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Abstract

In this thesis, the unsupervised creation of language-agnostic Distributional Se-

mantic Models (DSMs) using web harvested data is investigated for the problem

of semantic similarity estimation. Semantic similarity can be regarded as the build-

ing block for numerous tasks of Natural Language Processing, e.g., affective text

analysis and paraphrasing. The first part of the thesis dealswith the construction

of typical DSMs following the well-established Vector Space Model. More specif-

ically, corpora are created by harvesting web documents following a query-based

approach. Two families of similarity metrics are applied, while related parameters

are investigated. Similarity metrics are evaluated against human similarity ratings

achieving state-of-the-art results that are comparable with knowledge-based met-

rics. Despite its good performance, the aforementioned methodology suffers from

quadratic query complexity with respect to the size of the lexicon. A methodol-

ogy of linear query complexity is proposed, which is appliedfor corpus creation

with respect to a lexicon consisting of thousands of nouns. Using this corpus,

we propose a novel network-based implementation of DSMs, which is based on

the notion of semantic neighborhoods. Semantic neighborhoods are considered

as a parsimonious representation of corpus statistics, while they capture two main

types of lexical relations: semantic and associative. The problem of the automatic

classification of associative and semantic relations is also addressed, motivated by

findings from the literature of psycholinguistics and corpus linguistics. Moreover,

three novel neighborhood-based similarity metrics are proposed, motivated by the

hypotheses of attributional and maximum sense similarity.The proposed metrics

are shown to outperform the baseline approaches for the taskof semantic similarity

estimation between words. Inspired by evidence for cognitive organization of con-

cepts, based on the degree of concreteness, we further investigate the performance

and organization of network DSMs for abstract vs. concrete nouns. Finally, the

framework of network DSMs is extended for the creation of multimodal networks

using textual and visual features, and the estimation of semantic similarity beyond

word level (noun compounds). Very good results are achievedfor both extensions,

showing the flexibility of the network-based framework.



Περίληψη

Η παρούσα διατριβή πραγματεύεται την κατασκευή κατανεμημένων σημασιολο-

γικών μοντέλων (Distributional Semantic Models - DSMs)χρησιμοποιώντας

κειμενικά δεδομένα που έχουν συλλεγεί από τον παγκόσμιο ιστό. Μερικά

από τα κύρια και πιο ενδιαφέροντα χαρακτηριστικά της κατασκευής των μον-

τέλων αυτών είναι η μη χρήση τεχνικών επίβλεψης (unsupervised)και η μη

εξάρτηση σε γλωσσολογικά χαρακτηριστικά, γεγονός που τα καθιστά -από

πλευράς υλοποίησης- ανεξάρτητα από τη φυσική γλώσσα ως προς την οποία

εφαρμόζονται (language-agnostic).Η κύρια εφαρμογή των ανωτέρω μοντέλων

αφορά στην εκτίμηση της σημασιολογικής ομοιότητας (semantic similarity).

Η συμβολή της σημασιολογικής ομοιότητας είναι ιδιαιτέρως σημαντική για

ένα πλήθος εφαρμογών του τομέα της Επεργασίας Φυσικού Λόγου. Παραδε-

ίγματα τέτοιων εφαρμογών περιλαμβάνουν την ανάλυση του συναισθηματικού

περιεχομένου κειμενικών δεδομένων και τεχνικές παράφρασης. Το πρώτο πει-

ραματικό μέρος της διατριβής αφορά στην κατασκευή σύνηθων κατανεμημένων

σημασιολογικών μοντέλων σύμφωνα με το καθιερωμένο Vector Space Model.

Μία από τις κύριες κατευθύνσεις αυτής της προσπάθειας είναι η δημιουργία

σωμάτων κειμένων (corpora) μέσω της ανάκτησης εγγράφων του παγκοσμίου

ιστού αποστέλνωντας επερωτήσεις (queries) προς μηχανές αναζήτησης. Επι-

πλέον, μελετώνται δύο βασικοί τύποι μετρικών σημασιολογικής ομοιότητας σε

συνάρτηση με ένα πλήθος παραμέτων. Οι χρησιμοποιούμενες μετρικές αποτι-

μώνται ως προς τη συσχέτισή τους με βαθμολογίες σημασιολογικής ομοιότητας

που έχουν ληφθεί από ανθρώπους. Η επίδοσή τους παρατηρήθηκε να είναι συγ-

κρίσιμη με εκείνη που επιτυγχάνουν οι τρέχουσες τεχνολογίες αιχμής, καθώς

και με την επίδοση ενός άλλου τύπου μετρικών που βασίζεται στην άντληση

πληροφορίας από πηγές γνώσης (knowledge-based metrics).Παρά την αξι-

όλογη επίδοσή της, η πιο πάνω μεθοδολογία κρίνεται πρακτικώς δύσχρηστη

αναφορικά με τον υπολογισμό της σημασιολογικής ομοιότητας μεταξύ όλων

των ζευγών λέξεων οι οποίες δύνανται να περιέχονται σε ένα λεξικό. Το μειο-

νέκτημα τούτο οφείλεται στην τετραγωνική πολυπλοκότητα της δημιουργίας

επερωτήσεων ως προς το μέγεθος του χρησιμοποιούμενου λεξικού. Στο δε-

ύτερο πειραματικό μέρος της εργασίας, προτείνεται μία μεθοδολογία για την

αντιμετώπιση του προαναφερθέντος μειονεκτήματος, σύμφωνα με την οποία η

δημιουργία επερωτήσεων υπέχει γραμμική πολυπλοκότητα σε σχέση με το λε-

ξικό αναφοράς. Η προτεινόμενη μεθολογία εφαρμόζεται για τη δημιουργία ενός



σώματος κειμένου από δεδομένα του παγκόσμιου ιστού ως προς ένα λεξικό το

οποίο αποτελείται από χιλιάδες ουσιαστικών. Χρησιμοποιώντας το πιο πάνω

σώμα κειμένου, μια νέα, βασισμένη σε δίκτυα, υλοποίηση των κατανεμημένων

σημασιολογικών μοντέλων προτείνεται, κεντρική ιδέα της οποίας είναι οι σημα-

σιολογικές γειτονιές (semantic neighborhoods).Οι σημασιολογικές γειτονιές

μπορούν να θεωρηθούν ως μια φειδωλή, αλλά συνάμα περιεκτική, αναπαράστα-

ση της λεκτικής στατιστικής πληροφορίας που εμπεριέχεται στο σώμα κειμένου.

Επιπλέον, δυο βασικοί τύποι λεξιλογικών σχέσεων ενυπάρχουν στις γειτονιές

αυτές: σημασιολογικές και συσχετιστικές (associative). Η αυτόματη κα-

τηγοριοποίηση των βασικών αυτών σχέσεων διερευνάται, σύμφωνα με κάποια

ευρήματα της βιβλιογραφίας της ψυχογλωσσολογίας (psycholinguistics) και

της εφαρμοσμένης σε σώματα κειμένων γλωσσολογίας (corpus linguistics).

Επιπρόσθετα, τρεις νέες μετρικές σημασιολογικής ομοιότητας βασισμένες σε

δίκτυα προτείνονται, έχοντας ως θεωρητικό υπόβαθρο τις υποθέσεις αναφορι-

κά με την ομοιότητα χαρακτηριστικών (attributional similarity) και τη μέγιστη

εννοιολογική ομοιότητα (maximum sense similarity). Η επίδοση των προ-

τεινόμενων σημασιολογικών μετρικών παρατηρείται να υπερβαίνει εκείνη των

βασικών (baseline) μετρικών ως προς την εκτίμηση της ομοιότητας μεταξύ

λέξεων. Η προτεινόμενη υλοποίηση των κατανεμημένων σημασιολογικών μον-

τέλων, καθώς και οι αντίστοιχες μετρικές ομοιότητας, διερευνώνται περαιτέρω

ως προς δύο τύπους ουσιαστικών, η διάκριση των οποίων προέρχεται από το πε-

δίο της γνωσιακής επιστήμης: αφηρημένα (abstract) και συμπαγή (concrete).

Το κύριο έναυσμα για τη διάκριση αυτή αποτελούν οι ενδείξεις σχετικά με τη

διαφοροποιημένη οργάνωση στο ανθρώπινο γνωσιακό σύστημα των ανωτέρω

τύπων βάσει του βαθμού σημασιολογικής συμπάγειας. Τέλος, τα προτεινόμενα

κατανεμημένα σημασιολογικα μοντέλα και οι μετρικές ομοιότητας κατασκευ-

άζονται και αποτιμώνται σε κάποιες περαιτέρω εφαρμογές. Πιο συγκεκριμένα,

τα αποκλειστικώς βασισμένα σε κειμενικά δεδομένα μοντέλα, επεκτείνονται σε

πολυτροπικά (multimodal) χρησιμοποιώντας κειμενικά και οπτικά (visual) χα-

ρακτηριστικά. Επιπλέον, μελετάται η επέκταση των προτεινόμενων μοντέλων με

στοχό την αναπαράσταση των σημασιολογικών γειτονιών πολυλεκτικών όρων

αποτελούμενων από ουσιαστικά, καθώς και η εκτίμηση της σημασιολογικής

ομοιότητας αυτών. Πολύ καλά αποτελέσματα επιτυγχάνονται για τις ανωτέρω

εφαρμογές καταδεικνύοντας την προσαρμοστικότητα των προτεινόμενων μον-

τέλων.
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Chapter 1

Introduction

1.1 Corpus-based Lexical Semantics

A broad definition ofmeaningaccording to the Webster’s dictionary is “what is intended to be

understood, signified, indicated, etc”Guralnik [1976]. The vital role of natural languages in

human communication is itself a strong proof that the meaning of conceptual (mental) entities,

e.g., ideas or opinions, can be conveyed through appropriate lexicalizations, i.e., use of words.

In principle, even a single word provided in isolation, i.e., out of context, can carry a certain

amount of semantic content. Briefly, this thesis deals with corpus-based computational models

built upon the foundations oflexical semantics, which is a discipline of linguistics referring to

the meaning of words. The idea that the semantic properties of words can be revealed through

the context in which they exist (or could exist) is supportedby the linguistic theory ofcon-

textual approachCruse[1986]; Haas[1962, 1964]. The notion ofcontextrefers to linguistic,

as well as to extra-linguistic context. Without ignoring the effect of extra-linguistic factor, the

linguistic context can be regarded as a sufficient carrier ofthe semantics of words for three

reasons: (i) very often the relations between words and extra-linguistic contexts are formulated

within linguistic context, e.g., “There are many books here”, (ii) potentially any extra-linguistic

context can be lexicalized, and (iii) linguistic context can be utilized more easilyCruse[1986].

The theoretic foundations of this thesis rely on the key ideaof the contextual approach: the

meaning of a word can be reflected (at some extend) with regardto its linguistic environment.

This is summarized by the famous statement “You shall know a word by the company it keeps”

Firth [1957].

According to the contextual approach words should be considered with respect to other

words with which they co-occur within a specified context. Sentences, paragraphs, and doc-

uments are examples of such contextual types. Word co-occurrence can be divided into two

1



main types: (i) positional, and (ii) relationalEvert [2005]. The positional type refer to the

co-occurrence of words by considering their proximity within context. Structural relations,

e.g., grammatical dependencies, form the basis for the definition of relational co-occurrences.

The consideration of grammatical relations is justified by the ultimate goal of grammar: to

convey the intended meaningCruse[1986]. Early research efforts were focused on positional

co-occurrence due to the lack of computational tools neededfor the extraction of relation co-

occurrencesStevens et al.[1965]. Nowadays, both positional (e.g.,Agirre et al.[2009]) and

relational types (e.g.,Baroni and Lenci[2010]) are incorporated in computational models.

However, the former type constitutes a language-agnostic paradigm of text processing, which

is directly applicable for the case of under-resourced languages.

Within the contextual framework the relations between words can be broadly distinguished

into two categories under the perspective of structuralismHarris.[2001] point of view: syntag-

maticandparadigmaticCruse[1986]; Sahlgren[2006]. Syntagmatic relations refer to words

that co-occur within the same context. Paradigmatic relations concern words that exist in the

same context but without co-occurring. The latter is a type of substitutional relation suggesting

that if two words are paradigmatically related then the one may substitute the other without

altering the meaning of the context. This is a rather technical distinction that does not en-

code the semantic relations between words, i.e., lexical semantics. Lexical semantics is a well-

investigated area for linguistics including relations ranging from (several variants of) synonymy

and antonymy to more complex hierarchical configurations, such as hypernymy/hyponymy and

meronymy. In principle, the enumeration of semantic relations between words seems to be an

extremely difficult task. For example, relations such as “Cause-Effect”, “Instrument-Agency”

may be of great importance for certain domains or disciplines, e.g., cognitive sciences. Such

relations can be regarded as relations with strongassociativecharacteristicsMcNamara[2005],

even if a formal linguistic definition is not available.

The computational models presented in this work are focusedon the estimation of word

semantic similarity, i.e., how much similar the meaning of two words is. The notion of se-

mantic similarity is built upon the existence of semantic relatedness. In other words, we aim

to measure the strength of relatedness that hold between words on the basis of their similarity

in meaning. This relatedness pertains a diverse range of lexical relations, e.g., two words may

be regarded at some extent as semantically similar even if they are not synonyms. However, it

should be stressed out that the estimation of semantic similarity does not necessarily address

the recognition of the underlying types of semantic relations.

The computational models that adopt the aforementioned contextual approach are refer to

asDistributional Semantic Models (DSMs)Baroni and Lenci[2010]. In the first paragraph

of this section we used a dictionary entry in order to define the meaning of “meaning”. Such
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dictionary definitions can be used for the representation ofword semantics, however, the used

language is of rather technical style. (Moreover, the exploitation of dictionaries does not consti-

tute a generic computational framework, while a number of drawbacks exist, e.g., development

cost, coverage limitations.) A more generic approach is theuse of real-life examples of lan-

guage usage, i.e., corpora. Of course, an “adequate” numberof such examples is required in

order to have a “sufficient” amount of contextual evidence. Although a number of corpora is

available, this is not the case for the less-resourced languages. In this work, we address the

task of corpora creation using simple techniques for harvesting web data. The world wide web

covers a plethora of domains, authoring styles and languages, and is fertile ground for data

harvesting.

Up to this point we have described the half of the machinery needed for estimating word

similarity based on lexical semantics: (i) the theoretic framework, i.e., the contextual approach,

and (ii) the required resources from which the relevant (contextual) features can be extracted.

The missing tools include: (i) a formal scheme for the representation of contextual features,

(ii) appropriate measurements of semantic similarity thatcan be defined with respect to the

representation scheme. The Vector Space Model (VSM)Turney and Pantel[2010] is the most

widely-used implementation of DSMs. VSM can be regarded as ahigh-dimensional space,

which is typically formulated as a matrix. The (distributed) semantics of each target word are

encoded by a vector (matrix row) that contains the words (matrix columns) that co-occur with

it within a specified context. This is a spatial representation enabling the definition of similarity

in terms of proximity. The theoretical argument of similarity-as-proximity was articulated by

thegeometric metaphor of meaningLackoff and Johnson[1997]: semantically similar words

are supposed to live “near” each other within a space (not necessarily VSM). Similarity mea-

surements are missioned with the quantification of the “nearness” notion. Both syntagmatic

and paradigmatic relations may be incorporated in such measurements. From the syntagmatic

perspective, the similarity between words is based on theirdirect co-occurrences. Following

the paradigmatic consideration, word similarity can be estimated as a function of contextual

commonality. This is the well-establisheddistributional hypothesis of meaningaccording to

which similarity of meaning is implied by the contextual similarity Harris [1954]. Of course,

both syntagmatic and paradigmatic relations may be integrated into a single similarity mea-

surement. The proposal of a network-based implementation of DSMs upon which a number of

novel similarity measurements are defined is among the main research efforts presented in this

thesis.

The discipline of cognitive semantics investigates fundamental questions about the under-

lying structures and mechanisms that drive semantic tasks such as the attributions of features

(properties) to objects. A long list of related issues include the acquisition, representation,
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organization and retrieval of the relevant information needed for the completion of semantic

tasks. Clearly, it is hard to have a principled mapping between the models employed in cogni-

tive semantics and computational linguistics. But, seems intuitive to claim (even an unjustified)

connection: words correspond to cognitive objects, i.e., concepts. Broadly speaking, the DSMs

themselves constitute a representation for cognitive semantics built upon linguistic evidence.

Also, a great number of problems addressed within the framework of DMSs are characterized

by cognitive aspects, e.g., estimation of word semantic similarity. Thus, we believe that the lit-

erature of cognitive semantics can serve as a valuable source for inspiration for the community

of computational linguistics.

1.2 Measuring Similarity

In this section, a number of issues regarding the definition of similarity are briefly presented.

These are given by the perspectives of cognitive psychologyand information theory, while the

respective similarity measures are defined. Also, it is discussed why such measures can not be

regarded as true metrics for the case of word semantic similarity.

1.2.1 Features of Similarity: The Tverskian Contrast Model

The work of Amos Tversky is acknowledged as a pioneering one in the field of cognitive

and mathematical psychologyTversky[2003]. In his seminal paper “Features of Similarity”

Tversky [1977] the notion of similarity is considered as the organizing principle that drives

cognitive tasks such as concept formulation/classification and generalization. Several empiri-

cal formulations of similarity were observed including pair rating, object sorting, substitution

errors, correlated occurrences. The motivation of this work was the proposal of an alternative

theory regarding similarity meant to overcome the unjustified assumptions (with respect to em-

pirical evidence from the psychological studies) of the dominating geometric models. As it

was mentioned, objects are represented as points in a dimensional space, while their similarity

is expressed in terms of proximity using a distance measurement. The core of the Tverskian

theoretical approach of similarity is the matching betweenfeatures, which is also known as

contrast model. More specifically, this model is based on the contribution of common and

distinctive features. In addition, asymmetries regardingdistinctive features are also modeled.

In general, the term feature refers to the value of a variableof the following types: binary,

nominal, ordinal and cardinal. A generic measurement for estimating the similarity between
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two objects1 A andB was defined as follows:

ST (A,B) =
fT (FA ∩ FB)

fT (FA ∩ FB) + λ1fT (FA − FB) + λ2fT (FB − FA)
, (1.1)

for λ1, λ2 ≥ 0. In (1.1), FA andFB represent the set of features ofA andB, respectively. Set

(FA∩FB) is the intersection ofFA andFB , representing the features that are shared (common)

betweenwi andwj. Sets(FA − FB) and (FB − FA) include the features that are different

(distinctive) betweenFA andFB , The fT (.) notation stands for any function that operates

over a set. Constantsλ1 andλ2 weight the contribution of sets(FA − FB) and(FB − FA),

respectively, to the similarity computation.

The contrast model implies asymmetry in similarity, i.e.,ST (A,B) 6= ST (B,A). This

hypothesis was confirmed by experimental findings based on judgmental (e.g., rating) and

behavioral tasks (e.g., choice). Moreover, Tversky investigated the role of common and the

distinctive features for different tasks. Regarding judgmental tasks it was found that common

features are weighted more during similarity judgment thandifference judgment.

1.2.2 An Info-Theoretic Definition

In Lin [1998], an information-theoretic definition of similarity measures was provided, which

shares a number of characteristics with the theoretical contrast model of TverskyTversky

[1977]. Here, the main point of this work are briefly presented. Themotivation for this work

was that some weak aspects of well-established similarity measurements. For example, the def-

inition for a number of measure types is domain-specific suchas network measures that require

an appropriate structure. In addition, it was observed thatoften the underlying assumptions

were not clearly mentioned. Lin’s work is based on the following two generic characteristics

regarding the definition of similarity measures:

1. Universality. Similarity is defined by the perspective of information theory. Such defi-

nition is expected to apply in any domain/task that can be probabilistically modeled.

2. Theoretical justification. The definition of similarity should originate from a set of

appropriate assumptions. This foundation is expected to drive the derivation of the re-

spective formula(s).

Moreover, a number of intuitions were proposed regarding the similarity between two “objects”

A andB, SL(A,B) , as follows:

1Here, the notion of “object” is used with a broad sense. Examples of such objects are words, images, etc.
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1. SL(A,B) is related with the commonality ofA andB: more commonality indicates

more similarity.

2. SL(A,B) is related with the differences ofA andB: more differences indicate less

similarity.

3. Regardless of the commonality, the maximum value ofSL(A,B) is obtained only ifA

andB are identical.

The following assumptions were made

1. The commonality betweenA andB is denoted asI(C(A,B)), whereC(A,B) stands as

a proposition about the commonality ofA andB, while I denotes the information of a

proposition. The information of a proposition can be computed by taking the negative

logarithm of the proposition’s probability, e.g„I( C(A,B))= − log p( C (A,B)).

2. The difference betweenA andB is defined asI(D(A,B))−I(C(A,B)), whereI(D(A,B))

stands for a proposition describingA andB.

3. The similarity betweenA andB is a functionfL of their respective commonalities and

differences:SL(A,B) = fL( I(C(A,B)),I(D (A,B))).

4. SL(A,B) = 1 if A andB are identical.

The following theorem was reached by Lin’s analysis.

Theorem 1 The similarity between A and B is measured by the ratio between the amount of

information needed to state the commonality ofA andB and the information needed to fully

describe whatA andB are.

SL(A,B) =
log p(C(A,B))

log p(D(A,B))
(1.2)

An interpretation of this theorem states that knowing the commonality ofA andB, SL(A,B)

corresponds to the amount of the extra information needed for the determination of those ob-

jects. The generic definition of similarity proposed in (1.2) was applied on a number of tasks

including similarity computation using ordinal values, string similarity based on character in-

sertions/deletions, and estimation of word similarity exploiting contextual features (by adopt-

ing the distributional hypothesis of meaning) or taxonomiccharacteristics (use of the WordNet

hierarchy)Lin [1998].
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1.2.3 Measurability Without Metricity

In essence, the required elements for the computation of similarity between two objects is a

set of appropriate features and a similarity measure. Two schemes are widely-used for the

transformation of a similarity measureS into a dissimilarity (or distance) measureD: (i) D =

1 − S if the upper bound ofS equal to1, and (ii) D = 1
1−S

Lin [1998]; Sahlgren[2006].

This is a rather technical manipulation under the (cognitive) assumption that similarity and

dissimilarity are linearly related. These elements resemblances the definition of a metric space

Pekalska and Duin[2005]: a pair(F,D), whereX is a set andD is a distance function (metric)

D : F × F → R0
+. For allx, y, z ∈ F the following are satisfied:

1. Reflexivity: D(x, x) = 0.

2. Symmetry: D(x, y) = D(y, x).

3. Definiteness:D(x, y) = 0 ⇒ x = y.

4. Triangle inequality: D(x, y) ≤ D(x, z) +D(y, z).

DSMs do not constitute true metric spaces, since the triangle inequality is violated, e.g.,

D(“tree”, “forest”) � D(“tree”, “flower” ) +D(“forest”, “flower” ), whereD is a dissimilarity

measure. Strictly speaking, any similarity/dissimilarity function defined over DSMs can not be

regarded as a true similarity/dissimilarity metric; “measure” is a more precise term rather than

“metric”. However, it has been a commonplace in the literature of DSMs (including the present

thesis included) the interchangeable use of both terms .

1.3 Applications

Semantic similarity computation between words is closely related the problem of word sense

disambiguation (WSD)Agirre and Edmonds[2007]. WSD methods can be divided into two

main categories: (i) supervised approaches that apply machine learning for learning sense la-

bels for a set of words with respect to a given context (sense labeling), and (ii) unsupervised

approaches that automatically discriminate (discover) word senses without label assignment.

For both categories the key criterion is the semantic similarity between the target word and the

candidate senses. The similarity at the word level is among the essential features for comput-

ing semantic textual similarity (STS), i.e., similarity between larger segments of text such as

sentences. STS was investigated at various levels: lexicalAndroutsopoulos and Malakasiotis

[2010], syntacticZanzotto et al.[2009], and semanticBos and Markert[2005]; Rinaldi et al.

[2003]. Machine translation evaluation metrics were also applied for similarity estimation at
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the lexical level similarityFinch et al.[2005]; Perez and Alfonseca[2005] including BLEU

Papineni et al.[2002] that is based on word n-gram overlap. Recently, the task of sentence

similarity estimation has attracted the great interest of the research community as shown by

the participation in the respective task of the SemEval 2012Agirre et al. [2012]. The top

performing systems utilized numerous types of features andsimilarity metrics in combination

with domain adaptation techniques. The success of those systems can be mainly attributed

to the efficient incorporation of machine learning, while many questions remain open regard-

ing the underlying models of compositional meaning. STS is closely related to the problems

of paraphrasing, which is bidirectional and based on semantic equivalenceMadnani and Dorr

[2010] and textual entailment, which is directional and based on relations between semantics

Dagan et al.[2006]. There is a variety of applications for semantic similarity, both at word and

sentence, including information extractionSzpektor and Dagan[2008], question answering

Harabagiu and Hickl[2006], machine translationMirkin et al. [2009].

The analysis of affective text, i.e., analysis of emotionalcontext, is a recent research area

that pertains several applications of Natural Language Processing, e.g., opinion mining and

sentiment analysisBalog et al.[2006]; Hu and Liu[2004]. The assignment of affective scores

to words constitutes the building block for affective text analysis. For a given set of words,

semantic and affective similarity are related under the hypothesis that “semantic similarity can

be translated to affective similarity”Malandrakis et al.[2013]. In Turney and Littman[2002],

the affective score of a new word was estimated using a fixed set of words (also known as

“seeds”) for which their affective scores, as well as their respective semantic similarities were

known. In particular, the affective score for a new word is computed by algebraic combi-

nations of the similarities and ratings of seed words. Unlike the utilization of a fixed set of

seedsTurney and Littman[2002], the automatic selection of seeds was investigated inMa-

landrakis et al.[2011] in combination with several kernels, i.e, functions for controlling the

contribution of semantic similarity. Handle multi-word terms. In Malandrakis et al.[2013],

the problem of sentence-level affective rating was investigated using a hierarchical (use ofn-

grams) compositional framework in which multiword terms were also considered in order to

capture non-compositional semantics.

Semantic similarity has been also employed in the field of spoken dialogue systems (SDS).

Grammar induction depends on the availability of semantic classes that correspond to the do-

main concepts. The basis for the creation of such classes is the semantic similarity between

the candidate terminals, following an agglomerative algorithm Meng and Siu[2002]; Pargellis

et al.[2004]. Various measurements of similarity have been compared inPargellis et al.[2001,

2004]. Variations of the aforementioned algorithm include combination of similarity metrics

Iosif et al.[2006] and soft-clusteringIosif and Potamianos[2007b]. Word similarity has been
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also employed in class-basedn-gram language modelingBrown et al.[1992]. In Niesler et al.

[1998], various class-basedn-gram language models were interpolated with word-based mod-

els. Classes included clusters of words of same to part-of-speech, as well as semantically

similar words. The interpolated models obtained higher performance in terms of perplexity

and word error rate.

The last decade similarity-based approaches are combined with data mined from the world

wide web. The use of web as a corpus appears to be a working solution to the data sparseness

problem InCimiano et al.[2004], linguistic patterns were employed for the identificationof

ontological relations. The goal was the extraction of relevant instances for certain concepts of

a given the domain ontology. Relatedness measures were applied using web-based statistics.

For example, “South Africa” was found to be an appropriate instance for concept “country”

rather than “hotel” InMoschopoulos et al.[2013], the relatedness between actors in policy

networks were estimated using a variety of features including web page counts (number of

hits), outlinks, and lexical information extracted from web documents or web snippets. The

features were evaluated for both positive and negative (antagonistic) actor relations. The web

has been also exploited for a variety of other applications,such as social networks extraction

Jin et al.[2007], collaborative filteringMobasher et al.[2007], sentiment analysisGodbole

et al.[2007], music genre classificationSchedl et al.[2006].

1.4 Contributions

The first part of the present thesis deals with a web-based methodology for the estimation of se-

mantic similarity between words and biomedical terms. One of the main characteristics of this

approach is that is fully unsupervised, i.e, no knowledge-resources are required. The web cov-

ers a plethora of domains, authoring styles and languages, and is considered as fertile ground

for automatic semantic knowledge acquisition. Web data areaccessed via the submission of

appropriate queries to web search engines. More specifically, two different types of web data

are investigated for the estimation of semantic similarity. First, the number of hits returned

by web search engines are utilized as statistics of word co-occurrence. A number of well-

established co-occurrence-based metrics are applied and compared for the estimation of word

semantic similarity. The second data type deals with web documents, which are downloaded

for corpus creation. This is conditioned on word-pairs, explicitly requesting the co-occurrence

of word-pairs in the same document through the use of conjunctive AND queries. This cor-

pus is exploited for the constructing a typical DSM based on the distributional hypothesis of

meaning. In addition, a number of parameters are investigated including the window size ap-

plied for the extraction of contextual features and variousschemes for weighting those features.
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Overall, the performance of this methodology is shown to be comparable to that of supervised

resource-based algorithms.

The core of the thesis concerns an efficient and scalable methodology for corpora creation

from web data in combination with a novel network-based (also fully unsupervised) implemen-

tation of DSMs. Despite the success of the aforementioned methodology a limitation regarding

scalability is introduced by the utilization of AND queries: given a lexicon of sizeN , the

required query complexity for corpus creation is quadraticO(N2). In order to tackle this limi-

tation, a method of linear query complexity with respect toN is proposed for corpus creation.

The key idea is the employment thousands of individual queries and the aggregation of the

harvested data. This strategy smooths the domination of very frequent words, while enables

the better representation of rare words within the corpus. Next, a semantic network is created

encoding the relevant corpus statistics. This builds upon the formulation of semantic neigh-

borhoods, which capture diverse information at the syntactic, semantic and pragmatic level.

Motivated by maximum sense and attributional similarity three novel network-based similarity

metrics are proposed. Combinations of co-occurrence-based and contextual metrics are in-

vestigated for the computation of semantic neighborhoods and the related network similarity

metrics. The performance of the main network metrics is alsoinvestigated for the case of ab-

stract and concrete nouns for both English and Greek. Moreover, the proposed network-based

DSMs is extended towards: (i) the creation of multimodal networks through the integration of

visual and textual features, and (ii) the estimation of semantic similarity between compositional

expressions.

Beside the estimation of semantic similarity that pertainsa wide range of lexical rela-

tions, we deal with the automatic discrimination of two fundamental types of (lexical) rela-

tions, namely, associative and semantic. These relation types play an important role for the

disciplines of lexical semantics and psycholinguistics. Three different types of discrimina-

tive features extracted from web-harvested data are proposed. The best performing feature is

motivated by findings in cognitive science and psycholinguistics about the asymmetry of the

semantic priming.

1.5 Organization of the Thesis

Two models for estimating semantic similarity between words are presented in Chapter2. The

first type relies on the exploitation of knowledge resources, such as WordNet and Wikipedia.

A number of different approaches are described including taxonomic and information content-

based methods. A completely different approach for the representation of word semantics and

the measurement of semantic similarity is adopted by the second type: the DSMs framework
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whereas the distributional hypothesis of meaning is adopted. Particular attention is given to

Vector Space Models (VSM), which constitute the main implementation of DSMs.

In Chapter3, we focus on the creation of problem of fully unsupervised web-based DSMs

used for estimating the semantic similarity computation between words and biomedical terms.

In order to estimate the semantic similarity between words/terms two families of unsupervised,

web-based similarity metrics are investigated. The first type considers only the number of hits

returned by a web search engine. The second is fully corpus-based: the top-ranked documents

returned by a web query are downloaded and the contextual similarity is employed for the

estimation of semantic similarity. In addition, various schemes for the weighting of contextual

features are investigated. The proposed methodology requires no expert knowledge or language

resources and, as a result, it can be regarded as language-agnostic.

A new network-based implementation of unsupervised DSMs isproposed in Chapter4.

First, a corpus of document snippets is harvested from the web. Then, a semantic network is

constructed encoding the semantic relations between wordsin the corpus. Co-occurrence and

context features are used to measure the strength of relations. The network is regarded as a

parsimonious representation of the information encoded inthe corpus. We then the notion of

semantic neighborhood is defined, as well as three associated metrics of semantic similarity.

The proposed semantic similarity metrics are motivated by the maximum sense similarity, attri-

butional similarity and metric space assumptions. In addition, the main network-based metrics

are further investigated for the case of abstract and concrete nouns.

In Chapter5, we deal with two basic types of lexical relations, namely, associative and se-

mantic. More specifically, the automatic classification of associative and semantic is addressed.

Lexical relations such as synonymy, hypernymy/hyponymy, constitute the fundamental types

of semantic relations. Associative relations are harder todefine, since they include a long list

of diverse relations, e.g., “Cause-Effect”, “Instrument-Agency”. From the perspective of cog-

nitive scientists, associative relatedness is triggered by the co-occurrence of words , while the

definition of semantic relatedness is controversial. In particular, two novel features are pro-

posed for the discrimination of these relations using information automatically extracted from

the web, while syntactic patterns are also investigated

In Chapter6, the main network-based similarity metrics proposed in Chapter4 are applied

to three problems: (i) the integration of visual with textual features for the creation of mul-

timodal semantic networks, (ii) the estimation of semanticsimilarity between compositional

noun compounds, based on the utilization of semantic neighborhoods and the adaptation of

network similarity metrics, and (iii) the creation of a simple noun taxonomy.

