated on how the simple QML expression that

was presented in the previous chapter is formulated into an evaluation tree. The

following figure illustrates the evaluation tree produced. The query without the

information of weights and context in order to be easy to read is “Hotel.City=Athens and

Hotel.Room.Price<100”. The ContextNode is the root element. It contains information for

the query context (a hotel business model on which the following model elements

apply), the result type and the query name. The ContextNode has as a child the

OperationNode with attribute “and”. This OperationNode has two children; the query

terms. The first one has the operation “=” and weight value one and two children a

NavigationNode with the path “Hotel.City” and a StringLiteralNode with value “Athens”.

The other OperationNode has the operation “less than” and has two children; a

NavigationNode and a RealLiteralNode. The NavigationNode contains the elements that

participate to the navigation process that starts from the context element. Note that the

elements inside the Navigation Nodes are semantically annotated with the appropriate

model terms.

Chapter VI – Query Evaluation Trees Evaluation Tree Example

Γεώργιος Κοτόπουλος Page 75

OperationNode:
QueryTerm

operation: "="
weigh=1

NavigationNode:
Hotel.City

LiteralNode:
"Athens"

OperationNode:
QueryTerm

operation: "<"
weigh=0.8

NavigationNode:
Hotel.Room.Price

LiteralNode:
"100"

OperationNode
operation: "and"

ContextNode
context:

BML:"HotelBussinessModel"

Hotel Bussiness Model

BussinessEntity:
Hotel

BussinessAttribute:
City

BussinessAsset:
Room

BussinessAttribute:
Price

Figure 17: The evaluation tree for the query “Hotel.City=Athens and Hotel.Room.Price<100”. In

the figure the semantic annotation is also illustrated from the Navigation nodes to the actual

business elements.

Chapter VI – Query Evaluation Trees Summary

Γεώργιος Κοτόπουλος Page 76

SUMMARY

This chapter discusses the Query Evaluation Tree Model and how these trees are

constructed from a QML expression.

The Evaluation Trees are used to contain all the information about how a query will be

processed and the results will be merged with the appropriate ranks. The evaluation

trees contain information about each query term, their weights with respect to the fuzzy

model, how query term results will be merged and ranked. The evaluation trees can

easily be expanded with similar terms from other models (using the semantic

exploitation discussed in the next chapter). SQL is the formal language to express

queries for RDBMS and the evaluation plan is what operation should be performed and

in which order. On the same sense, evaluation trees in this thesis are the operations to

be performed (easily managed and transformed into XQueries) and how result sets will

be merged with respect to the information retrieval model used.

In the next chapter we will discuss how the evaluation trees will be expanded with

semantically similar terms of other models, metamodels, and ontologies by using

information from ontologies. Moreover, as each business domain (egg. the hotel

industry) in DBE may use more than one ontology to express similar ideas (egg. “Hotels”

and their data structure), an algorithm is proposed, implemented and tested to find

similarities between ontologies.

Chapter VII – Semantic Exploitation Introduction

Γεώργιος Κοτόπουλος Page 77

CHAPTER VII – SEMANTIC EXPLOITATION

INTRODUCTION

This chapter discusses how the semantic information of the query can be exploited in

order the system to be able to recommend services (in other terms data) that follow

different models (structures) from the model the query was expressed. This is desirable

since, the different models refer to the same kind of service. For example two hotels use

two different models two express their services. When someone makes a query for

hotels, he doesn’t care in which terms the data is modelled (structured), he just wants to

find a hotel.

At chapter five on section for the fuzzy model a problem was described where a service

could not be retrieved because it was expressed on a model having the model path

Hotel.Address.City and the query searched for the path Hotel.City. This problem is

addressed if we reformulate the starting query in terms of the second model adapting

properly (downscale) the weights of each term. In our example we want from

Hotel.Address.City to go to Hotel.City stating that the first has weigh for example 1, while

the second has the weight 0.8. The reformulation process is not an easy task in the

relational world of different schemas for each database and different approaches exist

like (18) and (19). That is another reason we selected a query language that is expressed

in semantic terms instead of directly using a language as XQuery, SQL or SPARQL. With

these languages semantic information is lost (in fact was never present). Someone who

knows the semantics of a schema (either XML or Relational) poses the query. The query

does not carry the information about the semantics and thus you can only work

lexicographically if you want to reformulate the query.

This semantic information can be used to reformulate the query by understanding

which classes between models are semantically equivalent. This can be done by

considering information from the metamodel (e.g. two model elements that are

instances of the same meta-class and have similar properties - have both in common

City) or if the metamodel is expressed in terms of ontologies, we can use equivalent

relationships from ontologies and reformulate the query by the means of the ontologies.

Chapter VII – Semantic Exploitation Defining the Problem

Γεώργιος Κοτόπουλος Page 78

DEFINING THE PROBLEM

We consider a P2P environment where any SME can describe its services (using SSL

metamodel) and its business (using BML metamodel) following a model of its own. Thus,

there is a large diversity of models even for the same kind of businesses (e.g. for Hotels).

The main scenario is that each domain has a small number of models which are reused

from the large variety of SMEs with few or no changes. In other words, each domain is

described by a small number of model groups, where each model group consists of a

main model and a number of sub variations of this model. Moreover, all the models use

concepts from domain ontologies, which in DBE are models of the ODM metamodel (for

description of ODM please see (20) and (3)). We suppose that each domain is described

not necessarily by one but possibly by several ontologies.

With this in mind, we can state that when we search for services, which match a set of

criteria, we want to discover all the services of a specific domain that these criteria

apply even when the services follow different models/ontologies or refer to similar

services. However, in DBE’s environment, where knowledge is highly distributed, how

can domains be strictly defined? The answer is: it cannot. Each peer/knowledge base

might give a different classification of services into domains depending on its own

knowledge.

If models were just different structures of data, one could simplify the problem into

reformulating the query for each structure. However, in our case, each model is not just

a structure but it has also senses. For example, Hotel and Hostel are related as they offer

accommodation, but they share nothing in common with Restaurants. This kind of

information comes from ontologies where it is stated that the concept Hotel is

equivalent with the concept Hostel, but no equivalence or any other kind of relation

exists for Restaurants.

Another issue to keep in mind is the performance issue. Imagine a peer having 1000

services following 800 different models, for each of which a different query will be

reformulated, according to structure differences and ontology senses, and then

executed. That is; create 800 queries, execute them, and finally, join the results. Thus,

even though the system can explore all information to enhance the recall and the

precision of the system it is prohibited by performance costs.

Chapter VII – Semantic Exploitation Defining the Problem

Γεώργιος Κοτόπουλος Page 79

The main function which calculates similarities in the fuzzy model was described in

chapter V. As the following work uses this function and expands it, for convenience it is

repeated here:

∞≤≤







⋅ ∑∑

==

pwwa
pn

i

p
i

n

i

pp
i i

1/
/1

11

 (V-1)

In order to include all the above statements in a general case, we specify the problem as

follows: The ai term of equation (V-1) is a weight which denotes the association of the

feature (model element path) for the query term i. wi is the weight of the query term i.

The matching factor is decomposed of two factors ci and vi as expressed by the equation:

ai=ci*vi, (VII-2)

where ci is the weight of the feature’s concept to the query term’s concept and vi is the

weight of the feature’s value to the query term’s value.

Remember from chapter V that ai took a value in the interval [0, 1] depending only on

the value of the query term. For example “Athens Hilton” matched “Hilton” query term

value with weigh 0.5 – it is not equal but it is very close. Note that the model elements

should be equal (here “Hotel.Name”). If they weren’t equal ai is 0 (i.e. for “Hotel.Name”

and “Hotel.hotelName”. With equation (VII-1) this can change. Now vi is the weight

denoting how similar is the value of the feature with the value of the query and is

described in table 4 of chapter V and ci is the weight denoting the similarity of the two

concepts. For example if the query term is “Hotel.Name = ‘Hilton’” and the feature is

“Hotel.hotelName = ‘Athens Hilton’” ci could be 0.7 and vi 0.5. Thus, the resulting ai is

0.35. While for the vi the algorithm to produce the weight value is described on chapter

V, for the ci the algorithm will be described in this chapter.

The approach we follow to resolve related paths and their corresponding ci’s and the

model for creating an expanded query which makes use of this information to improve

the system’s recall is explained in this chapter. First we discover the related paths for

each query term of the query by making use of the semantic information of the query

and the ontology concept similarities found at an earlier stage (see the following

“Ontology Similarity Analyzer” section). Along with the related paths we compute their

corresponding weight, which denotes their relevance to the original query term. Finally

we reformulate the query by adding new query terms. The final query can be then

Chapter VII – Semantic Exploitation Ontology Similarity Analyzer

Γεώργιος Κοτόπουλος Page 80

processed to produce a valid XQuery expression, which will be executed by the PSM

execution engine (the XML database).

ONTOLOGY SIMILARITY ANALYZER

In this section we discuss how the ontology mappings are created based on a set of

rules. Although the techniques discussed in this section apply for ODM ontologies keep

in mind that are also valid for OWL/RDF ontologies as there is a one to one mapping

between ODM and OWL as explained at (3). In order to formally define these rules we

need first to define the ontology space.

DEFINITION OF ONTOLOGY SPACE

The set of all ontologies is the Ontology Space O. O consists of the ontology elements ei

which are divided into four categories: Classes (oi), Object Properties (opi), Data Types

(di) and Data Type Properties (dpi), i.e. {oi}∩{opi} ∩{di} ∩{dpi} = {ei}. Moreover, Data

Type Properties and Object Properties form the Properties set {pi}, i.e. {opi} ∩{dpi} =

{pi}.

Inside O we define a number of functions as follows:

� Equivalence (~).e1 ~ e2

� Subclass (or subproperty) (IsA). e1 IsA e2

� Domain: p1 domain {oi}

� Range: op1 range {oi}, dp1 range {di}

In the ontology space paths between a class and a datatype exist:

o1 -> p1 -> {oi -> pi}n
 -> dn+2

where the arrow (->) is defined as follows:

� o1 -> p1 => p1 domain o1

� p1 -> o1 => p1 range o1

� p1 -> d1 => p1 range d1

DEFINITION OF ONTOLOGY SIMILARITY RULES

We define a new non-symmetric function in the ontology space O denoted as similarity

(s) between two ontology elements with a similarity rate � ∈ [����, 1], where Tsim is a

threshold below which no mapping can exist and can take values in the interval [0, 1).

Chapter VII – Semantic Exploitation Ontology Similarity Analyzer

Γεώργιος Κοτόπουλος Page 81

Definition 1. A similarity s: O x O Є [Tsim, 1] is a function from a pair of entities to a real

number expressing the similarity between two ontology elements such that

s(a, b) =1 iff a = b (definiteness)

The following rules define how similarities are created:

Rule 1. if e1 ~ e2 then s(e1, e2) = re and s(e2, e1) = re (equivalence rule)

Rule 2. if e1 IsA e2 then s(e1, e2) = rb and s(e2, e1) = rp (IsA rule)

Rule 3. if e1 IsA e and e2 IsA e then s(e1, e2) = rb and s(e2, e1) = rb (sibling rule)

Rule 4. if op1 range {oi} and op2 range {oi} then s(op1, op2)=rt and s(op2, op1)=rt

(type rule)

Rule 5. if op1 range {oi} and op2 range {oi
’} and s({oi}, {oi

’})=r then s(op1, op2)=rt*r

(type rule 2)

Rules 3 and 4 are indirect as we assume that properties with the same range (i.e. type)

have some equivalence. This is needed because most of the times an ontology creator

might define that two classes are equivalent but drop out that two properties are

equivalent. Four similarity parameters are defined: re for equivalence, rb for subclasses

and siblings, rp for superclasses, and rt for types. All these parameters’ values range in

the interval [0,1]. Some indicative values are: re = 0,9, rp = 0,8, rb = 0,9 and rt=0,8. In a

later section we will discuss how these values are estimated.

Imagine now three classes: Accommodation, Motel, and Hotel. Motel IsA

Accommodation, while Hotel and Motel are equivalent (Hotel ~ Motel). If we apply the

abovementioned rules and parameters we end up with four similarities:

s(Accommodation, Motel) = 0.9, s(Motel , Accommodation) = 0.8, s(Hotel ,

Accommodation) = 0.9, and s(Accommodation, Hotel) = 0.9. As you can see no similarity

exists between Hotel and Motel because there is no direct connection between them. We

would like though the similarity function to be transitive and, thus, we applied the

following rule:

Rule 6. if s(e1, e2)=r1 and s(e2, e3)=r2 and e1 ≠ e3 and r1*r2 > Tsim then

s(e1, e3)=r1*r2 (transitivity rule)

Imagine now when we want to figure out if two elements are similar and with what

similarity. We would apply first the rules 1 to 4 and if we don’t end up with a similarity

we will try to apply the transitivity rule. The first time the rule 6 is applied some new

similarities are found. This means that if we apply again this rule we will end up with

some more similarities. But how many are we going to apply this rule? We will apply

this rule until no other similarities can be created (note the criterion r1*r2 > Tsim). Thus,

the number of times (denoted as n) the transitivity rule should run depends on the

Chapter VII – Semantic Exploitation Ontology Similarity Analyzer

Γεώργιος Κοτόπουλος Page 82

maximum of re, rb, rp, and rt and the threshold Tsim. In Appendix B we proved that the

following equation which calculates n holds:





=)),,,log(max(

)log(
rtrprbre

Tn sim if max(re, rb, rp, rt) ≠ 1. (VII-3)

For a threshold Tsim = 0,5 and the abovementioned weights the number of transitions

applied is n = 7. Thus, if we apply the transitivity rule more that 7 times no new

similarities will be produced.

