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Abstract

In this thesis, the unsupervised creation of languagesign®istributional Se-
mantic Models (DSMs) using web harvested data is investib&dr the problem
of semantic similarity estimation. Semantic similarityndze regarded as the build-
ing block for numerous tasks of Natural Language Processinyp, affective text
analysis and paraphrasing. The first part of the thesis agtishe construction
of typical DSMs following the well-established Vector Spadodel. More specif-
ically, corpora are created by harvesting web documenkswilg a query-based
approach. Two families of similarity metrics are appliedhile related parameters
are investigated. Similarity metrics are evaluated agdinsan similarity ratings
achieving state-of-the-art results that are comparabile kviowledge-based met-
rics. Despite its good performance, the aforementionedhodelogy suffers from
quadratic query complexity with respect to the size of thécten. A methodol-
ogy of linear query complexity is proposed, which is appliedcorpus creation
with respect to a lexicon consisting of thousands of nounsingJthis corpus,
we propose a novel network-based implementation of DSMg;twils based on
the notion of semantic neighborhoods. Semantic neighloaih@re considered
as a parsimonious representation of corpus statisticde wiay capture two main
types of lexical relations: semantic and associative. Thblpm of the automatic
classification of associative and semantic relations s adklressed, motivated by
findings from the literature of psycholinguistics and carfinguistics. Moreover,
three novel neighborhood-based similarity metrics ar@@sed, motivated by the
hypotheses of attributional and maximum sense similafitye proposed metrics
are shown to outperform the baseline approaches for thetasknantic similarity
estimation between words. Inspired by evidence for cognitrganization of con-
cepts, based on the degree of concreteness, we furthetigmteshe performance
and organization of network DSMs for abstract vs. concretens. Finally, the
framework of network DSMs is extended for the creation ofimadal networks
using textual and visual features, and the estimation oaséimsimilarity beyond
word level (noun compounds). Very good results are achiémeooth extensions,
showing the flexibility of the network-based framework.



Hepirnin

H mopotoo Slotpy3) meory aUTtelEToL TNV XATACKEUT) XUTAVEUNUEVWY CTUACIONO-
yxov povtédov (Distributional Semantic Models - DSMs)enowonowdvag
XEWEVIXE OeBOUEVO TOL €Youv GUMEeYEL and Tov mayxdoulo 16td.  Mepxd
amo ToL xUPLOL XL IO EVOLUPEQOVTA YOQUXTNPIO TIXE TNG XATAOKEUNS TV UOV-
TEAOV auToV ebvan 1 pn yeron texvixdy eniBiedne  (unsupervised)xou 1 un
€€dpTNoN O YAWOGOMOYIXA YOQUXTNEWOTIXE, YEYOVOS Tou To xorhoTd -amd
TAEUEAC LAOTOINONG- aveldpTnTa omd TN YUOLXY) YAWOOO WS TEOSC TNV omola
epappolovtar (language-agnostic)H xOpio epopuoyy) Twv aventépw WovTEAmY
apopd oV extiunon e onuactohoyixic opotdtntoc  (Semantic similarity).
H oupPBoly g onpaclohoyxric opotoTnTag Elvor WLUTERMS ONUAVTIXY Yid
éva mhdoc egapuoy®y tou topéa tne Enepyaciac Puowold Adyou. Ilopode-
fypota TETOWWY EQUPUOY®Y TERLAUBAVOLY TNV AVAAUGT) TOU GUVULGUTUTIXOU
TEPLEYOUEVOU XEWEVIXWY OEOOUEVWY Xo TEYVIXES Topdppacnc. To mpoTo mel-
popaTind PEEOg TNG BLUTEBNS apopd G TNV XATAOELY| COVNIWY XATAVEUNUEVHVY
ONUACLOAOYIXOY UOVTENWY cUupmva pe Tto xadicpwpévo Vector Space Model.
Mio and Tic ®x0pleg xateudivoelg authc TNe TpooTdielag etvon 1 dnuoupyia
CLUATOV XEWEVKDY (COrpora) U€ow tne avexTnong eYyYedpwy Tou TayXxoouiou
10 TOU anocTEAVOVTAS EMepnTrhoel; (queries) npog unyavég avalhone. Em-
Théov, peretmvTal 800 Bacxol TOTOL UETEXWDY CNUACIONOYIXTC OUOLOTNTOS OF
cuvdpTtnon e éva tAflog mopouéteny. O YENoHIOTOUUEVES UETEIXESC ATOTL-
HOVTOL 0 TEOS TN GUOYETICT| TOUC UE PadohoY S ONUACLOAOYIXNC OUOLOTNTAC
mou €youv hAngdel and avipnroug. H enldooy| toug napatnerinxe va elvon cuy-
xplown ye exelvn Tou EMTUYYEVOUY OL TEEYOVCES TEYVOROY(EC atyunc, xadedg
xouL Ye Ty enidoan evog dAlou TUTOU PETEIX®Y oL BactleTton oTNV GvTAnon
TAnpogoplouc and mnyéc yvoone (knowledge-based metrics).Ilogd vy ali-
ohoym emldoct| TNg, 1N o TAVe Uevodohoyla xplVEToL TEUXTIXMS dLOYENCTN
OVOUPORIXE PE TOV UTOAOYLOMO TNG GNUCLOAOYIXAC OUOOTNTAS UETOEY OAWY
TV (evY®V AEEewY oL oToleg BUvavTo va TepLEyovTta oe va Aedixo. To yeto-
VEXTNUO TOUTO OPEIAETAL OTNY TETEAYWVIXT] TOAUTAOXOTNTA TNE Ontovpylog
EMEPWTNOEWY WE TPOS TO PEYEVOS TOU YENOLOTOLOUUEVOLU Ae€lxoU. XTo Oe-
0TeEpO TEWpOPATIXG UEPOS TNG epyactag, mpoTelvetan pio yedodohoyla yior TNV
AVTHETOTILOT TOU TEOVIPELIEVTOC UEIOVEXTAUNTOS, CUUGPMVA UE TNV oTola 1)
ONULOLEYI ETEPWTACEWY UTEYEL YRUUUXT] TOAUTAOXOTNTA GE GYEOT UE TO Ae-
Ewo avagopde. H npotevouevn pedolroyio epapudletar yio T dnuiovpyia evog



CWOUATOC XEWEVOL and BEBOUEVA TOU Y XOGULOU 16 TOU WS PO €va Ae€ixd To
onolo amoTeAElTaL Amd YIAIOESC OUCIACTIXWY. XENOWOTOWWVTAS TO TO TV
COUO XEWEVOU, ULl VEX, Bactouévr oe dixTud, UAOTIOMOT TWV XATAVEUNUEVKDVY
CNUACLOAOYIXOY HOVTEAWY TEOTEVETOL, XEVTELXY LOEX TNE OTolag Elvol oL oTua-
olohoywéc yertoviée (semantic neighborhoods) Ot onuocioloyixéc yertoviég
uTopolV Vo Vewpentoly ¢ Uio PELBWAT|, AANS CUVEHN TEQIEXTIXT|, OVUTORAGC To-
o1 TNS AEXTIXNAC O TATIO TIXAC TANROPORIAC TOU EUTEPLEYETAL G TO GWUO XEWEVOL.
Emumiéov, buo Baowol TOnor AeEIhoYIXWY OYECEWY EVUTEOYOUY GTIC YELTOVIEG
QUTES!  OMUACLONOYIXES xaL cuoyeTloTxéc  (associative). H avtdpotn xo-
TNYOELOTOINON TWV PACIXOY AUTOV OYECEWY OLEPELVATAL, CUUPWVOL UE XATOLL
evpriuata e BBAoypaplac tne Puyoylwocoroyiog (psycholinguistics) xou
NG EPUPUOCUEVNC OE COUTA XEWEVKDY YAwoooloyiag (corpus linguistics).
Emnpdoteta, Tpelc Véeg UETPIXEC ONUACLONOYIXAC OPOLOTNTAC BaCLOUEVES OF
olxtua mpotelvovTa, €yovTag wg Yewpntnd unofadpo Tig uTtodEoelc avapopl-
X3 e TNV opoldTTa yopuxtnelo Ty (attributional similarity) xou tn péyiot
evvolohoyixy) ougolotnta (Maximum sense similarity). H enidoorn twv npo-
TEWOUEVOV ONUACIONOYIXOV PETEXGY Tapatneeiton vor utepPaivel exclvr twv
Baowwv  (baseling) yetpxdv wg mpog Ty extiunon g opototTnTo Yetald
AeZewv. H mpotewoduevn uhomoinom twv Xotaveunuévmy ONUACLONOYIXMY UOV-
TENWY, %O xou oL avTIoTOLYEG UETEIXES OPOLOTNTAS, DIEQEUVMVTOL TEQAULTER®
¢ TEO¢ 800 TUTOUC OUCLAC TIX®Y, 1) BLAXELOT TV OTOLWY TEOEPYETOL OTO TO TE-
olo g yvwotoxig emotiung:  agnenuéva (abstract) xaw cuumayy) (concrete).
To x0plo évavoua yio Tn SLdxplon auTr) amoTeAOLY oL eVOELEEIC OYETIXG PE TN
OLUPOLOTIONUEVT] 0RYAVWOT GTO AVIPOTIVO YVWOLIXG GOC TN TWV AVOTER®
Uy Bdoel Tou Boduod onuaclohoyxic cupndyetag. Télog, To tpoTelvouEva
HAUTUVEUNUEVOL OTUACLOAOYLXA OVTEAN XL Ol PETEXES OUOLOTNTOG XOUTUOXEU-
dlovTal xou amOTWOVTOL O Xdmoleg Tepattépw epapuoyéc. o ouyxexpluéva,
TOL AMOXAELC TIXWS BACLOUEVY GE XEWEVIXA DEDOUEVO HOVTENX, ETEXTEVOVTAL OF
rohutpomuxd (Multimodal) yenowonowsvtog xeyevixd xaw ontixd (visual) yo-
poxtnelo Txd. Emmhéov, yehetdtar 1 EMEXTACT TV TROTEVOUEVGLY LOVTEAWY UE
GTOYO TNV AVATOQRAC TUOT) TWV ONUACIOAOYIXMY YELTOVIOY TOAVAEXTIXWY OQ0V
ATOTEAOUUEVWY OO OUCLIC TG, XS XAl 1 EXTIUNCT TNG ONUACLOAOYIXNC
opoldtnTog auT®V. TToA) xoAd amoTeEAECUATA ETTUYYAVOVTOL YId TIC AVOTER®
EQPAPUOYES XATUBEVIOVTAC TNV TEOCUPUOC TIXOTNTA TV TEOTEWVOUEVWY UOV-

TENWV.
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Chapter 1

Introduction

1.1 Corpus-based Lexical Semantics

A broad definition ofmeaningaccording to the Webster’s dictionary is “what is intendetée
understood, signified, indicated, etGuralnik[1974. The vital role of natural languages in
human communication is itself a strong proof that the meagpnirconceptual (mental) entities,
e.g., ideas or opinions, can be conveyed through appregdé&zicalizations, i.e., use of words.
In principle, even a single word provided in isolation, ,i@ut of context, can carry a certain
amount of semantic content. Briefly, this thesis deals witipas-based computational models
built upon the foundations déxical semanticswhich is a discipline of linguistics referring to
the meaning of words. The idea that the semantic propertie®is can be revealed through
the context in which they exist (or could exist) is supportgdthe linguistic theory oton-
textual approachCruse[1984; Haas[1962 1964. The notion ofcontextrefers to linguistic,
as well as to extra-linguistic context. Without ignoring tiffect of extra-linguistic factor, the
linguistic context can be regarded as a sufficient carrighefsemantics of words for three
reasons: (i) very often the relations between words anéixiguistic contexts are formulated
within linguistic context, e.g., “There are many books Figefi® potentially any extra-linguistic
context can be lexicalized, and (iii) linguistic contexhdae utilized more easilZruse[19849.
The theoretic foundations of this thesis rely on the key idkthe contextual approach: the
meaning of a word can be reflected (at some extend) with regatsl linguistic environment.
This is summarized by the famous statement “You shall know\sy the company it keeps”
Firth [1957.

According to the contextual approach words should be censitwith respect to other
words with which they co-occur within a specified contextnt®aces, paragraphs, and doc-
uments are examples of such contextual types. Word co4@rwe can be divided into two



main types: (i) positional, and (ii) relation&lvert [2005. The positional type refer to the
co-occurrence of words by considering their proximity witlgontext. Structural relations,
e.g., grammatical dependencies, form the basis for theitiefirof relational co-occurrences.
The consideration of grammatical relations is justified by tltimate goal of grammar: to
convey the intended meanirigyuse[1984. Early research efforts were focused on positional
co-occurrence due to the lack of computational tools neéaletthe extraction of relation co-
occurrencesStevens et al[1965. Nowadays, both positional (e.gAgirre et al.[2009) and
relational types (e.g.Baroni and Lenci[201Q) are incorporated in computational models.
However, the former type constitutes a language-agnoatiadigm of text processing, which
is directly applicable for the case of under-resourceduagegs.

Within the contextual framewaork the relations between wsaran be broadly distinguished
into two categories under the perspective of structurakiknris.[2007] point of view: syntag-
matic and paradigmaticCruse[1986; Sahlgren200q. Syntagmatic relations refer to words
that co-occur within the same context. Paradigmatic iataticoncern words that exist in the
same context but without co-occurring. The latter is a tyfpubstitutional relation suggesting
that if two words are paradigmatically related then the oray substitute the other without
altering the meaning of the context. This is a rather tecindistinction that does not en-
code the semantic relations between words, i.e., lexicahséics. Lexical semantics is a well-
investigated area for linguistics including relationsgiaig from (several variants of) synonymy
and antonymy to more complex hierarchical configurationshss hypernymy/hyponymy and
meronymy. In principle, the enumeration of semantic refeibetween words seems to be an
extremely difficult task. For example, relations such asu€gaEffect”, “Instrument-Agency”
may be of great importance for certain domains or disciglireeg., cognitive sciences. Such
relations can be regarded as relations with straswpciativecharacteristicd/IcNamarg 2003,
even if a formal linguistic definition is not available.

The computational models presented in this work are focosethe estimation of word
semantic similarity i.e., how much similar the meaning of two words is. The not se-
mantic similarity is built upon the existence of semantiatedness. In other words, we aim
to measure the strength of relatedness that hold betweatswaorthe basis of their similarity
in meaning. This relatedness pertains a diverse range iochlexelations, e.g., two words may
be regarded at some extent as semantically similar evenyifale not synonyms. However, it
should be stressed out that the estimation of semanticasitgildoes not necessarily address
the recognition of the underlying types of semantic retatio

The computational models that adopt the aforementionetextral approach are refer to
as Distributional Semantic Models (DSM8aroni and Lenci{201d. In the first paragraph
of this section we used a dictionary entry in order to defirertieaning of “meaning”. Such



dictionary definitions can be used for the representationarfl semantics, however, the used
language is of rather technical style. (Moreover, the atqtion of dictionaries does not consti-

tute a generic computational framework, while a number afihacks exist, e.g., development
cost, coverage limitations.) A more generic approach isuse of real-life examples of lan-

guage usage, i.e., corpora. Of course, an “adequate” nuafilseich examples is required in

order to have a “sufficient” amount of contextual evidencéhdugh a number of corpora is

available, this is not the case for the less-resourced bgegi In this work, we address the
task of corpora creation using simple techniques for héinggsveb data. The world wide web

covers a plethora of domains, authoring styles and languam@ is fertile ground for data

harvesting.

Up to this point we have described the half of the machinesded for estimating word
similarity based on lexical semantics: (i) the theoretamiework, i.e., the contextual approach,
and (ii) the required resources from which the relevant exinal) features can be extracted.
The missing tools include: (i) a formal scheme for the repméstion of contextual features,
(il) appropriate measurements of semantic similarity tteat be defined with respect to the
representation scheme. The Vector Space Model (VBM)ey and PantgR01(q is the most
widely-used implementation of DSMs. VSM can be regarded bigyla-dimensional space,
which is typically formulated as a matrix. The (distributestmantics of each target word are
encoded by a vector (matrix row) that contains the words rfmeblumns) that co-occur with
it within a specified context. This is a spatial represeatatinabling the definition of similarity
in terms of proximity. The theoretical argument of similgras-proximity was articulated by
the geometric metaphor of meaningckoff and Johnsofl997: semantically similar words
are supposed to live “near” each other within a space (nasseeily VSM). Similarity mea-
surements are missioned with the quantification of the ‘mess” notion. Both syntagmatic
and paradigmatic relations may be incorporated in such mneaents. From the syntagmatic
perspective, the similarity between words is based on thie#ct co-occurrences. Following
the paradigmatic consideration, word similarity can bémested as a function of contextual
commonality. This is the well-establishetistributional hypothesis of meaniragcording to
which similarity of meaning is implied by the contextual demity Harris[1954. Of course,
both syntagmatic and paradigmatic relations may be intedrimto a single similarity mea-
surement. The proposal of a network-based implementafi@&®s upon which a number of
novel similarity measurements are defined is among the rea@arch efforts presented in this
thesis.

The discipline of cognitive semantics investigates funelatal questions about the under-
lying structures and mechanisms that drive semantic tasifs &s the attributions of features
(properties) to objects. A long list of related issues idelihe acquisition, representation,



organization and retrieval of the relevant information deskfor the completion of semantic
tasks. Clearly, it is hard to have a principled mapping betwie models employed in cogni-
tive semantics and computational linguistics. But, seerstive to claim (even an unjustified)
connection: words correspond to cognitive objects, iancepts. Broadly speaking, the DSMs
themselves constitute a representation for cognitive séosabuilt upon linguistic evidence.
Also, a great number of problems addressed within the frasrleaf DMSs are characterized
by cognitive aspects, e.g., estimation of word semantidaiity. Thus, we believe that the lit-
erature of cognitive semantics can serve as a valuablessfarmspiration for the community
of computational linguistics.

1.2 Measuring Similarity

In this section, a number of issues regarding the definitiosiroilarity are briefly presented.
These are given by the perspectives of cognitive psychadoglinformation theory, while the
respective similarity measures are defined. Also, it isudised why such measures can not be
regarded as true metrics for the case of word semantic sityila

1.2.1 Features of Similarity: The Tverskian Contrast Model

The work of Amos Tversky is acknowledged as a pioneering onthe field of cognitive
and mathematical psychologyersky[2003. In his seminal paper “Features of Similarity”
Tversky[1977 the notion of similarity is considered as the organizingn@iple that drives
cognitive tasks such as concept formulation/classificasiod generalization. Several empiri-
cal formulations of similarity were observed including miting, object sorting, substitution
errors, correlated occurrences. The motivation of thiskweeais the proposal of an alternative
theory regarding similarity meant to overcome the unjuedifissumptions (with respect to em-
pirical evidence from the psychological studies) of the d@ting geometric models. As it
was mentioned, objects are represented as points in a donahspace, while their similarity
is expressed in terms of proximity using a distance measemenThe core of the Tverskian
theoretical approach of similarity is the matching betwéssatures, which is also known as
contrast model More specifically, this model is based on the contributibrcammon and
distinctive features. In addition, asymmetries regardiigginctive features are also modeled.
In general, the term feature refers to the value of a variabline following types: binary,
nominal, ordinal and cardinal. A generic measurement fomasing the similarity between



two objects' A and B was defined as follows:

fT(FA ﬂFB)
Jr(FANFR) + A fr(Fa—Fp)+ Xofr(Fp — Fa)’

Sr(A,B) = (1.1)

for A1, Ao > 0. In (1.2), F4 and F'z represent the set of features.fand B, respectively. Set
(FANFp)isthe intersection of'4 andF'z, representing the features that are shared (common)
betweenw; andw;. Sets(F4 — F'g) and (Fg — Fj) include the features that are different
(distinctive) betweenty and Fz, The fr(.) notation stands for any function that operates
over a set. Constants; and A\, weight the contribution of set§Fy — F) and (Fp — Fa),
respectively, to the similarity computation.

The contrast model implies asymmetry in similarity, i&n(A, B) # Sp(B,A). This
hypothesis was confirmed by experimental findings based dgnjental (e.g., rating) and
behavioral tasks (e.g., choice). Moreover, Tversky ingestd the role of common and the
distinctive features for different tasks. Regarding juégal tasks it was found that common
features are weighted more during similarity judgment ttiffierence judgment.

1.2.2 An Info-Theoretic Definition

In Lin [1999, an information-theoretic definition of similarity meaes was provided, which
shares a number of characteristics with the theoreticatrasinmodel of Tverskylversky
[1977. Here, the main point of this work are briefly presented. Taivation for this work
was that some weak aspects of well-established similaigsurements. For example, the def-
inition for a number of measure types is domain-specific sischetwork measures that require
an appropriate structure. In addition, it was observed diftein the underlying assumptions
were not clearly mentioned. Lin's work is based on the follmyvtwo generic characteristics
regarding the definition of similarity measures:

1. Universality. Similarity is defined by the perspective of information thedSuch defi-
nition is expected to apply in any domain/task that can béatdistically modeled.

2. Theoretical justification. The definition of similarity should originate from a set of
appropriate assumptions. This foundation is expectedite dne derivation of the re-
spective formula(s).

Moreover, a number of intuitions were proposed regardirgiimilarity between two “objects”
AandB, 81 (A, B) , as follows:

'Here, the notion of “object” is used with a broad sense. Examgf such objects are words, images, etc.



1. 81(A, B) is related with the commonality ot and B: more commonality indicates
more similarity.

2. 81,(A, B) is related with the differences of and B: more differences indicate less
similarity.

3. Regardless of the commonality, the maximum valu8 (fA, B) is obtained only ifA
and B are identical.

The following assumptions were made

1. The commonality betweea and B is denoted a§(C(A, B)), whereC(A, B) stands as
a proposition about the commonality dfand B, while J denotes the information of a
proposition. The information of a proposition can be corepuby taking the negative
logarithm of the proposition’s probability, e.df C(A, B))= —logp( C (A, B)).

2. Thedifference betweetandB is defined a§(D(A, B))—I(C(A, B)), whereJ(D(A, B))
stands for a proposition describintjand B.

3. The similarity betweem and B is a functionf;, of their respective commonalities and
differences 8. (A, B) = fr(J(C(A, B)),J(D (A, B))).

4. 81.(A,B) = 1if AandB are identical.
The following theorem was reached by Lin’s analysis.

Theorem 1 The similarity between A and B is measured by the ratio betee amount of
information needed to state the commonalitydoind B and the information needed to fully
describe whatd and B are.

_ logp(C(A, B))

SL(AB) = o p(D(4, B)

(1.2)
An interpretation of this theorem states that knowing themnality of A and B, S1.(A, B)
corresponds to the amount of the extra information needethédetermination of those ob-
jects. The generic definition of similarity proposed ing) was applied on a number of tasks
including similarity computation using ordinal values;irsg similarity based on character in-
sertions/deletions, and estimation of word similarity lekpng contextual features (by adopt-
ing the distributional hypothesis of meaning) or taxonootiaracteristics (use of the WordNet
hierarchy)Lin [1999.



1.2.3 Measurability Without Metricity

In essence, the required elements for the computation adlasity between two objects is a
set of appropriate features and a similarity measure. Twerses are widely-used for the
transformation of a similarity measu$einto a dissimilarity (or distance) measule (i) D =

1 — 8 if the upper bound of equal tol, and (ii)) D = ﬁ Lin [1999g; Sahlgren[2004.
This is a rather technical manipulation under the (cogajti@ssumption that similarity and
dissimilarity are linearly related. These elements resendes the definition of a metric space
Pekalska and Duif20093: a pair(F, D), whereX is a set and is a distance function (metric)
D:Fx F —RY.Forallz,y, 2z € F the following are satisfied:

1. Reflexivity: D(x,z) = 0.

2. Symmetry: D(z,y) = D(y,x).

3. Definiteness:D(z,y) =0 =z = y.

4. Triangle inequality: D(z,y) < D(z, z) + D(y, z).

DSMs do not constitute true metric spaces, since the tgaimglquality is violated, e.g.,
D(“tree”, “forest”) £ D(“tree”, “flower”) + D(“forest”, “flower”), whereD is a dissimilarity
measure. Strictly speaking, any similarity/dissimikafiinction defined over DSMs can not be
regarded as a true similarity/dissimilarity metric; “meses’ is a more precise term rather than
“metric”. However, it has been a commonplace in the liten@taf DSMs (including the present
thesis included) the interchangeable use of both terms .

1.3 Applications

Semantic similarity computation between words is closelgted the problem of word sense
disambiguation (WSDAgirre and Edmond$2007. WSD methods can be divided into two
main categories: (i) supervised approaches that apply imadarning for learning sense la-
bels for a set of words with respect to a given context (seaselihg), and (ii) unsupervised
approaches that automatically discriminate (discovemdveenses without label assignment.
For both categories the key criterion is the semantic siitylaetween the target word and the
candidate senses. The similarity at the word level is ambagssential features for comput-
ing semantic textual similarity (STS), i.e., similaritytbeen larger segments of text such as
sentences. STS was investigated at various levels: lexivaloutsopoulos and Malakasiotis
[201Q, syntacticZanzotto et al[2009, and semanti@Bos and Markerf2005; Rinaldi et al.
[2003. Machine translation evaluation metrics were also appl@ similarity estimation at



the lexical level similarityFinch et al.[2005; Perez and Alfonsecf2005 including BLEU
Papineni et al[2007 that is based on word n-gram overlap. Recently, the tasleonfence
similarity estimation has attracted the great interestefresearch community as shown by
the participation in the respective task of the SemEval 28dRre et al.[201]. The top
performing systems utilized numerous types of featuressandarity metrics in combination
with domain adaptation techniques. The success of thogensgscan be mainly attributed
to the efficient incorporation of machine learning, whilenpauestions remain open regard-
ing the underlying models of compositional meaning. STSasatly related to the problems
of paraphrasing, which is bidirectional and based on semaquivalenceMadnani and Dorr
[2010 and textual entailment, which is directional and basededations between semantics
Dagan et al[2004. There is a variety of applications for semantic similgriioth at word and
sentence, including information extracti@zpektor and Dagaf200d, question answering
Harabagiu and Hicl2004, machine translatioMirkin et al. [2009.