This thesis concludes with Chapter7, where on going and future research directions are

also discussed. The further investigation of semantic neighborhoods is of immediate interest
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including normalization issues and the application of algorithms from graph theory. Also, the

adaptation of the proposed network metrics to the problem ofsentence-level semantic similarity

estimation constitutes an interesting extension of the network-based DSMs.
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Chapter 2

Models of Lexical Semantic Similarity

In this chapter, two widely-used models for estimating semantic similarity between words are

presented. The first type relies on the exploitation of knowledge resources, such as WordNet

and Wikipedia. Distributional semantic models (DSMs) constitute a different type of models

that adopt the distributional hypothesis of meaning, according to which the (corpus-based)

contextual environment of words is considered.

2.1 Knowledge-based Models

2.1.1 WordNet-based

WordNet is a lexical network of words of certain parts of speech: nouns, verbs, adjectives and

adverbs, Words are organized into a hierarchy of relations including hyponymy/hypernymy

(IsA), meronymy, antonymy and the ComplementOf relation. Every sense of each word,w,

is assumed to correspond to a lexicalized concept,c, which is defined with respect to (i) a set

of synonyms (synsets), (ii) a definition (gloss), and (iii) an example of usage. For instance,

the first sense of the noun “car” in WordNet3.0 has (“automobile”, “machine”, “motorcar”) as

synset, “a motor vehicle with four wheels; usually propelled by an internal combustion engine”

as gloss, and the sentence “he needs a car to get to work” as an example of usage. Each

concept stands as a node in this network, while concepts are linked via the aforementioned

relations formulating the edges between nodes. The following definitions will be adopted for

the description of WordNet-based similarity metricsBudanitsky and Hirst[2006]:

1. The shortest path between two concepts,ci andcj , has lengthl(ci, cj). The length is

computed in terms of nodes or edges.
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2. The depth of a conceptci, d(ci), is defined as the length of the path from the hierarchy

root r to ci. That isd(ci) = l(r, ci).

3. The most specific common subsumer for two concepts,ci andcj, is denoted asm(ci, cj).

4. LetS(ci, cj) be a metric of semantic similarity between conceptsci andcj . The semantic

similarity between two wordswi andwj is computed as follows:

S(wi, wj) = max
ci∈Ci,cj∈Cj

{S(ci, cj)}, (2.1)

whereCi andCj denote the set of WordNet concepts that stand as senses for wordswi

andwj , respectively.

2.1.1.1 Length of taxonomic paths

A straightforward approach for the computation of word semantic similarity in the framework

of a hierarchy is to take into account the length of the path that exist between their senses

(concepts). According toResnik[1995] the similarity between two concepts is inversely pro-

portional to the length of their respective path. This hypothesis was adopted inRada et al.

[1989] for estimating the similarity of medical terms using the MeSH (Medical Subject Head-

ings) hierarchy. More specifically, the number of edges thatlink two terms was assumed to

indicate the semantic distance of terms. This approach was evaluated for an information re-

trieval task yielding good performance. The success of thissimple approach was explained in

Lee et al.[1993]: the utilization ofl(ci, cj) over a semantic network that is built upon a variety

of relations fails to capture the semantic similarity betweenci andcj , however, the performance

of l(ci, cj) improves when only IsA relations are considered.Hirst and St-Onge[1998] have

proposed the following measurement for the computation of semantic similarity betweenci
andcj :

SHS(wi, wj) = α− l(ci, cj)− βt(ci, cj), (2.2)

whereα andβ are fixed constants (set asα = 8, β = 1), while t(ci, cj) denotes the num-

ber of times the direction ofl(ci, cj) changes. Three types of directions were defined across

l(ci, cj): (i) horizontal (antonymy), (ii) upward (hypernymy, meronymy), and (iii) downward

(hyponymy, holonymy).

A drawback of the above length-based approach is the implicit assumption that every edge

correspond to the same amount of (semantic) distance. However, according toResnik[1995]

this does not hold since there exists a considerable variability regarding the semantic distances

represented by edges. This was observed for sub-networks, which tend to be denser that others.
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A number of scaling approaches have been proposed for addressing this issue as follows.

The approach ofSussna[1997] was motivated by the finding that sibling-concepts that are

positioned at the lower levels of the hierarchy tend to be more similar in contrast to those that

lie at the upper levels. A dual directionality was assigned to each edge enabling the distinction

of the corresponding relation as forward,r, i.e., relation betweenci and cj , and backward,

r
′

, i.e., relation betweencj andci. Also, for each relationr a range of weights was defined

[minr,maxr]. The core idea is to normalize the weight of each edge that correspond to a relation

r and leaves fromci, q(ci → r), by the total number of edges ofr type that also leave fromci
denoted aser(ci):

q(ci → r) = maxr −
maxr − minr

er(ci)
. (2.3)

The semantic distance between two adjacent conceptsci andcj , Ds(ci, cj), is defined as the

sum of their respective weights computed across the two directions of the underlying relation,

i.e.,r andr
′

, normalized by the maximum concept depth:

Ds(ci, cj) =
q(ci → r) + q(cj → r

′

)

2max{d(ci), d(cj)}
. (2.4)

The semantic distance between two conceptsci and cj that lie in arbitrary positions in the

network is estimated by summing the semantic distances of the adjacent concepts (according

to (2.4)) that exist in the shortest path that linksci andcj .

The approach proposed inWu and Palmer[1994] incorporates the depth of the most spe-

cific common subsumer ofci andcj, d(m(ci, cj)), as a scaling factor into the computation of

semantic similarity betweenci andcj :

SWP (ci, cj) =
2d(m(ci, cj))

l(ci,m(ci, cj)) + l(cj ,m(ci, cj)) + 2d(m(ci, cj))
. (2.5)

In Leacock and Chodorow[1998], the length of the shortest path betweenci and cj,

l(ci, cj), is normalized by the maximum depth that exists in the hierarchy and the semantic

similarity betweenci andcj is computed as:

SLC(ci, cj) = − log
l(ci, cj)

2maxc∈C{d(c)}
, (2.6)

whereC denotes the set of all concepts that are included in the network. Unlike other ap-

proaches this type of normalization is not conditioned on the concepts under investigation, i.e.,

it depends only on the used network.
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2.1.1.2 Information content

The core idea of information content-based approaches is the augmentation of typical path-

based methods of similarity computation through the incorporation of corpus-based statistics.

The influential work ofResnik[1995] is motivated by the hypothesis that two concepts are

similar to the degree of their shared information. In the framework of WordNet this can be

implemented by considering the position of the most specificsubsumer of the concepts under

comparison. An excerpt of the WordNet hierarchy including “nickel”, “dime” and “credit

Figure 2.1: Excerpt of the WordNet hierarchy for “nickel”, “dime” and “credit card”. IsA
relations are denoted by solid lines, while dashed lined stand for omitted intermediate nodes
Budanitsky and Hirst[2006]; Resnik[1995].

card” is shown in Fig.2.1. Solid lines denote IsA relations, while dashed lines represent the

intermediate nodes not shown for the sake of space. The position of most specific common

subsumer varies according to the concepts of interest: “coin” for “nickel” vs. “dime”, and

“medium of exchange” for “dime” vs. “credit card”. Unlike “coin”, “credit card” is an abstract

concept, which is positioned at the upper levels of the hierarchy. According toResnik[1995]

the similarity between two concepts is estimated using the probability of occurrence of their

respective most specific subsumer, defined as

SR(ci, cj) = − log p(m(ci, cj)), (2.7)

where− log p(m(ci, cj)) stands as theinformation contentof m(ci, cj). In Resnik[1995], the

Brown CorpusFrancis and Kǔcera[1982] was used for estimating the probability of concept

ci as

p(ci) =

∑

w∈Wi
f(w)

N
, (2.8)
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whereWi denotes the set of words for which conceptci is a subsumer, functionf(.) is the

frequency for wordw, andN is the total number of WordNet words that are included in the

corpus. For the example depicted by Fig.2.1, according to the counting approach of (2.8) the

probability of “coin” is determined by the corpus frequencies of “nickel” and “dime”. Ac-

cording to (2.8) and (2.7) the similarity between two concepts is increased as the specificity of

their most specific subsumer increases. In contrast to the path-based similarity approaches, the

metric defined by (2.8) utilize the structure of the underling hierarchy by identifying only the

most specific common subsumers, ignoring the links between the concepts under comparison.

According toBudanitsky and Hirst[2006], this strategy has some potentials drawbacks as it

can be exemplified by the equal similarity scores of (“money”,“credit”) and (“dime”,“credit

card”), since both pairs have the same most specific subsumer, i.e., “medium of exchange”.

The similarity metric of (2.7) was extended by the approach proposed inJiang and Conrath

[1997] including the information content of the individual conceptsci andcj . In particular, the

proposed metric is a dissimilarity measurement defined as follows

DJ(ci, cj) = 2 log p(m(ci, cj))− (log p(ci) + log p(cj)). (2.9)

Interestingly, inPedersen[2010] it was shown that the use of (sense) untagged corpora

by information content similarity metrics yielded higher performance compared to the largest

sense-tagged corpus (SemCor) for the task of semantic similarity computation between words.

2.1.1.3 Gloss-based

This category of similarity metrics relies on the exploitation of word glosses (i.e., definitions)

typically included in dictionaries and related resources.The key idea was initiated byLesk

[1986] for the task of word sense disambiguation. The core of the Lesk algorithm is the as-

signment of a sense to a target word provided within context by examining the overlap of its

glosses with respect to the glosses of the other co-occurring (in the particular context) words.

For example, the glosses for the first WordNet senses of “fruit” and “tree” are “the ripened

reproductive body of a seed plant” and “a tall perennial woody plant having a main trunk and

branches forming a distinct elevated crown; includes both gymnosperms and angiosperms”, re-

spectively. There is a non-empty overlap because both glosses include “plant” (stop words are

excluded). Each gloss was represented as a bag-of-words, while the target word was assigned

the sense for which gloss overlap was maximized. This idea was based on the assumption

that words that co-exist within the same context tend to refer to the same topic. The original

algorithm was applied over three dictionaries, namely, Webster’s7th Collegiate, the Collins En-

glish Dictionary, and the Oxford Advanced Learner’s Dictionary of Current English A number
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of other early approaches have been also employed dictionaries for word sense disambiguation,

e.g.,Niwa and Nitta[1994]; Wilks et al.[1990].

The availability of word glosses in WordNet has attracted the interest of recent research

efforts, extending the early dictionary-based approaches. In Banerjee and Pedersen[2002],

the original Lesk algorithm was extended by the idea of extended gloss overlap for the defi-

nition of a semantic similarity metric. In particular, the WordNet gloss of a word of interest

was expanded by considering the glosses of other (directly)related words. The latter were

identified by exploiting the WordNet hierarchy and taking into account relations such as hy-

pernymy/hyponymy, meronymy, etc. The motivation for this extension was the observation

that the length of glosses is of limited size1, providing no adequate vocabulary for the task

of similarity estimation. In addition, the computation of gloss overlap was extended inBaner-

jee and Pedersen[2002] by considering the commonn-grams of glosses under comparison, in

contrast to the original Lesk algorithm where only unigramswere used. The extended gloss

overlap algorithm was found to outperform the Lesk algorithm with respect to the SenseEval-2

word sense disambiguation task. InPatwardhan and Pedersen[2006], a corpus-based method-

ology for estimating semantic similarity was combined withthe work ofBanerjee and Pedersen

[2002] regarding the gloss extension. First, each word of interest was represented by a vector

consisting of second-order co-occurrences derived from a corpus. The idea of second-order

vector was proposed bySchütze[1998] in order to tackle the sparsity of VSM. All the glosses

included in WordNet were aggregated for the creation of a corpus from which the aforemen-

tioned vectors were built. Second, each vector was augmented by following the approach

suggested inBanerjee and Pedersen[2002]. The similarity between two words was estimated

as the cosine of their respective vectors. The gloss vector approach was reported to outperform

the extended gloss overlap algorithm for the task of semantic similarity estimation between

words, and also obtained higher results for the SenseEval-2word sense disambiguation task.

Gloss-based vector were also employed inInkpen and Hirst[2003] for the disambiguation of

near synonyms .

2.1.2 Wikipedia-based

WordNet constitutes the most widely-used knowledge resource for a large number of ap-

proaches dealing with several semantic tasks including theestimation of semantic similarity

between words. Recently, the collective effort of the Wikipedia project has created a large and

continuously updated resource of encyclopedic knowledge that attracted the interest of several

research communities including computational semantics.

1 The average length of WordNet glosses was reported to be seven wordsBanerjee and Pedersen[2002].

18



Wikipedia concepts (i.e., articles) were used by Explicit Semantic Analysis (ESA) pro-

posed inGabrilovich and Markovitch[2007] for estimating word semantic similarity. More

specifically, an index of the Wikipedia articles was constructed with respect to the words of in-

terest. Each word was represented by a vector with each dimension corresponding to an article,

term frequency-inverse document frequency was applied forweighting the vector elements.

The similarity between words was estimated as the cosine of their vectors. An extension of

the ESA algorithm was proposed byHassan and Mihalcea[2009] dealing with the weighting

of vector elements. Based on the observation that the ESA algorithm seemed to exhibit a bias

towards larger articles, the values of vector elements werenormalized according to the length

of the corresponding article. In addition, the vector elements were further normalized taking

into account the depth of the corresponding concepts in the Wikipedia category tree, assigning

greater weight to more specific (i.e., positioned at lower tree levels) concepts. The similarity

between words was estimated by a Lesk-like measurementLesk[1986] based on the overlap of

concept vectors. Temporal Semantic Analysis (TSA) was suggested inRadinsky et al.[2011]

as an extension of the ESA algorithm. The key idea of the TSA algorithm was the modeling of

the “temporal” characteristics of words (given an article collection) for the estimation of their

semantic similarity. Such characteristics were defined with respect to the publishing dates of

New York Times articles. The motivation for this approach was the observation that seman-

tically similar words tend to appear in articles published around a certain date, although they

may not co-exist within the same article.

Wikipedia was used mainly as an article collection by the aforementioned approaches, ig-

noring the underlying structure, i.e., the links between articles. This structure was utilized by a

number of research efforts for representing the semantic ofwords and computing their seman-

tic similarity. In Milne and Witten[2008], a Wikipedia concept (or word) was represented as a

vector consisting of incoming or outgoing concepts. By incoming concepts are meant the con-

cepts that point to the target concepts, while the outgoing concepts are the concepts to which

the target concept points to. The vector cosine was used for estimating the similarity between

concepts. The link-based representation was also employedin Liu and Chen[2010], where the

concept similarity was computed using an overlap-based measurement like the Lesk algorithm

Lesk[1986] or the taxonomic-based metric proposed inWu and Palmer[1994].

The exploitation of multiple knowledge sources was motivated by the observation that the

type of semantics of the (lexical) content of each resource are differentZesch et al.[2008].

Several fusion schemes for representing the semantic information have been followed for re-

sources like WordNet, Wikipedia, and Wiktionary, e.g., separate representations that are com-

binedSzarvas et al.[2011] or a joint representationZhang et al.[2011].
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2.1.3 Network-Based Approaches

The WordNet- and Wikipedia-based approaches discussed in Section2.1.1and Section2.1.2,

respectively, can be considered as network-based ones since the used resources are structured.

However, the presented methods seem to make a simple use of the underlying network, rather

than adapting other graph-based algorithms or related models taken from the literature of cog-

nitive science. For example, regarding WordNet the major network feature is the length of

the path existing between concepts, while only the direct links between concepts are used for

the case of Wikipedia. In this section, a number of approaches are presented that apply more

sophisticated algorithms and models for the task of semantic similarity estimation.

In Gouws et al.[2010], a the network was constructed using the links between Wikipedia

concepts, i.e., articles. The similarity between two words(concepts)wi andwj was estimated

by applying the spreading activation modelCollins and Loftus[1975] over the network. Ini-

tially, a non-zero activation value was assigned to the nodecorresponding towi, while the

activation values for the other nodes were set to zero. Spreading activation was triggered in

order to propagate the initial activation value ofwi to wj through their links. After the termi-

nation of the spreading process activation values were accumulated inw2 and the rest nodes of

the network. In order to represent the semantics ofwi a vector having as elements the (final)

activation values of the network nodes was built. The same procedure was repeated for the case

of w2. The semantic similarity betweenwi andwj was estimated as the sum of the final acti-

vation values ofwi andwj or as the cosine of their respective vectors. The approach proposed

in Wojtinnek et al.[2012] was also motivated by the spreading activation model wherea very

large network was constructed by exploiting the links between Wikipedia concepts. For each

node a vector was created including a number of strongly connected nodes. The similarity be-

tween two words was estimated as the cosine of their respective vectors. The Wikipedia-based

network was found to yield better performance compared to a structured approach for network

creation based on the British National Corpus. Another research effort that was inspired by the

spreading activation model is the work ofHarrington[2010] where a semantic network was

created from an unstructured corpus as opposed to the exploitation of structured resources like

Wikipedia. However, the links between words were identifiedusing a set of linguistic tools for

named entity recognition, parsing, and semantic analysis.A number WordNet-based similarity

metrics were adapted by the WikiRelate! systemStrube and Ponzetto[2006] to the Wikipedia

structure. More specifically, three types of metrics were used, namely, path-based (Leacock

and Chodorow[1998]; Rada et al.[1989]; Wu and Palmer[1994]), information content-based

(Resnik[1995]), and gloss-based (Banerjee and Pedersen[2002]). In Hughes and Ramage

[2007], a network was built using WordNet links and statistics from the sense-tagged SemCor
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corpus. This network was considered as a Markov chain and random walks were applied for

computing stationary distributions for the words of interest. A variant of the Kullback-Leibler

divergence was proposed for estimating the similarity between words. A WordNet-derived

network was also used inAgirre et al. [2006] where the personalized PageRank algorithm

Haveliwala et al.[2002] was applied for the computation of a probability distribution for every

target word. Word similarity was estimated via the cosine similarity between the vectorized

distributions.

2.2 Distributional Semantic Models (DSMs)

The fundamental idea of distributional semantic models (DSMs) is the representation of word

meaning by considering the context in which the word occurs,also known as thedistributional

hypothesis of meaning. This idea originates from early works in theoretical linguistics Firth

[1957]; Harris [1954] and even philosophyWittgenstein[1953], and it is also summarized

by the famous statement of Firth “you shall know a word by the company it keeps”. Although

Wittgenstein was mainly interested in the paralinguistic aspects of language, e.g., social factors,

his argument “meaning is use” is consistent with the underlying assumption of DSMs.

Word-occurrence is the building block of high-dimensionalspaces for context representa-

tion known as vector space models (VSM)Turney and Pantel[2010]. Such models are defined

with respect to a specified vocabulary; one dimension is allocated for each vocabulary item.

This constitutes a spatial representation in which the notion of semantic similarity is approx-

imated in terms of proximitySahlgren[2006]. The geometric metaphor of meaninghas been

theoretically investigated inLackoff and Johnson[1980, 1997]. The core idea is that words

with similar meaning exist “near” each other, while the dissimilar ones are positioned “far

apart”. According to the geometric metaphor of meaning, words are represented as points

in a space, while their similarity is considered as the proximity between the corresponding

pointsSahlgren[2006]. One of the first exprerimental studies of the distributional hypothesis

of meaning isRubenstein and Goodenough[1965], suggesting that “words which are similar

in meaning occur in similar contexts". This statement was re-visited inSchütze and Pedersen

[1995], considering the data sparseness problem, as “words with similar meanings will occur

with similar neighbors if enough text material is available”. The linguist Zelling Harris initially

believed that it is possible to typologize the entire spectrum of semantics based solely on their

distributional propertiesHarris [1968, 1970]. Later, he revised this belief acknowledging the

effect of extralinguistic factors. The core idea of his workis that the differences in meaning are

mediated by differences in distributional features: “. . . if we consider words or morphemesA

andB to be more different in meaning thatA andC, then will often find that the distributions
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of A andB are more different than the distributions ofA andC. In other words, difference of

meaning correlates with difference of distribution”. The earliest validation of the distributional

hypothesis was conducted inRubenstein and Goodenough[1965] where the contextual simi-

larities of 65 noun pairs where compared to synonymy scores given by students. It is worth

to quote their main conclusions: (a) “there is a positive relationship between the degree of

synonymy (semantic similarity) existing between a pair of words and the degree to which their

contexts are similar”, and (b) “it may safely inferred that apair of words is highly synonymous

if their contexts show a relatively great amount of overlap.Inference of degree of synonymy

from less amounts of overlap, however, is apparently uncertain since words of low or medium

synonymy differ relatively little in overlap”. Moreover, Rubenstein and Goodenough, noted

that the generalization of the above conclusions is dependent on factors like vocabulary size

and homogeneity of content. Three decades later the experiment of Rubenstein and Goode-

nough was repeated inMiller and Charles[1998] (30 out of the65 pairs were used) where

similar conclusions were reached.

VSM are typically formulated as matrices constituting a formal implementation of DSMs.

There are two common types of such matrices, namely, word-context and word-document ma-

trices, constructed for computing similarity between words Landauer and Dumais[1997] and

documents/queriesSalton et al.[1975], respectively. This work is related with the word-context

type, where each target word is represented by a vector (matrix row) that contains the words

(matrix columns) that co-occur with it within a specified context (also referred as contextual

features). Beyond its simplicity, the popularity of this representation can be attributed to the

fact that it is well-aligned with the distributional hypothesis of meaning. The construction of

VSM includes the following parameters: (i) extraction of contextual features, (ii) schemes for

weighting the extracted contextual features, (iii) optional techniques for dimensionality reduc-

tion, and (iv) metrics for the computation of similarity (ordistance) between the target words.

2.2.1 Extraction of Contextual Features

The primary input of DSMs is a corpus (or a set of corpora) whose lexical content is assumed
to capture the semantics for the target words. Let the following sentences serve as an (toy)
example of such a corpus.

Cars are motor vehicles with four wheels;

usually propelled by an internal combustion engine.

A tree is a tall perennial woody plant having

a main trunk and branches forming a distinct elevated crown.

They built a large plant to manufacture

a special type of engine for cars.

22



He reads his newspaper at breakfast.

Following the distributional hypothesis of meaning the first issue to be defined is the context

according to which the contextual features for the target words will be extracted. The definition

of context seems to depend on the problem under investigation Sahlgren[2008]. For example,

within the framework of Information Retrieval this is typically defined at the document level

where the task at hand is the topical similarity. However, a more narrow contextual scope may

be used for the problem of word similarity e.g., sentential level or even few words in the left and

right context of the target wordClark [2013]. The word-context matrix for the example corpus

breakfast cars crown large motor ... tall trunk vehicles
engine 0 2 0 0 1 ... 0 0 1
newspaper 1 0 0 0 0 ... 0 0 0
plant 0 1 1 1 0 ... 1 1 0
tree 0 0 1 0 0 ... 1 1 0

Table 2.1: Example of word-context matrix.

presented above is presented in Table2.1 for which the context was defined at the sentence

level. A sample of contextual features (columns) is illustrated for few target words (rows). The

value of each matrix element stand for the (raw) feature frequency computed within the context

of the corresponding target word. More weighting schemes for scoring the contextual features

are presented in Section2.2.2. A number of corpus pre-processing steps are required for such

representation, e.g., sentence splitting for this example. Other pre-preprocessing steps may

include lemmatization, stemming, normalization, filtering of stop words etc. Note that there

are no standard procedures for the pre-processing of corpora towards the construction of VSM.

e.g., inclusion of stop words as contextual features. Once the word-context representation is

completed the meaning of each target word is reflected by its contextual features. According to

theoretic linguistics the relation between target words and contextual features is characterized

assyntagmatic, while the words that tend to occur in similar contextual environment are defined

asparadigmaticallyrelatedCruse[1986]; Sahlgren[2006].

2.2.1.1 Unstructured and Structured Models

There are two main approaches regarding the extraction of the contextual features, namely,

unstructured and structuredBaroni and Lenci[2010]. This distinction deals with the consider-

ation (or not) of syntactic relations between the target words and their contextual features.

Unstructured approaches do not consider the linguistic structure of context with respect

to the target words. A contextual window of fixed size (K words) is centered on the target
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word and the surrounding lexical features that fall within it are extractedBullinaria and Levy

[2007]; Iosif and Potamianos[2010]. Specifically, the right and left contexts of lengthK are

considered for each occurrence of the targetw in the corpus, i.e.,

[vK,L ... v2,L v1,L] w [v1,R v2,R ... vK,R],

wherevi,L andvi,R represent theith word to the left and to the right ofw respectively. The

feature vector for targetw is defined asTw,K = (tw,1, tw,2, ..., tw,N ), wheretw,i is a non-

negative integer andK is the context window size. Note that the length of the feature vector

is equal to the vocabulary sizeN , i.e., all words in the vocabulary are considered as features

(unless a selection is applied, e.g, exclusion of stop words). Theith feature valuetw,i reflects

the occurrence of vocabulary wordvi within the left or right context windowK of (all occur-

rences of) the termw. As it was mentioned, the (optimal) size of the contextual window may

vary according to the task under investigation, e.g., from immediate context used for comput-

ing the semantic similarity between wordsAgirre et al.[2009]; Iosif and Potamianos[2010],

to larger context size used for estimating the reaction timeduring lexical primingLund and

Burgess[1996]. An extension of the unstructured approach is the employment of second-order

co-occurrence statistics for the creation of contextual feature vectorsSchütze[1998]. Two

words are characterized by second-order co-occurrence if they do not co-occur directly, but

both co-exist with a third word. Schütze applied this extension for the problem of word sense

discrimination in order to tackle the sparsity of first-order VSM and improve its robustness.

The basic idea behind structured models is the utilization of syntactic relationships as fea-

tures for the creation of semantic spaces. Typical examplesof such relations are argument

structures (subject/object) and modifications (adjective-noun) extracted by shallow or full pars-

ing Pado and Lapata[2007]. Syntactic relations can be represented as 2-tuples of thearguments

Grefenstette[1994] or asn-tuples in order to incorporate direct and indirect dependenciesPado

and Lapata[2007]. The paradigm of “one task, one model” of structured DSMs was advanced

in Baroni and Lenci[2010] by the arrangement of tuples into a third-order tensor. This enables

the creation of different semantic spaces for different semantic tasks (e.g., estimation of se-

mantic similarity between words, categorization of concepts, computation of verb selectional

preferences, etc.), while the extraction of dependency tuples is task-independent (“the same

distributional information can be shared across tasks”). In Agirre et al.[2006], unstructured

DSMs were shown to obtain slightly higher performance than structures ones.

2.2.1.2 Exemplar Models

The issue of polysemy is raised as a drawback regarding the representation of semantic spaces

adopted by traditional DSMsErk and Padó[2010]. Typically, in DSMs a single vector is
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used for representing the contextual features of a target word. For the case of a polysemous

target word the single-vector representation conflates features that correspond to the different

(in-corpus) senses of the target. This can be illustrated byobserving the contextual features of

“plant” in the example of Table2.1. The use of exemplar models was proposed as an alternative

implementation of DSMs for addressing the problem of polysemy Erk and Padó[2010]; Reddy

et al.[2011]. Instead of a single vector, a set of exemplars is utilized for the representation of a

target word. The set of exemplars is defined as the set of (corpus) sentences in which the target

occursErk and Padó[2010]. For example, the word “light” has a set of316, 126 exemplars in

the ukWaC corpusReddy et al.[2011]. Each exemplar can be represented as a unstructured

(i.e., bag-of-words) or structured (i.e., encoding syntactic relations) vector. For a target word

given within context (e.g., sentential) polysemy is modeled by the activation/selection of the

relevant exemplars with respect to a “point of comparison”,where the latter can be regarded

as another exemplarErk and Padó[2010]. In Erk and Padó[2010], the activation was con-

trolled by setting a threshold regarding the similarity of exemplars estimated by measurements

such cosine similarity or Jaccard coefficient. An approach for exemplar selection was pro-

posed inReddy et al.[2011] for the case of noun-noun compounds, e.g., “traffic light”.The

basic idea was to constrain the exemplars of the one constituent to include words semantically

related with the other constituent, e.g., exemplars of “light” may include the word “car”. The

exemplar-based approach seems to be aligned with semantic tasks where the words of interest

are provided within context. A related example is the selection of paraphrases for a target word

that occurs in a given contextErk and Padó[2010]. In Reddy et al.[2011], the exemplar model

was applied in the framework of semantic compositionality for the task of similarity computa-

tion between noun-noun compounds. However, the polysemy mechanism of exemplar models

is not obvious how is applied (i.e., which exemplars to use and how) and benefits out-of-context

semantic tasks in comparison with the typical implementations of DSMs.

2.2.2 Weighting of Contextual Features

In this section, a number of widely-used measurements are presented for the weighting of the

contextual features. Following the definitions ofCurran[2003] let (w, r, v) denote the co-

occurrence of target wordw and featurev under relationr within the specified context. Note

thatr can be any relation defined according to the used structured model. For the case of un-

structured DSMsr simply signifies the co-occurrence ofw andv. Also, letf(w, r, v) denote

the unnormalized corpus frequency of(w, r, v).

Identity. This is the simplest weighting scheme assigning1 if relation r exists betweenw
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andv without taking into account the frequency of the relation:

tw,i = 1. (2.10)

Freq. This scheme employs the raw frequency of(w, r, v):

tw,i = f(w, r, v). (2.11)

RelFreq. In this scheme,f(w, r, v) is normalized by the frequency of target wordw:

tw,i =
f(w, r, v)

f(w, ⋆, ⋆)
. (2.12)

Note that in the denominator the⋆ symbol is used as a placeholder (for any relationr or con-

textual featurev).

Tf–Idf. This scheme was inspired by the term frequency-inverse document frequency scheme

that is widely used in Information Retrieval:

tw,i =
f(w, r, v)

n(⋆, r, v)
. (2.13)

Here, the notion of inverse document frequency is adapted for the construction of word-content

matrices (instead of word-document matrices). For this purpose,n(⋆, r, v) denotes the number

of different relations in which the contextual featurev is involved.

Gref94. This is an extension of the Tf-Idf scheme proposed inGrefenstette[1994]:

tw,i =
log2(f(w, r, v) + 1)

log2(n(⋆, r, v) + 1)
. (2.14)

The logarithm was introduced in order to reduce the domination of high frequencies.

In this thesis, we have experimented with the most of the aforementioned weighting schemes,

as well as with some variations of the Tf-Idf. More details are given in Table3.1of Section3.2.
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2.2.3 Dimensionality Reduction

The typical dimensionality of the word-context matrix is tens of thousands, while the vast

majority of its elements are equal to zero. The most widely-used technique for reducing the

dimensions of such matrices is the Singular Value Decomposition (SVD), which is based on

linear algebra. SVD can be applied both to word-document andword-context matrices, while

the estimation of similarity between documents and words isreferred to as Latent Semantic

Indexing (LSI) and Latent Semantic Analysis (LSA), respectively. The incorporation of SVD

within the framework of Information Retrieval was introduced byDeerwester et al.[1990]. One

of the earliest applications of SVD for the estimation of similarity between words is described

in Landauer and Dumais[1997].

The key idea behind SVD is the factorization of the original matrixX with respect to three

matrices. The latter are utilized in order to formulate a low–rank approximation ofX. This ap-

proximation usually results into a significant dimensionality reduction: from tens of thousands

to few hundreds. In particular, the original matrixX is expressed as a product of the matrices

UΣV
T Turney and Pantel[2010]. The columns ofU andV are orthogonal having unit length

U
T
U = V

T
V = I. The singular values are included inΣ that is diagonal, whileX andΣ

have the same rankr. Consider a matrixΣk formulated by the topk singular values, where

k < r. Also, letUk andVk be the matrices that are created by the corresponding columns of

U andV, respectively. The original matrixX can be approximated bŷX = UkΣkV
T

k
(with

rank equal tok) given that the error|| X̂−X ||F is minimized.|| . ||F stands for the Frobenius

normGolub and Loan[1996].

A number of different perspectives regarding the application of SVD are briefly described

in Turney and Pantel[2010]. The low-dimensional approximation is considered to (i) capture

the latent meaning of words, (ii) reveal higher-order co-occurrences, (iii) reduce to the “noise”

introduced by non-informative contextual features, and (iv) tackle the sparsity problem.

A criticism about the application of SVD within the framework of VSM is raised inTur-

ney and Pantel[2010]. This deals with the underlying assumption according to which the

contextual features follow a Gaussian distribution, whichis not true. A number of most re-

cent approaches that attempt to address this issue are reported in Turney and Pantel[2010]

including Probabilistic Latent Semantic Indexing (PLSI)Hofmann[1999] and Latent Dirichlet

Allocation (LDA) Blei et al.[2003].

2.2.4 Semantic Similarity Metrics

In this section, two types of similarity metrics are presented, namely co-occurrence-based and

context-based. According to the first type the similarity between words is estimated by using
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directly the co-occurrence of the words of interest, i.e, syntagmatic relatedness. The context-

based metrics rely on the distributional hypothesis of meaning according to which the semantic

similarity is implied by the paradigmatic relatedness.