The abovementioned rules will produce similarities in a ontology, but what happens for

different ontologies. In the DBE environment two different ontologies may exist for the

same domain (e.g. for Hotels) and if elements of different ontologies are not connected

between them no similarities will exist even for identical elements. For example in

ontologies two identical classes exist named both Hotel. These two classes are not

marked explicitly as equivalent and thus no similarities will be produced by our rules.

Although all ontologies belong on the same space and equivalences and sub classing may

exist between elements of different ontologies, the general rule in our environment

(DBE) does not incorporate these practices. Thus, the abovementioned rules (i.e. (1) to

(6)) will not perform well when searching for similarities between different ontologies.

In order to overcome this problem we introduced the following rule to allow automatic

extraction of similarities when information about equivalences and sub classing is not

present. The rule is based on similarity between strings and is often described in

bibliography as the edit distance (also called the Levenshtein edit distance defined at

(21)), that is, the minimum number of changes necessary to turn one string into another.

Rule 7. if levenshtein(e1, e2)=r and r>Tleven and e1 ≠ e2 and ¬s(e1, e2) then

s(e1, e2) = fleven*r

where Tleven is a threshold for the levenshtein distance and fleven is a factor in the interval

(0, 1].

For example two classes named both Hotel belonging in different ontologies that have

no other connection between them will have a Levenshtein distance 1 (their strings are

identical). If fleven
 is 0.7 the two classes will have a similarity s(Hotel, Hotel) = 0.7.

For the string based Levenshtein search we used the Apache Lucene (22)

implementation, which is a high-performance, full-featured text search engine library

written entirely in Java. It is distributed under the Apache Licence version 2.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 83

ONTOLOGY LINKS

In previous paragraph the similarity function was defined in order to use it for finding

similar paths. In this paragraph we will define another function to keep the links

between the ontology elements indexed for fast reference. Moreover, these links may be

used in future stages for more powerful expansions.

Each time we want to expand a query we don’t want to parse and traverse the

ontologies repeatedly, because this is time consuming. We want to pre-process each

ontology and store the relations of each element into an indexed database in order to

have fast access to this information. We call the relations of elements ontology links. For

example the class Hotel has a property named AddressPr which has as range the class

Address. After the pre-processing two ontology links will be created: Hotel to AddressPr

and AddressPr to Address.

Definition 2. An ontology link ol: O x O -> [Tlink, 1] is a function from a pair of ontology

elements to a real number expressing how strong the connection between these

elements is. It is created with the following rules:

Rule 1. if p1 domain oi then ol(oi, pi) =1

Rule 2. if p1 range oi then ol(pi, oi) =1

Rule 3. if p1 range di then ol(pi, di) =1

Note that these ontology links have the value one.

Both similarities and ontology links are stored as XML files into the XDB Server

repository for sound storing and fast retrieval and processing.

RETRIEVING RELATED PATHS

In previous sections we defined and created similarities in order to be able to find

related paths to a given ontology path.

Before continuing to formally define the algorithm for retrieving related paths we will

examine an example of what we want the algorithm to find and what should not. In

Figure 18 four ontology paths and the similarities between the elements are depicted.

The black lines are the ontology links while the red dashed lines are the similarities

between the elements. Hotel, Address, City, Hotel2, Address2, City2, Hotel3, City3,

Restaurant, and City4 are the ontology objects defined in an ontology. The names are not

the best (i.e. none would name an ontology object Hotel2), but can be seen as identifiers

of the ontology objects. AddressPr, CityPr, AddressPr2, CityPr2, CityPr3, and CityPr4 are

the object properties linking two objects. The datatype properties of City are not shown.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 84

As one can observe a similarity is found (red dashed line) between Hotel and Hotel2 etc.

We don’t need at this point the actual similarity value, we just need to know that they

are similar.

Figure 18: The ontology mappings stored for the main path.

We want to find related paths to Hotel->AddressPr->Address->CityPr->City. Ideally the

algorithm should result only these two paths: Hotel2->AddressPr2->Address2->CityPr2

->City2 and Hotel3->CityPr3->City3. Observe here that Hotel3->CityPr3->City3 misses

the Address part, thus the algorithm we need to develop should take these cases into

account. Moreover, the algorithm should result a value denoting how related two paths

are. This value will be used in equation (VII-1) as the ci parameter.

In order to continue with the actual process of retrieving relevant paths the following

definitions must apply.

Definition 3. We define a path in the ontology space as <>: On -> On denoting a

sequence of ontology elements starting with a class and ending to a datatype:

<e> or {oi -> pi}n -> di.

Definition 4. We define the length of a path as the function l: On->N denoting the

number of elements which make up the path.

Definition 5. We define the distance between two elements as δ: O x O -> [0, 1]. The

complement of the distance (δc) is their similarity value defined earlier:

δc(e, e’) = 1 – δ(e, e’) = s(e, e’) (VII-4)

If no similarity exists then the distance is 1 and the distance complement 0.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 85

Definition 6. We define the distance between two paths as d: On x Om -> [0, 1] denoting

the distance between the two paths. We are interested in the complement of the

distance which is:

dc = 1-d. (VII-5)

Definition 7. The distance complement between two paths with only one element is

their similarity rate (if exists):

if l(<e>) = l(<e’>) = 1 then dc(<e>, <e’>) = s(e, e’) (VII-6)

Definition 8. Two paths as related if their distance complement is greater than zero

(0):

dc(<e>, <e’>) > 0 then <e> and <e’> are related (VII-7)

Before continuing with calculation of the distance complement, the algorithm for

retrieving the related paths will be presented. It is based on the similarities of ontology

elements and the ontology links starting from the datatype and looping till the root class

is reached. It will first be presented formally and then an example will be given.

FORMAL DEFINITION OF RELATED PATHS DISCOVERER ALGORITHM

Problem: Find the paths (called candidate paths) that are related to a given ontology

path called the original path and how much they are related to the original path

expressed by a weight in the interval [0, 1]. From the set of candidate paths select those

that their weight is greater from a threshold Tpath.

Before formally describing the algorithm we will examine the previous example of

Figure 18 and have an idea of how it is going to produce the desired results. For the

example’s economy the object properties (AddressPr, CityPr, etc) will be omitted. The

original path is <Hotel, Address, City> and we start from the lowest element (originally

the datatype but here City). We find the similar elements of City and put them in a set

(called frontier). Now the frontier contains {<City2>, <City3>, <City4>}. We now search

for similar elements of Address that are linked to any of the paths in the frontier. We end

up with just one the <Address2, City2> and we put it the frontier without removing

anything (not even City2). Now the frontier contains {<Address2, City2>, <City2>,

<City3>, <City4>}. We do the same search we did with Address for Hotel and end up to

the final frontier which contains the candidate paths. After we formally present the

algorithm we will revisit this example step by step.

The Related Ontology Paths Discoverer (ROPD) algorithm loops in a bottom up fashion

the elements of the original path. We call a frontier F a set of paths related to the original

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 86

path. Each loop results in a new frontier F of the related paths found so far, which will be

used for the next steps.

Given the original path: {oi -> pi}n
 -> d we perform the following steps.

Step 1: Create the frontier F containing the similar datatypes of the datatype d.

F(d) ← getSimilarDatatypes(d)

Step 2a: Current element is the next element of the original path, ei.

Step 2b: Find the elements that are linked to any mapping path of the frontier and are

similar to the current element (ei).

Step 2c: Create the corresponding path for the elements found in step 2b and put them

to the frontier.

F(ei) ← F ∩ getSimilarPaths(F, ei)

Step 3: Repeat step 2 for all elements of the original path.

Step 4: All paths of the last frontier are the candidate paths of the original.

Step 5: Calculate a weight for each candidate path and select those whose weight is

greater than a threshold Tpath.

The ROPD Algorithm Complexity

The computational and space complexity are exponential to the length (n) of the original

path and namely:

Computational Complexity: O{(2n-1–1)*b} and Space Complexity: O{(2n–1)*b},

Where b is the branching factor of each step’s similar classes.

The exponential complexity of the algorithm does not pose a problem since the path

length is not supposed to take large values.

Note that if step 2c was F(ei) ← getSimilarPaths(F, ei) the complexity would not be

exponential but some paths could not be found as will be demonstrated in the following

example.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 87

RELEVANT PATH RETRIEVING EXAMPLE

Recall again the example of Figure 18. The original path is: Hotel->AddressPr->Address-

>CityPr ->City and again we will omit the object properties and the datatypes for

simplicity reasons. Thus, the original path is Hotel->Address->City. Note that the same

rules apply for the whole path.

In order to construct the first frontier F (Step 1) we find the similar datatypes of the

datatype City. The datatypes are City2, City3, and City4.

Start: ()
















→

4

3

2

City

City

City

CityF

Next we have the element Address (Step 2a). We search for related elements Address

that are associated with City2, City3, or City4 (Step 2b). We come up with only one the

Address2 which is related to City2. We add the path <City2, Address2> to the frontier

(Step 2c):

Loop 1: () { }
















><

><

><

→

4

3

2

2,2,

City

City

City

AddressCityAddressCityF I

In the second loop we have the element Hotel (Step 2a).We search for related elements

of Hotel that are associated with either path in the frontier (Step 2b). We find two:

<City2, Address2, Hotel2> and <City3, Hotel3>. We add them to the frontier:

Loop 2: ()→>< HotelAddressCityF ,,

{ }
















><

><

><

><








><

><

4

3

2

2,2
3,3

2,2,2

City

City

City

AddressCity
HotelCity

HotelAddressCity
II

Root element reached and the process stops. The frontier of loop 2 has the candidate

paths. Note that if we didn’t add the frontier in each step (which is responsible for the

exponential complexity of the algorithm) we couldn’t retrieve the path <City3 , Hotel3>.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 88

The last step of the ROPD algorithm is to calculate the weights (path distance) for each

path (how similar they are to the original one) and select those which are greater than a

threshold Tpath. In the next section the algorithm for calculating the path distance is

discussed.

CALCULATING PATH DISTANCE

In this paragraph we will describe a function for calculating the path distance between

each candidate path with the original one. At least two different functions for calculating

the path distance exist in the bibliography. The first is from Do at al (23) (fDo) while the

second is from Valtchev, (24) (fVal). Let us have a closer look at each of them:

() ()1
1

1
111 ,).1(),(., −

=

−

===
><><−+=><><=

m
jj

n
iimn

m
jj

n
iiDo eedeeeedf λδλ

which can be written also as:

()),(.)1.(,
,

1,1
11 ii

inmn

ji

m
jj

n
iiDo eeeedf δλλ

−

==

== ∑ −=><><= with]1,0[∈λ (VII-8)

Where δ(ei, ej) is the distance of the two elements (as in Definition 5 of this chapter). The

factor λ (1 – λ)n-i reduces the impact to the final result of the distance closer to the root

element of the path (in our example Hotel). For large values of λ (like 0.9) the

differences of the root element to the leaf is large, while for small values (like 0.1) the

differences are small. In order to compare the algorithms we used λ = 0.5.

The second function of Valtchev is:

()
l

llee
eedfVal

|'|)',(
', ∑ −+

=><><=

δ
 (VII-9)

where l and l’ are the lengths of the <e> and <e>’ respectively and δ(e, e’) as in the

previous function. This function operates differently than fDo as it doesn’t differentiate

the distances of each element. Moreover, the factor |l-l’|/l evaluates as more important

the paths with closer lengths.

Table 5 shows the results of these two functions for the previous example and for all

related paths. None of these two functions will be finally used, each one for different

reasons.

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 89

l = 3, δ = 0,1 (for all mapping elements) and λ=0,5.

Candidate Path fDo fVal

1 <City2> 0.05 0.70

2 <City3> 0.05 0.70

3 <City4> 0.05 0.70

4 <City2, Address2> 0.075 0.40

5 <City2, Address2, Hotel2> 0.0875 0.10

6 <City3, Hotel3> 0.0625 0.40

Table 5: The related paths of <Hotel, Address, City> and their distances using functions fDo and

fVal.

The function fDo cannot be used because is very much dependent on the similarity of the

last element of each path, which is not correct in our case because we need a more

balanced function. As one can see from the previous table Candidate path 1 (<City2>)

has distance from the original 0.05 whereas path 5 (<City2, Address2, Hotel2>) which is

much better for our environment has larger distance (0.0875) – which is worse – than

path 1. Differences are very small to safely use any threshold to cut of irrelevant paths.

