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Abstract 

 

Novel Techniques for Hardware/Software  

Partitioning and Emulation 

 

 

 

Over the last several years, uniprocessor systems, in an effort to overcome the limits of deeper 

pipelining, instruction-level parallelism and power dissipation, evolved from one processing core 

to tens or hundreds of cores. At the same time, multi-chip systems and Systems on Board (SoB), 

have started giving their place to Systems on Chip (SoC) that exploit the latest nanometer 

technologies. This has also caused a tremendous shift in the system development process towards 

embedded systems, hardware/software co-design, SoC designs, multi-core designs, and hardware 

accelerators. Nowadays, one of the key issues for continued performance scaling is the 

development of advanced CAD tools that can efficiently support the design and verification of 

these new platforms and the requirements of today’s complex applications. 

This thesis focuses on three important aspects of the system development process: 

hardware/software partitioning, simulation and verification. Since the time consumed in those 

tasks is usually a large percentage of the overall development time, speeding them up can 

significantly reduce the ever important time to market. 

Hardware emulation on FPGAs has been widely used as a significantly faster and more 

accurate approach for the verification of complex designs than software simulation. In this 

approach, Hardware Simulation Accelerator and Emulator co-processor units are used to offload 

calculation-intensive tasks from software simulators. One of the biggest problems however is that 

the communication overhead between the software simulator, where the behavioral testbench 

usually runs, and the hardware emulator where the Design Under Test (DUT) is emulated, is 

becoming a new critical bottleneck. Another problem is that in a hardware emulation environment 

it is impossible to bring outside of the chip a large number of internal signals for verification 

purposes. Therefore, on-chip observability has become a significant issue. Finally, one more 
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crucial issue is the decision that has to be made on how to partition the system components into 

two distinct sets: those that will be implemented in hardware and those that will run in software. In 

this thesis we analyze all the aforementioned problems and propose novel techniques that can be 

used to attack them. 

First, we introduce a novel emulation framework that automatically transforms certain HDL 

parts of the testbench into synthesizable code in order to offload them from the software simulator 

and, more importantly, minimize the aforementioned communication overhead. In particular, we 

partition the testbench running on the software simulator into two sections: the testbench HDL 

code that communicates directly with the DUT and the rest, C-like, testbench code. The former 

section is transformed into synthesizable code while the latter runs in a general purpose CPU. 

Next, we extend this architecture by adding multiple fast scan-chain paths in the design in order to 

provide full circuit observability and controllability on the fly. Finally, we develop a fully 

automated hardware/software partitioning tool that incorporates a novel flow with new cost 

metrics and functions to provide fast and efficient solutions. The tool employs two separate 

partitioning algorithms; Simulated Annealing (SA) and a novel greedy algorithm, the Grouping 

Mapping Partitioning (GMP).  

Our experiments demonstrate that our methodologies provide cost-effective solutions for the 

hardware/software partitioning and emulation of large and complex systems.  
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Chapter 1. Introduction  
 

 

“No architecture is so haughty as that which is simple.” 

John Ruskin 

 

 

 

Development and testing of large complex systems is a time consuming process that 

continuously evolves over time following the market requirements of every era. Nowadays, the 

rising design complexity combined with the reduced time-to-market window has revolutionized 

the embedded system design process. The traditional design techniques (i.e. independent 

hardware and software design) are now being challenged when heterogeneous models and 

applications are integrated in complex systems on chip. In hardware/software co-design, 

designers analyze the trade-offs in the way the hardware and the software components of a 

system work together so as to exhibit a specified behavior, given a set of performance goals and 

technology. 

One very promising approach in developing such an embedded system is to use a 

hardware/software co-design platform in order to (a) partition the design into hardware and 

software components, (b) design all the partitioned components, (c) co-simulate the entire 

system, and (d) finally test and verify the system, as shown in Figure 1.1.  
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Figure 1.1. Hardware/Software Co-design Flow 

This thesis focuses on three important aspects of the system development process: 

hardware/software partitioning, simulation and verification. The time spent in those tasks is 

usually such a significant portion of the overall development time, so that by reducing it we 

significantly reduce the (nowadays so important) time to market. In this thesis, first we introduce 

a novel hardware emulation framework that performs fast system simulations on an FPGA-based 

platform. Next, we extend this architecture by adding multiple fast scan-chain paths in the design 

in order to provide full circuit observability and controllability during the simulation. Finally, we 

propose a hardware/software partitioning methodology that provides cost-efficient solutions in a 

much faster way than traditional partitioning algorithms. 

 

1.1 Background 

Computer-aided design (CAD) tools have severally increased user productivity in recent 

decades. CAD tools help designers produce higher quality designs in less time, while powerful 

analysis and simulation tools help engineers develop better products in less time. As CAD tools 

have become more powerful, they have also become more complex and specialized. Numerous 

techniques have been employed in order to perform faster, more efficient and with less human 

involvement the required steps in the process of designing and verifying a new system. 
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Such widely used techniques pertained to the simulation and verification of complex designs 

as well as to the hardware/software partitioning of embedded systems are the following:  

 Hardware simulation accelerators and emulators that can imitate the behavior of one 

or more pieces of hardware (typically a system under design) by executing 

simulations on another piece of hardware, typically a special purpose emulation 

system, which is significantly faster than if the simulation is executed on a general 

purpose CPU. 

 Embedded logic analyzers that can be inserted inside an FPGA design in order to 

sample signals for analysis and verification. 

 Partitioning frameworks and heuristics in order to decide which components of the 

system should be realized on hardware and which ones in software. 

Next, we describe these techniques and their limitations. 

 

1.1.1 Hardware Simulation Accelerator and Emulator 

Simulation and verification of large complex systems is a time consuming process that 

requires significant man-power. The largest fraction of silicon integrated circuit respins are due 

to functional errors. Thus, comprehensive functional verification is a key factor in reducing 

development costs and delivering a product in time.  

Functional verification of a design is most often performed using logic simulation and/or 

prototyping. There are advantages and disadvantages for each of those approaches and thus often 

both are used. Logic simulation is easy, accurate, flexible, and low cost. However, simulation is 

often not fast enough for large designs and almost always too slow to run the complete 

application software on top of the hardware design. Software simulation of embedded designs 

that need emulation of I/O interfaces or full emulation of embedded CPUs tend to be extremely 

slow.  

In contrast to software simulations, FPGA-based prototypes are fast. It has been a common 

practice for hardware engineers to perform design validation on the FPGA hardware itself since 

back-end verification in hardware provides a faster, more accurate and closer-to-reality model 

than software simulations. Direct hardware execution is thousands of times faster than software 
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simulation, and the reconfigurability of FPGAs allows any design modifications to be 

recompiled and reloaded directly onto the FPGA.  But the time required to implement a large 

design into several FPGAs can be very long and is error-prone. The changes needed in order to 

fix design flaws also take a long time to implement and may require board wiring changes. Since 

FPGA prototypes have limited debugging capabilities, probing signals inside the FPGAs in real 

time is very difficult, if not impossible, and recompiling the FPGA designs in order to change the 

probes takes too long. Moreover, such approach may delay significantly the development of an 

embedded system since the software can be tested only after the hardware implementation is 

complete. This is shown in Figure 1.2 where a typical schedule of an embedded system design is 

depicted. A flexible hardware/software co-simulation platform that can simulate and test the 

software and the hardware sections of the design in parallel is essential. 

 

Figure 1.2. Typical embedded system project schedule 

In the last decade, hardware simulation accelerators and hardware emulators have come into 

picture in order to tackle the aforementioned limitations of software simulations and FPGA-

based prototypes. Hardware simulation accelerators, designed primarily to speed-up front-end 

simulation, have been available to large design centers with large budgets and extensive design 

tool support. The hardware accelerator schemes are based on using circuit boards populated with 

multiple special-purpose ASICs, each of which contains a number of specialized processors and 

lots of local memory (typically 80% to 90% of these devices are memory). In those systems, the 

High Description Language (HDL) representation of the design is compiled into machine code, 

which is subsequently distributed amongst the various processors. 

The alternative to such systems, hardware emulators (or in-circuit emulators), have also 

been proposed as a moderate-cost solution, mainly satisfying the needs of back-end verification. 

The hardware emulator schemes are based on using circuit boards populated with FPGAs, in 
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which case the HDL design is typically synthesized into a gate-level equivalent, which is 

partitioned across, and loaded into, the various FPGAs. In this case a processor executes the non-

synthesizable code such as the testbench.  

 

Figure 1.3. Hardware emulation 

These approaches lighten the burden of hardware design verification by using custom 

hardware to aid the verification process. Hardware accelerator and emulator co-processor units 

are used to offload calculation-intensive tasks from software simulators. However, both 

techniques can address the performance shortcomings of software simulation only to a certain 

extent; even though the design is mapped into a hardware accelerator and thus it is executed 

much faster, the testbench (and any behavioral design code) continues to run on a CPU-based 

platform such as a workstation. A high-bandwidth, low latency channel connects the software 

simulation (workstation) and the hardware accelerator/emulator supporting the signal data 

exchange between the testbench and the design as shown in Figure 1.3. By Amdahl's law, the 

slowest device in the chain will determine the achievable speed and normally, this is either the 

testbench executed on the software simulator or the communication channel connecting the 

software simulator and the hardware emulator. With a very efficient testbench (written in C or 

transaction-based), the channel may become the bottleneck. So the communication overhead 

between the software simulator and the hardware emulator is becoming a new critical bottleneck.   

 Overall performance is typically limited by the communications channel between the 

emulator and the workstation and by the testbench execution time of the components running on 

the workstation. Therefore, we introduce a novel way to tackle this problem in Chapter 4 by 

partitioning the code running on the software simulator into two parts. 



    6 

 

 

Figure 1.4. Software - Hardware communication overhead 

1.1.2 Embedded Logic Analyzer 

Even if the hardware-software communication overhead is heavily reduced, the existing 

hardware emulation schemes still face important limitations; in order to be very effective in the 

verification process, the hardware emulation framework should provide the same level of 

testability as a software HDL simulator does. With the term testability we imply observability 

(i.e. the ability to view or probe the output of a gate) and controllability (i.e. the ability to 

manipulate the inputs of a gate or the state of a flip-flop). Towards this end, FPGA vendors have 

provided integrated solutions, such as Embedded Logic Analyzers (ELAs), which show the 

transient behavior of the design. Such tools allow the designer to easily probe the internal signals 

of the design inside an FPGA, much as he/she would do with an external logic analyzer device.  

Figure 1.5 shows an example ELA, where the Design Under Test (DUT) is running on the 

FPGA and a trigger event (for example an internal signal of the DUT reaching a specific value) 

determines when certain internal signals should be captured and stored in the internal memory of 

the FPGA. In this way, the ELA, that has internal access to the test buses, the clocks and certain 

test events, can be used to debug the actual chip. Additionally, the configuration of the ELA and 

the observations of the acquired results in the shared memory can be accessed through normal 

control interfaces of the chip and do not require special test cards. 
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Figure 1.5. Architecture of Embedded Logic Analyzer 

While ELAs lighten the burden of hardware design verification by adding on-FPGA 

circuitry in order to observe the design on-the-fly, the observability and controllability they 

provide are still limited. Compared to software HDL simulators, the existing ELAs have some 

important limitations: 

 Changing specific parameters, such as the signal probes or the depth of the sample buffer, in 

most cases, requires a time-consuming full recompilation of the user design. 

 ELAs utilize the limited FPGA memory in order to store their traces. As a result, their 

sample memory, which determines the maximum trace period, is limited by the memory 

resources of the FPGA. In a design that uses much of the FPGA's memory, there may not be 

enough memory left over for the ELA.  

 Basic debug operations such as breakpoints, and step by step execution are not supported. 

 There is no controllability of the design; the user cannot force an internal signal to a specific 

value. 

We tackle all the aforementioned problems in Chapter 5 by extending the hardware emulator 

environment introduced in Chapter 4 with multiple fast scan chains added in the user’s design 

and organized in an innovative manner. 
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1.1.3 Hardware/Software Partitioning 

While fast and efficient hardware emulators are very significant in the system development, 

CAD tools should also provide system level guidelines and techniques. Defining the system 

architecture in a software/hardware co-design environment is not a trivial process and any wrong 

decisions at that point may result in significant delays in the development time and/or in 

inefficient designs that cannot meet the system constraints. When considering the design 

costs/time, software implementation is almost always more cost efficient than hardware 

implementation. This is mainly because hardware development requires more effort and money 

than software development. As a result hardware/software co-design has emerged as a key first 

step in the design of complex embedded systems. The ever increasing design complexity and the 

ability of current FPGAs to utilize large numbers of embedded CPUs, as well as special purpose 

hardware modules, makes hardware-software co-design even more important.  

Probably the most important aspect of co-design is the actual hardware/software 

partitioning. Hardware engineers usually partition their system into hardware and software 

entities at an early design stage. Even though the internal implementation and characteristics of a 

design usually are not well specified at the initial design phases, hardware-software partitioning 

is decided a priori and is adhered to as much as possible, because even small refinements in the 

partitioning may trigger extensive redesign. In general the most common design practice is to 

initially try to map everything in software, and then gradually off-load only the most time-critical 

parts of the design to hardware in order to meet the timing constraints. 

Today’s designs consist of several, usually hundreds of, design components which operate 

and communicate with each other in parallel. The design components can range from small 

modules such as FIFOs, arithmetic units, etc., to larger ones such as compression or encryption 

engines, Signal Processing Units, etc. The level of granularity at which partitioning is performed, 

which specifies the size of the design components, is determined at the beginning of the 

partitioning process. Instruction-level granularity, block-level granularity as well as function-

level granularity have all been employed in the past (see Section 3.5). These design components 

will finally need to be mapped to and implemented by the available system entities, which can 

range from general-purpose CPUs, to FPGA slices or to custom-built ASIC gates. In general, 
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depending on the entity the implementation of the component will either be in software or in 

hardware. 

The Partitioning Problem is, at its simplest form, a “best fit” problem that tries to identify 

the allocation of the design components into two distinct sets, those that will be executed in 

embedded CPUs and those that will be implemented in specific hardware modules; the overall 

aim is to minimize or maximize a given metric or a number of metrics. 

Since executing a design component in a soft or hard-core CPU is always easier and more 

flexible than implementing the same functionality in hardware, a common practice is to try to 

map as many components as possible into software, making sure at the same time that all the 

performance requirements are met. As a result, most partitioning algorithms try to find the 

partitioning that minimizes the hardware footprint of the design. 

Of course, since the partitioning algorithm is run a priori, in order to decide which 

components should be implemented in software and which in hardware, the algorithm usually 

has to deal with design components that are described in a more abstract behavioral model. For 

this reason, at an initial stage, most algorithms evaluate each design component according to 

several cost metrics such as its performance, power, and size if implemented in hardware. 

Similarly, capacity metrics are associated with each system entity, such as the maximum 

processing power or bandwidth the entity can provide. 

In Reconfigurable Computing environments (see definition of RC in Section 2.1.2) the 

partitioning algorithm can be applied several times so as to create many different designs that 

can be altered at run time. Therefore, performing fast and efficient hardware/software 

partitioning is especially important in RC. Despite the extensive research on partitioning 

algorithms no commercial tool can yet provide a complete, fast and efficient solution. As our 

results demonstrate in Chapter 6 our tool provides clear, fast and effective solutions to all the 

partitioning problems that arise during the partitioning process.  

 

1.2 Contributions 

The main contributions of this thesis are threefold: a) we introduce an emulation platform 

that overcomes the communication problem of existing hardware emulators, b) we provide full 
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circuit observability and controllability of the emulated design and c) we propose a fast and 

efficient approach for hardware/software partitioning.  

In  Chapter 4 we propose a new approach that outperforms, in a number of real-world 

cases, all the current hardware emulator systems by a factor of more than 15. Moreover, our 

method is transparent to the designer (unlike some emulators that require re-writing of the 

testbench) and can also be used on top of existing emulation platforms triggering an even more 

significant acceleration. 

 

Figure 1.6.  New Emulation Flow transforms portion of TB code into HW and adds scan-

chains in DUT. 
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In Chapter 5, we tackle the problems of existing ELAs, described in Section 1.1.2, by 

extending the hardware emulator environment introduced in Chapter 4 with multiple fast scan 

chains added in the user’s design and organized in an innovative manner. A scan circuitry links 

all the storage elements of a design, or part of them, and eventually creates a large shift register, 

the so-called scan chain. The major advantage of this approach lies in the fact that, in the scan 

mode, we have full observabiliy and controllability of the memory elements included in the scan 

chains. 

Figure 1.6 shows a conventional emulation flow and our modified flow. The conventional 

flow executes the testbench code on a CPU since it is a non-synthesizable code. Instead of that, 

we split the testbench code and synthesize a certain portion of it. Moreover, we add scan chains 

in the synthesized DUT. The main advantages of these innovative techniques, when compared 

with the existing schemes are: 

 The accesses on the Programming Language Interface (PLI), shown in Figure 1.6, are 

much more infrequent than the accesses at the DUT-testbench boundaries. By 

implementing a portion of the testbench on HW we managed to reduce significantly the 

communication overhead between SW and HW, and the testbench execution time 

outperforming conventional hardware emulation systems by a factor of more than 15. 

 By adding scan-chains in the DUT the ELA can easily trace any signal in the DUT. In 

this way, in order to rerun a test with different set of traces or set a new trigger condition 

the user simply has to modify the configuration memory of the ELA, instead of 

performing a very time consuming design re-synthesis, re-placement and re-routing. This 

is feasible because the set of traces and the trigger condition are specified in the 

configuration memory of the ELA (see Section 5.4) instead of being hardwired in the 

ELA.  

 Our scheme holds the traces of the emulation in an external large memory instead of 

the limited on-chip FPGA memory utilized by the existing schemes. This is feasible due 

to the breakpoint operation our methodology provides (see Section 4.8). 

 Run-time modifications of the values of any of the internal signals of the DUT during 

execution can be easily performed through the scan chains. 
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These advantages are more significant in complex designs or when time to market is a 

critical factor. Simulators simply are too slow to fully verify complex embedded designs at gate 

level and provide insufficient feedback to the developer. We propose a platform for efficient 

evaluation of complex designs where any modification in the implementation has to be verified 

through numerous regression tests.  

Regarding the hardware/software partitioning problem, we propose in Chapter 6 an 

innovative and fast approach so as to provide cost-efficient systems in a timely manner. Our 

novel algorithm produces very similar results (the difference is less than 3%) to those triggered 

by the most widely used algorithms (such as simulated annealing) while it is more than 2500 

times faster. Performing fast hardware/software partitioning is especially important in 

Reconfigurable Computing (RC) since in RC environments the partitioning algorithm can be 

applied several times so as to create many different designs that can be altered at run time 

[KK04].  

 

1.3 Outline 

The outline of the rest of this thesis is as follows. 

Chapter 2 provides the background and demonstrates the trends of existing technologies. It 

discusses the characteristics and limitations of the FPGAs and the multiprocessor systems. It 

provides significant knowledge and guidelines for proposing and developing cost-efficient 

algorithms and methodologies in the rest of the thesis. 

Chapter 3 describes the related work. It provides information about the existing hardware 

simulation accelerators, hardware emulators and ELAs. In parallel, it describes existing 

approaches employed in order to tackle the various limitations of current simulation systems, 

described in Section 1.1. Finally, it describes the existing algorithms and research on 

hardware/software partitioning and shows how this work has influenced our decisions. 

Chapter 4 describes the proposed hardware emulator platform which solves the 

communication bottleneck between the testbench and the DUT.  We first introduced this 

platform in [MP07, MP08]. 
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Chapter 5 proposes a scan chain methodology in order to provide full chip observability and 

controllability at run time. Connecting the registers of the design in multiple scan chains we 

achieved full observabiliy and controllability of the memory elements included in the scan 

chains. We first described our scan chain methodology in [MP09]. 

Chapter 6 presents our hardware/software partitioning tool and methodology. It explains all 

the steps of the partitioning process such as the graph representation of the design and the cost 

metrics derived through simulations. The tool supports a novel greedy algorithm for partitioning 

the design which produces results very close to those of the most successful partitioning 

approaches, such as simulated annealing, while it is several times faster. We introduced this 

partitioning tool in [MP10]. 

Chapter 7 provides a detailed evaluation of the proposed methodologies and platforms. Our 

approaches are compared against existing methodologies and a performance analysis based on 

system simulations of real world and random test scenarios is provided. First, we analyze the 

hardware emulator and the scan chain methodology and finally we evaluate the 

hardware/software partitioning algorithm. 

Finally, Chapter 8 provides summary, conclusion remarks and future directions. 
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Chapter 2. Technology Trends 
 

 

 

“Man is still the most extraordinary computer of all.” 