2.2.4.1 Co-occurrence-based metrics

Co-occurrence metrics use association ratios between words that are computed using their co-

occurrence frequency in a specified context. The definitionsthat follow consider the “web

as a corpus”, i.e., the word co-occurrence is regarded at thedocument level. The basic as-

sumption of this approach is that high association ratios indicate a semantic relation between

words1 Church and Hanks[1990]. For the documents indexed by a search engine we define

the notations shown in Table2.2 Feldman et al.[1998]. We use the notation{D} for a set

Notation Description

{D} set of all documents indexed by search engine
|D | number of documents in{D}
w a word or term

{D |w} subset of{D}, documents indexed byw
{D |w1, w2} subset of{D}, documents indexed byw1 andw2

|D |w | number of documents in{D} indexed byw
|D |w1, w2 | number of documents in{D} indexed byw1 andw2

Table 2.2: Definitions for document sets indexed by search engines.

of documents,|D| for document set cardinality,{D|w} for the set of documents that contain

the wordw and{D|w1, w2} for the set of documents that contain both wordw1 andw2. In

this work, four co-occurrence measures are used to compute semantic similarity between word

or term pairs, namely: Jaccard coefficient, Dice coefficient, mutual information (as defined in

Bollegala et al.[2007]), and Google-based Semantic RelatednessGracia et al.[2006].

Jaccard and Dice coefficients.The Jaccard coefficient is a measure for calculating the simi-

larity (or diversity) between sets. The variation of the Jaccard coefficient used in this work is

defined as:

J(w1, w2) =
|D |w1, w2 |

|D |w1 | + |D |w2 | − |D |w1, w2 |
(2.15)

1It is interesting to note that web-based co-occurrence metrics often outperform more elaborate corpus-based
metrics. This shows that overcoming the data sparseness problem is sometimes more important than building an
accurate estimator. For example an improved n-gram language probability estimation using web n-gram occurrence
can be found in the literatureZhu and Rosenfeld[2001].
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In probabilistic terms, (2.15) finds the maximum likelihood estimate of the ratio of the proba-

bility of finding a document where wordsw1 andw2 co-occur over the probability of finding

a document where eitherw1 or w2 occurs1. If w1 andw2 are the same word then the Jaccard

coefficient is equal to1 (absolute semantic similarity). If two words never co-occur in a docu-

ment collection then the Jaccard coefficient is0. The Dice coefficient is related to the Jaccard

coefficient and is computed as:

C(w1, w2) =
2 |D |w1, w2 |

|D |w1 | + |D |w2 |
(2.16)

Again, the Dice coefficient is equal to1 if w1 andw2 are identical, and0 if two words never

co-occur.

Mutual information. If we assume that the number of documents indexed by the wordsw1,

w2 are random variablesX, Y , respectively, then the pointwise mutual information (MI) be-

tweenX andY measures the mutual dependence between the occurence of wordsw1 andw2

Church and Hanks[1990]. The maximum likelihood estimate ofMI is:

I(X,Y ) = log

|D|w1,w2|
|D|

|D|w1|
|D|

|D|w2|
|D|

(2.17)

Mutual information measures the information that variablesX andY share. It quantifies how

the knowledge of one variable reduces the uncertainty aboutthe other. For instance, ifX and

Y are independent, then knowingX does not give any information aboutY and the mutual

information is0. ForX = Y , the knowledge ofX provides the value ofY with certainty and

the mutual information is1. Note that the number of relevant documents is normalized bythe

total number of documents indexed by the search engine,|D|, giving a maximum likelihood

estimate of the probability of finding a document in the web that contains this word.

Google-based Semantic Relatedness.Motivated by Kolmogorov complexity, Cilibrasi and

Vitanyi Cilibrasi and Vitanyi[2007]; Vitanyi [2005] proposed a page-count-based similarity

measure, called the Normalized Google Distance, defined as:

G0(w1, w2) =
max{A} − log |D |w1, w2 |

log |D | −min{A} , (2.18)

1The normalization terms| D | (total number of documents) at the nominator and denominator cancel each
other out.
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whereA = {log | D | w1 |, log | D | w2 |}. As the semantic similarity between two words

increases, the distance computed by (2.18) decreases. Thus, this metric can be considered as a

dissimilarity measure. Note that the metric is also unbounded, ranging from0 to∞. In Gracia

et al. [2006], a variation of Normalized Google Distance is proposed that defines a similarity

measurement. This variation is typically referred to as “Google-based Semantic Relatedness”:

G(w1, w2) = e−2G0(w1,w2) (2.19)

whereG0(w1, w2) is computed according to (2.18). Note that the Google-based Semantic

Relatedness is bounded taking values between0 and1.

Beside the use of the web as a corpus for obtaining number of hits, the aforementioned

co-occurrence-based metrics can be also defined with respect to any text corpus. In such cases,

the word frequencies can be considered at the level of several corpus units, e.g., sentences,

paragraphs. In this thesis, we adopt both perspectives, i.e., employing web-based hits, as well

as word frequencies computed over a text corpus. The performance of these perspectives for

the task of semantic similarity computation between words is presented in Chapter 4.

2.2.4.2 Context-based metrics

Unlike co-occurrence-based metrics, the semantic similarity is estimated through the paradig-

matic relatedness for the case of context-based metrics. This approach follows the distributional

hypothesis of meaning suggesting that “similarity of context implies similarity of meaning”.

Cosine similarity. It is reported to be the most widely-used similarity metric with respect

to VSM Clark [2013]; Turney and Pantel[2010]. For a given weighting scheme the similarity

between two words ,w1 andw2, is estimated as the cosine of their corresponding feature

vectors,Tw1,K andTw2,K , as followsIosif and Potamianos[2010]:

QH(w1, w2) =

∑N
i=1 tw1,itw2,i

√

∑N
i=1(tw1,i)

2

√

∑N
i=1(tw2,i)

2

(2.20)

whereH is the context window length andN is the vocabulary size. The cosine similarity

metric assigns0 similarity score whenw1, w2 have no common context (completely dissimilar

words), and1 for identical words.

Besides cosine similarity a number of other metrics have been employed for estimating

the semantic similarity between words. In the next paragraphs, a number of info-theoretic and

geometric measurements are briefly presented. We follow theformulation proposed inMeng

and Siu[2002]; Pargellis et al.[2004] where the contextual feature vectors were transformed

30



into probability distributions. In particular, the contextual probabilities were estimated using

n-gram language modeling.

Kullback-Leibler ( KL) divergence.This is a measure of the difference between two probabil-

ity distributions, while it is also known asrelative entropyCover and Thomas[1991]. Suppose

two distributions,P andQ of a discrete random variable. TheirKL divergence is computed as

DKL(P‖Q) =
∑

y∈Y

P (y) log
P (y)

Q(y)
(2.21)

over all valuesy ∈ Y . KL metric is not symmetric, i.e.,DKL(P‖Q) 6= DKL(Q‖P ), In

addition,KL can be regarded as a measurement of dissimilarity since equals to 0 when the

two distributions are the same, and greater than zero otherwise. Given that theKL metric

measures the dissimilarity between two distributions, thegreater their divergence is, the easier

(on average) their discrimination isKullback [1959]; Lee[1997]. From another point of view,

if the difference between distributionsP andQ is large, thenP andQ is dissimilar, so, it

is inefficient (on average) to useQ instead ofP Kullback [1959]; Lee [1997]. Within the

framework of DSMs theKL divergence can be applied for the estimation of word semantic

dissimilarity given that the contextual vectors of target words are transformed into probability

distributions. For example, this was performed inMeng and Siu[2002]; Pargellis et al.[2004]

by considering the immediate context of target words, i.e.,estimating probabilities of the left

and right bigrams of targets. Let the bigram probability distributions of target wordsw1 and

w2, denoted asW1 andW2, respectively. The semantic dissimilarity betweenw1 andw2 was

estimated using theKL divergence of the corresponding right bigram conditional probability

distributionsW1 andW2, as:

DR
KL(W1‖W2) ≡ DR

KL(w1, w2) =
∑

v1,R∈V

p(v1,R | w1) log
p(v1,R | w1)

p(v1,R | w2)
, (2.22)

wherev1,R denotes the first word that occurs in the right contexts of word wi (i = 1 or 2),

p(v1,R | wi) is the bigram conditional probability of the bigram “wi v1,R”. Also, note that the

two bigram distributions,W1 andW2, are compared over the whole vocabularyV 1. In similar

fashion with (2.22), the divergence betweenW2 andW1 for the right contexts is computed as:

DR
KL(W2‖W1) ≡ DR

KL(w2, w1) =
∑

v1,R∈V

p(v1,R | w2) log
p(v1,R | w2)

p(v1,R | w1)
. (2.23)

1 The backoff strategy can be followed in language modeling for estimating the probability of bigrams that do
not occur within the corpus.
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Regarding the left context-dependent divergence (2.22) and (2.23) are formulated as:

DL
KL(W1‖W2) ≡ DL

KL(w1, w2) =
∑

v1,L∈V

p(v1,L | w1) log
p(v1,L | w1)

p(v1,L | w2)
(2.24)

and

DL
KL(W2‖W1) ≡ DL

KL(w2, w1) =
∑

v1,L∈V

p(v1,L | w2) log
p(v1,L | w2)

p(v1,L | w1)
, (2.25)

respectively. The symmetric left and right contextual dissimilarity between wordsw1 andw2

is defined asPargellis et al.[2004]:

D
L,R
KL (w1, w2) = DL

KL(w1, w2) +DL
KL(w2, w1) +DR

KL(w1, w2) +DR
KL(w2, w1). (2.26)

TheKL metric is unbounded, since the bigram probabilities that appear in the denominators

may take values close to zero. Due to this, the computation oftheKL divergence was observed

to be dominated by few, infrequent bigramsPargellis et al.[2004].

Information-radious ( IR). This metric is similar to theKL divergence (also known as Jensen–Shannon

divergenceLin [1991]), however it is bounded, since the denominator is the average of the

probability distributions:

DIR(P‖Q) =
∑

y∈Y

P (y) log
P (y)

1
2(P (y) +Q(y))

. (2.27)

As inKL, the divergence of bigram conditional probability distributionsW1 andW2 (and vice

versa) are defined as follows:

DR
IR(W1‖W2) ≡ DR

IR(w1, w2) =
∑

v1,R∈V

p(v1,R | w1) log
p(v1,R | w1)

1
2(p(v1,R | w1) + p(v1,R | w2))

(2.28)

and

DR
IR(W2‖W1) ≡ DR

IR(w2, w1) =
∑

v1,R∈V

p(v1,R | w2) log
p(v1,R | w2)

1
2(p(v1,R | w1) + p(v1,R | w2))

(2.29)
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for the right contexts, respectively. Similarly, for the left contexts we have

DL
IR(W1‖W2) ≡ DL

IR(w1, w2) =
∑

v1,L∈V

p(v1,L | w1) log
p(v1,R | w1)

1
2(p(v1,L | w1) + p(v1,L | w2))

(2.30)

and

DL
IR(W2‖W1) ≡ DL

IR(w2, w1) =
∑

v1,L∈V

p(v1,L | w2) log
p(v1,L | w2)

1
2(p(v1,L | w1) + p(v1,L | w2))

.

(2.31)

The symmetric left and right contextual dissimilarity betweenw1 andw2 is computed asPargel-

lis et al.[2004]:

D
L,R
IR (w1, w2) = DL

IR(w1, w2) +DL
IR(w2, w1) +DR

IR(w1, w2) +DR
IR(w2, w1). (2.32)

Each of the four terms of the above summation has an upper bound value equal tolog(2), so

the maximum score of absolute dissimilarity is4 log(2).

Manhattan-norm (MN ). This is a geometric measurementBullinaria and Levy[2007] de-

fined as follows:

DMN (P‖Q) =
∑

y∈Y

| P (y)−Q(y) | . (2.33)

In particular, theMN metric relies on the absolute difference between the bigramconditional

probability distributionsW1 andW2. Due to the absolute function theMN metric is symmet-

ric:

DMN (P‖Q) ≡ DMN (Q‖P )

The contextual distance between the bigram conditional probability distributionsW1 andW2

is

DR
MN (W1‖W2) ≡ DR

MN (w1, w2) =
∑

v1,R∈V

| p(v1,R | w1)− p(v1,R | w2) | (2.34)

for the right contexts. In similar manner, the distributiondistance for the left context is defined

as

DL
MN (W1‖W2) ≡ DL

MN (w1, w2) =
∑

v1,L∈V

| p(v1,L | w1)− p(v1,L | w2) | . (2.35)

The symmetric (left and right) contextual dissimilarity betweenw1 andw2 is computed as
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Pargellis et al.[2004]:

D
L,R
MN (w1, w2) = DL

MN (w1, w2) +DR
MN (w1, w2). (2.36)

Each of both terms of (2.36) has a lower and upper bound of zero and two, respectively. Thus,

two words of identical contextual distributions will have azero value ofMN distance, while a

distance score equal to four indicates absolute dissimilarity.

Cosine similarity (re-formulated). In this paragraph, the cosine similarity metric defined

in (2.20) is re-formulated for the case when the contextual feature vectors are transformed into

probability distributions:

SCS(P‖Q) =

∑

y∈Y P (y)Q(y)
√

∑

y∈Y P (y)2
∑

y∈Y Q(y)2
. (2.37)

Note that theCS metric is symmetric:

SCS(P‖Q) ≡ SCS(Q‖P )

The similarity between the bigram conditional probabilitydistributionsW1 andW2 is com-

puted as:

SR
CS(W1‖W2) ≡ SR

CS(w1, w2) =

∑

v1,R∈V p(v1,R | w1)p(v1,R | w2)
√

∑

v1,R∈V p(v1,R | w1)
∑

v1,R∈V p(v1,R | w2)
(2.38)

for the right contexts. Similarly, for the left context we have

SL
CS(W1‖W2) ≡ SL

CS(w1, w2) =

∑

v1,L∈V
p(v1,L | w1)p(v1,L | w2)

√

∑

v1,L∈V
p(v1,L | w1)

∑

v1,L∈V
p(v1,L | w2)

. (2.39)

The symmetric (left and right) contextual similarity between wordsw1 andw2 is computed as

Pargellis et al.[2004]:

S
L,R
CS (w1, w2) = SL

CS(w1, w2) + SR
CS(w1, w2). (2.40)

Each of both terms of Equation2.40has a lower and upper bound of zero and one, respectively.

Thus, two words of identical contextual distributions willhave similarity score equal to two.

Note that the incorporation of contextual probability distributions in the aforementioned
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metrics is not limited to the case of bigram probabilities, i.e., higher-ordern-gram probabilities

may be used. For example, inPargellis et al.[2004] both bigram and trigram probabilities

were employed for the representation of the contextual distributions. A comparison of the pre-

sented context-based metrics were presented in several works, e.g.,Bullinaria and Levy[2007];

Pargellis et al.[2001, 2004]. Certainly it is hard to draw generic conclusions about therelative

performance of the several similarity metrics due to factors that vary across different studies,

e.g., corpora, implementation of VSM, evaluation tasks, etc. However, in the aforementioned

studies the cosine similarity was reported to be among the best performing metrics.
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Chapter 3

DSMs I: Semantic Similarity

Computation Using Web Documents

3.1 Introduction

Numerous information retrieval and natural language processing applications require knowl-

edge of semantic similarity between words or terms. For example, by adding semantically

similar words to a web query (query expansion) it is likely toincrease the relevance1 of re-

trieved documentsGauch and Wang[1997]. Moreover, semantic similarity measures are used

in many natural language processing (NLP) tasks, such as language modelingFosler-Lussier

and Kuo[2001], grammar inductionSiu and Meng[1999], word sense disambiguationDa-

gan et al.[1997], speech understanding and spoken dialogue systemsFosler-Lussier and Kuo

[2001]. In Iosif et al. [2006]; Pargellis et al.[2004], several unsupervised statistical metrics

are presented and applied to the automatic induction of semantic classes for both semantically

homogeneous and heterogeneous corpora.

The majority of the semantic similarity metrics employed today use hand-crafted language

resourcesJiang and Conrath[1997]; Leacock and Chodorow[1998]; Li et al. [2003]; Petrakis

et al. [2006]. The use and updating of resources, such as thesauri or ontologies, is a time

consuming and tedious task, demanding human labor and oftenexpert knowledge. Also, lan-

guage resources are not ubiquitous and are unavailable for many languages. As a result, such

methods are of little utility for applications where human and language resources are sparse.

In addition, these methods cannot be applied for words or terms that are not included in the

resource repository, e.g., scientific terms, out of vocabulary words, neologisms. To overcome

1In Flank [1998]; Mihalcea and Moldovan[2000]; Voorhees[1994], it is shown that query expansion using
related words acquired from WordNet increases the recall ofretrieved documents.
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this problem knowledge resources are often constructed forspecific domains where general-

purpose ontologies do not offer adequate term coverage. Forexample, in addition to WordNet,

domain-specific ontologies, e.g., MeSH, are used for applications in the (bio)medical domain

Petrakis et al.[2006]. Improving term coverage remains an open research issue; algorithms are

proposed in the literature on how to pool multiple knowledgeresources or add terms to existing

language resources, e.g., ontology merging techniques andcross-ontology similarity metrics.

The work of Budanitsky and HirstBudanitsky and Hirst[2006] provides a thorough review of

different metrics that use the WordNet resource for computing semantic similarity.

The web has a multilingual character; new words, neologismsand occasionalisms (hapax

legomena), are added frequently and efficiently. Thus, it isthe obvious place for mining se-

mantic relationships for unseen words. Also, the web contains both general-purpose words,

found in news articles and blogs, as well as, scientific terminology, found in documents written

by experts. Overall, the web covers a plethora of domains, authoring styles and languages, and

is fertile ground for automatic semantic knowledge acquisition. The web has been exploited

for a variety of NLP applications. InZhu and Rosenfeld[2001], web page counts returned by

a search engine were used to estimate the probability of n-gram language models. InDekang

et al. [2003], the web page counts of fixed lexical patterns were used to identify synonymy

and antonymy between nouns. An extension of this approach was proposed inChklovski and

Pantel[2004]; web queries of lexico-syntactic patterns were used for discovering relationships

between verbs. The web is also an invaluable source for constructing text corpora. For exam-

ple, inTerra and Clarke[2003], a large corpus of web pages was constructed and used for word

sense disambiguation. Other applications where automatically-constructed web corpora have

been used to train statistical models include machine translation Popovic and Ney[2005] and

question-answering systemsDumais et al.[2002].

Recently there has been much research interest in developing web-based similarity mea-

sures. Typically such approaches use the results returned by one or more web search engines

using one or multiple queries. Web-based similarity measures can be broadly divided into three

categories: (i) measures that rely only on the number of the returned hits, (ii) measures that

download a number of the top-ranked documents and then applytext processing techniques,

(iii) measures that combine both approaches. Web-based similarity computation algorithms

have been used in a diverse range of applications, such as automatic annotation of web pages

Cimiano et al.[2004], social networks constructionMika [2005]; Mori et al. [2006] and music

genre classificationGeleijnse and Korst[2006]; Schedl et al.[2006]. However, in most cases,

the form of the web query and/or the feature extraction process is application-dependent, e.g.,

if one is interested in movie genre classification it is useful to include the term “movie” in the

submitted query.
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In this chapter, we focus on the problem of fully unsupervised web-based semantic simi-

larity computation between words or terms; no hand-craftedrules or resources are employed.

Web search engines are used for text corpus mining and context-based similarity distances are

automatically computed on this corpus. The proposed algorithm requires no expert knowledge

or language resources and, as a result, it can be readily applied to different languages. In order

to calculate the semantic similarity between words, we investigate two families of unsuper-

vised, web-based similarity metrics . The first type considers only the number of hits returned

by a web search engine, as inBollegala et al.[2007] andGracia et al.[2006]. The second is

fully text-based, downloads the top-ranked documents returned by a web query and compares

the context around words of interest to estimate semantic similarity. The following are the

original contributions of this work:

1. Several contextual similarity algorithms are proposed and evaluated over large collec-

tions of downloaded documents.

2. The metrics are evaluated both on the Miller-Charles and on a medical term dataset, i.e.,

in this work we investigate both word and term similarity. The two evaluation domains

are also semantically different: ordinary words of generaluse vs medical terms.

3. We demonstrate the effect of feature and document selection on semantic similarity com-

putation. For example, it is shown that non-content words (stop-words) are important

features for word similarity computation but poor featuresfor term similarity computa-

tion.

4. We show that the proposed fully unsupervised method basedon context similarity can

compete with state-of-the-art supervised similarity metrics that employ elaborate lan-

guage resources.

The remainder of this chapter is organized as follows. In Section 3.2, an overview of related

work in the area of semantic similarity computation is presented. In Section3.3, the seman-

tic similarity computation algorithm is described along with the experimental procedure. In

Section3.4, the evaluation results are reported for the proposed algorithms for two evaluation

datasets. The results are compared with state-of-the-art semantic similarity algorithms that

employ knowledge resources such as WordNet and MeSH. The results are further discussed

in Section3.5, and implications of feature selection and document selection for context-based

similarity metrics are presented. Finally, we conclude with Section3.6, where promising di-

rections for further research are also mentioned.
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3.2 Related work

Metrics that measure semantic similarity between words or terms can be classified into four

main categories depending if knowledge resources are used or not: (i) supervisedresource-

based metrics, consulting only human-built knowledge resources, such asontologies, (ii) su-

pervisedknowledge-rich text-mining metrics, i.e., metrics that perform text mining but also rely

on knowledge resources, (iii) unsupervisedco-occurrence metrics, i.e., unsupervised metrics

that assume that the semantic similarity between words or terms can be expressed by an associ-

ation ratio which is a function of their co-occurrence and (iv) unsupervisedtext-based metrics,

i.e., metrics that are fully text-based and exploit the context or proximity of words or terms to

compute semantic similarity. The last two groups of metricsdo not use any language resources

or expert knowledge and depend only on web search engines. Inthis sense, these metrics are

referred to as “unsupervised”; no semantically labeled human-annotated data is required to

compute the semantic distance between words or terms. Resource-based and knowledge-rich

text-mining metrics, however, use such data, and are henceforth referred to as “supervised”

metrics.

Several resource-based methods have been proposed in the literature that use, e.g., Word-

Net, for semantic similarity computation. Edge counting methods consider the length of the

paths that link the words, as well as the word positions in thetaxonomic structureLeacock

and Chodorow[1998]; Li et al. [2003]. Information content methods compute similarity be-

tween words by combining taxonomic features that exist in the used resource, e.g., number of

subsumed words, with frequencies computed over textual corporaJiang and Conrath[1997].

Hybrid methods combine synsets1 with word neighborhoods and other featuresPetrakis et al.

[2006]. In the work of Bollegala et al.Bollegala et al.[2007], a hybrid method, among oth-

ers, is defined that combines page counts, returned by a search engine, and lexico-syntactic

patterns, extracted from the returned snippets using a number of synonymous nouns acquired

from WordNet.

Co-occurrence-based metrics attempt to implement computational models for the notion

of “word association” which is used in psycholinguistics. This notion describes the procedure

of lexical decision of human associative memory. InChurch and Hanks[1990], an associa-

tion ratio is proposed using the information theoretic metric of mutual information in order

to identify patterns which can be used for the construction of semantic classes. InBollegala

et al. [2007], several association metrics are applied, using a search engine in order to obtain

co-occurrence counts for a word pair. If the pair of interestconsists of the wordsw1 andw2,

1A synset is a set of words (or terms) that are considered to be synonymous. This notion is widely used in
lexical resources like WordNet.
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their co-occurrence frequency is taken to be equal to the number of hits returned by a search

engine, given a query of the form “w1 AND w2”.

Text-based metrics typically use contextual features to compute semantic similarity. Context-

based metrics operate under the assumption that words with similar contexts have similar

meaning. One of the first studies of this hypothesis is the work of Rubenstein and Goode-

nough stating that “words that are similar in meaning occur in similar contexts”Rubenstein

and Goodenough[1965]. Using this assumption, the semantic similarity between two words

can be estimated by measuring the difference between the probability distributions of their

contextual features. Various context-based metrics have been proposed in the literature, such

as: Kullback-Leibler, information radius and Manhattan norm Pargellis et al.[2004]; Siu and

Meng[1999]. The contextual probability distributions can be estimated (and smoothed) using

n-gram language modelsJelinek[1998]. Another representation of the contextual environment

of a word is thebag-of-wordsmodelLewis [1998]. According to this model, the contextual

features of a word form the elements of a vector. Assuming independence among the features,

the similarity of two words is computed as the product of their feature vectors using cosine sim-

ilarity Iosif et al.[2006]; Pangos et al.[2005]. More recently, context-based similarity metrics

construct document collections by querying web search engines and downloading a number of

the returned top-ranked documents, in order to compute semantic similarity between words or

termsIosif and Potamianos[2007a].

Scheme Acronym tw,i (if c(vi) > 0)

Binary B 1

Term frequency TF
c(vi)
c(w)

Add-one TF TF1
c(vi) + 1
c(w) + αw

Log of TF LTF
log(c(vi))
log(c(w))

Add-one LTF LTF1
log(c(vi) + 1)
log(c(w) + αw)

TF-inverse document freq. TFIDF
c(vi)
c(w)

log
|D |

|D|vi |
Log of TFIDF LTFIDF

log(c(vi))
log(c(w))

log
|D |

|D|vi |
Add-one LTFIDF LTF1IDF

log(c(vi) + 1)
log(c(w) + αw)

log
|D |

|D|vi |

Table 3.1: Context Feature Weighting Schemes

The various feature weighting schemes used in this work for computing the value oftw,i

are presented in Table3.1. The weighting schemes can be classified into binary and frequency-
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based. The binary metric assigns weighttw,i = 1 when theith word in the vocabulary exists

at the left or right context of at least one instance of the word w, and0 otherwise. Frequency-

based weighting schemes compute the (normalized) frequency of occurrence of context words.

Various frequency-based weighting schemes popular in natural language processing and web

applications are proposed and evaluated, specifically, term-frequency (TF), logarithmic term-

frequency (LTF), term frequency inverse document frequency (TFIDF), logarithmic TFIDF,

and add-one smoothing of these methods. As shown in Table3.1, for frequency-based metrics

the value oftw,i is computed as a function of the countsc(vi), i.e., the number of occurrences

of theith vocabulary wordvi within the left or right context of all occurrences (in a corpus) of

termw. Note that the countsc(vi) are normalized byc(w), the number of occurrences of word

w in the corpus. For the case of add-one term frequency (TF1), the probability of occurrence

is smoothed by adding one to the counts and normalizing them by c(w) + αw, whereαw is

defined as the total number of unique words that appear in the context(s) ofw.

Logarithmic term frequency (LTF) weighting is similar to term frequency (TF), the main

difference being the non-linear scaling of counts and the assignment of weight0 to singletons,

i.e., context words appearing only once. By applying the logarithmic weighting scheme, the

highly frequent contextual features are not allowed to dominate the computation of similar-

ity score (unlike the linear term frequency weighting scheme). Also, the non-linearity intro-

duced by the logarithmic scheme could be a simple way to approach the non-linear process

by which the human memory builds the semantic associations between words (assuming that

the contextual features are taken into account during the cognitive process). Logarithmic add-

one smoothing (LTF1) takes singletons into account with a positive weight of log(2)
log(c(w)+αw) , a

straightforward generalization of TF1.

The term-frequency inverse document frequency (TFIDF) metric is a popular metric in in-

formation retrieval that assigns more weight to semantically salient words, effectively reducing

the effect of stop words and non-content words. Similarly, in this work, the logarithm of the

inverse document frequency of context words in each document is computed aslog |D|
|D|vi|

and

used to multiply the TF estimate. Note that|D|vi | denotes all documents indexed by context

word vi. Similarly the logarithmic TFIDF (LTFIDF) multiplies the LTF estimate with the in-

verse document frequency. Finally, the add-one smoothing version of this metric is computed

(LTF1IDF).

3.3 Corpus based similarity computation

We experimented with (i) page-count-based, and (ii) text-based similarity metrics, described

in Chapter2. For the page-count metrics the Yahoo! search engine was used to determine
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the frequency occurrence and co-occurrence of words or terms w1 andw2. Specifically, the

total number of hits for the queries “w1”, “w2” and “w1 AND w2” were used to compute the

Jaccard, Dice, Mutual Information and Google metrics.

For the contextual similarity metrics, for each pair of words or terms(w1, w2) a few hun-

dred documents were downloaded using “w1 AND w2” (e.g., “boy AND lad”) queries. The

URLs for the top ranked documents were retrieved using the Yahoo!search engine via the

Yahoo! Search API. AND queries retrieve documents containing both terms, as opposed to

generic “w1 OR w2” queries that download documents containing either term. In Iosif and

Potamianos[2007a], preliminary experiments have shown that AND queries significantly out-

perform OR queries for context-based semantic similarity computation. Once the documents

are downloaded, the left and right contexts of all occurrences ofw1 andw2 are examined and

the corresponding feature vectors are constructed according to the following experimental pa-

rameters:

1. Number of web documents,|D |: how many web documents are used.

2. Contextual window size,K: the left and right contexts ofw1 andw2 are examined

according to the value of contextual window size. The windowsize is applied within the

sentence boundaries.

3. Stop words filtering (yes/no): consideration (or not) of stop words in the feature vectors.

4. Type of weighting scheme: the values of vector features are set according to one of the

weighting schemes presented in Table II.

The semantic similarity between words or termsw1, w2 is then computed as the cosine simi-

larity (see (2.20)) of their corresponding contextual feature vectors following the unstructured

approach described in Section2.2.1.1.

3.4 Evaluation

In this section, we present a comparative evaluation of the similarity algorithms, in terms of cor-

relation, with respect to the human ratings of: (i) the Miller-Charles dataset of common words,

and (ii) the MeSH dataset of medical terms. Both the page-count-based similarity metrics are

evaluated, as well as, the fully text-based similarity algorithms. The proposed algorithms are

also compared with metrics that use knowledge resources, e.g., the WordNet ontology for the

Miller-Charles dataset, and the MeSH ontology for the MeSH dataset of medical terms.
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3.4.1 Corpus description

For evaluation purposes we used two datasets: (i) the Miller-Charles dataset1 of common

nounsMiller and Charles[1998], and (ii) a dataset of medical terms included in the MeSH

ontology. The first dataset consists of28 noun pairs of general use that were rated according

to their semantic similarity by 38 human subjects. The assigned similarity scores range from

0 (not similar) to4 (perfect synonymy). The selection of this dataset was mainly motivated by

its wide use that enabled us to compare our work with a varietyof other approaches.

The MeSH dataset includes34 medical terms pairs that have been rated for similarity by

experts. MeSH is the acronym for “Medical Subject Headings”and is a taxonomic hierarchy

containing medical terms proposed by the National Library of Medicine, USA. The MeSH

dataset contains36 pairs of MeSH terms rated by human experts, e.g., “asthma-pneumonia”

and “anemia-appendicitis”. In this work, a subset of34 pairs was used due to the limited

amount of web documents available for the5th and36th pair. The MeSH dataset along with

the human-rated similarity scores were taken from the work of Petrakis et al.Petrakis et al.

[2006]. Petrakis et al. asked Dr. Qi at Dalhousie University to construct a set of MeSH

term pairs. Then medical experts were asked to submit similarity scores for the MeSH term

pairs using a web-based tool. In total,8 experts took part in the above procedure assigning

similarity scores from0 (no similarity) to4 (absolute similarity). Pairs with standard deviation

of similarity scores higher than the user defined threshold of t = 0.8 were excluded from the

evaluation2. The MeSH dataset was selected in order to investigate similarity between terms

that are rated by experts rather than naive subjects.

3.4.2 Evaluation metric

LetX = (x1, x2, ..., xn) andY = (y1, y2, ..., yn) be the random vectors that store the similar-

ity scores given by human subjects and the computational metric, respectively, for each of the

i = 1, 2, ..., n word pairs. The correlation coefficient between the scores produced by humans

and machine is estimated using the Pearson correlation, as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

√
∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

1 The experimentation with the relatively small Miller-Charles (MC) dataset took place in the very early phases
of the work described in this thesis. Then, we were mainly interested about the performance of similarity metrics
for common words and technical terms. Later, we became awareof the other two standard English datasets: RG
Rubenstein and Goodenough[1965], and WS353Finkelstein et al.[2002]. Given the fact that the pairs of the MC
dataset are included within RG and WS353, we expect that the main conclusions of this chapter to also apply for
these two datasets.

2 For more details see
http://www.intelligence.tuc.gr/similarity/datasets/MeSHDataset.pdf.
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wherex̄ andȳ are the sample means ofX andY , for i = 1, 2, ..., n.

3.4.3 Evaluation of page-count-based metrics

The correlation scores between the page-count-based semantic similarity metrics and human

ratings are presented in Table3.2for the two tasks. The similarity metrics based on the Jaccard

Dataset J C I G

Miller-Charles 0.41 0.41 0.69 0.66
MeSH 0.26 0.29 0.30 0.41

Table 3.2: Correlation of page-count metrics.

(J) and Dice (C) coefficients achieve comparable correlation performance, which is expected

given the similarities between the two metrics. The Mutual Information (I) and Google-based

Semantic Relatedness (G) achieve significantly1 better performance than Jaccard and Dice, es-

pecially for the Miller-Charles dataset. Overall, the achieved correlation for the words of gen-

eral use (Miller-Charles dataset) is significantly higher than that of the medical terms (MeSH

dataset), for all metrics.

3.4.4 Evaluation of context-based metrics

Next we present the performance of the context-based metrics for the various feature weighting

schemes shown in Table3.1and for different contextual window sizesK. The performance of

each metric is shown as a function of the number of downloadeddocuments. The correlation

scores for the Miller-Charles dataset are shown in Fig.3.1(a) and (b), and for the MeSH dataset

in Fig. 3.1(c) and (d).