The analysis of affective text, i.e., analysis of emotior@htext, is a recent research area
that pertains several applications of Natural Languagedasing, e.g., opinion mining and
sentiment analysiBalog et al.[2004; Hu and Liu[2004. The assignment of affective scores
to words constitutes the building block for affective terlysis. For a given set of words,
semantic and affective similarity are related under theoltygsis that “semantic similarity can
be translated to affective similaritylalandrakis et al[2013. In Turney and Littmarj2003,
the affective score of a new word was estimated using a fixedfseords (also known as
“seeds”) for which their affective scores, as well as thespective semantic similarities were
known. In particular, the affective score for a new word isnpoited by algebraic combi-
nations of the similarities and ratings of seed words. Untie utilization of a fixed set of
seedsTurney and Littmar[2007, the automatic selection of seeds was investigatelflan
landrakis et al[201]] in combination with several kernels, i.e, functions fontolling the
contribution of semantic similarity. Handle multi-wordres. In Malandrakis et al[2013,
the problem of sentence-level affective rating was ingestid using a hierarchical (useof
grams) compositional framework in which multiword termsrevalso considered in order to
capture non-compositional semantics.

Semantic similarity has been also employed in the field okepalialogue systems (SDS).
Grammar induction depends on the availability of semaréisses that correspond to the do-
main concepts. The basis for the creation of such classé& isemantic similarity between
the candidate terminals, following an agglomerative atgor Meng and Silj2003; Pargellis
et al.[2004. Various measurements of similarity have been compar&aigellis et al[2001,
2004. Variations of the aforementioned algorithm include camaltion of similarity metrics
losif et al.[200§ and soft-clusterindosif and Potamianof2007. Word similarity has been



also employed in class-basedgram language modelingrown et al.[1997. In Niesler et al.
[199§, various class-basea-gram language models were interpolated with word-basedt mo
els. Classes included clusters of words of same to pampedch, as well as semantically
similar words. The interpolated models obtained highefgoerance in terms of perplexity
and word error rate.

The last decade similarity-based approaches are combiitiediata mined from the world
wide web. The use of web as a corpus appears to be a workingpsola the data sparseness
problem InCimiano et al[2004, linguistic patterns were employed for the identificatioi
ontological relations. The goal was the extraction of ratevnstances for certain concepts of
a given the domain ontology. Relatedness measures were@pging web-based statistics.
For example, “South Africa” was found to be an appropriattance for concept “country”
rather than “hotel” InMoschopoulos et al[2013, the relatedness between actors in policy
networks were estimated using a variety of features inolydieb page counts (number of
hits), outlinks, and lexical information extracted fromlwdocuments or web snippets. The
features were evaluated for both positive and negativaganistic) actor relations. The web
has been also exploited for a variety of other applicatisnsh as social networks extraction
Jin et al.[2007, collaborative filteringMobasher et al[2007, sentiment analysi§&sodbole
et al.[2007, music genre classificatioBchedl et al[20049.

1.4 Contributions

The first part of the present thesis deals with a web-baseldauelogy for the estimation of se-
mantic similarity between words and biomedical terms. Ortb@main characteristics of this
approach is that is fully unsupervised, i.e, no knowledggmurces are required. The web cov-
ers a plethora of domains, authoring styles and languagesisaonsidered as fertile ground
for automatic semantic knowledge acquisition. Web dataaacessed via the submission of
appropriate queries to web search engines. More spedffitath different types of web data
are investigated for the estimation of semantic similarfyrst, the number of hits returned
by web search engines are utilized as statistics of wordccareence. A number of well-
established co-occurrence-based metrics are appliedampaced for the estimation of word
semantic similarity. The second data type deals with welueh@nts, which are downloaded
for corpus creation. This is conditioned on word-pairs,liekty requesting the co-occurrence
of word-pairs in the same document through the use of cotiygn@&ND queries. This cor-
pus is exploited for the constructing a typical DSM basedtandistributional hypothesis of
meaning. In addition, a number of parameters are investigaicluding the window size ap-
plied for the extraction of contextual features and vargeleemes for weighting those features.



Overall, the performance of this methodology is shown todraggarable to that of supervised
resource-based algorithms.

The core of the thesis concerns an efficient and scalableothethgy for corpora creation
from web data in combination with a novel network-basedo(al#ly unsupervised) implemen-
tation of DSMs. Despite the success of the aforementiongtiadelogy a limitation regarding
scalability is introduced by the utilization of AND queriegiven a lexicon of sizeV, the
required query complexity for corpus creation is quadratiev?). In order to tackle this limi-
tation, a method of linear query complexity with respeciMads proposed for corpus creation.
The key idea is the employment thousands of individual @seaind the aggregation of the
harvested data. This strategy smooths the domination gfferequent words, while enables
the better representation of rare words within the corpuextNa semantic network is created
encoding the relevant corpus statistics. This builds upenformulation of semantic neigh-
borhoods, which capture diverse information at the syitasemantic and pragmatic level.
Motivated by maximum sense and attributional similaritsethnovel network-based similarity
metrics are proposed. Combinations of co-occurrencedbasd contextual metrics are in-
vestigated for the computation of semantic neighborhoodkstlae related network similarity
metrics. The performance of the main network metrics is migestigated for the case of ab-
stract and concrete nouns for both English and Greek. Meretw proposed network-based
DSMs is extended towards: (i) the creation of multimodalvaeks through the integration of
visual and textual features, and (ii) the estimation of sginaimilarity between compositional
expressions.

Beside the estimation of semantic similarity that pertanwide range of lexical rela-
tions, we deal with the automatic discrimination of two faneental types of (lexical) rela-
tions, namely, associative and semantic. These relatjpestplay an important role for the
disciplines of lexical semantics and psycholinguisticdarek different types of discrimina-
tive features extracted from web-harvested data are pedpoEhe best performing feature is
motivated by findings in cognitive science and psycholisticé about the asymmetry of the
semantic priming.

1.5 Organization of the Thesis

Two models for estimating semantic similarity between vgaacke presented in Chap@rThe
first type relies on the exploitation of knowledge resourcegsh as WordNet and Wikipedia.
A number of different approaches are described includirgrtamic and information content-
based methods. A completely different approach for theasaptation of word semantics and
the measurement of semantic similarity is adopted by thergbtype: the DSMs framework
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whereas the distributional hypothesis of meaning is adbpRarticular attention is given to
Vector Space Models (VSM), which constitute the main impatation of DSMs.

In Chapter3, we focus on the creation of problem of fully unsupervisedswased DSMs
used for estimating the semantic similarity computatiotwieen words and biomedical terms.
In order to estimate the semantic similarity between weoeds's two families of unsupervised,
web-based similarity metrics are investigated. The firgetgonsiders only the number of hits
returned by a web search engine. The second is fully corpsseb the top-ranked documents
returned by a web query are downloaded and the contextudbsiynis employed for the
estimation of semantic similarity. In addition, variousismes for the weighting of contextual
features are investigated. The proposed methodologyresjub expert knowledge or language
resources and, as a result, it can be regarded as languagstiag

A new network-based implementation of unsupervised DSMzaposed in Chaptet.
First, a corpus of document snippets is harvested from the When, a semantic network is
constructed encoding the semantic relations between vitttie corpus. Co-occurrence and
context features are used to measure the strength of redatibhe network is regarded as a
parsimonious representation of the information encoddtiércorpus. We then the notion of
semantic neighborhood is defined, as well as three assteiaérics of semantic similarity.
The proposed semantic similarity metrics are motivatechbyriaximum sense similarity, attri-
butional similarity and metric space assumptions. In dafdithe main network-based metrics
are further investigated for the case of abstract and ctaa@uins.

In Chapter5, we deal with two basic types of lexical relations, namesgaxiative and se-
mantic. More specifically, the automatic classifications¥a@ciative and semantic is addressed.
Lexical relations such as synonymy, hypernymy/hyponynopstitute the fundamental types
of semantic relations. Associative relations are hardelefme, since they include a long list
of diverse relations, e.g., “Cause-Effect”, “Instrumémency”. From the perspective of cog-
nitive scientists, associative relatedness is triggeyethd co-occurrence of words , while the
definition of semantic relatedness is controversial. Irtigalar, two novel features are pro-
posed for the discrimination of these relations using imfation automatically extracted from
the web, while syntactic patterns are also investigated

In Chapters, the main network-based similarity metrics proposed inpgidrat are applied
to three problems: (i) the integration of visual with textéeatures for the creation of mul-
timodal semantic networks, (ii) the estimation of semasirilarity between compositional
noun compounds, based on the utilization of semantic neitjidnds and the adaptation of
network similarity metrics, and (iii) the creation of a silamoun taxonomy.

This thesis concludes with Chaptérwhere on going and future research directions are
also discussed. The further investigation of semantichigithoods is of immediate interest

11



including normalization issues and the application of athms from graph theory. Also, the
adaptation of the proposed network metrics to the probleseofence-level semantic similarity
estimation constitutes an interesting extension of thevoxt-based DSMs.
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Chapter 2

Models of Lexical Semantic Similarity

In this chapter, two widely-used models for estimating satioasimilarity between words are
presented. The first type relies on the exploitation of kealgk resources, such as WordNet
and Wikipedia. Distributional semantic models (DSMs) d¢itate a different type of models
that adopt the distributional hypothesis of meaning, adiogrto which the (corpus-based)
contextual environment of words is considered.

2.1 Knowledge-based Models

2.1.1 WordNet-based

WordNet is a lexical network of words of certain parts of sgeenouns, verbs, adjectives and
adverbs, Words are organized into a hierarchy of relationkiding hyponymy/hypernymy
(IsA), meronymy, antonymy and the ComplementOf relationerlg sense of each word;,

is assumed to correspond to a lexicalized concepthich is defined with respect to (i) a set
of synonyms (synsets), (ii) a definition (gloss), and (iii) @ample of usage. For instance,
the first sense of the noun “car” in WordNet3.0 has (“autoredpfmachine”, “motorcar”) as
synset, “a motor vehicle with four wheels; usually propglg an internal combustion engine”
as gloss, and the sentence “he needs a car to get to work” asaampke of usage. Each
concept stands as a node in this network, while conceptsrdedl via the aforementioned
relations formulating the edges between nodes. The fatigwdiefinitions will be adopted for
the description of WordNet-based similarity metrigssdanitsky and Hirsf2004:

1. The shortest path between two conceptsandc;, has length(c;, c;). The length is
computed in terms of nodes or edges.
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2. The depth of a concept, d(c¢;), is defined as the length of the path from the hierarchy
rootr to ¢;. Thatisd(c;) = I(r, ¢;).

3. The most specific common subsumer for two conceptmdc;, is denoted as(c;, ¢;).

4. LetS(c;, c;) be ametric of semantic similarity between conceptndc;. The semantic
similarity between two words); andw; is computed as follows:

Lwy) = L 2.1
S(wi, w;) cieé?,%feo,-{s(c“ ¢} (2.1)
whereC; andC; denote the set of WordNet concepts that stand as senses fids w0
andw;, respectively.

2.1.1.1 Length of taxonomic paths

A straightforward approach for the computation of word seticasimilarity in the framework
of a hierarchy is to take into account the length of the pa#t #xist between their senses
(concepts). According t®esnik[199] the similarity between two concepts is inversely pro-
portional to the length of their respective path. This hiests was adopted iRada et al.
[1989 for estimating the similarity of medical terms using the $4 (Medical Subject Head-
ings) hierarchy. More specifically, the number of edges lin&ttwo terms was assumed to
indicate the semantic distance of terms. This approach wasaed for an information re-
trieval task yielding good performance. The success ofdinigple approach was explained in
Lee et al[1993: the utilization ofi(c;, c;) over a semantic network that is built upon a variety
of relations fails to capture the semantic similarity begwe andc;, however, the performance
of l(c;, ¢j) improves when only ISA relations are considerétirst and St-Ong¢1999 have
proposed the following measurement for the computationeaiantic similarity between;
andc;:

Sus(wi,w;) = a—1(c;, ¢j) — Btei, ¢j), (2.2)

whereo and 3 are fixed constants (set as= 8, § = 1), while t(¢;, ¢;) denotes the num-
ber of times the direction df(c;, ¢;) changes. Three types of directions were defined across
l(c;, ¢5): (i) horizontal (antonymy), (i) upward (hypernymy, megaony), and (jii) downward
(hyponymy, holonymy).

A drawback of the above length-based approach is the implsumption that every edge
correspond to the same amount of (semantic) distance. Howascording tdResnik[1995
this does not hold since there exists a considerable vhityatgigarding the semantic distances
represented by edges. This was observed for sub-netwohlksh ¥end to be denser that others.
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A number of scaling approaches have been proposed for aiftlyehis issue as follows.

The approach oBussngd1997 was motivated by the finding that sibling-concepts that are
positioned at the lower levels of the hierarchy tend to beensimilar in contrast to those that
lie at the upper levels. A dual directionality was assigreedach edge enabling the distinction
of the corresponding relation as forward, i.e., relation betweer; andc;, and backward,
¥, i.e., relation between; andc;. Also, for each relation a range of weights was defined
[min,., max.]. The core idea is to normalize the weight of each edge thegspond to a relation
r and leaves frona;, q(c; — ), by the total number of edges ottype that also leave from

denoted as, (¢;): _
max,. — min,

er(ci)

q(c; = r) = max. — (2.3)

The semantic distance between two adjacent conegptsdc;, Ds(c;,c;), is defined as the
sum of their respective weights computed across the twatibres of the underlying relation,
i.e.,r andr’, normalized by the maximum concept depth:

q(ci = 1) +q(c; — r’)

Delene) = =5 axtdta), die)}

(2.4)

The semantic distance between two conceptand c; that lie in arbitrary positions in the
network is estimated by summing the semantic distanceseahdincent concepts (according
to (2.4)) that exist in the shortest path that linksandc;.

The approach proposed ifvu and Palme[1994 incorporates the depth of the most spe-
cific common subsumer @f andc;, d(m(c;, c;)), as a scaling factor into the computation of
semantic similarity between andc;:

2d(m(c;, ¢j))
l(ci,m(ciycj)) + U(ej,mle, ¢5)) + 2d(m(c;, ¢5))

Swr(ci,cj) = (2.5)
In Leacock and Chodoro199g, the length of the shortest path betwegnand c;,
l(ci,¢j), is normalized by the maximum depth that exists in the hatraiand the semantic

similarity betweerr; andc; is computed as:

Src(ci,cj) = —log 2m;}£i’(jﬁi(0)}, (2.6)

where C' denotes the set of all concepts that are included in the mktwdnlike other ap-
proaches this type of normalization is not conditioned @dbncepts under investigation, i.e.,
it depends only on the used network.
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2.1.1.2 Information content

The core idea of information content-based approachesisuigmentation of typical path-
based methods of similarity computation through the incation of corpus-based statistics.
The influential work ofResnik[199] is motivated by the hypothesis that two concepts are
similar to the degree of their shared information. In therfesvork of WordNet this can be
implemented by considering the position of the most spesifltsumer of the concepts under

comparison. An excerpt of the WordNet hierarchy includimgckel”, “dime” and “credit

medium of exchange

money

Figure 2.1: Excerpt of the WordNet hierarchy for “nickel’tlifne” and “credit card”. IsA
relations are denoted by solid lines, while dashed lineddstar omitted intermediate nodes
Budanitsky and Hirsf20064; Resnik[1995.

card” is shown in Fig2.1 Solid lines denote ISA relations, while dashed lines regné the
intermediate nodes not shown for the sake of space. Thdagrosit most specific common
subsumer varies according to the concepts of interest.n*dor “nickel” vs. “dime”, and
“medium of exchange” for “dime” vs. “credit card”. Unlike &in”, “credit card” is an abstract
concept, which is positioned at the upper levels of the hibga According toResnik[1995
the similarity between two concepts is estimated using tiebability of occurrence of their
respective most specific subsumer, defined as

Sr(ci, ¢j) = —logp(m(ci, ¢j)), (2.7)

where—log p(m(c;, ¢j)) stands as thiaformation contenpf m(c;, ¢;). In Resnik[1999, the
Brown CorpusFrancis and Kéera[1987 was used for estimating the probability of concept
c; as

> wew, f(w)

N , (2.8)

plai) =
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whereV; denotes the set of words for which concepis a subsumer, functiorf(.) is the
frequency for wordw, and N is the total number of WordNet words that are included in the
corpus. For the example depicted by Rgl, according to the counting approach &fg) the
probability of “coin” is determined by the corpus frequasgtiof “nickel” and “dime”. Ac-
cording to @.8) and @.7) the similarity between two concepts is increased as theifspty of
their most specific subsumer increases. In contrast to tieli@esed similarity approaches, the
metric defined byZ.8) utilize the structure of the underling hierarchy by id&ntig only the
most specific common subsumers, ignoring the links betweeigdncepts under comparison.
According toBudanitsky and Hirsf2004, this strategy has some potentials drawbacks as it
can be exemplified by the equal similarity scores of (“morieyedit”) and (“dime”,“credit
card”), since both pairs have the same most specific subsumetmedium of exchange”.

The similarity metric of 2.7) was extended by the approach proposediang and Conrath
[1997 including the information content of the individual coptec; andc;. In particular, the
proposed metric is a dissimilarity measurement defined ks

Dy(ci,cj) = 2logp(m(ci, ¢j)) — (log p(c;) + log p(c;)). (2.9)

Interestingly, inPederserf201( it was shown that the use of (sense) untagged corpora
by information content similarity metrics yielded higherformance compared to the largest
sense-tagged corpus (SemCor) for the task of semantiasitpicomputation between words.

2.1.1.3 Gloss-based

This category of similarity metrics relies on the explagatof word glosses (i.e., definitions)
typically included in dictionaries and related resourc&sie key idea was initiated blyesk
[1984 for the task of word sense disambiguation. The core of thekladgorithm is the as-
signment of a sense to a target word provided within contgx@xamining the overlap of its
glosses with respect to the glosses of the other co-ocgufirnthe particular context) words.
For example, the glosses for the first WordNet senses oft*fauid “tree” are “the ripened
reproductive body of a seed plant” and “a tall perennial woplant having a main trunk and
branches forming a distinct elevated crown; includes bgthrpsperms and angiosperms”, re-
spectively. There is a non-empty overlap because bothagasslude “plant” (stop words are
excluded). Each gloss was represented as a bag-of-woris, théa target word was assigned
the sense for which gloss overlap was maximized. This ideslvesed on the assumption
that words that co-exist within the same context tend tor iefehe same topic. The original
algorithm was applied over three dictionaries, namely, $iats 7" Collegiate, the Collins En-
glish Dictionary, and the Oxford Advanced Learner’s Dintoy of Current English A number
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of other early approaches have been also employed diciksrfar word sense disambiguation,
e.g.,Niwa and Nitta[1994; Wilks et al.[1990.

The availability of word glosses in WordNet has attractedl ititerest of recent research
efforts, extending the early dictionary-based approachesBanerjee and Peders¢a003,
the original Lesk algorithm was extended by the idea of edéengloss overlap for the defi-
nition of a semantic similarity metric. In particular, theoWiNet gloss of a word of interest
was expanded by considering the glosses of other (direalgied words. The latter were
identified by exploiting the WordNet hierarchy and takingpimccount relations such as hy-
pernymy/hyponymy, meronymy, etc. The motivation for thiseasion was the observation
that the length of glosses is of limited sizeproviding no adequate vocabulary for the task
of similarity estimation. In addition, the computation dbgs overlap was extended Baner-
jee and Pedersd2002 by considering the commam-grams of glosses under comparison, in
contrast to the original Lesk algorithm where only unigranese used. The extended gloss
overlap algorithm was found to outperform the Lesk algonitlith respect to the SenseEval-2
word sense disambiguation task.Ratwardhan and Pederg@®0q, a corpus-based method-
ology for estimating semantic similarity was combined vtith work ofBanerjee and Pedersen
[2007 regarding the gloss extension. First, each word of interas represented by a vector
consisting of second-order co-occurrences derived fromrpus. The idea of second-order
vector was proposed ychitzg 1999 in order to tackle the sparsity of VSM. All the glosses
included in WordNet were aggregated for the creation of @au®ifrom which the aforemen-
tioned vectors were built. Second, each vector was augmhdntefollowing the approach
suggested iBanerjee and Pedersg2004. The similarity between two words was estimated
as the cosine of their respective vectors. The gloss vepfmoach was reported to outperform
the extended gloss overlap algorithm for the task of semantnilarity estimation between
words, and also obtained higher results for the SenseEwalrd sense disambiguation task.
Gloss-based vector were also employediikpen and Hirs{2003 for the disambiguation of
near synonyms .

2.1.2 Wikipedia-based

WordNet constitutes the most widely-used knowledge resodior a large number of ap-
proaches dealing with several semantic tasks includinge#tienation of semantic similarity
between words. Recently, the collective effort of the Widfa project has created a large and
continuously updated resource of encyclopedic knowleldgedttracted the interest of several
research communities including computational semantics.

! The average length of WordNet glosses was reported to be sexelsBanerjee and Peders{2003.
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Wikipedia concepts (i.e., articles) were used by Expli@ntantic Analysis (ESA) pro-
posed inGabrilovich and MarkovitcH2007 for estimating word semantic similarity. More
specifically, an index of the Wikipedia articles was consted with respect to the words of in-
terest. Each word was represented by a vector with each diorecorresponding to an article,
term frequency-inverse document frequency was appliedviaghting the vector elements.
The similarity between words was estimated as the cosinbeif vectors. An extension of
the ESA algorithm was proposed biassan and Mihalceg2009 dealing with the weighting
of vector elements. Based on the observation that the ES#itdg seemed to exhibit a bias
towards larger articles, the values of vector elements wermalized according to the length
of the corresponding article. In addition, the vector eleteavere further normalized taking
into account the depth of the corresponding concepts in ttk@@dia category tree, assigning
greater weight to more specific (i.e., positioned at lowee tievels) concepts. The similarity
between words was estimated by a Lesk-like measurebseshi 1984 based on the overlap of
concept vectors. Temporal Semantic Analysis (TSA) was estggl inRadinsky et al[201]]
as an extension of the ESA algorithm. The key idea of the T§Ardhm was the modeling of
the “temporal” characteristics of words (given an artiadlection) for the estimation of their
semantic similarity. Such characteristics were defineth véspect to the publishing dates of
New York Times articles. The motivation for this approachswiae observation that seman-
tically similar words tend to appear in articles publisheduad a certain date, although they
may not co-exist within the same article.

Wikipedia was used mainly as an article collection by theefeentioned approaches, ig-
noring the underlying structure, i.e., the links betweditias. This structure was utilized by a
number of research efforts for representing the semantioads and computing their seman-
tic similarity. In Milne and Witten[200g, a Wikipedia concept (or word) was represented as a
vector consisting of incoming or outgoing concepts. By mawg concepts are meant the con-
cepts that point to the target concepts, while the outgoorrepts are the concepts to which
the target concept points to. The vector cosine was usedfionaing the similarity between
concepts. The link-based representation was also emplioyed and Cher{201(, where the
concept similarity was computed using an overlap-basedunrement like the Lesk algorithm
Lesk[1989 or the taxonomic-based metric proposediin and Palmef1994.

The exploitation of multiple knowledge sources was moédaby the observation that the
type of semantics of the (lexical) content of each resoureediferentZesch et al[200§.
Several fusion schemes for representing the semantioniafiton have been followed for re-
sources like WordNet, Wikipedia, and Wiktionary, e.g.,a®@pe representations that are com-
binedSzarvas et a[201] or a joint representatiodhang et al[2011].
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2.1.3 Network-Based Approaches

The WordNet- and Wikipedia-based approaches discusseedcitng2.1.1and Sectior2.1.2
respectively, can be considered as network-based onesthi@aised resources are structured.
However, the presented methods seem to make a simple use widlerlying network, rather
than adapting other graph-based algorithms or related Istaieen from the literature of cog-
nitive science. For example, regarding WordNet the majdwoek feature is the length of
the path existing between concepts, while only the diretslibetween concepts are used for
the case of Wikipedia. In this section, a number of apprasetie presented that apply more
sophisticated algorithms and models for the task of semaitiilarity estimation.