John F. Kennedy 

 

 

 

 

Currently, the most important problem in designing complex devices is that traditional 

approaches in system development as well as the associated tools do not scale well. The 

designers encounter significant difficulties in delivering competitive products to the market, 

since traditional design methods cannot satisfy, at the same time, issues such as short time-to-

market, low cost, and complex, reliable, high performance and low power designs. This Chapter 

focuses on the state-of-the-art technologies used for developing competitive systems in order to 

meet the high market expectations. This study will provide us significant knowledge and 

guidelines for proposing an efficient Hardware Emulator platform (Chapter 4 and Chapter 5) as 

well as to understand the requirements of today’s embedded applications in order to provide an 

efficient hardware/software partitioning methodology (Chapter 6). 

Several different platforms ranging from multi-core CPUs (such as Cell processor), to high-

density FPGAs and ASICs come to meet the requirements of today’s market. However, each 

platform has different advantages and disadvantages. While programming a multi-core CPU is 

not so trivial, the effort required for implementing an application in an FPGA or ASIC is far 

more significant because the description has to be taken down way beyond the assembly coding 
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level, all the way to the micro electronics gate logic level. On the other hand, a hardware 

implementation (FPGA/ASIC) provides faster solutions than a software implementation (CPU). 

Moreover, FPGA-based platforms offer higher performance and better energy efficiency than 

CPU-based platforms for numerous applications. 

A designer can trade off between ease of implementation, system performance and low power 

dissipation by using the aforementioned available platforms or a combination of them. The 

manpower, regarding the development and testing of a system, and the performance and power 

dissipation of the system are highly coupled with the selected technologies.  

 

2.1 Field Programmable Gate Arrays (FPGAs) 

A Field Programmable Gate Array (FPGA) is a semiconductor device containing 

programmable logic components and programmable interconnects. The programmable logic 

components can be programmed to duplicate the functionality of basic logic gates such as AND, 

OR, XOR, NOT or more complex combinational functions such as decoders or math functions. 

In most FPGAs, these programmable logic components also include memory elements, which 

may be simple flip-flops or complete blocks of highly-dense memories. A hierarchy of 

programmable interconnects allows the logic blocks of an FPGA to be interconnected as needed 

by the system designer. These logic blocks and interconnects can be programmed after the 

manufacturing process by the customer/designer (hence the term "field programmable", i.e. 

programmable in the field) so that the FPGA can perform whatever logical function is needed. 

State of the art FPGAs also provide embedded processors, transceivers and floating point units 

interconnected in a modular way.  

FPGAs have a faster growth of transistor density even than that of general processors, as it 

can be seen in Figure 2.1. The largest FPGAs now in the market, part of the Xilinx Virtex6 and 

Virtex7 family devices, provide more than ten million "equivalent gates" (the relative density of 

logic). These advanced devices also offer features such as built-in hardwired processors (such as 

PowerPC and ARM), substantial amounts of memory in the range of MBytes, clock management 

systems, and support for many of the latest, very fast device-to-device signaling technologies 

such as gigabit transceivers.  
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Figure 2.1. The growing of transistor density in processors and FPGAs devices. 

 

2.1.1 System on Chip and HW/SW Co-design 

System on Chip (SoC) is an idea of integrating all components of a computer or other 

electronic system into a single integrated circuit (chip). SoC designers often have to speed up 

critical portions of their design by implementing them in hardware, because general-purpose 

processor cores cannot meet the required performance goals.  

Most SoCs are developed from pre-qualified hardware blocks (called Intellectual Property 

(IP) cores) together with the software drivers that control their operation. By simply 

interconnecting pre-qualified IP cores the SoC development can be accelerated significantly. The 

hardware blocks are interconnected together using CAD tools and the software modules are 

integrated using a software development environment. Certain tools, such as Xilinx EDK, 

support SoC design flows on FPGAs. 

A typical application of SoC is in the area of embedded systems. An embedded system is a 

combination of computer software and hardware, either fixed in capability or programmable, that 

is specifically designed for a particular function. Industrial machines, automobiles, medical 

equipment, cameras, household appliances, airplanes, vending machines and toys, as well as the 

widely used cellular phone and PDA are among the myriad possible hosts of an embedded 

system. Since the embedded system is dedicated to specific tasks, design engineers can optimize 

it in terms of size and cost as well as in terms of reliability and performance; some embedded 

systems are mass-produced, benefiting also from economies of scale. 
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Current practice, in the vast majority of the cases, in embedded design makes use of a 

sequential scheme: the designer decides the platform (FPGA fabric, multi-core CPU, DSP, etc.) 

for implementing each design component (arithmetic units, compression, encryption engines, 

signal processing units, etc.), then the hardware platform design is completed, then an operating 

system and/or middleware is chosen and tested on the hardware prototype platform, and finally 

the embedded software is ported on the operating system and/or the middleware. In this 

complicated practice, the designer faces the problem of a very long design cycle. A unified, 

holistic process to embedded system design will enable the design of such a system to be 

performed at a high level of abstraction, where every component of the system has a specified 

behavior and several implementation paths, in software or in hardware. Hardware/software 

codesign is a unified process, which enables system design to take place free of any 

implementation-specific details, by means of defining applications using an abstract system 

model, and then by providing a concurrent mapping path into a mix of hardware and software. 

The design flow for a SoC aims to seamlessly develop the hardware and software components of 

the system in parallel. Essentially an ideal codesign process should decouple the design of the 

system from the implementation details of the underneath hardware or software platform 

providing a unified model for hardware and software development.  

A key step in the SoC design flow is emulation: the hardware is mapped onto an emulation 

platform based on a field programmable gate array (FPGA) that mimics the behavior of the SoC, 

and the software modules are loaded into the memory of the emulation platform. Once 

programmed, the emulation platform enables the hardware and software of the SoC to be tested 

and debugged at a speed close to its full operational speed. 

 

2.1.2 Reconfigurable Computing 

Reconfigurable Computing (RC) is “computer processing with reconfigurable computing 

devices” (such as FPGAs). The principal difference when compared to using ordinary 

microprocessors is the ability to make substantial changes to the hardware itself (i.e. the FPGA 

fabric) on the fly. Configuration of these reconfigurable systems can happen at deployment time, 

between execution phases, or during execution (in this latter case it is called run time 
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reconfiguration). Implementing the critical operations of a process on hardware instead of using 

a general purpose microprocessor can result in significant performance speedup. 

The main characteristic of RC is the presence of programmable hardware that can be 

reconfigured to implement a specific functionality, which is more suitable for specially tailored 

hardware than for a processor. RC systems potentially combine microprocessors and 

programmable hardware in order to take advantage of the combined strengths of hardware and 

software and have been used in applications ranging from embedded systems to high 

performance computing.  In reconfigurable computing certain critical parts are implemented in 

hardware and therefore heavily accelerated; those parts would have been executed much slower 

in general-purpose processor cores.  

Hardware, like software, can be designed modularly, by creating subcomponents and then 

higher-level components to instantiate them. In many cases it is useful to be able to swap out one 

or several of these subcomponents while the FPGA is still operating. Partial Reconfiguration 

allows reconfiguration of selected areas of an FPGA anytime after its initial configuration. You 

can do this while the design is operational and the device is active (known as active partial 

reconfiguration) or when the device is inactive in shutdown mode (known as static partial 

reconfiguration). One of the largest FPGA manufacturers, Xilinx, has supported partial 

reconfiguration in many generations of its devices. Partial reconfiguration can be used to save 

space for big designs by swapping in and out different portions of the design on the same FPGA 

area. With the introduction of FPGAs with faster reconfiguration times and partial 

reconfiguration support, it is possible to use FPGAs in a dynamically reconfigurable 

environment. This technology makes possible the concept of unlimited hardware or "virtual 

hardware".  

2.2 High Performance Computing 

The term High Performance Computing (HPC) refers to the use of parallel supercomputers 

and computer clusters, that is, computing systems comprised of multiple (usually mass-

produced) processors linked together in a single system with commercially available 

interconnects. The TOP500 project (http://www.top500.org/) was started in 1993 so as to provide 

a reliable basis for tracking and detecting trends in HPC. Twice a year, a list of the sites 

operating the 500 most powerful computer systems is assembled and released. "HPC in Europe 
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Taskforce" plans are aimed at creating a sustainable supercomputer infrastructure in Europe to 

support science that also includes a world class supercomputer system as the top of the pyramid. 

Τhe computer industry has switched to delivering multiple core processors rather than 

increasing clock speed. Recent trends in HPC systems have shown that future increases in 

performance will only be achieved through increases in system scale, i.e., using a larger number 

of components and not by improvements in single-processor performance. The fact that future 

single CPU-chips need higher Gigahertz rates, resulting in higher energy consumption, 

developing more heat and bringing the chips to their physical limits was the real stimulus for the 

multi-core processor technology. In the last couple of years we have witnessed multi-core 

systems, within large clusters, and parallel computing becoming a must
1
. The chart in Figure 2.2 

shows the increase in the number of processors employed in a system during the last decades. 

 

Figure 2.2. Number of processors over time. 

According to the TOP500 list of the world’s most powerful supercomputers, seven systems 

achieved performance at or above 1 petaflop/s. The most powerful system is the Chinese Tianhe-

1A system at the National Supercomputer Center in Tianjin, achieving a performance level of 

2.57 petaflop/s (quadrillions of calculations per second). The Cray XT5 “Jaguar” system at the 

                                                      
1
 http://www.top500.org/blog/2009/05/20/top_trends_high_performance_computing 
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U.S. Department of Energy’s (DOE) Oak Ridge Leadership Computing Facility in Tennessee is 

ranked in the second place achieving 1.75 petaflop/s when Linpack (the TOP500 benchmark 

application) runs. 

Five of the systems in the Top 10 were built in 2010. Of the Top 10, five are in the United 

States and the others are in China, Japan, France, and Germany. The most powerful system in 

Europe is a Bull system at the French CEA (Commissariat à l'Énergie Αtomique), ranked at 

number six.  

Several HPC systems have been used in simulation environments. Multiprocessor systems 

can provide cost-efficient solutions for simulating parallel applications. For example, hardware 

simulator accelerators, described in 1.1.1, use multiple CPUs in order to simulate the behavior of 

a design. Figure 2.3 shows the most important areas of applications where HPC systems have 

been employed. 

 

Figure 2.3. Application areas over number of systems 

 

2.3 FPGAs vs Microprocessors 

Programmable Logic Devices offer a cost effective alternative to custom microprocessors 

due to their generic nature with the added benefits of short time-to-market, no NRE costs, off-the 

shelf availability, relatively low power dissipation, and high performance. An FPGA device can 

be reprogrammed to do any logic task that can be fitted into its gates. The logic gates can be 
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rewired and configured to any possible task while microprocessors already have their own 

circuitry and instruction set that the programmer must follow. On the other hand a CPU can be 

programmed in a much faster and simpler way than an FPGA. 

State of the art supercomputers, such as the Chinese Tianhe-1A system at the National 

Supercomputer Center in Tianjin, can achieve PetaFlop processing power. In a scalable multi-

processor infrastructure the computation power is proportional to the number of the processors.  

On the other hand, special-purpose platforms can be very effective, both performance-wise 

and cost-wise, compared to general-purpose multi-processor platforms. The performance of a 

serial algorithm ported to an FPGA is usually in the order of 50 to 100 times faster, than the 

same algorithm running on a state-of-the-art general-purpose processor; several studies
2
 

demonstrate a 90x speedup in parallel applications when employing FPGA-based systems. 

Similar conclusions can be derived from hardware simulator accelerator and emulator 

systems. The hardware simulator accelerator is based on using circuit boards populated with 

multiple processors and lots of local memory. In this case, the HDL representation of the design 

is compiled into machine code, which is subsequently distributed amongst the various 

processors. The alternative, the hardware emulator, is to use circuit boards populated with 

FPGAs, in which case the HDL design is typically synthesized down into a gate-level equivalent, 

which is partitioned across, and loaded into, the various FPGAs. A hardware emulator (FPGA-

based simulator) is about 100 times faster than a hardware accelerator (CPU-based simulator) of 

similar cost. 

In summary, the pros and cons of the FPGAs and the microprocessors are the following: 

Advantages of CPUs over FPGAs 

 Ease of implementation of a CPU-based design, since the user can develop and test the 

system in a purely software environment. FPGAs are quite cumbersome to program. It 

seems to be more suited to electronic engineers (who are generally the ones who work on 

FPGAs) than software developers. 

 Fast turn-around time (time between major modifications of the model) of a CPU-based 

platform compared to the time required to generate a new bitstream for FPGA. 

                                                      
2
 http://www.soccentral.com/results.asp?CatID=488&EntryID=13654,  

  http://www.drugdiscoverynews.com/index.php?newsarticle=371 
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 FPGA machines are rarely large enough to encode entire interesting programs all at once. 

Smaller configurations handling different pieces of a program must be swapped-in over 

time. However, configuration time is too expensive for any configuration to be used only 

briefly and discarded. In real programs, much code is not repeated often enough to be 

worth loading into an FPGA. 

 No circuit constructed with an FPGA can be as efficient as the same circuit in dedicated 

hardware. Standard functions like multiplications and double precision floating-point 

operations are big and slow in an FPGA when compared to their counterparts in ordinary 

processors. 

 Problems that are worth solving with FPGAs usually involve more data than can be kept 

in the FPGAs themselves. No standard model exists for attaching external memory to 

FPGAs. FPGA-based machines typically include ad hoc memory systems, designed 

specifically for the first application envisaged for the machine/board. 

Advantages of FPGAs over CPUs 

 FPGAs are great for real time systems, where even 1ms of delay might be too long. 

FPGAs can be significantly faster for certain applications, (for example for well-defined 

digital signal processing usages (e.g. radar data)), than even the best CPUs available. 

 An FPGA-based design consumes less power than a CPU-based design. 

An interesting combination of FPGAs and multiprocessor systems is the Multiprocessor 

System-on-Chip (MPSoC) which is a SoC that uses multiple processors usually targeted for 

embedded applications. It is used by platforms that contain multiple, usually heterogeneous, 

processing elements. All these components are linked to each other by an on-chip interconnect. 

These architectures usually meet the performance needs of multimedia applications, 

telecommunication architectures, network security and other application domains while limiting 

the power consumption through the use of specialized processing elements and architecture. 

 

2.4 Summary 

Some scientific and technical applications are very demanding in terms of computational 

intensity, size of data sets and number of I/O channels. These applications usually perform High-
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Performance Computing-type computations under real-time constraints. As processing 

capabilities increase and parallel programming barriers decrease, we expect this trend to continue 

and most likely accelerate in terms of Tera and Giga-Floating Point Operations Per Second 

(TFLOPS and GFLOPS) and Giga Multiply-ACcumulate operations per Second (GMACS).  

In order to respond to these and other related challenges, new technologies for CAD tools 

are under development. Such technologies are the following: 

 FPGAs that can implement high-performance low power designs using programmable logic 

blocks in a modular way. 

 Multi-core CPUs that can be easily programmed to execute parallel programs. 

By combining different technologies and hardware components available as Commercial-

Off-The-Shelf (COTS) technologies, a hybrid, heterogeneous architecture can be easily 

configured which can combine the advantages from all those technologies. 



    24 

 

 

 

 

Chapter 3. Related Work 
 

 

 

“A generation which ignores history has no past and no future” 

Robert Heinlein 

 

 

 

 

 

 

With the advent of multi-processor embedded systems (see Chapter 2), system development 

has changed from a simple design and verification process to a multi-step process where 

advanced CAD tools play a significant role.  

Taking a step back in time, 1981 marks the beginning of EDA as an industry. For many 

years, some of the largest electronic companies, such as Hewlett Packard, Tektronix, and Intel, 

had pursued EDA internally. Within a few years there were many companies specializing in 

EDA, each with a slightly different emphasis. The first trade show for EDA was held at 

the Design Automation Conference in 1984. In 1986, Verilog, a nowadays popular HDL 

(Hardware Description Language), was first introduced by Gateway Design Automation. In 

1987, the U.S. Department of Defence funded the creation of VHDL as a specification language. 

Simulators quickly followed these introductions, permitting direct simulation of chip designs, the 

so called “executable specifications“. In a few more years, back-ends were developed in order to 

perform logic synthesis. 

By late 1980s, an embedded system was the norm rather than the exception for almost all 

electronics devices. The specific constraints that must be satisfied by embedded systems, such as 

http://en.wikipedia.org/wiki/Hewlett_Packard
http://en.wikipedia.org/wiki/Tektronix
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Design_Automation_Conference
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/VHDL
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timeliness, energy efficiency of battery-operated devices, dependable operation in safety-relevant 

scenarios, short time-to-market and low cost, particularly in consumer products, coupled with the 

never-ending pressure to increase the functionality, lead to an enormous growth in the 

complexity of the design at the system level. System complexity challenges imply super-

exponentially increasing complexity in the design process. Hardware Emulators, Embedded 

Logic Analyzers and hardware/software partitioning tools have become common parts of the 

design process and essential tools to realize a cost-effective design. 

 

3.1 Hardware Simulation Accelerators and Emulators  

Nowadays, with the rising design complexity, there is an increased interest in hardware 

simulation accelerators and emulators (see Section 1.1.1). Speeding up simulation and 

verification of complex embedded systems can save design teams a lot of money and effort. 

Therefore, more and more companies build systems for hardware emulation.  

Among the available simulation acceleration and emulator systems, we note the following: 

 The Palladium system from Cadence [CAP], which provides hardware acceleration and in-

circuit emulation, can speed up verification 100 to 1M times when compared with software-

based RTL simulation. Palladium is described as an array of “massively parallel Boolean 

compute engines”, and supports the latest industry standards, such as OSCI SystemC TLM 

1.0/2.0 (transaction-level modeling), IEEE 1850 PSL (assertion-based verification), and 

SCE-MI 2.0 (transaction-based acceleration). The designer can apply the Palladium’s 

capabilities to mixed SystemC-HDL designs across both hardware-based and software-based 

simulation environments. The tool supports advanced SystemC simulation features such as 

save/restore, transaction-level recording, and multi-language hierarchical visualization and 

analysis. 

 The Veloce SoC verification platform from Mentor Graphics [MGV] delivers high 

performance simulation acceleration and SoC in-circuit emulation to speed-up the 

verification of complex designs from 8 to 512 million gates. The product family platform and 

accompanying software allow designers to create reconfigurable hardware representations of 

a SoC design, thus enabling pre-silicon testing and debug at hardware speeds with real-world 
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data. Veloce employs the SCE-MI 2.0 communication protocol to provide a simulation-like 

debug environment that allows full signal visibility into the design. 

 The Zebu system emulator from EVE [EVZ], which can handle 200 million gates, and up to 

five of them can be combined to handle up to 1-billion gates. It is aimed primarily at large-

scale chip and system emulation applications, and it is offered in a modular, 19-inch rack-

mountable configuration, which accepts up to 64 Xilinx Virtex-II XC2V8000 FPGAs. EVE 

has also acquired Tharas Systems, the company behind the Hammer accelerator system 

which contains up to 128 specialized processors connected through a proprietary backplane. 

 The Riviera-IPT system from Aldec [ALR], an FPGA-based PCI board that is tightly 

coupled to Aldec’s own software simulator. A single board has a simulation capacity of up to 

12M gates. Multiple boards can be connected on the same PCI bus for larger capacity. 

The following table summarizes the features of the above systems. 

Product Accel. Emul. Capacity Speedup  
Emulation 

Speed 
 

Cadence 

(Palladium) 

√ √ 256M 1M 2MHz 

 

Mentor 

(Veloce) 

√ √ 512M 400 1.5MHz 

 

EVE 

(Zebu) 

 √ 200M ? 30MHz 

 

ALDEC 

(Riviera) 

 √ 12Μ ? 1MHz  

Speedup column shows the emulation speedup compared to the RTL simulation 

Figure 3.1. Hardware Accelerator/Emulator Systems 
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3.2 Hardware/Software Communication Bottleneck 

A major challenge that all these hardware-software co-simulation systems must solve is how 

to optimize the communication at the hardware-software interface. Even though this issue has 

largely been identified as of critical importance by all these systems, their individual solutions 

have not been made publicly available. Most of these systems are commercial systems and 

therefore no details have been disclosed regarding their hardware/software communication 

schemes, apart from the use of the Standard Co-Emulation Modeling Interface (SCE-MI), an 

interface introduced by Accelera [AC07]. 

SCE-MI attacks the hardware/software communication bottleneck between the DUT and the 

testbench, by defining both a methodology as well as a protocol. According to SCE-MI the part 

of the testbench closer to the DUT is split into two parts; one that is comprised of “Transactors” 

and is written in synthesizable HDL and emulated on-chip together with the DUT, and one that is 

comprised of “Message Port Proxies” and is written in software and simulated on a host 

workstation.  