In Fig. 3.1(a), the correlation scores for the Miller-Charles datasetare shown using several

weighting schemes. Performance is shown as a function of thecontext windowK (ranging

from 1 to 20) for a total number of100 downloaded documents. For most metrics, highest

correlation is achieved with context sizeK = 1, i.e., considering only the immediate context

of one word to the left and one to the right. For larger contextwindows, performance degrades

fast especially for the TFIDF weighting schemes. The highest correlation score of0.72 is

achieved by the LTF scheme with the binary weighting scheme being a close second. Note that

the linear frequency-based weighting schemes, i.e., TF andTFIDF, perform poorly, compared

to their logarithmic counterparts, especially, for large context sizes.

1 When comparing the performance of similarity metrics in this work, the term “significantly better” is used to
indicate statistical significance at a level higher than 95%using the paired t-test.
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In Fig. 3.1(b), the performance of the binary (B), LTF and LTFIDF weighting schemes are

shown for a context window size ofH = 1 as a function of the number of downloaded doc-

uments (ranging from10 to 1000). The correlation improves with the number of documents

and the performance bound is not reached even at 1000 documents. Good correlation perfor-

mance is achieved with as few as 30 documents, however, it is clear that the performance of the

similarity metric is not robust if fewer than 100 documents are used. Overall, the LTF scheme

performs best up to approximately 500 documents, while the binary scheme provides better

performance for a larger number of documents. Also note, that the performance gap between

LTF and LTFIDF is bridged for a large number of documents. Overall, the highest correlation

score of0.88 is achieved using the binary weighting scheme and1000 documents.

In Fig.3.1(c), the correlation score for the MeSH dataset is shown. Theweighting schemes,

context window size and number of documents (100) are the same as in (a), and thus the two

plots are directly comparable. The main differences in performance for the MeSH dataset com-

pared to the Miller-Charles dataset are: (i) the relative performance of the weighting schemes,

i.e., for the MeSH dataset the LTFIDF weighting scheme significantly outperforms all other

schemes (note the especially poor performance of the binaryweighting scheme), and (ii) the

optimum context window size, i.e., for the MeSH dataset bestcorrelation scores are achieved

for context window size betweenH=2 andH=5, as opposed toH=1 for the Miller-Charles.

In addition, the degradation of performance for large context windows is much more graceful

for the MeSH dataset. The best correlation score is0.67 for H=3 and the LTFIDF weighting

scheme.

In Fig. 3.1(d), the performance of the binary (B), LTF, and LTFIDF weighting schemes are

shown as a function of the number of downloaded documents. The window size used isH=1

in order for plots (b) and (d) to be directly comparable1. As in (b), correlation increases as more

documents are considered. However, in (d), the highest score is achieved for800 documents

and the performance degrades somewhat for1000 documents. The LTFIDF weighting scheme

significantly outperforms the other two metrics, while the binary scheme performs the worst,

i.e., the relative metric performance is reversed in (d) compared to (b). Finally, note that the

absolute performance of the metrics for the MeSH dataset is worse than for the Miller-Charles

dataset; this is consistent with results reported in the literature.

Add-one smoothing schemes LTF1 and LTF1IDF that do not discard contextual singletons

achieve almost identical correlation scores to LTF and LTFIDF respectively. Thus, the results

for LTF1 and LTF1IDF are not included in the plots.

1 Although for100 documents the best correlation score is obtained forH=3, for large number of documents
comparable performance is obtained for context window sizes of one, two or three.
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Figure 3.1: Correlation scores between context-based similarity computation and human rat-
ings for: (a),(b) the Miller-Charles dataset, and (c),(d) the MeSH dataset. Performance of the
various weighting schemes as a function of context window size is shown in (a),(c) for100
documents. Performance as a function of number of documentsis shown in (b),(d) forH=1.

3.4.5 Stop-word filtering

Motivated by the differences in performance between the term weighting schemes for the word

and term tasks, we investigate next how stop-word filtering affects performance. For this pur-

pose we classified the contextual words into stop-words (sw)and non-stop-words and computed

the semantic similarity scores for the three possible setups: (i) only stop-words are considered

in the similarity computation algorithm, (ii) any word not being a stop-word is considered, and

(iii) all words are considered (same setup as that used for Fig.3.1(a),(c)). The correlation score

was computed for100 documents using context window sizeH = 1. For each dataset the best

weighting scheme was used, i.e., LTF for Miller-Charles andLTFIDF for MeSH. The results

are shown in Table3.3.

For the Miller-Charles dataset, the inclusion of stop-words boosts overall performance, in

fact, similarity computation using only stop-words as features outperforms somewhat similarity
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Type of context
Dataset only stop-words (sw) w/o sw both

Miller-Charles 0.68 0.64 0.72

MeSH 0.25 0.66 0.63

Table 3.3: Correlation for different types of context.

computation using only non stop-words! For the MeSH terms dataset, however, stop-word-

based similarity computation performs very poorly. In fact, including stop-words seems to be

hurting overall performance; from0.66 when stop-words are excluded to0.63. For a more

detailed discussion on stop-word filtering and feature selection see Section3.5.

3.4.6 Unsupervised vs supervised metrics

Next the performance of the proposed unsupervised algorithms is compared with semantic

similarity computation algorithms found in the literature. In addition to page-count similarity

metrics, we also consider metrics that consult knowledge resources, i.e., supervised similarity

computation algorithms. The metrics considered here, along with the main characteristics of

each metric, are summarized in Table3.4 and Table3.5, for the Miller-Charles and MeSH

datasets, respectively.

The Li Li et al. [2003], JiangJiang and Conrath[1997], X-Similarity Petrakis et al.[2006],

and Leacock-ChodorowLeacock and Chodorow[1998] metrics exploit the semantic hierarchi-

cal structure of ontologies, WordNet or MeSH, to compute semantic similarity as described in

Section3.2. The correlation scores for these metrics can be found inPetrakis et al.[2006].

For the Miller-Charles dataset, correlation scores of0.82, 0.83 and 0.74, were reported for

the Li, Jiang and X-Similarity metrics, respectively. For the MeSH dataset, the following

correlation scores were reported:0.70 (Li), 0.71 (Jiang),0.74 (Leacok-Chodorow) and0.71

(X-Similarity).

The performance of the web-based metrics is summarized as follows. For the Miller-

Charles dataset, the resource-based SemSim metric proposed inBollegala et al.[2007], achieves

a correlation score of0.83 that is similar to the ontology-based methods above. The fully unsu-

pervised SahamiSahami and Heilman[2006] metric is shown to have a moderate correlation of

0.58 (results are reproduced from the implementation and evaluation in Bollegala et al.[2007]).

Moderate correlation scores are achieved also by the metrics that consider only the page counts

returned by a query, especially for mutual information and Google. The unsupervised context-

based metric using the binary weighting scheme and context window H = 1 achieves the

highest correlation (0.88) among the unsupervised metrics for1000 documents. Note that the
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Metric Use of (
√

: yes, X: no) Need of Correlation
WWW Page Snippets Lexico- WordNet Down. external
Search counts Syntactic ontology docs knowledge
engine patterns

Jaccard (J)
√ √

X X X X X 0.41
Dice (C)

√ √
X X X X X 0.41

Mutual info. (I)
√ √

X X X X X 0.69
Google-based

√ √
X X X X X 0.66

sem. relat. (G)
Sahami

√
X

√
X X X X 0.58

SemSim
√ √ √ √ √

X
√

0.83
Li X X X X

√
X

√
0.82

Jiang X X X X
√

X
√

0.83
X-Similarity X X X X

√
X

√
0.74

ProposedQH=1 √
X X X X

√
X 0.88

(B: 1000 docs)

Table 3.4: Properties and performance of similarity metrics for the Miller-Charles dataset.

performance of the context-based metrics is comparable to that of the resource-based metrics

for semantic similarity computation between words. In fact, the reported correlation score of

0.88 is among the highest reported in the literature1 for this dataset.

For the MeSH dataset, all page-count-based metrics have poor results. The best correlation

(0.69) among the unsupervised metrics for1000 documents is obtained by the context-based

metric with windowQH=1 using the LTFIDF scheme. The performance of the context-based

LTFIDF metric is worse but comparable to that of the supervised methods.

3.5 Discussion

In this section, the evaluation results are further analyzed and explained. Specifically, we in-

vestigate the performance of the supervised and unsupervised semantic similarity computation

algorithms and explain the difference in performance for words and terms. Issues such as

feature selection and document selection are addressed.

3.5.1 Corpus creation and document selection

A shortcoming of web-based methods for similarity computation is that, as far as the algorithm

is concerned, the search engine is a “black box”. This is especially relevant for page-count

based metrics, such as Jaccard and Google, where the number of returned hits is very much

1The highest (to our knowledge) reported correlation score for the Miller-Charles dataset is equal to0.89 Li
et al. [2003]. The proposed algorithm exploits the shortest path lengthand depth between the words of interest in
the WordNet hierarchy.

48



Metric Use of (
√

: yes, X: no) Need of Correlation
WWW Page MeSH Down. external
Search counts ontology docs knowledge
engine

Jaccard (J)
√ √

X X X 0.26
Dice (C)

√ √
X X X 0.29

Mutual information (I)
√ √

X X X 0.30
Google-based

√ √
X X X 0.41

sem. relat. (G) 0.41
Li X X

√
X

√
0.70

Jiang X X
√

X
√

0.71
LeacokChodorow X X

√
X

√
0.74

X-Similarity X X
√

X
√

0.71

ProposedQH=1
√

X X
√

X 0.69
(LTFIDF: 1000 docs)

Table 3.5: Properties and performance of similarity metrics for the MeSH dataset.

search engine dependent and changes over time. For the context-based approach, the assump-

tion is that a search engine is a reliable provider of representative examples of language usage.

Although this is a reasonable assumption, the relative ranking of documents returned by a

search engine might affect the algorithm’s performance, given that only the top ranking docu-

ments are downloaded. Another factor that affects performance is the type of web query used,

as well as, the way the query is “interpreted” by the search engine.

In this work, we use a conjunction query to search for documents in which the words

or terms of interest co-exist, i.e., “w1 AND w2”. We have also noted that using a conjunc-

tion query works much better in practice than using a disjunction, i.e., “w1 ORw2” Iosif and

Potamianos[2007a]. There are two possible explanations for the significantlybetter perfor-

mance of corpora created using AND vs OR queries. First, co-occurrence is by itself a feature

used in semantic similarity computation, e.g., page-countbased similarity. Second, the created

corpus is semantically more homogeneous and stylisticallymore consistent. Specifically, by

examining occurrences ofw1 andw2 in the same document, the topic and authoring style are

the same for the context of both words. InPangos et al.[2005], it was shown that context-based

similarity metrics work much better in semantically homogeneous domains, e.g., travel reser-

vation, than in semantically broad domains, e.g., news. Similar observations have been made

for unsupervised word sense disambiguation algorithms that also employ context-based met-

rics, specifically, “the sense of a target word is highly consistent within any given document”

Yarowsky[1995].

As far as the relative ranking of documents by the search engine is concerned we have

not observed any statistical significant effect on the performance of the context-based metrics.
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Specifically, we have tested the performance of the algorithm on document deciles, i.e., doc-

uments ranked 1-100, 101-200, up to 901-1000. We have found no significant effect of rank

in any of these experiments, either for the word or the term task. More research is necessary

(e.g., bottom ranked documents) to verify that indeed search engine ranking does not affect

context-based semantic similarity performance.

During the application of a context-based similarity metrics over the collection of down-

loaded documents, we assumed that the lexical features of each document have the same im-

portance (or weight) in the similarity computation formula. In practice, however, documents

are different in many ways, e.g., authoring style, author’sexpertise, balance between graphical

and textual content. It is not uncommon in web-based applications to assert the “quality” of a

document and exclude (or weight less) low quality documents. In our case, we experimented

with a variety of “grammaticality” metrics1 in order to establish the quality of a document.

The following metrics were used to compute document grammaticality: (i) the average num-

ber of words in a paragraph, assuming that a document consisting of paragraphs of larger size

is of “higher quality”, (ii) the fraction of document vocabulary that is included in the docu-

ment compared with a Wall Street Journal corpus, i.e., selecting documents with a more formal

way of writing, and (iii) the perplexity of the text in the document computed using n-gram

language model built from a Wall Street Journal; this feature is looking for documents with

richer vocabulary and more complex syntax. The computed metrics were then used to weigh

the contribution of the features extracted from each document. None of the proposed algo-

rithms provided consistent performance improvement compared to the baseline results. This is

an indication that the performance of context-based similarity metrics is not affected much by

document writing style or document “quality”.

3.5.2 Feature selection for word and term similarity

The evaluation results showed that co-occurrence (page-count-based metrics) at document level

can provide only rough estimates of semantic similarity. This trend is more pronounced for

the specialized medical terms of the MeSH dataset. Context-based metrics achieved higher

correlation scores compared to page-count-based metrics for both tasks. Overall, context

seems to be the most important feature for semantic similarity computation, followed by co-

occurrence. Moreover, evaluation results showed that performance improves as the number of

downloaded documents increases, which is in agreement withthe statement of Schütze and

PedersenSchütze and Pedersen[1995] “words with similar meanings will occur with similar

neighbors if enough text material is available”. Although it is clear that contextual similarity

1The notion of grammaticality is used here in a broad sense rather than the exact linguistic sense of conforming
to a syntactic grammar.
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implies semantic similarity, the amount of context to take into account in this process, as well

as, the relative weighting of the contextual features needsfurther investigation and is discussed

next.

We have investigated various aspects of feature selection for context-based similarity met-

rics, namely, context window size, the use of stop-words andthe relative weighting of context

words. Specifically, we found that when using the very immediate context (window size one)

better performance was achieved for the Miller-Charles dataset, while a context window size

between two and five words was optimal for the MeSH dataset. Inaddition, stop-words were

valuable features for the Miller-Charles dataset, but provided little or no information for the

MeSH dataset. Finally, term frequency (TF)-based feature weighting provided good results for

the Miller-Charles dataset, while term-frequency inversedocument frequency (TFIDF)-based

weighting provided best results for the MeSH dataset. In essence, optimal feature selection

was quite different for word and term similarity computation.

Putting together the observations from these experiments one may draw general conclu-

sions about feature selection for context-based similarity computation between common words

or between specialized terms. Note that the immediate context of nouns, which consists mainly

of stop-words and very frequent contextual features, encodes syntactic dependencies. Stop-

words mainly include various function words, such as articles and conjunctions, which are

fragments of local (within sentences) syntactic patterns in which the target words participate.

Longer context, that consists mainly of content words and features with high TFIDF weights,

encodes mostly semantic dependencies. Thus for common nouns, syntax seems to be the most

salient feature, while for terms, semantics are more important. More research is necessary to

better understand how to tune the feature selection processfor specific domains, as well as,

how to better combine different types of features, e.g., fusion of syntax and semantic-based

features. Note, however, that the generic feature selection and weighting algorithms presented

in this work for word and term semantic similarity computation already provide good baseline

performance. Also preliminary experiments indicate that the proposed algorithms perform well

for other languages, e.g., Greek.

A final note on the comparison between the supervised resource-based and unsupervised

context-based semantic similarity computation algorithms. In this work, we have shown for the

first time that unsupervised metrics achieve comparable performance to supervised resource-

based ones. Comparing, however, the best results of supervised and unsupervised algorithms

should be done with care, as in both cases, there is a long listof parameters that are being

“tuned” for the specific dataset, i.e., there is a danger of model overfiting. Extensive experi-

ments on additional datasets, as well as, optimization of parameters on held-out data is required

in order to draw general conclusions about the detailed performance of the algorithms. Inde-
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pendent of their relative performance, however, the proposed unsupervised algorithms should

prove a valuable tool for populating existing ontologies with new members1, as well as, cre-

ate ontologies for new languages. Finally, we believe that the development of computational

similarity metrics can serve as an additional research toolin the field of human cognition and

language acquisition research.

3.6 Conclusions

We presented and compared two families of unsupervised, web-based metrics for semantic

similarity computation between words, namely, page-countand context-based metrics. Page-

count metrics consider only hits returned by a search engine, while the proposed context-based

semantic similarity algorithms download the top ranked documents returned by a web query

and compute the frequency of occurrence of contextual features. The proposed algorithms

do not consult any external knowledge resource and can be generalized and applied to other

languages. The performance of the unsupervised algorithmswas evaluated and compared with

resource-based semantic similarity computation algorithms on the Miller-Charles dataset and

the MeSH dataset of medical terms.

The page-count-based metrics produced low to mid correlation with human semantic sim-

ilarity scores. Good correlation scores were obtained using the context-based metrics, achiev-

ing performance of up to0.88 and0.74 for the Miller-Charles and MeSH datasets, respec-

tively. The performance achieved is comparable to that of supervised resource-based semantic

similarity computation algorithms. The following conclusions can be drawn for the perfor-

mance of unsupervised similarity computation algorithms:(i) context is a better feature for

semantic similarity computation than co-occurrence considered at document level, (ii) for the

Miller-Charles dataset best results are obtained for a contextual window size of one, including

stop-words as features and the LTF or binary weighting schemes, (iii) for the MeSH dataset

best results are obtained for a contextual window size of twoto five, excluding stop-words

as features and the LTFIDF feature weighting scheme, (iv) logarithmic weighting of contex-

tual feature outperforms linear weighting for both tasks, and, (v) performance of context-based

metrics improves as the number of documents increases (withthe exception of the last two

data-points for the MeSH dataset). Preliminary experiments on document selection did not

show significant correlation with performance. Overall, the proposed context-based algorithm

provides good performance, is fully automatic, requires little computation-power and small to

1Note that two out of the30 noun-pairs in the Miller-Charles datasetMiller and Charles[1998] were not
included in the original versions of WordNet forcing researchers to evaluate on a28 pair subsetBollegala et al.
[2007].

52



medium amounts of web text, and can be generalized and applied to other languages. In order

to use the proposed algorithms in practice for ontology creation, one may use a combination

of page-count and contextual metrics, i.e., use page-countmetrics to identify candidates and

contextual metrics to refine the similarity scores.

This work is a first step towards our understanding of the potential of context-based metrics

for semantic similarity computation. A variety of issues related to document selection, feature

selection and feature fusion have to be further investigated. In addition, a better understanding

of acquisition of semantics by humans could lead to improvedsemantic similarity computation

algorithms.
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Chapter 4

DSMs II: Similarity Computation

Using Semantic Networks

4.1 Introduction

Semantic similarity is the building block for numerous applications of natural language pro-

cessing (NLP), such as grammar inductionMeng and Siu[2002] and affective text categoriza-

tion Malandrakis et al.[2011]. DSMsBaroni and Lenci[2010] are based on the distributional

hypothesis of meaningHarris [1954] assuming that semantic similarity between words is a

function of the overlap of their linguistic contexts. DSMs are typically constructed from co-

occurrence statistics of word tuples that are extracted from a text corpus or from data harvested

from the web. A wide range of contextual features are also used by DSMs exploiting lex-

ical, syntactic, semantic, and pragmatic information. DSMs have been successfully applied

to the problem of semantic similarity computation. According to Baroni and Lenci[2010],

the success of contextual DSM features is due to their ability to encode the attributes of word

senses. According toattributional similarityTurney[2006], semantic similarity between words

is based on the commonality of their sense attributes. A closely related assumption is that the

semantic similarity of two words can be estimated as the similarity of their two closest senses

Resnik[1995], henceforth, referred to as themaximum sense similarityassumption.

In this chapter, we investigate a new unsupervised approachfor the construction of DSMs

with application to lexical semantic similarity computation 1 . First, a corpus of snippets (short

pieces of text containing words of interest) is harvested from the web. Then, a semantic network

is constructed encoding the semantic relations between words in the corpus. Co-occurrence and

context features are used to measure the strength of relations. The network is a parsimonious

1The core of this chapter is also presented inIosif and Potamianos[2013b].
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representation of the information encoded in the corpus. Wethen define the notion of seman-

tic neighborhood and associated metrics of semantic similarity that exploit this notion. The

proposed semantic similarity metrics are motivated by the maximum sense similarity, attribu-

tional similarity and metric space assumptions. The similarity metrics are evaluated against

human similarity ratings using standard datasets, achieving state-of-the-art results. This work

builds upon our prior research inIosif and Potamianos[2010, 2012], while the following are

the original contributions:

1. An efficient and scalable methodology is proposed, for corpus creation using web-harvested

data. Unlike the quadratic query complexity of our previousalgorithmIosif and Potami-

anos[2010], the proposed method has linear query complexity with respect to the size

of the lexicon.

2. Three unsupervised language-agnostic similarity computation algorithms are proposed

that exploit the semantic neighborhoods. The best performing neighborhood-based met-

rics outperform well-established approaches that rely on elaborate knowledge resources.

3. We demonstrate the effectiveness of co-occurrence-based similarity metrics when corpus-

based frequencies are incorporated in comparison to the useof web hitsIosif and Potami-

anos[2010]. This is further investigated with respect to the textual proximity of co-

occurring words.

4. The assumption that the semantic similarity between two words can be estimated as the

similarity of their two closest senses is validated using (sense-untagged) web data.

5. The computation of semantic neighborhoods introduced inIosif and Potamianos[2012]

is extended by applying a number of co-occurrence-based similarity metrics in addition

to the context-based metrics. Word co-occurrence is shown to be more salient than con-

textual features regarding the discovery of senses via semantic neighborhoods.

The remainder of the work is organized as follows: In Section4.2, we review related work

in the areas of semantic similarity computation and word sense disambiguation. The procedure

and motivation behind harvesting a corpus of snippets from the web is detailed in Section4.3.

In Section4.4, we define our semantic network and propose three novel similarity metrics

that utilize the notion of semantic neighborhood. The corpora and experimental procedures

are described in Section4.5, while the evaluation results are reported in Section4.6. Last,

Section4.8concludes this work.
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4.2 Related Work

Semantic similarity metrics can be divided into two broad categories: (i) metrics that rely on

knowledge resources, and (ii) corpus- or web-based metricsthat do not require any external

knowledge source. A representative example of the first category are metrics that exploit the

WordNet ontologyMiller [1990]. For computing word similarity these metrics incorporatefea-

tures such as the length of paths between themLeacock and Chodorow[1998]; Wu and Palmer

[1994] or the information content of their least subsumer that is estimated from a corpusJiang

and Conrath[1997]; Resnik[1995]. WordNet glosses have been also exploited for extracting

contextual informationBanerjee and Pedersen[2002]; Patwardhan and Pedersen[2006]. An

in depth review of the major WordNet-based metrics can be found in Budanitsky and Hirst

[2006]. Corpus-based metrics are formalized as DSMsBaroni and Lenci[2010] and are based

on the distributional hypothesis of meaningHarris [1954]. DSMs can be categorized into un-

structured (unsupervised) that employ a bag-of-words model Iosif and Potamianos[2010] and

structured that rely on syntactic relationships between wordsBaroni and Lenci[2010]; Grefen-

stette[1994]. Web-based metrics employ search engines to estimate the frequency of word

co-occurrenceGracia et al.[2006]; Turney[2001]; Vitanyi [2005] or construct corporaBolle-

gala et al.[2007]; Iosif and Potamianos[2010]. The identification and extraction of other types

of relations has been mainly studied through the use of linguistic patterns. Lexico-syntactic

patterns were applied in the influential work of HearstHearst[1992], for the identification of

hyponymy, followed by numerous similar approaches, e.g.,Caraballo[1999].

Recently, motivated by the graph theory, several aspects ofthe human languages have been

modeled using network-based methods. InMihalcea and Radev[2011]; Radev and Mihalcea

[2008], an overview of network-based approaches is presented fora number of NLP problems.

Different types of language units can be regarded as vertices of such networks, spanning from

single words to sentences. Typically, network edges represent the relations of such units cap-

turing phenomena such as co-occurrence, syntactic dependencies, and lexical similarity. An

example of a large co-occurrence network is presented inWiddows and Dorow[2002] for the

automatic creation of semantic classes. InFerrer-I-Cancho and Solé[2001], it is reported that

the co-occurrence networks of words that co-exist at very short proximity, exhibit a number of

small-world properties and are highly clustered. Similar observations regarding the structural

properties of co-occurrence networks were also made inVéronis[2004], where the HyprLex

algorithm was proposed for sense discovery. InAgirre et al.[2006], an extension of the main

ideas presented inVéronis[2004] was proposed for word sense disambiguation (WSD). In par-

ticular, the PageRank algorithmBrin and Page[1998] was employed for identifying hubs over

a co-occurrence network.
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Semantic similarity computation is closely related to WSD.WSD methods can be divided

into two main categories: (i) supervised approaches that apply machine learning for learning

sense labels for a set of words with respect to a given context(sense labeling), and (ii) un-

supervised approaches that automatically discriminate (discover) word senses without label

assignment. A detailed survey of WSD is provided inAgirre and Edmonds[2007]; Ide and

Véronis [1998]; Navigli [2009]. The employment of network-based metrics for the compu-

tation of semantic similarity has attracted less attentioncompared to WSD. WordNet-based

similarity metrics can be regarded as a special case of network metrics, since they are built

on the top of a manually created network. To the best of our knowledge few network-based

metrics are reported in the literature that integrate network creation with semantic similarity

computation. InLemaire and Denhière[2004], a co-occurrence network was constructed, and

the similarity between two words was estimated as the product of weights of the shortest path

between them with moderate performance results.

Following the paradigm of the vector space model (VSM) that constitutes the main im-

plementation of DSMs, our approach is based on corpus-basedco-occurrence statistics for the

creation of a semantic network. One important difference with prior work in this area is that

no language-specific tools, e.g., dependency parsersBaroni and Lenci[2010], or human an-

notations, e.g., Wikipedia hyperlinksWojtinnek et al.[2012], are used here. For example, in

Wojtinnek et al.[2012] the English Wikipedia was used for the disambiguation of target words

(Wikipedia concepts) and a very large network was constructed by exploiting the hyperlinks

between them. For each node (word) a vector was created including a number of strongly

connected nodes selected by an algorithm inspired by spreading activation theoryCollins and

Loftus [1975]. The similarity between two words was estimated as the cosine of their respec-

tive vectors. In our work, two types of metrics are investigated for weighting the strength of

the link between a reference noun and its neighbors, namely,co-occurrence-based and context-

based. Co-occurrence-based metrics were previously used for the weighting of contextual fea-

turesAgirre et al.[2009]; Baroni and Lenci[2010] and the creation of co-occurrence networks

Widdows and Dorow[2002]. To the best of our knowledge context-based metrics have never

been applied for any of the aforementioned tasks. Our work isalso motivated by cognitive

consideration and theories of semantics. The network-based metrics proposed here are moti-

vated by two well-founded hypotheses regarding semantic similarity, namely, maximum sense

similarity Resnik[1995] and attributional similarityTurney[2006]. Our work extends the tra-

ditional VSM approach into a two tier system: corpus statistics are parsimoniously encoded in

a network, while the task of similarity computation is shifted (from corpus-based techniques)

to operations over network neighborhoods. The proposed network creation process constitutes

a new paradigm for implementing DSMs that enables the directexploitation of neighborhood
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semantics, e.g., definition of metrics that adopt differenthypotheses regarding semantic simi-

larity, investigation of neighborhood structural properties.

4.3 Corpus Creation Using Targeted Web Queries

In this section, we investigate the creation of corpora fromweb-harvested data via the formu-

lation of targeted queries. There are two main types of web queries that can be used for corpus

creation: (i) conjunctive queries (AND), and (ii) individual queries (IND)1 . AssumingN

words in our lexicon, in the first case all pairwise AND conjunctions are formed and the cor-

responding queries are posed to a web engine, e.g., “wi AND wj”. Corpus creation via AND

queries leads to quadratic query complexityO(N2) in the number of words in the lexicon. Al-

ternatively, one can download documents or snippets with linear query complexityO(N) using

IND queries, i.e., “wi”.

The main advantage of AND queries is that they construct a corpus that is conditioned on

word-pairs, explicitly requesting the co-occurrence of word-pairs in the same document. Co-

occurrence is a strong indicator of similarity and corpora created via AND queries have been

shown to provide very good semantic similarity estimatesIosif and Potamianos[2010]. To

better understand the role of co-occurrence as a feature in semantic similarity computation, we

need to revisit the very definition of semantic similarity, as it pertains to words and their senses.

According to the information-theoretic approach proposedin Resnik[1995], the similarity of

two concepts can be estimated as the similarity of their two closest senses. This is also in

agreement with our “common sense” (cognitive) model of semantic similarity: when two words

are mentioned, their closest senses are activated2. We believe that an important contribution

of the co-occurrence feature to semantic similarity computation is thatco-occurrence acts as a

semantic filter that only retains the two closest senses. See Section4.6.2for the experimental

justification of this claim.

Unfortunately attempting to build corpora and DSMs using conjunctive AND queries does

not scale to thousands of words due to quadratic query complexity 3. We are thus forced

to investigate the alternative of using IND queries and facethe sense disambiguation issues

associated with such corpora. Corpora created via IND queries are similar to a typical text

corpus with one important difference: the frequency of occurrence of the words in our lexicon

1 Word co-occurrence statistics estimated on a web-harvested corpus may be biased due to optimizations ap-
plied by web search engines when ranking documents and selecting snippets. This is especially true for query words
in corpora resulting from conjunctive AND queries, but lessso for corpora harvested via IND queries.

2 The maximum sense similarity assertion is widely employed by many top-performing similarity metrics, such
as the WordNet-based metricsBudanitsky and Hirst[2006].

3Although a work-around could be found, e.g., using cross-products of all term statistics in a search engine
index and n-gram counts.
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can be manipulated1 to deviate from Zipf’s law. Assuming that the same number of snippets is

downloaded for each word in our lexicon (using IND queries),we expect that rare words will

be well-represented within the corpus. As a result, the corpus will be more “informative”, i.e.,

the entropy rate of a unigram (zeroth order Markov process) model will be higher.
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Figure 4.1: Frequency of8, 752 nouns vs. their rank. The frequencies were computed using 1)
corpus counts (black curve), and 2) web hits (red curve). Forcomparison purposes the corpus
frequencies were multiplied by104.

The normalization word-frequency effect can be illustrated by plotting the empirical distri-

bution of the frequency of the words in the lexicon. Using a lexicon of8, 752 nouns, the noun

frequencies are plotted as a function of their rank in Fig.4.1. More specifically, we created a

web corpus by posing an IND query for each noun and retrievingthe1, 000 top-ranked snip-

pets (see Section4.5). The corpus frequencies were multiplied by104 in order to facilitate the

comparison with the red curve showing web hits frequency. According to the Zipf’s lawZipf

[1965], the frequency of a wordw decreases non-linearly as its rank increases:

f(w) =
c

r(w)γ
, (4.1)

wheref(w) andr(w) are the frequency and the rank of wordw, respectively, whilec andγ

are corpus-dependent. It is clear that the frequency difference between the high-ranked and the

low-ranked words is somewhat normalized, i.e., smaller (absolute)γ, for the case of corpus

frequencies, as opposed to the use of web hits. For the example of Fig.4.1, γ equals to−0.54

and−0.90 for corpus frequencies and web hits, respectively. These values were computed

for the ranks lying between1, 000 and6, 000 using a least squares linear model. This nor-

malization is expected to smooth the domination of very frequent words at the denominator of

1 For this example this sort of “manipulation” is caused by requesting fixed number of snippets for each word
of the lexicon.
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co-occurrence-based metrics, such as (2.15)–(2.17). The performance of web hits and corpus

counts is presented in Table4.2.

4.4 Semantic Network

Next, we construct a semantic network encoding the relevantcorpus statistics. The network is

defined as an undirected (under a symmetric similarity metric) graphF = (V,E) whose the set

of verticesV are all words in our lexiconL, and the set of edgesE contains the links between

the vertices. The links (edges) between words in the networkare determined and weighted

according to the pairwise semantic similarity of the vertices.

The network is a parsimonious representation of corpus statistics as they pertain to the esti-

mation of semantic similarities between word-pairs in the lexicon. In addition, the network can

be used todiscover relations that are not directly observable in the data; such relations emerge

via the systematic covariation of similarity metrics. Semantic neighborhoods play an impor-

tant role in this process. The members of the semantic neighborhoods of words are expected to

contain features capturing diverse information at the syntactic, semantic and pragmatic level.

4.4.1 Semantic Neighborhoods

For each word (reference word) that is included in the lexicon,wi ∈ L, we consider a subgraph

of F , Fi = (Ni, Ei), where the set of verticesNi includes in totaln members ofL, which are

linked withwi via edgesEi. TheFi subgraph is referred to as the semantic neighborhood ofwi

Iosif and Potamianos[2012]. The members ofNi (neighbors ofwi) are selected according to

a semantic similarity metric (co-occurrence-based definedin Section2.2.4.1, or context-based

defined in by (2.20) in Section2.2.4.2) with respect towi, i.e., then most similar words to

wi are selected. Note that the semantic network is not a metric space under (the proposed co-

occurrence or context-based) semantic similarity becausethe triangle inequality is, in general,

not satisfied. Next, we propose three semantic similarity metrics that utilize the notion of

semantic neighborhood.

4.4.2 Maximum Similarity of Neighborhoods

This metric is based on the hypothesis that the similarity oftwo words,wi andwj, can be

estimated bythe maximum similarity of their respective sets of neighbors, defined as follows:

Mn(wi, wj) = max{αij , αji}, (4.2)
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Figure 4.2: Pictorial view of neighborhood-based metrics.Two reference nouns, “forest” and
“fruit”, are depicted along with their neighborhoods: {pine, tree, . . . , land} and {juice, pie,
. . . , jam}, respectively. Arcs represent the similarities between reference nouns and neighbors.
The similarity between “forest” and “fruit” is computed according to (a) maximum similarity
of neighborhoods, (b) correlation of neighborhood similarities, and (c) sum of squared neigh-
borhood similarities.

where

αij = max
x ∈ Nj

S(wi, x), αji = max
y ∈ Ni

S(wj , y).