In Gouws et al[201(0, a the network was constructed using the links between \Wikia
concepts, i.e., articles. The similarity between two wdaisiceptsyy; andw; was estimated
by applying the spreading activation modabllins and Loftug1975 over the network. Ini-
tially, a non-zero activation value was assigned to the rmmteesponding tav;, while the
activation values for the other nodes were set to zero. 8Sprgactivation was triggered in
order to propagate the initial activation valuewfto w; through their links. After the termi-
nation of the spreading process activation values werenaaiated inw- and the rest nodes of
the network. In order to represent the semantica,0& vector having as elements the (final)
activation values of the network nodes was built. The saroegature was repeated for the case
of wy. The semantic similarity between; andw; was estimated as the sum of the final acti-
vation values ofv; andw; or as the cosine of their respective vectors. The approamtoped
in Wojtinnek et al[2019 was also motivated by the spreading activation model wherery
large network was constructed by exploiting the links bemvgVikipedia concepts. For each
node a vector was created including a number of strongly ected nodes. The similarity be-
tween two words was estimated as the cosine of their respeaitors. The Wikipedia-based
network was found to yield better performance compared touatsired approach for network
creation based on the British National Corpus. Anotheraneteeffort that was inspired by the
spreading activation model is the work ldarrington[201(J where a semantic network was
created from an unstructured corpus as opposed to the &tjaiof structured resources like
Wikipedia. However, the links between words were identifisohg a set of linguistic tools for
named entity recognition, parsing, and semantic analysisimber WordNet-based similarity
metrics were adapted by the WikiRelate! syst8trube and Ponzet{@0049 to the Wikipedia
structure. More specifically, three types of metrics weredusamely, path-baseddacock
and ChodorowW1999; Rada et al[1989; Wu and Palme[1994), information content-based
(Resnik[1999), and gloss-basedB@nerjee and Peders¢f007). In Hughes and Ramage
[2007, a network was built using WordNet links and statisticatrthe sense-tagged SemCor
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corpus. This network was considered as a Markov chain ardbrarwalks were applied for
computing stationary distributions for the words of instreA variant of the Kullback-Leibler
divergence was proposed for estimating the similarity leetwwords. A WordNet-derived
network was also used iAgirre et al.[200§ where the personalized PageRank algorithm
Haveliwala et al[200 was applied for the computation of a probability distribuatfor every
target word. Word similarity was estimated via the cosimailsirity between the vectorized
distributions.

2.2 Distributional Semantic Models (DSMs)

The fundamental idea of distributional semantic modelsNISSis the representation of word
meaning by considering the context in which the word ocalexy known as thdistributional
hypothesis of meaningThis idea originates from early works in theoretical lirggiecs Firth
[1957; Harris [1954 and even philosophyVittgenstein[1953, and it is also summarized
by the famous statement of Firth “you shall know a word by theapany it keeps”. Although
Wittgenstein was mainly interested in the paralinguissipexts of language, e.g., social factors,
his argument “meaning is use” is consistent with the undeghassumption of DSMs.
Word-occurrence is the building block of high-dimensiosphces for context representa-
tion known as vector space models (VSM)rney and Pant¢P01(J. Such models are defined
with respect to a specified vocabulary; one dimension igalkx for each vocabulary item.
This constitutes a spatial representation in which theonotif semantic similarity is approx-
imated in terms of proximitysahlgren[200§. The geometric metaphor of meanigs been
theoretically investigated ihackoff and Johnsofil98Q 1997. The core idea is that words
with similar meaning exist “near” each other, while the oirgkar ones are positioned “far
apart”. According to the geometric metaphor of meaning,dsasre represented as points
in a space, while their similarity is considered as the prutyi between the corresponding
points Sahlgren2004. One of the first exprerimental studies of the distribusibhypothesis
of meaning isRubenstein and Goodenouftf69, suggesting that “words which are similar
in meaning occur in similar contexts". This statement wasgisiéed in Schitze and Pedersen
[1995, considering the data sparseness problem, as “words miitas meanings will occur
with similar neighbors if enough text material is availabl€he linguist Zelling Harris initially
believed that it is possible to typologize the entire spautof semantics based solely on their
distributional propertieslarris[1968 1970. Later, he revised this belief acknowledging the
effect of extralinguistic factors. The core idea of his wizkhat the differences in meaning are
mediated by differences in distributional features: “f wé consider words or morphemes
and B to be more different in meaning thatandC, then will often find that the distributions
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of A and B are more different than the distributions_4fandC'. In other words, difference of
meaning correlates with difference of distribution”. Tlalest validation of the distributional
hypothesis was conducted Rubenstein and Goodenouft96g where the contextual simi-
larities of 65 noun pairs where compared to synonymy scores given by gsidérs worth

to quote their main conclusions: (a) “there is a positivatiehship between the degree of
synonymy (semantic similarity) existing between a pair ofaés and the degree to which their
contexts are similar”, and (b) “it may safely inferred thatar of words is highly synonymous
if their contexts show a relatively great amount of overlagference of degree of synonymy
from less amounts of overlap, however, is apparently uamesince words of low or medium
synonymy differ relatively little in overlap”. Moreover, enstein and Goodenough, noted
that the generalization of the above conclusions is depgrate factors like vocabulary size
and homogeneity of content. Three decades later the exgetriof Rubenstein and Goode-
nough was repeated iiller and Charleg1999 (30 out of the65 pairs were used) where
similar conclusions were reached.

VSM are typically formulated as matrices constituting arfal implementation of DSMs.
There are two common types of such matrices, namely, wantegband word-document ma-
trices, constructed for computing similarity between vedrdndauer and Dumajd997 and
documents/querieSalton et al[1979, respectively. This work is related with the word-context
type, where each target word is represented by a vectorigmatv) that contains the words
(matrix columns) that co-occur with it within a specified text (also referred as contextual
features). Beyond its simplicity, the popularity of thipresentation can be attributed to the
fact that it is well-aligned with the distributional hypetsis of meaning. The construction of
VSM includes the following parameters: (i) extraction ohtextual features, (ii) schemes for
weighting the extracted contextual features, (iii) opsibiechniques for dimensionality reduc-
tion, and (iv) metrics for the computation of similarity (@istance) between the target words.

2.2.1 Extraction of Contextual Features

The primary input of DSMs is a corpus (or a set of corpora) wehegical content is assumed
to capture the semantics for the target words. Let the fatigveentences serve as an (toy)
example of such a corpus.

Cars are notor vehicles with four wheels;

usual |y propelled by an internal conbustion engine.

Atree is a tall perennial woody plant having

a main trunk and branches form ng a distinct el evated crown.
They built a large plant to manufacture

a special type of engine for cars.
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He reads his newspaper at breakfast.

Following the distributional hypothesis of meaning thetfissue to be defined is the context
according to which the contextual features for the targetiwavill be extracted. The definition
of context seems to depend on the problem under investiggtidlgren{200§. For example,
within the framework of Information Retrieval this is typity defined at the document level
where the task at hand is the topical similarity. However,aiamarrow contextual scope may
be used for the problem of word similarity e.g., sentenggaél or even few words in the left and
right context of the target wor@lark[2013. The word-context matrix for the example corpus

breakfast cars crown large motor ... tall trunk vehicles
engine 0 2 0 0 1 .. 0 0 1
newspaper 1 0 0 0 0 .. 0 0 0
plant 0 1 1 1 0 e 1 1 0
tree 0 0 1 0 0 w1 1 0

Table 2.1: Example of word-context matrix.

presented above is presented in Tahlkefor which the context was defined at the sentence
level. A sample of contextual features (columns) is illattd for few target words (rows). The
value of each matrix element stand for the (raw) featureueagy computed within the context
of the corresponding target word. More weighting schemesdoring the contextual features
are presented in Sectiéh2.2 A number of corpus pre-processing steps are required &@r su
representation, e.g., sentence splitting for this examfléher pre-preprocessing steps may
include lemmatization, stemming, normalization, filtgriof stop words etc. Note that there
are no standard procedures for the pre-processing of @tpeards the construction of VSM.
e.g., inclusion of stop words as contextual features. Oneemord-context representation is
completed the meaning of each target word is reflected byittegtual features. According to
theoretic linguistics the relation between target words emntextual features is characterized
assyntagmaticwhile the words that tend to occur in similar contextualimmwment are defined
asparadigmaticallyrelatedCruse[1986; Sahlgren2009.

2.2.1.1 Unstructured and Structured Models

There are two main approaches regarding the extractioneotdintextual features, namely,
unstructured and structuréhroni and Lenc[201(0. This distinction deals with the consider-
ation (or not) of syntactic relations between the targetds@nd their contextual features.
Unstructured approaches do not consider the linguisticctre of context with respect
to the target words. A contextual window of fixed sizZ€ (vords) is centered on the target
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word and the surrounding lexical features that fall withiare extractedBullinaria and Levy
[2007; losif and Potamianof201(d. Specifically, the right and left contexts of lengi are
considered for each occurrence of the targen the corpus, i.e.,

[UK,L e V2L Ul,L] w [Ul,R V2,R - UK,R],

wherew; 1, andv; r represent the’” word to the left and to the right af respectively. The
feature vector for target is defined asl’, k = (tw,1,tw,2; .-, tw,n), Wheret,, ; is a non-
negative integer and is the context window size. Note that the length of the featuactor
is equal to the vocabulary sizg, i.e., all words in the vocabulary are considered as feature
(unless a selection is applied, e.g, exclusion of stop Wortlse i feature valué,, ; reflects
the occurrence of vocabulary worg within the left or right context windows™ of (all occur-
rences of) the ternw. As it was mentioned, the (optimal) size of the contextualdeiv may
vary according to the task under investigation, e.g., fronmediate context used for comput-
ing the semantic similarity between wordgjirre et al.[2009; losif and Potamianof201(,
to larger context size used for estimating the reaction timeng lexical primingLund and
Burgesqd1994. An extension of the unstructured approach is the employrokesecond-order
co-occurrence statistics for the creation of contextuatuiee vectorsSchitze[1998. Two
words are characterized by second-order co-occurrent¢eyf do not co-occur directly, but
both co-exist with a third word. Schiitze applied this exitem$or the problem of word sense
discrimination in order to tackle the sparsity of first-art#SM and improve its robustness.
The basic idea behind structured models is the utilizatfosyntactic relationships as fea-
tures for the creation of semantic spaces. Typical exangflesich relations are argument
structures (subject/object) and modifications (adjeeativan) extracted by shallow or full pars-
ing Pado and Lapat@007. Syntactic relations can be represented as 2-tuples aifrthenents
Grefenstett¢1994 or asn-tuples in order to incorporate direct and indirect depengisPado
and Lapatd2007. The paradigm of “one task, one model” of structured DSMs advanced
in Baroni and Lencf201Q by the arrangement of tuples into a third-order tensors Emiables
the creation of different semantic spaces for differentastin tasks (e.g., estimation of se-
mantic similarity between words, categorization of consgpomputation of verb selectional
preferences, etc.), while the extraction of dependenciesuis task-independent (“the same
distributional information can be shared across taskgi)Adirre et al.[2004, unstructured
DSMs were shown to obtain slightly higher performance theusctures ones.

2.2.1.2 Exemplar Models

The issue of polysemy is raised as a drawback regarding pinesentation of semantic spaces
adopted by traditional DSMErk and Padq201(d. Typically, in DSMs a single vector is
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used for representing the contextual features of a targed.wieor the case of a polysemous
target word the single-vector representation conflatesifes that correspond to the different
(in-corpus) senses of the target. This can be illustrateddsgrving the contextual features of
“plant” in the example of Tabl2.1 The use of exemplar models was proposed as an alternative
implementation of DSMs for addressing the problem of patygé&rk and Pad$201(; Reddy

et al.[201]]. Instead of a single vector, a set of exemplars is utilizedte representation of a
target word. The set of exemplars is defined as the set of{spgentences in which the target
occurskrk and Pad$201(Q. For example, the word “light” has a set 8f6, 126 exemplars in
the ukWaC corpufkeddy et al[201]. Each exemplar can be represented as a unstructured
(i.e., bag-of-words) or structured (i.e., encoding sytita®lations) vector. For a target word
given within context (e.g., sentential) polysemy is moddby the activation/selection of the
relevant exemplars with respect to a “point of comparisaviiere the latter can be regarded
as another exemplatrk and Padd201d. In Erk and Padd201q, the activation was con-
trolled by setting a threshold regarding the similarity émplars estimated by measurements
such cosine similarity or Jaccard coefficient. An approamheikemplar selection was pro-
posed inReddy et al[201]] for the case of noun-noun compounds, e.g., “traffic lighthe
basic idea was to constrain the exemplars of the one coastita include words semantically
related with the other constituent, e.g., exemplars ohtlignay include the word “car”. The
exemplar-based approach seems to be aligned with semask& where the words of interest
are provided within context. A related example is the s@eatf paraphrases for a target word
that occurs in a given contektrk and Pad$2010d. In Reddy et al[2011], the exemplar model
was applied in the framework of semantic compositionalitlythe task of similarity computa-
tion between noun-noun compounds. However, the polysenohamesm of exemplar models
is not obvious how is applied (i.e., which exemplars to usklaw) and benefits out-of-context
semantic tasks in comparison with the typical implemeaotetiof DSMs.

2.2.2 Weighting of Contextual Features

In this section, a number of widely-used measurements asepted for the weighting of the
contextual features. Following the definitions ©firran[2003 let (w,r,v) denote the co-
occurrence of target word and featurev under relatior within the specified context. Note
thatr can be any relation defined according to the used structuoetbinFor the case of un-
structured DSMs simply signifies the co-occurrence afandv. Also, let f(w,r,v) denote
the unnormalized corpus frequency(af, r, v).

Identity. This is the simplest weighting scheme assigninij relation r exists betweenv
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andv without taking into account the frequency of the relation:

tuw = 1. (2.10)

Freqg. This scheme employs the raw frequencyof r, v):

twi = f(w,r,v). (2.11)

RelFreq. In this schemef (w, r, v) is normalized by the frequency of target ward
tui = f(wi:”) (2.12)

Note that in the denominator thesymbol is used as a placeholder (for any relatiarr con-
textual featurey).

Tf—Idf. This scheme was inspired by the term frequency-inverserdentifrequency scheme
that is widely used in Information Retrieval:

by = L 0) (2.13)
Here, the notion of inverse document frequency is adapteithéoconstruction of word-content
matrices (instead of word-document matrices). For thippsen(x, r, v) denotes the number

of different relations in which the contextual featurés involved.

Gref94. This is an extension of the Tf-ldf scheme propose&Girfenstett¢1994:

_logy(f(w,r,v) +1)
= Toga(n(rr,0) + 1) (219

w,

The logarithm was introduced in order to reduce the dononatif high frequencies.
In this thesis, we have experimented with the most of thesafi@ntioned weighting schemes,
as well as with some variations of the Tf-ldf. More details given in Table3.1 of Section3.2
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2.2.3 Dimensionality Reduction

The typical dimensionality of the word-context matrix isi\¢eof thousands, while the vast
majority of its elements are equal to zero. The most widalgeutechnique for reducing the
dimensions of such matrices is the Singular Value Decontipas{SVD), which is based on
linear algebra. SVD can be applied both to word-documentvaord-context matrices, while
the estimation of similarity between documents and wordefisrred to as Latent Semantic
Indexing (LSI) and Latent Semantic Analysis (LSA), respety. The incorporation of SVD
within the framework of Information Retrieval was introgutbyDeerwester et a]1990. One
of the earliest applications of SVD for the estimation of ikamity between words is described
in Landauer and Dumai4.997.

The key idea behind SVD is the factorization of the originaitrix X with respect to three
matrices. The latter are utilized in order to formulate atoank approximation oX. This ap-
proximation usually results into a significant dimensidgaleduction: from tens of thousands
to few hundreds. In particular, the original matixis expressed as a product of the matrices
UXVT Turney and PantgR01(Q. The columns ofU andV are orthogonal having unit length
UTU = VTV =1. The singular values are included ¥ that is diagonal, whileX and X
have the same rank Consider a matrixz, formulated by the tog singular values, where
k < r. Also, letUy andVy be the matrices that are created by the corresponding csloimn
U andV, respectively. The original matriX can be approximated B¥ = U SV (with
rank equal tdk) given that the erroff X — X ||r is minimized. || . ||r stands for the Frobenius
normGolub and Loarj1994.

A number of different perspectives regarding the applicatf SVD are briefly described
in Turney and Pantg01q. The low-dimensional approximation is considered to éptire
the latent meaning of words, (ii) reveal higher-order cowwoences, (iii) reduce to the “noise”
introduced by non-informative contextual features, amjitéickle the sparsity problem.

A criticism about the application of SVD within the framewasf VSM is raised inTur-
ney and Pante]201(Q. This deals with the underlying assumption according tacWtthe
contextual features follow a Gaussian distribution, whimot true. A number of most re-
cent approaches that attempt to address this issue arde@poifurney and Pantdl201q
including Probabilistic Latent Semantic Indexing (PLBBfmann[1999 and Latent Dirichlet
Allocation (LDA) Blei et al.[2003.

2.2.4 Semantic Similarity Metrics

In this section, two types of similarity metrics are preseininamely co-occurrence-based and
context-based. According to the first type the similaritiween words is estimated by using
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directly the co-occurrence of the words of interest, i.etagmatic relatedness. The context-
based metrics rely on the distributional hypothesis of rirgpaccording to which the semantic
similarity is implied by the paradigmatic relatedness.

2.2.4.1 Co-occurrence-based metrics

Co-occurrence metrics use association ratios betweersviload are computed using their co-
occurrence frequency in a specified context. The definittbas follow consider the “web

as a corpus”, i.e., the word co-occurrence is regarded atldhament level. The basic as-
sumption of this approach is that high association ratidgcate a semantic relation between
words' Church and Hank§199d. For the documents indexed by a search engine we define
the notations shown in Tab22 Feldman et al[1999. We use the notatio D} for a set

| Notation | Description \
{D} set of all documents indexed by search engine
|D]| number of documents ifiD}
w aword or term
{D|w} subset of D}, documents indexed hy
{D|wy,ws} | subsetof D}, documents indexed hy; andws
|D|w| number of documents ifiD} indexed byw
| D|wi,ws| | number of documents iiD} indexed byw; andws

Table 2.2: Definitions for document sets indexed by seargimes.

of documents|D| for document set cardinality,D|w} for the set of documents that contain
the wordw and { D|wy, w9} for the set of documents that contain both wardand ws. In
this work, four co-occurrence measures are used to compmtartic similarity between word
or term pairs, namely: Jaccard coefficient, Dice coeffigiemitual information (as defined in
Bollegala et al[2007), and Google-based Semantic Relatedrigszcia et al[2004.

Jaccard and Dice coefficients.The Jaccard coefficient is a measure for calculating the- simi
larity (or diversity) between sets. The variation of thectad coefficient used in this work is

defined as: D |
w1, w2

J(wy,wq) = 2.15

() = (5T T3 (D wa| — | DJwnouws) (2.15)

LIt is interesting to note that web-based co-occurrenceigsatften outperform more elaborate corpus-based
metrics. This shows that overcoming the data sparsenebteprdas sometimes more important than building an
accurate estimator. For example an improved n-gram lamgpiagpability estimation using web n-gram occurrence
can be found in the literatuzghu and Rosenfelf2001].

28



In probabilistic terms,Z.15 finds the maximum likelihood estimate of the ratio of theh@o
bility of finding a document where words; andws co-occur over the probability of finding
a document where either; or wy occurs. If w; andw, are the same word then the Jaccard
coefficient is equal ta (absolute semantic similarity). If two words never co-acicua docu-
ment collection then the Jaccard coefficiend.isThe Dice coefficient is related to the Jaccard
coefficient and is computed as:

2| D|wy,ws|

C = 2.16
(11)1,11)2) ‘D’w1’+‘D’w2’ ( )

Again, the Dice coefficient is equal toif w; andws are identical, and if two words never
CO-0cCcur.

Mutual information. If we assume that the number of documents indexed by the words
wy are random variableX, Y, respectively, then the pointwise mutual informatiddi() be-
tweenX andY measures the mutual dependence between the occurencedsfiyoandws
Church and HankgL99(. The maximum likelihood estimate @l is:

(2.17)

Mutual information measures the information that variabteandY” share. It quantifies how
the knowledge of one variable reduces the uncertainty abeutther. For instance, X and
Y are independent, then knowing does not give any information abolt and the mutual
information is0. For X = Y, the knowledge ofX provides the value of” with certainty and
the mutual information ig. Note that the number of relevant documents is normalizethdy
total number of documents indexed by the search enging,giving a maximum likelihood
estimate of the probability of finding a document in the wedt ttontains this word.

Google-based Semantic Relatednes$dotivated by Kolmogorov complexity, Cilibrasi and
Vitanyi Cilibrasi and Vitanyi[2007; Vitanyi [2009 proposed a page-count-based similarity
measure, called the Normalized Google Distance, defined as:

max{A} —log | D|wy,ws|
log | D| —min{A}

Go(wr,w2) = , (2.18)

The normalization termg D | (total number of documents) at the nominator and denomiretocel each
other out.
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whereA = {log | D | wy |,log | D | wy |}. As the semantic similarity between two words
increases, the distance computed ®y18 decreases. Thus, this metric can be considered as a
dissimilarity measure. Note that the metric is also unbedndanging frond to co. In Gracia

et al.[2004, a variation of Normalized Google Distance is proposed tledines a similarity
measurement. This variation is typically referred to asd@e-based Semantic Relatedness”:

G(wi,wy) = e 2Go(wi,w2) (2.19)

where Gy(w,ws) is computed according t®2(18. Note that the Google-based Semantic
Relatedness is bounded taking values betwieamd1.

Beside the use of the web as a corpus for obtaining numbenfthie aforementioned
co-occurrence-based metrics can be also defined with rtetspaay text corpus. In such cases,
the word frequencies can be considered at the level of deserpus units, e.g., sentences,
paragraphs. In this thesis, we adopt both perspectiveseimploying web-based hits, as well
as word frequencies computed over a text corpus. The pesfozenof these perspectives for
the task of semantic similarity computation between wosdzrésented in Chapter 4.

2.2.4.2 Context-based metrics

Unlike co-occurrence-based metrics, the semantic siityilesr estimated through the paradig-

matic relatedness for the case of context-based metriés approach follows the distributional

hypothesis of meaning suggesting that “similarity of cahtmplies similarity of meaning”.
Cosine similarity. It is reported to be the most widely-used similarity metrithwespect

to VSM Clark[2013; Turney and PantgR01d. For a given weighting scheme the similarity

between two words w; and ws, is estimated as the cosine of their corresponding feature

vectors,T,,, x andTy, , as followslosif and Potamianof201Q:

N
izt bur. itz (2.20)

S YN )

where H is the context window length an¥ is the vocabulary size. The cosine similarity

QM (wy, wo)

metric assign$ similarity score whenu,, ws have no common context (completely dissimilar
words), andl for identical words.

Besides cosine similarity a number of other metrics haven leeployed for estimating
the semantic similarity between words. In the next pardggap number of info-theoretic and
geometric measurements are briefly presented. We folloviotimeulation proposed ivieng
and Siu[2002; Pargellis et al[2004 where the contextual feature vectors were transformed
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into probability distributions. In particular, the conteal probabilities were estimated using
n-gram language modeling.

Kullback-Leibler ( KL) divergence.This is a measure of the difference between two probabil-

ity distributions, while it is also known aglative entropyCover and Thomafgl991]. Suppose

two distributions,P and( of a discrete random variable. Théii. divergence is computed as
P(y)

Dkr(P|Q) = Z P(y)log ) (2.21)

over all valuesy € Y. KL metric is not symmetric, i.e.Dx(P||Q) # Drr(Q|P), In
addition, KL can be regarded as a measurement of dissimilarity sincdsetqu@ when the
two distributions are the same, and greater than zero otberwGiven that theXI. metric
measures the dissimilarity between two distributions giteater their divergence is, the easier
(on average) their discrimination k&ullback [1959; Lee[1997. From another point of view,
if the difference between distribution8 and @ is large, thenP and Q) is dissimilar, so, it
is inefficient (on average) to ug@ instead of P Kullback [1959; Lee[1997. Within the
framework of DSMs theKL divergence can be applied for the estimation of word semanti
dissimilarity given that the contextual vectors of targetrds are transformed into probability
distributions. For example, this was performediang and Sifj2007; Pargellis et al[2004
by considering the immediate context of target words, éstimating probabilities of the left
and right bigrams of targets. Let the bigram probabilitytritisitions of target wordsy; and
wo, denoted a$l; and s, respectively. The semantic dissimilarity betweenandw, was
estimated using th&T divergence of the corresponding right bigram conditiorrabgbility
distributions¥; andWs, as:

(vi,r | wi)

DR (Wi|[Ws) = DR p(wi,we) = > plog | wr) log ¥

, (2.22)
ety p(vi,r | w2)

wherewv; r denotes the first word that occurs in the right contexts ofdwoy (i = 1 or 2),
p(v1 r | w;) is the bigram conditional probability of the bigramv; v, z”. Also, note that the
two bigram distributions}; and,, are compared over the whole vocabulafy. In similar
fashion with @.22), the divergence betwedir, and1¥; for the right contexts is computed as:
(v1,r | w2)

DR, (WallWh) = DR (wa,w1) = > plorg | we)log

. (2.23)
eV P(Ul,R \ wl)

! The backoff strategy can be followed in language modelimg&timating the probability of bigrams that do
not occur within the corpus.
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Regarding the left context-dependent divergergdj and .23 are formulated as:

v w
DY (Wi [Wa) = Dl y(wr,ws) = 3 plon | wn)log LT 5 g
P(U1,L ! w2)
ULLEV
and
v w
Dl (Wl Wh) = Dk wnwn) = 3 plons | ws)log 2B 122) o 56

=% p(vi,r | wr)

respectively. The symmetric left and right contextual idissrity between wordsv; andws
is defined a$argellis et al[2004:

Dy (wi,we) = D p(wi,ws) + Dk (wa, w1) + DR p(wi,we) + D (wa,wr). (2.26)

The KL metric is unbounded, since the bigram probabilities thaeap in the denominators
may take values close to zero. Due to this, the computatitimedt’Z. divergence was observed
to be dominated by few, infrequent bigraargellis et al[2004.