This is not acceptable in our environment. We want the distance of candidate paths 5

and 6 to be much better that the rest.

The second function, fVal;, does not suffer from the previous problem, but as it can be

seen from the previous table the cases 4 and 6 do not produce different similarity values

although they are completely different. Case 6 is a complete path whereas case 4 is not.

In our environment cases 4 and 6 are completely different and this should be

encapsulated in the ideal path distance function.

Thus, in our environment where the similar paths will be used for query expansion we

need the path distance function to produce results (difference) that:

1) Candidate paths that have equal length to the original should have smallest

differences than others with different lengths. The more close the length of the

original path the smaller the differences.

2) Candidate paths that are not complete (the root element is missing – Hotel in the

previous example) they should be rated less than complete paths (the difference

should be larger). Even more the closer to the root element the candidate paths is

the smaller the difference should be.

3) The final difference value of the path should be relative to the similarities of each

element participating in the original path. In other words, complete candidate paths

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 90

with the same length should have differences to the original path depending on how

similar (similarity value) their elements are.

fDo supports only the third criterion while fVal supports criteria 1 and 3. Thus, the

function to be used should express in algebra the second criterion. We will be based on

the fVal function, but we need to add another factor to encapsulate the second criterion.

The new factor will denote how close the last element of the candidate path to the

original one is. It will be called the tenacious bondage of two related paths.

Definition 9. The tenacious bond b: Ol x Ol’ -> [0, 1] between a candidate path <e>’ to an

original one <e> is a real number in the interval [0, 1] denoting how close the last

element of <e>’ is to the last element of <e>. We calculate b as follows:

l

k
eeb l

jj
l
ii =><><

==
),('

11 , where k such that s(ek, el’) > 0 (VII-10)

where l and l’ are the lengths of the original <e> and the candidate path <e>’

respectively, s is the similarity function, and k is the largest number in [1, l] such that ek

of the original path is similar to el’ of the candidate path. el’ is the root element of the

candidate path. Thus, the element of original path which is related (i.e. their similarity

value is greater that zero) to the root element of the candidate path is the ek.

Examples.

b(<Hotel, Address, City>, <City3>) = 1/3 = 0,33 because City (k=1) is similar to City3

(l’=3).

b(<Hotel, Address, City>, <Address2,City2>) = 2/3 = 0,66.

b(<Hotel, Address, City>, <Hotel3,City3>) = 3/3 = 1.

Definition 10. We define the evaluation function of path distance fpd : Ol x Ol’ -> [0, 1] as

follows:

() ⇔−+

−

−+=><><=

∑
==

==
)1(

)'(
)1(

),(

,

',

1,1'
11 bT

l

ll
T

l

ee

eedf SimSim

ll

ji
ii

l
jj

l
iiPd

δ

⇔
−

+

−⋅−+

=

∑
==

l

kl
T

l

llTee

f Sim

Sim

ll

ji
ii

Pd

)'()1(),(
',

1,1

δ

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 91

⇔

−++−−+

=

∑
==

l

kTlTTllTllee

f
SimSimSimSim

ll

ji
ii

Pd

''),(
',

1,1

δ

l

Tlkllee

f
Sim

ll

ji
ii

Pd

)'('),(
',

1,1

−−−+

=

∑
==

δ

, (VII-11)

where l’, l are the lengths of the original path and the candidate one respectively, k such

that s(ek, el’) > 0, TSim is the similarity threshold (defined in the previous section). δ, s are

the difference and similarity functions respectively and b is the tenacious bond of the

two paths. In Appendix B it is proven that this function belongs in the interval [0, 1].

Remember the criteria set to evaluate the difference functions. Criterion 1 demanded

that the closer the length of the candidate path to the length of the original path the

smaller the difference of the path distance value. This is denoted in fPd with the following

term:

l

ll
TSim

)'(
)1(
−

−

 Note that in fVal the exact difference was used (l-l’), thus adding 1/l for each element not

present. But we didn’t want this factor to be so important tin the final result and thus we

add (1-TSim)/l for each element not present. As TSim is the minimum allowed similarity,

(1-TSim) is the maximum difference of two elements that are similar.

For the second criterion (the closer the root element of the candidate path to the root

element of the original path the smaller the difference should be) the following factor

was added:

l

kl
T

l

k
TbT SimSimSim

−

=−=−)1()1(

By this factor the difference is larger by TSim/l for each element that we have to make up

in order to reach the root element (context) of the original path. For the paths <Hotel,

Address, City> and <City3> we have to make up two elements Address and City in order

to say that the paths denote the same context of data.

For the third criterion (to encapsulate the difference of each element participating in the

path) we used the same factor as fVal and fDo the:

Chapter VII – Semantic Exploitation Retrieving Related Paths

Γεώργιος Κοτόπουλος Page 92

l

ee
ll

ji
ii∑

==

',

1,1

),(δ

fPd evaluation function is somewhat similar with fVal. Because our algorithm produces

candidate paths with the same or smaller lengths than the original one, but never larger

(i.e. l’ ≤ l), equation VII-10 can be rewritten in terms of fVal as:

SimValPd T
l

lk
ff

)'(−
−=

Thus, the result of fval in order to encapsulate criterion 2 (remember that we could not

use fVal is our environment because it did not satisfy criterion 2) reduces the difference

by the factor:

SimT

l

lk)'(−

The following table shows the results of the three difference functions presented in this

paragraph. We used TSim = 0.6

l = 3, δ = 0.1 (for all similar elements), λ=0.5 and TSim = 0.6.

Related Path fDo fVal fPd k l’

1 <City2> 0.05 0.70 0.70 1 1

2 <City3> 0.05 0.70 0.70 1 1

3 <City4> 0.05 0.70 0. 70 1 1

4 <City2, Address2> 0.075 0.40 0.40 2 2

5 <City2, Address2, Hotel2> 0.0875 0.10 0.10 3 3

6 <City3, Hotel3> 0.0625 0.40 0.20 3 2

Table 6: The related paths of <Hotel, Address, City> and their distances using functions fDo, fVal ,

and fPd.

It is clear from the table that our function satisfies all three criteria set. Cases 4 and 6 are

differentiated and the rank produced (case 5, case 6, case 4, 3, 2 and 1) is the one

inferred from the criteria. Some of the related paths having very large distances can be

omitted by using a threshold (the TPath discussed in the previous paragraph). The

threshold of 0.3 would result in selecting as similar paths the cases 5 and 6. These will

be used later on to semantically expand the query.

Chapter VII – Semantic Exploitation Semantic Query Expansion

Γεώργιος Κοτόπουλος Page 93

SEMANTIC QUERY EXPANSION

In the previous section we showed how relevant paths can be discovered with their

corresponding distances. In this section the modelling framework for expanding queries

using semantics from ontologies and models will be described.

A query consists of a number of query terms (for example the query

“Hotel.Address.City=Athens and Hotel.Room.Price <100” consists of two query terms

“Hotel.Address.City=Athens” and “Hotel.Room.Price<100”). The algorithm for expanding

queries takes each query term and finds its relevant paths. Each of the relevant paths is

assigned a weight with respect to the path distance of the related path. All the relevant

paths along with the original query term are joined through an OR node in the query

tree named as query branch. Thus, each query term is replaced with a query branch. The

query branch has as weight the weight of the original query term. For example for the

query term “Hotel.Address.City=Athens” we find the relevant path “Hotel.City=Athens”

and these two form a query branch. The expanded query would look like

“(Hotel.Address.City=Athens OR Hotel.City=Athens) and Hotel.Room.Price <100”.

Although, the weights were not shown in the above example both in the original and the

expanded query, assume that the query term “Hotel.Address.City=Athens” participated in

the original query with the weight 0.9 and the query term “Hotel.Room.Price<100” with

0.7. This means that we prefer the result to contain hotels in Athens even if the price of

the rooms exceed 100 Euros rather that the opposite (cheap rooms located elsewhere).

The weights of the expanded query (assuming that the path “Hotel.City” has a path

distance of 0.2 and, thus, a similarity of 0.8) would be as follows: the term

“Hotel.City=Athens” would have 0.8 (the similarity of the path), the

“Hotel.Address.City=Athens” would have 1 (it is the original term), the

“Hotel.Address.City=Athens OR Hotel.City=Athens” would have 0.9 (the weight of the

original query term “Hotel.Address.City=Athens”), and “Hotel.Room.Price<100” would

have 0.7 (as in the original query). This will be further demonstrated after the formal

presentation of the algorithm for expanding queries.

A query consists of a number of query terms (qti) which should be matched over a

dataset D. Each query term consists of a path expression (pi), an operation (opi), a literal

value (vi) and a weight (wi) denoting the user’s importance on this term. The following

formula describes this:

qti = (pi, opi, vi, wi) (VII-12)

Chapter VII – Semantic Exploitation Semantic Query Expansion

Γεώργιος Κοτόπουλος Page 94

The path expression of the query term consists of two parts the model part (or model

path - modelPath) and the ontology part (or ontology path - ontoPath) any of which may

be empty. Thus the path is:

p = {modelPath, ontoPath} (VII-13)

At this point we define a new element; the query branch (qb). The query branch will

hold the information of an expanded query term and will consist of a number of query

terms and a weight denoting how important this branch is to the overall query.

qbi = (w, {qti1,…, qtin }) (VII-14)

In order to semantically expand the query we apply the following algorithm:

Algorithm 1: The algorithm for expanding query terms with related paths into query branches.

The algorithm takes as input the query term to be expanded. It creates a new query

branch (line 4). The weight of the branch is the weight of the original query term (line

5). A new query term is created for the original query term with weight 1 (line 6) and it

is added to the query branch (line 7). A new query term is added with weight 1

containing only the ontology part (i.e. not the model part) of the original path (lines 8

and 9). The related paths of the ontology part of the original paths are found (line 10)

and for each of them a query term is created with weight the path similarity (line 12)

and added to the query branch (line 13).

In order to demonstrate the algorithm for constructing query branches we will use the

query term:

1. EXPAND_QUERY_TERM(QT)

2. %input: the query term QT

3. %output: a query branch

4. QB := NEW-QUERY-BRANCH()

5. QB->w := QT->w

6. QT_1 = NEW-QUERY-TERM (QT->path, QT->op, QT->v, 1)

7. QB->addQueryTerm(QT_1)

8. QT_2 = NEW-QUERY-TERM (QT->path->ontoPath, QT->op, QT->v, 1)

9. QB->addQueryTerm(QT_2)

10. pathSet := FIND-RELATED-PATHS(QT->path->ontoPath)

11. for each path in pathSet

12. newQT = NEW-QUERY-TERM (path, qt->op, qt->v, 1- path->distance)

13. QB->addQueryTerm(newQT)

14. end for

15. return QB

Chapter VII – Semantic Exploitation Semantic Query Expansion

Γεώργιος Κοτόπουλος Page 95

qt(<Hotel, Address, City>, “=”, “Athens”, 0.8)

The above query term participates to a larger query but for simplicity reasons it is not

mentioned here. It participates to the original query with the weight 0.8 (this weight is

assigned by the user). In simple English the query is to find the hotels in Athens. The

path “Hotel.Address.City” is expressed in ontology terms (i.e. Hotel etc are defined in an

ontology rather than a model). The path “Hotel.Address.City” is found to have as related

paths (recall the previous section): “Hotel2.Address2.City2” with path distance 0.1 (and

therefore similarity 0.9) and “Hotel3.City3” with path distance 0.2 (similarity is 0.8).

Figure 19 shows diagrammatically the reformulation (expansion) of the query term. A

query branch is created with weight 0.8 containing three query terms: the

“Hotel.Address.City=Athens” with weight 1 (the original term), the “Hotel3.City3=Athens”

with weight 0.8, and “Hotel2.Address2.City2=Athens” with weight 0.9.

Figure 19: Query expansion example of the query term with path <Hotel, Address, City> with its

related paths <Hotel2, Address2, City2> and <Hotel3, City3>.

The use of weights in the query expansion process is strongly associated with the fuzzy

information retrieval techniques introduced in chapter “Fuzzy model and query

formulation”. In that chapter we described the fuzzy framework used to process queries

and we reproduce the evaluating formula of the query terms here for convenience:

()
p

n

i

p
i

n

i

p
ii

w

wa
/1

1

1

.



















∑

∑

=

=

 (VII-15)

where wi is the user defined weight for the query node i and ai is a weight denoting how

relevant is the data source to the query node. Before the query expansion ai was

Original Query

Query Term
<Hotel, Address, City> =

'Athens'
weight: 0.8

Query
Expansion

Expanded Query

Query Branch
weight: 0.8

Query Term
<Hotel, Address, City> =

'Athens'
weight: 1.0

Query Term
<Hotel2, Address2, City2> =

'Athens'
weight: 0.9

Query Term
<Hotel3, City3> =

'Athens'
weight: 0.8

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 96

calculated using the weights of Table 4 of chapter V depending only on the data value

and wi was a user weight for the query node i. Remember here that a query was

composed of flat query terms.