αij (or αji) denotes the maximum similarity betweenwi (or wj) and the neighbors ofwj (or

wi) that is computed according to a similarity metricS (see for example (2.15)–(2.17), (2.19),

(2.20)). Ni andNj are the set of neighbors forwi andwj , respectively. The definition ofMn is

motivated by the maximum sense similarity assumption1. As discussed above, semantic neigh-

borhoods encode diverse information. Here the underlying assumption is that the most salient

information in the neighbors of a word are semantic featuresdenoting senses of this word. In

other words, we assume that semantic neighborhoods (and semantic networks, in general) can

be used to mine for word senses2. TheMn metric takes values in the interval[0, 1], where1

1 This metric utilizes the similarities betweenwi andx, ∀ x ∈ Nj , as well as betweenwj andy, ∀ y ∈ Ni.
This is slightly different than considering all the pairwise similarities between the members ofNi andNj .

2See alsoNavigli and Crisafulli[2010] for word sense discovery via semantic networks.
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stands for absolute similarity. Also,Mn(wi, wj) = Mn(wj , wi), i.e.,Mn is symmetric. An

example illustrating the computation of similarity between “forest” and “fruit” is depicted by

Fig.4.2(a) 1 . Mn(“forest” , “fruit” ) = 0.30 because the similarity between “fruit” and “tree”

(among all neighbors of “forest”) is the largest.

4.4.3 Correlation of Neighborhood Similarities

The similarity betweenwi andwj is defined as follows:

Rn(wi, wj) = max{βij , βji}, (4.3)

where

βij = ρ(CNi

i , CNi

j ), βji = ρ(C
Nj

i , C
Nj

j )

and

CNi

i = (S(wi, x1), S(wi, x2), . . . , S(wi, xn)), where Ni = {x1, x2, . . . , xn}.

Note thatCNi

j , C
Nj

i , andC
Nj

j are defined similarly asCNi

i . Theρ function stands for the Pear-

son’s correlation coefficient,Ni is the set of neighbors of wordwi, andS is a similarity metric.

Here, we aim to exploit the entire semantic neighborhoods for the computation of semantic

similarity, as opposed toMn where a single neighbor is utilized. The motivation behind this

metric is attributional similarity, i.e., we assume that semantic neighborhoods encode attributes

(or features) of a word. Neighborhood correlation similarity in essence compares the distribu-

tion of semantic similarities of the two words on their semantic neighborhoods. Thus, this met-

ric is expected to provide more robust similarity estimatescompared toMn, especially when

few data are available. Theρ function incorporates the covariation of the similaritiesof wi and

wj with respect to the members of their semantic neighborhoods. The underlying assumption is

that two semantically similar words are expected to have co-varying similarities with respect to

their neighbors. Moreover, theρ function normalizes this covariance by the standard deviations

of the similarities ofwi andwj . The similarity scores computed byRn metric ranges in the

interval [−1, 1], where−1 and1 denote zero and absolute similarity, respectively.Rn is sym-

metric, sinceRn(wi, wj) = Rn(wj, wi). The similarity computation process is exemplified in

Fig.4.2(b) for the wordsw1 =“forest” andw2 = “fruit”. The similarity vectors between the

neighborsN1 of “forest” and each of the words are computed:CN1

1 = (0.16, 0.09, . . . , 0.09),

1 We also investigated a variation regarding the creation of semantic neighborhoods including within the neigh-
borhoods the target words. This variation was observed to yield almost identical performance with the proposed
approach.
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CN1

2 = (0.10, 0.30, . . . , 0.01). Similarly,CN2

1 , CN2

2 are computed for the neighbors of “fruit”

and combined to estimateRn(“forest” , “fruit” ) = −0.04.

4.4.4 Sum of Squared Neighborhood Similarities

The similarity betweenwi andwj is defined as follows:

Eθ
n(wi, wj) =

(

∑

x ∈ Nj

Sθ(wi, x) +
∑

y ∈ Ni

Sθ(wj , y)

)
1

θ

, (4.4)

whereNi is the set of neighbors of wordwi, andS is any similarity metric. Similar to (4.3)

all neighbors contribute to the computation of the final similarity score, here this is performed

by summing the squares (θ = 2) of similarities betweenwi andwj ’s neighbors. The same

calculation is repeated forwj and the neighbors ofwi to makeEθ
n(wi, wj) symmetric. This is

illustrated by Fig.4.2(c) for the computation of similarity between “forest” and “fruit” for θ=2.

That isEθ=2
n (“forest” , “fruit” ) =

√

(0.102 + 0.302 + · · ·+ 0.012) + (0.0022 + 02 + · · · + 02)

= 0.22.

TheEθ=2
n metric is unbounded since the yielding similarity scores range within [0,∞).

This range is smoothed in a non-linear way by taking the square root of the accumulated

squares of similarities. As in (4.3), the motivation underlyingEθ=2
n metric is the attributional

similarity, i.e., neighbors stand as attributes (or features). However, what is different here is the

utilization of the attributional similarity as indicator for semantic similarity, i.e., the accumu-

lation of word–to–neighbor similarities. The contribution of each word–to–neighbor similarity

is non-linearly weighted using the square of the respectivesimilarity score. The motivation

behind usingθ > 1 is that more similar words in the neighborhoods should be weighted more

in the final similarity decision1. Qualitatively, theEθ=2
n weighting scheme takes the middle

road between selecting the maximum pairwise similarity in (4.2) and the “linear” weighting of

pairwise similarity in (4.3). Note that asθ goes to∞, Eθ
n andMn become equivalent.

4.5 Evaluation Datasets, Corpora and Experimental Procedure

4.5.1 Evaluation Datasets

The performance of similarity metrics was evaluated against human ratings from three standard

datasets of noun pairs, namely: 1) MCMiller and Charles[1998], 2) RG Rubenstein and

1Despite the resemblance between theEθ=2

n metric and the Euclidean distance, no assumption is adoptedhere
about the semantic neighborhoods being metric spaces underS.
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Goodenough[1965], and 3) WS353Finkelstein et al.[2002]. The first dataset consists of28

noun pairs. For the second and the third dataset we present results for the subset of57 and

272 pairs, respectively, that are also included in SemCor31 corpus. The Pearson’s correlation

coefficient was used as evaluation metric to compare estimated similarities against the ground

truth. Let X = (x1, x2, ..., xm) and Y = (y1, y2, ..., ym) be the vectors that contain the

similarity scores given by human subjects and the computational metric, respectively, for each

of the i = 1, 2, ...,m word pairs of the datasets. Pearson’s correlation coefficient is computed

as follows:

ρxy =

∑m
i=1(xi − x̄)(yi − ȳ)

√
∑m

i=1(xi − x̄)2
∑m

i=1(yi − ȳ)2
,

wherex̄ and ȳ are the sample means ofX andY , for i = 1, 2, ...,m. This coefficient was

selected instead of Spearman’s rank correlation coefficient in order to retain the initial scaling

of similarities in the evaluation metric, as opposed to the alternation of this scaling through the

transformation of similarities into ranks.

4.5.2 Experimental Corpora and Procedure

We created the following corpora of web snippets using AND orIND queries posed via the

Yahoo! Search API. 1) Corpus1: Using AND queries1, 000 snippets were acquired for each

pair of nouns, for the MC dataset. The major aspect of this corpus is the (explicitly requested)

co-occurrence of nouns for which the similarity is computed. 2) Corpus2: Using IND queries

1, 000 snippets were acquired for each (unique) noun of the MC dataset. Unlike Corpus1, the

creation of Corpus 2 is not driven by the co-occurrence constraint. 3) Corpus3: The same IND

queries were used as for the case of Corpus2, but the queries were augmented with lexical

descriptors denoting senses (see Section4.6.2 for details). Corpus3 can be regarded as an

extension of Corpus2, in which the acquired data are intended to (uniformly) cover the different

senses of nouns. The aforementioned corpora are exploited (see Section4.6.2) for investigating

the effect of word co-occurrence and their senses to the computation of context-based similarity

(for the MC dataset only). 4) Corpus4: This is a corpus created using IND queries, consisting

of approximately8, 752, 000 snippets. More specifically,1, 000 snippets were acquired for

each noun taken from a set of8, 752 English nouns of the SemCor3 corpus. Corpus4 is used

for the creation of the semantic network as described in Section 4.4.

For Corpus4 the baseline performance of co-occurrence and context-based similarity met-

rics was computed (see also below for parameter definition).Then the semantic neighborhoods

were defined and the maximum/correlation neighborhood similarities were computed. A de-

1http://www.cse.unt.edu/~rada/downloads.html
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tailed list of experiments was conducted trying to investigate the performance of the following

list of parameters: 1) the size of the contextual window,H, used inQH , Mn, Rn, Eθ=2
n 2) the

metric used for the selection of neighbors: co-occurrence-based (J , D, I, G) or context-based

similarity (QH ), 3) theS metric used inMn, Rn, Eθ=2
n : co-occurrence-based (J , D, I, G) or

context-based similarity (QH ), 4) the neighborhood size (number of neighborsn), used inMn,

Rn, Eθ=2
n metrics, 5) the corpus size, i.e., number of snippets per word (50, 100, 200, 500,

1,000) used to construct the network, and 6) the network size, that is the number of concepts

(nouns of lexicon) that constitute the network:9, 88, 176, 876, 1, 751, 4, 376, 6, 127, and

8, 752. The results are presented next.

4.6 Results

The performance of the context-based metric and the co-occurrence-based metrics is compared

in Section4.6.1(baseline performance). In Section4.6.2, we compare the performance of the

baseline context-based metric for corpora created via AND and IND queries, and we show that

senses play an important role in achieving good performance. In Section4.6.3, we present the

performance of the proposed neighborhood-based metrics, defined in Section4.4, that utilize

the large corpus created via IND queries (Corpus4) and the corresponding semantic network.

4.6.1 Baseline

We consider as baseline the performance of the following metrics: 1) context-based similar-

ity metricQH defined by (2.20) in Section2.2.4.2, 2) co-occurrence-based metrics, defined in

Section2.2.4.1, relying on counts that were computed either using the web asa corpus (number

of hits), or the corpus of snippets harvested with respect tothe 8, 752 nouns (Corpus4). The

Dataset Contextual window size
H=1 H=2 H=3 H=5

MC 0.53 0.35 0.29 0.20

RG 0.52 0.41 0.37 0.29

WS353 0.30 0.21 0.17 0.13

Table 4.1: Performance of context-based metricQH for several values ofH.

baseline scores for the context-based similarity metricQH are presented in Table4.1, for sev-

eral values of the contextual window sizeH. The best correlation scores are obtained forH=1

across all datasets, while the performance drops as the sizeof the contextual window increases.

Even forH =1, moderate correlation scores are achieved for the MC and RG datasets, while
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the baseline performance is poor for the WS353 dataset. These results indicate the inability

of naive context-based similarity metrics to exploit contextual features, despite the availability

of a large corpus. The baseline performance for co-occurrence-based metrics that incorporate

Co-occurrence-based metrics using
Dataset Web counts Corpus counts

J D I G J D I G

MC -0.20 0.24 0.35 0.33 0.59 0.59 0.78 0.85
RG -0.01 0.21 0.28 0.31 0.60 0.60 0.77 0.81

WS353 -0.02 0.10 0.19 0.20 0.18 0.22 0.60 0.61

Table 4.2: Performance of co-occurrence-based metrics using web and corpus counts: Jaccard
(J), Dice (D), Mutual info. (I), and Google-based sem. rel. (G).

web counts1 (hits) or corpus counts (Corpus4) is shown in Table4.2. Regarding corpus counts,

the co-occurrence of nouns is considered at the snippet boundary. We observe that the employ-

ment of corpus counts leads to significantly higher correlation scores, compared to using web

counts. For example, the correlation improves from0.33 to 0.85 using theG metric for the

case of the MC dataset. This observation is consistent for all metrics across all three datasets.

For corpus counts, the best performance is achieved by Google-based Semantic Relatedness,

G, while the Mutual information,I, is a close second. Jaccard,J , and Dice,D, coefficients

have lower but comparable performance.

Dataset Number of snippets
50 100 200 500 1000

MC 43% 28% 10% 3% 0%

RG 40% 24% 12% 8% 5%

WS353 20% 13% 8% 3% 3%

Table 4.3: Percentage of highly related pairs that have zeroco-occurrence corpus counts as a
function of downloaded snippets.

Despite the high performance of co-occurrence metrics using corpus counts, their appli-

cability is strongly depended on the corpus size. The percentage of highly related noun pairs

that have zero co-occurrence (corpus) counts are presentedin Table4.3, for several numbers

of downloaded snippets. We assumed that two nouns are highlyrelated if the corresponding

similarity score (normalized between0 and1) provided by human subjects is greater than0.5.

The reported number of snippets were randomly selected fromthe initial (full) corpus. We ob-

serve that for the RG and WS353 datasets, even for the maximumnumber of snippets (1, 000

1The Exalead web search engine was used (http://www.exalead.com/search/).
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per noun)3–5% of the highly related pairs do not co-occur.

0 1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Distance

C
or

re
la

tio
n

 

 

MC dataset
RG dataset
WS353 dataset

(a)

0 1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Proximity

C
or

re
la

tio
n

 

 

MC dataset
RG dataset
WS353 dataset

(b)

Figure 4.3: Correlation performance of the co-occurrence-based metricI vs. word (a) distance
and (b) proximity (within web documents).

The poor performance of co-occurrence-based metrics that rely on web counts may be

attributed to the fact that the co-occurrence of words is estimated at the document level, rather

than at the level of snippet or sentence (for corpus counts).The key difference between web

and corpus counts is the proximity of the co-occurring words, as well as, the different corpus

statistics shown in Fig.4.1. In order to investigate the role of proximity we formulatedNEAR

queries that constrain the distance between two words in an AND web query1. The performance

of theI metric using web counts is presented as a function of the distance and proximity of co-

occurring words (within documents) in Fig.4.3(a) and Fig.4.3(b), respectively. The distance,

δ, between two co-occurring words denotes that exactlyδ tokens interfere between them. The

proximity, πδ, of two words allows toπ tokens to appear between them, where0 ≤ πδ ≤ δ.

We observe that imposing a distance/proximity constraint significantly improves the achieved

correlation compared to the baseline of web co-occurrence counts in Table4.2. For example,

the correlation for the RG dataset improves from0.28 (see Table4.2) to 0.68 for δ = 0 and

π0. Despite the clear improvement in the performance of web-based count performance (when

applying a proximity constraint), corpus-based counts still outperform web-based counts. The

second reason behind the superior performance of corpus-based counts is the (normalized)

word frequency statistics2 of the snippet corpus (vs. web) shown in Fig.4.1.

1 This was performed by using the NEAR operator which is supported by the Exalead search engine. For
example, the “wi NEAR/2wj” query returns the number of hits for which wordswi andwj co-occur at proximity
equal to 2.

2For a theoretical analysis of how word-frequency normalization in a web snippet corpus reduces the estimation
error of co-occurrence similarity metrics seeIosif and Potamianos[2013a].
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4.6.2 Incorporating Word Senses Through Web Queries

We compare the performance of context-based similarity metrics for web corpora created via

AND or IND queries. All results reported in this section are for the MC dataset. Baseline sim-

ilarity scores here are computed using theQH=1 metric1 defined by (2.20) in Section2.2.4.2.

The correlation scores for the context-based similarity metric using AND and IND queries (dot-
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Figure 4.4: Correlation performance for context-based similarity for web corpora created via
AND queries (dotted), IND queries (solid), and IND queries augmented with sense descriptors
(dashed-dotted) for the MC dataset.

ted and solid line, respectively) are shown in Fig.4.4 as a function of the number of snippets.

The performance for AND queries is a single point and was obtained at1, 000 queries2 (shown

here as reference). It is clear that context-based similarity metrics perform much better when

using AND rather than IND queries.

Our hypothesis is that the very good performance of AND queries is due to co-occurrence

acting as a semantic filter that retains the two closest senses of the two words. Moreover,

the poor performance of IND queries is due to the limited coverage of senses within the top

snippets. In order to verify this hypothesis we perform (sense) filtering explicitly following

three steps: 1) identify all senses of the words of interest using WordNet3, 2) use conjunctive

AND queries between a word and each of its word senses to obtain relevant snippets that

(mainly) contain the desired sense, e.g., the IND query for “magician” becomes “magician

AND illusionist” (augmented), given the first WordNet senseof this word, and 3) compute the

context-based similarity between all possible pairs of word senses and select the maximum

1 For the rest experiments in this paper we use a context windowof H =1. Our experiments, as well as, our
prior work Iosif and Potamianos[2010] indicate thatH =1 provides the best results for the problem of similarity
computation.

2 The maximum number of IND queries is greater than the number of AND queries, due to the use of two
individual queries, instead of a single conjunctive query.Web search engines return up to1, 000 snippets per query.

3 WordNet is used here simply to validate this hypothesis.
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similarity. Step 3 makes the implicit assumption that word similarity should be computed

between the two closest sensesBudanitsky and Hirst[2006], i.e., if sik is thekth sense of the

wordwi the maximum sense context-based similarityQ′ between wordswi, wj is defined as:

Q′(wi, wj) = max
k,l

Q(sik, sjl), (4.5)

whereQ is defined by (2.20) in Section2.2.4.2. The performance of the augmented IND

queries is shown in Fig.4.4with a dashed-dotted line. It is clear that the use of the augmented

IND queries significantly outperforms simple IND queries and approaches the performance of

AND queries as the number of snippets increases.

Overall, the presented results suggest that the exploitation of word senses is essential for

the accurate computation of semantic similarity. We have also experimentally demonstrated

that context-based semantic similarity estimates are moreaccurate if we consider the two clos-

est senses, i.e., the maximum pair-wise sense similarity score. A major road-block in top-down

corpus creation using IND queries is the lack of sense coverage in the corpus. We show next

that by creating a corpus by posing IND queries for thousandsof words, as well as, by employ-

ing the notion of semantic neighborhood we can overcome thisroadblock and obtain excellent

semantic similarity estimates.

4.6.3 Semantic Network

Next, we investigate the computation of semantic networks using different types of similarity

metrics. Next, we present the evaluation results for the proposed neighborhood-based similarity

metrics, defined by (4.2)–(4.4), for different ways of defining the semantic neighborhoods.

4.6.3.1 Semantic Neighborhoods

The semantic neighborhood of each word is estimated using one of the co-occurrence-based

metrics defined in Section2.2.4.1, or the context-based similarity metricQH defined by (2.20)

in Section2.2.4.2. Our semantic network consists of8, 752 nouns. Given a (reference) noun

w, let A(w) andB(w) be the neighborhood sets ofw computed using co-occurrence-based

and context-based metrics. The intersection ofA(w) andB(w), A(w) ∩ B(w), as well as

their differences,A(w) − B(w) andB(w) − A(w), are shown in Table4.4 for ten nouns that

are included in the experimental datasets. The co-occurrence-based metricD defined in (2.16)

was applied for the computation ofA(w), while the context-based metricQH=1 defined by

(2.20) in Section2.2.4.2was used for the computation ofB(w). For both metrics, the50 top-

ranked neighbors were considered. The neighbors that are emphasized using bold fonts denote
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Reference Neighbors selected by
noun (w) D andQH=1 D only QH=1 only

(A(w) ∩B(w)) (A(w) −B(w)) (B(w) −A(w))

automobile auto, vehicle, accident, mechanic, bus, aviation,
car, engine starter, convertible tractor, lighting

brother son, father, twin, priest, guy, lawyer,
nephew, dad police, girl neighbor, pianist

car vehicle, travel, accident, driver, business, city,
service, price automobile, fuel game, quality

coast island,beach, bay, boat, lake, summer,
resort, sea tsunami, port entertainment, weather

food water, health, meal, kitchen, product, market,
service, industry snack, gourmet quality, life

forest land, tree, rain, fire, nature, region,
vegetation, wildlife pine, wood environment, property

fruit tree,plant, vine, jam, meal, wood,
taste, juice acidity, pie food, garden

hill mountain, tree, slope,mound, island, city,
park, forest walk, snowball resort, summer

journey trip , destination, discovery, quest, vision, goal,
adventure,travel voyage, road holiday, culture

slave nigger, slavery, gladiator, labor, beggar, democracy,
servant, manumission freedom, master society, aristocracy

Table 4.4: Excerpts of semantic neighborhoods for ten nounsusing the co-occurrence-based
metric Dice (D) and/or the context-based metricQH=1.

(lexicalized) senses of the respective reference nouns.

We observe that the discovery of a number of senses via the neighborhoods is feasible for

some nouns, e.g., “automobile” and “car”. This is more clearfor A(w) ∩ B(w) compared to

A(w) − B(w) andB(w) − A(w). However, sense discovery appears to be difficult for other

nouns, such as “food” and “slave”, for which their respective senses can not be easily described

by single words. In addition to synonymy, taxonomic relations are encoded by the neighbors

of A(w) ∩ B(w), e.g., IsA(vehicle, car), PartOf(automobile, engine). Relations of associative

nature, e.g., ProducedBy(industry, food), are also denoted by some neighbors ofA(w)∩B(w).

Essentially, the main difference betweenA(w) − B(w) andB(w) − A(w) is that the former

includes members that tend to formulate more direct associative relations with the reference

nouns. In some cases these relations appear in the corpus as bigrams, such as “car accident”

and “hill slope”. Members ofB(w) − A(w) seem to correspond to relations of a broader

semantic/pragmatic scope, such as (food, life) and (journey, culture).
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Figure 4.5: (a) Percentage of WordNet synonyms included in the semantic neighborhoods vs.
number of neighbors. The neighborhoods were computed using1) co-occurrence-based metric
D (solid line), and 2) context-based metricQH=1 (dash–dotted line). The reference nouns
were taken from the RG dataset. (b) Percentage of neighbors that do not co-occur with the
reference nouns vs. number of neighbors. In total,1, 000 reference nouns were randomly
selected from the lexicon. The neighborhoods were computedby the context-based metric
QH . The percentage is shown for different values ofH.

Given the importance of senses for the computation of semantic similarity, we attempt

to quantify the performance of co-occurrence and context-based metrics with respect to the

discovery of senses through their neighborhoods. The percentage of synonyms of reference

nouns (taken from the RG dataset) that are included in the neighborhoods are presented in

Fig.4.5(a) as a function of the neighborhood size. The sets of synonyms for each reference

noun were created by consulting the WordNet synsets. The semantic neighborhoods were

computed using either the co-occurrence metricD, or the context metricQH=1. In general,

more synonyms are captured by theD metric compared to theQH=1 metric. This distinction

is greater for neighborhoods that include more than50 members.

Moreover, we investigate the effect of the context windowH with respect to the selection

of neighbors that do not co-occur with the reference nouns. The percentage of such neigh-

bors computed byQH is depicted in Fig.4.5(b) for several sizes of the neighborhoods, and

for four values of the contextual window sizeH. The percentages were computed for1, 000

nouns that were randomly selected from the network. The bestresults are consistently obtained

when using immediate context, i.e.,H=1, which can be attributed to the best performance of

this window value for the case of context-based similarity computationIosif and Potamianos

[2010]. This is also shown here in Table4.1.
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4.6.3.2 Neighborhood-based Metrics

The computation of semantic similarity consists of two basic steps: 1) computation of seman-

Abbreviation for
Dataset Neighbor Similarity neighbor sel./ Metrics

selection computation similarity comp. Mn=100 Rn=100 Eθ=2
n=100

MC co-occur. co-occur. (CC/CC) 0.90 0.72 0.90
MC co-occur. context (CC/CT) 0.91 0.28 0.46
MC context co-occur. (CT/CC) 0.52 0.78 0.56
MC context context (CT/CT) 0.51 0.77 0.29
RG co-occur. co-occur. (CC/CC) 0.87 0.67 0.86
RG co-occur. context (CC/CT) 0.86 0.32 0.53
RG context co-occur. (CT/CC) 0.58 0.72 0.61
RG context context (CT/CT) 0.57 0.69 0.33

WS353 co-occur. co-occur. (CC/CC) 0.64 0.50 0.64
WS353 co-occur. context (CC/CT) 0.64 0.14 0.20
WS353 context co-occur. (CT/CC) 0.47 0.56 0.48
WS353 context context (CT/CT) 0.46 0.57 0.11

Table 4.5: Correlation for neighborhood-based metrics. Four combinations of the co-
occurrence-based metric Dice (D) and the context-based metricQH=1 were used for the defi-
nition of semantic neighborhoods and the computation of similarity scores.

tic neighborhoods, and 2) computation of similarity scores(theS metric in (4.2) and (4.3)),

allowing for the following combinations.

• Compute neighborhoods and similarity scores using a co-occurrence-based metric (CC/CC).

• Compute neighborhoods using a co-occurrence-based metric; compute similarity scores

using a context-based metric (CC/CT).

• Compute neighborhoods using a context-based metric; compute similarity scores using

a co-occurrence-based metric (CT/CC).

• Compute neighborhoods and similarity scores using a context-based metric (CT/CT).

For the above approaches, the co-occurrence-based metric1 D and the context-based metric

QH=1 were used. The correlation results for the neighborhood-based metricsMn=100,Rn=100,

andEθ=2
n=100 for neighborhood size of100 are presented in Table4.5(see the next paragraph for

the choice ofn). The use of a co-occurrence metric for neighbor selection achieves the high-

est results for all datasets, forMn=100 andEθ=2
n=100, while, the context-based metric appears

1 D achieved slightly higher performance than other co-occurrence metrics (not shown here for the sake of
space).
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to be better for selecting neighbors for the correlation-based neighborhood metricRn=100.

The choice of the semantic similarity metric is of secondaryimportance for theMn=100 and

Rn=100 metrics, provided that the appropriate metric is used for neighborhood creation. For

theEθ=2
n=100 metric however, only the (CC/CC) combination performs well. The results are sig-

nificantly higher compared to the context-based baselines (see Table4.1). The bestMn=100

andEn=100 metrics also outperform the metrics that rely on web or corpus counts. Overall,

utilizing network neighborhoods for estimating semantic similarity can achieve very good per-

formance, and the type of metric (feature) used to select theneighborhood is a key performance

factor.
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Figure 4.6: Performance vs. number of neighbors for neighborhood-based metrics: (a) maxi-
mum similarity of neighborhoodsMn: (CC/CT), (b) correlation of neighborhood similarities
Rn: (CT/CC), and (c) sum of squared neighborhood similaritiesEθ

n: (CC/CC).

Next, we investigate the performance of the metrics as a function of neighborhood sizen.

The performance of theMn metric using co-occurrence-based metricD for neighbor selection,
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andQH=1 for similarity computation is shown in Fig.4.6(a). We observe that performance in-

creases withn peaking aroundn=80−100. The performance remains high also forn > 100.

The performance of theRn metric usingQH=1 for neighbor selection andD for similarity

computation is shown in Fig.4.6(b). The performance ofRn is relatively flat as a function of

neighborhood size, achieving good performance even for small neighborhoods. The perfor-

mance of theEθ
n metric usingD for both neighborhood selection and similarity estimationis

shown in Fig.4.6(c). Mn andEθ
n exhibit comparable performance, while both appear to be

better thanRn for high values ofn.

Metric Neighbor Similarity Dataset Number of snippets per noun
selection computation 50 100 200 500 1, 000

not co-occur. MC 0.24 0.31 0.43 0.57 0.59
Baseline applicable (corpus-based) RG 0.35 0.42 0.56 0.62 0.60

WS353 0.26 0.26 0.27 0.27 0.22
not MC 0.35 0.52 0.57 0.54 0.53

Baseline applicable context RG 0.38 0.45 0.50 0.55 0.52
WS353 0.30 0.33 0.34 0.32 0.30

MC 0.54 0.61 0.71 0.88 0.91
Mn=100 co-occur. context RG 0.54 0.60 0.73 0.83 0.86

WS353 0.53 0.54 0.56 0.62 0.64
MC 0.28 0.49 0.67 0.73 0.78

Rn=100 context co-occur. RG 0.42 0.60 0.68 0.69 0.72
WS353 0.50 0.48 0.54 0.55 0.56

MC 0.56 0.61 0.69 0.83 0.90
Eθ=2

n=100 co-occur. co-occur. RG 0.57 0.61 0.72 0.81 0.86
WS353 0.53 0.54 0.57 0.61 0.64

Table 4.6: Performance with respect to the number of corpus snippets per noun for the baseline
and the neighborhood-based metrics.

The correlation scores for the best performing neighborhood metrics (Mn=100, Rn=100 and

Eθ=2
n=100 for the (CC/CT), (CT/CC) and (CC/CC) approaches, respectively) are presented in Ta-

ble 4.6as a function of the number of snippets downloaded for each word in the network. The

performance of the corresponding baseline metrics are alsoshown in Table4.6, i.e., theD met-

ric relying on corpus counts, andQH=1. We observe that the neighborhood metrics outperform

the baseline performance for all datasets. All three neighborhood metrics consistently obtain

better correlation performance as the number of snippets increases. Unlike neighborhood met-

rics, the performance of baseline metrics is not shown to improve as the number of snippets

increases and plateaus around300–500 snippets.
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Num. of Metrics
concepts Mn=100 Rn=100 Eθ=2

n=100

in net. MC RG WS353 MC RG WS353 MC RG WS353

9 0.68 0.63 0.55 0.87 0.70 0.60 0.75 0.42 0.66
88 0.68 0.63 0.55 0.88 0.79 0.60 0.70 0.45 0.61
176 0.68 0.63 0.54 0.86 0.78 0.60 0.70 0.44 0.60
876 0.68 0.69 0.58 0.83 0.74 0.59 0.73 0.60 0.62

1,751 0.75 0.73 0.62 0.80 0.71 0.58 0.80 0.66 0.64
4,376 0.95 0.82 0.68 0.78 0.70 0.57 0.95 0.75 0.66
6,127 0.91 0.86 0.65 0.77 0.72 0.57 0.90 0.72 0.64
8,752 0.91 0.86 0.64 0.78 0.72 0.56 0.90 0.86 0.64

Table 4.7: Performance of the neighborhood metrics for various network sizes.

Next, we investigate the performance of the neighborhood metrics with respect to the num-

ber of concepts (nouns) included in the network. The concepts were randomly selected; results

are presented in Table4.7 in the form of average correlation computed over ten runs. Weex-

perimented with various network sizes varying from9 (0.1% of network) up to8, 752 (100%

of network) words. RegardingMn=100 andEθ=2
n=100 metrics, performance improves as the net-

work grows with best results around4–5K words. ConverselyRn=100 perform best for small

networks1.

4.6.4 Fusion of Neighborhood Metrics

Next, we investigate the fusion of the best performing neighborhood metrics,Mn, Rn, and

Eθ=2
n , using the (CC/CT), (CT/CC), and (CC/CC) combinations, respectively (see Table4.5).

The fusion was performed as a weighted linear combination oftheir respective similarity

scores. The largest dataset, i.e., WS353, was used for learning the weights of similarities using

10–fold cross validation. Then, the weights learned on (all of) WS353 were applied to the CM

and RG datasets. Three different algorithms implemented inWeka2 were applied for learning

the weights, namely, linear regression, regression using Support Vector Machines (SVM), and

regression trees. The performance of the fusion of metrics is presented in Table4.8for n=100,

1Note that since the neighborhood size is set to be (up to)n = 100 for all experiments for the first two rows
(with network size of 9 or 88 words) all available words in thenetwork are used to construct the neighborhoods, i.e.,
the set of neighbors is the same for all words considered. Thesuperior performance ofRn=100 for small network
size is a strong indication that using a common set of words tocompare semantic similarities on, works better than
using each word’s semantic neighbor. The approach of using acommon set of “seed words” has been successfully
applied to affective text analysisMalandrakis et al.[2011]; Turney and Littman[2002] and warrants further research
also for semantic similarity computation.

2http://www.cs.waikato.ac.nz/ml/weka/
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along with the performance of the best individual neighborhood metric1.

Metric/ Dataset
Fusion algorithm MC RG WS353

Best individual neighborhood metric 0.91 0.86 0.64

Linear regression 0.91 0.86 0.65
Regression using SVM 0.91 0.86 0.65

Regression trees 0.94 0.82 0.73

Table 4.8: Performance for the fusion of neighborhood metrics.

We observe that the performance of fusion using linear and SVM–based regression is al-

most identical to the performance of the best individual neighborhood metric. Performance

gains are obtained using regression trees for the CM (from0.91 to 0.94) and WS353 dataset

(from 0.64 to 0.73). However, performance is worse on the RG dataset. This trend is probably

due to the different distribution of the similarity scores in the datasets (MC dataset for exam-

ple contains only highly similar or dissimilar word pairs, while RG contains more uniformly

distributed similarity scores).