 

Figure 3.2. High-level view of SCE-MI’s run-time components 

Figure 3.2, derived from [AC07], shows the main components of the SCE-MI standard. By 

splitting the testbench into two parts, the hardware/software communication has now been 

moved to the proxies-transactors interface. The idea is to make the communication through this 

interface as coarse-grained and consequently as low-traffic as possible, thereby eliminating the 

hardware/software communication bottelneck. 
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In order to do this, the two parts communicate using high-level messages (“transactions”), 

and it is up to the transactors to decompose each incoming message into a series of cycle-

accurate clocked events for the DUT, and, vice-versa, compose a series of clocked events from 

the DUT into a single outgoing message. On the software side, the message port proxies translate 

untimed messages to cycle-accurate messages, and vice versa.  

SCE-MI also standardizes the proxies-transactors interface, by defining a cycle-accurate 

protocol for it, thus increasing the interoperability of transactors between testbenches. The 

protocol supports a superset of SystemVerilog’s Direct Programming Interface (DPI – an 

interface intended to allow the efficient connection of an HDL model with a C model). 

The main disadvantages of SCE-MI’s approach compared to ours are the following:  

 Using SCE-MI’s methodology, the designer has to manually implement a part of the 

testbench (the “transactors”) in synthesizable code. In contrast, our methodology will 

automatically transform HDL testbench into synthesizable code that can run on our 

emulation environment (Section 4.4). 

 SCE-MI performs more transactions between the hardware emulator and the host processor 

than our approach, because we implement a larger portion of the testbench in hardware. By 

performing fewer transactions, the host processor is not involved so often in the emulation 

and therefore the simulation is executed faster in our approach (Section 7.1.2). Additionally, 

we provide a memory controller and floating point unit in order to offload the host processor 

(Section 4.3).  

[YM07] presents a new scheme that reduces the modeling efforts for a transactor while 

retaining the performance of transaction-based verification for hardware/software co-emulation 

systems. While a conventional transaction-based verification requires the designer to develop a 

synthesizable transactor block which interfaces with the DUT and its unfamiliar system 

dependent protocols, the proposed method locates the transactor in the software side instead of in 

the hardware emulator; this allows the designer to develop the transactor in a high-level 

language. Moreover, to reduce the communication time between testbench and DUT, the authors 

make the signal flow uni-directional.  

In [MB99] the authors distinguish the behavioral functionality, which further remains on the 

simulator, with those parts which can be hardware accelerated. The acceleratable parts have to be 
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detected in the testbench description and must be remodeled in a Register-Transfer Level (RTL) 

description. A transaction-level interface is used to reduce the amount of communication data. 

However, no automatic way is provided for finding these hardware accelerated parts of the 

testbench and remodeling them in a RTL description. 

GateRocket [GRR] provides a platform which allows the designer to place synthesizable 

portions of the DUT into the RocketDrive and emulate them on the disk-drive sized verification 

platform. RocketDrive plugs into a standard disk drive slot of a workstation and it is available in 

several configurations, each containing a different FPGA device from Xilinx or Altera. This 

platform can accelerate the simulation by up to an order of magnitude or more depending on the 

design and the testbench. However, the software driver can easily become the performance 

bottleneck. 

In [RH03] the authors introduce a new technology that accelerates functional system 

verification. The authors propose a seamless flow from a behavioral testbench to a re-use-

oriented synthesizable testbench fully compatible with the original testbench. In this way, the 

authors combine the flexibility of a behavioral testbench and the high performance of a 

synthesizable testbench, while greatly reducing the modeling overhead. The approach itself is 

hardware independent. The proposed platform was applied on a hard disc controller achieving a 

speed-up factor of 5000 versus software simulation. No automatic method is provided for 

applying this approach to any generic testbench. 

In [YW04, YC04] the authors propose a methodology to reduce the communication 

overhead by exploiting burst data transfer and parallelism, which is obtained by splitting the 

testbench and moving a part of it into a hardware accelerator. The authors try to identify a part of 

the testbench which is involved in generating the next input stimulus using only output results 

from the DUT; this part is then moved into hardware and merged with the emulated DUT. Their 

experiments demonstrated that the proposed method reduces the communication overhead by a 

factor of about 40 compared to conventional hardware accelerated simulation while maintaining 

the cycle accuracy and compatibility with the original testbench. The authors also propose a 

hybrid dynamic simulation scheme, called TPartitioning, which implements a part of the 

simulator in software running on a processor and maps the rest onto a programmable hardware 

accelerator. The proposed algorithm for hardware synthesis of simple behavioral testbenches 

enables better partitions, thus resulting in lower communication costs between the two 

http://www.xilinx.com/
http://www.altera.com/
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components. However, the efficiency of their algorithm depends on the behavior of the testbench 

since the authors assumed that they could find “autonomous” testbench parts where the 

generating stimulus depends only on the DUT outputs.  

Axis has developed SEmulation [AXS] which compiles a RTL design into "computing 

elements", essentially coprocessors, which are then mapped into FPGAs without going through 

logic synthesis. Axis claims to be able to compile 500,000 to 1 million gates in an hour on eight 

distributed workstations. Their approach is still slower than a conventional emulator since 

everything runs essentially on software, but considerably faster than an accelerator.  

Verisity has developed eCelerator [VEE] which focuses on reducing the communication 

overhead by using innovative synthesis technology to transform the most frequently executed 

sections of e-testbenches in hardware. By shifting the computationally most expensive parts onto 

hardware, the tool achieves significant performance gains in the verification process, ranging 

from 10x to 50x speedup. With eCelerator, the designer can still create e-testbenches to generate 

tests for the design, perform complex data and protocol checking and collect functional 

coverage. Verisity has worked with its acceleration/emulation vendor partners to create a new 

buffered transaction-based scheme. The ability to buffer many transactions in the design allows 

for much higher communication bandwidth and removes the need for Specman Elite (Verisity’s 

functional verification tool) to communicate on a cycle-by-cycle basis with the hardware. In 

addition, the interface provides visibility to the synthesized testbench and DUT, enabling full 

visibility to the entire testbench. However, eCelerator is focused only on e-testbenches. 

Finally, [HS06] presents a synthesizable testbench architecture addressing the same 

problem, which is based on a defined instruction set for standalone mode verification. A set of 

instructions describes the transitions of a signal. The instructions are loaded on the emulator’s 

memory. The proposed approach allows for fast emulation and increases flexibility and 

reusability by using a specific instruction set. However, in this case the original testbench has to 

be rewritten following their defined instruction set. 
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3.3 Embedded Logic Analyzers  

The major FPGA vendors have recognized the value of the ELAs, and have released 

proprietary packages that work with their platforms; the most efficient such systems are the 

following: 

 ChipScope [XCS] by Xilinx provides an embedded, software based logic analyzer that can 

monitor the signals of the design. ChipScope tool inserts logic analyzer, system analyzer, 

and virtual I/O low-profile software cores directly into the design, allowing the designer to 

view any internal signal or node, including embedded hard or soft processors. The signals 

are captured in the system at the operational speed and brought out through the 

programming interface, freeing up FPGA pins for the design itself.  

 SignalTap [AST] by Altera enables efficient design verification by allowing the designer to 

quickly route internal signals to I/O pins without affecting the design. The designer can 

define custom trigger-condition logic in order to investigate possible problems. All captured 

signal data are stored in the device memory for further analysis. The SignalTap embedded 

logic analyzer supports up to 1K channels and a sample depth of up to 128K bits. The 

architecture of this ELA is shown in Figure 3.3. 

 ClearBlue [DCB] by DAFCA provides an advanced verification platform. Pre-silicon, the 

ClearBlue Instrumentation Studio software delivers a user-directed environment for 

insertion of the Reconfigurable Debug Instruments (ReDU) into the SoC design. Post-

silicon, the ClearBlue Debugger offers a wide spectrum of configurable, at execution speed, 

analysis capabilities, including signal trace, on-chip logic analyzers, event-based and 

assertion-based debug, and performance monitoring, that all feed directly into standard 

graphical debugging software tools.  

 Configurable Logic Analyzer Module (CLAM) by First Silicon Solution (FS2) provides 

logic analyzer capabilities for Actel’s Flash-based FPGAs. It provides an intuitive and easy 

way to view internal signals and debug the logic design. The system features FS2 On-Chip 

Instrumentation (OCI) in the form of Configurable Logic Analyzer Module (CLAM) logic.  

It can trace and trigger up to 32 channels, selectable in groups of 32, from an available 128 

predefined signals in the FPGA fabric. 
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Figure 3.3. Architecture of Altera’s Embedded Logic Analyzer 

Moreover, PALMiCE FPGA [HGP] by HiTech Global is an external analyzer used for 

debugging designs on Xilinx FPGAs. PALMiCE connects to the FPGA either with a dedicated 

38-pin "MICTOR" connector or "clip-on" connectors. The important feature of this logic 

analyzer is that it allows routing of the internal nodes to the pins of the FPGA to be added or 

changed without re-synthesizing the circuit. However, the place-and-route step, which is usually 

a long process, has to be repeated. 

Embedded Logic Analyzers are also developed for application-specific integrated chips 

(ASICs). Cisco's embedded logic analyzer module (ELAM) is a debugging device used for many 

of Cisco's ASICs. The ELAM is used to capture data and store it for analysis purposes. The user 

enters a trigger expression containing data fields of interest in the form of a logical equation. The 

data fields associated with the trigger expression are stored in a set of Match and Mask (MM) 

registers. Incoming data packets are matched against these registers, and if the user-specified 

data pattern is detected, the ELAM starts capturing data until the end of a predetermined period. 

The ELAM is tailored to the requirements of the Cisco’s packet based architecture. 

3.4 Circuit Observability and Controllability  

All the aforementioned products lack circuit controllability (with the exception of 

ClearBlue) while they provide limited circuit observability; in order to change the watched 

signals they require design recompilation while the size of the data capture buffer is limited by 

the internal memory of the FPGA. 



    33 

 

Scan-chain is not a new technique. Design-level scan is a structured technique proposed 

within the Design For Testability (DFT) process. For example, [WP82] takes advantages of 

traditional DFT methods like scan chain, as well as certain DFT methods which control clocks 

for testability, and proposes a hybrid DFT method that reduces the hardware overhead and the 

test generation time. Moreover, the IEEE 1500 standard [IS05] defines a mechanism for the 

testing of the IP-cores within a SoC by employing scan-chains.  

The concept of using multiple scan chains has also been utilized in DFT architectures in 

order to reduce the test application time as described below.  

In [HP99] a new testability technique is introduced, called Parallel Serial Full Scan (PSFS), 

for reducing the test application time for full-scan embedded cores. Test application time 

reduction is achieved by dividing the scan chain into multiple partitions and shifting in the same 

vector to each scan chain through a single scan input.  

In [JC05] the authors propose an algorithm, based on a framework of reconfigurable 

multiple scan-chains for a System on Chip, to minimize test application time. The test 

application time is minimized by using a balancing method to assign registers into multiple scan-

chains. The experimental results show that this technique significantly reduces the test 

application time. 

In [LH04] the authors present an efficient multiple scan chain architecture for reducing 

power dissipation and test time. This paper shows a DFT technique employing clustering of the 

unspecified bits in the response test cubes so as to reduce power consumption and test time. The 

unspecified bits in the response test cubes are clustered by reordering scan latches; the multiple 

scan chain architecture is modified by inserting multiplexers (MUXes) in each scan chain in 

order to implement this reordering.  

Finally, the multiple scan chain approach is also used in [TA06] where the testing 

methodology of the UltraSPARC T1 microprocessor is presented.  

The FreedomChip by Lattice Semiconductor [LS07] is the first FPGA-based design 

methodology to employ scan-chain structures in the fabric. The user’s design is implemented in 

low-cost, custom-tested silicon through automatic insertion of scan logic and dedicated silicon 

test features. This eliminates the difficult and error prone back-end design conversion associated 
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with traditional structured ASICs. Fault coverage of over 99% typically is achieved using these 

test techniques. However, the scan chains are used only for DFT and not for circuit observability. 

 Wheeler et. al.  in [WG01] demonstrate how “design-level scan” can provide an efficient 

approach for the monitoring and control of the status of an FPGA. This paper uses a scan chain 

methodology for providing full circuit observability and controllability for functionally 

debugging FPGA designs. The proposed design-level scan technique includes all FPGA flip-

flops and RAMs in a serial scan chain using the FPGA logic rather than custom-made transistor 

logic. This paper describes the general procedure for modifying designs with design-level scan 

chains. The authors measured that scan chains result in an average FPGA resource overhead of 

84%. However, the authors demonstrate their technique without providing a way to apply it at 

run time in order to investigate the transient behavior of a design.  

Finally, Tiwari et. al. in [TT04] propose a framework to  define trigger conditions in an ELA 

utilizing a scan chain methodology. This paper describes a watch-point implementation utilizing 

scan chains which is applied to the hardware design running on the FPGA in order to help in 

debugging and verification. The hardware debugging procedure proposed, which uses the look-

up table shift registers (srluts) of the FPGA, does not require any recompilation of the design in 

order to change the watch-point conditions and thus is very fast. In this paper, the area overhead 

resulting from adding this scan-chain based watch-point logic is discussed and it is compared 

with other proposed debugging techniques. The observed average area overhead was 46% for the 

ITC benchmark circuits with varying widths of watch-point signals. This work is orthogonal to 

our approach; their scheme can be used on top of our framework so as to define the trigger 

conditions in an optimal way. 

The methodology we propose is based on the hardware emulator environment introduced in 

Chapter 4. In Chapter 5 we extend the aforementioned basic ideas from [JC05, HP99, WG01, 

TT04] by combining a multiple scan chain methodology (Section 5.3), a novel ELA (Section 

5.4) and the synthesizable testbench methodology (Chapter 4), so as to build an integrated tool 

that supports fast emulations and efficient circuit testability at run time. We show that our 

methodology is, to the best of our knowledge, the first that combines the flexibility of a software 

simulator with the high speed of a hardware emulator. We also evaluate our approach in terms of 

area, cost and speed, and show that the best tradeoffs are achieved for a certain range of scan 

chains independent of the DUT size (Section 7.2). 
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3.5 Hardware/Software Partitioning 

The first papers on hardware/software partitioning were presented in early nineties (for 

example [EH93]) and then for a few years this was considered a very active research topic in the 

CAD community. In the early 2000 the topic was considered “uninterested” and that was valid 

until recently. However, nowadays, with the rising design complexity, there is again an increased 

interest in hardware/software co-design. Even though, this is an active topic more or less for 

about 20 years several issues remain still open due to the unavoidable complexity of the actual 

partitioning problem.  

The partitioning problem is NP-complete since it requires the exploration of a design space 

whose size grows exponentially with the number of design components. Several researchers have 

proposed partitioning heuristics that an automated tool can follow. They differ in the initial 

specification, the level of granularity at which partitioning is performed, the degree of 

automation of the partitioning process, the cost metrics, the cost function, as well as the actual 

partitioning algorithm. The effectiveness of a partitioning tool as well as the time required to 

partition a system depend on the aforementioned characteristics of the partitioning process.  

Common description languages that have been used for the initial specifications of an 

unpartitioned system are C [EH93], HardwareC [GM93], VHDL [EP97], and object oriented 

languages. In our work we have selected SystemC which is, nowadays, a popular high-level 

language for describing a system. 

The granularity of a partitioning approach determines the size of each design component 

that will be considered to be implemented either in hardware or in software. Instruction-level 

granularity [AS93], block-level granularity [HE01] as well as function-level granularity [SN04] 

have all been employed in the past. We follow a thread-based approach (as described in Section 

6.4.2) considering that each SystemC thread is a design component implementing a single 

function and therefore it should not be split into more than one system entities. 

Most partitioning approaches model and analyze a system using annotated process graphs. 

Common cost metrics that determine the annotated values on the graphs involve the I/O delay 

and the rate and execution time of each node. LOTOS [CA96] and QUEST [SR98] can estimate 
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the delay associated with a combinational circuit from its high-level description. In [EP97] the 

authors describe the Computational load of a block and the Communication intensity on a 

channel; those metrics are similar to the MIPS (Million Instructions Per Second) and MTPS 

(Million Transactions Per Second) metrics that we will introduce in Chapter 6. We strongly 

believe that these metrics provide a better insight of the system requirements and of the 

allocation of the system resources. 

A common approach to estimate the cost metrics is through profiling [FZ05, HE98] and 

simulations. In our approach we employ high-level system simulation which seems to be the 

most accurate methodology in order to extract realistic design characteristics. The increased time 

for calculating the cost metrics based on high-level simulations is compensated by the improved 

quality and accuracy of the results. 

The effectiveness of a partitioning process is also determined by the actual partitioning 

algorithm which partitions the systems into hardware and software entities based on the cost 

metrics of the system blocks. Related research on the most effective partitioning algorithms is 

described below. 

Integer Programming 

The translation of the HW/SW partitioning problem into a set of integer programming (IP) 

constraints is described in [NM96]. The advantage of using IP is that optimal results are 

calculated respective to the chosen objective function. This partitioning approach works in a 

fully automatic way and it supports multi-processor systems, interfacing and hardware sharing. 

In contrast to other approaches where special estimators are used, the authors used compilation 

and synthesis tools for cost estimation. The increased time for calculating the cost metrics is 

compensated by an quality of the estimations compared to the results of estimators.  

Greedy Algorithms  

Kalavade and Lee introduced the Global Criticality/Local Phase (GCLP) algorithm to solve 

the two-way partitioning problem [KL94] for tasks of moderate to large granularity. The authors 

note that two possible objective functions could be used in order to decide whether a task should 

be mapped into hardware or software: minimization of the execution time of that node, and 

minimization of the solution size (hardware or software area) of the node’s implementation. To 

this end, the authors devise a global criticality measurement, which is re-evaluated at each step 
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of the algorithm to determine whether time or area is more critical in the design. As the list of 

functional tasks is traversed, the global criticality measurement is checked so as to determine the 

current design requirement. If time is critical, the mapping minimizes the finish time of the task; 

otherwise the resource consumption of the task is minimized. In addition to the global system 

requirements, local optimality is sought by classifying each task as either an extremity (meaning 

it consumes an extreme amount of resources), a repeller (meaning the task is intrinsically 

preferred to have either a software or hardware implementation), or a normal task. This 

classification of each task, and its weighty consideration in the choice of hardware or software 

mapping, represents the local phase of a given task. The running time of the GCLP algorithm is 

extremely efficient (O|N|
2
), and the partitions it determines are no more than 30% larger than the 

optimal solution. 

Dynamic Programming 

Just as Kalavade and Lee incorporated a dynamic performance metric into their partitioning 

decision, Henkel and Ernst incorporated “dynamic functional granularity” [EH93]. The authors’ 

partitioning method allowed the dynamic clustering of fine-grain tasks (at the basic block or 

instruction level) into larger units of operation (as large as a procedure/subroutine). The 

rationalization for having a flexible functional granularity are that large partitioning objects 

should contain complete control constructs (in the form of loop bodies or procedures), and that 

only a few moves should be necessary (between hardware and software) in order to determine a 

good partition. The innovation comes from the hierarchical search of the design space and the 

fast retrieval of a good solution. 

Bhasyam et al [KB03] propose a dynamic programming framework for hardware/software 

partitioning which incorporates the cost of communication delays between components of two 

different partitions. Their work attempts to find a minimum latency solution within finite 

resource constraints. A pruning technique is introduced in order to reduce the runtime of the 

worst-case scenario for partitioning directed acyclic graphs (DAGs). The algorithm has a 

polynomial run time complexity.  

Kernighan-Lin/Fiduccia-Matheyes (KLFM) 

Vahid and Le extended the Kernighan-Lin (KL) circuit partitioning heuristic to explore the 

design space of Hardware/Software functional partitioning [VL97]. The chief advantage of the 
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KL heuristic is its ability to overcome local minima without making excessive numbers of 

moves. The basic strategy of KL is to make the least costly swap of two nodes in different 

partitions, and then to lock those nodes. This continues until all nodes are locked. The best 

partition bestp is selected from this set. All nodes are subsequently unlocked, and the previous 

bestp becomes the starting point for the next set of node swaps. This swapping, locking, 

selection of bestp, and subsequent unlocking and looping continues until no subsequent 

improvement over the former bestp exists. Vahid and Le extend the KL heuristic by replacing its 

cost function with a combined execution-time/area/communication metric, by redefining a move 

as a movement of a functional node across partitions (rather than a swap of nodes), and by 

reducing the running time of the “next move selection” procedure . Via these means, the authors 

are able to achieve nearly equal-quality partitions to simulated annealing in an order of 

magnitude less time. The running time of the algorithm is accelerated by considering task nodes 

at a subroutine-level granularity. 

Ramani and Markov adapted the Fiduccia Mattheyses (FM) hypergraph partitioning 

heuristic to Boolean Satisfiability (SAT), and the WalkSAT SAT solver to hypergraph 

partitioning [RM03]. They developed a SAT solver based on the FM algorithm, and a 

hypergraph partitioner, WalkPart, based on the WalkSAT algorithm (i.e. a stochastic local search 

heuristic for Boolean Satisfiability).  