 After the query expansion the query is composed of query branches which are

composed of query terms. Each query term of a query branch will be evaluated

separately and the query branch should join these results in terms of the fuzzy

information model. In the abovementioned example each of “Hotel.Address.City=Athens”,

“Hotel3.City3=Athens”, and “Hotel2.Address2.City2=Athens” will be evaluated separately

against the dataset. If only one evaluates to true the result weight should denote the how

relevant the query term was (from the query term weights) with respect to the original

user weight (now the weight of the query branch). If though in a dataset more than

query terms are evaluated the result weight instead of being a composition of the query

terms evaluated to true should only be the best of it. If for example both

“Hotel.Address.City=Athens” and “Hotel3.City3=Athens” exist in the dataset we want the

result to express only that the original query term was matched (the user does not care

that “Hotel3.Address3=Athens” was matched). Thus, only the best result of the query

terms should be evaluated. In other terms in the fuzzy model the query branch does not

operate as a fuzzy OR but rather as a Boolean OR.

In order to calculate the query branch ai parameter of formula VII-14 we introduce the

following formula.

()ijij

k

j
i apada ∗=

=1
max (VII-16)

where adij is the factor of query term j of branch i depending on the data value given by

Table 4 while apij is the weight of the query term j which equals to the relevance of the

path to the original one (distance complement). Note that by selecting the maximum of

all these values we actually use a Boolean OR function between the query terms of each

branch.

PARAMETER ESTIMATION

Throughout the semantic expansion process presented earlier in this chapter we used a

number of parameters the values of which are crucial for the algorithms to produce

reasonable results. These parameters cannot take any random value but should be in

some range or have specific values. Some of them actually depend on the value of others.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 97

In this section the mechanism for estimating the parameters’ values, the best values and

the relationship (correlation) between them is presented.

The methodology for estimating the parameters is to specify some ontologies, give the

parameters a large variation of values, calculate the matching elements and based on a

query find the equivalent paths. From the paths found we calculate an error metric

based on precision and recall. It is quite clear that for the results giving the smallest

error we can select the best values for the parameters. We performed three successive

experiments, each one refining the previous results.

The first experiment was executed on two very simple ontologies in order to calculate a

first range of the parameters. On these ranges and for more parameters but with better

refinement a second experiment took place on top of two broader ontologies (still

simple). From the second experiment some parameters were calculated when for others

correlation between them and the error were found. The last experiment had to do with

the same ontologies but with greater refinement and addition of two more parameters.

Finally, we executed the algorithm with the estimated values for two given ontologies of

the Framework for Ontology Alignment and Mapping10 (FOAM)(25) for tourism in

Russia. The results were good taking into account that the ontology alignment

algorithms used on FOAM have different orientation for the results (i.e. the results

produced by the algorithm described in this thesis need to be good for query expansion

and not to just find good alignments).

The nine parameters used in the ontology mapping and query expansion algorithms that

will be estimated are shown in the next table:

Parameter Abbreviation Description

String based weight SW
Used for the Levenshtein algorithm

defined in similarity rule 7 (fLeven).

Similarity threshold TT Is the minimum allowed similarity

(TSim). Defined in similarity rule 6.

Used by the path distance function

(equation VII-10) .

String based threshold ST Used for the Levenshtein algorithm

defined in similarity rule 7 (TLeven)

10 FOAM is a framework having test ontologies with human mappings and alignments along

with ontology alignment software.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 98

Parameter Abbreviation Description

Equivalent weight EQ The similarity weight of two

equivalent elements. Defined in

similarity rule 1 (re)

Super-class weight SP The similarity weight of the parent

element to the child element of an IsA

relationship. Defined in similarity rule

2 (rp)

Sub-class weight SB The similarity weight of the child

element to the parent element of an

IsA relationship. Moreover, it is the

similarity weight of two siblings.

Defined in similarity rule 2 and 3 (rb)

Path threshold PT The threshold of distance complement

below which a candidate path will not

be selected in the set of the related

paths. Defined in the ROPD algorithm

(TPath)

Table 7: The nine parameters used in query expansion algorithms and their abbreviations.

We used Precision, Recall and a total error metric in order to choose best values or

ranges. In detail: precision error is the number of paths found that should not be in the

result set with such path threshold that that recall is 0 or the smallest possible. Recall

error is the number of paths that should be in the result set and cannot be found with

any path threshold. Note that in the first two experiments the path threshold is not

estimated while it is calculated a min value in order the recall to be the smallest

possible. The error metric is a number denoting the distance of the path weights from

their desired weight.

THE FIRST EXPERIMENT

For the first experiment we wanted to calculate a first range of the main weights and

thresholds. We used two simple ontologies created for the experiment. We wanted the

complexity to be low and to test how our algorithm responds to this simple scenario. We

want to figure out the ranges of the parameters outside which the algorithm does not

work even for the simple ontologies used. The parameters under investigation for this

first experiment are SW, TT, ST, EQ, SP, and SB. Moreover, we wanted to figure out

which parameters are correlated (the one depends on the value of another). We run our

algorithm for 15625 different combinations of parameter values. For each combination

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 99

we calculated the minimum path threshold (PT) such that the recall is the smallest

possible.

We used the ontologies HotelOnto1 and HotelOnto2 shown on figures 21 and 22

respectively.

Figure 20: The ontology HotelOnto1 used in the first experiment.

Figure 21: The ontology HotelOnto2 used in the first experiment. No equivalence exists between

Hotel and Hostel

The ontologies, although simple, try to capture all kind of information that must be used

by the algorithms. In ontology HotelOnto2 no equivalence exists between Hotel and

Hostel. The mapping between them must be found using information through

HotelOnto1 where Hotel and Hostel are mapped.

The parameters used along with the ranges of their values and the step are shown in

table 8. The number of combinations that the experiment will run is 15625.

Parameter Abbr. min max Step

String based weight SW 0.2 1 0.2

Transient threshold TT 0.2 1 0.2

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 100

String based threshold ST 0.2 1 0.2

Equivalent weight EQ 0.2 1 0.2

Super-class weight SP 0.2 1 0.2

Sub-class weight SB 0.2 1 0.2

Table 8: The parameters used in the first experiment with their range and step.

The query path we used is of ontology HotelOnto1 and Hotel/HasAddress/Address/City

and the desired result set is shown in the next table:

Ontology Path

HotelOnto1 Hostel/ HasAddress/Address/City

HotelOnto1 Accommodation/ HasAddress/Address/City

HotelOnto2 Hotel /City

HotelOnto2 Hostel/ HasAddress/Address/City

Table 9: The good path results of the first experiment.

Experiment’s Results

In order to produce the smallest precision and recall errors the following should hold:

• The smallest error (precision and recall) was 0 for a path threshold of 1,

• TT cannot have the value 1,

• When EQ = 1 and ST ≥ 0.8 then SB is irrelevant (this result is due to the very

small ontology used),

• When ST is large we get less intermediate results and number of good

combinations (of the rest parameters),

• When TT is large we get less intermediate results and number of good

combinations, and

• Smallest errors when EQ, SW, SB, SP greater than 0.6.

Experiment’s Conclusions

From this experiment we found out that our algorithm actually can work and produce

the desired results for the right set of parameters values.

All the results with smallest precision and recall errors were observed when EQ, SW, SB,

SP were greater than 0.6. The biggest values the two thresholds (ST and TT) have the

better results were found. Finally when TT had value 1 error the algorithm did not

produce the desired results for any combination.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 101

In the next experiment we will use this information in order to narrow down the

parameter’s ranges and refine the values.

THE SECOND EXPERIMENT

For the second experiment we followed the same process with broader ontologies but

for smaller parameter ranges. The ontologies used contained all different kinds of

connections which can be found in real ontologies (as equivalences, IsA relationships,

etc). We want to find the ranges of the parameters for which our algorithm performs

best. Moreover, we want to understand how the parameters are correlated (their values

depend on others) with others. Again the parameters under test are SW, TT, ST, EQ, SP,

and SB.

The ontologies that were used capture all the kind of information need to be used by the

algorithms and some traps that should be avoided. The ontologies HotelOnto3 and

HotelOnto4 are shown in figures 23 and 24 respectively.

Figure 22: The HotelOnto3 ontology used for the second and third experiment.

Figure 23: The HotelOnto4 ontology used for the second and third experiment. Hotel and Hostel

do not have an equivalence whereas Apartments and Hostel do.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 102

HotelOnto3 and HotelOnto4 are more complicated that HotelOnto1 and HotelOnto2. In

HotelOnto4 the Hotel and Hostel do not have an equivalence whereas Apartments and

Hostel do. The mappings are more difficult to be found and more easily errors may

occur.

The parameters used along with the ranges of their values and the step are shown in

table 8. The number of combinations that the experiment will run is 12500.

Parameter Abbr. Min max Step

String based weight SW 0.6 1 0.1

Transient threshold TT 0.5 0.9 0.1

String based threshold ST 0.7 1 0.1

Equivalent weight EQ 0.6 1 0.1

Super-class weight SP 0.6 1 0.1

Sub-class weight SB 0.6 1 0.1

Table 10: The parameters used in the second experiment with their range and step.

The query path we used is of ontology HotelOnto3 and Hotel/HasAddress/Address/City

and the desired result set is shown in the next table:

Ontology Path

HotelOnto3 Hostel/ HasAddress/Address/City

HotelOnto3 Accommodation/ HasAddress/Address/City

HotelOnto3 Bungalows/ HasAddress/Address/City

HotelOnto4 Hotel /City

HotelOnto4 Hostel/ HasAddress/Address/City

HotelOnto4 Apartments/ HasAddress/Address/City

Table 11: The good path results of the second experiment.

Experiment’s Results

The results of the second experiment are more important and precise than those of the

first one. We first have the results for zero precision and recall errors for which there

were found 138 succeeding combinations. From these combinations we conclude:

• EQ must be larger than 0.8,

• SW must be larger than 0.8,

• When weights (SW, EQ, SB, and SP) are high then TT can be high (this was

expected because the criterion for defining its weight was calculated as

maxWeightsn, see equation VII-2)

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 103

• ST does not differentiate the final result and it does not correlate with any other

parameter. The estimation of this parameter is irrelevant of this process with

only criterion the good string results. Good values are from 0.6 to 0.8.

• SB and SP cannot be both small, and

• EQ and SW cannot be both small.

In order to observe how each parameter correlates with others and especially how they

are correlated to precision recall error we had to calculate correlation matrixes. As

bigger the absolute value of a correlation number is the larger the impact it has to the

other parameter. Positive numbers denote that these parameters are analogical and

negative that they are reverse analogical. The correlation matrixes that the

abovementioned conclusions came from are shown to the following tables:

Correlation

all data

EQ ST SW SB SP TT Min PT PrRecall

Min PT -0,129 1,58E-15 0,702 -0,032 0,0366 0,413 1

PrRecall -0,276 2,61E-16 -0,318 -0,235 -0,2857 0,602 0,126 1

Table 12: Correlation matrix of parameters with the minimum path threshold (PT) and

precision recall error on all data.

In table 12 we can see how each parameter correlates to the minimum path threshold

and to the precision recall error. From the small values of correlation of ST we come up

to the conclusion that it is completely irrelevant to the PrRecall error (the correlation is

very small). In bold they are shown the values bigger that 0.1. TT has the biggest impact

on the precision recall error from all other parameters investigated.

Correlation

good results

EQ ST SW SB SP TT Min

PT

EQ 1

ST -1,78E-17 1

SW -0,238 -3,99E-18 1

SB 0,0159 -4,28E-18 0,044879 1

SP 0,1023 5,2186E-19 0,012689 -0,20999 1

TT 0,24997 2,21831E-17 0,112836 0,2759 0,253347 1

MIN PT 0,09456 1,25901E-17 0,899565 0,1498 0,127403 0,28885 1

Table 13: Correlation matrix on good results data only.

Table 13 shows the correlations of parameters for very low precision and recall errors.

ST does not correlate to any other parameter. There is large correlation between SW

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 104

and min PT (almost 0.9) which means that in most cases with small precision recall

error the largest the value of SW resulted in largest value in Min PT.

Correlation

good results

with max Of

TT

EQ SW SB SP Max Of

TT

Avg Of

MIN PT

EQ 1

SW -0,2361 1

SB -0,0625 0,014 1

SP 0,0443829 -0,0149 -0,3274 1

Max Of TT 0,3675 0,11224801 0,416655 0,369605 1

Avg Of MIN-PT 0,10266 0,887718 0,082826 0,072017 0,403394 1

Table 14: Correlation matrix on good results with max of TT. From this matrix is clear that as

the greater the weights are the grater the TT can be.

Table 14 shows the correlation of parameters for a result set with small precision recall

errors considering the maximum TT value for each combination of the rest parameters.

For example for two parameter combinations that the only variance is TT we select the

maximum (which produces small precision recall errors).