Information-radious ( IR). This metric is similar to thé(L divergence (also known as Jensen—Shannon
divergenceLin [1991]), however it is bounded, since the denominator is the e the
probability distributions:

Dir(PIQ) = 3" P(y) 1og1 Py) (2.27)

= (P(y) + Q)

As in KL, the divergence of bigram conditional probability disaitions 17; andWs; (and vice
versa) are defined as follows:

v w
Df(WalW2) = Dfs(un,oa) = 3 plose] wn) log g Pl
v, REV 2(p UL,R ’ wl) +p(?}1 R ’ wg))
(2.28)
and
v w
DIp(Wa|[Wh) = D (ws, wr) = Z p(vi,r | we)log 5 PluLp | w)
v1,REV 5(p(v1r [w1) + p(orr | ws))
(2.29)
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for the right contexts, respectively. Similarly, for thétleontexts we have

v w
Dip(Wi||Wa) = Dig(wy, ws) = Z p(vi,r | wr)log 5 plvLp | wi)
v1,LEV §(P(Ul,L | wy) + p(or,r | we))
(2.30)
and
v w
DE(Wall 1) = Dwosun) = 32 plo | wa)log ———Tione e .
v1,LEV z(p(vr,L | wi) + plor L | w2))
(2.31)

The symmetric left and right contextual dissimilarity betmw; andw- is computed aBargel-
lis et al.[2004:

D?}’%R(wl, ’U)Q) = D%R(wl, ’U)Q) —+ D%’R(’wQ, wl) —+ DFR(’U)l, ’U)Q) —+ DFR(’U)Q, ’U)l). (232)

Each of the four terms of the above summation has an upperdbealoe equal tdog(2), so
the maximum score of absolute dissimilaritylibg(2).

Manhattan-norm (MN). This is a geometric measuremesllinaria and Levy[2007 de-
fined as follows:

Dun(PIQ) =D | Py) - Qy) | - (2.33)

yey
In particular, theM/N metric relies on the absolute difference between the bigranditional
probability distributiongd?; andWs,. Due to the absolute function tld/N metric is symmet-
ric:
Dun(P||Q) = Dun(Q|P)

The contextual distance between the bigram conditionddgiitity distributionsi?; and s
is

Din(Wi|[Wo) = Dy (wi,we) = Y | p(orr | wi) = p(org | ws) | (2.34)

vLRGV

for the right contexts. In similar manner, the distributidiatance for the left context is defined
as

Din(Wh|[Wa) = Diyn(wi,we) = > [ plors |wi) —plors | wa) | (2.35)

vLLGV

The symmetric (left and right) contextual dissimilaritytlveenw, andw, is computed as
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Pargellis et al[2004:
Dyiv(wi,wy) = Dfyy (wr,ws) + Dy (wr, ws). (2.36)

Each of both terms of(36) has a lower and upper bound of zero and two, respectivelys,Th
two words of identical contextual distributions will haveero value ofAM/N distance, while a
distance score equal to four indicates absolute dissiityilar

Cosine similarity (re-formulated). In this paragraph, the cosine similarity metric defined
in (2.20 is re-formulated for the case when the contextual featantors are transformed into
probability distributions:

> ey PW)Q(y) .
Ve POP ey QW)

Scs(P|Q) = (2.37)

Note that theC'S metric is symmetric:

Scs(PllQ) = Scs(Q1P)

The similarity between the bigram conditional probabilitigtributions1¥; and W5 is com-
puted as:

> v, gev P(LR [ wi)p(vrr | w2)

SEs(Wi|[W2) = Sfis(wy, wa) = (2.38)
Vo nev POLR [0) Ty ey P(oLR | w2)
for the right contexts. Similarly, for the left context weviea
Yoo ey Porr [ w)p(vir | we)
Sts(Wi[|[Wa) = Shg(wy, wa) = LLE (2.39)

V uev o [w) 3, v pons | w2)

The symmetric (left and right) contextual similarity besmewordsw; andws is computed as
Pargellis et al[2004:

Sé’é%(wl, wg) = Sés(wl, U)Q) + Sgs(wl, wg). (2.40)

Each of both terms of Equaticgh40has a lower and upper bound of zero and one, respectively.
Thus, two words of identical contextual distributions vhilve similarity score equal to two.
Note that the incorporation of contextual probability disitions in the aforementioned
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metrics is not limited to the case of bigram probabilities,,ihigher-ordern-gram probabilities
may be used. For example, argellis et al[2004 both bigram and trigram probabilities
were employed for the representation of the contextualibligions. A comparison of the pre-
sented context-based metrics were presented in seveled veog. Bullinaria and Levy[2007;
Pargellis et al[2001, 2004. Certainly it is hard to draw generic conclusions aboutréiative
performance of the several similarity metrics due to facthat vary across different studies,
e.g., corpora, implementation of VSM, evaluation tasks, etowever, in the aforementioned
studies the cosine similarity was reported to be among teedezforming metrics.
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Chapter 3

DSMs |: Semantic Similarity
Computation Using Web Documents

3.1 Introduction

Numerous information retrieval and natural language msiog applications require knowl-
edge of semantic similarity between words or terms. For g@tanby adding semantically
similar words to a web query (query expansion) it is likelyinorease the relevantef re-
trieved document&auch and Wan§l997. Moreover, semantic similarity measures are used
in many natural language processing (NLP) tasks, such gsid@e modeling-osler-Lussier
and Kuo[2001]], grammar inductiorSiu and Meng[1999, word sense disambiguatidba-
gan et al[1997, speech understanding and spoken dialogue systasisr-Lussier and Kuo
[200]. In losif et al.[2004; Pargellis et al[2004, several unsupervised statistical metrics
are presented and applied to the automatic induction of séiendasses for both semantically
homogeneous and heterogeneous corpora.

The majority of the semantic similarity metrics employeday use hand-crafted language
resourcesliang and Conratfil997; Leacock and Chodoroyd999; Li et al. [2003; Petrakis
et al.[2009. The use and updating of resources, such as thesauri oiogigs, is a time
consuming and tedious task, demanding human labor and exXjgert knowledge. Also, lan-
guage resources are not ubiquitous and are unavailabledoy tanguages. As a result, such
methods are of little utility for applications where humarddanguage resources are sparse.
In addition, these methods cannot be applied for words anddhat are not included in the
resource repository, e.g., scientific terms, out of vocatywvords, neologisms. To overcome

YIn Flank [1999; Mihalcea and Moldovaifi200q; Voorhees[1994, it is shown that query expansion using
related words acquired from WordNet increases the reca#itoeved documents.
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this problem knowledge resources are often constructeddecific domains where general-
purpose ontologies do not offer adequate term coverageXaonple, in addition to WordNet,
domain-specific ontologies, e.g., MeSH, are used for aaiptios in the (bio)medical domain
Petrakis et al[2004. Improving term coverage remains an open research isky@jtams are
proposed in the literature on how to pool multiple knowledggources or add terms to existing
language resources, e.g., ontology merging techniquesrassd-ontology similarity metrics.
The work of Budanitsky and Hirdudanitsky and Hirsf2009 provides a thorough review of
different metrics that use the WordNet resource for conmgusiemantic similarity.

The web has a multilingual character; new words, neologiantsoccasionalisms (hapax
legomena), are added frequently and efficiently. Thus, tihésobvious place for mining se-
mantic relationships for unseen words. Also, the web costhbth general-purpose words,
found in news articles and blogs, as well as, scientific teofoigy, found in documents written
by experts. Overall, the web covers a plethora of domainbpaing styles and languages, and
is fertile ground for automatic semantic knowledge acdjoisi The web has been exploited
for a variety of NLP applications. Idhu and Rosenfelf2001], web page counts returned by
a search engine were used to estimate the probability oam-dgnguage models. Dekang
et al.[2003, the web page counts of fixed lexical patterns were usedéntiiy synonymy
and antonymy between nouns. An extension of this approashpvaposed irChklovski and
Pantel[2004; web queries of lexico-syntactic patterns were used fecalrering relationships
between verbs. The web is also an invaluable source for mtisiy text corpora. For exam-
ple, inTerra and Clark§2003, a large corpus of web pages was constructed and used fdr wor
sense disambiguation. Other applications where autoatigticonstructed web corpora have
been used to train statistical models include machine laos Popovic and Ney2003 and
guestion-answering systerbsimais et al[2003.

Recently there has been much research interest in devglegh-based similarity mea-
sures. Typically such approaches use the results retusneddor more web search engines
using one or multiple queries. Web-based similarity messoan be broadly divided into three
categories: (i) measures that rely only on the number of ¢éh@med hits, (i) measures that
download a number of the top-ranked documents and then agxtlyprocessing techniques,
(iii) measures that combine both approaches. Web-basdthstyncomputation algorithms
have been used in a diverse range of applications, such asatit annotation of web pages
Cimiano et al[2004, social networks constructioilika [2005; Mori et al.[2004 and music
genre classificatioseleijnse and Kordi2004; Schedl et al[200§. However, in most cases,
the form of the web query and/or the feature extraction @®dég application-dependent, e.g.,
if one is interested in movie genre classification it is uktflinclude the term “movie” in the
submitted query.
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In this chapter, we focus on the problem of fully unsupedisgeb-based semantic simi-
larity computation between words or terms; no hand-craftéels or resources are employed.
Web search engines are used for text corpus mining and ddvderd similarity distances are
automatically computed on this corpus. The proposed dlgoriequires no expert knowledge
or language resources and, as a result, it can be readiligdppldifferent languages. In order
to calculate the semantic similarity between words, wesdtigate two families of unsuper-
vised, web-based similarity metrics . The first type consiaaly the number of hits returned
by a web search engine, asBwllegala et al[2007] and Gracia et al[2006. The second is
fully text-based, downloads the top-ranked documentgmetliby a web query and compares
the context around words of interest to estimate semamidagity. The following are the
original contributions of this work:

1. Several contextual similarity algorithms are proposed evaluated over large collec-
tions of downloaded documents.

2. The metrics are evaluated both on the Miller-Charles ama imedical term dataset, i.e.,
in this work we investigate both word and term similarity. eltvo evaluation domains
are also semantically different: ordinary words of genasal vs medical terms.

3. We demonstrate the effect of feature and document sateati semantic similarity com-
putation. For example, it is shown that non-content wordispfsvords) are important
features for word similarity computation but poor featuf@sterm similarity computa-
tion.

4. We show that the proposed fully unsupervised method basembntext similarity can
compete with state-of-the-art supervised similarity mestthat employ elaborate lan-
guage resources.

The remainder of this chapter is organized as follows. IriSe8.2 an overview of related
work in the area of semantic similarity computation is preed. In SectiorB8.3 the seman-
tic similarity computation algorithm is described alonghwihe experimental procedure. In
Section3.4, the evaluation results are reported for the proposed ithgas for two evaluation
datasets. The results are compared with state-of-thesartustic similarity algorithms that
employ knowledge resources such as WordNet and MeSH. Thésese further discussed
in Section3.5, and implications of feature selection and document sSele¢br context-based
similarity metrics are presented. Finally, we concludehv@ection3.6, where promising di-
rections for further research are also mentioned.
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3.2 Related work

Metrics that measure semantic similarity between wordeons can be classified into four
main categories depending if knowledge resources are usedto (i) supervisedesource-
based metricsconsulting only human-built knowledge resources, sucbraglogies, (i) su-
pervisecknowledge-rich text-mining metricise., metrics that perform text mining but also rely
on knowledge resources, (iii) unsupervisamoccurrence metrigs.e., unsupervised metrics
that assume that the semantic similarity between wordsimstean be expressed by an associ-
ation ratio which is a function of their co-occurrence am (insupervisedext-based metri¢s
i.e., metrics that are fully text-based and exploit the erhbr proximity of words or terms to
compute semantic similarity. The last two groups of mettieiot use any language resources
or expert knowledge and depend only on web search engingkisisense, these metrics are
referred to as “unsupervised”; no semantically labeled dmsannotated data is required to
compute the semantic distance between words or terms. Resbased and knowledge-rich
text-mining metrics, however, use such data, and are herthefeferred to as “supervised”
metrics.

Several resource-based methods have been proposed itethtulie that use, e.g., Word-
Net, for semantic similarity computation. Edge countingtmoels consider the length of the
paths that link the words, as well as the word positions intéx®nomic structuré.eacock
and Chodorowj1999; Li et al. [2003. Information content methods compute similarity be-
tween words by combining taxonomic features that exist énubed resource, e.g., number of
subsumed words, with frequencies computed over textuglocadiang and Conratfll997.
Hybrid methods combine synsétwith word neighborhoods and other featursstrakis et al.
[2004. In the work of Bollegala et alBollegala et al[2007, a hybrid method, among oth-
ers, is defined that combines page counts, returned by ahseagine, and lexico-syntactic
patterns, extracted from the returned snippets using a euoftsynonymous nouns acquired
from WordNet.

Co-occurrence-based metrics attempt to implement cortipoigh models for the notion
of “word association” which is used in psycholinguisticshi§ notion describes the procedure
of lexical decision of human associative memory.dhurch and Hank§199(, an associa-
tion ratio is proposed using the information theoretic medf mutual information in order
to identify patterns which can be used for the constructibsemantic classes. IRollegala
et al.[2007], several association metrics are applied, using a seagine in order to obtain
co-occurrence counts for a word pair. If the pair of intex@stsists of the worda; andws,

A synset is a set of words (or terms) that are considered toybengmous. This notion is widely used in
lexical resources like WordNet.
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their co-occurrence frequency is taken to be equal to thebeurof hits returned by a search
engine, given a query of the formuv] AND w-".

Text-based metrics typically use contextual features moprde semantic similarity. Context-
based metrics operate under the assumption that words imitlais contexts have similar
meaning. One of the first studies of this hypothesis is thekwabrRubenstein and Goode-
nough stating that “words that are similar in meaning ocousimilar contexts”’Rubenstein
and Goodenoughl964. Using this assumption, the semantic similarity betwega words
can be estimated by measuring the difference between thmalpitity distributions of their
contextual features. Various context-based metrics haea proposed in the literature, such
as: Kullback-Leibler, information radius and Manhattammdargellis et al[2004; Siu and
Meng[1999. The contextual probability distributions can be estiethfand smoothed) using
n-gram language modelglinek[1999. Another representation of the contextual environment
of a word is thebag-of-wordsmodelLewis [199§. According to this model, the contextual
features of a word form the elements of a vector. Assumingpeddence among the features,
the similarity of two words is computed as the product ofitfesture vectors using cosine sim-
ilarity losif et al.[20064; Pangos et a[2005. More recently, context-based similarity metrics
construct document collections by querying web searchneisgaind downloading a number of
the returned top-ranked documents, in order to compute re@rsamilarity between words or
termslosif and Potamianog20073.

| Scheme | Acronym | tw.i (if c(v;) > 0)
Binary B 1
Term frequency TF ggzj))
Add-one TF TF1 cfg;’)i) :alw
Log of TF LTF igii&;;
Add-one LTF LTF1 kl)zg(%)i):alw)
TF-inverse document freq. TFIDF ZE;Z; log |l|)l|)vl-|
Log of TFIDF LTFIDF Eﬁgi&;; g l|)1|70|i|
Add-one LTFIDF LTF1IDF 1(1)‘;%%;’;) ++a13) log | 1|)l|)v|i|

Table 3.1: Context Feature Weighting Schemes

The various feature weighting schemes used in this work darputing the value of,, ;
are presented in TabR1 The weighting schemes can be classified into binary andémcy-
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based. The binary metric assigns weight = 1 when thei®” word in the vocabulary exists
at the left or right context of at least one instance of thedxoyand0 otherwise. Frequency-
based weighting schemes compute the (hormalized) fregudmzcurrence of context words.
Various frequency-based weighting schemes popular inra@aanguage processing and web
applications are proposed and evaluated, specificaliyp-fexquency (TF), logarithmic term-
frequency (LTF), term frequency inverse document frequefié-IDF), logarithmic TFIDF,
and add-one smoothing of these methods. As shown in Babléor frequency-based metrics
the value oft,, ; is computed as a function of the counts; ), i.e., the number of occurrences
of thei*" vocabulary wordy; within the left or right context of all occurrences (in a cosp of
termw. Note that the counts(v;) are normalized by(w), the number of occurrences of word
w in the corpus. For the case of add-one term frequency (TRé&)ptobability of occurrence
is smoothed by adding one to the counts and normalizing thea{db) + «,,, wherea,, is
defined as the total number of unique words that appear inciiext(s) ofw.

Logarithmic term frequency (LTF) weighting is similar tate frequency (TF), the main
difference being the non-linear scaling of counts and tsegament of weigho to singletons,
i.e., context words appearing only once. By applying theatigmic weighting scheme, the
highly frequent contextual features are not allowed to d@td the computation of similar-
ity score (unlike the linear term frequency weighting schgnmAlso, the non-linearity intro-
duced by the logarithmic scheme could be a simple way to @gprthe non-linear process
by which the human memory builds the semantic associatiehgden words (assuming that
the contextual features are taken into account during thaitiee process). Logarithmic add-
one smoothing (LTF1) takes singletons into account with sitpe weight of%, a
straightforward generalization of TF1.

The term-frequency inverse document frequency (TFIDFYimit a popular metric in in-
formation retrieval that assigns more weight to semanicallient words, effectively reducing
the effect of stop words and non-content words. Similarythis work, the logarithm of the
inverse document frequency of context words in each docuieammputed asog % and
used to multiply the TF estimate. Note thdD|v; | denotes all documents indexed by context
word v;. Similarly the logarithmic TFIDF (LTFIDF) multiplies theTF estimate with the in-
verse document frequency. Finally, the add-one smoothéngjan of this metric is computed
(LTF1IDF).

3.3 Corpus based similarity computation

We experimented with (i) page-count-based, and (ii) texdel similarity metrics, described
in Chapter2. For the page-count metrics the Yahoo! search engine waktosgetermine
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the frequency occurrence and co-occurrence of words orstermandws. Specifically, the
total number of hits for the queriesv}”, “ws" and “w; AND ws” were used to compute the
Jaccard, Dice, Mutual Information and Google metrics.

For the contextual similarity metrics, for each pair of weat terms(w,, w2) a few hun-
dred documents were downloaded using ‘AND w-" (e.g., “boy AND lad”) queries. The
URIs for the top ranked documents were retrieved using the Yalsmarch engine via the
Yahoo! Search APIl. AND queries retrieve documents comgirioth terms, as opposed to
generic ‘w1 OR wy” queries that download documents containing either termlosif and
Potamiano$20073, preliminary experiments have shown that AND queriesifigantly out-
perform OR queries for context-based semantic similamygutation. Once the documents
are downloaded, the left and right contexts of all occuresnafw,; andw, are examined and
the corresponding feature vectors are constructed acgptdithe following experimental pa-

rameters:
1. Number of web documentgsD |: how many web documents are used.

2. Contextual window sizeK: the left and right contexts ofy; and wo are examined
according to the value of contextual window size. The winde is applied within the
sentence boundaries.

3. Stop words filtering (yes/no): consideration (or not)tofswords in the feature vectors.

4. Type of weighting scheme: the values of vector featuresat according to one of the
weighting schemes presented in Table II.

The semantic similarity between words or termgs w- is then computed as the cosine simi-
larity (see 2.20) of their corresponding contextual feature vectors feitg the unstructured
approach described in Secti@r2.1.1

3.4 Evaluation

In this section, we present a comparative evaluation ofithiesity algorithms, in terms of cor-
relation, with respect to the human ratings of: (i) the Mi@harles dataset of common words,
and (ii) the MeSH dataset of medical terms. Both the pageiebased similarity metrics are
evaluated, as well as, the fully text-based similarity athmns. The proposed algorithms are
also compared with metrics that use knowledge resourcgs,tiee WordNet ontology for the
Miller-Charles dataset, and the MeSH ontology for the Me@khslet of medical terms.
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3.4.1 Corpus description

For evaluation purposes we used two datasets: (i) the Millarles dataset of common
nounsMiller and Charleq1999, and (ii) a dataset of medical terms included in the MeSH
ontology. The first dataset consists2¥ noun pairs of general use that were rated according
to their semantic similarity by 38 human subjects. The assigsimilarity scores range from

0 (not similar) to4 (perfect synonymy). The selection of this dataset was maidtivated by

its wide use that enabled us to compare our work with a vadgebther approaches.

The MeSH dataset includgd medical terms pairs that have been rated for similarity by
experts. MeSH is the acronym for “Medical Subject Headirgsd is a taxonomic hierarchy
containing medical terms proposed by the National Librariedicine, USA. The MeSH
dataset contain36 pairs of MeSH terms rated by human experts, e.g., “asthrearponia”
and “anemia-appendicitis”. In this work, a subset3dfpairs was used due to the limited
amount of web documents available for & and 36" pair. The MeSH dataset along with
the human-rated similarity scores were taken from the wérRedrakis et al.Petrakis et al.
[2009. Petrakis et al. asked Dr. Qi at Dalhousie University tostarct a set of MeSH
term pairs. Then medical experts were asked to submit sitgilscores for the MeSH term
pairs using a web-based tool. In totalexperts took part in the above procedure assigning
similarity scores fron®) (no similarity) to4 (absolute similarity). Pairs with standard deviation
of similarity scores higher than the user defined threshbld-e 0.8 were excluded from the
evaluation’. The MeSH dataset was selected in order to investigateasitgibetween terms
that are rated by experts rather than naive subjects.

3.4.2 Evaluation metric

Let X = (x1, 29, ...,x,) andY = (y1,y2, ..., yn) be the random vectors that store the similar-
ity scores given by human subjects and the computationaianegspectively, for each of the

i1 =1,2,...,n word pairs. The correlation coefficient between the scoredyced by humans
and machine is estimated using the Pearson correlation|law$:

_ > i (i = 2)(yi — 9)
Vo (i — )23 (g — )?

! The experimentation with the relatively small Miller-Clesr (MC) dataset took place in the very early phases
of the work described in this thesis. Then, we were mainlgrigdted about the performance of similarity metrics
for common words and technical terms. Later, we became asfare other two standard English datasets: RG
Rubenstein and Goodenouftf65, and WS353-inkelstein et al[200]. Given the fact that the pairs of the MC
dataset are included within RG and WS353, we expect that #ie oonclusions of this chapter to also apply for
these two datasets.

2 For more details see
http://ww. intelligence.tuc.gr/simlarity/datasets/ MeSHDat aset. pdf.

Try
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wherez andy are the sample means &fandY’, fori =1,2,...,n.

3.4.3 Evaluation of page-count-based metrics

The correlation scores between the page-count-based Semianilarity metrics and human
ratings are presented in Tal3e? for the two tasks. The similarity metrics based on the Jaccar

| Dataset | J | C | I | G |
Miller-Charles | 0.41 | 0.41| 0.69 | 0.66
MeSH 0.26| 0.29| 0.30| 0.41

Table 3.2: Correlation of page-count metrics.

(J) and Dice () coefficients achieve comparable correlation performantech is expected
given the similarities between the two metrics. The Mutaébimation () and Google-based
Semantic Relatednes§’) achieve significantfyybetter performance than Jaccard and Dice, es-
pecially for the Miller-Charles dataset. Overall, the @&sleid correlation for the words of gen-
eral use (Miller-Charles dataset) is significantly highwart that of the medical terms (MeSH
dataset), for all metrics.

3.4.4 Evaluation of context-based metrics

Next we present the performance of the context-based raédrithe various feature weighting
schemes shown in Tab&1 and for different contextual window sizés. The performance of
each metric is shown as a function of the number of downloadedments. The correlation
scores for the Miller-Charles dataset are shown in Eit(a) and (b), and for the MeSH dataset
in Fig. 3.1(c) and (d).

In Fig. 3.1(a), the correlation scores for the Miller-Charles datasetshown using several
weighting schemes. Performance is shown as a function ofdhtext windowk (ranging
from 1 to 20) for a total number ofl00 downloaded documents. For most metrics, highest
correlation is achieved with context sizé = 1, i.e., considering only the immediate context
of one word to the left and one to the right. For larger conterdows, performance degrades
fast especially for the TFIDF weighting schemes. The higleesrelation score 00.72 is
achieved by the LTF scheme with the binary weighting scheemegba close second. Note that
the linear frequency-based weighting schemes, i.e., TH&hOF, perform poorly, compared
to their logarithmic counterparts, especially, for largatext sizes.

1 When comparing the performance of similarity metrics irs thibrk, the term “significantly better” is used to
indicate statistical significance at a level higher than 2B#g the paired t-test.
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In Fig. 3.1(b), the performance of the binary (B), LTF and LTFIDF weightschemes are
shown for a context window size df =1 as a function of the number of downloaded doc-
uments (ranging fromo to 1000). The correlation improves with the number of documents
and the performance bound is not reached even at 1000 dotsint@ood correlation perfor-
mance is achieved with as few as 30 documents, however|@dsthat the performance of the
similarity metric is not robust if fewer than 100 documents ased. Overall, the LTF scheme
performs best up to approximately 500 documents, while tharp scheme provides better
performance for a larger number of documents. Also notd,tteaperformance gap between
LTF and LTFIDF is bridged for a large number of documents. i@Wethe highest correlation
score 0f0.88 is achieved using the binary weighting scheme &bt documents.

In Fig. 3.1(c), the correlation score for the MeSH dataset is shown.\iigighting schemes,
context window size and number of documerit80j are the same as in (a), and thus the two
plots are directly comparable. The main differences ingrerance for the MeSH dataset com-
pared to the Miller-Charles dataset are: (i) the relativdgomance of the weighting schemes,
i.e., for the MeSH dataset the LTFIDF weighting scheme S§iicamtly outperforms all other
schemes (note the especially poor performance of the bimaighting scheme), and (ii) the
optimum context window size, i.e., for the MeSH dataset bestelation scores are achieved
for context window size betweeld =2 and H =5, as opposed té/ =1 for the Miller-Charles.

In addition, the degradation of performance for large caniéndows is much more graceful
for the MeSH dataset. The best correlation scofed% for H =3 and the LTFIDF weighting
scheme.