Hill Climbing and Simulated Annealing 

Ernst and Henkel developed a hill-climbing partitioning heuristic that sought to minimize 

the amount of hardware used, while meeting a set of performance constraints [HE98]. Their 

work operated on the basic block level of functional granularity. They started with an initial 

partitioning that was improved on subsequent iterations. However, to escape convergence to a 

local minimum, they utilized simulated annealing to explore design cost. Unlike greedy 

heuristics, simulated annealing often accepts changes which decrease the quality of a design, in 

hopes of achieving a more optimal final design. Ernst and Henkel began the process with an all-

software partition, seeking to minimize hardware costs by starting with less hardware. In order to 

prevent annealing before a performance-satisfying partition has been reached, they used a 

heavily weighted cost function that provided high penalties for violating runtime constraints. 

This choice proved effective in minimizing hardware costs. To provide performance 
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enhancement estimates for hardware implementation, Ernst and Henkel utilized simulation and 

profiling information to determine the most frequently executed and computationally intensive 

regions of functionality. 

In [SN04], Banerjee and Dutt represent applications as procedural call-graphs and they 

prove that during partitioning, the execution time metric for moving a vertex needs to be updated 

only for the immediate neighbours of the vertex, rather than for all ancestors along all the paths 

to the root vertex. Consequently, move-based partitioning algorithms such as Simulated 

Annealing (SA), can process call graphs with thousands of vertices in less time. The authors also 

introduce a new cost function for SA that allows frequent discovery of better partitioning 

solutions by searching spaces overlooked by traditional SA cost functions. By optimizing the 

SA, several thousand configurations are partitioned in minutes as compared to several hours or 

days using traditional SA. Furthermore, this approach can derive better design points in most 

cases with over 10% improvement in application execution time compared to the solutions 

derived from a Kernighan-Lin partitioning algorithm starting with an all-SW partitioning. 

Genetic Algorithms 

[CA02] presents a Genetic Algorithm (GA) based approach for Hardware/Software 

partitioning targeting an architecture composed of a processor and a dynamically reconfigurable 

datapath (FPGA). From an acyclic task graph and a set of Area-Time implementation trade off 

points for each task, the GA performs HW/SW partitioning and scheduling such that the global 

application execution time is minimized. 

In [MZ06] the authors propose an enhanced genetic algorithm which selects the most 

“interesting” code-parts of the program to be implemented in hardware using a dynamically-

weighted fitness function. The novelty of their approach resides in the reduction of the search 

space obtained by specific optimizations passes that are conducted on each generation. 

Moreover, by considering different granularities during the evolution process, very fast and 

effective convergence (in the order of a few seconds) can be attained.  

[LL09] presents an immune algorithm based on the Pareto concept of multi-objective 

optimization problems. The immune algorithm has many merits, such as high searching 

efficiency, avoiding immature convergence, colony optimization, keeping individual varieties 
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and so on. Experimental results show that the algorithm can achieve the global optimal solution 

of the HW/SW partitioning problem based on certain system constraints. 

Finally, in [XW09] the Non-dominated Sorting Genetic Algorithm (NSGA-II) is applied to 

HW/SW partitioning. Each run of the algorithm can produce many Pareto-optional solutions. 

This method can provide an effective tool for measuring the performance of different objective 

functions.  

Tabu Search 

In [EP97] two heuristics for automatic hardware/software partitioning of system level 

specifications are presented and compared. Partitioning is performed at the granularity of blocks, 

loops, subprograms, and processes with the objective of performance optimization with a limited 

hardware and software cost. The goal of the partitioning process is to minimize the 

communication cost and improve the overall parallelism. One heuristic is based on simulated 

annealing and the other on tabu search. Results of extensive experiments, including real-life 

examples, show the clear superiority of the tabu search based algorithm.  

Similarly, [WC02] compares three heuristic search algorithms: genetic algorithm (GA), 

simulated annealing (SA) and tabu search (TS) and shows that TS is superior to SA and GA in 

terms of both search time and quality of solutions. In addition, the authors have implemented an 

intensification strategy in TS called penalty reward, which can further improve the quality of 

results. 

Ant Colony Optimization 

A recent approach for reconfigurable system partitioning is based on the Ant System (AS) 

algorithm, a heuristic optimization method inspired by the behaviors of ants. In this algorithm, a 

collection of agents cooperate together to search for a good partitioning solution.  

[WL08] presents a collaborative partition approach of coarse-grained reconfigurable system 

design using ant colony optimization. The authors create a distributed collaborative design 

environment for system decision engineers, software designers, hardware designers and 

algorithm developers. The method utilizes the advantages of ant colony optimization in 

searching for global optimal solutions in order to provide a framework for multi-field experts to 

work collaboratively.  
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In Chapter 6 we propose a novel two-stage greedy partitioning algorithm (as analytically 

described in Section 6.2) that can partition an embedded design in a cost-efficient manner. The 

second stage of the algorithm creates sub-graphs similar to the algorithm described in [PA04]. 

The proposed algorithm provides accurate results and can process large graphs with hundreds of 

nodes in less than a second and thus it is much faster than traditional algorithms such as SA and 

KLFM. This is especially important, for example, to FPGA designers who may need differently 

partitioned systems, all executed on the same platform, so as to efficiently utilize the run-time 

reconfiguration characteristics of today’s FPGAs.  

Finally, there are limited research frameworks and tools that have been used in order to 

develop and test hardware/software partitioning algorithms, such as the following: 

  LOTOS [CA96] design flow that performs the partitioning on a Process Communication 

Graph (PCG). Each node in a PCG is first decomposed into a Control and Data Flow Graph 

(CDFG) whose nodes represent basic data-dependent operations. The CDFG represents a flow 

made up of control nodes, which are synthesizable components from a design library. Each 

control node may further be associated with a Data Flow Graph (DFG). The DFG consists of 

data flowing to and from operator nodes. The response time for the operator nodes are fixed 

and are available from an operator library. 

 QUEST [SR98] which is an estimation tool that finds reasonably accurate area and delay 

values from high-level designs. The input, in this case, is an RTL description of the system. 

The basic idea is to implement a small subset of the design in the target technology and 

extract prediction parameters. 

 MUSIC [JE99] which is a high-level synthesis tool that can be used to convert a high level 

description of a system into a VHDL RTL specification for hardware implementation.  

 POLIS [CH94] that represents the system design as a network of Codesign Finite State 

Machines (CFSM). The next level of abstraction for software is a set of s-graphs that are 

derived from the CFSMs. The s-graph is then converted to "C" code using a straightforward 

translation. Delay can be estimated either at the CFSM level or from the s-graphs.  
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Chapter 4. Testbench Code Synthesis  
 

 

 

 

“What you get free costs too much.” 

Jean Anouilh 

 

 

 

 

 

 

The rising complexity of modern embedded systems is causing a significant increase in the 

verification effort required by hardware designers and software developers, leading to the 

“design verification crisis”, as it is known among engineers. Today’s verification challenges 

require powerful testbenches and high-performance simulation solutions such as Hardware 

Simulation Accelerators and Hardware Emulators that have been in use in hardware and 

electronic system design centers for approximately the last decade. In particular, in order to 

accelerate functional simulation, hardware emulation is used so as to offload calculation-

intensive tasks from the software simulator. However, the communication overhead between the 

software simulator and hardware emulator is becoming a new critical bottleneck as described in 

1.1.1. In this Chapter, we introduce a novel emulation framework that automatically transforms 

into synthesizable code certain HDL parts of the testbench, in order to offload them from the 

software simulator and, more importantly, minimize the aforementioned communication 

overhead. Our experiments (see Section 7.1), using real-world designs, demonstrate that (i) our 

approach is at least 1000 times faster than conventional software simulation, and (ii) the 
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proposed method reduces significantly the communication overhead and outperforms the 

conventional hardware emulation systems by a factor of more than 15.   

 

 

4.1 Background and Motivation 

In order to prototype a system, several steps are performed that usually involve a lot of effort 

and associated risks. The approach taken by employing an initial verification of the design on 

FPGA devices is a simple cost-effective one. However, while FPGA vendors provide several 

evaluation boards supporting many different external interfaces (Ethernet, PCI, Serial, etc.) 

connected to a central FPGA or an array of FPGAs, these commercial evaluation boards cannot 

still cover all possible requirements of any design, and therefore several times the designer has to 

build a custom evaluation board according to the exact requirements of the design. Moreover, 

any non-trivial software development and verification can only start once the hardware design is 

tested.  

Hardware Simulation Accelerators and Hardware Emulators aim to simplify the design 

process by performing the simulations faster and more accurately in hardware, and to provide an 

application development platform earlier in the design process. These verification platforms can 

simulate any testbench, including the behavior of any system interface which is usually part of 

the testbench, and therefore they can be used for the verification of any possible design. Using a 

Hardware Emulator the designer can simulate the design with silicon-level accuracy and identify 

problems that typically go undetected until system-level debugging in the lab.  In this way, the 

designer can spot problems early in the design cycle when they are much easier to find and fix. 

Since performing back-end verification in hardware provides an accurate model, we can even 

ignore the FPGA prototyping and testing steps, as long as we have a reliable testbench that 

exercises the system under all possible scenarios. Figure 4.1 shows the conventional and 

modified design processes. 

While hardware emulation is used to offload calculation-intensive tasks from the software 

simulator, the communication overhead between the software simulator and the hardware 

emulator is becoming a new critical bottleneck as described in Section 1.1.1. To facilitate the 

communication path between the hardware and the software sections of an emulator, most 

commercial platforms use a certain transaction-level interface so as to reduce the amount of 
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communication data (most frequently the SCE- MI 2.0 communication protocol introduced by 

Accelera (see Section 3.2)). However this method requires designers to rewrite the testbench in a 

synthesizable fashion while the transaction-level interface can easily become the new emulation 

bottleneck.  

 

Figure 4.1. New design process requires less man-power (less number of steps) and less total 

time. 

In this Chapter we provide a solution which is transparent to the designer. Our methodology 

is able to move this emulation bottleneck away from the interface at the DUT boundaries, and 

thus reduce it significantly. This is done in an automated way, largely without any intervention 

from the designer, by using a code transformation tool and certain HDL Block libraries that we 

have developed. The main idea of our proposed methodology is to split the testbench into two 

sections and transform the portion of the testbench that communicates very frequently with the 

DUT to synthesizable code.  

 

4.2 Communication Bottleneck 

Hardware emulators allow designers to implement a circuit on an FPGA, thereby running 

simulations of the circuit at a much higher clock frequency than a software simulator can 

provide. When hardware emulators first became available, the complete circuit had to reside in 

one or more FPGAs, but today's emulators can communicate with a software simulator and allow 

designers to use all the models that the software simulator supports. 
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Although ISS models, TLMs, and pure C or C++ models all provide system designers with 

the means to create powerful testbenches in order to verify and evaluate their designs, it is 

extremely difficult, if at all possible, to synthesize these models and implement them on an 

FPGA. In practice, such testbench code runs in a software simulation environment usually on a 

general purpose CPU, and uses custom communication protocols to communicate with the 

synthesizable DUT (Design-Under-Test) that runs in hardware on an FPGA. This leads to a 

communication overhead between the testbench and the synthesizable DUT. A software 

testbench in a hardware-assisted environment is likely to create a major communication 

bottleneck.  

The proposed solution reduces the communication overhead by synthesizing the portion of 

the testbench code that directly communicates with the DUT. In particular, the process involves 

the following steps: 

1.  Partition the testbench code into two parts: the testbench HDL code that directly 

interfaces to the DUT, and the testbench C-like code that interfaces to the testbench 

HDL code. 

2. Transform the testbench HDL code part into synthesizable code. 

3. Put everything on the same FPGA with any supporting modules as needed: 

 The C-like testbench runs on one (or more) of the FPGA’s embedded processors. 

 The transformed HDL testbench is synthesized together with the DUT and a library 

of blocks that we have created so as to provide the environment for transparent 

communication with the DUT and the C-like testbench. 

Usually the portion of the testbench that communicates directly to the DUT is written in an 

HDL, such as Verilog or VHDL, while high-level operations and behavioral models are written 

in a C-like language. Figure 4.2 shows how the testbench is split into these two parts. The 

communication path between the testbench and the DUT has now been synthesized into 

hardware and therefore the transactions are performed in a much faster way. 
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Figure 4.2. Splitting of the testbench. 

4.3 System Architecture 

Α high-performance verification system should incorporate both processors and FPGAs. A 

processor-only or FPGA-only solution is limited in terms of performance or flexibility in 

simulating various types of models. First, in terms of the performance achieved, the maximum 

clock frequency of FPGAs lags behind that of processors implemented in contemporary ASIC. 

Therefore, processors with higher clock frequency execute behavioral models faster than FPGAs. 

On the other hand, FPGAs are more appropriate for executing simultaneous events and 

computation-intensive processes in parallel. Moreover, testbenches are commonly created using 

HDL such as Verilog or VHDL, sometimes including C-like programming language linked to 

the HDL simulator through e.g. the Programming Language Interface (PLI). This technique is 

used when the testbench needs to simulate more complex and more abstract functions. FPGAs 

are not capable of simulating models created in C-like languages and/or behavioral HDL that is 

not synthesizable. Therefore, processors and FPGAs have mutually complementary natures for 

high-performance verification systems. Modern large FPGAs provide on-chip general purpose 

CPUs and configurable CPU bus architecture facilitating the communication between the FPGA 

fabric and the CPUs. 
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In the proposed architecture, shown in Figure 4.3, the embedded CPU(s) located on the 

FPGA run the C-like behavioral part of the testbench, execute testbench floating point 

expressions, and access large arrays and external files as determined by the testbench code.  

 

Figure 4.3. Proposed Architecture 

 The Server Block is responsible for serving the requests from the HDL testbench block. 

This block communicates with the embedded CPU(s) in order to execute PLI-like requests 

generated from the testbench code. Moreover it can execute other requests such as memory 

references, file accesses or floating point instructions. The large arrays of the transformed 

testbench code are stored in the external memory.  

The HDL Testbench Simulator generates a simulation clock that coordinates the flow of the 

simulation. The clock speed of the simulator is defined by that of the testbench. The transformed 

HDL testbench block can pause the whole simulation environment in order to send requests such 

as PLI calls, memory references, file accesses or floating point instructions to the server block. 

In parallel, the HDL testbench block provides all the input signals including the clock signals to 

the DUT. This is more elaborated in Section 4.4. 

A pipelined DDR memory controller and a single-precision FPU are used in order to offload 

the CPU. In this way, the Server Block can send memory requests directly to the external 

memory and perform floating point operations without the intervention of the slow CPU. This 
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saves many cycles on external requests leading to better performance results as shown in Section 

7.1.  

Two soft-core CPUs serve the PLI requests in parallel. If the requests sent to each CPU are 

independent (they access different memory areas for example) the CPUs can work 

independently. The parallelism exposed in almost any testbench code favors the existence of 

more than one embedded CPUs. State-of-the-art FPGAs can support multiple embedded high 

performance CPUs; for example Xilinx’s Virtex-5-FXT FPGAs include two hardcore PowerPC 

processors and they can embed several MicroBlaze soft processors.  

In this architecture the communication bottleneck between the software and the hardware 

sections of the simulation is pushed into the server-CPU(s), server-memory controller and 

server-FPU interfaces. However, the accesses on these interfaces are much more infrequent than 

the accesses at the DUT boundaries. Moreover, an additional and very important advantage is 

that these are fixed interfaces, independent of the emulated DUT.  

In the next Sections, we describe the testbench code transformation, giving also emphasis on 

the pause/resume mechanism that the architecture provides. 

 

4.4 Testbench Transformation 

The original HDL behavioral testbench is transformed into synthesizable code that can run 

in the environment provided by the HDL Testbench Simulator of Figure 4.3. The tool we 

developed transforms a testbench written in VHDL language; same concepts can be applied to a 

Verilog testbench. The process body of a VHDL testbench includes various code sections that 

are not synthesizable. Such sections are mainly timing statements such as the VHDL wait 

statement, large arrays that are impractical or even impossible to be mapped onto FPGA 

embedded memories, floating point calculation and file handling.  

A VHDL process of the transformed VHDL testbench running in the HDL Testbench 

Simulator can access the CPUs, the external memory and the FPU by sending requests to the 

Server Block. We have enhanced the functionality of the VHDL processes in the transformed 

testbench in such a way that they can pause the simulation time of the HDL Testbench Simulator 

in order to transfer requests to the Server Block (Section 4.7). In every simulation clock cycle the 
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HDL Testbench Simulator serves all the pending requests before advancing the simulation time 

counter.  

We use the tree structure of the VHDL code to transfer the requests from the body of a 

process to the Server Block; a code segment that receives the requests from a process body and 

forwards them to a scheduler block is attached to each process. In every VHDL module a 

scheduler block is responsible to gather the requests from all the processes in the module and 

advance them a layer higher in the VHDL hierarchy. The scheduler block can serve the requests 

in any order since the simulation is paused when any request is pending. This process is 

illustrated in Figure 4.4. 

 

 

Figure 4.4. Tree-like Scheduling of Requests 

4.5 Simulation Clock and Clock Management 

The HDL Testbench Simulator provides the simulation clock that coordinates the functions 

of the simulation by translating all timing references in the original testbench code into 

simulation clock cycles. Every simulation clock cycle is divided into four simulation ticks, where 

the tick period is equal to the clock period of the synthesized testbench. The four tick time 

interval is essential for the operations performed by the transformed, by our toolset, VHDL 

process during a simulation cycle. This is because any transformed process requires four ticks at 

most in order to perform all its operations involved in a simulation cycle unless a request is 

generated, as the next section clearly demonstrates. Upon a request from a process the simulation 

time stalls until the request has been served and the four tick time interval starts over. 
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A common practice in several designs is to feed the external clocks to on-chip clock phase-

locked loops (PLLs) and/or delay-locked loops (DLLs) in order to generate stable frequencies, 

recover a signal from a noisy communication channel, generate a phase shifted clock, or 

distribute clock timing pulses in the design. Such an example digital circuit used in Xilinx 

FPGAs is the Digital Clock Management (DCM) which supports clock delay locked loops, 

digital frequency synthesizers, digital phase shifters, and  digital spread spectrums. Figure 4.5 

shows the inputs and outputs of the Xilinx DCM. DCM includes a clock delay locked loop used 

to minimize the clock skew in the Xilinx devices. It synchronizes the clock signal at the feedback 

clock input (CLKFB) to the clock signal at the input clock (CLKIN). The locked output 

(LOCKED) is high when the two signals are in phase. The signals are considered to be in phase 

when their rising edges are within a specified time (ps) of each other. 

 

Figure 4.5. Xilinx’ Digital Clock Management 

On-chip clock management circuits cannot operate properly in the simulation environment 

of our proposed platform since the DUT clocks provided by the HDL TB Simulator block can be 

paused at any time. Since our emulator provides functional verification of the design simulating 

the system several times slower than the final implementation, clock skew or clock instability is 

not an issue during the emulation. Therefore, there is no need for internal PLLs/DLLs and such 

circuits have to be replaced with their corresponding simpler behavioral models. For example, an 

internal PLL that is used in order to provide a stable clock to the design can be removed and 

replaced by a simple wire that connects the external input clock directly to the output generated 

clock. 
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4.6 Testbench Simulation Flow  

The transformation of the testbench code is process-based. During a simulation tick a VHDL 

process either (a) executes a code segment or (b) waits for the transition of a signal or (c) waits 

for some time interval or (d) sends a request to the Server Block. In order to achieve the 

aforementioned functionality every VHDL process is transformed according to the FSM shown 

in Figure 4.6.  

 

Figure 4.6. Process State Transition Diagram 

In the EX state the process executes the synthesizable code of the testbench. A process stays 

in the EX state for 1 or 2 cycles depending on the original code. On a timing statement, such as 

the VHDL wait instruction, the process jumps in the WT or WS state. Finally, the process enters 

the RQ state in order to send a request to the server block. An example timing diagram that 

shows three processes and their state transitions is shown in Figure 4.7. 

 

Figure 4.7. Process Timing Diagram. 
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The clock signals generated from the transformed testbench are fed to the clock buffers of 

the FPGA that drive in their turn the clock trees of the DUT. The transition from the WT state to 

the EX state can happen in the last tick of a simulation cycle while the transition from the WS 

state to the EX state can happen in the first tick of a simulation cycle, as shown in Figure 4.8. In 

this way, the synchronous signals of the transformed testbench change their values one 

simulation tick after the clock signals change their values and thus we prevent setup and hold 

time violations of the signals sent from the testbench to the DUT. This is depicted in Figure 4.8. 

Assuming that the clk and val signals are sent to the DUT, the val signal will arrive one tick after 

the clk signal which is certainly the correct behavior for functional verification. 