 SP Min Of SB

SP 1

Min Of SB -0,97014 1

Table 15: Correlation matrix of SP and SB. From this matrix we can conclude that SP and SB

cannot be both small.

Table 15 shows the correlation of two parameters SP and SB. It is clear from the very

large negative number (-0.97) that these parameters are highly reverse analogical. If the

one is big the other should be small in order to produce results with small precision

recall errors.

 EQ Min Of SW

EQ 1

Min Of SW -0,86603 1

Table 16: Correlation matrix of EQ and SW. From this matrix we can conclude that EQ and SW

cannot be both small.

Table 16 demonstrates that EQ and SW are reverse analogical. This has the sense when

we cannot find the similarity with equivalence (the parameter is very small) we have to

use the string similarities.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 105

The following table shows statistics for the results with precision recall error of zero.

Here one can see the smallest and the largest values of the parameters estimated so far.

Moreover, the medians and mean values are shown as well.

PrRecall

= 0

 EQ SW SB SP Max of TT Avg of min

PT

Mean 0,91087 0,913 0,8333 0,86087 0,596377 0,7614

Standard

Error

0,00672 0,0066 0,0113 0,01041 0,008254 0,005

Median 0,9 0,9 0,8 0,9 0,6 0,771125

Standard

Deviation

0,0789 0,078 0,13309 0,122 0,097 0,06

Sample

Variance

0,00623 0,006106 0,0177 0,0149 0,0094 0,0036

Range 0,2 0,2 0,4 0,4 0,4 0,238

Count 138 138 138 138 138 138

Largest 1 1 1 1 0,9 1

Smallest 0,8 0,8 0,6 0,6 0,5 0,662

Table 17: The statistics table of the second experiment for precision recall error zero.

From table 17 we can see that for precision recall error equal to zero what are the

smallest and largest values the parameters had. Apart from this, another interesting part

is the median which can be seen as the most used value. For example, SP although the

smallest and the largest values are 0.6 and 0.9 respectively the median is 0.9. Thus, in

very few cases SP had the values 0.6 and 0.7.

If we narrow down the results from the precision recall error of zero (138 different

combinations found) with even better criteria (to find the best different combinations)

we come up with the previous conclusions but refined. The criteria used to select the

best combinations are: the precision and recall error is zero, when the mean deviation of

result set paths is 0.9 with error less than 0.05 and the path threshold (PT) is less than

0.9. The qualifying results with these criteria are 49. The main conclusions are:

• SB and SP cannot be large together,

• SB and SP cannot have the values 0.6, 0.7 and 1 together,

• EQ and SW cannot be large together,

• EQ and SW cannot have the values 0.8 and 1 together,

• In 88% of the cases SW has the value 0.9,

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 106

• In most cases SP ≤ EQ, and

• PT ranges between 0.65 and 0.9.

These conclusions were derived by the following correlation and statistical matrixes:

 EQ SW SB SP Max Of

TT

First Of

MIN-PT

ERROR

EQ 1

SW -0,4419 1

SB -0,0607 0,02435 1

SP 0,2026 0,06679 -0,66529 1

Max Of

TT

0,4392 0,008471 0,270501 0,3953 1

First Of

MIN-PT

0,3507 0,67559 -0,01918 0,289207 0,416214 1

ERROR -0,3278 -0,25798 -0,19038 0,399592 0,127151 -0,5326 1

Table 18: The correlation matrix of the second experiment for precision recall error zero and

mean deviation of results 0.9 with error less than 0.05.

Table 18 shows the correlation between the parameters. SB and SP are reverse

analogical and the same holds for EQ and SW. EQ and TT are analogical.

 EQ SW SB SP Max of

TT

 Min PT Error

Mean 0,916326 0,88979 0,8142 0,7979 0,5632 0,752 0,0378

Standard

Error

0,01179 0,00667 0,0186 0,0181 0,0122 0,0058 0,001

Median 0,9 0,9 0,8 0,8 0,6 0,757 0,0383

Standard

Deviation

0,08253 0,04675 0,1307 0,1266 0,0859 0,0405 0,0075

Sample

Variance

0,0068 0,002185 0,017 0,01604 0,0074 0,0016 5,65E-05

Range 0,2 0,2 0,4 0,4 0,3 0,138 0,0302

Count 49 49 49 49 49 49 49

Largest 1 1 1 1 0,8 0,9 0,0498

Smallest 0,8 0,8 0,6 0,6 0,5 0,662 0,0195

Table 19: The statistics matrix of the second experiment for precision recall error zero and

mean deviation of results 0.9 with error less than 0.05.

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 107

In table 19 a more refined range of the parameters can be found than table 17. The mean

and median values of each parameter can be found.

Experiment’s Conclusions

This experiment resulted for the most parameters to specific range of values that can be

used. By the correlation between the parameters we can understand aspects of the

algorithm.

First of all, equivalence weight (EQ) and string weight (SW) both vary between 0.8 and

1, while they cannot have both the values 1 and 0.8. For the algorithm and the specific

ontologies used this means that when EQ is small (0.8) then alternative similarities can

be found by using string matching (SW is high). But when both are small then the similar

elements cannot be found. Thus, for both a value above 0.85 could be used. In most cases

SW has the value 0.9.

SP and SB both vary between 0.6 and 1. They cannot be both small or large, and thus a

value larger than 0.75 and smaller than 0.9 should be used for both. Note that the

median and mean values for both are about 0.8.

The similarity threshold (TT) varies between 0.5 and 0.9 and it highly analogous to the

precision recall error and the path threshold (PT). Most cases show that when TT is

about 0.6 very could results are produced.

Although we didn’t use a path threshold (PT) (in each case we measured the PT that

contained all the desired results) we were able to find out that its range is between 0.65

and 0.9. Thus, in order to have recall zero the smallest threshold that should be used

was 0.65. There is no need to be smaller. More details will be found on the next

experiment where the PT will be used to cut of paths.

Finally, the string threshold (ST) is irrelevant to the outcome of the algorithm. The value

assigned for it can be from 0.6 to 0.8 in order the string relationships to be good.

THE THIRD EXPERIMENT

In the previous experiments the path threshold (PT) parameter was calculated as to be

the maximum value that recall was 0. In the third experiment its value will vary in the

most common values it had during the last experiments (from table 19 can be seen to

have values from 0.65 to 0.9).

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 108

Next table shows all the parameters and the range they vary along with the interval step.

The variance comes from previous experiments and some refinement is needed on the

step. Note that we use the ontologies of the second experiment (HotelOnto3 and

HotelOnto4) with the same query and good results.

 min max Step

SW 0,85 0,95 0,05

TT 0,6 0,6

ST 0,6 0,6

EQ 0,8 0,95 0,05

SP 0,75 EQ 0,05

SB 0,75 0,9 0,05

PT 0,65 0,9 0,05

Table 20: The parameters of the third experiment and their variance.

There are 2100 different value combinations. From these and for correlation of the

parameters with the precision recall error and the value error two important

conclusions are made and the variance of the parameters is refined. We will see each of

them with the correlation and statistics matrixes in the rest of this section.

Experiment’s Results

In the next correlation matrix of all the cases we can observe the correlation of the

parameters with precision recall error and mean deviation error:

All Data EQ SW SB SP PT ERROR PrRecall
ERROR -0,085 -0,1798 0,24358 0,5915 -0,05528 1
PrRecall -0,0439 0,05914 -0,01704 0,00586 -0,27357 0,00169 1
Table 21: The correlation matrix of all cases of the third experiment where we can see the high

correlation of BW with precision recall error.

Form table 21 we can observe that the SP parameter is high analogous to the error, and

its value should be kept small. PT is reverse analogical to the precision and recall error

which is something we expected. As the threshold goes high the precision is better.

Next follow three statistical matrixes each one for different data sets according to

criteria regarding precision recall error and mean deviation error.

precision recall

error = 0

EQ SW SB SP PT ERROR

Mean 0,8968 0,87658 0,823418 0,825 0,7 0,043273

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 109

precision recall

error = 0

EQ SW SB SP PT ERROR

Standard Error 0,00291676 0,0014 0,003525 0,00315 2,5E-

16

0,000377

Median 0,9 0,9 0,8 0,825 0,7 0,042626

Standard

Deviation

0,051849 0,02499 0,062658 0,05599 4,45E-

15

0,006697

Sample Variance 0,00268 0,000624 0,003926 0,003135 1,98E-

29

4,48E-05

Range 0,15 0,05 0,2 0,15 0 0,034754

Count 116 116 116 116 116 116

Largest 0,95 0,9 0,95 0,9 0,7 0,061931

Smallest 0,8 0,85 0,75 0,75 0,7 0,027177

Table 22: The statistical matrix for data where precision recall error equals to zero for the third

experiment.

In table 22 116 combinations of parameters were found having precision recall error

equal to zero. The most interesting part in this table is the range of PT; all the values of

in the dataset had the PT equal to 0.7! (i.e. PT is calculated unambiguously). The rest

parameters in the most cases take specific values (the mean values).

precision recall

error = 0 &

error < 0.04

EQ SW SB SP ERROR

Mean 0,907798 0,8825688 0,81055 0,784404 0,036307

Standard Error 0,004616 0,0022927 0,005684 0,003839 0,00028

Median 0,9 0,9 0,8 0,8 0,036975

Standard

Deviation

0,0481963 0,023936787 0,059346 0,040079 0,002918

Sample Variance 0,0023229 0,00057297 0,003522 0,001606 8,52E-06

Range 0,15 0,05 0,2 0,15 0,012819

Count 42 42 42 42 42

Largest 0,95 0,9 0,95 0,9 0,039996

Smallest 0,8 0,85 0,75 0,75 0,027177

Table 23: The statistical matrix for data where precision recall error equals to zero and mean

deviation error is less than 0.04 for the third experiment.

In table 23 the criteria of the dataset are stricter with precision recall error equal to zero

and mean deviation error less than 0.04. The cases these two criteria apply are 42 and

we can observe that minimum and maximum values do not change from the previous

Chapter VII – Semantic Exploitation Parameter Estimation

Γεώργιος Κοτόπουλος Page 110

case but the mean of each of the parameters is refined to a better value. As the dataset

becomes smaller the parameters tend to have certain stable values.

In the last dataset there are the combinations where the precision recall error is zero

and the mean deviation error is very small (less than 0.003) and has only 20 cases.

precision recall

error = 0 &

error <0.003

EQ SW SB SP

Mean 0,925 0,8975 0,8125 0,775

Standard Error 0,007694838 0,0025 0,01399 0,007695

Median 0,95 0,9 0,8 0,75

Standard

Deviation

0,03441236 0,01118034 0,062566 0,034412

Sample Variance 0,001184211 0,000125 0,003914 0,001184

Range 0,1 0,05 0,2 0,1

Count 20 20 20 20

Largest 0,95 0,9 0,95 0,85

Smallest 0,85 0,85 0,75 0,75

Table 24: The statistical matrix for data where precision recall error equals to zero and mean

deviation error is less than 0.003 for the third experiment.

We can observe from the previous matrix that the mean is further refined for all

parameters.

Experiment’s Conclusions

The main conclusion of this experiment is the value of the path threshold (PT)

parameter, which is 0.7.

Due to the mean and maximum and minimum values we have the next table where the

actual best values are calculated.

 min Max Best

SW 0,85 0,9 0,9

EQ 0,8 0,95 0,95

SP 0,75 0,85 0,75

SB 0,75 0,95 0,8

PT 0,7 0,7

TT 0.6 0.6

Chapter VII – Semantic Exploitation Mapping Algorithm Evaluation

Γεώργιος Κοτόπουλος Page 111

 min Max Best

ST 0.6 0.6

Table 25: The calculated possible and best values of all parameters.

MAPPING ALGORITHM EVALUATION

In the previous section we tested our algorithm for finding similar paths by using two

small ontologies created by us in order to define the ranges of the parameters used.

Moreover we find out the algorithm produces results with small precision and recall

errors. The ideal evaluation of our algorithm could be to use some real-world ontologies

in order to find related paths.

Although, we were able to find real-world ontologies that had their elements were

mapped semantically by humans (see next paragraphs), we were not able to find some

work for retrieving related ontology paths. Thus, we could only evaluate the part for

finding similar ontology elements. Note here that is not the best evaluation as our

criteria to find similar elements was not only to find semantically similar elements but

also to find similar paths for expanding queries. For example for in HotelOnto3 of the

previous section depicted in Figure 22 element Hotel and its sibling Hostel by a human

may be not denoted as semantically similar, while in our environment we need them to

be related in order to expand the query with similar terms. Thus, as the applications of

the algorithms differ we cannot measure effectively our algorithms. What is crucial and

can be evaluated is the recall of our algorithm. Is our algorithm for finding similar

ontology elements able to retrieve all the ontology elements mapped by humans as

similar? This is the case we can evaluate. The precision of our algorithm cannot be

evaluated as we need the broader range of elements in order to perform query

expansions.