4.6.5 Semantic Concreteness

Typically, thedegree of semantic concretenessof a word is not taken into account in distribu-

tional models. However, evidence from neuro- and psyco-linguistics demonstrates significant

differences in the cognitive organization of abstract and concrete nouns. For example,Kiehl

et al. [1999] andNoppeney and Price[2004] show that concrete concepts are processed more

efficiently than abstract ones (aka “the concreteness effect”), i.e., participants in lexical deci-

sion tasks recall concrete stimuli faster than abstract. According to dual code theory,Paivio

[1971], the stored semantic information for concrete concepts isboth verbal and visual, while

for abstract concepts stored information is only verbal. Neuropsychological studies show that

people with acquired dyslexia (deep dyslexia) face problems in reading abstract nouns aloud

Coltheart[2000], verifying that concrete and abstract concepts are stored indifferent regions of

the human brain anatomyKiehl et al.[1999]. The reversal concreteness effect is also reported

for people with semantic dementia with a striking impairment in semantic memoryPapagno

et al.[2009].

Motivated by this evidence, we study the semantic network organization and performance

of DSMs for estimating the semantic similarity of abstract vs concrete nouns2 . Specifically,

1We observed that the fusion algorithms exhibited similar (relative) performance for also other values ofn (not
reported here).

2Part of the work described in this section was conducted in collaboration with Maria Giannoudaki (ECE
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we investigate the validity of the maximum sense and attributional similarity assumptions in

network-based DSMs for abstract and concrete nouns (for both English and Greek).

4.6.5.1 Experimental Procedure

Lexica and corpora creation: For English we used a lexicon consisting of8, 752 English

nouns taken from the SemCor31 corpus. In addition, this lexicon was translated into Greek

using Google Translate2, while it was further augmented resulting into a set of9, 324 entries.

For each noun an individual query was formulated and the1, 000 top ranked results (document

snippets) were retrieved using the Yahoo! search engine3. A corpus was created for each

language by aggregating the snippets for all nouns of the lexicon.

Network creation: For each language the semantic neighborhoods of lexicon noun pairs were

computed following the procedure described in Section4.4 using either co-occurrenceD or

context-basedQH=1 metrics4.

Network-based similarity computation: For each language, the semantic similarity between

noun pairs was computed applying either the max-senseMn or the attributionalRn network-

based metric. The underlying semantic similarity metric (theS metric in (4.2) and (4.3)) can

be eitherD or QH . Given that for both neighborhood creation and network-based semantic

similarity estimation we have the option ofD or QH , a total of four combinations emerge

for this two-phase process: (i)D/D, i.e., use co-occurence metricD for both neighborhood

selection and network-based similarity estimation, (ii)D/QH , (iii) QH /D, and (iv)QH /QH .

4.6.5.2 Evaluation Datasets

The performance of network-based similarity metrics was evaluated for the task of semantic

similarity between nouns. The Pearson’s correlation coefficient was used as evaluation metric

to compare estimated similarities against the ground truth(human ratings). The following

datasets were used:

English (WS353): Subset of WS353 datasetFinkelstein et al.[2002] consisting of272 noun

pairs (that are also included in the SemCor3 corpus).

Greek (GIP): In total, 82 native speakers of modern Greek were asked to score the similarity

Department, Technical University of Crete): creation of the GIP dataset, characterization of abstract/concrete nouns
from the WS353 and GIP datasets, and analysis of the neighborhoods of abstract/concrete nouns. This work is also
presented inIosif et al.[2013].

1http://www.cse.unt.edu/~rada/downloads.html
2http://translate.google.com/
3http://www.yahoo.com//
4We have also experimented with other values of context window H not reported here for the sake of space.

However, the highest performance was achieved forH = 1.
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of the noun pairs in a range from 0 (dissimilar) to 4 (similar). The resulting dataset consists of

99 nouns pairs (a subset of pairs translated from WS353).

Abstract vs Concrete: From each of the above datasets two subsets of pairs were manually

selected, where both nouns in the pair are either abstract orconcrete, i.e., pairs consisting of

one abstract and one concrete nouns were ruled out. More specifically, 74 abstract and74

concrete noun pairs were selected from WS353, for a total of148 pairs. Regarding GIP,18

abstract and18 concrete noun pairs were selected, for a total of36 pairs.

4.6.5.3 Results

The performance of the two proposed network-based metrics,Mn andRn, for neighborhood

size of100, is presented in Table4.9 with respect to the English (WS353) and Greek (GIP)

datasets. Baseline performance (i.e., no use of the network) is also shown for co-occurrence-

based metricD and context-based metricQH . For the max-sense similarityMn=100 metric,

Language: Number of Baseline Network Neighbor selection / Similarity computation
dataset pairs D QH metric D/QH D/QH QH /D QH /QH

English: 272 0.30 0.22 Mn=100 0.64 0.64 0.47 0.46
WS353 Rn=100 0.50 0.14 0.56 0.57

Greek: 99 0.25 0.13 Mn=100 0.51 0.51 0.04 0.04
GIP Rn=100 -0.11 0.03 0.66 0.11

Table 4.9: Pearson correlation with human ratings for neighborhood-based metrics for English
and Greek datasets. Four combinations of the co-occurrence-based metricD and the context-
based metricQH were used for the definition of semantic neighborhoods and the computation
of similarity scores. Baseline performance is also shown.

the use of the co-occurrence metricD for neighbor selection yields the best correlation per-

formance for both languages. For the attributional similarity Rn=100 metric, best performance

is achieved when using the context-based metricD for the selection of neighbors in the net-

work. As explained inIosif and Potamianos[2013b], the neighborhoods selected by theD

metrics tend to include words that denote word senses (yielding best results for similarity),

while neighborhoods computed using theQH metric are semantically broader including word

attributes (yielding best results for attributional similarity). The network-based DSMs results

are also significantly higher compared to the baseline for both languages. The best results

achieved byD/QH for theMn=100, andQH /D for theRn=100 are consistent with the results

reported inIosif and Potamianos[2013b] for English. The best performing metric for English is

Mn=100 (max-sense) while for GreekRn=100 (attributional). Overall, utilizing network neigh-

78



borhoods for estimating semantic similarity can achieve good performance1, and the type of

metric (feature) used to select the neighborhood is a key performance factor.
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Figure 4.7: Correlation as a function of number of neighborsfor network-based metrics. Max-
senseMn (D/QH ) for datasets: (a) English and (c) Greek. AttributionalRn (QH /D) for
datasets: (b) English and (d) Greek.

Next, we investigate the performance of the network metricswith respect to the neighbor-

hood sizen for the abstract and concrete noun pairs included in Englishand Greek datasets.

The performance of the max-senseMn (D/QH ) metric is shown in Fig.4.7(a),(c) for the (sub-

sets of) WS353 and GIP, respectively. The performance over the whole (abstract and concrete)

dataset is shown with a solid line. Similarly the results forthe attributionalRn (QH /D) metric

are shown in Fig.4.7(b),(d). The main conclusions for these experiments (for both languages)

are: 1) The correlation performance for concrete noun pairsis higher than for abstract noun

pairs. 2) For concrete nouns the max-senseMn metric achieves best performance, while for

1 The best correlation score for the WS353 dataset does not exceed the top performance (0.68) of unsupervised
DSMs Agirre et al. [2006]. However, we have found that the proposed network metrics obtain state-of-the-art
results for other standard datasets, e.g.,0.87 for Rubenstein and Goodenough[1965] and 0.91 for Miller and
Charles[1998].
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abstract nouns the attributionalRn metric is the top performer. 3) For theRn network met-

ric, very good performance is achieved for abstract noun pairs for a small neighborhood size

n (around10), while for concrete nouns larger neighborhoods are needed(up to 40 and30

neighbors, for English and Greek, respectively). In order to further investigate the network or-

Type of neighbors (abstract/concrete)
Neighbor Number of Type of English (WS353) Greek (GIP)

selection metric reference nouns reference nouns abstract concrete abstract concrete

D 15 abstract 76% 24% 82% 18%
D 15 concrete 36% 64% 23% 77%

QH 15 abstract 82% 18% 91% 9%
QH 15 concrete 31% 69% 31% 69%

Table 4.10: Distribution of abstract vs concrete nouns in (abstract/concrete noun) neighbour-
hoods.

ganization for abstract vs concrete nouns, we manually inspected the top twenty neighbors of

30 randomly selected nouns (15 abstract and 15 concrete) andclassified each neighbor as either

abstract or concrete. The distributions of abstract/concrete neighbors are shown in Table4.10

as a function of neighbor selection metric (D vsQH ) and reference noun category. It is clear,

that the neighborhoods of abstract nouns contain mostly abstract concepts, especially for the

QH neighbor selection metric (similarly the neighborhoods ofconcrete nouns contain mainly

concrete concepts). The neighbors of concrete nouns mainlybelong to the same semantic class

(e.g., “vehicle”, “bus” for “car”) often corresponding to relevant senses. The neighbors of the

abstract nouns have an attributive function, reflecting relative attributes and/or aspects of the

referent nouns (e.g., “religion”, “justice” for “morality”).

4.6.6 Comparison with Other Approaches

A comparison between our best results1 and the performance of other similarity metrics is

summarized in Table4.11. The primary criterion for the selection of the presented metrics is the

type of the exploited resources and corpora. This enables the comparison of knowledge– and

data–driven approaches, while the latter often are the onlyfeasible choice for under-resourced

languages. The approaches that are presented in Table4.11 can be distinguished into two

main categories: (i) use of knowledge resources, such as WordNet, (ii) use of large corpora,

e.g., Wikipedia and corpora harvested from the web. In addition, we consider a third category

dealing with the integration of (i) and (ii) within a machinelearning-based framework.

1As mentioned in Section4.5 regarding the RG and WS353 datasets, we used their respective subsets covered
by SemCor3. The same subsets were also used for the evaluation of the WordNet-based metrics.

80



Metric / Resources / Dataset
Systema Corpora MLb MC RG WS353

Wup WordNet no 0.76 0.78 0.34

Res WordNet + SemCor no 0.77 0.80 0.37

Vector WordNet + SemCor no 0.85 0.79 0.47

WikiRelate! Wikipedia no 0.45 0.53 0.48

AAHKPS1 4 billion web docs no 0.88 0.89 0.66

TypeDM ukWaC + Wikipedia + BNC no – 0.82 –
IP 28, 000 web docs: AND queries no 0.88 – –
IPs web doc snippets: AND queries no 0.80 0.81 0.57

AAHKPS2 WordNet +4 billions web docs yes 0.92 0.96 0.78

SSS WordNet +9 million web doc snippets yes 0.88 – –

Proposed
∼ 9 million

(Mn=100) web doc snippets: no 0.91 0.87 0.64
(Eθ=2

n=100) IND queries no 0.91 0.86 0.64
(Fusion) yes 0.94 0.82 0.73

aThe metrics/systems shown in full uppercase, e.g. IP, were abbreviated using the first letter of authors’ last
names.

bUse of machine learning.

Table 4.11: Performance of several metrics/systems.

Three basic types of WordNet-based metrics are included in category (i): path length-based

(Wup), information content-based (Res), and metrics that exploit the synset glosses (Vector).

Wup Wu and Palmer[1994] is a purely taxonomic metric based on the notion of the least

common subsumer (LCS), i.e., the most specific concept that is the parent node of two words.

The similarity between two words,wi andwj , is estimated as the depth (distance from root

node) of their LCS, normalized by their individual depthsPedersen[2010]. Wup is extended

by the Res metricResnik[1995] according to which the similarity ofwi andwj is estimated

asRes(wi, wj) = − log P (LCS(wi, wj)), whereP (LCS(wi, wj)) is the probability of the

LCS of wi andwj estimated over a sense-tagged corpusPedersen[2010]. The lexical infor-

mation that is included in the WordNet glosses is utilized bythe Vector metricPatwardhan

and Pedersen[2006] for the construction of co-occurrence vectors extracted from a sense-

tagged corpus. The similarity betweenwi andwj is estimated as the similarity of their respec-

tive vectors. In this work, we applied the aforementioned WordNet-based metrics using the

WordNet::Similarity module2 , which incorporates the SemCor corpusPedersen and Miche-

lizzi [2004]. More specifically, the similarity between two words was estimated according to

2http://search.cpan.org/dist/WordNet-Similarity/
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(4.5) following the maximum sense similarity assumptionBudanitsky and Hirst[2006]; Resnik

[1995]. Regarding category (ii), the WikiRelate! systemStrube and Ponzetto[2006] includes

various taxonomy-based metrics that are typically appliedto the WordNet hierarchy. The ba-

sic idea behind WikiRelate! is to adapt these metrics to a hierarchy extracted from the links

between the pages of the English Wikipedia. A very large corpus is exploited by AAHKPS1

consisting of four billion web documents that were acquiredvia crawlingAgirre et al.[2009].

For the computation of semantic similarity several variations of structured and unstructured

DSMs were applied. An example of structured DSMs is the TypeDM modelBaroni and Lenci

[2010], where a number of lexico-syntactic patterns were extracted from the concatenation of

three different corpora, namely, the web-harvested ukWaC corpus1 , the dump of the English

Wikipedia, and the British National Corpus (BNC). Our previous work, IP, is an example of

corpus creation using a relatively small number of web documentsIosif and Potamianos[2010].

The basic idea was the use of conjunctive AND queries in orderto retrieve documents in which

the pair words co-occur. Also, we have replicated2 our previous work using snippets instead

of entire web documents (IPs).

The third category that appears in Table4.11 includes the following machine learning-

based metrics/systems: AAHKPS2 and SSS. The basic approachbehind AAHKPS2Agirre

et al.[2009] is the use of regression in order to combine similarity scores that were computed

using different resources and corpora. A corpus of four billion web documents was exploited

and results were derived using10-fold cross validation. A different approach was followed by

the SSS systemSpanakis et al.[2009] according to which the WordNet was exploited in order

to create thousands of word pairs denoting relations such assynonymy, meronymy, etc. These

pairs were used for the formulation of web queries in order tocreate a corpus of snippets from

which numerous lexico-syntactic patterns were extracted.The word similarity was estimated

by a regression model considering the pattern frequencies as training features. The WS353

dataset was used for training excluding the pairs of the MC dataset, which were used for testing.

As it was expected, the exploitation of knowledge resourcesleads to high performance.

The superiority of the Vector metric over the other WordNet-based metrics constitutes a suc-

cessful paradigm regarding the exploitation of contextualfeatures given that the word senses

are knwon. The performance of the DSM-based approaches, i.e., AAHKPS1, TypeDM, and

IP, is higher compared to the WordNet metrics. This observation is more interesting regarding

the case of IP, where a relatively small corpus of web documents is used. Overall, the high-

est results are obtained by the machine learning-based approaches AAHKPS2 for the RG and

WS353 datasets, and the fusion ofMn=100, Rn=100, andEθ=2
n=100 for the MC dataset. How-

1http://wacky.sslmit.unibo.it/
2As in IP, the top1, 000 search results were acquired for each pair.
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ever, we believe that further validation is needed for the machine learning approaches given the

limited size of the datasets and the dangers of overfitting. Overall, the proposedMn=100 and

Eθ=2
n=100 metrics can be regarded among the best-performing unsupervised data-driven metrics,

built upon an efficient and scalable approach for corpus creation using web data.

4.7 Scalable and Efficient Corpus Indexing and Similarity Estima-

tion

In this section, we briefly discuss some technical issues about the scalable and efficient cre-

ation of very large semantic networks. This discussion was motivated by the experience gained

during the experimental work of this chapter. The implementation ideas that follow were con-

ducted after1 the completion of the experimental work (and respective results) presented in the

previous sections of this chapter. Also, note that the comparison mentioned in the following

paragraphs are meant to summarize our hands-on experience rather than to serve as a formal

benchmark.

Scalable and efficient corpus indexing and similarity computation algorithms are essential

for constructing very large semantic networks. The characterization “very large” is beyond the

used lexicon of approximately9K nouns. The initial step deals with the definition of lexicon(s)

exhibiting “adequate” coverage for the language(s) of interest. The exploitation of typical dic-

tionaries enable a straightforward solution regarding thethe coverage requirement, since they

aim to include the vast majority of words (or their canonicalforms, i.e., lemmas) for a given

language. Although a variety of such dictionaries exist forlanguages like English, this is not

the case for under-resources languages such as a Greek. In order to overcome the fragmentation

of dictionary availability across languages we used the lexicons that underly the GNU Aspell

spell checkers2 . In particular, we used the Aspell dictionaries for six languages, namely, (i)

English, (ii) German, (iii) Italian, (iv) Spanish, (v) Greek, and (vi) Turkish. The use of those

lexicons has a number of advantages that are well-aligned with our goal: (i) free availability

for numerous languages, (ii) inflectional and derivationalmorphemes are included, which are

missing from typical concise dictionaries, (iii) inclusion of known proper names, (iv) plain for-

mat, i.e., list of entries. Unfortunately, for some languages (e.g., Italian) the available Aspell

dictionaries were enriched through an automatic procedurein an attempt to improve the cover-

1 Nikolaos Malandrakis (Signal Analysis and InterpretationLaboratory, University of Southern California) and
Ioannis Klasinas conducted the processing of Aspell dictionaries and Wikipedia dumps, as well as the harvesting
of web data for corpus creation. Vassiliki Prokopi implemented a Java-based corpus indexing prototype for com-
parison purposes. The work of N. Malandrakis, I. Klasinas, and V. Prokopi was funded by the PortDial project
(www.portdial.eu).

2 http://aspell.net/
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age of derivational morphemes. This resulted into extremely large dictionaries (i.e., more than

one million of entries) due to the inclusion of auto-generated pseudo-words. The introduced

redundancy may be acceptable for the purposes of spell checking, however, stands as a seri-

ous obstacle regarding the scalability of our approach. In order to alleviate this problem we

filtered the Aspell dictionary entries with the vocabulary extracted from a large and authorita-

tive resource of textual data. For the aforementioned languages the respective 2012 Wikipedia

dumps were used. For each language the final lexicon was defined by taking the intersection of

the corresponding Aspell dictionary and the Wikipedia vocabulary. For example, the resulting

lexicon for English contains125K (approx.) entries, while the largest lexicon was computed

for Greek consisting of407K (approx.) entries.

Given the lexicon for a particular language a corpus of web data (documents or document

snippets) can be created using IND queries as described in Section4.3. Once the corpus is cre-

ated, the major technical challenge regards the corpus indexing that is essential for computing

and storing the co-occurrence statistics needed by the co-occurrence-based and context-based

similarity metrics defined in Section2.2.4.1and Section2.2.4.2, respectively. The large size of

the lexicons raise the demand for non-sparse indexing. Based on the observation that the vast

majority of words do not co-occur, we proceeded with the storage of co-occurrence frequencies

for the co-occurring words only. As a toy example, consider avery short lexicon that consist of

seven entries only, which are assigned (e.g., based on alphabetical ordering) a unique numerical

(integer) identifier from1 to 7. Also, assume a small corpus that contains few instances of the

lexicon words. The corpus index aims to store the absolute (non-zero) co-occurrence frequency

of each word with respect to the other lexicon words. For thisexample, the following format

was adopted and stored in a7-line ASCII file.

1,1 5,1

2,3 3,1 5,1 6,1 7,1

2,1 3,2 7,1

4,1

1,1 2,1 5,1

2,1 6,1

2,1 3,1 7,1

The co-occurrence frequencies for a particular word can be located by jumping to that line

whose numbering matches the word identifier, e.g., for the 3-rd word of the lexicon go to the

3-rd line of the index file. Each line of the index file includesa non-fixed number (because zero

co-occurrence frequencies are not stored) of space-separated fields. Each field follows the for-

mat: “identifier of co-occurring word”,“,”,“absolute co-occurrence frequency”. For example,
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the 3-rd word of the lexicon co-occurs with the 2-nd and the 7-th word one time (and two times

with itself). The above non-sparse indexing is quite generic and it can be adapted to different

considerations of word co-occurrence. For example, the frequencies can be counted within the

sentence boundaries for the case of co-occurrence-based similarity metrics, while the frequency

counting should be restricted within the selected contextual window (see parameterH defined

in Section2.2.4.2) regarding the context-based cosine similarity. Once the index construction

is completed the encoded frequencies can be directly used for estimating the pairwise similar-

ities between the lexicon entries. The same format can be also used for storing the estimated

similarities: the co-occurrence frequencies are simply substituted by the similarity scores.

Especially during the index construction (as well as for thecomputation of similarities)

appropriate data structures are required in order to store (and further process) the co-occurrence

counts. Associative arrays (also referred to as hash tables) constitute a commonly used structure

for such tasks. In particular, a hash of hashes (e.g., each value associated with a key is a

hash) is useful for storing and processing the co-occurrence frequency (or similarity score)

between two words. Regarding the exploitation of such structures we experimented with a

small number of widely-used languages, namely Perl, Java and C++. For the case of Perl

and Java we observed (working in a high-end desktop machine equipped with32GB of RAM)

an unaffordable memory overhead when using the respective built-in hashes caused by the

large size of lexicons. The memory requirements were significantly were reduced using the

SparseHash1 library written in C++, which provides hash implementations optimized for low

memory overhead.

4.8 Conclusions

We have investigated the estimation of semantic similarityusing semantic networks, following

an unsupervised2 corpus-based approach. We have shown that it is possible to achieve state-

of-the-art performance by encoding corpus statistics intoa semantic network and then using

the notion of semantic neighborhood to define novel semanticsimilarity metrics. The maxi-

mum neighborhood similarity metric performed the best whenthe semantic neighborhood was

defined using co-occurrence metrics. We have also shown experimentally the importance of

sense coverage and the validity of the maximum sense similarity assumption for context-based

similarity metrics.

The fact that co-occurrence proved to be a good feature for selecting neighbors for the

1 http://code.google.com/p/sparsehash/
2 Despite the fact that the presented metrics have a number of experimental parameters, the characterization

“unsupervised” refers to the notion of “language-agnostic”.
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maximum similarity metric implies that co-occurrence is a good feature for sense discovery.

Moreover, we have studied the effect of word proximity for the estimation of semantic similar-

ity, showing that very good performance is obtained when words co-occur at sentential level.

The success of context-based similarity for neighborhood selection for the correlation met-

ric implies that context is a good feature for discovering attributes in a network. In addition,

the use of a corpus in which the not so common words are well-represented and a large lexi-

con creates an informative corpus that efficiently encodes the semantics of polysemous words

and leads to good performance. More research and experimentation is needed to verify these

claims. Overall, the achieved results are amongst the highest reported in the literature for unsu-

pervised corpus-based metrics. Last but not least, the proposed approach is efficient, scalable

and requires linear web query complexity with respect to thelexicon size. Future work deals

with the incorporation of network features, such as centrality measurements, for the creation

of semantic neighborhoods. Further research is needed withlarger multilingual networks to

verify the universality of the proposed metrics.

Moreover, we investigated the performance of network-based DSMs for semantic simi-

larity estimation for abstract and concrete noun pairs of English and Greek. We observed a

“concreteness effect”, i.e., performance for concrete nouns was better than for abstract noun

pairs. The assumption of maximum sense similarity as encoded by theMn metric consistently

yielded higher performance for the case of concrete nouns, while the semanticsimilarity of ab-

stract nouns was better estimated via the attributional similarity assumptionas implemented

by theRn metric. The results are consistent with the initial hypothesis that differences in cog-

nitive organization may warrant different network organization in DSMs. In addition, abstract

concepts were best modeled using an attributional network DSM with small semantic neigh-

borhoods. This is a first step towards the better understanding of the network organization of

DSMs for different categories of concepts. In terms of computation algorithms of semantic

similarity, it might prove advantageous to define a metric that combines the maximum sense

and attributional assumptions based on the semantic concreteness of the words under investi-

gation. Further research on more data and languages is needed to verify the universality of the

findings.

86



Chapter 5

Associative and Semantic Features

Extracted From Web-Harvested

Corpora

5.1 Introduction

We address the problem of automatic classification of associative and semantic relations be-

tween words, and particularly those that hold between nouns. Lexical relations such as syn-

onymy, hypernymy/hyponymy, constitute the fundamental types of semantic relationsCruse

[1986]. Associative relations are harder to define, since they include a long list of diverse rela-

tions, e.g., “Cause-Effect”: onion–tears, “Instrument-Agency”: hammer–carpenter. From the

perspective of cognitive scientists, associative relatedness is triggered by the co-occurrence of

wordsMcNamara[2005], while the definition of semantic relatedness is controversial. The

boundary between semantic and associative relations is notalways clear, since highly associ-

ated words tend to be semantically related, e.g., (cat,dog). In McRae and Jones[2013], a short

review of this argument is provided. However, a simple protocol is widely-used in order to

smooth this fuzziness for dataset creation (for more details see Section5.4). Previous research

efforts have investigated semantic relations, such as the identification of synonyms,Iosif and

Potamianos[2010], hyponyms,Caraballo[1999]. Also, the identification of other relations has

attracted the research interest, e.g., the Task 8 of SemEval’10 dealt with the classification of

various relationsHendrickx et al.[2010]. To our knowledge there have been very few compu-

tational efforts for the discrimination between associative and semantic relations, e.g.,Turney

[2008].

Such classification can be beneficial for a wide range of language technologies. For ex-
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ample, in statistical language modeling, class-based language modelsBrown et al.[1992] have

long been used to extend the coverage of the model – words in classes should typically be

semantically related (i.e., sister hyponyms of the same hypernym). However, trigger models

Lau et al.[1993] try to find words that change the probability distribution over other words,

which is more of an associative relationship (e.g., postman– letter). Other technologies might

use relationships in a different way: spoken dialogue systems often have an ontology of se-

mantically related concepts (which one can attempt to learnfrom corpus dataPargellis et al.

[2004]); query expansion techniques for information retrieval have also utilized semantically

related conceptsFang[2008]. On the other hand, information extraction tasks may benefit from

knowing associative relationships between words, since the contextual information leading to

a decision to extract some piece of information is more likely to be associative in nature.

We propose an automated computational approach that discriminates between associative

and semantic relations1 . Text-based lexical and hit-based features are extracted from the web

in order to classify given pairs of concepts as semantic or associative. These features do not

rely on manually selected syntactic patterns, such as Hearst’s patterns for the identification of

“is-a” relations and semantic role labeling, but are rathermotivated by general cognitive and

linguistic principles. Specifically, we propose two novel features: (a) the degree of priming (co-

occurrence asymmetry) as a function of the distance betweenthe two words in text, and (b) the

rate of change of context-based lexical similarity as a function of the context window size.

Evaluation proceeds on a dataset containing238 associative and semantic relations, which they

were appropriately assembled by cognitive scientists in order to exclude any fuzzy relations.

5.2 Related Work

Semantic similarity metrics can be divided into two broad categories: (i) metrics that rely on

knowledge resources, and (ii) corpus- or web-based metricsthat do not require any external

knowledge source. A representative example of the first category are metrics that exploit the

WordNet ontologyMiller [1990]. For computing the similarity between words these metrics

incorporate features such as the length of paths between thetwo wordsJiang and Conrath

[1997]; Resnik[1995] or the information content of their least subsumer, estimated from a cor-

pusLeacock and Chodorow[1998]; Wu and Palmer[1994]. WordNet glosses are also used as

features inPatwardhan and Pedersen[2006]. A study that reviews in depth the major WordNet-

based metrics is provided inBudanitsky and Hirst[2006]. Corpus-based metrics usually extract

1The work described in this chapter is also presented inIosif et al. [2012]. A subset of the experimental
features used in this chapter was developed in collaboration with Maria Giannoudaki (ECE Department, Technical
University of Crete): linguistic patterns discussed in Section 5.3.3.
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contextual features from text for computing semantic similarity. Web-based methods employ

search engines to estimate the frequency of word co-occurrence Gracia et al.[2006]; Tur-

ney [2001]; Vitanyi [2005] or construct corporaBollegala et al.[2007]; Iosif and Potamianos

[2010]. The identification and extraction of other types of relations has been mainly studied

through the use of linguistic patterns. Lexico-syntactic patterns were applied in the influential

work of HearstHearst[1992], for the identification of hyponymy, followed by numerous sim-

ilar approaches, e.g.,Caraballo[1999]. Pattern-based approaches were also employed for the

meronymy relationGirju et al.[2003].

5.3 Associative and semantic features

In this section, we propose two novel features for discriminating between associative and se-

mantic relations using information automatically extracted from the web. Syntactic patterns

are also investigated as features.

5.3.1 Hit-based priming coefficient

Hit-based metrics (summarized in Section2.2.4.1) employ co-occurrence counts without taking

into account: (i) the order of appearance of each word, and (ii) the distance (i.e., the number

of words that intervene) between occurrences of the two words. Next, we motivate the use of

these features for classifying associative and semantic relations.

The use of word order is motivated by findings in cognitive science and psycholinguistics,

about the asymmetry of the priming phenomenon with respect to word pairs. In psycholinguis-

tics, the notion of priming refers to the cognitive processing that takes place when two words in

a certain order are presented to a human subject. In this framework, the first wordp (“prime”)

serves as a stimulus that facilitates (or primes) the cognitive processing of the second wordt

(“target”) McNamara[2005]. The selection of prime and target is determined experimentally

for each word pair based on human response time, where response time is assumed to be in-

versely proportional to the strength of priming (or relatedness). Once the prime and target are

defined, their usual order (p, t) is known as “forward”, while the reverse order (t, p) is called

“backward”. It has been found that the difference between forward and backward priming is

statistically significant for many related word pairs, e.g., responses to the pair (‘light’,‘bulb’)

were reported to be quicker than the responses to the pair (‘bulb’,‘light’) Koriat [1981]; Mc-

Namara[2005]. Similar observations regarding the asymmetry of order ofappearance within

co-occurrence were also reported in the NLP literatureChurch and Hanks[1990]. However,

data related to this phenomenon have been analyzed without further exploration of the cognitive
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aspects of the problem.

Our goal is to define a “priming coefficient”, i.e., a single metric that characterizes the

degree of asymmetry in the forward and backward co-occurrence counts. Since priming is

sensitive to ordering, we compute“forward” and “backward”co-occurrence counts (as a func-

tion of the distance between words) for each word pair. We expect that word pairs (p,t) with

strong priming should appear much more often in the forward rather than the backward order.

We expect priming to be a good discriminator between associative and semantic relations as

psycholinguistics have suggested that priming effects canbe of different magnitude for these

different relationsFerrand and New[2003]; Plaut[1995].

Instead of using raw co-occurrence counts to estimate the priming coefficient, we propose

to use the normalized hit-based metrics defined in Section2.2.4.1We introduce a variation

of hit-based metrics that computes separately forward and backward co-occurrence counts,

conditioned on the distanced between words. For a word pair(wi, wj), the forward relatedness

Rf,m is defined as

RA
f,m(wi, wj) = A(wi, wj ; d = m), (5.1)

computed only for forward co-occurrence counts with distance d that is equal tom words.

FunctionA(.) denotes any of the hit-based metric defined in Section2.2.4.1Similarly, back-

ward relatedness is defined as:

RA
b,m(wi, wj) = A(wj , wi; d = m). (5.2)

Total relatednessΛA
m is defined as the sum of the forward and backward relatedness

ΛA
m(wi, wj) = RA

f,m(wi, wj) +RA
b,m(wi, wj) (5.3)

for metricA, word pair(wi, wj) and distance equal tom. Finally, the priming coefficientΨA
m

is defined as the normalized absolute difference between forward and backward relatedness

ΨA
m(wi, wj)=

|RA
f,m(wi, wj)−RA

b,m(wi, wj) |
RA

f,m(wi, wj)+RA
b,m(wi, wj)

. (5.4)

The priming coefficient is equal to0 when the forward and backward co-occurrence counts are

equal (no priming) and1 when a word pair only appears with the forward (or backward) order

(very strong priming).
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5.3.2 Slope of text-based similarity

In Section2.2.4.2, a context-based metric was defined by (2.20) that has been used in the

literature for estimating the strength of semantic relations between words. In general, the

strength of both semantic and associative relations coversa wide range from weak to strong;

as a result, the relation strength by itself is a poor discriminator of the semantic vs associative

class.

Based on observations in psycholinguisticsFerrand and New[2003] and computational

linguisticsHearst[1992], words that are semantically similar, especially synonyms and words

that belong to the same semantic class, can be identified by lexico-syntactic patterns from their

immediate vicinity. For this case, context-based semanticsimilarity metrics are also shown to

better correlate with human judgements when small contextual windows are used to compute

similarity Iosif and Potamianos[2010]. Associative relations often imply a shared pragmatic

context that is also evident from lexical similarity in the not-so-immediate vicinity. Thus,

the relevance of lexical features extracted from context isexpected to be a function of the

contextual window size. According to the above considerations, we assume that the migration

from syntactic to pragmatic features by increasing the sizeof H, will affect differently the

context similarity of associative and semantic relations.For this purpose, we compute the

difference of semantic similarity scores across differentsizes ofH. In particular, we focus

on window sizes that differ exactly by one (first-order differences). Consider two wordswi

andwj . The difference of their similarity scores with respect to window sizes,Hx andHy, is

computed as:

SHx

Hy
(wi, wj) = SHx(wi, wj)− SHy(wi, wj), (5.5)

for Hx −Hy = 1. The similaritiesSHx(wi, wj) andSHy(wi, wj) are computed according to

(2.20) defined in Section2.2.4.2.

5.3.3 Linguistic patterns

We also examine whether specific syntactic patterns can discriminate between associative and

semantic relations. By manual inspection of our data we havesummarized the most common

patterns for associative ([A1],[A2]) and semantic ([S1],[S2]) relations, respectively:

[A1] Complex Noun Phrases (NPs):[NPterm1|term2[NPterm1|term2]], e.g., “Ocean wave

energy is captured directly from surface waves or from pressure fluctuations.”