 

Figure 4.8. Setup and Hold Time Violations Prevention. 

 

4.7 Pause and Resume Process State 

Whenever a VHDL process executes a wait instruction or sends a request to the server block 

the process must stall, pause its state and resume at some time later. In order to add this 

functionality to a process all the statements in its body are transformed to conditional statements. 

process proc1 

   begin 

   clk <= ’0’; wait for 1 ns; 

   clk <= ’1’; wait for 1 ns; 

end process; 
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process proc2 

   begin 

   wait until clk’event; 

   val <= not val; 

end process; 
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Any point in the process body can become an exit point by setting an exit condition at that point. 

Similarly the last exit point can become an entry point using conditional instructions.  

Take for instance the code segment below and its transformation. The wait instruction 

becomes the exit point when it is first executed and the entry point after 10 simulation cycles, 

assuming that the simulation cycle is 1 ns.  

 

Original code: 

    If clk = ’1’ then 

        val <= ’1’; 

        wait 10 ns; 

        val <= ’0’; 

    end if; 

 

Transformed code: 

    If reset = ’1’ then 

        exit_point := 0; 

    else 

        If (exit_point = 0 or exit_point = 1) and clk = ’1’ then 

            if exit_point = 0 then  

                val <= ’1’; 

            end if; 

            if exit_point = 0 then  

                proc_state <= WT; -- enter WT state 

                wait_time <= 10;    -- stay in WT for 10 sim cycles 

                exit_point := 1;       -- exit point 

            elsif exit_point = ’1’ then  

                    exit_point := 0; -- entry point 

            end if; 

            if exit_point = 0 then  
                    val <= ’0’; 

            end if; 

        end if; 

    end if; 

 

If a process can pause its state at any instruction and resume it at some time later then non-

blocking assignments may erroneously become blocking assignments. In order to avoid this 

erroneous behavior we transform all the non-blocking assignments of the original code into 

blocking assignments by using extra variables. Every extra variable corresponds to a variable 

used in a non-blocking assignment. The extra variable holds the value of its corresponding 

variable in the last simulation cycle. A VHDL process in the transformed code assigns the values 

of all the extra variables in the last tick of every simulation cycle. 

transform 
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Consider the code segment below and its transformation. In the transformed code, the last 

non-blocking assignment of the original code uses the last value of a, a_last, in order to avoid an 

erroneous assignment once the memory request has been served by the server block. 

     

 

Original code: 

    process 

         a <= ’1’; 

         c[100] <= ’1’; 

         b <= a; 

    end process; 

  

   Transformed code: 

process  begin -- fix non-blocking assignments 

        if last_tick = ’1’ then -- last tick of sim cycle  

            a_last <= a;   -- all variables used in  

            …                  -- non-blocking assignments 

        end if; 

    end process; 

 

    process begin 

    If exit_point = 0 then 

        a <= ’1’; 

    end if; 

    if exit_point = 0 then 

        proc_state  <= RQ; -- memory reference 

        req_type <= REQ_MWRITE; 

        req_addr <= 100; req_val <= 1; 

        exit_point := 1; 

    elsif exit_point = 1 then  

        exit_point := 0; 

    end if; 

    if exit_point = 0 then 

         b <= a_last; -- use the old value of a 

    end if; 

    end process; 

 

4.8 Simulation Breakpoint 

Even though FPGA-based emulators have become an essential tool for many companies and 

research labs, it is surprising that no such system provides the equivalent of a software 

breakpoint: a mechanism to pause the emulation, observe its current state, and resume it. 

transform 
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In our proposed architecture this ability is readily available since we can do this simply by 

pausing or resuming the global simulation time counter of the clock generator in the HDL 

Testbench Simulator (Figure 4.3). This is the mechanism that the Server Block uses in order to 

pause the execution when serving a request. 

Figure 4.9 shows the Flow Controller block which uses the same mechanism to temporarily 

pause the simulation upon the reception of a trigger event (such as a signal in the DUT receiving 

a specific value), providing in this way the equivalent of software breakpoints.  

 

 

Figure 4.9. Flow Controller Block can pause/resume simulation 

The mechanism to pause and resume the hardware emulation can provide us comparable 

benefits to a software simulator. Wheeler et. al. in [WG01] demonstrate how design-level scan 

can provide an efficient solution in order to monitor and control the status of the FPGA. 

However, this technique can work at the end of a hardware execution (not on the fly) while the 

authors do not show how this can work in real-time-systems. Combining this scan chain 

methodology and our proposed architecture we can have a hardware simulation platform that can 

pause and modify the state of the design on the fly. In particular, we can read, save and modify 

the state of the memory elements in the DUT while the emulation is paused. FPGA vendors also 

provide other techniques to read the state of an FPGA, such as the built-in Xilinx readback.  

It is important to notice that we can read and modify any signal of the DUT without 

performing any time-consuming full recompilation of the DUT that most embedded logic 

analyzers (such as Xilinx chipscope) would require. This is more elaborated in Chapter 5. 
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Moreover, the ability to insert breakpoints in hardware emulation can be used to accelerate 

the execution of multiple simulations with common long startup parts. The designer only needs 

to run the common startup part once, save the state of the DUT block and restore it for each 

subsequent simulation using different testbench configurations. Figure 4.10 depicts this process. 
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Figure 4.10. Using a “breakpoint” to speed-up the execution of multiple simulations with 

common startups 

 

4.9 Transformations overview 

Several other functions are performed by the tool we developed, so as to be able to reduce 

the communication overhead in a hardware emulator environment. Briefly, we mention the 

following code transformations: 

 Timing references are transformed to simulation cycles. 

 Large multi-dimensional arrays and their references are transformed into one-dimensional 

arrays in order to simplify their mapping to the external memory. 

 VHDL assertion statements are sent to the external CPU. 

  VHDL after statements are transformed into VHDL processes that are triggered when the 

after statements are executed. 

 VHDL select statements are transformed into if/else statements. 

 Processes that describe combinational logic which sends requests to the server block are 

transformed into sequential logic that is clocked with the simulation clock. 
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4.10 Summary 

Hardware emulators and FPGA prototypes have long provided the highest performance 

when compared with all the verification approaches in the industry, but they have also suffered 

from a number of severe drawbacks. One of the most important problems is that complex 

emulator systems demand high communication throughput between the testbench and the 

synthesizable DUT which can eventually limit the performance of the simulation. To address the 

above shortcoming, we proposed to split the testbench into two sections and transform the 

portion of the testbench that communicates very frequently with the DUT to synthesizable code. 

Therefore, we built a tool that transforms a behavioral VHDL code to synthesizable code that 

can be implemented in our hardware simulation environment. In this way, we claim that we can 

overcome the testbench-DUT communication bottleneck and therefore increase the capabilities 

of today’s hardware emulators.  
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Chapter 5. Circuit Observability and 

Controllability 
 

 

 

“I have always wished for a computer that would be as easy 

to use as my telephone. My wish came true. I no longer know 

how to use my telephone.” 

Bjarne Stronstrup 

 

 

 

 

Performing hardware emulation on FPGAs provides a faster, more accurate and closer-to-

reality model than software simulations. However, it is impossible to bring all the necessary 

communication signals outside of the chip; on-chip visibility has become a significant issue. 

Recognizing this problem, FPGA vendors have provided tools to help designers understand what 

happens internally. However, circuit observability is still limited. Modification to the signals 

being captured or to the size of the data capture buffer often requires a time-consuming full 

recompilation of the user design. In addition, these tools provide no controllability of the Design 

Under Test (DUT). In this Chapter, we tackle these problems by adding multiple fast scan-chain 

paths in the design in order to provide full circuit visibility and controllability in a hardware 

emulator environment. The scan chain technique proposed provides an easy way for observing 

and/or modifying the state of hardware emulation on the fly. Our experiments (see Section 7.2) 

demonstrate that using around 25 scan chains is the optimum solution in terms of speed and area. 
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5.1 Background and Motivation 

Apart from a fast emulation environment, engineers urgently need more efficient techniques, 

than the ones provided by existing systems, for debugging their complex IC designs. The 

existing hardware emulation schemes still face important limitations; in order to be very 

effective in the verification process, the hardware emulation framework should provide the same 

level of observability and controllability as a software HDL simulator does.  

Towards this end, FPGA vendors have provided integrated solutions, such as Embedded 

Logic Analyzers (ELAs), which show the transient behavior of the design. Such tools allow the 

designer to easily probe the internal signals of the design inside an FPGA, much as he/she would 

do with a logic analyzer. For example, while the design is running on the FPGA, a trigger event 

determines when specific internal signals should be captured. In Section 3.3 we presented several 

ELAs such as the ChipScope by Xilinx, the SignalTap by Altera, the ClearBlue by DAFCA, the 

Configurable Logic Analyzer Module by FS2, and the embedded logic analyzer module by 

Cisco. 

All the aforementioned products lack circuit controllability (with the exception of 

ClearBlue) while they provide limited circuit observability. Compared to software HDL 

simulators, the existing ELAs have some important limitations: 

 Changing specific parameters, such as the signal probes or the depth of the sample buffer, in 

most cases, requires a time-consuming full recompilation of the user design. 

 The sample memory of the analyzer, which determines the maximum trace period, is limited 

by the memory resources of the FPGA. In a design that uses much of the FPGA's memory, 

there may not be much memory left over for the ELA.  

 Basic debug operations such as breakpoints, and step by step execution are not supported. 

 There is no controllability of the design; the user can not set the value of an internal signal. 

We tackle these problems in Sections 5.2 and 5.3 by adding multiple fast scan-chain paths in 

the design in order to provide full circuit visibility and controllability in a hardware emulator 

environment. The scan chain technique proposed provides an easy way for observing and/or 

modifying the state of hardware emulation on the fly. Moreover, based on the scan-chain 
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methodology, we propose, in Section 5.4, the architecture of a novel Embedded Logic Analyzer 

along with a software toolset supporting full circuit observability and controllability. 

 

5.1.1 Scan-Chain Methodology 

Scan-chain path insertion includes wiring up the memory elements, such as flip-flops (FFs), 

in such a way so as to have the state bits contained in these elements exit the circuit serially 

through a ScanOut signal whenever the ScanEnable control signal is asserted. New state data 

concurrently enters the circuit serially on the ScanIn pin. When ScanEnable is deasserted, the 

circuit returns to normal operation. While scan-chain paths are usually employed to find defects 

in the silicon, we use this technique in order to provide full circuit observability and 

controllability.  

 

Figure 5.1. Scan Chain Architecture 

Since FPGAs do not support scan FFs (except for the FreedomChip [LS07]) we developed a 

tool (described in Section 5.3) that automatically adds the scan circuitry to the synthesized DUT. 

Figure 5.2 shows how a FF of a design can be inserted into a scan chain by attaching a 

multiplexor (mux) and logic gates at the inputs of the FF.  

 

Combinational Logic 

Scan 

FF 

Scan 

FF 

Scan 

FF 

Scan 

FF 

ScanEn 

ScanIn ScanOut 

Clock 



    61 

 

 

Figure 5.2. Scan Flip-Flop 

 

5.2 System Architecture and Methodology  

The system presented here consists of the FPGA debug infrastructure and the supporting 

toolset needed so as to provide full chip observability and controllability. The tool provides an 

environment to the designer, similar to that of a software HDL simulator, where he can execute 

the standard hardware emulations on the FPGA, trace internal signals, modify signal values and 

perform step-by-step execution.  

The common process is to define a trigger condition and a trace period where the tool 

captures the DUT traces. During this period the system repeats automatically three steps: 

pause execution, scan of DUT signals, resume execution. The proposed architecture is 

depicted in Figure 5.3. The ELA block reads/modifies the status of the DUT by employing an 

extension of the scan chain methodology (see Section 5.3) proposed in [WG01]. The ELA block 

takes several clock cycles to read/modify the state of the DUT through the scan chains every 

time the execution is paused and enters the scan mode. In contrast to conventional ELAs that 

read the state of the DUT while the emulation is running, our ELA reads the state of the DUT 

when the FPGA emulation is paused. 
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Figure 5.3. System Architecture 

Thus, providing a mechanism for pausing temporarily the hardware emulation gives the 

opportunity to the ELA to observe and/or modify the status of the design using the scan-chains. 

The key idea for supporting real-time circuit testability is the use of the HDL Testbench 

Simulator. The HDL Testbench Simulator block uses a clock generator to drive all the clock 

signals of the DUT. Chapter 4 describes in detail how to control (pause and resume) the 

emulation execution by pausing or advancing the internal simulation time counter of the clock 

generator.  

The embedded CPU executes the C-like testbench code and configures the ELA at the 

beginning of an emulation. 

The Control Logic is a relatively simple block that sends requests to the HDL Testbench 

Simulator and the ELA blocks when a trigger event is satisfied in order to capture the trace data. 

Once the ELA catches a trigger event (i.e. the trigger condition becomes true) it notifies the 

Control Logic. The Control Logic then reads the simulation time from the HDL Testbench 

Simulator in order to send pause and resume requests periodically. Upon a pause request, it also 

sends a scan request to the Logic Analyzer. Figure 5.4 shows an example timing diagram of the 

aforementioned functionality, where sim_clk is the clock signal used by the HDL Testbench 

Simulator block; this signal is used to coordinate the emulation and generate all the DUT clock 

signals. In this example the Control Logic is configured to send a pause and a scan request once 
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every DUT clock cycle (DUTclk) where the period of the DUT clock is assumed to be equal to 

two simulation cycles (sim_clk).  

  

 

Figure 5.4. Timing Diagram 

During the Scan Period of Figure 5.4 the Logic Analyzer reads all the signals of all the scan 

chains in order to capture the ones that the designer has specified. As we demonstrate in Section 

7.2, the length of the scan period depends on the design size and the number of scan chains. 
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1. Reading of the FPGA vendor libraries in order to determine the inputs and the outputs of 

all the primitive elements. 

2. Reading of the design in order to find all the instances of the primitive elements as well as 

their input and output signals. 

3. Processing of the design instances in order to partition the FFs into separate clock 

domains. Two FFs belong to the same clock domain if they use the same clock and there 

is a combinational or sequential path that connects them. 

4. Processing of the clock domains in order to generate the FF connectivity graphs. A FF is 

connected to another FF in the graph of a clock domain only if there is a combinational 

logic path that connects them. Each clock domain has a separate connectivity graph. 

5. Generation of long scan chains. For each connectivity graph a single scan chain is formed 

where the FFs are placed according to their topology in the connectivity graph; i.e. FFs 

close in the graph will remain close in the scan chain. Moreover, FFs belonging to the 

same bus are placed together in the scan chain.  

6. Partitioning of the long scan chains into multiple shorter scan chains. The number of the 

short scan chains is defined by the user. The target is to minimize the length (number of 

FFs) of the longest scan chain, which is succeeded by trying to equalize the sizes of all 

the scan chains.  

 

5.4 Embedded Logic Analyzer  

Embedding a Logic Analyzer in a programmable logic device allows signals to be captured 

after a trigger condition is true usually for a small period. An ELA captures and stores logic 

signals and provides them to a graphical user interface (waveform viewer). The proposed ELA 

has no limitation regarding the size of the data capture buffer and the number of signals. 

Moreover, the user can modify the signal values or run a simulation in step-by-step mode 

providing full chip controllability and observability.  

 

5.4.1 Functionality of the Logic Analyzer  

The ELA starts in the Trigger period (see Figure 5.4) by continuously checking for the 

trigger condition. There are two ways to monitor the trigger signals in order to evaluate the 

trigger condition: 
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 The common way is to route the trigger signals from the DUT to the ELA. In this case, the 

user has to reroute the trigger signals and recompile the design whenever the trigger signals 

change.  

 Alternatively, the ELA can read all the scan chains in every cycle of the hardware 

emulation, even before the trigger condition becomes true, in order to capture and test the 

trigger signals periodically. In this case there is no need for a recompilation of the design 

when the trigger signals change. However, the ELA delays the entire emulation 

significantly and therefore its performance is critical. As we show in Section 7.2.3 this is 

not a problem for the proposed ELA which satisfies the speed needs of today’s DUTs and 

can therefore adopt this innovative technique. One more advantage following this approach 

is that if the ELA can trace any signal in the DUT during the Trigger period, the user can 

easily program the ELA (through the embedded CPU) to support multiple trigger conditions 

that are altered on the fly depending on the trigger results. 

Once the trigger condition becomes true the system enters the Trace period. In typical 

hardware emulations the Trace period is usually short, when compared to the entire execution 

time, and therefore it is not considered critical.  

The performance of the ELA determines the Scan period. The ELA enters a Scan period 

when it receives a scan request by the Control Logic. During this period the ELA accesses all the 

scan chains in parallel and captures/modifies the values of the data according to its configuration. 

The length of the longest scan chain as well as the amount of the captured data determine the 

duration of each scan period as will be discussed in Section 7.2. 

 

Figure 5.5. Captured FFs by the Logic Analyzer. 
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During a scan period, the scan chains in the DUT are accessed by the ELA synchronously 

(i.e. at exactly the same frequency, in lock-step with one another). In each access cycle the FFs at 

the head of the scan chains are accessed. A 32-bit register per scan chain accumulates the values 

of the FFs that we want to capture as shown in Figure 5.5. When an accumulator becomes full it 

is written to a fast embedded cache that holds the captured FFs’ values. Since the FFs that we 

want to capture have well defined positions in the constructed scan chains, and the scan chains 

are accessed and written to the accumulator registers with a well defined and predetermined 

timing, we can calculate the position in the embedded cache where each captured signal will 

end-up to. These calculations are automatically done for each captured signal by a post-

processing tool we have developed. This tool reads all captured values, and converts them to a 

format suitable for display in a waveform viewer.  

Since the embedded cache is not big enough to hold all the captured data, a DRAM memory 

controller periodically transfers the cache contents to an external DRAM. To prevent the 

embedded cache from overflowing, in case the ELA writes trace data faster than the DRAM 

controller can read them, a flow control signal can temporarily stall the ELA. In this way, the 

maximum amount of data that we can capture is determined by the size of the external 

DRAM memory, instead of the size of the limited on-FPGA memory (which is the case for 

most existing systems). 

 

5.4.2 Configuration of the Logic Analyzer  

The ELA can capture and/or modify the values of the DUT FFs. First, the designer specifies 

the trigger condition and the trace data, as well as the length of the Trace period. A software tool 

that is aware of the positions of the FFs in the scan chains configures the ELA accordingly.  

In each cycle a word with the values of the FFs at the head of the scan chains is formed. A 

16-bit embedded pointer memory, shown in Figure 5.6, holds the positions of the words with the 

traces (i.e. words including at least one bit that should be captured). Each 16-bit entry of this 

memory specifies a number of continuous words. This is done by specifying the position of the 

first word and the number of the following words. In this way, an entry can be used to specify a 

group of adjacent words.  
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A 32-bit mask in a mask memory (Figure 5.6) is associated with each word pointer and its 

group of pointed words. The mask specifies the positions of the captured FFs in this group of 

words. If some words from different groups overlap then their masks are ORed together. The 

entries of the configuration memory are placed in order, based on the positions of the pointed 

words. In every scan period, the ELA processes the configuration memory sequentially while it 

reads the scan chains.  

 

Figure 5.6. Configuration Memory of the Logic Analyzer. 
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the scan chains, configures the ELA accordingly. In particular, the tool generates the 

configuration code running on the embedded CPU which sets the Configuration Memory of the 

ELA at the beginning of the emulation.  

 

Figure 5.7. Logic Analyzer Architecture 
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clock signal will not be restored correctly at the end of the scan period; using an XOR gate (as in 

Figure 5.7) solves this problem by inverting scan_clk. 

The architecture of the ELA, although relatively simple, is very effective as Section 7.2 

clearly demonstrates. Moreover, by using the scan command and the trigger block appropriately, 

our system is, to the best of our knowledge, the only one that provides: (a) step by step 

execution, (b) setting of break points and (c) setting of specific input test vectors at run-time. 

 

 

5.5 Testing and functional verification  

In order to verify the proposed methodology we built an environment for circuit emulations 

where we applied the proposed framework. In particular, we used the XUP Virtex-II Pro 

Development System from Xilinx which supports a Virtex-2P-30K FPGA which is a widely 

used state-of-the-art FPGA and described in more detail in Section 7.1.1.  

We have tested the functionality of our platform with several DUTs and testbenches. One of 

the real world scenarios we emulated is a TDM card that was developed on a Xilinx FPGA in 

order to connect a network with hundreds of clients. The next Section describes this test case. 

 

5.5.1 Test Case 

The test case we employed in order to verify the proposed methodology is the FPGA design 

of a line card. The FPGA is responsible for the communication between Plain Old Telephone 

Service (POTS) interfaces and a back plane. In particular, it forwards the voice data from the 

POTS to the back plane and vice versa. Two separate designs have been emulated which 

correspond to the two supported modes of the line card: the Time-Division Multiplexing (TDM) 

mode and the Fast Ethernet mode. In the TDM mode the data is sent to the back plane through 

two TDM channels, while in the Fast Ethernet mode the data is sent to the back plane through 

two Fast Ethernet interfaces. 