In order to evaluate the mapping algorithm against the first we used some test

ontologies of the Framework for Ontology Alignment and Mapping (FOAM) (see [25])

which include human mappings and tested the algorithm in this thesis against them. The

ontologies were RussiaA and RussiaB referring to tourist ontologies for Russia. RussiaA

has 153 classes and RussiaB 470. Three datasets with mappings exist:

1. The human mappings

2. The mappings found from standard algorithms (KAON2)

3. The mapping produced by the algorithm in this thesis

Chapter VII – Semantic Exploitation Mapping Algorithm Evaluation

Γεώργιος Κοτόπουλος Page 112

Note that the human mappings and the mappings from the KAON2 algorithm include

mappings of instances, instead of just classes. Our system does not work with ontology

instances as they are model data, thus the mappings for instances were not compared.

Another difference is that the other mappings do not have mappings between object and

datatype properties, thus the comparison will be made only with classes. The last

difference is that their mappings are between classes of different ontologies whereas

our algorithm finds mappings between classes of the same ontology. Thus only common

kinds of mappings will be compared, i.e. no instances, no object or datatype properties

and no mappings between classes of the same ontology.

The next table shows the results of the three procedures and the comparison between

them.

Number of

mappings

Common

mappings

with human

Lost

mappings

Mappings

not listed in

the human

set

Common

mappings

with

KOAN2

algorithm

human mappings: 63

KOAN2 mappings: 69 48 15 (23,8%) 21

This thesis

algorithm

mappings:

228 59 4 (6.35%) 169 46

This thesis

algorithm best

mappings:

87 48 15 (23,68) 39 38

Table 26: Comparison of ontology element mappings with manual mappings.

As one can observe our algorithm found more common mappings with the human

mappings than the KOAN2 algorithm did. One can also observe that our algorithm found

about three times more mappings (228) than both the human and the KOAN2. One could

argue that for such a small improvement the redundant mappings are a large cost and

disadvantage. But this evaluation was not performed for the precision because is

designed not to find just similar elements but also elements that can replace other query

terms (as previously mentioned Bungalows with Hostel). The human mappings were

made with the rationale “what would be the best way to describe one class of the first

ontology with another one of the second?” while in our algorithm the mappings are

produced to answer a different question “with which classes is it reasonable to replace

one class?”.

Chapter VII – Semantic Exploitation Summary

Γεώργιος Κοτόπουλος Page 113

When comparing this thesis best matches results with the manual mappings the results

are equivalent with the KOAN2 algorithm (a slightly worst precission).

The important conclusion of the experiment is that the human mappings were found

with a reasonable error (6.35% elements lost). Another interesting point is that only

two of the 48 of the KOAN2 mappings which were also in the human mappings list were

not found by our algorithm, which means that our algorithm performs much better than

the KOAN2 algorithm in this scope.

SUMMARY

In this chapter we presented the algorithms used for the semantic query expansion. In

order to perform the semantic query expansion we introduced three algorithms: the

ontology similarity analyzer, the algorithm for the retrieval of related ontology paths

and, finally, the algorithm for expanding the queries with the related paths. Moreover,

we performed three experiments to estimate the parameters used and an evaluation for

the ontology similarity analyzer.

In order to find the similar ontology elements that can be used to semantically expand

queries we introduced a set of rules (the similarity rules) which took advantage the

equivalence, the IsA, the ontology types semantics defined in an ontology along with

string matching in order to be able to find similar ontology elements defined in separate

ontologies. Moreover, we introduced the transitivity rule which means that two

elements that are similar to a third one are similar between them too. For all these rules

parameters and thresholds were used in order to capture the similarity between two

elements as real number in the interval [0, 1].

The similarities between ontology elements along with ontology links (capture the HAS

relationship) are preprocessed for each ontology entered in the system and are stored in

the XML database for fast querying and retrieval.

Next the algorithm for retrieving similar ontology paths to given one was introduced.

This algorithm exploits the information of similar ontology elements produced before in

order to step by step find all related paths. The interesting in this algorithm is that it can

find similar paths that might miss some elements (for example “Hotel.Address.City” is

similar to “Hostel.City”). A function to calculate the path distance was introduced which

produces results which fulfill three criteria: (1) the more similar the elements of the two

paths are, the less the path distance is, (2) the more close the lengths of the paths are the

Chapter VII – Semantic Exploitation

Γεώργιος Κοτόπουλος Page 114

smaller the distance is, and (3) the closer the contexts of the paths are (denoted by the

root elements of the paths) the smaller the path distance is. The function was compared

with two known path distance functions found in the bibliography.

The algorithm that expands a query term with similar query terms and the function that

incorporates the similarities in the fuzzy information model introduced in chapter V was

presented next. Each query term is replaced by a set of query terms (the original query

term, along with similar ones). Between these query terms a Boolean OR is performed

(instead of a fuzzy OR).

All the parameters and thresholds used in this chapter were estimated in ranges of

values through three experiments held with test ontologies. We created four simple

ontologies and tried for precision and recall error to find what the acceptable values

these parameters can take are. For all parameters strict ranges where found and how

they correlate with the precision and recall error and how they correlate between them.

Another conclusion from the tree experiments is that the algorithms can produced the

desired results (find the related paths and exclude unrelated).

Finally, we evaluated the ontology similarity analyzer against two known ontologies

which human mappings between their elements were given. The algorithm finds the

most of the human mappings (recall error is very small). Another algorithm tested with

these ontologies had a very large recall error. The conclusion is that the algorithm for

ontology similarities is able to find the human mappings.

Chapter VIII – Conclusions

Γεώργιος Κοτόπουλος Page 115

CHAPTER VIII – CONCLUSIONS

In this thesis we have described the mechanisms and algorithms implemented in order

to support knowledge access and discovery over the fully decentralised P2P network of

the DBE. This includes the enhancement of the DBE framework with those mechanisms

and characteristics that would allow the exploitation of all the advantages of the P2P

network while facing the common problems and challenges of such networks. This

implementation was demonstrated on January 2005, January 2006 and April 2007

during the DBE audits, as part of the integrated prototype of DBE. Moreover, it is used by

a large number of SME across Europe which gave feedback during the design and

implementation process for features and potential uses of the recommender.

Knowledge in DBE is coming from contextualization and personalization of information.

Contextualization of information is supported with the management of metamodels,

which give context to information and models as well as with the management and use

of domain specific ontologies that have community accepted semantics for their

concepts and relationships. Personalisation is supported with profiles of users (WP7

“User Profiling”) and filtering mechanisms. The DBE knowledge is managed by the

Knowledge Base (KB). The Knowledge Base is compatible with the OMG’s MOF metadata

framework; it manages metamodels, models, and instances providing the full

functionality of a MOF repository, and uses XMI documents for metadata and data

interchange.

The knowledge access mechanisms that we described in this thesis provide the

underlined mechanism for querying metamodels, models and instances of DBE. It also

forms the basis for supporting recommendations. At a technical level the knowledge

access approach is uniform for both desired functionalities. The core of the knowledge

access functionality is the Query Metamodel Language (QML) which is a language based

on OCL2.0, adapted for MOF1.4, and extended to allow similarity matching in order to

accommodate user preferences. The implementation provides a framework for QML

query processing that incorporates IR functionality and the theoretical approach is

based on the Extended Boolean Model.

The querying mechanisms where improved in order to become more flexible and

capable of fully supporting the query formulation needs on the one hand and the query

answering mechanisms on the other hand. To these needs, the exploitation of rich

domain specific ontologies was added. The query analysis had to be supported by an

Chapter VIII – Conclusions

Γεώργιος Κοτόπουλος Page 116

ontology mapping mechanism and now, query expansion takes place to facilitate the

information retrieval needs based again on the Extended Boolean Model. The algorithm

for finding relevant ontology paths is one of the major contributions of this thesis.

Finally, the incorporation of the above mentioned querying mechanisms in the DBE

services for each node and the deployment of the system in the P2P environment

enhanced the P2P function of the Recommender. However, the need for an efficient

query processing and routing mechanism was thereafter, imperative. The DBE

framework, in accordance with the DBE P2P infrastructure, set the basis for a

semantically strong manipulation of the semantic overlay DBE network. The common

DBE metamodels and the capability to use rich ontologies for the description and

management of knowledge in the DBE, plays a decisive role in the sharing and discovery

of knowledge.

In detail the main contributions of this thesis are discussed on the following paragraphs.

Query Metamodel Language

The Query Metamodel Language (QML) was introduced in this thesis. QML is actually an

alignment of OCL 2.0 to MOF (OCL is bounded to UML). It is defined in terms of the MOF

architecture as a M2 layer Metamodel and can query data on M2, M1, and M0 layer. It

can also express constraints for M3 MOF Meta-metamodel. QML is very powerful as it is

not bound neither to specific models or metamodels but has a generic way to express

queries.

QML queries are bound to meta-information and thus semantics of this meta-

information is used to enhance semantically the query results.

Semantic Annotation & Query Analysis

The queries are semantically annotated and validated against the model or metamodel

used into the query during the Query Analysis process. Two query evaluation engines

were developed in this thesis. The first one is the DBE Recommender where QML is used

in a strict way (because XQueries need to be automatically generated by the QML

queries), but the implementation is scalable and fast because data is stored in an XML

repository. The second implementation, not used in DBE, is an evaluation engine on top

of the Metadata Repository (MDR). While the second implementation makes full use of

QML, the MDR is not scalable and does support indexes. Thus, in DBE we formalized the

Chapter VIII – Conclusions

Γεώργιος Κοτόπουλος Page 117

kind of queries to be supported. These query templates are constructed using the Query

Formulator in order to support fuzzy information retrieval techniques.

Query Formulation

Query Formulator is developed as an API for creating QML expressions; a GUI used this

API to create QML expressions. On top of the Query Formulator an Advance version of it

was created to offer in an easy to use manner complex constructs. Query templates can

be created and reused to create queries. This module offers the ability to create template

for example for querying hotel data based on a model by an expert. This template can

then be distributed and be used by many either by legacy systems to query DBE

Knowledge Base or by simpler user interfaces. For example with the Query Formulator

one has to select the term Hotel.City and then enter values like “Athens” and “Volos”,

while with the Advanced Query Formulator someone has selected the main parts of

querying hotels and created a template. Then the user enters just “Athens” on the City

field. This automates the querying process a lot and simplifies the use of the language.

While both Query Formulator and Advanced Query Formulator are used to construct

structured QML queries the Keyword Formulator is used to parse semi structured (ex.

room.price < 70) and unstructured (ex. “Hotel” or “Finland”) query expressions and

formulate them into QML queries. These semi structured QML queries will be enhanced

with semantics (if possible) and processed as common QML queries.

The Fuzzy Model

All the query terms are expressed inside QML with weights. The final results are ranked

with information retrieval techniques explained in this thesis. Specifically the p-norm

model was used to rank the results. An information retrieval model for the specific

application was given. This model expands the result set with data that are not exactly

the same as the query suggested. For example for the query Hotel.Room.Price < 70 the

result set will be expanded with Rooms with price greater than 70 with less rank.

Note that the queries will be further expanded semantically (i.e. with similar terms of

other (or the same) models) by using ontologies. For example Hotel.Room.Price < 70

will be expanded with Motel.Room.Price < 70 coming from another model with smaller

weight.

Chapter VIII – Conclusions

Γεώργιος Κοτόπουλος Page 118

Ontology Similarity Analyzer

In order to find the similar ontology elements that can be used to semantically expand

queries we introduced a set of rules (the similarity rules) which took advantage the

equivalence, the IsA, the ontology types semantics defined in an ontology along with

string matching in order to be able to find similar ontology elements defined in separate

ontologies. Moreover, we introduced the transitivity rule which means that two

elements that are similar to a third one are similar between them too. For all these rules

parameters and thresholds were used in order to capture the similarity between two

elements as real number in the interval [0, 1].

The similarities between ontology elements along with ontology links (capture the HAS

relationship) are preprocessed for each ontology entered in the system and are stored in

the XML database for fast querying and retrieval.

We evaluated the ontology similarity analyzer against two known ontologies which

human mappings between their elements were given. The algorithm finds the most of

the human mappings (recall error is very small). Another algorithm tested with these

ontologies had a very large recall error. The conclusion is that the algorithm for ontology

similarities is able to find the human mappings.

Retrieval of Related Ontology Paths

An algorithm for retrieving similar ontology paths to a given one was introduced. This

algorithm exploits the information of similar ontology elements produced earlier in

order to step by step find all related paths. Note that this algorithm can find similar

paths that might miss some elements of the original one (for example

“Hotel.Address.City” is similar to “Hostel.City”). A function to calculate the path distance

was introduced which produces results which fulfill three criteria: (1) the more similar

the elements of the two paths are, the less the path distance is, (2) the more close the

lengths of the paths are the smaller the distance is, and (3) the closer the contexts of the

paths are (denoted by the root elements of the paths) the smaller the path distance is.

The function was compared with two known path distance functions found in the

bibliography.