In Fig. 3.1(d), the performance of the binary (B), LTF, and LTFIDF weigh schemes are
shown as a function of the number of downloaded documents wiildow size used i& =1
in order for plots (b) and (d) to be directly comparablas in (b), correlation increases as more
documents are considered. However, in (d), the highesessachieved foB00 documents
and the performance degrades somewhat®0 documents. The LTFIDF weighting scheme
significantly outperforms the other two metrics, while thedoy scheme performs the worst,
i.e., the relative metric performance is reversed in (d) pared to (b). Finally, note that the
absolute performance of the metrics for the MeSH datasebisenthan for the Miller-Charles
dataset; this is consistent with results reported in tleedture.

Add-one smoothing schemes LTF1 and LTF1IDF that do not discantextual singletons
achieve almost identical correlation scores to LTF and DHR-tespectively. Thus, the results
for LTF1 and LTF1IDF are not included in the plots.

! Although for100 documents the best correlation score is obtaineddfer 3, for large number of documents
comparable performance is obtained for context windowssié®ne, two or three.
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Figure 3.1: Correlation scores between context-basedasityicomputation and human rat-
ings for: (a),(b) the Miller-Charles dataset, and (c),(@® MeSH dataset. Performance of the
various weighting schemes as a function of context windae & shown in (a),(c) fot00
documents. Performance as a function of number of docunseskt®wn in (b),(d) forH =1.

3.4.5 Stop-word filtering

Motivated by the differences in performance between the teeighting schemes for the word
and term tasks, we investigate next how stop-word filteriiffects performance. For this pur-
pose we classified the contextual words into stop-words#sanon-stop-words and computed
the semantic similarity scores for the three possible set(iponly stop-words are considered
in the similarity computation algorithm, (ii) any word natibbg a stop-word is considered, and
(i) all words are considered (same setup as that used §pBFi(a),(c)). The correlation score
was computed fot00 documents using context window size= 1. For each dataset the best
weighting scheme was used, i.e., LTF for Miller-Charles BhBIDF for MeSH. The results
are shown in Tabl8.3.

For the Miller-Charles dataset, the inclusion of stop-vgdbdosts overall performance, in
fact, similarity computation using only stop-words as teas outperforms somewhat similarity
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Type of context
Dataset only stop-words (sw) w/o sw | both
Miller-Charles 0.68 0.64 | 0.72
MeSH 0.25 0.66 0.63

Table 3.3: Correlation for different types of context.

computation using only non stop-words! For the MeSH termtas#d, however, stop-word-
based similarity computation performs very poorly. In faetluding stop-words seems to be
hurting overall performance; froid.66 when stop-words are excluded @®%3. For a more
detailed discussion on stop-word filtering and featurectiele see Sectio.5.

3.4.6 Unsupervised vs supervised metrics

Next the performance of the proposed unsupervised algasitis compared with semantic
similarity computation algorithms found in the literatuide addition to page-count similarity
metrics, we also consider metrics that consult knowledgeures, i.e., supervised similarity
computation algorithms. The metrics considered here,gakaith the main characteristics of
each metric, are summarized in Taldel and Table3.5, for the Miller-Charles and MeSH
datasets, respectively.

The LiLietal.[2003, JiangJiang and ConratfiL997, X-Similarity Petrakis et al[2004,
and Leacock-ChodoroWweacock and Chodorof1999 metrics exploit the semantic hierarchi-
cal structure of ontologies, WordNet or MeSH, to computea®tin similarity as described in
Section3.2 The correlation scores for these metrics can be foureimakis et al[2004.
For the Miller-Charles dataset, correlation score$).62, 0.83 and0.74, were reported for
the Li, Jiang and X-Similarity metrics, respectively. FbetMeSH dataset, the following
correlation scores were reporte@.70 (Li), 0.71 (Jiang),0.74 (Leacok-Chodorow) and.71
(X-Similarity).

The performance of the web-based metrics is summarizedllasv$o For the Miller-
Charles dataset, the resource-based SemSim metric ptbipddellegala et al[2007, achieves
a correlation score d@f.83 that is similar to the ontology-based methods above. Tl fisu-
pervised Sahanahami and Heilmaf2004 metric is shown to have a moderate correlation of
0.58 (results are reproduced from the implementation and etralua Bollegala et al[2007).
Moderate correlation scores are achieved also by the ¢ttt consider only the page counts
returned by a query, especially for mutual information amb@e. The unsupervised context-
based metric using the binary weighting scheme and contexdow H = 1 achieves the
highest correlation((88) among the unsupervised metrics @00 documents. Note that the
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Metric Use of (/: yes, X: no) Need of | Correlation
WWW | Page | Snippets| Lexico- | WordNet| Down. external
Search| counts Syntactic| ontology | docs | knowledge
engine patterns
Jaccard {) V4 vV X X X X X 0.41
Dice (C) v v X X X X X 0.41
Mutual info. (7) V4 v X X X X X 0.69
Google-based 4 vV X X X X X 0.66
sem. relat. @)
Sahami Vv X V4 X X X X 0.58
SemSim vV vV 4 v/ V4 X 4 0.83
Li X X X X Vv X Vv 0.82
Jiang X X X X Vv X Vv 0.83
X-Similarity X X X X v X v 0.74
Proposed) =" v X X X X v X 0.88
(B: 1000 docs)

Table 3.4: Properties and performance of similarity metfie the Miller-Charles dataset.

performance of the context-based metrics is comparableatoof the resource-based metrics
for semantic similarity computation between words. In faloe reported correlation score of
0.88 is among the highest reported in the literatui@r this dataset.

For the MeSH dataset, all page-count-based metrics hava@adts. The best correlation
(0.69) among the unsupervised metrics @00 documents is obtained by the context-based
metric with window@ =" using the LTFIDF scheme. The performance of the contextas
LTFIDF metric is worse but comparable to that of the supedimethods.

3.5 Discussion

In this section, the evaluation results are further analyaed explained. Specifically, we in-
vestigate the performance of the supervised and unsupdrsamantic similarity computation
algorithms and explain the difference in performance fordgsoand terms. Issues such as
feature selection and document selection are addressed.

3.5.1 Corpus creation and document selection

A shortcoming of web-based methods for similarity compatais that, as far as the algorithm
is concerned, the search engine is a “black box”. This is@albe relevant for page-count
based metrics, such as Jaccard and Google, where the nufrmeturoed hits is very much

The highest (to our knowledge) reported correlation scorgHe Miller-Charles dataset is equalA&9 Li
et al.[2003. The proposed algorithm exploits the shortest path leagthdepth between the words of interest in
the WordNet hierarchy.
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Metric Use of (/: yes, X: no) Need of | Correlation
WWW | Page | MeSH | Down. external
Search| counts| ontology | docs || knowledge
engine
Jaccard {) vV vV X X X 0.26
Dice (C) v v/ X X X 0.29
Mutual information () vV vV X X X 0.30
Google-based v v X X X 0.41
sem. relat. ) 0.41
Li X X WV X V] 0.70
Jiang X X vV X vV 0.71
LeacokChodorow X X v X Vv 0.74
X-Similarity X X vV X vV 0.71
Proposed)=! v X X Vv X 0.69
(LTFIDF: 1000 docs)

Table 3.5: Properties and performance of similarity metfie the MeSH dataset.

search engine dependent and changes over time. For thextebased approach, the assump-
tion is that a search engine is a reliable provider of repritesige examples of language usage.
Although this is a reasonable assumption, the relativeingn&f documents returned by a
search engine might affect the algorithm’s performancesrgthat only the top ranking docu-
ments are downloaded. Another factor that affects perfoomas the type of web query used,
as well as, the way the query is “interpreted” by the seargjinen

In this work, we use a conjunction query to search for docusménwhich the words
or terms of interest co-exist, i.e.w] AND wy”. We have also noted that using a conjunc-
tion query works much better in practice than using a digjongi.e., “w; OR wy” losif and
Potamianog200734. There are two possible explanations for the significab#yter perfor-
mance of corpora created using AND vs OR queries. First,coonoence is by itself a feature
used in semantic similarity computation, e.g., page-ctased similarity. Second, the created
corpus is semantically more homogeneous and stylisticatiye consistent. Specifically, by
examining occurrences af; andws in the same document, the topic and authoring style are
the same for the context of both words.Rangos et a[2009, it was shown that context-based
similarity metrics work much better in semantically homogeus domains, e.g., travel reser-
vation, than in semantically broad domains, e.g., news.il&imbservations have been made
for unsupervised word sense disambiguation algorithmisalsa employ context-based met-
rics, specifically, “the sense of a target word is highly déstesit within any given document”
Yarowsky[1999.

As far as the relative ranking of documents by the searchnenigi concerned we have
not observed any statistical significant effect on the perémce of the context-based metrics.
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Specifically, we have tested the performance of the algoridm document deciles, i.e., doc-
uments ranked 1-100, 101-200, up to 901-1000. We have foargigmificant effect of rank
in any of these experiments, either for the word or the telsk.t&ore research is necessary
(e.g., bottom ranked documents) to verify that indeed $eargine ranking does not affect
context-based semantic similarity performance.

During the application of a context-based similarity nmestrover the collection of down-
loaded documents, we assumed that the lexical featuresbfdz@ument have the same im-
portance (or weight) in the similarity computation formula practice, however, documents
are different in many ways, e.g., authoring style, authexisertise, balance between graphical
and textual content. It is not uncommon in web-based agjiita to assert the “quality” of a
document and exclude (or weight less) low quality documelnt®ur case, we experimented
with a variety of “grammaticality” metridsin order to establish the quality of a document.
The following metrics were used to compute document grancaldy: (i) the average num-
ber of words in a paragraph, assuming that a document cimgsadtparagraphs of larger size
is of “higher quality”, (ii) the fraction of document vocalawy that is included in the docu-
ment compared with a Wall Street Journal corpus, i.e., 8egdocuments with a more formal
way of writing, and (iii) the perplexity of the text in the doment computed using n-gram
language model built from a Wall Street Journal; this featigrlooking for documents with
richer vocabulary and more complex syntax. The computedicsetere then used to weigh
the contribution of the features extracted from each docuimblone of the proposed algo-
rithms provided consistent performance improvement coethto the baseline results. This is
an indication that the performance of context-based siityilmetrics is not affected much by
document writing style or document “quality”.

3.5.2 Feature selection for word and term similarity

The evaluation results showed that co-occurrence (pagettmsed metrics) at document level
can provide only rough estimates of semantic similarityisThend is more pronounced for
the specialized medical terms of the MeSH dataset. Cobteseéd metrics achieved higher
correlation scores compared to page-count-based meticboth tasks. Overall, context
seems to be the most important feature for semantic sityileomputation, followed by co-
occurrence. Moreover, evaluation results showed thabpeence improves as the number of
downloaded documents increases, which is in agreementthétistatement of Schitze and
Pederserschiitze and Pedersgh99] “words with similar meanings will occur with similar
neighbors if enough text material is available”. Althouglisiclear that contextual similarity

The notion of grammaticality is used here in a broad senber#tan the exact linguistic sense of conforming
to a syntactic grammar.

50



implies semantic similarity, the amount of context to takiiaccount in this process, as well
as, the relative weighting of the contextual features néstiser investigation and is discussed
next.

We have investigated various aspects of feature seleatiotohtext-based similarity met-
rics, namely, context window size, the use of stop-wordsthadelative weighting of context
words. Specifically, we found that when using the very imragdtontext (window size one)
better performance was achieved for the Miller-Charleasktt while a context window size
between two and five words was optimal for the MeSH dataseadttition, stop-words were
valuable features for the Miller-Charles dataset, but joied little or no information for the
MeSH dataset. Finally, term frequency (TF)-based featuigling provided good results for
the Miller-Charles dataset, while term-frequency invedeeument frequency (TFIDF)-based
weighting provided best results for the MeSH dataset. leress optimal feature selection
was quite different for word and term similarity computatio

Putting together the observations from these experimemsnoay draw general conclu-
sions about feature selection for context-based simjladtmputation between common words
or between specialized terms. Note that the immediate xbot@ouns, which consists mainly
of stop-words and very frequent contextual features, eee@yntactic dependencies. Stop-
words mainly include various function words, such as atichnd conjunctions, which are
fragments of local (within sentences) syntactic pattemnahich the target words participate.
Longer context, that consists mainly of content words adufes with high TFIDF weights,
encodes mostly semantic dependencies. Thus for commors neymtax seems to be the most
salient feature, while for terms, semantics are more ingmbrtMore research is necessary to
better understand how to tune the feature selection prdoespecific domains, as well as,
how to better combine different types of features, e.giofusf syntax and semantic-based
features. Note, however, that the generic feature seteatiol weighting algorithms presented
in this work for word and term semantic similarity computatialready provide good baseline
performance. Also preliminary experiments indicate thatgroposed algorithms perform well
for other languages, e.g., Greek.

A final note on the comparison between the supervised resdiased and unsupervised
context-based semantic similarity computation algorghin this work, we have shown for the
first time that unsupervised metrics achieve comparabl®peance to supervised resource-
based ones. Comparing, however, the best results of sapdraind unsupervised algorithms
should be done with care, as in both cases, there is a longflgarameters that are being
“tuned” for the specific dataset, i.e., there is a danger odiehoverfiting. Extensive experi-
ments on additional datasets, as well as, optimization iafpaters on held-out data is required
in order to draw general conclusions about the detailecopmednce of the algorithms. Inde-
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pendent of their relative performance, however, the prepamsupervised algorithms should
prove a valuable tool for populating existing ontologieshwiew members as well as, cre-
ate ontologies for new languages. Finally, we believe thatdevelopment of computational
similarity metrics can serve as an additional researchitotile field of human cognition and
language acquisition research.

3.6 Conclusions

We presented and compared two families of unsupervised;based metrics for semantic
similarity computation between words, namely, page-c@nat context-based metrics. Page-
count metrics consider only hits returned by a search engihiée the proposed context-based
semantic similarity algorithms download the top rankeduwtoents returned by a web query
and compute the frequency of occurrence of contextual fesituThe proposed algorithms
do not consult any external knowledge resource and can beraeed and applied to other
languages. The performance of the unsupervised algoritvas®valuated and compared with
resource-based semantic similarity computation algmstion the Miller-Charles dataset and
the MeSH dataset of medical terms.

The page-count-based metrics produced low to mid coroglatith human semantic sim-
ilarity scores. Good correlation scores were obtainedgusia context-based metrics, achiev-
ing performance of up t0.88 and0.74 for the Miller-Charles and MeSH datasets, respec-
tively. The performance achieved is comparable to that péstsed resource-based semantic
similarity computation algorithms. The following condloss can be drawn for the perfor-
mance of unsupervised similarity computation algorithr{is.context is a better feature for
semantic similarity computation than co-occurrence a®rsid at document level, (ii) for the
Miller-Charles dataset best results are obtained for aexturil window size of one, including
stop-words as features and the LTF or binary weighting selsefiii) for the MeSH dataset
best results are obtained for a contextual window size of ttwfive, excluding stop-words
as features and the LTFIDF feature weighting scheme, (yarithmic weighting of contex-
tual feature outperforms linear weighting for both tasksl,dv) performance of context-based
metrics improves as the number of documents increases (étlexception of the last two
data-points for the MeSH dataset). Preliminary experisi@mt document selection did not
show significant correlation with performance. Overalg pgroposed context-based algorithm
provides good performance, is fully automatic, requirttkelcomputation-power and small to

'Note that two out of the30 noun-pairs in the Miller-Charles datagdiller and Charles[1999 were not
included in the original versions of WordNet forcing resdmars to evaluate on 28 pair subseBollegala et al.
[2007.
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medium amounts of web text, and can be generalized and dgpligther languages. In order
to use the proposed algorithms in practice for ontologyt@meaone may use a combination
of page-count and contextual metrics, i.e., use page-aoettics to identify candidates and
contextual metrics to refine the similarity scores.

This work is a first step towards our understanding of theri@kof context-based metrics
for semantic similarity computation. A variety of issuekated to document selection, feature
selection and feature fusion have to be further investijdteaddition, a better understanding
of acquisition of semantics by humans could lead to impr@ardantic similarity computation
algorithms.
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Chapter 4

DSMs II: Similarity Computation
Using Semantic Networks

4.1 Introduction

Semantic similarity is the building block for numerous aggiions of natural language pro-
cessing (NLP), such as grammar inductideng and Sij2007 and affective text categoriza-
tion Malandrakis et al[2011. DSMsBaroni and Lenc[201Q are based on the distributional
hypothesis of meaninglarris [1954 assuming that semantic similarity between words is a
function of the overlap of their linguistic contexts. DSM= dypically constructed from co-
occurrence statistics of word tuples that are extractad fidext corpus or from data harvested
from the web. A wide range of contextual features are alsa byeDSMs exploiting lex-
ical, syntactic, semantic, and pragmatic information. B3f\ve been successfully applied
to the problem of semantic similarity computation. Accaglito Baroni and Lenc{2014,
the success of contextual DSM features is due to their wahdiencode the attributes of word
senses. According @ttributional similarity Turney[200§, semantic similarity between words
is based on the commonality of their sense attributes. Aetlaelated assumption is that the
semantic similarity of two words can be estimated as thelaiityi of their two closest senses
Resnik[1999, henceforth, referred to as teaximum sense similarigssumption.

In this chapter, we investigate a new unsupervised apprmacthe construction of DSMs
with application to lexical semantic similarity computati® . First, a corpus of snippets (short
pieces of text containing words of interest) is harvestethfthe web. Then, a semantic network
is constructed encoding the semantic relations betweedswothe corpus. Co-occurrence and
context features are used to measure the strength of redatiche network is a parsimonious

The core of this chapter is also presentetbisif and Potamianog2013H.
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representation of the information encoded in the corpusti&te define the notion of seman-
tic neighborhood and associated metrics of semantic gityilhat exploit this notion. The
proposed semantic similarity metrics are motivated by tagimum sense similarity, attribu-
tional similarity and metric space assumptions. The shitylanetrics are evaluated against
human similarity ratings using standard datasets, adalgestate-of-the-art results. This work
builds upon our prior research Insif and Potamianof201Q 2017, while the following are
the original contributions:

1. An efficient and scalable methodology is proposed, fopascreation using web-harvested
data. Unlike the quadratic query complexity of our previaigorithmlosif and Potami-
anos[201d, the proposed method has linear query complexity witheeso the size
of the lexicon.

2. Three unsupervised language-agnostic similarity cdatjon algorithms are proposed
that exploit the semantic neighborhoods. The best perfagmeighborhood-based met-
rics outperform well-established approaches that relylalinceate knowledge resources.

3. We demonstrate the effectiveness of co-occurrencedlsisalarity metrics when corpus-
based frequencies are incorporated in comparison to thef wseb hitslosif and Potami-
anos[201q. This is further investigated with respect to the textusdximity of co-
occurring words.

4. The assumption that the semantic similarity between taxg/can be estimated as the
similarity of their two closest senses is validated usirenée-untagged) web data.

5. The computation of semantic neighborhoods introducedsifiand Potamianog2012
is extended by applying a number of co-occurrence-baseitasiiyn metrics in addition
to the context-based metrics. Word co-occurrence is shove tmore salient than con-
textual features regarding the discovery of senses viarsigmaeighborhoods.

The remainder of the work is organized as follows: In Secidhwe review related work
in the areas of semantic similarity computation and wordeelisambiguation. The procedure
and motivation behind harvesting a corpus of snippets filtenateb is detailed in Sectioh3.

In Section4.4, we define our semantic network and propose three novelasitgilmetrics
that utilize the notion of semantic neighborhood. The coapend experimental procedures
are described in Sectiof5 while the evaluation results are reported in Sectidfh Last,
Section4.8 concludes this work.
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4.2 Related Work

Semantic similarity metrics can be divided into two broategaries: (i) metrics that rely on
knowledge resources, and (ii) corpus- or web-based metratsdo not require any external
knowledge source. A representative example of the firsgoagyeare metrics that exploit the
WordNet ontologyMiller [1990. For computing word similarity these metrics incorportga-
tures such as the length of paths between theatock and Chodoro{d99g; Wu and Palmer
[1994 or the information content of their least subsumer thasigweated from a corpudiang
and Conratf1997; Resnik[1995. WordNet glosses have been also exploited for extracting
contextual informatiorBanerjee and Peders¢p007; Patwardhan and Pedersgd0g. An

in depth review of the major WordNet-based metrics can badan Budanitsky and Hirst
[200G. Corpus-based metrics are formalized as DSsoni and Lenc[201( and are based
on the distributional hypothesis of meaniAgrris[1954. DSMs can be categorized into un-
structured (unsupervised) that employ a bag-of-words madé and Potamianof201( and
structured that rely on syntactic relationships betweerds®aroni and Lencf201Q; Grefen-
stette[1994. Web-based metrics employ search engines to estimated@hjaeihcy of word
co-occurrencésracia et al[200q; Turney[2001]; Vitanyi [2003 or construct corpordolle-
gala et al[2007; losif and Potamianog201Q. The identification and extraction of other types
of relations has been mainly studied through the use of istigupatterns. Lexico-syntactic
patterns were applied in the influential work of Heatistarst[1997, for the identification of
hyponymy, followed by numerous similar approaches, €graballo[1999.

Recently, motivated by the graph theory, several aspedtedfuman languages have been
modeled using network-based methodsMimalcea and Radej2011]; Radev and Mihalcea
[2008, an overview of network-based approaches is presenteariamber of NLP problems.
Different types of language units can be regarded as vertiteuch networks, spanning from
single words to sentences. Typically, network edges reptase relations of such units cap-
turing phenomena such as co-occurrence, syntactic depeedeand lexical similarity. An
example of a large co-occurrence network is presentétiiditows and Dorow2007 for the
automatic creation of semantic classesF#mrer-I-Cancho and So[@€001], it is reported that
the co-occurrence networks of words that co-exist at veoytgiroximity, exhibit a number of
small-world properties and are highly clustered. Similaservations regarding the structural
properties of co-occurrence networks were also madégimnis[2004, where the HyprLex
algorithm was proposed for sense discoveryAtirre et al.[2004, an extension of the main
ideas presented Wéronis[2004 was proposed for word sense disambiguation (WSD). In par-
ticular, the PageRank algorithBrin and Pagg199g was employed for identifying hubs over
a co-occurrence network.
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Semantic similarity computation is closely related to WSZSD methods can be divided
into two main categories: (i) supervised approaches thalyapachine learning for learning
sense labels for a set of words with respect to a given coigexise labeling), and (ii) un-
supervised approaches that automatically discriminatedder) word senses without label
assignment. A detailed survey of WSD is providedtigirre and Edmond$2007; Ide and
Véronis[1999; Navigli [2009. The employment of network-based metrics for the compu-
tation of semantic similarity has attracted less attentompared to WSD. WordNet-based
similarity metrics can be regarded as a special case of metmetrics, since they are built
on the top of a manually created network. To the best of oundedge few network-based
metrics are reported in the literature that integrate netveoeation with semantic similarity
computation. IrLemaire and Denhiérf2004, a co-occurrence network was constructed, and
the similarity between two words was estimated as the ptoafugeights of the shortest path
between them with moderate performance results.

Following the paradigm of the vector space model (VSM) thatistitutes the main im-
plementation of DSMs, our approach is based on corpus-t@sedcurrence statistics for the
creation of a semantic network. One important differenct wiior work in this area is that
no language-specific tools, e.g., dependency paiearsni and Lenc{201(Q, or human an-
notations, e.g., Wikipedia hyperlink&ojtinnek et al.[2017, are used here. For example, in
Wojtinnek et al[2017 the English Wikipedia was used for the disambiguation ajeéawords
(Wikipedia concepts) and a very large network was constdibly exploiting the hyperlinks
between them. For each node (word) a vector was createddingl@ number of strongly
connected nodes selected by an algorithm inspired by spgeadtivation theoryCollins and
Loftus [1979. The similarity between two words was estimated as theneosf their respec-
tive vectors. In our work, two types of metrics are invedtghafor weighting the strength of
the link between a reference noun and its neighbors, nag®@lyccurrence-based and context-
based. Co-occurrence-based metrics were previously osdoef weighting of contextual fea-
turesAgirre et al.[2009; Baroni and Lenc[201( and the creation of co-occurrence networks
Widdows and Dorowj2009. To the best of our knowledge context-based metrics haverne
been applied for any of the aforementioned tasks. Our woedsis motivated by cognitive
consideration and theories of semantics. The networkebassrics proposed here are moti-
vated by two well-founded hypotheses regarding semamtidasity, namely, maximum sense
similarity Resnik[1999 and attributional similarityTurney[2004. Our work extends the tra-
ditional VSM approach into a two tier system: corpus stigsare parsimoniously encoded in
a network, while the task of similarity computation is sbift(from corpus-based techniques)
to operations over network neighborhoods. The proposedanktcreation process constitutes
a new paradigm for implementing DSMs that enables the deegloitation of neighborhood
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semantics, e.g., definition of metrics that adopt diffefgygiotheses regarding semantic simi-
larity, investigation of neighborhood structural projest

4.3 Corpus Creation Using Targeted Web Queries

In this section, we investigate the creation of corpora fieeb-harvested data via the formu-
lation of targeted queries. There are two main types of weligsi that can be used for corpus
creation: (i) conjunctive queries (AND), and (ii) individuqueries (IND)! . Assuming N’
words in our lexicon, in the first case all pairwise AND corgtians are formed and the cor-
responding queries are posed to a web engine, esg AND w;”. Corpus creation via AND
queries leads to quadratic query complexityV?) in the number of words in the lexicon. Al-
ternatively, one can download documents or snippets witkali query complexity) (V') using
IND queries, i.e., t;".