Figure 5.8 depicts the line card and a rough block diagram of the design when it operates in 

TDM mode. Eighteen Si3241 Quad Codec chips are connected to the three TDM ports of the 

FPGA. The voice data arrives from the codec chips to the Client TDM block interleaved. The 

Inter2Ser block receives the interleaved voice data from Client TDM block, serializes them and 

sends them to the activated Backplane TDM block.  



    70 

 

 

Figure 5.8. Line Card in TDM mode 

In the opposite direction the voice data from the activated Backplane TDM block are 
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parallel interface. 

The architecture of the Line Card in Fast Ethernet mode is similar to the one in the TDM 

mode. Two blocks, the MAC TX and the MAC RX blocks, have taken the place of the 

Backplane TDM blocks. The MAC RX block receives Ethernet frames and extracts the voice 

data for the codec chips while the MAC TX block generates Ethernet frames with voice data 

from the codec chips. 

5.5.2 FPGA Clocks  

In order to verify the correct functionality of the emulated system we need to take into 
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test case provides several clock domains allowing us to test the functionality of the hardware 

emulator and the ELA thoroughly. 

Figure 5.9 depicts the clock domains of the FPGA when the Line Card operates in TDM 

mode. The three clock domains are colored. The interface to the POTS and the CPU serial 

interface of the CPU use a 2.048MHz clock. The backplane TDM interface and the inter2ser and 

ser2inter blocks use a 16.384MHz clock received from the backplane. Finally, the CPU parallel 

interface use a 48MHz clock received from the external CPU. 

 

Figure 5.9. Clock domains in TDM mode 
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5.5.3 Testing Environment 

In order to verify the functionality of the proposed hardware emulator and ELA we 

connected the XUP evaluation board with a workstation through a serial interface. In this way, 

we could read the captured signals, as shown in Figure 5.10. The on-chip PowePC 

microprocessor communicates with a uart block that supports an RS-232 link in order to send the 

values of the captured signals to a Hyper Terminal running on the workstation. The Hyper 

Terminal stores the data in a text file which is parsed by the dump_signals.pl script in order to 

create the waveform file. Next, a waveform viewer, such as the one used by modelsim, depicts 

graphically the waveforms.  

The verification process is the following: First, the PowerPC sets the configuration memory 

and registers of the ELA such as the number of scan chains in the DUT, the size of each scan 

chain, the positions of the signals in the scan chains that should be captured, the trigger 

condition, and the length of the trace period. Next, the ELA controller starts the emulation. When 

the trigger condition is true, the ELA starts capturing the signals of the DUT. The values of the 

captured signals are stored in the on-chip trace memory. In parallel, the PowerPC reads the 

values from the trace memory and transfers them to the workstation through the serial port. If the 

ELA fills up the trace memory faster than the read frequency of the PowerPC, the ELA as well 

as the whole emulation is paused temporarily in order to prevent any memory overflow, as 

described in Section 5.4.1. The ELA stores data in the trace memory for the Trace period 

configured by the PowerPC. 

In order to rerun a test and capture different traces or set a new trigger condition the user 

simply has to modify the configuration memory of the ELA (i.e. the PowerPC has to execute 

different configuration code), instead of performing a very time consuming design re-synthesis, 

re-placement and re-routing. Therefore, by simply modifying the code running on the PowerPC 

we could: 

 Capture different signals in the DUT. 

 Change the trigger condition. 

 Change the length of the Trace period. 
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Essentially, there is no constraint on the number of the captured signals and the length of the 

Trace period. The trace memory never overflows since the emulation is paused in order to allow 

the PowerPC to empty it. The final destination of the captured values is the traces.txt file and not 

the trace memory which is a small buffer. Therefore, the external disk space of the workstation 

determines the buffer size used for capturing the traces which is orders of magnitude larger than 

any on-chip SRAM memory used by existing ELAs. 

 

Figure 5.10. Testing Environment for the ELA 

The design described in Section 5.5.1 has been extensively used in order to verify the 

functionality of the proposed platform. In particular, we tested the emulator by running several 

hardware emulations with different input voice data and comparing the captured traces with the 

corresponding traces from software simulations. 
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signals and the short probing period due to the small internal memory of the FPGAs and b) the 

time-consuming process of changing the trigger condition or the probed signals due to the 

recompilation of the design. To address the above shortcoming, we proposed a novel 

methodology based on multiple scan chains that can access quickly any register in the DUT. 

Moreover, we proposed the architecture of a novel Embedded Logic Analyzer along with a 

software toolset that compose an emulation environment supporting full circuit observability and 

controllability on the fly.      
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Chapter 6. Hardware/Software Partitioning  
 

 

“Computers WORK, people THINK.” 

IBM Corporation Old Adage 

 

 

 

 

 

 

One of the most crucial tasks in today’s complex embedded systems is to split them into 

their design components and allocate these design components to the available hardware and 

software system entities in a cost-effective manner.  

This Chapter introduces a fully automated partitioning tool incorporating a novel flow with 

new cost metrics and functions. The tool employs two separate partitioning algorithms; 

Simulated Annealing (SA) and a novel greedy algorithm, the Grouping Mapping Partitioning 

(GMP). By selecting the partitioning algorithm, the designer can trade off between partitioning 

time and effectiveness. The innovative GMP algorithm operates in two stages: the first stage 

groups the design components according to how closely they interact, and in the second stage the 

grouped components are mapped into the system entities. System-level simulations provide 

accurate estimations in order to guide the tool to the most effective partitioning. The tool also 

interacts with the end user; a feature that is crucial in complex designs. Our experiments (see 

Section 7.3) demonstrate that the tool provides cost-efficient solutions in complex and large 

designs and derives close to optimum results. In particular our pioneering GMP algorithm 

produces results very close to those of SA while it is more than 2500 faster. 
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6.1 Background and Motivation 

Partitioning is a fundamental CAD optimization problem. It is used at almost every level of 

abstraction during the synthesis of a digital system. The partitioning problem attempts to take a 

set of connected modules and group them to satisfy a set of constraints and optimize a set of 

design variables. During physical synthesis, partitioning is used during the floorplanning and 

placement tasks. In this case, the modules are gates that are connected by nets and they are 

partitioned in such a way that highly connected gates are in the same partition. As we move to 

higher levels of abstraction, the modules become larger; from standard cells to macro cells (logic 

level) to blocks (architecture level). Partitioning at higher levels of abstraction will impact the 

system performance in a more drastic way since the interconnect delay at the higher levels of 

abstraction is more pronounced. Even though the internal implementation and characteristics of a 

design usually are not well specified at the initial design phases, hardware-software partitioning 

is decided a priori and is adhered to as much as possible, because even small refinements in the 

partitioning may trigger extensive redesign. A good system partitioning is essential for the 

overall quality of the circuit. 

The partitioning task is very significant for current FPGA designers since the vast majority 

of today’s systems implemented in state-of-the-art FPGAs consist of a number of (mainly) soft-

core CPUs as well as dedicated hardware modules. For architectures consisting of a processor 

and one or more fully dynamic run-time reconfigurable (RTR) devices, the nature of the 

partitioning problem changes, as a spatial as well as temporal partitioning must be performed 

[KK04]. In Reconfigurable Computing (RC) environments the partitioning algorithm can be 

applied several times so as to create many different designs that can be altered at run time. 

Therefore, performing fast hardware/software partitioning is especially important in RC. Greedy 

partitioning algorithms, such as the GMP algorithm described in this Chapter, can provide faster 

solutions than other partitioning algorithms. 
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Figure 6.1. Hardware/Software Co-design Flow 

It has been a common practice for designers to strive to make everything fit in software, and 

off-load only the most time critical parts of the design to hardware so as to meet timing 
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effective ones include dynamic programming, greedy algorithms, hill climbing, simulated 

annealing, genetic algorithms, tabu search, integer programming, and ant colony optimization as 

described in Section 3.5. 

Today’s CAD tools although they provide efficient system level simulation and 

hardware/software co-simulation schemes, they still fail to address the system-level partitioning 

problem effectively. Unfortunately, many design platforms cannot provide trustworthy 

partitioning solutions yet and therefore they leave the actual hardware/software partitioning 

choice to the system designer, or allow the designer to interactively explore the design space of 

partitioning options. 

In this Chapter we propose a partitioning tool that implements an innovative and fast 

approach so as to provide cost-efficient systems in a timely manner. We introduce the GMP 

partitioning algorithm that can produce very similar results (the difference is less than 3%) to 

those triggered by the most widely used algorithm (such as SA) while it is several times faster as 

shown in Section 7.3. Moreover, our tool supports also a standard SA algorithm implementation, 

if even higher quality partitioning results are required. In this way, by selecting the partitioning 

algorithm, the designer can trade off between partitioning time and effectiveness. 

 

6.2 Partitioning Process  

Before trying to solve the generic hardware/software intractable partitioning problem for 

systems with multiple diverse hardware and software entities, we focus on the simpler, while 

very important, problem of splitting the system into the parts that will be implemented in 

specifically designed hardware modules and the functions that will be executed on the embedded 

CPUs. The proposed methodology tries to fit the maximum possible portion of the system 

into software as long as the capacity of the available software entities is not exceeded. 

In order to perform the actual partitioning the following distinct steps are executed: 

 System Description. The system description usually determines the granularity of the 

design components. Our scheme gets as input a description of all the design components 

in a system level description language (such as SystemC), while the interfaces of the 

components follow the Transaction Level Modeling (such as SystemC TLM). The 
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functionality of each design component can be described in any of several abstraction 

levels, ranging from a detailed HDL-like description, to a very abstract behavioral one.  

 Cost Metrics Measurement. The Size, MIPS and MTPS metrics of the components are 

measured. The original code is transformed and simulated in order to trace the 

transactions on the components’ interconnections and the executed CPU instructions.  

 Transaction Graph (TG) Creation. A graph of the description is constructed, with 

nodes representing the design components, and arcs representing their communication 

channels. The cost metrics are annotated on the graph. 

 Software Entities Specifications. The MIPS and the external bus MTPS values of the 

software entities are specified by the designer. 

 Grouping Algorithm. The graph is processed so as to produce a second graph in a more 

compact and manageable form. Each node in the new compact graph represents a group 

of highly-related design components. 

 Mapping Algorithm. The graph is gradually splitted into two distinct parts: one part 

contains the nodes with the components that should be executed in software and the other 

contains the components that should be implemented in hardware. 

 

Figure 6.2. Steps of Partitioning Tool 

 The system partitioning algorithm, shown below the dashed line in Figure 6.2, is performed 
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6.3 System Representation  

The first main partitioning task is the representation of the system in a form that can 

accurately describe both the behavior of the design components as well as the available system 

resources.   

 

6.3.1 System Description 

The proposed tool takes as input a design described at TLM; such a description provides the 

transactions at the design components boundaries while it may conceal the internal 

implementation details. The designer should also provide the testbench code to the tool along 

with corner-case scenarios where the inputs, as well as the internal signals of the design, are 

switched at the maximum possible rates.  

Moreover, the frequency of each clock in the design is specified in order to derive the 

transaction rates of the signals between the design components. If the rate of a system input is 

not fixed (for example it depends on the performance of the system), the whole partitioning 

process can be executed several times using different rates and clock frequencies. For example, 

this is a common case when the system reads data from a memory and the read rate may depend 

on the data processing rate.  

 

6.3.2 Cost Metrics Measurements 

In our tool we define three new cost metrics: (a) the MTPS (Million Transactions Per 

Second) of a design component’s interconnection bus, (b) the MIPS (Million Instructions Per 

Second) and (c) the Size of a design component. 

In order to understand the MTPS cost metric, let’s consider an example with two design 

components, A and B, that are interconnected trough bus X as shown in Figure 6.3. If, say, 

component A is to be implemented in software and component B is to be implemented in 

hardware, their communication through bus X should be carried over the bus that interconnects 

the corresponding software (i.e. CPUs) and hardware system entities, say bus Z. This bus Z, 

which may implement a standard protocol such as AMBA in the case of ARM CPUs, will need 

to perform the transactions that are carried across the simulated bus X. The MTPS value 
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measures the transaction throughput of the bus that interconnects the software and hardware 

entities (bus Z in this example) that is needed in order to sustain the throughput of data exchange 

on the simulated bus that interconnects the actual design components (bus X). The MTPS value 

will of course depend on the transaction rate of the simulated bus X and the ratio of the widths of 

the two busses. For example, if 100 128-bit transactions per second are performed on bus X and 

we have a 64-bit bus Z, the MTPS value of the interconnection between A and B will be 200.  

 

 

Figure 6.3. MIPS and MTPS metrics of component A 

Continuing with the above example, the software system entity (i.e. CPU) that will 

implement design component A will need to run at a certain minimum speed in order to sustain 

the MTPS value for the interconnection busses of component A. The MIPS value of a design 

component defines the performance requirements for a software system entity, which  simulates 

this component, in order to sustain the total MTPS value across all its interconnection busses. 

This value depends on the number of assembly instructions that should be executed if this 

component is mapped into software. The MIPS value, to the best of our knowledge, has not 

previously been used as a metric in hardware/software partitioning, whereas as the efficiency of 

our algorithm demonstrates it is a value that can precisely characterize the corresponding 

entities.   

The clock frequency of a system entity or of a design component affects linearly its MIPS 

and MTPS values. Both MIPS and MTPS metrics incorporate the clock frequency which makes 

them ideal performance metrics for systems with multiple clock domains.  

Our system first transforms the original code of the design so as to trace the transactions at 

the components’ boundaries and the number of executed instructions. A Hardware Description 

Language (HDL), such as VHDL, Verilog and SystemC, usually employs a tree-like structure 

which we also utilize in order to create separate flat names for each design component. In Figure 

A B 
X 

SW 

(MIPS) 
HW 

(SIZE) 
Z 

(MTPS) 
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6.4 each cycle represents an HDL basic block (module, thread, process, etc.) that instantiates 

other HDL blocks. The transformed code creates flat names for all block instantiations; those 

names are used in order to distinguish the operations of the design components in the trace file. 

 

Figure 6.4. Flat names of design components 

The partitioning tool performs simulations in order to generate a detailed trace file with all 

the bus transactions, the executed instructions and the clock transactions. Using the trace file the 

tool can automatically calculate the MTPS values of the interconnections and the MIPS values of 

the components. In order to take into account performance bursts (i.e. short periods that many 

instructions are executed), the MTPS and MIPS calculations are performed in successive short 

time periods and the maximum values are selected.  

The Size of a design component is a metric demonstrating its silicon area if implemented in 

hardware. The area of a component can be estimated from the synthesis of its functions. A 

synthesis tool, such as [AGC] for SystemC code, can provide a rough estimate of the area of 

each component. An open-source SystemC synthesis tool is also developed in [OS10] that we 

can use for the area estimation of the components. Alternatively, the tool can measure the 

number of assembly instructions of the compiled description of the component in order to create 

a rough estimation of its size. 

 

6.3.3 Transaction Graph Creation 

In this step, the design is flattened and an annotated Transaction Graph (TG) is constructed. 

In this graph each node initially includes a single design component while the arcs correspond to 

the communication paths between the design components of the nodes. The cost metrics are 

annotated on the graph, as the example in Figure 6.5 shows. 

A 
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Figure 6.5. Example Transaction Graph where nodes are annotated with Size(S) and 

MIPS(M) metrics and arcs are annotated with MTPS metric. 

In order to merge the nodes of a TG, the Sizes and the MIPS values of the initial nodes are 

added and the MTPS values of the interconnections are recalculated. 

 

6.3.4 Software Entities Specifications 

Regarding the software entities’ specifications, the MTPS supported by the external bus of 

each software entity is specified by the designer. The protocol overhead can substantially reduce 

the utilization and therefore the maximum MTPS of a bus, so this should also be taken into 

account when the designer specifies the MTPS.  

Moreover, the designer specifies the MIPS of each software entity as well as the Operating 

System overhead (performance percentage) triggered in order to serve multiple design 

components in parallel.  

 

6.4 System Partitioning 

The tool employs two separate partitioning algorithms, which are described in more detail in 

this section. The GMP algorithm is an innovative algorithm invented by us, whereas the tool 

implements also the SA algorithm which, based on certain studies such as [SN04], produce very 

good partitioning results. 
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6.4.1 GMP Algorithm 

The proposed partitioning is performed in two stages: Grouping and Mapping. While the 

Grouping stage is not mandatory, it facilitates the Mapping algorithm leading to more effective 

results as shown in Section 7.3. 

Grouping Algorithm 

While there can be many potential partitioning solutions for a given design, we argue that 

there are groups of closely related design components, in almost every design, that will end up 

together in any cost-efficient partitioning solution. The Grouping stage aims to group together 

such design components early in the partitioning process using as a guideline the load of their 

intercommunication channels. Figure 6.6 shows the distinct steps of the Grouping algorithm. The 

steps in dash boxes are optional. 

The algorithm consists of a coarse-grain grouping followed by a finer-grain grouping; in the 

latter phase the design components of each node can be regrouped.  

In step 1 the designer can manually merge together nodes. These nodes usually implement a 

common function of the system and should be implemented on the same system entity. The 

designer can also specify that a group of nodes will be implemented in a specific-purpose 

hardware module or executed on a CPU; the specified nodes are merged together and remain 

intact throughout the whole partitioning process.  

 

Figure 6.6. Steps in Grouping 
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In step 2 the designer defines the high MTPS threshold and the low and high group-size 

thresholds. These thresholds determine the level of aggressiveness (i.e. the grouping tendency) 

of the Grouping algorithm; the lower the MTPS threshold or the higher the low group-size 

threshold, the more nodes that will be grouped together. The high group-size threshold is used in 

order to limit the Sizes of the nodes in the resulting compact TG. Typical threshold values are 

shown in Section 7.3.  

In step 3, a greedy algorithm has been implemented in order to group the nodes of the TG 

according to the aforementioned thresholds. This algorithm is described in the following pseudo-

code: 

a) Find unmarked node A with the minimum Size (all the nodes are initially unmarked and 

they are marked in step d). If all nodes are marked exit.  

b) Find the adjacent nodes (nodes directly connected to node A) that their Sizes, when 

added to the Size of node A, do not exceed the high group size threshold. If no such 

adjacent node exists jump to d. 

c) Select node B from the adjacent nodes with the maximum total MTPS value on the arcs 

connecting it with node A. If this MTPS value is greater than the MTPS threshold or the 

size of node A is less than the low group-size threshold merge nodes A and B and jump 

back to a. Otherwise continue with d. 

d) Mark node A. Jump back to a. 

In the TG created by this algorithm, for any two nodes that have total Size less than the high 

group-size threshold, the total MTPS value on the communication channels connecting them will 

certainly be less than the MTPS threshold. If the designer is not satisfied with the grouping 

results, she/he can refine the thresholds and rerun the Grouping algorithm.  

In step 4 a node can be disassembled and a new TG can be formed from its design 

components. This TG is a sub-graph of the initial TG including only the design components of 

the node. Steps 4, 2 and 3 can be iteratively executed for each node of the TG. In this way, the 

designer can create a new sub-TG from the design components included in a single node and 

rerun the whole Grouping algorithm using different thresholds. 

Mapping Algorithm 

The Mapping algorithm maps the nodes of the TG derived from the Grouping step into the 

available entities of the system. The algorithm can map more than one node into the same entity 
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essentially merging the nodes together. The primary goal of the Mapping algorithm is to fit 

as much logic as possible into the software entities (i.e. maximize the total SIZE of the 

software components).  

A greedy algorithm is employed which derives accurate results in a much faster way than 

existing algorithms. The partitioning methodology proposed here begins with the assumption 

that the entire system is implemented in custom hardware. The algorithm then visits the various 

nodes in the TG, finding those that can be executed in the specified CPUs without breaking any 

timing constraints.  