All the parameters and thresholds used were estimated in ranges of values through

three experiments held with test ontologies. We created four simple ontologies and tried

for precision and recall error to find what the acceptable values these parameters can

take are. For all parameters strict ranges where found and how they correlate with the

Chapter VIII – Conclusions

Γεώργιος Κοτόπουλος Page 119

precision and recall error and how they correlate between them. Another conclusion

from the tree experiments is that the algorithms can produced the desired results (find

the related paths and exclude unrelated).

Semantic Query Expansion

The algorithm that expands a query term with similar query terms and the function that

incorporates the similarities in the fuzzy information model introduced in chapter V was

presented next. Each query term is replaced by a set of query terms (the original query

term, along with similar ones). Between these query terms a Boolean OR is performed

(instead of a fuzzy OR).

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 120

APPENDIX A – THE QML FORMULATION API

Interface IQueryFormulator

Title: QML Formulation API

Description: An API for formulating QML queries and Expressions (org.dbe.kb.qi)

Field Summary

static int AND

static int OR

Method Summary

 void clearQuery()

 All the objects created so far by the formulator are clear

from the MDR Repository.

 org.dbe.kb.metamodel.qml.context

declarations.InvariantContextDecl

formulateConstaint(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 This method formulates a constrained OclExpression from

a Vector of Mof Classes, a string representation of an operation,

e.g. "=", and a String value.

 org.dbe.kb.metamodel.qml.ocl.expr

essions.OclExpression

formulateExpression(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 This method formulates a constrained OclExpression from

a Vector of Mof Classes, a string representation of an operation,

e.g. "=", and a String value.

 org.dbe.kb.metamodel.qml.ocl.expr

essions.OclExpression

formulateExpressions(java.util.Collection expressions, int type)

 Formulates a conjunctive or disjunctive OCL expression

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 121

 org.dbe.kb.metamodel.qml.ocl.expr

essions.OclExpression

formulateFuzzyExpression(java.util.Collection exprs,

double[] weights, int type)

 Formulates a fuzzy conjunctive or disjunctive OCL

expression

 org.dbe.kb.metamodel.qml.context

declarations.QueryContextDecl

getQuery(java.lang.String name,

org.dbe.kb.metamodel.qml.ocl.expressions.OclExpression body,

java.lang.String result)

 Constructs QML expressions for fuzzy query

Class QueryFormulator

Title: QML Formulation API

Description: An API for formulating QML queries and Expressions (org.dbe.kb.qi)

Method Summary

 void clearQuery()

 Keeps track of all Objects created by the

formulator and clears every time needed.

 void copyPackage(java.lang.String fromExtend,

java.lang.String toExtend,

javax.jmi.reflect.RefPackage fromPackage)

 Copies one RefPackage from the from

MDR extend to the toExtend.

 org.dbe.kb.metamodel.qml.ocl.expressions.O

clExpression

formulateExpressions(java.util.Collection e

xpressions, int type)

 Formulates a conjunctive or disjunctive

OCL expression

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 122

 org.dbe.kb.metamodel.qml.ocl.expressions.O

clExpression

formulateFuzzyExpression(java.util.Collect

ion expressions, double[] weights, int type)

 Formulates a fuzzy conjunctive or

disjunctive OCL expression

 org.dbe.kb.metamodel.qml.contextdeclaratio

ns.QueryContextDecl

getQuery(java.lang.String name,

org.dbe.kb.metamodel.qml.ocl.expressions.O

clExpression exp, java.lang.String result)

 Constructs QML expressions for fuzzy

query

Class ModelQueryFormulator

Title: QML Formulation API

Description: An API for formulating QML queries and Expressions (org.dbe.kb.qi)

This class creates model queries.

Constructor Summary

ModelQueryFormulator (org.dbe.kb.metamodel.qml.QmlPackage qml)

 Creates a new Query instance to be used later on.

Functionality

 org.dbe.kb.metamodel.qml.contextdeclarations.I

nvariantContextDecl

formulateConstaint(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 Formulates a QML constraint

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 123

 org.dbe.kb.metamodel.qml.ocl.expressions.OclE

xpression

formulateExpression(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 Formulates a QML constraint

Class InstanceQueryFormulator

Title: QML Formulation API

Description: An API for formulating QML queries and Expressions (org.dbe.kb.qi)

This class creates instance queries.

Constructor Summary

InstanceQueryFormulator(org.dbe.kb.metamodel.qml.QmlPackage qml)

 Creates a new Query instance to be used later on.

Method Summary

 org.dbe.kb.metamodel.qml.contex

tdeclarations.InvariantContextDec

l

formulateConstaint(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 Formulates a QML constraint

 org.dbe.kb.metamodel.qml.ocl.ex

pressions.OclExpression

formulateExpression(java.util.Collection path,

java.lang.String operation, java.lang.String value)

 This method formulates a constrained OclExpression from a

Vector of Mof Classes, a string representation of an operation, e.g.

"=", and a String value.

 org.dbe.kb.metamodel.qml.ocl.ex

pressions.OclExpression

formulateExpression(java.lang.String[] path,

java.lang.String operation, java.lang.String value)

 This method formulates a constrained OclExpression from a

Vector of Mof Classes, a string representation of an operation, e.g.

"=", and a String value.

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 124

 org.dbe.kb.metamodel.qml.ocl.ex

pressions.OclExpression

refineInstanceQuery(org.dbe.kb.metamodel.qml.ocl.expressions.O

clExpression hard,

org.dbe.kb.metamodel.qml.ocl.expressions.OclExpression soft)

Class AdvancedQueryFormulator

Title: Advanced QML Formulation API

Description: An Advanced API for formulating QML queries and Expressions

(org.dbe.kb.qi.adv)

Field Summary

static int INSTANCE_QUERY

static int MODEL_QUERY

Constructor Summary

AdvancedQueryFormulator(org.dbe.kb.metamodel.qml.QmlPackage qmlPackage, int type)

 Creates a new Advanced Query Formulator

Functionality

 org.dbe.kb.metamodel.qml.contextde

clarations.QueryContextDecl

getQuery(QueryExpr[] expressions)

 Creates and returns a QueryContextDecl class.

 Template getTemplate()

 Gets the template of the formulator.

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 125

 void setTemplate(Template template)

 Sets a template to the formulator

Class QueryExpr

Title: Advanced QML Formulation API

Description: An Advanced API for formulating QML queries and Expressions

(org.dbe.kb.qi.adv)

The objects of this class are actual query expressions

Constructor Summary

QueryExpr ()

QueryExpr (java.lang.String operation, java.lang.String id, java.lang.String value, double weight)

 Creates a new Query Expression for a specific operation, template element id, value and weight

Functionality

 java.lang.String getOperation()

 java.lang.String getTemplateElementId()

 java.lang.String getValue()

 double getWeight()

 void setOperation(java.lang.String operation)

 void setTemplateElementId(java.lang.String templateElementId)

 void setValue(java.lang.String value)

 void setWeight(double weight)

Class Template

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 126

Title: Advanced QML Formulation API

Description: An Advanced API for formulating QML queries and Expressions

(org.dbe.kb.qi.adv)

This class denotes a reusable query component.

Constructor Summary

Template()

Method Summary

 void addTemplateElement(TemplateElement te)

 Adds a template element to the template

 java.lang.String getDescription()

 Gets the template's description

 TemplateElement getTemplateElement(int index)

 Gets the template Element at the specified index

 java.util.Vector getTemplateElements()

 Gets a collection of the template elements

 void setDescription(java.lang.String description)

 Sets the template's description

Class TemplateElement

org.dbe.kb.qi.adv

Constructor Summary

TemplateElement()

Appendix A – The QML Formulation API

Γεώργιος Κοτόπουλος Page 127

TemplateElement(java.lang.String id, java.lang.String path, java.lang.String type)

Functionality

 javax.jmi.model.MofClass getContext()

 java.lang.String getDelimeter()

 java.lang.String getId()

 java.lang.String getPath()

 java.lang.String getType()

 void setContext(javax.jmi.model.MofClass context)

 void setDelimeter(java.lang.String delimiter)

 void setId(java.lang.String id)

 void setPath(java.lang.String path)

 void setType(java.lang.String type)

Appendix B – Mathematical Proofs

Γεώργιος Κοτόπουλος Page 128

APPENDIX B – MATHEMATICAL PROOFS

In this appendix two proofs are demonstrated.

Proof 1. We will show that the function (originally presented in chapter VII as

equation VII-10):

l

Tlkllee

f
Sim

ll

ji
ii

Pd

)'('),(
',

1,1

−−−+

=

∑
==

δ

,

 (B-1)

Belongs in the interval [0, 1]. We have just to show that f Pd≤ 1 and 0 ≤ fPd.

First the sum: ∑
==

',

1,1

),(
ll

ji
ii eeδ is greater than zero (0) and smaller than min(l’, l) = l’ because

δ belongs in the interval [0,1] and thus the maximum value is the number of term

participating in the sum, i.e. l’. Thus (B-1) can be written as:

l

Tlk

l

Tlkl

l

Tlklll
f SimSimSim

Pd

)'(
1

)'()'('' −
−=

−−
=

−−−+
≤ , (B-2)

Moreover, remember the definition of k in chapter VII from which we occlude that the

maximum value of k is l and the minimum is l’, i.e.:

l’ ≤ k ≤ l, (B-3)

From (B-3) we have:

11
'

10
''

0'0' ≤⇔≤
−

−⇔≤
−

−⇔
−

≤⇔−≤⇔≤ PdSimSimSim fT
l

lk
T

l

lk
T

l

lk
lkkl

The first part is proven.

0),(
',

1,1

≥∑
==

ll

ji
ii eeδ

,

(B-4)

and lk ≤ ,

so we have:

Appendix B – Mathematical Proofs

Γεώργιος Κοτόπουλος Page 129

l

Tll

l

Tllll

l

Tlkll
f SimSimSim

Pd

)1)('()'(')'('0 −−
=

−−−
≥

−−−+
≥

And because (l-l’≥0) and TSim ≤1 we have

0≥f

The second part is also proven thus f belongs to [0,1]. Q.E.D.

Proof 2. We will show the upper bound of the number of transitions required for

rule 5 of section 0 is given by the formulae:





=)),,,log(max(

)log(
rtrprbre

Tn if max(re, rb, rp, rt) ≠ 1. (B-5)

It is clear that the final similarity of any number of transitions cannot be smaller than

the threshold T. If all the factors use to produce similarities is less than 1 (i.e. max(re, rb,

rp, rt) ≠ 1) in each transition a smaller similarity is produced because r=r1*r2.

Now, let n be the number of transitions such that the minimum threshold is reached.

Then the following equation holds:

rfinal=r1*r2*…rn=T (B-6)

The maximum product of the n factors will be produced if each one is the maximum

allowed:

rmax = max(re, rb, rp, rt) (B-7)

Thus, equation (12-6) can be rewritten as:

Trr n
final == max (B-8)

Finally if we use logarithms we get:





=)log(

)log(
maxr

Tn (B-9)

Q.E.D.

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 130

APPENDIX C – THE KEYWORD EXPRESSIONS PARSER

GRAMMAR

In this appendix we present the grammar we used to produce a parser for keyword

expressions. The grammar is in the JavaCC syntax, application used to create the parser.

The grammar of the keyword expressions parser is as follows:

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 131

SKIP :

{

 " "

| "\t"

| "\n"

| "\r"

}

TOKEN :

{

 < ID: ["a"-"z", "A"-"Z","_"] (["a"-"z","A"-"Z"," _","0"-"9"]
)* >

|

 < NUM: (["0"-"9"])+ >

|

 < FLOAT: ["0"-"9"] "." (["0"-"9"])+ >

|

 < OPERATOR: ["=", "<", ">"] >

|

 < SEPARATOR: ["/", "\\"] (["/", "\\"])? >

|

 < STR: ["\"", "'", "(", ")"] >

}

java.util.Vector Expression() :

{

 java.util.Vector termimage = new java.util.Vector();

 QueryTerm queryTerm;

}

{

 (queryTerm=Term()

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 132

 {

 termimage.addElement(queryTerm);

 }

)*

 {

 return termimage;

 }

}

QueryTerm Term() :

{

 java.util.Vector path = null;

 Token op = null;

 Object value = null;

 Token w = null;

}

{

 LOOKAHEAD(2)

 path=path() op=<OPERATOR> value=Factor() ("^"
w=<FLOAT>)?

 {

 String oper = (op == null) ? null : op.image;

 String imp = (w == null) ? null : w.image;

 QueryTerm result = new QueryTerm(path, oper, val ue,
imp);

 return result;

 }

|

 value=Factor() ("^" w=<FLOAT>)?