[A2] Terms co-occurring in argument positions:[NPterm1[V P [NPterm2]]], e.g., “...why do

giraffes have longnecks..."
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[S1] The two terms in coordinative constructions:[NPterm1] AND|OR [NPterm2], e.g.,

“Beet and radishroots are similar in shape, but beets are usually larger thanradishes.”

[S2] The two terms in extended coordinative constructions,involving one additional NP

between the NPs of interest:[NPterm1|term2] , [NP ] AND|OR [NPterm1|term2], e.g.,

“... professionalcarpet, upholstery and rugcleaners in the Chicago ... "

Overall, associative noun pairs are expected to surface as arguments of the same phrase: in

pattern A1 one NP is contained into the other, while in pattern A2 both NPs are manifested in

the argument positions of the same VP (subject and object of the verb). Semantically related

noun pairs form NPs that are structurally independent of each other; when they co-occur in

close proximity they are usually connected with conjunctions.

5.4 Experimental Dataset

There are relatively few datasets containing rated associative or semantic relations between

word pairs or terms, most of them containing fewer than50 pairs. Lack of a standardized

dataset of adequate size is a barrier to computational approaches that require fair amounts of

data for training and testing. In this work, we have merged datasets taken from three different

studies from the literature of psycholinguisticsChiarello et al.[1990]; Ferrand and New[2003];

Perea and Gotor[1997] for a total of238 relations, equally split between119 associative and

119 semantic relations (Table5.1). All three datasets were designed for psycholinguistic exper-

Dataset No # of semantic rel. # of associative rel.

1 42 42

2 48 48

3 29 29

Total 119 119

Table 5.1: Experimental datasets.

iments related to priming, and contain only “pure” associative and semantic relations, avoiding

word pairs that lie in the boundaries of the two relations. Well-established lists of free associa-

tion norms, e.g.,Nelson et al.[1998]; Palermo and Jenkins[1964], were used for the selection

of “pure” associatively related pairs. Such lists are constructed by collecting the responses of

human subjects when stimuli words are presented to them and they are asked to give the very

first word they recall. Regarding “pure” semantic relations, the relevant pairs were selected

according to the following criteria: (i) the words of each pair are members of the same seman-

tic category and they have high scores of semantic relatedness, and (ii) they are not included
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in lists of free association norms. The scores incorporatedby the first criterion typically are

estimated by collecting ratings given by human subjects. This way, pairs exhibiting strong

associative and semantic relatedness, e.g., “cat–dog”, were not included in the datasets. The

semantically related pairs in datasets 1 and 3 consist exclusively of words that belong to the

same semantic category, i.e., hyponyms of the same hypernym. The semantically related pairs

in dataset 2 consist of words with various degrees of synonymy. Some indicative examples

Dataset No Semantic rel. Associative rel.

1 brass–iron onion–tears
1 velvet–linen hammer–nail
1 bacon–steak pilot–plane
2 boat–ship board–wood
2 work–labor nucleus–center
2 fume–steam hour–clock
3 clarinet–flute drill–hole
3 pancake–waffle cow–milk
3 rug–carpet suitcase–trip

Table 5.2: Examples of dataset relations.

of the relations included in the experimental datasets are presented in Table5.2. In theory a

number of associative pairs may also exhibit a semantic relation. For example, “hammer” and

“nail” can be considered as co-hyponyms, i.e., sharing the same hypernym. However, their

associative relatedness is much stronger.

5.5 Experimental procedure

We compute hit-based metrics and text-based metrics through web search engines as described

below:

5.5.1 Hit-based metrics

The number of word co-occurrences is estimated by Yahoo! search API1 that returns the num-

ber of web hits given a particular query. We wish to compute the number of hits for the word

pair (wi, wj) under the following constraints (i)wi precedeswj , and (ii) their distance, defined

in Section5.3.1as the number of intervening words, is equal tom, i.e.,m = 2. This is achieved

by the query “wi ⋆ ⋆ wj” for m = 2. The “⋆” symbol is a special search metacharacter, match-

ing any wordBollegala et al.[2010]. Using this query formulation, we retrieve the number of

1http://developer.yahoo.com/search/
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hits for both forward and backward ordering of the words up toa particular distancem. Once

the number of hits is retrieved, the total relatednessΛA
m(wi, wj) is computed according to (5.3),

for each of the hit-based metricsA. Similarly, the priming coefficientΨA
m(wi, wj) is computed

according to (5.4). For each word pair,ΛA
m(wi, wj) andΨA

m(wi, wj) are computed, using the

four hit-based metricsA = {J,C, I,G} and for distance valuesm = 0, . . . , 10.

5.5.2 Text-based metrics

For the computation of text-based semantic similarity between the words of associative and

semantic relations, we need to build a corpus from the web. For each word pair(wi, wj), we

download1000 snippets of web documents using the Yahoo! Search API. The web search is

performed according to the conjunctive query “wi AND wj”, ensuring that both words co-occur

in the same snippet, for reasons explained inIosif and Potamianos[2010]. Once the snippets

are retrieved, we compute for each word pair: (i) the semantic similarity score,SH(wi, wj),

according to (2.20) defined in Section2.2.4.2, and (ii) the difference of similarities across

different window sizes,SHx

Hy
(wi, wj), according to (5.5). The similarities are computed using

B andLTF weighting schemes (see Table3.1) for contextual window sizesH = 1, . . . , 10.

5.6 Evaluation Results

In this section, we present results for associative vs semantic relation classification using the

dataset described in Section5.4. We used the support vector machine classifier provided by

Weka1; similar results were obtained using naive Bayes classifier(not reported here due to lack

of space). Note that for the case of individual features, e.g., priming coefficient, the classifiers

were fed with scalars, i.e., the values for the respective feature. The evaluation was performed

according to a10-fold validation procedure. The evaluation results are reported in terms of

classification accuracy.

In Fig. 5.1(a), the classification accuracy is shown for: (i) total relatedness,ΛJ
m(wi, wj),

computed according to (5.3) (solid line), and (ii) priming coefficient,ΨJ
m(wi, wj), computed

according to (5.4) (dotted line). Classification accuracy is plotted as a function of m, the

distance between words. It is clear that total relatedness achieves very poor accuracy that

lies close to chance. The poor performance atm = 0 is an indication that the asymmetry

of priming at the bigram level can not discriminate associative and semantic relations. The

priming coefficient obtains good accuracy around80% for most values ofm, excluding the

valuem = 1. The discriminative ability of the priming coefficient improves for distance

1http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.1: Classification accuracy for: (a) total relatednessΛJ
m(wi, wj), and priming coeffi-

cientΨJ
m(wi, wj) as a function of distancem for the Jaccard (J) hit-based metric, (b) semantic

similarity SH(wi, wj) and slopeSHx

Hy
(wi, wj) metrics as a function of the window sizeH, us-

ing the binaryB weighting scheme. Histograms for associative and semanticpairs: (c) priming
coefficientΨJ

5 (wi, wj), (d) similarity slopeSH=2
H=1(wi, wj).

values around 6 or 7 (although the differences in performance are not statistically significant).

In Table5.3, the classification precision is summarized for a number of hit-based metrics for the

Hit-based Accuracy
metrics Total related. Priming coef.

J 53.2% 86.5%

C 52.7% 86.5%

I 56.5% 85.7%

G 62.9% 86.5%

Table 5.3: Classification accuracy for total relatedness and priming coefficient.

total relatedness and priming coefficient. These results were obtained by joining the individual

features for distancesm = 0, . . . , 10 into a single vector. Again, significantly higher results,
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up to86.5%, are achieved by the priming coefficient. There is no significant difference among

the hit-based metrics.

In Fig. 5.1(b), the classification accuracy as a function of the window size H is shown

for: (i) context-based similaritySH(wi, wj) computed according to (2.20) defined in Sec-

tion 2.2.4.2(solid line), and (ii) similarity slopeSHx

Hy
(wi, wj) computed according to (5.5)

(dotted line). For both of them, the binaryB weighting scheme was used. Context-based sim-

ilarity SH(wi, wj) is shown to be a relatively poor discriminator of associative vs semantic

relations, and the achieved accuracy remains low,55% − 62%, for all values ofH. The sim-

ilarity slopeSHx

Hy
(wi, wj) metric also performs poorly with the exception of windowH = 2;

performance forSH=2
H=1(wi, wj) exceeds70% accuracy. Classification accuracies for both met-

Metrics of semantic similarity Accuracy

SH(wi, wj), B scheme 62.6%

SH(wi, wj), LTF scheme 62.6%

SHx

Hy
(wi, wj), B scheme 71.8%

SHx

Hy
(wi, wj), LTF scheme 64.3%

WN: Leacock-Chodorow 71.0%

WN: Resnik 75.6%
WN: Vector 54.2%

Table 5.4: Accuracy for context-based similarity, similarity slope and WordNet-based (WN)
similarity metrics.

rics SH(wi, wj), S
Hx

Hy
(wi, wj) and for bothB andLTF weighting schemes are presented in

Table 5.4. Results are computed for the joined feature vector containing values computed

for contextual window sizesH = 1, . . . , 10. For comparison, we have also included the ac-

curacy for three WordNet-based similarity metrics, namelyLeacock-ChodorowLeacock and

Chodorow[1998], ResnikResnik[1995], and VectorPatwardhan and Pedersen[2006]. These

metrics were computed using the WordNet::Similarity package, developed by Pedersen and it is

freely available through CPAN1. TheSH(wi, wj) similarity metrics achieve relatively low ac-

curacy, below63%. WordNet-based metrics display diverse performance ranging from54.2%

for the Vector metric to75.6% for the Resnik metric. The accuracy achieved by the slope

SHx

Hy
(wi, wj) metric is up to71.8% for theB weighting scheme. It is interesting to note that

the best performing WordNet-based metric (Resnik) has substantial differences with the Vector

metric, since it exploits the taxonomic paths of the WordNethierarchy. The Leacock-Chodorow

metric also relies on taxonomic features and it is shown to achieve performance comparable to

the Resnik metric. The Vector metric, which yields the worstperformance among the WordNet

metrics, is quite close to the context-based metrics (SH(wi, wj)), since both approaches utilize

1http://search.cpan.org/
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lexical features. This is a weak indication that the incorporation of taxonomy-based similarity

achieves better discrimination between associative and semantic relations.

To further investigate the behaviour of the best performingfeatures, we have plotted their

histograms for associative and semantic word pairs. In Fig.5.1(c), we show the histogram for

the priming coefficientΨJ
5 (wi, wj). The priming coefficient for the associative relations tends

to be lower than that of semantic relations, especially for larger values of distancem. The

histograms of the values ofSH=2
H=1(wi, wj) metric are shown in Fig.5.1(d). Both histograms

have positive means, i.e., context-based semantic similarity increases when going from window

size one to size two. However, the increase for associative relations is higher.

We have also combined the best performing features: (i)ΨG
m priming coefficient using the

G hit-based metric, and (ii)SHx

Hy
(wi, wj) text-based metric usingB scheme, by simply taking

the union of their feature sets. This combination achieved slightly higher accuracy of 87.8%.

Finally, we report results separately on dataset 2 that contains synonyms as semantic pairs, and

compare the results with datasets 1 and 3. The results are presented in Table5.5. Note that

Features Set 1, 3 Set 2 All sets

ΨG
m(wi, wj) 87.7% 82.8% 86.5%

SHx

Hy
(wi, wj) 76.1% 56.9% 71.8%

Both features 87.8%

Table 5.5: Accuracy for datasets 1, 3 vs dataset 2.

the accuracy drops for dataset 2 (synonyms) for both the priming coefficient and, especially,

the similarity slope. This is an indication that synonyms might be harder to separate from

associative pairs; however, due to the limited size of dataset 2 (29 assoc. and29 sem. relations)

no general conclusions can be drawn.

Also, some preliminary results on the classification between semantic and associative re-

lations using linguistic patterns (on the same web corpus) are provided. The most accurate

pattern for associative relations is A1 (complex NPs) achieving classification accuracy of 66%.

For semantic relations the S1 pattern with coordinative constructions performs better, although

its performance is below 60%. When all four patterns were used classification accuracy of up

to 73.5% is achieved.

Last, in order to further validate our best performing feature,ΨG
m, we used some types of

relations taken from the field of semantic role labeling, assuming that they can serve as associa-

tive ones. Regarding semantic relations we retained the relations of dataset 1. In particular, we

considered four distinct types of relations taken from the SemEval2010–Task 8, “Multi-Way

Classification of Semantic Relations Between Pairs of Nominals” Hendrickx et al.[2010]:

(i) “Cause–Effect”, (ii) “Instrument–Agency”, (iii) “Component–Whole”, and (iv) “Member–
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Collection”. For each type of the above relations, we created a distinct dataset including the

semantic relations of dataset 1 and an equal number of randomly selected examples. For each

dataset we evaluated the proposed priming coefficient regarding the classification of semantic

and associative relations. For all datasets the classification accuracy is very similar and exceeds

80%, even for medium values of distance (m = 3). These results provide an additional confir-

mation regarding the good performance of the proposed feature, while they are consistent with

the results obtained for the datasets assembled by cognitive scientists.

5.7 Conclusions

Motivated by findings in the psycholinguistics and computational linguistics literature, we in-

vestigated the problem of automatically classifying relations between words into either associa-

tive or semantic, using information extracted from the web.Two new features were proposed

designed specifically for this classification task, namely,the priming coefficient measuring the

asymmetry in the order of appearance of the word pair and the first-order difference (slope) of

the context-based semantic similarity with respect to the contextual window size. For associa-

tive relations the priming coefficient takes significantly smaller values as the distance between

the two words increases, while for semantic relations priming is less affected by word distance.

For words that are semantically related their contextual similarity is higher for immediate rather

than for distant context (small vs. large contextual windows); for associative relations context

similarity is less affected by window size. The priming coefficient is shown to be a good fea-

ture for discriminating between the two classes, achievingclassification accuracy up to 86%.

The slope of the contextual similarity achieves good classification results, up to72% accuracy.

Overall, we have shown that it is feasible to classify associative and semantic relations without

using lexical or syntactic patterns, but rather general linguistic properties measured through

lexical corpus statistics, e.g., order of appearance, co-occurrence, distance, contextual similar-

ity. We make available1 a resource containing more than9.000 priming coefficients, computed

for the pairs of the experimental datasets.

Further research is needed with larger datasets to verify the universality of these claims.

Also special cases of associative and semantic relations should be investigated and the relative

performance of the proposed features should be evaluated. The proposed features could be

also relevant for investigating the differences between various types of semantic relationships,

as well as for studying the priming phenomenon across different languages within the proposed

computational framework.

1http://www.telecom.tuc.gr/~iosife/downloads.html
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Chapter 6

Applications of Network-based DSMs

6.1 Introduction

In this section, we investigate the application of the network-based similarity metrics for three

problems. In Section6.2, visual and textual features are integrated for the creation of multi-

modal networks1 . In Section6.3, the semantic neighborhoods are utilized for determining the

semantics of compositional expressions. Specifically, thetwo main network-based metrics are

adapted for estimating the semantic similarity between noun–noun pairs. In Section6.4, the

network similarity metrics are applied to the constructionof a simple noun taxonomy.

6.2 Network-based DSMs of Words and Images

Using the distributional hypothesis of meaning for estimating semantic similarity between

words is limited to a single modality, i.e., text. However, according to cognitive science the

semantic properties of concepts are also determined by the features of other modalities, e.g.,

colorBarsalou et al.[2008]. In this section, a preliminary attempt is presented towards the cre-

ation of multimodal network-based DMSs, using features extracted from text and images. The

key idea is to use both types of features for the definition of semantic neighborhoods and the

computation of network-based similarity metrics as described in Chapter4. It should be noted

that the key idea of this section heavily relies on the work proposed inBruni et al. [2011].

The contribution of this section deals with the adaptation of the aforementioned idea on the

network-based framework.
1The visual features used in experiments of this section werekindly provided by Elia Bruni (Center for

Mind/Brain Sciences (CIMeC) of the University of Trento). For more details seeBruni et al.[2011].
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6.2.1 The Visual Analogue of Bag–of–Words Models

The “Bag-of-Words” (BoW) model is a widely-used approach for implementing unstructured

DSMs. The main characteristic of BoW model is that the syntactic relations between the tar-

get words and their contextual features are not taken into account. In essence, the contextual

features under BoW model can be regarded as a lexicon, which is represented as set of lexical

entries. The BoW model often is utilized for the construction VSM 1, where the contextual fea-

tures are encoded in a matrix, while the similarity between words is estimated using functions

of vectors (i.e., rows of matrix). The notion of “Bag-of–Visual–Words” (BoVW) model was

inspired by the BoW model in an attempt to represent images with respect to a common “visual

lexicon” Bruni et al.[2011]; Csurka et al.[2004]; Sivic and Zisserman[2003]. Given an image

collection the following steps are followed for the construction of the BoVW modelBruni et al.

[2011]: 1) Salient local regions, e.g.,10 × 10 pixels, are identified and represented as vectors.

Local regions were reported to be more robust to occlusions and spatial variation: compared

to global regionsFei-Fei and Perona[2005]. Note that, multiple vectors may be used for each

region. In such cases, vectors contain different type of features. The local regions are also

referred to as keypoints. 2) The identified keypoints are projected into a space that is shared

between the images of the collection. Next, the projectionsare clustered, while each cluster is

considered as a visual word. 3) Every image is then represented as vector that includes such

visual words.

6.2.2 Multimodal Network Creation

In this section, the creation of semantic networks is brieflydescribed. What is new here is

the network creation based on visual features, since the approach of Chapter4 was followed

regarding the text modality. In particular, the visual features we experimented with were based

on the work described inBruni et al.[2011] in which the VLFeat implementationVedaldi and

Fulkerson[2013] was applied. The extraction procedure is summarized as follows: A stan-

dard detector, Difference of Gaussian (DoG)Lowe[2004], was employed for the identification

of keypoints and their assignment into visual words. The Scale-Invariant Feature Transform

(SIFT) was used for the representation of keypoints by a 128-dimensional vector. SIFT ex-

hibits a number of useful properties: invariance to image scale, orientation, noise, distortion,

as well as partial invariance changes of illumination. Thek-means algorithm was applied for

clustering the detected keypoints into2000 clusters, i.e., visual words. In order to obtain a

more granular analysis of the images the number of visual words was increased by16. This

was performed using a one-level4 × 4 pyramid of spatial histograms. This way each image

1 Note that the BoW model can be also used without adopting the VSM.
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was represented by a vector with dimensions corresponding to 32K visual words.

Recall from Chapter4 that the network creation consists of two main steps: 1) computation

of semantic neighborhoods, and 2) computation of similarity scores. Regarding text modality

two types of similarity metrics (in conjunction with the respective features) were applied: co-

occurrence-based (CC) and context-based (CT). Here, a third type of feature, i,e., visual (VS),

is available for both steps, while the similarity between images is estimated using the cosine of

their respective features. In this section, we focus only tothe cases where VS is used (i) either

for Step 1 or Step 2, (ii) for both steps. When VS is used for onestep only, the other step can

be performed using either CC or CT. In total, there are5 combinations.

6.2.3 Experimental Networks and Datasets

An important step for the creation of the intended multimodal network is the mapping of the

noun lexicon within the image collection. Of course, it is quite difficult to find an one–to–

one mapping, i.e., a certain image represents a certain noun. In Bruni et al.[2011], the image

collection of the ESP-Game dataset was used, in which each image was annotated with a textual

description (set of tags), i.e., multiple tags were allowedper image. In order to obtain a visual

representation for each tag the following approach was followed: Each tag was associated

to the set of images that were tagged with it. Then, each tag was represented by a vector

of visual words computed by summing the vectors of the corresponding images. In total, 11K

unique tokens were used as tags. For the creation multimodalnetworks we used the intersection

between our existing noun network consisting of (8, 752 members) and the set of tags used

in Bruni et al. [2011]. This resulted to a set of3, 450 nouns for which a semantic network

was created as described in Section6.2.2. For evaluation purposes,we used the noun pairs of

(i) Rubenstein-Goodenough (RG)Rubenstein and Goodenough[1965] and (ii) WordSim353

(WS353)Finkelstein et al.[2002] datasets which were included the set of3, 450 nouns: 35 and

175 pairs, respectively.

6.2.4 Evaluation Results

In this section, the performance of the network-based similarity metrics is evaluated against

human ratings using Pearson’s correlation coefficient.

The baseline performance is presented in Table6.1with respect to the co-occurrence-based

(CC), contextual (CT) and visual features (VS). For the caseof CC the bast performing co-

occurrence-based metric was applied: Google-based Semantic Relatedness defined by (2.18).

The cosine similarity, defined by (2.20), was employed for the CT and VS features. An imme-

diate context windowK = 1 was used for CT. It is clear that the co-occurrence feature metric
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Feature used Subset of Subset of
for RG dataset WS353 dataset

similarity metric (35 pairs) (175 pairs)

CC 0.85 0.61
CT 0.67 0.25
VS 0.47 0.33

Table 6.1: Performance of baseline metrics using co-occurrence-based (CC), contextual (CT)
and visual features (VS).

outperforms the other types of features for both datasets. No clear winner emerges between the

CT and VS features.

Type of feature for Number of neighbors
Selection Similarity 10 50 100 150 200

of neighbors computation

Subset of RG dataset (35 pairs)
CC VS 0.64 0.79 0.79 0.70 0.67

CT VS 0.78 0.76 0.69 0.66 0.65

VS CC 0.58 0.55 0.29 0.36 0.29

VS CT 0.48 0.42 0.25 0.33 0.27

VS VS 0.43 0.40 0.23 0.27 0.26

Subset of WS353 dataset (175 pairs)
CC VS 0.44 0.59 0.66 0.70 0.64

CT VS 0.44 0.47 0.38 0.32 0.34

VS CC 0.47 0.41 0.37 0.32 0.32

VS CT 0.34 0.33 0.34 0.28 0.28

VS VS 0.37 0.30 0.31 0.27 0.27

Table 6.2: Performance forMn neighborhood-based metric for several number of neighbors.

The performance of the neighborhood-based metricMn, defined by (4.2), is presented

in Table6.2 for different neighborhood sizes. This is shown for all combinations of textual

(CC or CT) and visual (VS) features used for neighbor selection and similarity computation.

The main point of interest here is to investigate the performance of the visual features when

used either for neighbor selection or computation of the final similarity score (or for both

steps). It is clear that the highest performance is obtainedwhen textual features (in particular

CC) are used for neighbor selection. Best results are obtained when 50–150 neighbors are

taken into consideration. For both datasets the achieved correlation is higher compared to

the baseline metric relying of visual features alone. For the case of the WS353 dataset, this
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correlation score outperforms all baselines. In addition,seems that small neighborhood sizes

yield better results when visual features are used for neighbor selection. Regarding WS353,

when visual features are used for both neighborhood selection and similarity computation,

the achieved correlation is slightly higher than the respective baseline. The performance of

Type of feature for Number of neighbors
Selection Similarity 10 50 100 150 200

of neighbors computation

Subset of RG dataset (35 pairs)
CC VS 0.44 0.34 0.33 0.35 0.31

CT VS 0.29 0.37 0.35 0.33 0.33

VS CC 0.73 0.86 0.89 0.88 0.86

VS CT 0.64 0.67 0.61 0.59 0.58

VS VS 0.40 0.45 0.44 0.35 0.27

Subset of WS353 dataset (175 pairs)
CC VS 0.18 0.24 0.21 0.22 0.23

CT VS 0.21 0.28 0.27 0.25 0.22

VS CC 0.62 0.67 0.67 0.65 0.64

VS CT 0.33 0.26 0.22 0.20 0.19

VS VS 0.17 0.34 0.33 0.31 0.29

Table 6.3: Performance forRn neighborhood-based metric for several number of neighbors.

the neighborhood-based metricRn, defined by (4.3), is presented in Table6.3 for different

number of neighbors. The results are shown for all combinations of textual (CC or CT) and

visual (VS) features used for neighbor selection and similarity computation. For both datasets

this performance is better compared to all baselines. As in the case of theMn metric and

the WS353 dataset, the achieved correlation is slightly higher that the respective baseline when

visual features are used for both neighborhood selection and similarity computation. Unlike the

Mn metric, the best performance ofRn is achieved when visual features are used for neighbor

selection (for 50–100 neighbors). The poor performance of theMn metric observed when the

neighborhoods are computed according to visual features may be attributed to the following

reasons: visual features may include semantically irrelevant neighbors, and only one neighbor

is used by theMn metric for estimating the final similarity. TheRn metric appears to be

more robust thanMn for the case of noisy neighborhoods, due to the use of more neighbors

according to a averaging-related scheme.

The first research attempt for combining the textual and visual features for the task of

semantic similarity estimation was proposed inFeng and Lapata[2010]. The key idea was to
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train topic models over a corpus of news articles containingboth images and textual content.

In particular, word semantics were represented as probability distributions over a set of topics.

The similarity between words was estimated using a number ofdivergence metrics including

the Kullback-Leibler and the Jensen-Shannon divergence. For evaluation purposes254 pairs

of the WS353 dataset were used. The bimodal model yielded higher correlation score (0.31)

that the text-based model (0.24) 1 . A simpler model for combining textual and visual features

was proposed inBruni et al. [2011] and applied for the same task (estimation of similarity

between nouns using260 pairs taken from the WS353 dataset). The cosine similarity was used

as similarity metrics for all modalities. The textual and visual feature vectors were combined

by a simple concatenation after normalizing the values of the individual vectors. Overall, the

highest correlation (Spearman) score was reported for the bimodal vector (0.51). The textual

features yielded higher performance than the visual features:0.44 and0.32, respectively.

The proposed network-based DSM was shown to be portable to the use of visual features,

given the availability of BoVW model. However, the exploitation of visual features only (for

both neighborhood and similarity computation) did not provide a significant improvement of

the baseline performance. The most interesting observation regards the synergistic use of tex-

tual and visual features. The best performing modality for neighborhood and similarity com-

putation appear to depend on the used similarity metric. More specifically, for the case of

theMn metric, the highest performance was obtained using the textual (co-occurrence-based)

features for neighborhood selection and the visual features for similarity computation. Regard-

ing theRn metric, the highest performance was achieved using the the visual and the textual

(co-occurrence-based) features for neighborhood and similarity computation, respectively. Our

current findings constitute a promising starting point which is in agreement with the literature

of cognitive science: the human semantic knowledge is builtand organized on the basis of

both verbal and non-verbal informationBarsalou et al.[2008]; Rogers and McClelland[2004].

However, the design parameters of the proposed model shouldbe investigated in more depth.

Despite the fact that our model enables the incorporation ofbimodal features, the underlying

steps (i.e., neighborhood and similarity computation) areperformed according to unimodal

features. This simplification may deviate from the human cognitive system, e.g., multimodal

features may be used for either neighborhood selection and similarity computation. In addi-

tion, it should be stressed out that the textual and visual features were combined and used for

the particular task of word semantic similarity estimation. Our observations need to be further

validated with respect to other semantic tasks.

1 Scores refer to Pearson’s correlation coefficient. Note that in Feng and Lapata[2010] the performance of the
visual features was not reported.
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6.3 Network-based DSMs for Noun–Noun Expressions

A limitation of network-based DSMs presented in Chapter4 is that the estimation of semantic

similarity is considered at the word level only. However, the computation of semantic similar-

ity between phrases or sentences are important for a number of applications, such as grammar

induction, paraphrasing and textual entailment. This is related with the principle ofcomposi-

tionality stating that the the semantics of a complex (multi-word) expression is determined by

the semantics of its constituents. In this section, we investigate the task of semantic similarity

estimation between compositional short phrases (more specifically, noun–noun (NN)) within

the framework of network-based DSMs. Although, NN are considerably shorter larger textual

fragments, e.g., entire sentences, we believe that this is areasonable way to proceed, i.e., from

shorter to larger fragments. In particular, the following two main issues are addressed:

1. How to represent the semantics of compositional expressions.

2. How to exploit the above representation for estimating the semantic similarity between

two complex expressions.

One of the main aspects of this effort is the decomposition ofthe problem into the two

aforementioned sub-problems: representation of semantics and similarity estimation. This

is somewhat different compared to the majority of compositional models that are mainly fo-

cused on the second part investigating functions applied onfeature vectorsMitchell and Lapata

[2010]. A recent approach that is similar to our perspective is discussed inTurney [2012].

The main idea proposed by Peter Turney is the exploitation oftwo distinct models for the

problem of estimating the semantic similarity between two compositional phrases. The first

model (referred to as the “domain space”), and it is meant forrepresenting the semantics of

the constituents. The purpose of the second model (referredto as the “function space”) is to

represent the modifications of meaning that take place for the case of compositional phases,

e.g., for “traffic light”, “traffic” modifies the meaning of “light”. The domain space is built

following the typical procedure of VSM, however, only nounsare considered as contextual

features. The motivation for this filtering is that the domain or topic of a word is determined by

the nearby occurring nouns. The function space is created asthe domain space by considering

only verb-based patterns that occur in close proximity withthe target word. The motivation

for employing only verb patterns is hypothesis that the function/role a word is captured by the

verbs that occur near it.
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6.3.1 Representation of Compositional Semantics and Similarity Metrics

As an example of a simple compositional complex expression consider a NN denoted as

ci = (ci1 ci2), whereci1 and ci2 are its respective constituents. Also, letNi1 andNi2 be

the semantic neighborhoods ofci1 andci2, respectively. Following the principle of composi-

tionality we hypothesize that the semantics ofci are determined by the semantic neighborhoods

of its constituentsBaldwin [2006]; Frege[1884]. Also, we expect that the meaning of the NN

would be more specific compared to the meaning of its parts. More specifically, we assume

that the composed meaning will be related with the shared meaning of the constituents. Hence,

we assume that the semantics ofci can be captured by considering the overlap between the

semantic neighborhoodsNi1 andNij . If the neighborhoods are represented as sets, we de-

fine a hybrid neighborhoodN
′

i for ci computed by taking the intersection ofNi1 andNi2, i.e.,

N
′

i = Ni1 ∩ Ni2. Extension modelMurphy [2002] can be considered as a cognitive ana-

logue for the proposed neighborhood intersection, under the assumption that neighbors reflect

semantic features. The basic idea is that each individual concept is represented by a set of se-

mantic features, while the composed semantics of multiple concepts is driven by “extending”

the individual set of features (i.e., gradually considering more features) until the convergence

to a “sufficient” overlap of features. This is also related with the work in the framework of

prototype theory regarding the definition of composite concepts on the basis of simple ones

Osherson and Smith[1981]. According toOsherson and Smith[1981], the composite seman-

tics of two concepts can be determined by a function that takes into account: (i) the degree

according to which the one concept falls in the (semantic) extension of the other, and (ii) the

relatedness between the one concept and the prototype (concept) of the other.

It should be stressed out that although the aforementioned approach may be valid for

the particular case of NN, different models may apply for other types of multi-word expres-

sions. For example, seeBaroni and Zamparelli[2010] for the distributional representation of

adjective–nouns (AN), where the semantics of adjectives are modeled via a linear function

from a vector (noun representation) to another vector (AN representation). A survey of com-

positional models and the underlying theoretical background, with references to different types

of multi-word expression, is presented inBaroni et al.[2013]; Mitchell and Lapata[2010];

Turney[2012].

Using the above considerations we show how the network-based metricsMn andRn, (de-

fined in Chapter4 by (4.4.2) and 4.4.3, respectively) can be adapted for the estimation of

semantic similarity between two (compositional) NN:ci = (ci1 ci2) andcj = (cj1 cj2).

Compositional Maximum Similarity of Neighborhoods
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The similarity betweenci = (ci1 ci2) andcj = (cj1 cj2) can be estimated as:

M
′

n(ci, cj) = max{φij , φji}, (6.1)

where

φij = max
x ∈ N

′

j

1

2

(

S(ci1, x) + S(ci2, x)
)

, φji = max
y ∈ N

′

i

1

2

(

S(cj1, y) + S(cj2, y)
)

.

φij (or φji) denotes the maximum similarity betweenci (or cj) and the neighbors ofcj (or ci).

N
′

i andN
′

i are the hybrid (i.e., the result of intersection) neighborhoods ofci andcj , respec-

tively. S is a similarity metric as defined in Chapter4.

Compositional Correlation of Neighborhood Similarities

The similarity betweenci = (ci1 ci2) andcj = (cj1 cj2) can be estimated as:

R
′

n(ci, cj) = max{κij , κji}, (6.2)

where

κij = ρ(C
N

′

i

i , C
N

′

i

j ), κji = ρ(C
N

′

j

i , C
N

′

j

j )

and

C
N

′

i

i =
(1

2

(

S(ci1, x1)+S(ci2, x1)
)

,
1

2

(

S(ci1, x2)+S(ci2, x2)
)

, . . . ,
1

2

(

S(ci1, xm)+S(ci2, xm)
)

)

where

N
′

i = {x1, x2, . . . , xm}.

Note thatC
N

′

i

j , C
N

′

j

i , andC
N

′

j

j are defined similarly toC
N

′

i

i . Theρ function stands for the

Pearson’s correlation coefficient,N
′

i is the hybrid neighborhood of NNci, andS is a similarity

metric as defined in Chapter4.