The main advantage of AND queries is that they construct pusothat is conditioned on
word-pairs, explicitly requesting the co-occurrence ofdvpairs in the same document. Co-
occurrence is a strong indicator of similarity and corpaeated via AND queries have been
shown to provide very good semantic similarity estimdtesf and Potamianof201(J. To
better understand the role of co-occurrence as a featummargtic similarity computation, we
need to revisit the very definition of semantic similarity,igpertains to words and their senses.
According to the information-theoretic approach propoiseBesnik[1999, the similarity of
two concepts can be estimated as the similarity of their tlsest senses. This is also in
agreement with our “common sense” (cognitive) model of sgimaimilarity: when two words
are mentioned, their closest senses are acti¥atéte believe that an important contribution
of the co-occurrence feature to semantic similarity comen is thatco-occurrence acts as a
semantic filter that only retains the two closest senSe Sectiod.6.2for the experimental
justification of this claim.

Unfortunately attempting to build corpora and DSMs usingjeoctive AND queries does
not scale to thousands of words due to quadratic query cowtypld We are thus forced
to investigate the alternative of using IND queries and fheesense disambiguation issues
associated with such corpora. Corpora created via IND gsieaie similar to a typical text
corpus with one important difference: the frequency of oance of the words in our lexicon

! Word co-occurrence statistics estimated on a web-han/estgus may be biased due to optimizations ap-
plied by web search engines when ranking documents andiselsnippets. This is especially true for query words
in corpora resulting from conjunctive AND queries, but Iessfor corpora harvested via IND queries.

2 The maximum sense similarity assertion is widely employethany top-performing similarity metrics, such
as the WordNet-based metriBsidanitsky and Hirsf2004.

3Although a work-around could be found, e.g., using crossipcts of all term statistics in a search engine
index and n-gram counts.
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can be manipulatetito deviate from Zipf's law. Assuming that the same numbemnifsets is

downloaded for each word in our lexicon (using IND querieg,expect that rare words will
be well-represented within the corpus. As a result, theumwpill be more “informative”, i.e.,

the entropy rate of a unigram (zeroth order Markov procesgjahwill be higher.
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Figure 4.1: Frequency &, 752 nouns vs. their rank. The frequencies were computed using 1)
corpus counts (black curve), and 2) web hits (red curve).cBorparison purposes the corpus
frequencies were multiplied byo*.

The normalization word-frequency effect can be illustiiabg plotting the empirical distri-
bution of the frequency of the words in the lexicon. Usingxden of 8, 752 nouns, the noun
frequencies are plotted as a function of their rank in4:iy. More specifically, we created a
web corpus by posing an IND query for each noun and retriethieg , 000 top-ranked snip-
pets (see Sectiof.5). The corpus frequencies were multiplied ki in order to facilitate the
comparison with the red curve showing web hits frequencycofding to the Zipf's lawZipf
[196], the frequency of a word) decreases non-linearly as its rank increases:

flw) = (4.1)

where f(w) andr(w) are the frequency and the rank of ward respectively, while: and-~y

are corpus-dependent. Itis clear that the frequency difiez between the high-ranked and the
low-ranked words is somewhat normalized, i.e., smallesdgalie)~, for the case of corpus
frequencies, as opposed to the use of web hits. For the egashpig4.1, v equals to—0.54
and —0.90 for corpus frequencies and web hits, respectively. Thekeesavere computed
for the ranks lying betweem, 000 and 6,000 using a least squares linear model. This nor-
malization is expected to smooth the domination of verydesd words at the denominator of

! For this example this sort of “manipulation” is caused byuesting fixed number of snippets for each word
of the lexicon.
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co-occurrence-based metrics, suchzg®—(2.17). The performance of web hits and corpus
counts is presented in Table2

4.4 Semantic Network

Next, we construct a semantic network encoding the reles@mius statistics. The network is
defined as an undirected (under a symmetric similarity m)egriaph?’ = (V, E') whose the set
of verticesV are all words in our lexicorL, and the set of edgds contains the links between
the vertices. The links (edges) between words in the netaogkdetermined and weighted
according to the pairwise semantic similarity of the versic

The network is a parsimonious representation of corpusstatas they pertain to the esti-
mation of semantic similarities between word-pairs in thédon. In addition, the network can
be used taliscover relations that are not directly observable in tlaagdsuch relations emerge
via the systematic covariation of similarity metrics. Seti@aneighborhoods play an impor-
tant role in this process. The members of the semantic neigbbds of words are expected to
contain features capturing diverse information at theasstit, semantic and pragmatic level.

4.4.1 Semantic Neighborhoods

For each word (reference word) that is included in the lexieg € L, we consider a subgraph
of F, F; = (N;, E;), where the set of vertice¥; includes in total» members ofZ, which are
linked withw; via edgesF;. TheF; subgraph is referred to as the semantic neighborhoad of
losif and Potamianof2013. The members ofV; (neighbors ofw;) are selected according to
a semantic similarity metric (co-occurrence-based defin&kction2.2.4.1 or context-based
defined in by 2.20 in Section2.2.4.9 with respect tow;, i.e., then most similar words to
w; are selected. Note that the semantic network is not a metaicesunder (the proposed co-
occurrence or context-based) semantic similarity bectnes&iangle inequality is, in general,
not satisfied. Next, we propose three semantic similarityringethat utilize the notion of
semantic neighborhood.

4.4.2 Maximum Similarity of Neighborhoods

This metric is based on the hypothesis that the similaritywaf words,w; andw;, can be
estimated byhe maximum similarity of their respective sets of neigbbdefined as follows:

Mn(wi,w]—) = max{aij,aji}, (42)
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Figure 4.2: Pictorial view of neighborhood-based metribso reference nouns, “forest” and
“fruit”, are depicted along with their neighborhoods: {pintree, ..., land} and {juice, pie,

.., jam}, respectively. Arcs represent the similaritietvibeen reference nouns and neighbors.
The similarity between “forest” and “fruit” is computed arding to (a) maximum similarity
of neighborhoods, (b) correlation of neighborhood sinitikes, and (c) sum of squared neigh-
borhood similarities.

where

Qi = xnéaﬁj S(ws,x), o = ynéaﬁi S(wj,y).

a;j (or ayj;) denotes the maximum similarity between (or w;) and the neighbors af; (or
w;) that is computed according to a similarity metfigsee for example;15—(2.17), (2.19),
(2.20). N; andN; are the set of neighbors far; andw;, respectively. The definition a¥/,, is
motivated by the maximum sense similarity assumptidys discussed above, semantic neigh-
borhoods encode diverse information. Here the underlyssgimption is that the most salient
information in the neighbors of a word are semantic featde®ting senses of this word. In
other words, we assume that semantic neighborhoods (arehsiemetworks, in general) can
be used to mine for word sendesThe M,, metric takes values in the intervil, 1], wherel

! This metric utilizes the similarities between andz, ¥ = € N;, as well as betweemw; andy, ¥y € N;.
This is slightly different than considering all the paireisimilarities between the members/éf and N;.
2See alsdVavigli and Crisafulli[201( for word sense discovery via semantic networks.
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stands for absolute similarity. Alsd/,, (w;, w;) = M, (w;j,w;), i.e., M, is symmetric. An
example illustrating the computation of similarity betwe#orest” and “fruit” is depicted by
Fig4.2a)t . M, (“forest” ,“fruit” ) = 0.30 because the similarity between “fruit” and “tree”
(among all neighbors of “forest”) is the largest.

4.4.3 Correlation of Neighborhood Similarities

The similarity betweem; andw; is defined as follows:

where
Bis = p(CN,CMY, B = p(C], O

and

CNv = (S(wy, 1), S(wi, x2), ..., S(w;,xy)), where N; = {x1,20,..., 2}

)

Note thatC]].Vi, C;Vj, andCJ].Vj are defined similarly aé‘l.m. Thep function stands for the Pear-
son’s correlation coefficienty; is the set of neighbors of word;, andS is a similarity metric.
Here, we aim to exploit the entire semantic neighborhoodghfe computation of semantic
similarity, as opposed td/,, where a single neighbor is utilized. The motivation behinig t
metric is attributional similarity, i.e., we assume thansatic neighborhoods encode attributes
(or features) of a word. Neighborhood correlation simijai essence compares the distribu-
tion of semantic similarities of the two words on their seti@neighborhoods. Thus, this met-
ric is expected to provide more robust similarity estimates\pared ta\/,,, especially when
few data are available. Thefunction incorporates the covariation of the similaritedsy; and

w; With respect to the members of their semantic neighborhoble underlying assumption is
that two semantically similar words are expected to havearging similarities with respect to
their neighbors. Moreover, thefunction normalizes this covariance by the standard dieviat
of the similarities ofw; andw;. The similarity scores computed by, metric ranges in the
interval [—1, 1], where—1 and1 denote zero and absolute similarity, respectivély.is sym-
metric, sinceR,, (w;, w;) = R, (wj, w;). The similarity computation process is exemplified in
Fig.4.2(b) for the wordsw; ="“forest” andw, = “fruit”. The similarity vectors between the
neighborsN; of “forest” and each of the words are computﬂﬁ[:Vl = (0.16,0.09,...,0.09),

L We also investigated a variation regarding the creatiorufantic neighborhoods including within the neigh-
borhoods the target words. This variation was observedein ylmost identical performance with the proposed
approach.
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O =(0.10,0.30, ... ,0.01). Similarly, C{?, C3" are computed for the neighbors of “fruit”
and combined to estimate, (“forest” , “fruit” ) = —0.04.

4.4.4 Sum of Squared Neighborhood Similarities

The similarity betweenm; andw; is defined as follows:

Ez(wi,wj):< Z SO (w;, x) + Z Se(wj,y)> , (4.4)

:L‘ENJ' y € N;

where N; is the set of neighbors of word;, and.S is any similarity metric. Similar t04.3)
all neighbors contribute to the computation of the final &nity score, here this is performed
by summing the square$ & 2) of similarities betweenv; andw;’s neighbors. The same
calculation is repeated far; and the neighbors af; to makeE? (w;, w;) symmetric. This is
illustrated by Figd.2(c) for the computation of similarity between “forest” arfauit” for 6 =2.
ThatisES=2(“forest” , “fruit” ) = \/(0.102 + 0.302 + - - - + 0.012) + (0.0022 + 02 + - - - + 02)
= 0.22.

The E%=2 metric is unbounded since the yielding similarity scoresgeawithin [0, co).

This range is smoothed in a non-linear way by taking the sgueot of the accumulated
squares of similarities. As ir(3), the motivation underlyingz?=2 metric is the attributional
similarity, i.e., neighbors stand as attributes (or feadur However, what is different here is the
utilization of the attributional similarity as indicatoorf semantic similarity, i.e., the accumu-
lation of word—to—neighbor similarities. The contributiof each word—to—neighbor similarity
is non-linearly weighted using the square of the respedinglarity score. The motivation
behind using > 1 is that more similar words in the neighborhoods should beykted more
in the final similarity decisioh Qualitatively, theE?=2 weighting scheme takes the middle
road between selecting the maximum pairwise similaritydi)(and the “linear” weighting of
pairwise similarity in 4.3). Note that a® goes toco, £ and M,, become equivalent.

4.5 Evaluation Datasets, Corpora and Experimental Procede

45.1 Evaluation Datasets

The performance of similarity metrics was evaluated ag&nsian ratings from three standard
datasets of noun pairs, namely: 1) M@ller and Charles[1999, 2) RG Rubenstein and

!Despite the resemblance between B2 metric and the Euclidean distance, no assumption is adyted
about the semantic neighborhoods being metric spaces $hder
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Goodenough1964, and 3) WS353inkelstein et al[2004. The first dataset consists D8
noun pairs. For the second and the third dataset we presaritsréor the subset di7 and
272 pairs, respectively, that are also included in Sem&aBpus. The Pearson’s correlation
coefficient was used as evaluation metric to compare estthrainilarities against the ground
truth. LetX = (z1,29,....,2,) andY = (y1,y2,...,ym) be the vectors that contain the
similarity scores given by human subjects and the compurtatimetric, respectively, for each
of thei = 1,2, ...,m word pairs of the datasets. Pearson’s correlation coefficsecomputed

_ divi(mi —2)(yi — 9)

V@i =) (i — 9)?
wherez andy are the sample means &f andY’, fori = 1,2,...,m. This coefficient was
selected instead of Spearman’s rank correlation coeffiaieorder to retain the initial scaling
of similarities in the evaluation metric, as opposed to tkeraation of this scaling through the
transformation of similarities into ranks.

as follows:

Py

4.5.2 Experimental Corpora and Procedure

We created the following corpora of web snippets using ANDNID queries posed via the
Yahoo! Search API. 1) Corpusl: Using AND querie$00 snippets were acquired for each
pair of nouns, for the MC dataset. The major aspect of thipumis the (explicitly requested)
co-occurrence of nouns for which the similarity is comput2pCorpus2: Using IND queries
1,000 snippets were acquired for each (unique) noun of the MC datalike Corpusl, the
creation of Corpus 2 is not driven by the co-occurrence caimét 3) Corpus3: The same IND
gueries were used as for the case of Corpus2, but the queeiesaugmented with lexical
descriptors denoting senses (see Sedlidh?2 for details). Corpus3 can be regarded as an
extension of Corpus2, in which the acquired data are ingtml@uniformly) cover the different
senses of nouns. The aforementioned corpora are explegedSectiod.6.2) for investigating
the effect of word co-occurrence and their senses to the gtatipn of context-based similarity
(for the MC dataset only). 4) Corpus4: This is a corpus ceeateng IND queries, consisting
of approximately8, 752,000 snippets. More specificallyl, 000 snippets were acquired for
each noun taken from a set ®f752 English nouns of the SemCor3 corpus. Corpus4 is used
for the creation of the semantic network as described iniGedt4.

For Corpus4 the baseline performance of co-occurrence ameéxi-based similarity met-
rics was computed (see also below for parameter definitibmdn the semantic neighborhoods
were defined and the maximum/correlation neighborhoodlaiitiés were computed. A de-

'ht t p: // www. cse. unt . edu/ ~r ada/ downl oads. ht n
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tailed list of experiments was conducted trying to investiégthe performance of the following
list of parameters: 1) the size of the contextual windé&wyused inQ, M, R,,, E¢=2 2) the
metric used for the selection of neighbors: co-occurrdrased {, D, I, G) or context-based
similarity (Qf), 3) the.S metric used inV,,, R,,, EY=2: co-occurrence-based (D, I, G) or
context-based similarity*), 4) the neighborhood size (number of neighboysused in},,,
R, E2:2 metrics, 5) the corpus size, i.e., number of snippets peds®, 100, 200, 500,
1,000) used to construct the network, and 6) the network #ize is the number of concepts
(nouns of lexicon) that constitute the netwotk: 88, 176, 876, 1,751, 4,376, 6,127, and
8,752. The results are presented next.

4.6 Results

The performance of the context-based metric and the cormoae-based metrics is compared
in Section4.6.1(baseline performance). In Sectidr6.2 we compare the performance of the
baseline context-based metric for corpora created via ANDIBND queries, and we show that
senses play an important role in achieving good performamc8ection4.6.3 we present the
performance of the proposed neighborhood-based metedisied in Sectior.4, that utilize
the large corpus created via IND queries (Corpus4) and tiresjmonding semantic network.

4.6.1 Baseline

We consider as baseline the performance of the followingiosetl) context-based similar-
ity metric Q' defined by 2.20 in Section2.2.4.2 2) co-occurrence-based metrics, defined in
Section2.2.4.] relying on counts that were computed either using the welcaspus (number
of hits), or the corpus of snippets harvested with respetid®, 752 nouns (Corpus4). The

Dataset Contextual window size

H=1 | H=2 | H=3 | H=5
MC 0.53 | 0.35 0.29 | 0.20
RG 0.52 | 0.41 0.37 | 0.29

WS353| 0.30 | 0.21 0.17 | 0.13

Table 4.1: Performance of context-based meff{t for several values off.

baseline scores for the context-based similarity médficare presented in Tablkel, for sev-
eral values of the contextual window size The best correlation scores are obtainedHot 1
across all datasets, while the performance drops as thefdize contextual window increases.
Even for H = 1, moderate correlation scores are achieved for the MC and &®é3els, while
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the baseline performance is poor for the WS353 dataset. eTiessilts indicate the inability
of naive context-based similarity metrics to exploit comtel features, despite the availability
of a large corpus. The baseline performance for co-occoerdased metrics that incorporate

Co-occurrence-based metrics using

Dataset Web counts Corpus counts

J | D[] 1] G| J ]| D] I ]G
MC -0.20| 0.24| 0.35| 0.33| 0.59| 0.59| 0.78| 0.85
RG -0.01| 0.21| 0.28| 0.31| 0.60| 0.60| 0.77 | 0.81

WS353|| -0.02| 0.10| 0.19| 0.20| 0.18| 0.22| 0.60 | 0.61

Table 4.2: Performance of co-occurrence-based metriogjugeb and corpus counts: Jaccard
(J), Dice (D), Mutual info. (1), and Google-based sem. relx)(

web counts (hits) or corpus counts (Corpus4) is shown in Tah Regarding corpus counts,
the co-occurrence of nouns is considered at the snippetanynWe observe that the employ-
ment of corpus counts leads to significantly higher cori@bascores, compared to using web
counts. For example, the correlation improves froi3B to 0.85 using theG metric for the
case of the MC dataset. This observation is consistent fonetrics across all three datasets.
For corpus counts, the best performance is achieved by &dmgled Semantic Relatedness,
G, while the Mutual information/, is a close second. Jaccat, and Dice,D, coefficients
have lower but comparable performance.

Dataset Number of snippets

50 | 100 | 200 | 500 | 1000
MC 43% | 28% | 10% | 3% | 0%
RG 40% | 24% | 12% | 8% | 5%

WS353| 20% | 13% | 8% | 3% | 3%

Table 4.3: Percentage of highly related pairs that have e@rmccurrence corpus counts as a
function of downloaded snippets.

Despite the high performance of co-occurrence metricsgusimpus counts, their appli-
cability is strongly depended on the corpus size. The péagenof highly related noun pairs
that have zero co-occurrence (corpus) counts are preseniedle4.3, for several numbers
of downloaded snippets. We assumed that two nouns are higlated if the corresponding
similarity score (normalized betwe@mand1) provided by human subjects is greater tiiah
The reported number of snippets were randomly selected thermitial (full) corpus. We ob-
serve that for the RG and WS353 datasets, even for the maximummber of snippetsl (000

The Exalead web search engine was u$ed p: / / ww. exal ead. com sear ch/).
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per noun)3—5% of the highly related pairs do not co-occur.
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Figure 4.3: Correlation performance of the co-occurrdmased metrid vs. word (a) distance
and (b) proximity (within web documents).

The poor performance of co-occurrence-based metrics éhaton web counts may be
attributed to the fact that the co-occurrence of words isneged at the document level, rather
than at the level of snippet or sentence (for corpus coufisg key difference between web
and corpus counts is the proximity of the co-occurring wpedswell as, the different corpus
statistics shown in Fig.1 In order to investigate the role of proximity we formulatd&EAR
queries that constrain the distance between two words if\dDveb query. The performance
of the I metric using web counts is presented as a function of thardistand proximity of co-
occurring words (within documents) in Fg3(a) and Figd.3(b), respectively. The distance,
0, between two co-occurring words denotes that exakthkens interfere between them. The
proximity, s, of two words allows tar tokens to appear between them, where 75 < 6.
We observe that imposing a distance/proximity constragrtificantly improves the achieved
correlation compared to the baseline of web co-occurrencats in Tablet.2 For example,
the correlation for the RG dataset improves fror28 (see Tablet.2) to 0.68 for § = 0 and
. Despite the clear improvement in the performance of wedeth@ount performance (when
applying a proximity constraint), corpus-based countsaitperform web-based counts. The
second reason behind the superior performance of cormesdbeounts is the (normalized)
word frequency statistiéof the snippet corpus (vs. web) shown in Fgl

! This was performed by using the NEAR operator which is sumoby the Exalead search engine. For
example, the t; NEAR/2w;" query returns the number of hits for which words andw; co-occur at proximity
equal to 2.

2For a theoretical analysis of how word-frequency normdilirein a web snippet corpus reduces the estimation
error of co-occurrence similarity metrics sesif and Potamianog20133.
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4.6.2 Incorporating Word Senses Through Web Queries

We compare the performance of context-based similarityiosetor web corpora created via
AND or IND queries. All results reported in this section aoe the MC dataset. Baseline sim-
ilarity scores here are computed using ="' metrict defined by 2.20 in Section2.2.4.2
The correlation scores for the context-based similarityrimasing AND and IND queries (dot-

0.9

QLB ]

Correlation

- AND queries (1000 snippets)

0.2¢ — IND queries f

==-Augmented IND queries

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of snippets

0

Figure 4.4. Correlation performance for context-basedlaiity for web corpora created via
AND queries (dotted), IND queries (solid), and IND queriegmented with sense descriptors
(dashed-dotted) for the MC dataset.

ted and solid line, respectively) are shown in Fgl as a function of the number of snippets.
The performance for AND queries is a single point and wasiogtkatl, 000 querieg (shown
here as reference). It is clear that context-based sityilaretrics perform much better when
using AND rather than IND queries.

Our hypothesis is that the very good performance of AND @seis due to co-occurrence
acting as a semantic filter that retains the two closest seoflséhe two words. Moreover,
the poor performance of IND queries is due to the limited cage of senses within the top
snippets. In order to verify this hypothesis we perform gsgrfiltering explicitly following
three steps: 1) identify all senses of the words of intersstguWordNet, 2) use conjunctive
AND queries between a word and each of its word senses tonolgdgvant snippets that
(mainly) contain the desired sense, e.g., the IND query foagdician” becomes “magician
AND illusionist” (augmented), given the first WordNet semée¢his word, and 3) compute the
context-based similarity between all possible pairs ofdveenses and select the maximum

! For the rest experiments in this paper we use a context wirddd# = 1. Our experiments, as well as, our
prior work losif and Potamianof201( indicate thatH =1 provides the best results for the problem of similarity
computation.

2 The maximum number of IND queries is greater than the numb&iND queries, due to the use of two
individual queries, instead of a single conjunctive qu&¥ieb search engines return uplt@00 snippets per query.

% WordNet is used here simply to validate this hypothesis.
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similarity. Step 3 makes the implicit assumption that woidilarity should be computed
between the two closest sengasdanitsky and Hirsf2009, i.e., if s;;. is the kth sense of the
word w; the maximum sense context-based similafifybetween wordsv;, w; is defined as:

Q' (w;, w;) = max Q(sik, Sj1), (4.5)

where @ is defined by 2.20 in Section2.2.4.2 The performance of the augmented IND
queries is shown in Fig.4 with a dashed-dotted line. It is clear that the use of the aunged
IND queries significantly outperforms simple IND querieslapproaches the performance of
AND queries as the number of snippets increases.

Overall, the presented results suggest that the explwitati word senses is essential for
the accurate computation of semantic similarity. We hage akperimentally demonstrated
that context-based semantic similarity estimates are mwgerate if we consider the two clos-
est senses, i.e., the maximum pair-wise sense similadgesé major road-block in top-down
corpus creation using IND queries is the lack of sense cgeeirathe corpus. We show next
that by creating a corpus by posing IND queries for thousafdsrds, as well as, by employ-
ing the notion of semantic neighborhood we can overcomedaidblock and obtain excellent
semantic similarity estimates.

4.6.3 Semantic Network

Next, we investigate the computation of semantic netwosisgudifferent types of similarity
metrics. Next, we present the evaluation results for thpgsed neighborhood-based similarity
metrics, defined by4.2)—(4.4), for different ways of defining the semantic neighborhoods

4.6.3.1 Semantic Neighborhoods

The semantic neighborhood of each word is estimated usiegbthe co-occurrence-based
metrics defined in Sectioh2.4.1 or the context-based similarity metig” defined by 2.20)

in Section2.2.4.2 Our semantic network consists &f752 nouns. Given a (reference) noun
w, let A(w) and B(w) be the neighborhood sets of computed using co-occurrence-based
and context-based metrics. The intersectiond¢fv) and B(w), A(w) N B(w), as well as
their differencesA(w) — B(w) andB(w) — A(w), are shown in Tabld.4 for ten nouns that
are included in the experimental datasets. The co-ocarerbased metri® defined in 2.16
was applied for the computation of(w), while the context-based metr@”=! defined by
(2.20 in Section2.2.4.2was used for the computation 8f(w). For both metrics, thé0 top-
ranked neighbors were considered. The neighbors that grhasized using bold fonts denote
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Reference Neighbors selected by
noun (w) D andQ=1 D only Q=1 only
(A(w) N B(w)) (A(w) — B(w)) (B(w) — A(w))
automobile|| auto, vehicle, accident, mechanig, bus, aviation,
car, engine starter, convertible | tractor, lighting
brother son, father, twin, priest, guy, lawyer,
nephew, dad police, girl neighbor, pianist
car vehiclg travel, accident, driver, business, city,
service, price automobile, fuel game, quality
coast island,beach bay, boat, lake, summer,
resort, sea tsunami, port entertainment, weather
food water, health, meal, kitchen, product, market,
service, industry snack, gourmet quality, life
forest land, tree, rain, fire, nature, region,
vegetation, wildlife | pine, wood environment, property
fruit tree,plant, vine, jam, meal, wood,
taste, juice acidity, pie food, garden
hill mountain, tree, slope,mound, island, city,
park, forest walk, snowball resort, summer
journey trip , destination, discovery, quest, vision, goal,
adventuretravel voyage, road holiday, culture
slave nigger, slavery, gladiator, labor, beggar, democracy,
servant, manumissioh freedom, master society, aristocracy

Table 4.4: Excerpts of semantic neighborhoods for ten nasirgy the co-occurrence-based
metric Dice (D) and/or the context-based met€d’=".

(lexicalized) senses of the respective reference nouns.