 {

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 133

 String imp = (w == null) ? null : w.image;

 QueryTerm result = new QueryTerm(null, null, val ue,
imp);

 return result;

 }

}

java.util.Vector path() :

 {

 java.util.Vector factorimage = new java.util.Vecto r();

 Token t;

 }

{

 t=<ID>

 {

 factorimage.addElement(t.image);

 }

 (<SEPARATOR> t=<ID>

 {

 factorimage.addElement(t.image);

 }

)*

 {

 return factorimage;

 }

}

Object Factor() :

{

 java.util.Vector factorimage = new java.util.Vecto r();

 String s;

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 134

}

{

 s=Simple()

 {

 return s;

 }

|

<STR> s=Simple()

 {

 factorimage.add(s);

 }

(s=Simple()

 {

 factorimage.add(s);

 }

)* <STR>

 {

 return factorimage;

 }

}

String Simple() :

{

 Token t;

}

{

 t=<ID>

 {

 return t.image;

 }

|

Appendix C – The Keyword Expressions Parser Grammar

Γεώργιος Κοτόπουλος Page 135

 t=<NUM>

 {

 return t.image;

 }

|

 t=<FLOAT>

 {

 return t.image;

 }

}

Glossary

Γεώργιος Κοτόπουλος Page 136

GLOSSARY

Term Description

API Application Programming Interface: Is a technology that facilitates

exchanging messages or data between two or more different

software applications

BML Business Modelling Language

DBMS Database Management System: A software system that allows

efficient manipulation (storage, organization, indexing, and

querying) of large amounts of data.

EvE Evolution Environment: It is where the services are evolved based

in order to reach the best fitness point.

ExE Execution Environment: It is where services live, where they are

registered, deployed, searched, retrieved and consumed. This

parallel word is sometimes referred to as the “runtime of the DBE”.

IR Information Retrieval: Technology for retrieving personalized

information from large collections of unstructured, semi-

structured, or structured data.

JCP Java Community Process: The “home” of the international

developer community whose charter it is to develop and evolve

Java technology specifications, reference implementations, and

technology compatibility kits

JDBC Java Data Base Connectivity: A technology that provides cross-

DBMS connectivity to a wide range of relational databases and

access to other tabular data sources, such as spreadsheets or flat

files

JMI Java Metadata Interface: A Java Community Process (see JCP

description) specification of a standard Java API (see description

of API) for metadata access and management based on the MOF

specification.

KB Knowledge Base: Is the part of the DBE system where the DBE

knowledge is stored and managed. Such knowledge refers to

ontologies, business and service descriptions, etc.

KB Service Knowledge Base Service: A Service on top of the DBE Knowledge

Base that provides functionality for storing and retrieving

models.

Glossary

Γεώργιος Κοτόπουλος Page 137

Knowledge Access Module A component used to provide uniform access to the DBE

Knowledge.

MDA Model Driven Architecture: An approach (proposed by OMG) to IT

system specification that separates the specification of system

functionality for the specification of the implementation of that

functionality on a specific technology.

MDR Meta-Data Repository: MDR implements the OMG's MOF standard

based metadata repository based on the JMI specification (see JMI

description)

MOF Meta Object Facility: A generalized facility and for specifying

abstract information about very concrete object systems.

MOF Repository A Repository for storing, managing and retrieving meta-data

(models) and meta-meta-data (metamodels) that have been

described with MOF.

OCL Object Constraint Language: OMG’s standard for expressing

constraints and well-formness rules on object models. The last

release is also considered suitable for querying object models.

ODM Ontology Definition Metamodel: A MOF model (metamodel)

developed in DBE for ontology representation.

OMG Object Management Group: International standardization body

P2P Peer-To-Peer

PIM Platform Independent Model of a modelled system

PSM Platform Specific Model of a modelled system

QML Query Metamodel Language: It is a Knowledge Access Language

developed in DBE in order to provide uniform access to the various

kinds of DBE knowledge.

Query Analyzer A component of the Knowledge Access Module that is used to

analyze queries against the metamodel (used for knowledge

representation) specific semantics.

Query Code Executor A component used (by the Knowledge Access Module) to execute

the generated query code

Query Code Generator A component of the Knowledge Access Module that takes as input

the query syntax tree and generates the code to be executed in

the appropriate query language

Query Execution Plan

Constructor

A component of the Knowledge Access Module that evaluates the

QML expressions already analyzed into a syntax tree

representation.

Glossary

Γεώργιος Κοτόπουλος Page 138

Query Formulator Tool A front-end tool developed in DBE for allowing the user to

formulate queries against the DBE knowledge using a tree-view

representation of the Knowledge Structure.

RDBMS Relational Data Management System: A DBMS (see DBMS

description) based on the relational model.

Recommender A DBE (autonomous) Core Service that will provide users (SMEs)

with personalized knowledge by exploiting their profiles

SDL Service Description Language: A MOF model (metamodel) that

provides technical description of the programmatic interface of a

service

Semantic Registry The component of the DBE Knowledge Base that hosts the

published services (in the form of Service Manifest Documents).

SFE Service Factory Environment: Is devoted to service definition and

development. Users of the DBE will utilize this environment to

describe themselves, their services and to generate software

artefacts for successive implementation, integration and use

SMIF Stream-based Metadata Interchange Format: A general format to

save and exchange data of programs that are implementations of

expositions models.

SQL Structured Query Language: A language for querying relational

data

SR Semantic Registry: It is the component of the Knowledge Base

that hosts the service descriptions published in the DBE

environment and available for discovery and consumption.

SSL Semantic Service Language

UML Unified Modelling Language: A method for specifying, visualizing,

and documenting the artefacts of an object-oriented system under

development; as well as for business modelling.

User Profiling Mechanism A DBE mechanism used to trace user’s actions (and transactions)

in order to inspect his preferences on desirable services, and

partners.

XMI XML Metadata Interchange: An SMIF (see SMIF description)

standard specification based on XML.

XQuery A Query language by the W3C that is designed to query collections

of XML data.

<Bibliography

Γεώργιος Κοτόπουλος Page 139

BIBLIOGRAPHY

1. MDA Guide Version 1.0.1. [Online] 2003. http://www.omg.org/docs/omg/03-06-

01.pdf.

2. Meta Object Facility (MOF) Specification, version 1.4. [Online] Object Managment Group

(OMG), 2002. http://www.omg.org.

3. DBE Knwoledge Representation Models. TUC/MUSIC. May 2005. DBE Deliverable,

D14.1.

4. Initial Description of Profiling mechanism design and rationale with respect to one or

two use cases. FZI. October 2005. DBE Deliverable D7.2.

5. Information Filtering and Information Retrieval: Two sides of the same coin? Belkin, J.

N. and Croft, B. W. 1992, Communications of the ACM, 35, pp. 29-38.

6. SQL. ISO/IEC 2075:1999.

7. OMG XML Metadata Interchange (XMI) Specification v1.2. [Online] 2002.

http://www.omg.org/cgi-bin/apps/doc?formal/02-01-01.pdf.

8. XQuery 1.0: An XML Query Language. [Online] November 2002.

http://www.w3.org/TR/xquery.

9. XML Path Language (XPath) Version 1.0. [Online] November 1999.

http://www.w3.org/TR/xpath.

10. The Object Data Management Standard: ODMG 3.0: R. G.G. Cattell, Douglas K. Barry,

Mark Berler, Jeff Eastman, David Jordan, Craig Russell, Olaf Schadow, Torsten

Stanienda, and Fernando Velez Morgan Kaufmann, 2000.

11. OCL 2.0 OMG Final Adopted Specification. s.l. Boldsoft, International Business

Machines Corporation, IONA and Adaptive Ltd. OMG Document, October 2003.

ptc/03-10-14.

12. Netbeans Metadata Repository (MDR). [Online] http://mdr.netbean.org.

13. Berkeley DB XML. [Online] http://www.sleepycat.com/products/bdbxml.html.

<Bibliography

Γεώργιος Κοτόπουλος Page 140

14. 1st P2P Distributed Implementation of the DBE KB and SR. TUC/MUSIC. December

2005. DBE Deliverable, D14.3.

15. Properties of Extended Boolean Models in Information Retrieval. H., Lee J. 1982. 17th

ACM SIGIR International Conference on Research and Development. pp. 182-190.

16. Integrating Diverce Information Managment Systems: A Brief Survey. IEEE Data

Engineering Bulletin. Raghavan, S. and Garcia-Molina, H. December 2001, Vol. 24, 4,

pp. 44-52.

17. Algorithms and Applications for universal quantification in relational databases.

Information Systems. Rantzau, R., Leonard D. Shapiro, Bernhard Mitschang, Quan

Wang. 2003, Vol. 28, 1-2, pp. 3-32.

18. Searching web databases by structuring keyword-based queries. Pável Calado,

Altigran S. da Silva, Rodrigo C. Vieira, Alberto H. F. Laender, Berthier A. 2002. 11th

International Conference on Information and Knowledge Managment.

19. Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to

Schema Matching. Melnik, S., Garcia-Molina, H. and Rahm, E. s.l. : 18th ICDE

Conference , 2002.

20. A P2P and SOA Infrastructure for Distributed Ontology-Based Knowledge Managment.

Gioldasis, N., et al. 6th Thematic Workshop of the EU Network of Excellence DELOS on

Digital Library Infrastructures.

21. Binary codes capable of correcting deletions, insertions and reversals. Levenshtein, I.

V. [ed.] Cybernetics and Control Theory. 1966.

22. Lucene, Apache. [Online] http://lucene.apache.org.

23. Comparison of schema matching evaluations. Do, H., Melnik, S. and Rahm, E. Erfurt

(DE) : s.n., 2002. GI-Workshop "Web and Databases".

24. Construction automatique de taxonomies pour l aide a la representation de

connaissances par objects. Valtchev, P. These d' Informatique, Universite Grenoble 1.

1999.

25. Framework for Ontology Allignment and Mapping (FOAM). Institut AIFB, Universität

Karlsruhe. [Online] http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/.

26. Apache Derby database. [Online] http://incubator.apache.org/derby.

<Bibliography

Γεώργιος Κοτόπουλος Page 141

27. Knowledge Base Design and Implementation Status . s.l. MUSIC/TUC.: DBE Internal

Document.

28. Introduction to Modern Information Retrieval. Salton, G. and Buckley, C. New York :

McGraw-Hill Book Company, 1982.

29. On the evaluation of boolean operators in the extended boolean framework. Lee, J. H.,

et al. 1993. 16th ACM SIGIR International Conference on Reasearch and Development in

Information Retrieval. pp. 291-297.

30. An Approach to Integrating Query Refinement in SQL. Ortega-Binderberger, M.,

Chakrabarti, K. and Mehrorta, Q. March 2002. 8th International Conference on

Extending Database Technology. pp. 15-33.

31. Modern Information Retrieval. Baeza-Yates, R. and Ribeiro-Neto, B. New York :

ACM Press, 1999.

32. The Object database standard /ODMG-93. Attword, T. et al. San Mateo : Morgan-

Kaufmann, 1994.

33. MOF-based Knowledge Managment for a Digital Business Ecosystem. Kazasis, F. G., et

al. s.l. : 2nd IST Workshop on Metadata Managment in Grid and P2P systems (MMGPS),

December 2004.

34. XMOF Queries, Views and Transormations on Models using MOF, OCL and Patterns.

Compuware Corporation and SUN Microsystems. 2003. OMG Doc. ad/03-08-07.

35. MQL: a Powerful Extension to OCL for MOF Queries. Heardean, D., Reymond, K. and

Steel, J. s.l. : EDOC, 2003. p. 264.

36. Towards a Language for Querying OMG MOF-based Repository Systems. Petrov, I. and

Jablonski, S. Lisbon : Wisme Workshop UML , October 2004.

37. Request for Proposal: MOF 2.0 Query/ Views / Transformations RFP. October 2002.

OMG Doc.: as/2002-04-10.

38. A Metamodel-based OCL compiler for UML and MOF. Loecher, S. and Ocke, S. s.l. : 6th

International Conference on the UML and its Applications, UML 2003, October 2003. Vol.

154 of ENTCS.

<Bibliography

Γεώργιος Κοτόπουλος Page 142

39. A Review of OMG MOF 2.0 Query / Views /Transformations Submissions and

Recommendations towards the final standard. Gardner, J., et al. York, England : s.n.,

2003. Metamodelling for MDA workshop.

40. Recommender. TUC/MUSIC. March 2005. DBE Deliverable D17.1.

41. A survey of approaches to automatic schema matching. Rahm, E. and Bernstein, P. A.

10, s.l. : The VLDB Journal, 2001, pp. 334-350.

42. H-Match: an algorithm for Dynamically Matching Ontologies in Peer-based Systems.

Castano, S., Ferrara, A. and Montanelli, S. Berlin, Germany : 1st SWDB VLDB

Workshop, 2003.

43. 2nd Release of Recommender. TUC/MUSIC December 2005. DBE Deliverable, D14.4.

44. Final P2P Implementation of the DBE Knowledge Base and SR. TUC/MUSIC November

2006. DBE Deliverable, D14.5.

45. Final release of Recommender. TUC/MUSIC November 2006. DBE Deliverable, D14.6.

46. SparQL: The RDF query language. [Online] http://www.w3.org/TR/rdf-sparql-

query/.

47. The EMF transformations language. IBM. [Online] http://www.eclipse.org/emft/.