In order to decide whether a node can be implemented on a software entity we need to 

compare its MIPS value and the total MTPS value of its arcs against the available MIPS and 

MTPS values of the specified CPU taking also into account the OS overhead. In general, our 

mapping algorithm creates sub-graphs and assigns them to the software entities. Using the cost 

function described below it selects a node and subsequently picks adjacent nodes. The specific 

steps of the algorithm are the following: 

a) Find a large node A in the TG with small MIPS and MTPS values that can be executed 

on the software entity. Nodes that require high throughput and high processing power 

are obviously more suited for hardware implementation. On the other hand, certain 

nodes that are large and have low throughput and process requirements can better be 

executed on a CPU. For example, node 5 in Figure 6.5 is better suited for software 

implementation than node 1. Considering this goal, the node with the minimum value 

of cost function FSW is selected as the best candidate for software implementation, 

where the cost function FSW is defined as following: 

 

 

   

The MIPSavail and MTPSavail values are the remaining available MIPS and MTPS 

values of the software entity. The MTPSdiff value is the actual numerical difference, in 

the remaining available MTPS value of the entity, if the node is selected to be 

implemented in software. The MIPSnode and Sizenode are the MIPS and Size values of 

the node. This formula roughly shows the percentage of the available resources that a 

node will allocate if executed on this software entinty over its Size. This formula 

FSW = max (                  ,                    ) / Sizenode 

 

MIPSnode     MTPSdiff 

MIPSavail      MTPSavail 
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characterizes accurately any system ranging from systems with high throughput 

requirements to systems with high process requirements since it dynamically employs 

the available throughput percentage or the available process percentage. 

b) Calculate the new MIPSavail and MTPSavail values of the software entity: 

MIPSavail(new)  = MIPSavail(old) + MIPSnode 

MTPSavail(new) = MTPSavail(old) + MTPSdiff 

c) Use the same cost function FSW in order to select adjacent nodes and create the 

maximum sub-graph starting from node A by merging nodes together as long as the 

sub-graph can be implemented on the specified software entity.  

d) Map the sub-graph into the software entity. Jump back to a. 

 

 

6.4.2 Simulated Annealing 

Simulated annealing is a programming method that attempts to simulate the physical process 

of annealing. Annealing is where a material (as steel or glass) is heated and then cooled usually 

for softening and making the material less brittle. By analogy with this physical process, each 

step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen 

with a probability that depends both on the difference between the corresponding function values 

and on a global parameter T (called the temperature), that is gradually decreased during the 

process. The dependency is such that the current solution changes almost randomly when T is 

large, but increasingly "downhill" (i.e. better solutions) as T goes to zero. The allowance for 

"uphill" moves (i.e. worst solutions) saves the method from becoming stuck at local optima, 

which are the bane of greedier methods. For any given finite problem, the probability that the 

simulated annealing algorithm terminates with the global optimal solution approaches 1 as the 

annealing schedule is extended. This theoretical result, however, is not particularly helpful, since 

the time required to ensure a significant probability of success will usually exceed the time 

required for a complete search of the solution space. 

Τhe most important factor in SA algorithm, as described in [WC02], is the employed cost 

function and whether this function allows the algorithm to hill-climb over suboptimal solutions. 
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The SA approach creates valid neighborhood solutions by moving a single node from one 

partition to the other. The algorithm is described in the pseudo code below: 

Construct initial partitioning Pnow with all nodes in HW  

Initialize Temperature T=TI 

while stopping criterion not met { 

for i=1 to TL { 

Generate a random neighboring solution Pneigh 

Compute cost func. change ΔC=C(Pnow) – C(Pneigh) 

if ΔC >= 0 then Pnow = Pneigh 

else { 

Generate q=random(0,1) 

if q < e
- ΔC/T

   then Pnow = Pneigh 

} 

Set new temperature T= a * T 

} 

return solution Pnow 

(where TI = 400, TL = 100, α = 0.98) 

 

The parameters TI (initial temperature), TL (temperature length), a (cooling ratio) and 

stopping criterion specify the cooling schedule. The stopping criterion becomes true if no new 

solution has been accepted for three consecutive temperatures. The formula of the cost function 

we used, so as to take advantage of all our metrics, is the following: 

 

  

The SizeSW is the total Size of the nodes that are selected to be implemented on the software 

entity and the Sizetotal is the total Size of all the nodes.  

 

6.5 Partitioning Tool Implementation 

The input, to our tool, is an embedded system described in SystemC. A SystemC thread, 

similar to a Verilog module or a VHDL process, is the building block of any SystemC design 

and describes the functionality of a design component. Therefore, the developed tool assumes 

that each SystemC thread is a separate design component.  

C = - 0.8  *                   - 0.1 *                    - 0.1 *     
SizeSW                MTPSavail                 MIPSavail   

Sizetotal                MTPSSW                  MIPSSW 
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The tool is available at [OP10]. A snapshot of its GUI is shown in Figure 6.7, where the 

design is depicted as an annotated graph as well as a tree-like structure.  

In order to verify the functionality of the developed platform we applied it on the SystemC 

descriptions of a digital filter and two small RISC CPU-based designs. The original codes of the 

digital filter and one of the RISC CPUs were derived from the SystemC examples publicly 

available at www.systemc.org. The other RISC CPU (named Mephisto CPU) is a Digital Signal 

Processing module that has been designed by the French research organization CEA 

(Commissariat à l'Énergie Αtomique). These designs consist of 6, 12 and 18 threads respectively. 

The digital filter and the CPU from CEA are described in the following Sections. 

 

 

Figure 6.7. Graphical User Interface of Partitioning Tool 

 

6.6 First Test Case 

 

The example digital filter consists of six design components: one SOURCE block, two FFT 

blocks, one FIR block and two SINK blocks, as shown in Figure 6.8. 
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The tool first parses the design and creates a graph, where the nodes represent the design 

components and the arcs represent the communication paths between the components. The user 

can select to execute any of the following commands, as shown in Figure 6.9: 

• Flat: A flat graph of the design is constructed with nodes representing the design 

components and edges representing the interconnections between the components. 

• Annotate: The design is simulated in order to generate a graph annotated with the cost 

metrics of the design components. 

• Merge: The user can select nodes and manually merge them together. 

• Grouping: The Grouping algorithm runs in order to group closely related nodes. 

• Mapping: The Mapping algorithm is executed in order to allocate the nodes into the 

available hardware and software entities.  

 

Figure 6.8. Block Diagram of digital filter 

 

 

Figure 6.9. User commands supported by the tool 



    91 

 

 

In Figure 6.10, the designer has manually merged SOURCE1 node with FFT2 node (green 

nodes) and FIR1 node with FFT1 node (teal nodes).  

 

Figure 6.10. Manual merging of design components 

 

 

Figure 6.11. Partitioned design where green nodes are assigned to the SW entity and red 

nodes to the HW entity 
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Figure 6.11 depicts an example partitioning of the digital filter. The green nodes are 

assigned to the software entity while the red nodes are assigned to the hardware entity. 

 

6.7 Second Test Case 

In order to further verify the functionality of the HW/SW partitioning tool we applied it on 

the SystemC description of Mephisto CPU, which has been developed by CEA. The CPU was 

used for 3GPP telecommunication. The design consists of 18 components. The block diagram of 

the Mephisto’s design is shown in Figure 6.12 and the hierarchy of the design components is 

illustrated in Figure 6.13. 

 

 
 

Figure 6.12. Block Diagram of Mephisto 
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Figure 6.13. Design Components of Mephisto 

 

In order to parse and partition this real word design the partitioning tool had to support more 

complicated SystemC declarations. First, all the SystemC files of the design are parsed in order 

to derive the design components and their interconnections. In this step, the tool finds all 

SystemC modules, instantiations and inter-block signals. A flat graph of the design is 

constructed, with nodes representing the design components, and edges representing their 

communication channels. A snapshot of the GUI is given in Figure 6.14, where the design is 

depicted as a flat graph as well as a tree-like structure. 
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Figure 6.14. Flat graph of Mephisto depicted in the GUI of the Partitioning Tool 

 

The tool transforms the original code of the design so as to trace the transactions at the 

components’ boundaries and the number of executed instructions. System simulations are 

performed in order to generate a detailed trace file with all the bus transactions, the executed 

instructions and the clock transactions. Using the trace file the tool can automatically calculate 

the MTPS values of the interconnections and the MIPS values of the components. In order to 

take into account performance bursts (i.e. short periods that many instructions are executed), the 

MTPS and MIPS calculations are performed in successive short time periods and the maximum 

values are selected.  

The table below shows the measured MIPS and Size values of the Mephisto’s design 

components that were derived from the trace file.  
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Component  Total MIPS Size (instruction count) 

mep_sat_cnt 300 77594 

mep_regser 1 78562 

ag_ra0 198 86042 

mep_sp_ram0 97 79365 

mep_sp_ram1 97 79365 

mep_fifo_out 500 90213 

mep_ra 310 86228 

cmp_sel 138 91560 

mep_fifo_in 526 86073 

ag_ra1 197 86042 

ag_ra2 210 86042 

mep_adr_sr 1 89882 

c2p 141 81873 

Mdiv 1 90099 

mep_sr 300 92812 

ag_ram0 1 89019 

ag_ram1 1 89019 

mep_dp 548 185156 

  

 

The cost metrics are annotated on the graph as shows in Figure 6.15. The MIPS and total 

MTPS values of the design component are annotated on the nodes while the MTPS values of the 

communication paths are annotated on the edges.  

 

Figure 6.15. Annotated graph of Mephisto 
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The partitioning of the design is based on the GMP (Grouping Mapping Partitioning) we 

have developed and consists of two steps: The Grouping algorithm and the Mapping algorithm. 

The Grouping algorithm is performed where the graph is processed so as to produce a graph in a 

more compact and manageable form. Each node in the new compact graph represents a group of 

highly-related design components. The threshold values of the Grouping algorithm are set in the 

configuration file of the tool. The user defines the high MTPS threshold and the low and high 

group-size thresholds. These thresholds determine the level of aggressiveness (i.e. the grouping 

tendency) of the Grouping algorithm as described in Section 6.4.1.  

Figure 6.17 shows the results after the Grouping algorithm. As shown nodes mep_pc and 

mep_dp have been merged together because there are many communication paths between them. 

 

 

Figure 6.16. Colored nodes have been merged together after the Grouping algorithm is applied 

 

Next the Mapping algorithm is applied where the graph is gradually splitted into two distinct 

parts: one part contains the nodes with the components that should be executed in software and 

the other contains the components that should be implemented in hardware. In the example of 
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Figure 6.17 we used a software entity that supports 1000 MIPS and 400 MTPS on its external 

bus.  

 

 

Figure 6.17. HW/SW partitioning of Mephisto where red nodes should be implemented in 

HW and green nodes should be executed in SW. 

In order to verify the functionality of our partitioning tool, the tool has been extensively 

used in partitioning the digital filter and the Memphisto CPU using different software entities 

and partitioning parameters. Tweaking the thresholds of the Grouping algorithm we could derive 

the optimum partitioning results. These designs are small in order to extensively evaluate the tool 

and therefore a very large set of possible graphs were used in Section 7.3. 

 

 

6.8 Summary 

Although Hardware/Software partitioning has been extensively studied in the last twenty 

years, there are still many important open issues. At the same time, the partitioning task is very 

important for current SoC designers since today virtually all such systems consist of a number of 

CPUs as well as dedicated hardware modules. Moreover, performing fast and efficient 

hardware/software partitioning is especially important in RC where the partitioning algorithm 
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can be applied several times at run time. In order to address some of the open issues we first tried 

to provide a better understanding of the partitioning problem and then we presented an open-

source tool that provides a complete and efficient solution. 

The developed tool utilizes new cost metrics and supports two separate partitioning 

algorithms. The tool first constructs a unified performance graph of the embedded system where 

the sizes and instructions per second of the nodes, as well as the transactions of the 

interconnections between the nodes, are annotated. Next, our innovative GMP algorithm 

processes the graph, groups highly-related nodes together and indicates which should be 

implemented in hardware and which should be executed on the embedded CPUs. The main 

advantage of our GMP-based approach is that it provides cost-efficient solutions in a much faster 

way than traditional partitioning algorithms/tools. Alternatively, our tool employs also an 

implementation of the SA algorithm which is considered to derive very efficient partitioning 

results. 

We strongly believe that since this is the first known such open-source framework it can 

provide a concrete base of a family of more advanced partitioning design tools that employ 

various cost and capacity metrics and accurate cost functions. 
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Chapter 7. Performance Analysis and Evaluation 
 

 

 

“Man is a slow, sloppy and brilliant thinker; the machine is 

fast, accurate and stupid.” 

William M. Kelly 

 

 

 

 

 

 

 

 

This Chapter provides a detailed evaluation of the proposed methodologies and platforms. 

We compare our approaches against existing methodologies and provide a performance analysis 

based on real world test scenarios. First, we analyze the hardware emulator (Section 7.1) and the 

scan chain methodology (Section 7.2) and finally we evaluate the hardware/software partitioning 

algorithm (Section 7.3). 

 

7.1 Hardware Emulator 

In order to evaluate the tool and quantify the proposed methodology we created a typical 

hardware emulator system in which we applied the proposed framework.  

7.1.1 Evaluation board 

We used the Xilinx University Program (XUP) Virtex-II Pro Development System from 

Xilinx which supports a Virtex-2P-30K FPGA, a widely used FPGA. The Xilinx Virtex-II Pro 

family of devices incorporates small yet powerful PowerPC 405 processor hard cores and 

supports Microblaze processor soft cores. Xilinx uses CoreConnect as the bus infrastructure for 
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all of their embedded processor designs; the CoreConnect is a microprocessor bus-architecture 

from IBM for SoC designs and it is used extensively in their PowerPC-based designs.  

Advanced features of the Virtex-II Pro FPGAs include powerful system connectivity 

solutions, digitally controlled impedance (DCI) technology, comprehensive clocking solutions, 

high-speed Active Interconnect routing architecture, and bitstream encryption. Figure 7.1 shows 

the Xilinx evaluation board which we used for our Hardware Emulator platform.  

 

Figure 7.1. XUP Virtex-II Pro Development board 

The XUP Virtex-II Pro Development System provides an advanced hardware platform that 

consists of a high performance Virtex-II Pro Platform FPGA surrounded by a comprehensive 

collection of peripheral components that can be used to create a complex system and to 

demonstrate the capability of the Virtex-II Pro Platform FPGA. Figure 7.2 shows a block 

diagram of the XUP Virtex-II Pro Development System. 
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Figure 7.2. XUP block diagram 

We have tested our proposed methodology against several real-world DUTs and 

testbenches, and always derived significant speed-ups compared to conventional emulation 

systems and came to the same final conclusions. The speed-up depends directly on the number of 

DUT-testbench signals. In Section 7.1.2 we compare the proposed emulator with a conventional 

emulation scheme, and in Section 7.1.3 we analyze a test scenario that we have used.  

 

7.1.2 Performance Evaluation 

In this Section, “frequency” of an event is defined as the number of times this event occurs 

over the total simulated clock cycles. 

In a transaction-based conventional emulator, such as the ones described in Section 3.1 that 

follow the SCE-MI standard, the FPGA that emulates the DUT and the transactors, 

communicates with the external CPU that runs the proxies and software portion of the testbench, 

via a fast off-chip bus. The average time to simulate a clock cycle is given by the following 

formula: 

(1) SimulationCycletime = EmulatorCycletime + TRANSACTIONfrequency X (BUStime + CPUtime) 

Where: 

 “EmulatorCycletime” is the time required by the FPGA to emulate one clock cycle of the 

DUT. 
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 “TRANSACTIONfrequency” denotes the frequency of the transactions. 

 “BUStime” denotes the average bus time to execute the SCE-MI protocol and send the 

transaction and its data from the FPGA to the CPU and vice-versa. 

 “CPUtime” denotes the average CPU time consumed in the host workstation to process a 

transaction. 

In our case, the average time to simulate a clock cycle is given by the following formula: 

(2) SimulationCycletime  = EmulatorCycletime  + PLIfrequency X (BUStime  + CPUtime ) + 

MEMfrequency X MEMtime+ FPfrequency X FPtime 

Where:  

 “EmulatorCycletime ” is the time required by the FPGA to emulate one clock cycle of the 

DUT. 

 “PLIfrequency”, “MEMfrequency” and “FPfrequency” denote the frequencies of the PLI calls, the 

memory references and the floating point operations, respectively. 

 “BUStime ” denotes the average bus time to execute the bus protocol (e.g. IBM’s 

CoreConnect) and send the PLI call or results from the synthesized testbench to the 

embedded CPU and vice-versa. 

 “CPUtime ” denotes the average time consumed by the embedded CPU for processing a 

PLI call. 

 “MEMtime” denotes the access time of the external memory. 

 “FPtime” denotes the execution time of a floating point operation by the embedded FPU. 

Let us now compare these two formulas. One of the biggest advantages of our approach is 

that it will usually result in a much higher portion of the testbench than just the transactors, being 

converted into synthesizable HDL code and emulated on the FPGA together with the DUT. The 

result is that the emulation will need to halt for PLI calls or other external operations much less 

frequently than a conventional emulator will need to halt for a transaction. Thus, compared to a 

conventional emulator: 

PLIfrequency + MEMfrequency + FPfrequency ≤ TRANSACTIONSfrequency 
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Moreover, memory and floating-point operations are executed much faster in our approach 

since we do not need any software intervention for them, in contrast to a conventional emulator 

that performs these operations in software via corresponding off-chip transactions. Thus: 

MEMtime < BUStime + Average CPUtime 

FPtime < BUStime + Average CPUtime 

Additionally, our approach utilizes on-chip high-bandwidth low-latency buses (running e.g. 

CoreConnect), in contrast to conventional emulators that usually utilize off-chip buses (running 

SCE-MI). Thus:  

BUStime  < BUStime 

Putting it all together, our approach turns out to be considerably faster than a conventional 

emulator. 

 

7.1.3 Test Case 

The DUT of our reference test scenario, for which we present detailed results in this Section, 

is a hardware module containing two memory controllers that make periodically pseudo-random 

accesses to a parameterized number of SRAM and DRAM chips. The testbench includes the 

memory models for these chips. 

The memory models that we used are those of a 32-bit ZBT SRAM and a 16-bit SDRAM 

DDR, acquired from Micron Technology, Inc. [MTI]. Thus, even though it is a small-scale test 

case, it includes real-world, widely-used code, that has been developed by engineers in a large 

semiconductor company. We performed several tests by varying the number of memory chips 

that are instantiated. 

The tool that we have developed was able to successfully transform the original testbench, 

including the memory models from Micron Technology, into synthesizable HDL code. The large 

memory arrays of the models are stored in the DDR memory of the XUP board that is accessed 

by the embedded PowerPC processor and the DDR memory controller. The whole system, 

including the transformed testbench and the DUT, was synthesized and simulated using the ISE 

8.1 EDA software from Xilinx.  
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Performance Measurements 

The FPGA which contains the DUT and the synthesized testbench runs at 125 MHz, with 

the critical path in the SDRAM model, as expected. An SRAM memory transaction, which 

involves a single request between the HDL testbench block and the server (Section 4.3), 

averaged 30 ticks in a large number of test runs. A SDRAM burst transaction, which involves 4 

requests for a burst size equal to 4, took 140 ticks on average. The DUT performs one access to 

every SRAM chip and one to every SDRAM chip in parallel every 200 simulation cycles on 

average. Taking all this into account we can measure the simulated Cycles Per Second (CPS). 

The results are depicted in Figure 7.3. 
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Figure 7.3. Simulation Speed. 

In our tests we varied the number of SRAM and SDRAM chips in order to measure how this 

affects the simulation speed. As we can see in the Figure, the simulation speed remains largely 

unaffected by the number of memory chips. Increasing the number of memory chips will 

certainly result in a higher number of signals between the DUT and the testbench (90 signals per 

SRAM, and 48 signals per SDRAM). Since the testbench is synthesized and emulated on the 

same FPGA together with the DUT, the increased number of signals does not affect the FPGA 

clock cycle EmulatorCycletime , but the number of memory chips affects linearly the frequency of 

the memory accesses MEMfrequency. However, the server is able to access the external memory 
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where the long arrays of the memory models reside without any software intervention 

(PLIfrequency = 0) and consequently the emulation speed is slightly affected. 

On the other hand, a conventional emulator, using transactors and message port proxies, 

needs to go off-chip several times for every memory access. The memory accesses need to be 

transferred from the FPGA emulator to the CPU simulating the software part of the testbench, 

executed in software that accesses an external memory, and have their results sent back via the 

SCE-MI bus. The resulting communication and execution overhead when compared to our 

approach can be as high as proportional to the number of memory chips. 

As Figure 7.3 shows, our approach reaches a simulation speed of over 10M CPS for 5 

SRAM and 5 SDRAM chips. In comparison, Palladium and VStation Pro report emulation 

speeds of 600K CPS, and Kim and Kyung [YC04] measure the speed of a conventional emulator 

and their improved emulation system between 38K CPS and 701K CPS which is about 15 times 

slower than our approach. 

In order to further quantify our approach, we compared the simulation frequency of a 

conventional system against that achieved by our proposed framework. Following the 

transaction-based model, we assumed that the designer provides the transactors that implement 

the functionality of the SRAM and SDRAM models. Figure 7.4 shows the speed-up gained by 

our approach over a conventional emulator running our test case. We have measured that the 

conventional emulator requires an average of 250 cycles at 125 MHz per transaction (BUStime + 

Average CPUtime).  

These results are in favour of the conventional emulator since several delays incorporated in 

the communication, such as the latency of the off-chip communication link, that cannot be 

accurately measured or estimated, were assumed to be zero.  
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Figure 7.4. Comparison of the proposed architecture. 