We observe that the discovery of a number of senses via thblmaihoods is feasible for
some nouns, e.g., “automobile” and “car”. This is more clearA(w) N B(w) compared to
A(w) — B(w) and B(w) — A(w). However, sense discovery appears to be difficult for other
nouns, such as “food” and “slave”, for which their respeztenses can not be easily described
by single words. In addition to synonymy, taxonomic relas@are encoded by the neighbors
of A(w) N B(w), e.g., IsA(vehicle, car), PartOf(automobile, engine)laiens of associative
nature, e.g., ProducedBy(industry, food), are also denogesome neighbors of (w) N B(w).
Essentially, the main difference betwediw) — B(w) and B(w) — A(w) is that the former
includes members that tend to formulate more direct asseeieelations with the reference
nouns. In some cases these relations appear in the corpiggras$ such as “car accident”
and “hill slope”. Members ofB(w) — A(w) seem to correspond to relations of a broader
semantic/pragmatic scope, such as (food, life) and (jouiméture).
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Figure 4.5: (a) Percentage of WordNet synonyms includetiersemantic neighborhoods vs.
number of neighbors. The neighborhoods were computed d3iogroccurrence-based metric
D (solid line), and 2) context-based met(r’=! (dash—dotted line). The reference nouns
were taken from the RG dataset. (b) Percentage of neighbatsdb not co-occur with the
reference nouns vs. number of neighbors. In totalj00 reference nouns were randomly
selected from the lexicon. The neighborhoods were comphbyethe context-based metric
Q*. The percentage is shown for different valuesghf

Given the importance of senses for the computation of seémaimilarity, we attempt
to quantify the performance of co-occurrence and contagetl metrics with respect to the
discovery of senses through their neighborhoods. The ptge of synonyms of reference
nouns (taken from the RG dataset) that are included in thghberhoods are presented in
Fig.4.5@a) as a function of the neighborhood size. The sets of synerfpr each reference
noun were created by consulting the WordNet synsets. Thears@meighborhoods were
computed using either the co-occurrence melicor the context metric€)’="!. In general,
more synonyms are captured by themetric compared to th@=! metric. This distinction
is greater for neighborhoods that include more th@members.

Moreover, we investigate the effect of the context winddwvith respect to the selection
of neighbors that do not co-occur with the reference nountse Jercentage of such neigh-
bors computed by) is depicted in Figt.5b) for several sizes of the neighborhoods, and
for four values of the contextual window siZé. The percentages were computed fop00
nouns that were randomly selected from the network. Therbsaits are consistently obtained
when using immediate context, i.é4,= 1, which can be attributed to the best performance of
this window value for the case of context-based similar@ynputationlosif and Potamianos
[2014. This is also shown here in Tablel
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4.6.3.2 Neighborhood-based Metrics

The computation of semantic similarity consists of two baseps: 1) computation of seman-

Abbreviation for

Dataset| Neighbor| Similarity neighbor sel./ Metrics
selection | computation| similarity comp. | M,,—100 | Riu—100 | E'=%00
MC CO-OCCur.| co-occur. (CC/ICCO) 0.90 0.72 0.90
MC CO-0occur. context (CCICT) 0.91 0.28 0.46
MC context Co-occur. (CT/CC) 0.52 0.78 0.56
MC context context (CTICT) 0.51 0.77 0.29
RG CO-occur.| co-occur. (CCICC) 0.87 0.67 0.86
RG CO-occur. context (CC/ICT) 0.86 0.32 0.53
RG context Co-occur. (CTICC) 0.58 0.72 0.61
RG context context (CT/CT) 0.57 0.69 0.33
WS353| co-occur.| co-occur. (CC/ICCO) 0.64 0.50 0.64
WS353|| co-occur. context (CCICT) 0.64 0.14 0.20
WS353| context Co-occur. (CT/CC) 0.47 0.56 0.48
WS353| context context (CTICT) 0.46 0.57 0.11

Table 4.5: Correlation for neighborhood-based metrics. urFeombinations of the co-
occurrence-based metric DicB) and the context-based metr=! were used for the defi-
nition of semantic neighborhoods and the computation oilaiity scores.

tic neighborhoods, and 2) computation of similarity scdtee S metric in @.2) and @.3)),
allowing for the following combinations.

e Compute neighborhoods and similarity scores using a coroeace-based metric (CC/CC).

e Compute neighborhoods using a co-occurrence-based pwinpute similarity scores
using a context-based metric (CC/CT).

e Compute neighborhoods using a context-based metric; cangimilarity scores using
a co-occurrence-based metric (CT/CC).

e Compute neighborhoods and similarity scores using a cthiesed metric (CT/CT).

For the above approaches, the co-occurrence-based mbtrimd the context-based metric
Q=1 were used. The correlation results for the neighborhosgdanetrics\/,,—100, Rn—100,
andEYZ2,, for neighborhood size af00 are presented in Tabke5 (see the next paragraph for
the choice ofn). The use of a co-occurrence metric for neighbor selectabneses the high-
est results for all datasets, faf,,—i00 and Eﬁz%oo, while, the context-based metric appears

1 D achieved slightly higher performance than other co-oenae metrics (not shown here for the sake of
space).
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to be better for selecting neighbors for the correlatioselolaneighborhood metri&,,—19.
The choice of the semantic similarity metric is of secondanportance for the\f,,—oo and
R,—100 Metrics, provided that the appropriate metric is used faghimrhood creation. For
theEf;%OO metric however, only the (CC/CC) combination performs wéElie results are sig-
nificantly higher compared to the context-based baselises Tablet.1). The bestM,,—199
and E,,—19p metrics also outperform the metrics that rely on web or cerpaunts. Overall,
utilizing network neighborhoods for estimating semaniticikrity can achieve very good per-
formance, and the type of metric (feature) used to selecaidighborhood is a key performance
factor.
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Figure 4.6: Performance vs. number of neighbors for neigidmmd-based metrics: (a) maxi-
mum similarity of neighborhoodsz,,: (CC/CT), (b) correlation of neighborhood similarities
R,: (CT/CC), and (c) sum of squared neighborhood similaritiés (CC/CC).

Next, we investigate the performance of the metrics as aifumof neighborhood size.
The performance of th&/,, metric using co-occurrence-based mefvifor neighbor selection,
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and Q=" for similarity computation is shown in Fig.6(a). We observe that performance in-
creases witm peaking aroundh =80—100. The performance remains high also for- 100.

The performance of th&,, metric usingQ”=" for neighbor selection and for similarity
computation is shown in Fig.6(b). The performance aR,, is relatively flat as a function of
neighborhood size, achieving good performance even foil sramhborhoods. The perfor-
mance of thek2? metric usingD for both neighborhood selection and similarity estimaii®n
shown in Fig4.6(c). M,, and EY exhibit comparable performance, while both appear to be
better thanR,, for high values ofs.

Metric | Neighbor Similarity Dataset|  Number of snippets per noun
selection | computation 50 | 100 [ 200 | 500 | 1,000

not CO-OCcCuUr. MC 0.24] 0.31| 0.43| 0.57| 0.59
Baseline| applicable | (corpus-based) RG | 0.35| 0.42| 0.56| 0.62| 0.60
WS353| 0.26| 0.26| 0.27| 0.27 | 0.22
not MC | 0.35]|0.52| 0.57| 0.54| 0.53
Baseline| applicable context RG |0.38]| 0.45| 0.50| 0.55| 0.52
WS353| 0.30| 0.33]| 0.34| 0.32| 0.30
MC | 0.54|061|0.71|0.88| 0.91
M,—100 | CO-OCCuUTr. context RG 0.54] 0.60| 0.73] 0.83| 0.86
WS353| 0.53| 0.54| 0.56| 0.62| 0.64
MC | 0.28| 0.49| 0.67| 0.73| 0.78
R,—100 context co-occur. RG 0.42| 0.60| 0.68| 0.69| 0.72
WS353| 0.50| 0.48| 0.54| 0.55| 0.56
MC | 0.56| 0.61| 0.69| 0.83| 0.90
E%=2., | co-occur. co-occur. RG |0.57]0.61|0.72|0.81| 0.86
WS353| 0.53| 0.54| 0.57| 0.61| 0.64

Table 4.6: Performance with respect to the number of comippsts per noun for the baseline
and the neighborhood-based metrics.

The correlation scores for the best performing neighbathuetrics (M,,—100, Rn—100 and
E9=2, for the (CC/CT), (CT/CC) and (CC/CC) approaches, respelgiiare presented in Ta-
ble 4.6 as a function of the number of snippets downloaded for eachH wathe network. The
performance of the corresponding baseline metrics areshtson in Tablet.6, i.e., theD met-
ric relying on corpus counts, a@’=!. We observe that the neighborhood metrics outperform
the baseline performance for all datasets. All three neigitind metrics consistently obtain
better correlation performance as the number of snippetsases. Unlike neighborhood met-
rics, the performance of baseline metrics is not shown tadvgas the number of snippets
increases and plateaus arow@d—500 snippets.
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Num. of Metrics
concepts M, —100 Ru—100 Ef=300
innet. | MC | RG | WS353|| MC | RG | WS353] MC | RG | WS353
9 0.68| 0.63| 0.55 0.87| 0.70| 0.60 0.75| 0.42| 0.66
88 0.68| 0.63| 0.55 0.88| 0.79| 0.60 0.70| 0.45| 0.61
176 0.68| 0.63| 0.54 0.86| 0.78| 0.60 0.70| 0.44| 0.60
876 0.68| 0.69| 0.58 0.83| 0.74| 0.59 0.73] 0.60| 0.62
1,751 0.75| 0.73| 0.62 0.80| 0.71| 0.58 0.80| 0.66| 0.64
4,376 0.95| 0.82| 0.68 0.78| 0.70| 0.57 0.95| 0.75| 0.66
6,127 0.91| 0.86| 0.65 0.7710.72| 0.57 0.90| 0.72| 0.64
8,752 0.91| 0.86| 0.64 0.78| 0.72| 0.56 0.90| 0.86| 0.64

Table 4.7: Performance of the neighborhood metrics folouwarnetwork sizes.

Next, we investigate the performance of the neighborhootlicsevith respect to the num-
ber of concepts (nouns) included in the network. The cosoepte randomly selected; results
are presented in Tabke7 in the form of average correlation computed over ten runs.eXve
perimented with various network sizes varying fron(0.1% of network) up to8, 752 (100%
of network) words. Regardingy/,,—1q9 andEf;%OO metrics, performance improves as the net-
work grows with best results arourd5K words. ConverselyR,,—1oo perform best for small
networks.

4.6.4 Fusion of Neighborhood Metrics

Next, we investigate the fusion of the best performing nleaghood metricsM,,, R,, and
E%=2, using the (CC/CT), (CT/CC), and (CC/CC) combinationspeesively (see Tablé.5).
The fusion was performed as a weighted linear combinatiotheifr respective similarity
scores. The largest dataset, i.e., WS353, was used foirlgahe weights of similarities using
10—fold cross validation. Then, the weights learned on (aIM86353 were applied to the CM
and RG datasets. Three different algorithms implementatleke were applied for learning
the weights, namely, linear regression, regression usipp&t Vector Machines (SVM), and
regression trees. The performance of the fusion of mesipsasented in Tabke8for n =100,

!Note that since the neighborhood size is set to be (up te) 100 for all experiments for the first two rows
(with network size of 9 or 88 words) all available words in tregwork are used to construct the neighborhoods, i.e.,
the set of neighbors is the same for all words considered.stliperior performance dR,.—100 for small network
size is a strong indication that using a common set of wordetopare semantic similarities on, works better than
using each word’s semantic neighbor. The approach of usaogranon set of “seed words” has been successfully
applied to affective text analysidalandrakis et al[2011]; Turney and Littmati2004 and warrants further research
also for semantic similarity computation.

2http: //ww. cs. wai kat 0. ac. nz/ m / weka/
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along with the performance of the best individual neighbochmetric.

Metric/ Dataset
Fusion algorithm MC | RG | WS353
| Best individual neighborhood metrig 0.91| 0.86| 0.64 |
Linear regression 0.91| 0.86| 0.65
Regression using SVM 0.91| 0.86| 0.65
Regression trees 0.94| 0.82| 0.73

Table 4.8: Performance for the fusion of neighborhood rogtri

We observe that the performance of fusion using linear anbll-Sased regression is al-
most identical to the performance of the best individuaghbborhood metric. Performance
gains are obtained using regression trees for the CM (fidrh to 0.94) and WS353 dataset
(from 0.64 to 0.73). However, performance is worse on the RG dataset. Thid issprobably
due to the different distribution of the similarity scoresthe datasets (MC dataset for exam-
ple contains only highly similar or dissimilar word pairshite RG contains more uniformly
distributed similarity scores).

4.6.5 Semantic Concreteness

Typically, thedegree of semantic concretenedgsa word is not taken into account in distribu-
tional models. However, evidence from neuro- and psyogdiistics demonstrates significant
differences in the cognitive organization of abstract aokccete nouns. For examplegiehl
et al.[1999 and Noppeney and Prici2004 show that concrete concepts are processed more
efficiently than abstract ones (aka “the concretenesst8ffée., participants in lexical deci-
sion tasks recall concrete stimuli faster than abstractcoAting to dual code theorpaivio
[19717], the stored semantic information for concrete concept®ib verbal and visual, while
for abstract concepts stored information is only verbalufdpsychological studies show that
people with acquired dyslexia (deep dyslexia) face probl@mreading abstract nouns aloud
Colthearf200d, verifying that concrete and abstract concepts are storatifferent regions of
the human brain anatomigiehl et al.[1999. The reversal concreteness effect is also reported
for people with semantic dementia with a striking impairtiensemantic memorPapagno
et al.[2009.

Motivated by this evidence, we study the semantic netwoganization and performance
of DSMs for estimating the semantic similarity of abstrastooncrete noun%. Specifically,

1We observed that the fusion algorithms exhibited similalafive) performance for also other valuesudiot
reported here).
2part of the work described in this section was conducted ifafaration with Maria Giannoudaki (ECE
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we investigate the validity of the maximum sense and atiobal similarity assumptions in
network-based DSMs for abstract and concrete nouns (forBoglish and Greek).

4.6.5.1 Experimental Procedure

Lexica and corpora creation: For English we used a lexicon consisting 752 English
nouns taken from the SemCdr8orpus. In addition, this lexicon was translated into Greek
using Google Translatewhile it was further augmented resulting into a sefd§24 entries.
For each noun an individual query was formulated and ti#@0 top ranked results (document
snippets) were retrieved using the Yahoo! search eAgirecorpus was created for each
language by aggregating the snippets for all nouns of thedax

Network creation: For each language the semantic neighborhoods of lexicom paiss were
computed following the procedure described in Sectighusing either co-occurrenc® or
context-based)’’=! metrics®.

Network-based similarity computation: For each language, the semantic similarity between
noun pairs was computed applying either the max-sédger the attributionalR,, network-
based metric. The underlying semantic similarity metie§ metric in @.2) and @.3)) can

be eitherD or Q. Given that for both neighborhood creation and networkeasemantic
similarity estimation we have the option & or Q*, a total of four combinations emerge
for this two-phase process: (I)/D, i.e., use co-occurence metie for both neighborhood
selection and network-based similarity estimation, iR, (i) Q*/D, and (iv)Q/IQH .

4.6.5.2 Evaluation Datasets

The performance of network-based similarity metrics wasduated for the task of semantic
similarity between nouns. The Pearson’s correlation aoefft was used as evaluation metric
to compare estimated similarities against the ground ttathman ratings). The following
datasets were used:

English (WS353): Subset of WS353 datasEinkelstein et al[200] consisting 0f272 noun
pairs (that are also included in the SemCor3 corpus).

Greek (GIP): In total, 82 native speakers of modern Greek were asked te $ige similarity

Department, Technical University of Crete): creation & @GP dataset, characterization of abstract/concretesnoun
from the WS353 and GIP datasets, and analysis of the neilgbbds of abstract/concrete nouns. This work is also
presented inosif et al.[2013.

'ht t p: // www. cse. unt . edu/ ~r ada/ downl oads. ht

2http://transl ate. googl e. cont

ht t p: / / ww. yahoo. cont /

*We have also experimented with other values of context winébonot reported here for the sake of space.
However, the highest performance was achieved#os 1.
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of the noun pairs in a range from 0 (dissimilar) to 4 (simildrhe resulting dataset consists of
99 nouns pairs (a subset of pairs translated from WS353).

Abstract vs Concrete: From each of the above datasets two subsets of pairs wereattyanu
selected, where both nouns in the pair are either abstramirarete, i.e., pairs consisting of
one abstract and one concrete nouns were ruled out. Mordisplyg 74 abstract and’4
concrete noun pairs were selected from WS353, for a totali®fpairs. Regarding GIR,8
abstract and8 concrete noun pairs were selected, for a totalcopairs.

4.6.5.3 Results

The performance of the two proposed network-based mettigsand R,,, for neighborhood
size of 100, is presented in Tablé.9 with respect to the English (WS353) and Greek (GIP)
datasets. Baseline performance (i.e., no use of the netwgatso shown for co-occurrence-
based metrid) and context-based metr@’’. For the max-sense similarity/,,—oo metric,

Language:] Number of | Baseline || Network | Neighbor selection / Similarity computation
dataset pairs D | Q" metric | DIQ™ | DIQ™ | Q"ID | QTIQY
English: 272 0.30| 0.22| Mp—100 | 0.64 | 0.64 | 0.47 0.46
WS353 Ry—100 | 050 | 0.14 | 0.56 0.57
Greek: 99 0.25| 0.13| M,=100 | 0.51 | 0.51 | 0.04 0.04

GIP Rp—100 | -0.11 | 0.03 | 0.66 0.11

Table 4.9: Pearson correlation with human ratings for neghood-based metrics for English
and Greek datasets. Four combinations of the co-occurteamed metrid) and the context-
based metri©)” were used for the definition of semantic neighborhoods aaddmputation
of similarity scores. Baseline performance is also shown.

the use of the co-occurrence metficfor neighbor selection yields the best correlation per-
formance for both languages. For the attributional sintytaR,,—109 metric, best performance
is achieved when using the context-based mdiifor the selection of neighbors in the net-
work. As explained inosif and Potamianof2013l, the neighborhoods selected by the
metrics tend to include words that denote word senses {geeldest results for similarity),
while neighborhoods computed using Q€ metric are semantically broader including word
attributes (yielding best results for attributional sianity). The network-based DSMs results
are also significantly higher compared to the baseline foh llenguages. The best results
achieved byD/Q™ for the M,,—109, andQ*/D for the R,,_1(o are consistent with the results
reported inosif and Potamianog013H for English. The best performing metric for English is
M,—100 (Max-sense) while for Greek,,—;o (attributional). Overall, utilizing network neigh-

78



borhoods for estimating semantic similarity can achievedgperformanck and the type of
metric (feature) used to select the neighborhood is a kepimeance factor.
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Figure 4.7: Correlation as a function of number of neighlforsetwork-based metrics. Max-
senseM,, (DIQM) for datasets: (a) English and (c) Greek. Attributiod®) (Q¥/D) for
datasets: (b) English and (d) Greek.

Next, we investigate the performance of the network metwitls respect to the neighbor-
hood sizen for the abstract and concrete noun pairs included in EnglighGreek datasets.
The performance of the max-sensg, (D/Q) metric is shown in Fig4.7(a),(c) for the (sub-
sets of) WS353 and GIP, respectively. The performance deawhole (abstract and concrete)
dataset is shown with a solid line. Similarly the resultstfe attributionalR,, (Q*//D) metric
are shown in Fig4.7(b),(d). The main conclusions for these experiments (fdh tenguages)
are: 1) The correlation performance for concrete noun psitsgher than for abstract noun
pairs. 2) For concrete nouns the max-sengge metric achieves best performance, while for

! The best correlation score for the WS353 dataset does neeesxhe top performance.(8) of unsupervised
DSMs Agirre et al.[200§. However, we have found that the proposed network metritaio state-of-the-art
results for other standard datasets, edg87 for Rubenstein and Goodenou§h965 and 0.91 for Miller and
Charleq1998.
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abstract nouns the attribution&l, metric is the top performer. 3) For th, network met-
ric, very good performance is achieved for abstract noursgar a small neighborhood size
n (around10), while for concrete nouns larger neighborhoods are ne¢giedo 40 and 30
neighbors, for English and Greek, respectively). In orddutther investigate the network or-

Type of neighbors (abstract/concrete
Neighbor Number of Type of English (WS353) Greek (GIP)
selection metric, reference nouns reference nouns abstract| concrete abstract| concrete
D 15 abstract 76% 24% 82% 18%
D 15 concrete 36% 64% 23% 77%
Qf 15 abstract 82% 18% 91% 9%
Qf 15 concrete 31% 69% 31% 69%

Table 4.10: Distribution of abstract vs concrete nouns bsifact/concrete noun) neighbour-
hoods.

ganization for abstract vs concrete nouns, we manuallyettsgd the top twenty neighbors of
30 randomly selected nouns (15 abstract and 15 concrete)assified each neighbor as either
abstract or concrete. The distributions of abstract/atecneighbors are shown in Taklel0

as a function of neighbor selection metri@ ¢s Q') and reference noun category. It is clear,
that the neighborhoods of abstract nouns contain mosthyaabsconcepts, especially for the
Q" neighbor selection metric (similarly the neighborhoodsaifcrete nouns contain mainly
concrete concepts). The neighbors of concrete nouns nagfhiyg to the same semantic class
(e.g., “vehicle”, “bus” for “car”) often corresponding televant senses. The neighbors of the
abstract nouns have an attributive function, reflectingtingd attributes and/or aspects of the

[ T]

referent nouns (e.g., “religion”, “justice” for “morality.

4.6.6 Comparison with Other Approaches

A comparison between our best restiltsd the performance of other similarity metrics is
summarized in Tablé.11 The primary criterion for the selection of the presentedriteis the
type of the exploited resources and corpora. This enabéesdmparison of knowledge— and
data—driven approaches, while the latter often are the fealsible choice for under-resourced
languages. The approaches that are presented in #ablecan be distinguished into two
main categories: (i) use of knowledge resources, such adNoy (ii) use of large corpora,
e.g., Wikipedia and corpora harvested from the web. In &aditve consider a third category
dealing with the integration of (i) and (ii) within a machilerning-based framework.

!As mentioned in Sectiod.5regarding the RG and WS353 datasets, we used their respeatisets covered
by SemCor3. The same subsets were also used for the evaloatize WordNet-based metrics.
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Metric / Resources / Dataset

Systend Corpora MLP || MC | RG | WS353

Wup WordNet no || 0.76 | 0.78 | 0.34

Res WordNet + SemCor no | 0.77 | 0.80 | 0.37

Vector WordNet + SemCor no | 0.85|0.79 | 0.47

WikiRelate! Wikipedia no || 0.45 | 0.53 | 0.48

AAHKPS1 4 billion web docs no || 0.88 | 0.89 | 0.66
TypeDM ukWaC + Wikipedia + BNC no - 10.82 -
IP 28,000 web docs: AND queries no || 0.88 | — -

IP, web doc snippets: AND queries | no || 0.80 | 0.81 | 0.57

AAHKPS2 WordNet +4 billions web docs yes || 0.92 | 0.96 | 0.78
SSS WordNet +9 million web doc snippetg yes || 0.88 | — -

Proposed

~ 9 million
(My,=100) web doc snippets: no || 0.91 | 0.87 | 0.64
(E%=300) IND queries no [ 0.91]0.86 | 0.64
(Fusion) yes | 0.94 | 0.82 | 0.73

&The metrics/systems shown in full uppercase, e.g. IP, weleesiated using the first letter of authors’ last
names.
®Use of machine learning.

Table 4.11: Performance of several metrics/systems.

Three basic types of WordNet-based metrics are includedtagory (i): path length-based
(Wup), information content-based (Res), and metrics tRploé the synset glosses (Vector).
Wup Wu and Palmef1994 is a purely taxonomic metric based on the notion of the least
common subsumer (LCS), i.e., the most specific conceptghthtiparent node of two words.
The similarity between two wordsy; andw;, is estimated as the depth (distance from root
node) of their LCS, normalized by their individual depthsderserfi201dJ. Wup is extended
by the Res metriResnik[199] according to which the similarity ofy; andw; is estimated
asRes(wj, wj) = —log P(LCS(w;, w;)), where P(LC'S(w;,w;)) is the probability of the
LCS of w; andw; estimated over a sense-tagged corpaserserf2010. The lexical infor-
mation that is included in the WordNet glosses is utilizedthwy Vector metricPatwardhan
and Pedersef200q for the construction of co-occurrence vectors extracteunfa sense-
tagged corpus. The similarity betweenandw; is estimated as the similarity of their respec-
tive vectors. In this work, we applied the aforementionedrdMet-based metrics using the
WordNet::Similarity modulé , which incorporates the SemCor corpRsdersen and Miche-
lizzi [2004. More specifically, the similarity between two words wasiraated according to

2http://search.cpan.org/di st/ WrdNet-Simlarity/
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(4.5 following the maximum sense similarity assumpti®ndanitsky and Hirsf2004; Resnik
[1995. Regarding category (ii), the WikiRelate! syste&irube and Ponzet{@004 includes
various taxonomy-based metrics that are typically appiethe WordNet hierarchy. The ba-
sic idea behind WikiRelate! is to adapt these metrics to eahiby extracted from the links
between the pages of the English Wikipedia. A very large usip exploited by AAHKPS1
consisting of four billion web documents that were acquividcrawlingAgirre et al.[2009.
For the computation of semantic similarity several vapiasi of structured and unstructured
DSMs were applied. An example of structured DSMs is the TyWleDodel Baroni and Lenci
[2014Q, where a number of lexico-syntactic patterns were ex@étom the concatenation of
three different corpora, namely, the web-harvested ukWaPus , the dump of the English
Wikipedia, and the British National Corpus (BNC). Our paws work, IP, is an example of
corpus creation using a relatively small number of web danisiosif and Potamiang01d.
The basic idea was the use of conjunctive AND queries in dalegtrieve documents in which
the pair words co-occur. Also, we have replicafeour previous work using snippets instead
of entire web documents (P

The third category that appears in Taldld 1 includes the following machine learning-
based metrics/systems: AAHKPS2 and SSS. The basic appbmithd AAHKPS2Agirre
et al.[2009 is the use of regression in order to combine similarity esdhat were computed
using different resources and corpora. A corpus of fouidniliveb documents was exploited
and results were derived using-fold cross validation. A different approach was followed b
the SSS syster8panakis et a[2009 according to which the WordNet was exploited in order
to create thousands of word pairs denoting relations suskramymy, meronymy, etc. These
pairs were used for the formulation of web queries in orderéate a corpus of snippets from
which numerous lexico-syntactic patterns were extraclidoe word similarity was estimated
by a regression model considering the pattern frequencidsaming features. The WS353
dataset was used for training excluding the pairs of the M&sda, which were used for testing.