6.3.2 Experiments and Evaluation Results

For the evaluation of the composition network-based metrics we used a dataset of NN pairs

Mitchell and Lapata[2010]. In total, 108 pairs are included, which were rated by human

subject regarding their semantic similarity in a 1–7 scale.A number of examples of NN pairs
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Pair Similarity degree

marketing director–assistant manager high
telephone number–phone call high

capital market–future development medium
research contract–training programme medium
bedroom window–education officer low

league match–family allowance low

Table 6.4: Examples of NN pairsMitchell and Lapata[2010].

along with their respective similarity degree is presentedin Table6.4. In our experiments we

used the pairs whose constituents were included in our network of 8, 752 nouns: 92 out of 108

pairs. The performance of the compositional network-basedsimilarity metrics, was evaluated

against human ratings using Spearman’s correlation coefficient 1 . Note that the average inter-

annotator agreement computed in terms of correlation coefficient can be regraded as the upper

bound for the performance of metrics. Regarding the 92 pairs, this bound equals to0.66

Type of feature for Number of neighbors
Selection Similarity 10 50 100 150 200

of neighbors computation

M
′

n metric
CC CC 0.19 0.52 0.57 0.62 0.60

CC CT 0.05 0.31 0.24 0.37 0.36

CT CC 0.23 0.39 0.28 0.25 0.17

CT CT 0.07 0.21 0.12 0.08 0.01

R
′

n metric
CC CC −0.04 −0.01 0.39 0.26 0.40

CC CT −0.02 0.10 0.08 −0.08 −0.17

CT CC 0.10 0.36 0.59 0.60 0.55

CT CT −0.16 −0.02 0.07 0.08 0.14

Table 6.5: Performance forM
′

n andR
′

n neighborhood-based metrics for several number of
neighbors. Performance upper bound:0.66 (average inter-annotator agreement).

As in the case of word-level semantic similarity estimation(see Chapter4) two basic steps

are required: 1) computation of semantic neighborhoods, and 2) computation of similarity

scores (theS metric in (6.1) and (6.2)), resulting into the following combinations:

1 Spearman’s correlation was used in order to compare the results with the literature. Note, that almost identical
performance was observed when using Pearson’s correlationcoefficient.
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• Compute neighborhoods and similarity scores using a co-occurrence-based metric (CC/CC).

• Compute neighborhoods using a co-occurrence-based metric; compute similarity scores

using a context-based metric (CC/CT).

• Compute neighborhoods using a context-based metric; compute similarity scores using

a co-occurrence-based metric (CT/CC).

• Compute neighborhoods and similarity scores using a context-based metric (CT/CT).

For the above approaches, the co-occurrence-based metricG (Google-based Semantic Relat-

edness defined by (2.19)) and the context-based metricQH=1 (defined by (2.20)) were used.

The performance ofM
′

n andR
′

n is presented in Table6.5 for a different sizes of neighbor-

hoods. First, it is interesting to observe that both metricsperform quite well give the perfor-

mance upper bound (0.66). However, the highest score (0.62) is achieved byM
′

n. For both met-

rics the highest correlation is reached for150 neighbors. This is observed when the (CC/CC)

and (CT/CC) combinations are used forM
′

n andR
′

n, respectively. This is consistent with the

best performance of (CC/CC) and (CT/CC) combinations forMn andRn, respectively, for the

case of single word similarity estimation (see Table4.5 in Chapter4). However, the (CC/CT)

combination appears to yield poor performance when applying theM
′

n metric, as opposed to

the corresponding metric (i.e.,Mn) for the case of single words. This is an indication that the

context plays a lesser role for longer expressions.

In Mitchell and Lapata[2010], nine compositional models were applied for estimating

the similarity between NN pairs. In particular, the underlying idea of these models regarding

the representation of the (compositional) semantics of a multi-word expression is the appli-

cation of a function over the vectors that represent the semantics of constituents (i.e., sin-

gle words). The latter were constructed according to the typical VSM. Given a NN phrase,

every composition model resulted into a (single) vectorialrepresentation. The similarity be-

tween two NN phrases was estimated as the cosine of their respective vectors. The models

used inMitchell and Lapata[2010] were evaluated using a set of108 NN pairs. The high-

est performance (0.49 Spearman’s correlation coefficient1 ) was reported for a model based

1 A different methodology was followed when computing the correlation coefficient. The usual approach (used
in the literature regarding the standard datasets of similarity tasks) is to average the human scores, and then compute
the correlation coefficient between the averaged scores andthe scores estimated by the experimental models. In
Mitchell and Lapata[2010], it is reported only that the human scores were not averaged. In Turney[2012], more
details are given about the evaluation based on a personal communication between Peter Turney and Jeff Mitchell.
The basic idea is:x people ratedy pairs, yieldingx × y ratings, which were vectorized. However, one score for
each pair was estimated by the used models. In order to make the computation of correlation feasible, the model’s
scores of were duplicatedx times.
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on vector multiplication, which was equal to the upper boundof performance (i.e., the aver-

age inter-annotator agreement). InTurney[2012], the similarity between two NN was com-

puted within the framework of a dual-space model that combines domain and function models:

S(ci, cj) = g(Sd(ci1, cj1) + Sd(ci2, cj2 + Sf (ci1, cj1) + Sf (ci2, cj2)), where theg(.) func-

tion denotes the geometric mean.Sd(.) andSf (.) stand for the similarities estimated over the

domain and function models, respectively. InTurney [2012], the same dataset was used as

in Mitchell and Lapata[2010], however, the upper bound of performance was computed as

the leave-one-out (Spearman’s) correlation between the human ratings. The aforementioned

dual model yielded0.54 correlation, which it was reported to be equal to the upper bound of

performance.

Overall, both co-occurrence and contextual features used for neighbor selection yield com-

parable performance. However, the utilization of these features appears to depend on the used

similarity metric: co-occurrence-based for theM
′

n metric and context-based for theR
′

n met-

ric. A limitation of the proposed approach is that the word order in not taken into account for

the computation of the hybrid neighborhood, as well as for estimating the semantic similar-

ity between NN. The sensitivity of (computational) semantic models to word order is an open

research issueTurney[2012].

6.4 Network-based DSMs for Simple Taxonomy Creation

In this section, the network-based similarity metrics described in Chapter4 are applied for the

creation of simple taxonomy of nouns. In particular, the ESSLLI datasetBaroni et al.[2008]

was used, which constitutes a three-level taxonomy depicted by 6.1. The lowest level of the

taxonomy consists of (instances of) the following six concepts: (i) “birds”, (ii) “land animals”,

(iii) “greens”, (iv) “fruits”, (v) “tools”, and (vi) “vehicles”. The middle level includes the con-

cepts (i) “animals”, (ii) “vegetables”, and (iii) “artifacts”, while the upper level is distinguished

into “living beings” and “objects”.

The original ESSLLI dataset consists of 44 nouns (instances). We used the subset of those

nouns that was covered by the network of8, 752 nouns presented in Chapter4: 31 nouns

(instances). For each taxonomic level, the network-based metrics were applied for the con-

struction of a similarity matrix upon which thek-means clustering algorithm was incorporated.

The purity of clusters,P , was used as evaluation metric, defined asBaroni and Lenci[2010]:

P =
1

c

k
∑

i=1

max
j

(cji ), (6.3)
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Figure 6.1: Taxonomy of ESSLLI datasetBaroni et al.[2008].

wherecji is the number of nouns assigned to theith cluster that belong to thejth groundtruth

class. The number of clusters is denoted byk, while c is the total number of nouns included in

the dataset. Purity expresses the fraction of nouns that belong to the true class, which is most

represented in the clusterBaroni and Lenci[2010], taking values in the range[0, 1], where1

stands for perfect clustering.

The performance ofMn andRn is presented in Table6.6 for different sizes of neigh-

borhoods, with respect to the three taxonomic levels: top–medium –low. For the above ap-

proaches, the co-occurrence-based (CC) metricG (Google-based Semantic Relatedness de-

fined by (2.19)) and the context-based (CT) metricQH=1 (defined by (2.20)) were used. The

performance of baseline co-occurrence-based and context-based metrics is also shown. We ob-

serve that both network-based metrics outperform the baseline purity, while their performance

is comparable. For bothMn andRn the highest purity scores are achieved for neighborhoods

including 50 – 150 members. Regarding theMn metric, the highest results are obtained when

CT is used for the selection of neighbors, for which the use ofCC and CT for the computation

of similarity have comparable performance. For the caseRn the best purity is yielded when

CT is utilized for both neighbor selection and similarity computation. Overall, the achieved

purity scores are comparable with the best performance reported in the literatureBaroni and

Lenci [2010], where structured DSMs where employed for creating the similarity matrix upon

which thek-means clustering algorithm was applied. Unlike the task ofsimilarity estimation

(see Section6.2 and Section6.3, as well as Chapter4), for this task the CT feature appears

to perform better than CC regarding the estimation of similarity. This is also observed for the

baseline performance. This difference may be attributed tothe similarity matrix with which
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Type of feature for Number of neighbors
Sel. of Sim. 10 50 100 150 200
neigh. comp.

Baseline CC: 0.65-0.68-0.71
Baseline CT: 0.65-0.87-0.77

Mn metric
CC CC 0.55-0.68-0.74 0.84-0.68-0.81 0.58-0.74-0.84 0.81-0.84-0.74 0.77-0.94-0.77
CC CT 0.55-0.61-0.58 0.68-0.68-0.77 0.55-0.81-0.81 0.84-0.87-0.74 0.61-0.90-0.74
CT CC 0.81-0.90-0.87 1-0.94-0.90 1-0.94-0.84 1-0.94-0.87 0.90-0.90-0.81
CT CT 0.77-0.94-0.84 0.97-0.94-0.84 1-0.90-0.81 0.94-0.90-0.84 0.97-0.90-0.84

Rn metric
CC CC 0.58-0.61-0.45 0.61-0.61-0.61 0.81-0.77-0.77 0.77-0.81-0.74 0.81-0.74-0.77
CC CT 0.58-0.71-0.71 0.58-0.65-0.61 0.61-0.65-0.61 0.61-0.61-0.68 0.61-0.58-0.65
CT CC 0.68-0.61-0.55 0.71-0.87-0.68 0.71-0.81-0.87 0.65-0.81-0.87 0.65-0.81-0.87
CT CT 0.87-0.81-0.71 1-0.94-0.90 1-0.94-0.81 1-0.94-0.81 1-0.94-0.81

Table 6.6: Performance forMn andRn neighborhood-based metrics for different number of
neighbors. Purity is shown for all three levels of the taxonomy: top - medium - low.

the clustering algorithm is fed. In general, it was observedthat the use of CT features tend to

result into similarity matrices that are less sparse compared to the use of CC features.

6.5 Conclusions

The integration of textual and visual features for the creation of multimodal semantic net-

works yielded promising results. In particular, we improved on the unimodal baseline perfor-

mance when both types of features were used by the proposed network-based similarity metrics

(WS353 dataset). However, the end–to–end use of visual features seems to result into noisy

networks that do not achieve top performance. The network-based DSMs appear to the com-

positionality framework (at least for the case of noun–noun). The simple idea of taking the

intersection of semantic neighborhoods in order to represent the semantics of compositional

expressions for the case of NN proved quite effective. Also,the adaptation of the word-level

network similarity metrics yielded quite high performance; close to the upper bound as indi-

cated by the average inter-annotator agreement. However, the applicability of this approach

needs to be further investigated using larger and more complex expressions, e.g., AN.

The network-based similarity metrics were also applied to the construction of a simple

three-level taxonomy of nouns, obtaining quite good performance. For this task, the utilization

of contextual features appeared to perform slightly bettercompared to the co-occurrence based

features. This suggests that the relative performance of features may vary according to the task

under investigation. Last but not least, larger taxonomiescan be used for the justification of the
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aforementioned observations.
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Chapter 7

Conclusions and Future Research

In this section, the main contributions and conclusions of this work are discussed. Also, the

related ongoing work is briefly presented, while interesting future directions are outlined.

7.1 Main Contributions and Conclusions

The main contributions of this work deal with the creation oflanguage-agnostic DSMs us-

ing web harvested data. The “language agnostic” characterization refers to the fact that no

language-specific features (and related tools) are employed by the underlying algorithms. It

was shown that the web is a valuable source for corpora creation. More specifically, a query-

based approach was employed for harvesting web data. The scalability of this approach was

also investigated with respect to a large lexicon. It was shown that the massive aggregation

of web data enables the representation of less-dominant word senses within corpora. A num-

ber of parameters of DSMs were investigated for the task of semantic similarity estimation

between words, including the extraction and weighting of contextual features. In addition, a

network-based implementation of DSMs was proposed in combination with three novel sim-

ilarity metrics, motivated by the assumptions of maximum sense similarity and attributional

similarity. The network-based DSMs were extended towards creation of multimodal networks

based on textual and visual features. and the estimation of similarity beyond the word level.

Finally, motivated by the literature of cognitive science we investigated the discrimination of

associative versus semantic relations, and the performance of the proposed network similarity

metrics with respect to the word concreteness/abstraction. Next, we discuss the main conclu-

sions of this thesis.
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7.1.1 DSMs based on Vector Space Model

The typical implementation of DSMs is the widely-used VSM, which relies on the word-

context matrix. In this framework, we investigated a numberof query types submitted to web

search engines for corpora creation. Very good results wereobtained using conjunctive AND

queries according to which the co-occurrence of word-pairsin the same document was ex-

plicitly requested. The word co-occurrence was regarded asa semantic filter that retains the

relatedness of word senses. Towards this direction we demonstrated that the similarity esti-

mates are more accurate if we consider the two closest senses, i.e., the maximum pair-wise

sense similarity score. In the contrary, the employment of individual queries for corpora cre-

ations was shown to yield poor results. This was attributed to the lack of sense coverage in the

corpus.

We investigated a number of parameters for context-based similarity metrics including the

context window size and the relative weighting of contextual features. For the case of nouns,

we found that the very immediate context encoding mostly syntactic dependencies yielded bet-

ter performance. Also, the simple binary weighting of contextual features was observed to

have comparable performance with other frequency-based weighting schemes. Unlike (single-

word) common nouns, the highest performance regarding the case of multi-word medical terms
1 was obtained for larger context window. The use of narrow window size implicitly imposes a

strong syntactic filtering, according to which certain types of contextual features are captured,

(mainly) including function words (e.g., articles and conjunctions), nouns and adjectives. Such

feature types may exhibit different roles in the representation of noun semantics. Unlike com-

mon nouns biomedical terms are not expected to have multiplesenses. The high performance

of larger window size (compared to common nouns) indicates that the pragmatic information is

essential for the their semantic representation. The binary scheme used for feature weighting in

the cosine similarity metric is related to a simple cognitive model presented inIngram[2007].

According to this model the similarity between two conceptscan be estimated by considering

the overlap of their semantic attributes, which are assigned binary values.

In addition to context-based similarity estimation, we investigated several well-established

similarity metrics that rely directly on the co-occurrenceof the words under investigation. We

observed that the critical factor is the proximity of the co-occurring words. Many research

efforts consider word co-occurrence at the document level due to the straightforward use of

number of hits returned by web search engines. However, smaller linguistic contexts, such

as sentences, appear to better reflect the semantic relatedness of the co-occurring words. We

believe that co-occurrence and the close proximity of wordshelps the development of word as-

1 A non-compositional approach was followed for the multi-word medical terms.
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sociations, which constitute the primary information typeupon which more complex semantic

representations are built. InKahneman[2011], a dual-system framework is described regarding

the processing of knowledge during semantic tasks: a systemof associative relations is rapidly

activated by experienced stimuli, while the associations are further processed by a subsequent

system of semantic nature. The close proximity of co-occurring words seems to agree with the

limited capacity of the immediate (also referred to as working) human memory: experimental

findings suggest that certain number of information chunks can be efficiently processed by the

(typical) human memory systemMiller [1955].

7.1.2 Network-based DSMs

Despite the good performance of corpora constructed by conjunctive AND queries, the under-

lying methodology is not efficient for estimating the pairwise similarities between the entries

of a lexicon of sizeN . This is due to the quadratic query complexityO(N2). In order to tackle

this limitation in scalability, we proposed a method for corpora creation exhibiting linear query

complexity with respect toN . The key idea was the employment thousands of individual

queries (one query for each entry of the lexicon) and the aggregation of the harvested data.

Such a corpus has one basic difference compared to typical corpora: the frequency of word oc-

currence deviates from Zipf’s law. This idiosyncrasy of theresulting corpus was beneficial for

the task of similarity estimation: the domination of very frequent words was smoothed, while

rare words were better represented within the corpus. This observation is important given that

the senses of a word do not occur equiprobably. More specifically, the conditional probabilities

of word senses appear1 to follow a power-law. The sense coverage of corpora depend on the

methodology followed for their creation, while it is critical for DSMs. The aforementioned

aggregation of data enables the discovery of less frequent senses for polysemous words, given

that a large lexiconL is used. The basic idea is that instances of a wordwi can be found implic-

itly, i.e., within data retrieved forwj , wherewi 6= wj . This applies whenwi is a polysemous

andwj stands as an infrequent (lexicalized) sense ofwi. Given this corpus, the typical context-

based cosine similarity metric yielded poor performance due to sense disambiguation issues.

The notion of semantic neighborhoods was introduced in order to better capture the semantics

of the words of interest. The members of neighborhoods were found to encode a variety of

lexical relations including synonymy, taxonomic relations, as well as a long list of associa-

tive relations. More specifically, we investigated both co-occurrence-based and context-based

metrics for the creation of semantic neighborhoods. We observed that the neighbors captured

by co-occurrence-based metrics tended to formulate more direct associative relations with the

1 This observation was made after analyzing the SemCor3 sense-tagged corpusIosif and Potamianos[2013a].
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reference nouns. The presence of relations of a broader semantic/pragmatic scope was stronger

for the neighborhoods computed by contextual metrics. In addition, the neighborhoods created

using co-occurrence-based metrics were found to have greater synonym coverage.

Based on semantic neighborhoods, three novel metrics of semantic similarity were pro-

posed. These metrics were motivated by the assumptions of maximum sense similarity and

attributional similarity. According to the first assumption the most salient information in the

neighborhood of a word are semantic features denoting senses of this word. We believe that

the space of semantic neighborhood can be break down into multiple “sub-spaces” of lower di-

mensionality. In addition, we assume that such sub-spaces reflect the semantic of word senses.

For the semantic neighborhoods used in this thesis, this claim is currently supported by a num-

ber of preliminary results1 for the task of word similarity estimation. The integrationof the

multiple low-dimensional spaces into a global representation constitute an equally challenging

subsequent step. The motivation behind the second assumption is that neighborhoods encode

semantic attributes of words. Also, the underlying assumption is that two semantically sim-

ilar words are expected to have co-varying similarities with respect to their neighbors. The

cognitive analogue of this assumption can be found in the PDPapproachRogers and McClel-

land[2004] according to which semantically related items (i.e., concepts lexicalized by words)

are characterized by “coherent sets of multiple propertiesthat all covary reliably”. However,

our sequential/flat approach does not follow the PDP framework, since each neighborhood is

treated as a single set (of properties), which is not semantically coherent. In total four com-

binations of co-occurrence and context features were investigated for the computation of the

proposed metrics consisting of two phases: computation of semantic neighborhoods and sim-

ilarity score. It was observed that the best performing types of features vary with respect to

the underlying assumption. For example, the highest results regarding the maximum sense

similarity assumption were obtained when the semantic neighborhoods were defined using co-

occurrence metrics. In general, the best performing neighborhood size was observed to depend

on the adopted assumption: larger neighborhoods for the maximum sense similarity assumption

compared to the assumption of attributional similarity. Overall, the proposed network-based

metrics outperformed the respective baselines.

In addition, the proposed approach for network-based DSMs was extended across textual

and visual features. The integration of textual and visual features yielded promising results,

e.g., for the WS353 dataset the unimodal baseline metrics were outperformed when both types

of features were used. This observation seems to be in agreement with the cognitive assump-

1 Work conducted by Georgia Athanasopoulou (ECE Department,Technical University of Crete) based on
existing and novel dimensionality reduction algorithms. Also, similar ideas are discussed inKarlgren et al.[2008]
even without strong experimental evidence.
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tion suggesting that knowledge from different modalities is fused into a common semantic

representationRogers and McClelland[2004]. However, such a fusion is not truly performed

within the proposed bimodal network, since each of the underlying steps (i.e., neighborhood

and similarity computation) rely on unimodal features. We believe that the study of multimodal

features should include the aspect of semantic abstraction/concreteness, for which the influence

of verbal and non-verbal experience is assumed to differ.

The network-based DSMs were also adapted within the compositionality framework. The

semantic neighborhoods were exploited for representing the semantics of compositional ex-

pressions The main network-based metrics were adapted to the composite neighborhoods for

estimating the semantic similarity between two complex expressions. Very good performance

was achieved, however, the applicability of this approach needs to be further investigated with

respect to more complex expressions. The proposed network-based metrics were also applied

for the creation of a simple three-level taxonomy of nouns. The excellent performance of sim-

ilarity metrics with respect to the upper level (living beings vs. object) is in agreement with

the cognitive theories about the process of knowledge acquisition. More specifically, coarse-

grained distinctions are reported to be acquired before finer-grained distinctions, while basic

categories are expected to be “maximally informative and distinctive” Mandler[2002]; Rogers

and McClelland[2004]. A difference regarding our network-based model is that itcan not

demonstrate the developmental process of semantic representation as in the case of the PDP

frameworkRogers and McClelland[2004]. Nevertheless, this process can be simulated by our

approach given the appropriate selection of the underlyinglexicon, i.e., by using a gradually

enriched lexicon aimed to surrogate the development of (thetypical) mental lexicon that takes

place from childhood to adulthood.

7.1.3 Cognitive Aspects of Lexical Semantics

Motivated by findings in the psycholinguistics and computational linguistics literature, we in-

vestigated the problem of automatically classifying relations between words into either as-

sociative or semantic, using information extracted from the web. We proposed the priming

coefficient, which was shown to be a good feature for discriminating between the two classes.

The priming coefficient was also applied with respect to discrimination between synonymy

and some types of relations taken from the field of semantic role labeling: “Cause–Effect”,

“Instrument–Agency”, “Component–Whole”, and “Member–Collection”. Quite high results

were obtained for binary classifications. Moreover, the performance of the proposed network-

based similarity metrics was investigated for the case of abstract and concrete nouns. A “con-

creteness effect” was observed , i.e., performance for concrete nouns was better than for ab-
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stract noun pairs. In addition, abstract concepts were bestmodeled using an attributional net-

work DSM with small semantic neighborhoods.

7.1.4 Summary

Regarding the typical DSMs, the feature of co-occurrence was shown to yield higher perfor-

mance than contextual features for the task of similarity estimation, given that co-occurrence

was considered at the sentence level. However, the relativeperformance of these two features

was reversed for categorical tasks. The proposal of network-based DSMs constitutes the ma-

jor contribution of this thesis, where both co-occurrence and context features were used for

defining the semantic neighborhoods and estimating similarities. The exploitation of word

co-occurrence resulted into semantically more coherent neighborhoods. Given such neighbor-

hoods, the network metric relying on the assumption of maximum sense similarity obtained the

highest results for the task of similarity estimation. For the case of single-word nouns the per-

formance of both co-occurrence and contextual features appeared to be comparable when used

for the step of similarity estimation. However, for the caseof longer phrases (noun–nouns)

good performance was obtained only when using co-occurrence-based features. Moreover, a

“concreteness effect” was observed for the aforementionedmetric: higher performance was

achieved for semantically concrete nouns as opposed to the case of abstract nouns. The inte-

gration of visual and textual features within the network-based DSMs led to promising results:

the performance of network-based metrics slightly exceeded the unimodal baselines. However,

the saliency of the two feature types was shown to be uneven, since semantically more relevant

neighborhoods were computed by the textual features.

7.2 Ongoing Research and Future Directions

Minimum Error Similarity. According to the assumption of maximum sense similarity the

similarity of two words can be estimated as the minimum pairwise similarity of their senses.

Although words often co-occur with their closest senses, word occurrences correspond to all

senses. So, the denominator of the typical co-occurrence-based metrics is overestimated caus-

ing underestimation error for similarities between polysemous words.

Knowing that the probability of word occurrence follows theZip’s law, we empirically

investigated the validity of this observation for the case of word senses. Consider the probabil-

ities of sensesp(sik), k = 1, ..., Ni for a certain wordwi. To do so, we estimated the average

probability of word senses〈p̂(sik)〉i for certain values ofNi, across the words of a lexicon

L. This was performed using maximum likelihood estimation for the polysemous nouns of
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Figure 7.1: Average probability of word senses for different degrees of polysemy (number of
senses) as a function of the rank of word sense frequency.

the SemCor3 sense-tagged corpus occurring withNi ranging between2 and5. The average

probability of word senses is depicted in Fig.7.1 as a function of the rank of sense frequency

for several values ofNi (degrees of polysemy). It is obvious that the senses of a worddo not

occur equiprobably. In the contrary, the probabilities of word senses appear to follow a power-

law. For example, forNi = 3, the most frequent sense (on average) corresponds to the64%

of the word probability mass. Moreover, forNi greater than3 the depicted distribution of less

frequent senses seems not to follow Zipf law. Motivated by the above observation and adopt-

ing the assumption of maximum sense similarity, a modified version of the point–wise mutual

information was defined aslog p(wi∧wj)
(p(wi)p(wj))γ

, wherep(wi) andp(wj) are the occurrence proba-

bilities of wordswi andwj, respectively, while the probability of their co-occurrence is denoted

by p(wi∧wj). The exponential weightsγ was introduced in order to reduce the contribution of

p(wi) andp(wj) in the similarity metric. The effect ofγ for the task of noun similarity is shown

in Fig. 7.2as a function of the Pearson’s correlation coefficient with respect to human ratings.

The three standard datasets (MC, RG, and WS353) were used, while the highest correlation

score was obtained forγ = 0.90 for all datasets. Based on the above considerations we aim to

investigate a machine leaning-based approach in order to learn the optimal weight using generic

features, such as word occurrence and co-occurrence frequencies. The correlation coefficient

with the human ratings can be used as the basis of the error criterion. Overall, this line of re-

search constitutes one of the main dimensions of our future work Iosif and Potamianos[2013a].
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Figure 7.2: The effect in performance of weightγ for the task of similarity rating with respect
to MC, RG, and WS353 datasets.

Graph-based Algorithms. In principle, several graph-based algorithms can be applied on

the proposed network-based implementation of DSMs. However, the basic question concerns

the interpretation of such algorithms within the frameworkof lexical semantics, i.e., what type

of semantic information can be revealed. We believe that such approaches can be considered

at two broad levels, namely, global and local. The entire network is considered for the case of

global analysis, which is expected to provide useful cues regarding the overall structure. Dur-

ing a preliminary analysis, the PageRank and HITS link analysis algorithms were applied over

the entire network. For example, it was interesting to observe that words such as “business”

and “money” exhibited quite high PageRank scores. However,a series of relevant questions

remain open including the interpretation and exploitationof hub and authority scores with re-

spect to DSMs. Local analysis can be formulated at the neighborhood level motivated by the

observation that local properties differ across words. Different words are expected to have

different neighborhood statistics, e.g., the distribution of similarities between the targets and

the respective neighbors. We suggest that such differencesshould be taken into account for

relevant tasks, e.g., the estimation of semantic similarity. We have investigated two simple nor-

malization schemes for network creation using both co-occurrence-based and context-based

similarities. For the case of context-based similarities an improvement was obtained for the

tasks of noun similarity estimation and classification. Another example of local analysis is

the identification of cliques within neighborhoods. A direct utilization of this analysis is the

discovery of word senses under the assumption that each clique denotes the different (at some
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Figure 7.3: Example of cliques for the neighborhood of “fruit”.

extent) senses of the target. An example of such cliques is presented in Fig.7.3, which were

derived from the semantic neighborhood of “fruit”. On this basis, various similarity metrics

can be investigated following the maximum sense similarityassumption or any other related

approaches. Overall, we believe that the exploitation of the network structure enables a number

of different perspectives that may differ across tasks, ranging from the simple visualization of

concepts up to the discovery of salient semantic features.

Multilingual Networks. The proposed approach for the creation of network-based DSMs

can be extended to multilingual linked networks. A common reference point can be formu-

lated using a shared lexicon. Such a lexicon can be regarded as a list of concepts for each

language of interest, i.e., parallel monolingual lexicons. The construction of each monolingual

network can be a distinct process depending only on the respective lexicon. The most challeng-

ing aspect of this idea is the linking of the individual networks. The linking procedure can be

possibly driven by the mapping between concepts as defined inthe shared lexicon. Of course,

a number of issues should be carefully addressed, such as themappings other than one-to-one.

Clearly, the linking complexity is quadratic with respect to the number of languages. Thus, the

case of bilingual networks seems a realistic starting point. We expect that the linked network

will be semantically richer compared to its constituents. This enables the investigation of rel-

evant network similarity metrics under the hypotheses thatsemantic features are encoded by

semantic neighborhoods and that a fraction of them are universal (i.e., exist in both networks).

In addition, more sophisticated analysis can be performed about the semantic diversity (and

other related aspects) of the linked networks. Such diversities may occur due to various extra-

linguistic factors, such as cultural differences.
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Compositionality. The preliminary work on the estimation of similarity between nouns–nouns

worths to be extended to the case of larger textual fragments, i.e., sentences. Under the frame-

work of network-based DSMs, one of the primary questions is about the computation of se-

mantic neighborhoods for such large fragments. For example, how to define the (composite)

semantic neighborhood for a certain sentence. The consideration of all respective neighbor-

hoods (i.e., the neighborhoods of component words) via set operations like intersection, is

likely to result into poorly populated neighborhoods, especially for relatively large fragments.

Also, the grammatical dependencies between words are ignored by such a flat approach. A

hierarchical approach seems to be a more principled solution to this problem. The key idea

is the definition of semantic neighborhoods at different sentence levels. A range of relevant

tools, from unsupervised chunkers up to trainable parsers,can be employed for the hierarchical

representation of sentences. However, a number of other issues, which are independent to the

framework of network-based DSMs, remains open. The most critical problem deals with the

alignment of the sentences under investigation, i.e., which specific parts of the sentences should

be taken into account in the process of similarity estimation.

Some preliminary efforts were conducted for the case of grammar induction for spoken

dialogue systems. The basic idea behind grammar induction is the estimation of similarity be-

tween phrases that are meant to reflect the semantics of grammar rules. For example, consider a

grammar rule denoting the semantics of “departure city”. Phrases such as “fly out of<City>”

and “depart from<City>” can constitute the right part of this rule, where<City> is a label that

stands for the (terminal) concept of “city”. One may argue that the estimation of similarity for

such phrases would be easier than the case sentences, due to their shorter length. However, an

additional factor of difficulty arises due to the fact that non-content words reflect key domain-

specific semantics. For example, the semantic divergence between “fly from<City>” and “fly

to<City>” quite fine-grained to be captured by a language-agnostic approach that consults no

domain-specific knowledge resources. We investigated bothnon-compositional (i.e., treat the

entire phrase as a chunk) and compositional approaches for estimating the similarity between

such phrases. The compositional approach was based on the averaging of the pairwise simi-

larities of component words. For both approaches, baseline(i.e., no network) context-based

similarity metrics were employed yielding moderate to poorperformance. Interestingly, the

highest performance was obtained by a different type of metrics based on the charactern-gram

overlap of phrases. The compositional aspects of this application-specific task remains an open

question that warrants further research.

Affective text analysis. The analysis of the emotional content of textual data can be applied
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to several tasks related to sentiment analysis and opinion mining. Nowadays, the importance

of such applications is greater given the blooming of socialmedia. Semantic similarity is an

essential feature for the affective rating of words and sentences under the assumption that “se-

mantic similarity can be translated to affective similarity” Malandrakis et al.[2013]. In Malan-

drakis et al.[2013], the estimation of continuous valence scores was investigated with respect to

single-words, as well as entire sentences. Given a particular word (target), the key idea for es-

timating its valence rating is based on the linear combination of similarities computed between

the target and a set of seed words and the (known) valence ratings of seeds. InMalandrakis

et al. [2013], several well-established (baseline) co-occurrence-based and context-based sim-

ilarity metrics were compared, where the highest results were reported for the Google-based

semantic relatedness and cosine similarity using a narrow context window. Two of the proposed

network-based similarity metrics (Mn andRn) were also incorporated in the early phases of

the above work1 regarding the word-level rating. No significant differencein performance was

observed between the baseline and the network metrics. We wish to investigate in more depth

the contribution of the network-based metrics following the recent experimental procedure of

Malandrakis et al.[2013] (including also theEn metric) both at the word- and sentence-level.

Overall, we consider the affective analysis of text one of the most interesting applications of

the proposed work for future work.

Cognitive Aspects. Another exciting direction for future research is the incorporation of

our findings about semantic priming and concreteness/abstraction within the framework of

network-based DSMs. Such findings may shed more light to the semantics encoded by seman-

tic neighborhoods. In particular, it would be interesting to discriminate strong associative from

other semantic relations that hold between the target wordsand their respective neighbors. In

the same fashion, it would be useful to estimate the degree ofsemantic concreteness (or ab-

straction) for the nodes of the network. Given the aforementioned features, we can investigate

the design of feature-specific networks and similarity metrics, as well as combinations of them.

Of course, numerous other cognitive aspects, e.g., typicality, can be also investigated. Overall,

the spirit of this paragraph can be summarized by modifying the statement of Frederick Je-

linek about statistical language modeling “put language back into language modeling” as “put

cognition (back) into DSMs”.

1 The majority of this work was conducted by Nikolaos NikolaosMalandrakis (Signal Analysis and Interpre-
tation Laboratory, University of Southern California) when he was with the ECE Department, Technical University
of Crete.
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