Finally, we wanted to compare our proposed architecture against a widely-used software 

simulator such as modelsim or vcs. To this end, we used Intel’s VTune [INV] to analyze a 

number of simulations running on modelsim. The main drawback of a software simulator is that 

the simulation speed is directly affected by the size of the DUT, in contrast to a hardware 

emulator where the DUT is synthesized and the speed is not as severely affected by its size. 

VTune shows millions of instructions being executed even for small simulations, while OS 

device drivers consume a significant percentage of the simulation time. Our approach operates at 

1000 to 10000 times faster than modelsim depending on the actual complexity of the DUT. 

 

 

7.2 Embedded Logic Analyzer 

In order to evaluate and quantify the proposed ELA (see Section 5.4) we used the emulation 

environment described in Section 7.1 where we applied the scan chain methodology. The 

hardware emulator uses the XUP Virtex-II Pro Development System from Xilinx, described in 

detail in Section 7.1.1. This evaluation environment supports an embedded PowerPC which we 

used in order to configure and monitor the status of the ELA.  

In order to measure the performance and evaluate the scan chain technique and the ELA, we 

applied our methodology on the code of the TDM line card described in Section 5.5.1, which 

connects a backbone network with hundreds of clients. The DUT includes 786 FFs partitioned 

into 5 long scan chains by the scan chain tool (Section 5.3). The final conclusions from the 
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measurements are independent of the specific DUT we used. The system which includes the 

testbench block, the DUT and the ELA was synthesized using the Xilinx ISE 7.1 tool.  

 

7.2.1 DUT Scan Circuitry Evaluation 

The area overhead of the scan circuitry is an important issue. [SM97] claims that a D Flip 

Flop instrumented for scan is only 10% larger than the original one and adding scan logic in 

VLSI requires a 5% to 30% area overhead. This, unfortunately, is not the case in FPGAs (see 

also [WG01]), where instrumenting a FF for scan effectively doubles its size since the FF and the 

scan mux have the same size (each block covers half of the Logic Element (LE)). The size may 

even triple or quadruple by using additional LEs for the clock enable and set/reset scan logic. In 

our evaluation environment the DUT with the multiple scan chains occupies around 90% more 

area than the original design as our measurements for different DUTs demonstrated. If the future 

FPGAs internally support scan structures, such as FreedomChip, this area overhead will 

obviously be drastically reduced. 

Moreover, in [WG01] the authors claim that adding scan logic, on average, reduces the 

speed of the circuit by 20%. The measured speed reduction in our experiments was slightly 

lower but in general this is not a significant issue for a hardware emulator; such systems perform 

functional verification by emulating the circuits of the user design, orders of magnitude slower 

than reality (i.e. the final real hardware implementation). 

 

7.2.2 Logic Analyzer Evaluation 

The scan period is important when the ELA is activated during the complete hardware run, 

even before the trigger condition is true, in order to capture and test the trigger signals. The 

length of the longest scan chain in the DUT affects directly the scan period of the ELA. By 

increasing the number of scan chains generated in the DUT, the length of the longest scan chain 

diminishes. This is depicted in Figure 7.5 for our example design. 
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Figure 7.5. Length of longest scan chain 

Figure 7.5 shows that the length of the longest scan chain decreases slightly when the 

number of scan chains is greater than 25. This is obvious since the equation that gives the length 

of the longest scan chain when the scan chains are balanced (see Section 5.3) is: 

(1) Scan Chain Lengthmax =    Number of RegistersTotal / Number of Scan Chains 

The number of the scan chains supported by the ELA is parameterized in the VHDL code. 

This number affects the size of the ELA linearly, as shown in Figure 7.6. Therefore, it is 

important to keep it as small as possible. We used the Xilinx ISE synthesis tool in order to 

estimate the size of the ELA. As shown in Figure 5.7 the logic blocks as well as the length of the 

internal signals in the ELA are directly affected by the number of the scan chains. Using the 

Xilinx Virtex-2P-30K FPGA, an ELA that supports 32 scan chains occupies 13% of the FPGA 

area, while an ELA that supports 64 scan chains occupies 20% of the FPGA area.  
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Figure 7.6. Area of ELA 

Figure 7.7 shows the clock frequency as a function of the number of the scan chains 

supported by the ELA. These numbers were derived from the Xilinx ISE synthesis tool. As the 

number of scan chains increases the area of the ELA increases (Figure 7.6); this means that the 

internal logic as well as the length of the internal wires increases also. This results in a small 

clock frequency drop as shown in the figure below. 

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70

Number of Scan Chains

E
L

A
 F

re
q

u
e
n

c
e
 (

M
H

z
)

 

Figure 7.7. Frequency of ELA 

The length of the scan period is an important measurement that characterizes the 

performance of the proposed methodology. This number depends on the length of the longest 

scan chain in the DUT (or the number of the scan chains), the number of the signals to be traced, 
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and the speed of the ELA. Figure 7.8 shows the scan period as a function of the number of the 

scan chains in the evaluation environment, when we trace the values of 15 signals/busses. 
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Figure 7.8. Scan Period 

Figure 7.8 shows that the scan period is almost fixed when the number of scan chains is 

greater than 25. The reason is that the length of the longest scan chain slightly decreases (Figure 

7.5) while in parallel the speed of the ELA drops (Figure 7.7) and the clock cycle of the ELA 

increases. The length of the scan period is roughly proportional to the length of the longest scan 

chain and to the clock cycle of the ELA (there are also some overhead cycles due to the captured 

signals and the size of the captured buffer) as described in the following equation: 

(2) Scan Periodlength  ≈  Scan Chain Lengthmax  X ELAclock cycle    

The aforementioned plots demonstrate that around 25 scan chains is the optimum solution, 

while implementing more scan chains results in increasing the area of the ELA without 

succeeding smaller scan period. This conclusion is independent of the DUT we used since the 

DUT size (Number of RegistersTotal) affects linearly the measurements of Figure 7.5 and Figure 

7.8 as derived from equations (1) and (2).  

 

7.2.3 Evaluation of the Trigger Condition 

The ELA must be activated before the trigger condition is true in order to avoid recompiling 

the design when the trigger signals change (see Section 5.4.1). In our evaluation environment, 
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the ELA can access all the scan chains of the DUT (without capturing data) in 145 ns. The 

simulation cycle of the emulated design in Section 7.1.3 is 32 ns, where the critical path is in the 

testbench code and not in the DUT. Assuming that we activate the ELA once in every cycle, the 

new simulation cycle will be 180 ns or about 5 times longer. This means that the simulation will 

be about 5 times slower for a design of 786 FFs.  

Extrapolating from these results, Figure 7.9 shows how much slower the simulation is when 

the ELA is activated in every simulation cycle as a function of the number of registers in the 

DUT. The number of registers in the scan chains affects the emulation speed linearly. This is 

because the scan period is proportional to the length of the longest scan chain which is 

proportional to the number of registers in the DUT as derived from equation (1) in Section 7.2.2.  

 

Figure 7.9. Speed Degradation 

In order to decide whether the design should be recompiled or use the ELA (no 

recompilation) instead, the designer should consider how much time it takes to compile the 

design, when the trigger condition becomes true and how often the ELA should evaluate the 

trigger condition. For example, if we want to emulate a big design with 5K registers and the 

trigger condition becomes true in 10 seconds when we emulate its behavior without using scan 

chains, then it takes 10 secs X 40 = 6.6 minutes with the scan chains enabled. Recompiling 

(synthesis, place and route) a design with 5K registers will probably take more than 6.6 minutes. 
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7.3 Hardware/Software Partitioning 

Firstly, we evaluated our approach when implementing the three real world designs 

described in Sections 6.5, 6.6 and 6.7 . However, in all three cases our toolset ended up with the 

optimal solution so we could not get, from those embedded systems, any additional information 

(except of the fact that it works very well for those designs) regarding our novel scheme’s 

characteristics.  

In order to demonstrate the efficiency of our approach, the two stages of the partitioning 

algorithm were extensively analyzed and evaluated using a very large set of possible graphs. In 

order to create this large set of graphs we varied the following parameters: (a) the number of 

nodes, (b) the average input and output degrees of the nodes, (c) the MIPS, (d) the MTPS and (e) 

the Size. We used both random graphs and geometric graphs since they can represent complex 

embedded systems [YC95]. Random geometric graphs result from taking uniformly distributed 

points in a cube and connecting two points if their Euclidean distance is less than a prescribed 

distance.  

The example platform to which we mapped these designs utilizes different embedded CPUs 

as their software system entities, while their MIPS were derived from the Dhrystone 

performance results [DPR]. We also used the specifications of these CPUs to derive the MTPS 

values of their external busses. Additionally, for simplicity reasons, we assumed a 5% OS 

overhead in all CPUs, which seems realistic for computationally intensive workloads according 

to [RE00]. The hardware system entities of our example systems need not be simulated since our 

algorithm is evaluated in terms of how many design components it is able to fit into the software 

system entities; we assume that the more design components we are able to map into software, 

the better the results, as it also supported in many different papers in this area. 

In order to evaluate the results and the effectiveness of our partitioning algorithm, we 

compare them against the optimum solution which is derived through an exhaustive search of the 

complete design space. We define as the software percentage of any partitioning the total Size of 

the threads implemented in software over the total Size of all the threads. We then use the 

software percentage difference between the partitioning that our algorithm triggers and the 

optimum partitioning, in order to accurately evaluate the effectiveness of our algorithm.  

Figure 7.10 shows this percentage difference of the Mapping algorithm (see Section 6.4.1) 

for random geometric graphs with various average MTPS values on their arcs. The exhaustive 
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search scheme, which is used as a reference of the optimal solution, is prohibitively slow to 

partition graphs with more than 30 nodes so we demonstrate our results for up to 30 nodes. A 

SW entity that sustains 500 MIPS and 40 MTPS was used and the ranges of the node Sizes, 

MIPS and MTPS values were selected in such a way that the optimum solution partitions the 

system roughly in the middle. Each point in the graph is the average result from multiple test 

cases.  
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Figure 7.10. Evaluation of Mapping Algorithm  

While the Mapping algorithm seems to operate efficiently in most graphs, we realized that 

the results deviate significantly from the optimum ones when the MTPS values of the design 

components are getting closer to the sustainable MTPS of the software entity, as also shown in 

Figure 7.10 for the case of MTPS=25. The reason is that the Mapping algorithm is not flexible 

enough to select, in a single step, nodes connected with arcs that have high MTPS values. For 

instance, assuming that in the example graph of Figure 7.11 the Mapping algorithm has already 

selected node N1 as the first node of the sub-graph, the best alternative is to select nodes N3 and 

N4 together. However, it will select node N2 because the arc between nodes N3 and N4 has a 

high MTPS value and as a result the FSW metrics of nodes N3 and N4 are high. In order to solve 

this problem, we can set an upper threshold to the MTPS values in the graph, at the Grouping 

stage before the Mapping stage, merging nodes interconnected with high MTPS values, such as 

N3 and N4. 
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Figure 7.11. Problem with Mapping Algorithm 

Figure 7.12 shows the results from three test cases when both Grouping and Mapping 

algorithms are applied. The MTPS values of the software entities that were used are 40, 70 and 

100 while the average MTPS values of the arcs in the graphs are 25, 40 and 60 respectively. In 

the first test case (MTPSentity=40 and MTPSgraph=25) when the MTPS threshold of the Grouping 

algorithm ranges between 20 and 30, groups with closely related nodes are formed providing 

better alternatives to the Mapping algorithm. When the MTPS threshold drops below 20, over-

grouping deteriorates the partitioning results. When the MTPS threshold is above 30 the 

Grouping algorithm is essentially inactive. We derived similar results from all the test cases.  
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Figure 7.12. Problem tackled with Grouping Algorithm 

If the total MTPS value of the interconnections between two nodes is larger than the MTPS 

value of the software entity, the bus of the software entity cannot sustain the transactions 

between the two nodes and therefore the Grouping algorithm should group such nodes together. 

By analyzing more test cases we concluded that an MTPS threshold close to half of the MTPS 
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value of the software entity derives the optimum solutions. So if such a threshold is utilized our 

combined Grouping and Mapping algorithm reports partitioning results that differ by less than 

10% from the optimal ones which are denoted by an exhaustive search of the complete search-

space. 

To further evaluate our novel GMP algorithm we compare it against the SA algorithm, 

which, as it is demonstrated in [WC02], produces efficient results. Figure 7.13 shows the 

software percentage difference between the SA algorithm and the GMP algorithm using random 

geometric graphs with various sizes. Each point in the graph is the average result from multiple 

test cases. The software partitioning percentage of the SA algorithm is about 2.5% better than the 

GMP algorithm which shows that the GMP algorithm provides very efficient results. In several 

test cases the GMP algorithm and the SA algorithm resulted in exactly the same partitioning. 

Moreover, Figure 7.13 shows that the GMP algorithm derives efficient partitioning solutions for 

any graph size. 
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Figure 7.13. Comparison between GMP and SA 

Figure 7.14 shows the time consumed by the two algorithms. Notice that the plots use 

different time units. A Pentium 4 at 2.8Hz was used for our measurements.  
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Figure 7.14. Time of SA and GMP algorithms 

As those results clearly demonstrate the SA algorithm is about 2500 times slower than our 

GMP. The GMP greedy algorithm is very fast since the time complexity of the algorithm is 

O(N). On the other hand, the more time we give to the SA by adjusting its parameters, the more 

efficient results we derive. The effectiveness as well as the time of the SA algorithm depend on 

the cooling ratio parameter, a. This parameter should be close to 1 in order to derive efficient 

results prolonging in this way the cooling process.  

So, while the SA algorithm supported by our tool derives slightly better results than the 

GMP algorithm, the SA algorithm is more than three orders of magnitude slower than the GMP 

algorithm making it impractical for large designs. 
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7.4 Summary 

We analyzed the proposed methodologies through simulations of random and real world test 

cases. In summary, the evaluation results we derived are the following: 

 We could overcome the testbench-DUT communication bottleneck of existing emulators 

and therefore increase the capabilities of today’s hardware emulators by up to 1500% 

when applied to real-world systems. 

 We managed to provide full chip observability and controllability using the scan chain 

methodology. Our measurements showed that using between 15 and 25 scan chains offers 

the best tradeoffs in terms of performance and area. 

 We proposed the GMP hardware/software partitioning algorithm that provides cost-

efficient solutions in a much faster way than traditional partitioning algorithms/tools. In 

particular the algorithm is about 2500 faster than the SA while the results of the GMP are 

always less than 3% worse than those triggered by the SA.  
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Chapter 8. Conclusions and Future Directions 
 

 

 

“The real danger is not that computers will begin to think 

like men, but that men will begin to think like computers.”  

Sidney J. Harris 

 

 

 

 

 

 

Due to the complexity involved in today’s embedded systems, designing them requires a lot 

of man power and the support of advanced CAD tools. Over the years, several algorithms, 

methodologies and platforms have been developed in order to speed up this process; hardware 

simulation accelerators, hardware emulators and automatic hardware/software partitioning are 

some of them. However, there are still several limitations in all the proposed approaches, such 

as: 

 Complex systems demand high communication throughput between the devices running the 

testbench and those emulating the synthesizable DUT. This communication can easily 

become the bottleneck and eventually limit the performance of the hardware emulation. 

Most of the proposed solutions for reducing the communication require manually rewriting 

the testbench in a different language/manner. 

 Circuit observability of emulated systems is not efficient. Modification to the signals being 

captured or to the size of the data capture buffer often requires a time-consuming full 

recompilation of the design. In addition, no circuit controllability is provided. 
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 Although automatic hardware/software partitioning has been extensively studied in the last 

twenty years, there are still many important open issues, which is probably the reason why 

commercial CAD tools do not support this functionality yet. There is no standard and 

satisfactory methodology that can automatically split any design into design components and 

allocate them to the available hardware and software system entities in a cost-effective 

manner.   

This dissertation described cost-efficient techniques to attack each of the aforementioned 

limitations. In particular we proposed the following: 

 A methodology that greatly reduces or completely eliminates the aforementioned emulator 

bottleneck. The idea is to transform the part of the testbench that communicates the most 

with the DUT to synthesizable code, which allows us to emulate it close to the DUT, thus 

avoiding costly off-chip communication. In order to evaluate our methodology, we built a 

tool that provides a way to synthesize a behavioral VHDL code in a hardware simulation 

environment. Our real world experiment demonstrate that we can overcome the testbench-

DUT communication bottleneck and therefore increase the capabilities of today’s hardware 

emulators by up to 1500% when applied to real-world systems.  

 Next, we attack the problem of circuit observability and controllability during emulation. 

Towards this end, we first introduce scan chains that can quickly access any register of the 

emulated DUT, and then add a novel Embedded Logic Analyzer, along with a software 

toolset. The resulting emulation environment is able to support full on-the-fly circuit 

observability and controllability. Our real-world experiments show that using between 15 

and 25 scan chains offers the best tradeoffs in terms of performance and area. 

 Finally, we propose a methodology to attack the hardware/software partitioning problem. A 

graph is constructed out of the design components, and novel cost metrics are used to 

annotate this graph. Based on these annotations, as well as on certain capacity metrics for 

the system entities, our novel GMP algorithm is able to group closely-related design 

components, and decide which should be implemented in hardware and which should be 

executed on the embedded CPUs. A large number of randomly generated realistic graphs are 

used to compare our algorithm against the widely used Simulated Annealing (SA) algorithm. 

Our experiments show that, even though SA produces slightly better results, it is more than 
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three orders of magnitude slower than our innovative approach making it impractical for 

large designs. 

8.1 Future Directions 

Regarding the hardware/software partitioning we plan to investigate a hybrid approach using 

both the GMP and the SA algorithms. The GMP algorithm will provide a fast solution to the SA, 

which will be farther optimized in order to derive a better partitioning. In this case, the cooling 

process of the SA algorithm will be faster than running the SA alone, since the SA will start from 

a reasonable system partitioning instead of a random one. The hybrid approach is shown in 

Figure 8.1.  

 

Figure 8.1. Hybrid GMP-SA partitioning 

Regarding the emulation platform, one thing that this dissertation does not take into account 

is that big designs usually do not fit on a single FPGA. The proposed hardware emulator has to 

decide where to implement the testbench-DUT communication channel in a multi-FPGA 

environment. One potential approach would be to keep the communication channel on the same 

FPGA as shown in Figure 8.2, while other approach may favor to split the channel in order to 

increase the parallelism. In a hardware emulator consisting of multiple FPGAs, the utilization of 
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the FPGA logic resource is usually very low due to the limitation on the number of I/O pins. 

Therefore, there is a lot of available free FPGA space that can be used in order to have multiple 

HDL TB Simulator blocks in the system.  

 

Figure 8.2. Hardware Emulator using three FPGAs 

Moreover, we can next investigate the inter-FPGA communication. Virtual wire technology 

not only increases the inter-FPGA communication capability, but it also increases the logic 

resource utilization by means of time division multiplexing (TDM). TDM allows one physical 

wire to be shared by multiple logical wires. For TDM to be effective, each transportation of an 

inter-FPGA signal must be carefully assigned to a slot of the time division. Essentially, there are 

two things we could investigate:  

1. The inter-FPGA requirements in a hardware emulator where the DUT runs several times 

slower than the speed of the final design and therefore the internal signal transactions are 

much slower than the real system. 

2. How we could use the pause mechanism provided by our proposed hardware emulator 

(see Section 4.7) in order to pause periodically (probably in every simulation cycle) the 

emulation and transfer the values of the signals between the FPGAs. In this way, the 

system can essentially operate with any number of I/O pins for the inter-FPGA 

communication. 

Finally, we plan to investigate the use of General Purpose Graphics Processor Units 

(GPGPUs) in the emulation environment. GPGPU is a new parallel technology that can provide 

cost-efficient solutions for Single Instruction Multiple Data (SIMD) applications. Such a parallel 

application could be the emulation of a design. Towards this end, the authors in [NP10] provide 
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an approach that parallelizes SystemC’s discrete-event simulation (DES) on GPGPUs by 

transforming the model of computation of DES into a model of concurrent threads that 

synchronize as and when necessary. The proposed threading model is capable of executing in 

parallel on the large number of simple processing units available on GPUs.  

Because the GPUs are stuck on the relatively slow PCIe bus, the communication overhead 

between a GPU and an external CPU can slow down significantly the emulation performance. 

Therefore, the GPU-CPU communication channel can become the bottleneck of the system 

emulation if the testbench runs on an external CPU and the DUT is emulated on the GPU.  

State-of-the-art technologies, such as multi-core CPUs, FPGAs and GPUs, can become 

powerful platforms for advanced CAD tools in order to develop high quality systems satisfying 

all the needs of the demanding market. Further investigation is required in order to combine the 

advantages of these technologies and derive optimum solutions. 
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