As it was expected, the exploitation of knowledge resouteads to high performance.
The superiority of the Vlector metric over the other WordRased metrics constitutes a suc-
cessful paradigm regarding the exploitation of contexfaatures given that the word senses
are knwon. The performance of the DSM-based approachesAR¢IKPS1, TypeDM, and
IP, is higher compared to the WordNet metrics. This obsimas more interesting regarding
the case of IP, where a relatively small corpus of web docusnisrused. Overall, the high-
est results are obtained by the machine learning-basedagms AAHKPS2 for the RG and
WS353 datasets, and the fusion/af,—100, Rn=100, andEf;%OO for the MC dataset. How-

'http://wacky.sslmit.unibo.it/
2As in IP, the topl, 000 search results were acquired for each pair.
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ever, we believe that further validation is needed for themmree learning approaches given the
limited size of the datasets and the dangers of overfittinger&@l, the proposed/,,—1¢o and
E9=2,, metrics can be regarded among the best-performing unsepérstata-driven metrics,
built upon an efficient and scalable approach for corpugioreasing web data.

4.7 Scalable and Efficient Corpus Indexing and Similarity E&§ma-
tion

In this section, we briefly discuss some technical issuesitaibe scalable and efficient cre-
ation of very large semantic networks. This discussion watvated by the experience gained
during the experimental work of this chapter. The impleragah ideas that follow were con-
ducted aftet the completion of the experimental work (and respectivaltgspresented in the
previous sections of this chapter. Also, note that the coi®ma mentioned in the following
paragraphs are meant to summarize our hands-on experhes than to serve as a formal
benchmark.

Scalable and efficient corpus indexing and similarity cotafion algorithms are essential
for constructing very large semantic networks. The charéition “very large” is beyond the
used lexicon of approximateBK nouns. The initial step deals with the definition of lexi¢an
exhibiting “adequate” coverage for the language(s) ofrege The exploitation of typical dic-
tionaries enable a straightforward solution regardingtlieecoverage requirement, since they
aim to include the vast majority of words (or their canonifmins, i.e., lemmas) for a given
language. Although a variety of such dictionaries existlémguages like English, this is not
the case for under-resources languages such as a Greelleini@movercome the fragmentation
of dictionary availability across languages we used th&tams that underly the GNU Aspell
spell checkerg . In particular, we used the Aspell dictionaries for six laages, namely, (i)
English, (i) German, (iii) Italian, (iv) Spanish, (v) Grieeand (vi) Turkish. The use of those
lexicons has a number of advantages that are well-alignddauir goal: (i) free availability
for numerous languages, (ii) inflectional and derivatiomalrphemes are included, which are
missing from typical concise dictionaries, (iii) inclusiof known proper names, (iv) plain for-
mat, i.e., list of entries. Unfortunately, for some langemde.qg., Italian) the available Aspell
dictionaries were enriched through an automatic proceiduaa attempt to improve the cover-

! Nikolaos Malandrakis (Signal Analysis and Interpretati@boratory, University of Southern California) and
loannis Klasinas conducted the processing of Aspell dieties and Wikipedia dumps, as well as the harvesting
of web data for corpus creation. Vassiliki Prokopi impleiteeha Java-based corpus indexing prototype for com-
parison purposes. The work of N. Malandrakis, I. Klasina®l ®. Prokopi was funded by the PortDial project
(www. portdi al . eu).

2http://aspell.net/
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age of derivational morphemes. This resulted into extrgriaetie dictionaries (i.e., more than
one million of entries) due to the inclusion of auto-genedapseudo-words. The introduced
redundancy may be acceptable for the purposes of spell iclggdhowever, stands as a seri-
ous obstacle regarding the scalability of our approach. rdieroto alleviate this problem we
filtered the Aspell dictionary entries with the vocabulargracted from a large and authorita-
tive resource of textual data. For the aforementioned laggs the respective 2012 Wikipedia
dumps were used. For each language the final lexicon was défynaking the intersection of
the corresponding Aspell dictionary and the Wikipedia \mdary. For example, the resulting
lexicon for English containg25K (approx.) entries, while the largest lexicon was computed
for Greek consisting ot07K (approx.) entries.

Given the lexicon for a particular language a corpus of weh @@ocuments or document
snippets) can be created using IND queries as describediin84.3. Once the corpus is cre-
ated, the major technical challenge regards the corpusimgl¢éhat is essential for computing
and storing the co-occurrence statistics needed by theoar@nce-based and context-based
similarity metrics defined in Sectidh2.4.1and Sectior2.2.4.2 respectively. The large size of
the lexicons raise the demand for non-sparse indexing. Bais¢he observation that the vast
majority of words do not co-occur, we proceeded with thesgjerof co-occurrence frequencies
for the co-occurring words only. As a toy example, considegrg short lexicon that consist of
seven entries only, which are assigned (e.g., based onbapta ordering) a unique numerical
(integer) identifier froml to 7. Also, assume a small corpus that contains few instancdweof t
lexicon words. The corpus index aims to store the absolute-g@ro) co-occurrence frequency
of each word with respect to the other lexicon words. Foréix@mple, the following format
was adopted and stored irvdine ASCII file.

1,1 5,1
2,33,1516,17,1
2 3,2 7,1

, 1

1

1,1 2,1 5,1
, 16,1
2,13,17,1

The co-occurrence frequencies for a particular word carobatéd by jumping to that line
whose numbering matches the word identifier, e.g., for theé ®ord of the lexicon go to the
3-rd line of the index file. Each line of the index file includeson-fixed number (because zero
co-occurrence frequencies are not stored) of space-¢epdrelds. Each field follows the for-
mat: “identifier of co-occurring word”,",”,“absolute coeourrence frequency”. For example,
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the 3-rd word of the lexicon co-occurs with the 2-nd and ttik #ord one time (and two times
with itself). The above non-sparse indexing is quite genanid it can be adapted to different
considerations of word co-occurrence. For example, trguBrcies can be counted within the
sentence boundaries for the case of co-occurrence-basiariy metrics, while the frequency
counting should be restricted within the selected contxitindow (see parametdf defined
in Section2.2.4.9 regarding the context-based cosine similarity. Onceldex construction
is completed the encoded frequencies can be directly usebfionating the pairwise similar-
ities between the lexicon entries. The same format can loeuslksd for storing the estimated
similarities: the co-occurrence frequencies are simpbsstuted by the similarity scores.
Especially during the index construction (as well as for ¢henputation of similarities)
appropriate data structures are required in order to samf(irther process) the co-occurrence
counts. Associative arrays (also referred to as hash Jatmastitute a commonly used structure
for such tasks. In particular, a hash of hashes (e.g., edde @&sociated with a key is a
hash) is useful for storing and processing the co-occuerdreguency (or similarity score)
between two words. Regarding the exploitation of such gsires we experimented with a
small number of widely-used languages, namely Perl, JadaGan+. For the case of Perl
and Java we observed (working in a high-end desktop machuiemed with32GB of RAM)
an unaffordable memory overhead when using the respedtiiVeirb hashes caused by the
large size of lexicons. The memory requirements were saamifly were reduced using the
SparseHash library written in C++, which provides hash implementagasptimized for low
memory overhead.

4.8 Conclusions

We have investigated the estimation of semantic similarsipg semantic networks, following
an unsupervised corpus-based approach. We have shown that it is possiblehteve state-
of-the-art performance by encoding corpus statistics ans@mantic network and then using
the notion of semantic neighborhood to define novel semairidarity metrics. The maxi-
mum neighborhood similarity metric performed the best witensemantic neighborhood was
defined using co-occurrence metrics. We have also showrnrimg@ally the importance of
sense coverage and the validity of the maximum sense sityiéeasumption for context-based
similarity metrics.

The fact that co-occurrence proved to be a good feature fectsgg neighbors for the

Yhttp://code. googl e. coml p/ spar sehash/
2 Despite the fact that the presented metrics have a numbewpefimental parameters, the characterization
“unsupervised” refers to the notion of “language-agnéstic
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maximum similarity metric implies that co-occurrence isaod feature for sense discovery.
Moreover, we have studied the effect of word proximity fag sstimation of semantic similar-
ity, showing that very good performance is obtained whenda@o-occur at sentential level.
The success of context-based similarity for neighborhagldction for the correlation met-
ric implies that context is a good feature for discoveringilaites in a network. In addition,
the use of a corpus in which the not so common words are walesented and a large lexi-
con creates an informative corpus that efficiently encodes¢mantics of polysemous words
and leads to good performance. More research and expedtioents needed to verify these
claims. Overall, the achieved results are amongst the sighported in the literature for unsu-
pervised corpus-based metrics. Last but not least, theopeapapproach is efficient, scalable
and requires linear web query complexity with respect toléieon size. Future work deals
with the incorporation of network features, such as ceitgraleasurements, for the creation
of semantic neighborhoods. Further research is neededavgar multilingual networks to
verify the universality of the proposed metrics.

Moreover, we investigated the performance of network-hd38Ms for semantic simi-
larity estimation for abstract and concrete noun pairs djliEh and Greek. We observed a
“concreteness effect”, i.e., performance for concretensowuas better than for abstract noun
pairs. The assumption of maximum sense similarity as emtbgéhe,, metric consistently
yielded higher performance for the case of concrete nounie the semantisimilarity of ab-
stract nouns was better estimated via the attributionalilsirity assumptionas implemented
by the R,, metric. The results are consistent with the initial hypsthehat differences in cog-
nitive organization may warrant different network orgatian in DSMs. In addition, abstract
concepts were best modeled using an attributional netw@k vith small semantic neigh-
borhoods. This is a first step towards the better understgrafithe network organization of
DSMs for different categories of concepts. In terms of cotapon algorithms of semantic
similarity, it might prove advantageous to define a metrat tbmbines the maximum sense
and attributional assumptions based on the semantic deness of the words under investi-
gation. Further research on more data and languages ischaederify the universality of the
findings.
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Chapter 5

Associative and Semantic Features
Extracted From Web-Harvested
Corpora

5.1 Introduction

We address the problem of automatic classification of aggeeiand semantic relations be-
tween words, and particularly those that hold between nouesgical relations such as syn-
onymy, hypernymy/hyponymy, constitute the fundamentpkesyof semantic relationSruse
[1984. Associative relations are harder to define, since thelydteca long list of diverse rela-
tions, e.g., “Cause-Effect”. onion—tears, “Instrumergeficy”: hammer—carpenter. From the
perspective of cognitive scientists, associative refated is triggered by the co-occurrence of
words McNamara[2009, while the definition of semantic relatedness is contrsiar The
boundary between semantic and associative relations iglways clear, since highly associ-
ated words tend to be semantically related, e.g., (cat,dod)lcRae and Jond2013, a short
review of this argument is provided. However, a simple protds widely-used in order to
smooth this fuzziness for dataset creation (for more desaié Sectiob.4). Previous research
efforts have investigated semantic relations, such asdéwtification of synonymdpsif and
Potamiano$2014, hyponyms Caraballg1999. Also, the identification of other relations has
attracted the research interest, e.g., the Task 8 of SeriBwdgalt with the classification of
various relationgdendrickx et al[201(. To our knowledge there have been very few compu-
tational efforts for the discrimination between assoe@atind semantic relations, e.gurney
[2009.

Such classification can be beneficial for a wide range of lagguechnologies. For ex-
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ample, in statistical language modeling, class-basedikggmodel8rown et al.[199] have
long been used to extend the coverage of the model — wordagsad should typically be
semantically related (i.e., sister hyponyms of the samesimym). However, trigger models
Lau et al.[1993 try to find words that change the probability distributiomeo other words,
which is more of an associative relationship (e.g., postmbatter). Other technologies might
use relationships in a different way: spoken dialogue systeften have an ontology of se-
mantically related concepts (which one can attempt to lé@am corpus datdargellis et al.
[2004); query expansion techniques for information retrievalé also utilized semantically
related conceptSang[200§. On the other hand, information extraction tasks may befrefin
knowing associative relationships between words, sineetimtextual information leading to
a decision to extract some piece of information is moreyikelbe associative in nature.

We propose an automated computational approach thatrdisaties between associative
and semantic relation's. Text-based lexical and hit-based features are extracved the web
in order to classify given pairs of concepts as semantic so@ative. These features do not
rely on manually selected syntactic patterns, such as Fepegterns for the identification of
“is-a” relations and semantic role labeling, but are ratinetivated by general cognitive and
linguistic principles. Specifically, we propose two novefures: (a) the degree of priming (co-
occurrence asymmetry) as a function of the distance betthesnvo words in text, and (b) the
rate of change of context-based lexical similarity as a tioncof the context window size.
Evaluation proceeds on a dataset contaiRiBgjassociative and semantic relations, which they
were appropriately assembled by cognitive scientistsdeeioto exclude any fuzzy relations.

5.2 Related Work

Semantic similarity metrics can be divided into two broategaries: (i) metrics that rely on
knowledge resources, and (ii) corpus- or web-based mdratsdo not require any external
knowledge source. A representative example of the firsgoayeare metrics that exploit the
WordNet ontologyMiller [1990. For computing the similarity between words these metrics
incorporate features such as the length of paths betweetwthevordsJiang and Conrath
[1997; Resnik[1999 or the information content of their least subsumer, edtthdom a cor-
pusLeacock and Chodorofd999g; Wu and Palme[1994. WordNet glosses are also used as
features irPatwardhan and Pederd@00q. A study that reviews in depth the major WordNet-
based metrics is provided Budanitsky and Hirsf200q. Corpus-based metrics usually extract

The work described in this chapter is also presentetbdif et al.[201]. A subset of the experimental
features used in this chapter was developed in collaboratith Maria Giannoudaki (ECE Department, Technical
University of Crete): linguistic patterns discussed int®er5.3.3
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contextual features from text for computing semantic snty. Web-based methods employ
search engines to estimate the frequency of word co-ocme&r@racia et al.[2004; Tur-
ney[2001; Vitanyi [2009 or construct corpor&8ollegala et al[2007; losif and Potamianos
[2010. The identification and extraction of other types of ralat has been mainly studied
through the use of linguistic patterns. Lexico-syntactattgrns were applied in the influential
work of HearstHearst[1997, for the identification of hyponymy, followed by numeroums

ilar approaches, e.gGaraballo[1999. Pattern-based approaches were also employed for the
meronymy relatiorGirju et al.[2003.

5.3 Associative and semantic features

In this section, we propose two novel features for discratiimg between associative and se-
mantic relations using information automatically exteatfrom the web. Syntactic patterns
are also investigated as features.

5.3.1 Hit-based priming coefficient

Hit-based metrics (summarized in Sectih@.4.]) employ co-occurrence counts without taking
into account: (i) the order of appearance of each word, anthé distance (i.e., the number
of words that intervene) between occurrences of the two svaxtext, we motivate the use of
these features for classifying associative and semanétaes.

The use of word order is motivated by findings in cognitiveesce and psycholinguistics,
about the asymmetry of the priming phenomenon with respeegbtd pairs. In psycholinguis-
tics, the notion of priming refers to the cognitive procagghat takes place when two words in
a certain order are presented to a human subject. In thisivank, the first worg (“prime”)
serves as a stimulus that facilitates (or primes) the cwgnjtrocessing of the second ward
(“target”) McNamara[2005. The selection of prime and target is determined expertaiign
for each word pair based on human response time, where Espiome is assumed to be in-
versely proportional to the strength of priming (or relatess). Once the prime and target are
defined, their usual ordep(t) is known as “forward”, while the reverse order §) is called
“backward”. It has been found that the difference betweewdod and backward priming is
statistically significant for many related word pairs, grgsponses to the pair (‘light’,'bulb’)
were reported to be quicker than the responses to the palb{‘tight’) Koriat [1981]; Mc-
Namara[2005. Similar observations regarding the asymmetry of ordesmdearance within
co-occurrence were also reported in the NLP literatDheirch and Hank§199(. However,
data related to this phenomenon have been analyzed witlwlef exploration of the cognitive
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aspects of the problem.

Our goal is to define a “priming coefficient”, i.e., a single tnethat characterizes the
degree of asymmetry in the forward and backward co-occoere@munts. Since priming is
sensitive to ordering, we compute“forward” and “backwacd*occurrence counts (as a func-
tion of the distance between words) for each word pair. Weeixfhat word pairsy(t) with
strong priming should appear much more often in the forwatdar than the backward order.
We expect priming to be a good discriminator between asseeiand semantic relations as
psycholinguistics have suggested that priming effectsbeaof different magnitude for these
different relationg=errand and Ne}2003; Plaut[1991.

Instead of using raw co-occurrence counts to estimate themyy coefficient, we propose
to use the normalized hit-based metrics defined in Se&@i@m.1We introduce a variation
of hit-based metrics that computes separately forward audtvibard co-occurrence counts,
conditioned on the distancEbetween words. For a word p&iw;, w; ), the forward relatedness
Ry, is defined as

Rﬁm(wi,w]—) = A(w;,w;;d =m), (5.1)

computed only for forward co-occurrence counts with distadh that is equal tan words.
Function A(.) denotes any of the hit-based metric defined in Se@i@»4.1Similarly, back-
ward relatedness is defined as:

Rém(wi,w]—) = A(wj,w;;d =m). (5.2)
Total relatednesa?! is defined as the sum of the forward and backward relatedness
A (wi,wy) = RY,, (wi,wy) + Ry (wi, wy) (5.3)

for metric A, word pair(w;, w;) and distance equal t@. Finally, the priming coefficientr 1
is defined as the normalized absolute difference betweevafdrand backward relatedness
| RY, (wi, wi) = Ryl (wi,w;) |
RE (i, wi)+ Ryt (wi, wy)

Wi (w;, wy) = (5.4)

The priming coefficient is equal tbwhen the forward and backward co-occurrence counts are
equal (no priming) and when a word pair only appears with the forward (or backwardgo
(very strong priming).
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5.3.2 Slope of text-based similarity

In Section2.2.4.2 a context-based metric was defined 220 that has been used in the
literature for estimating the strength of semantic refaidetween words. In general, the
strength of both semantic and associative relations cavergle range from weak to strong;
as a result, the relation strength by itself is a poor discré@tor of the semantic vs associative
class.

Based on observations in psycholinguistiesrrand and New2003 and computational
linguisticsHearst[1997, words that are semantically similar, especially synosyand words
that belong to the same semantic class, can be identifieciopleyntactic patterns from their
immediate vicinity. For this case, context-based sematidlarity metrics are also shown to
better correlate with human judgements when small coraéxtindows are used to compute
similarity losif and Potamianof2010. Associative relations often imply a shared pragmatic
context that is also evident from lexical similarity in thetrso-immediate vicinity. Thus,
the relevance of lexical features extracted from contexxigected to be a function of the
contextual window size. According to the above considersti we assume that the migration
from syntactic to pragmatic features by increasing the eizé&l, will affect differently the
context similarity of associative and semantic relatiof&r this purpose, we compute the
difference of semantic similarity scores across diffegimes of H. In particular, we focus
on window sizes that differ exactly by one (first-order diffieces). Consider two words;
andw;. The difference of their similarity scores with respect tmaow sizes,H, andH,, is
computed as:

Sg:(wi,wj) = St (w;, wy) — S (w;, wy), (5.5)

for H, — H, = 1. The similaritiesS#= (w;, w;) and S#v (w;,w;) are computed according to
(2.20 defined in Sectior2.2.4.2
5.3.3 Linguistic patterns

We also examine whether specific syntactic patterns canmisate between associative and
semantic relations. By manual inspection of our data we kavwemarized the most common
patterns for associative ([A1],[A2]) and semantic ([SR]) relations, respectively:

[A1] Complex Noun Phrases (NPS)N Pyerpijterm2 [N Prermi|term2]], €-9., ‘Ocean wave
energy is captured directly from surface waves or from presiuctuations.”

[A2] Terms co-occurring in argument positioN®Y Perm1 [V PN Piermel]], €.9., “...why do
giraffes have longnecks.."
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[S1] The two terms in coordinative constructionSV Pye,,1] AND|OR [N Pierm2l, €.9.,
“Beet and radishroots are similar in shape, but beets are usually largerrédishes.”

[S2] The two terms in extended coordinative constructiongolving one additional NP
between the NPs of interestiV P, 1jterma) » [V P] AND|OR [N Piepmiftermols €-9-,
“... professionakarpet, upholstery and rugcleaners in the Chicago ... "

Overall, associative noun pairs are expected to surfacegasnants of the same phrase: in
pattern A1 one NP is contained into the other, while in pat&2 both NPs are manifested in
the argument positions of the same VP (subject and objetteoferb). Semantically related

noun pairs form NPs that are structurally independent of edloer; when they co-occur in

close proximity they are usually connected with conjurdio

5.4 Experimental Dataset

There are relatively few datasets containing rated asseziar semantic relations between
word pairs or terms, most of them containing fewer tts@npairs. Lack of a standardized
dataset of adequate size is a barrier to computational appes that require fair amounts of
data for training and testing. In this work, we have mergdadsias taken from three different
studies from the literature of psycholinguisticgiarello et al[199(; Ferrand and Ne\\W2003;
Perea and Gotdr1997 for a total of 238 relations, equally split betweell 9 associative and
119 semantic relations (Tabi 1). All three datasets were designed for psycholinguistjmeex

| Dataset No| # of semantic rel] # of associative rel|

1 42 42
2 48 48
3 29 29

| Total | 119 \ 119 |

Table 5.1: Experimental datasets.

iments related to priming, and contain only “pure” assdataand semantic relations, avoiding
word pairs that lie in the boundaries of the two relationsll\&stablished lists of free associa-
tion norms, e.g.Nelson et al[199]; Palermo and Jenkirfd4964, were used for the selection
of “pure” associatively related pairs. Such lists are carcsed by collecting the responses of
human subjects when stimuli words are presented to themhaydare asked to give the very
first word they recall. Regarding “pure” semantic relatioti®e relevant pairs were selected
according to the following criteria: (i) the words of eachirgae members of the same seman-
tic category and they have high scores of semantic relassdmad (ii) they are not included
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in lists of free association norms. The scores incorporaiethe first criterion typically are
estimated by collecting ratings given by human subjectsis Way, pairs exhibiting strong
associative and semantic relatedness, e.g., “cat—dogé ma included in the datasets. The
semantically related pairs in datasets 1 and 3 consist gixely of words that belong to the
same semantic category, i.e., hyponyms of the same hyperffigensemantically related pairs
in dataset 2 consist of words with various degrees of syngnyBome indicative examples

| Dataset No| Semantic rel. | Associative rel|
1 brass—iron onion—tears

1 velvet—linen hammer—nail
1 bacon—steak pilot—plane

2 boat—ship board-wood
2 work—labor | nucleus—center
2 fume—steam hour—clock

3 clarinet—flute drill-hole

3 pancake—wafflg  cow—milk

3 rug—carpet suitcase—trip

Table 5.2: Examples of dataset relations.

of the relations included in the experimental datasets egsgnted in Tablé.2 In theory a
number of associative pairs may also exhibit a semantitioalaFor example, “hammer” and
“nail” can be considered as co-hyponyms, i.e., sharing #meshypernym. However, their
associative relatedness is much stronger.

5.5 Experimental procedure

We compute hit-based metrics and text-based metrics thraedp search engines as described
below:

5.5.1 Hit-based metrics

The number of word co-occurrences is estimated by YahoatlsesPI* that returns the num-
ber of web hits given a particular query. We wish to compugerthmber of hits for the word
pair (w;, w;) under the following constraints (i); precedesu;, and (ii) their distance, defined

in Section5.3.1as the number of intervening words, is equabtoi.e.,m = 2. Thisis achieved

by the query f; x x w;” for m = 2. The “x” symbol is a special search metacharacter, match-
ing any wordBollegala et al[201(J. Using this query formulation, we retrieve the number of

'ht t p: // devel oper. yahoo. conf sear ch/
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hits for both forward and backward ordering of the words up fmarticular distance:. Once
the number of hits is retrieved, the total relatedn&ggw;, wj) is computed according t&(3),
for each of the hit-based metries Similarly, the priming coefficien¥?} (w;, w;) is computed
according to %.4). For each word pain:/,\é(wl-,wj) and\Ifﬁl(wi,wj) are computed, using the
four hit-based metricsl = {J, C, I, G} and for distance values =0, ..., 10.

5.5.2 Text-based metrics

For the computation of text-based semantic similarity leetvthe words of associative and
semantic relations, we need to build a corpus from the web.e&oh word paifw;, w;), we
download1000 snippets of web documents using the Yahoo! Search API. Thesearch is
performed according to the conjunctive quewy; AND w;”, ensuring that both words co-occur
in the same snippet, for reasons explainetbiif and Potamianof201J. Once the snippets
are retrieved, we compute for each word pair: (i) the seroaithilarity score,SH(wl-,wj),
according to 2.20 defined in Sectior2.2.4.2 and (ii) the difference of similarities across
different window sizessg; (ws,w;), according t0$.5). The similarities are computed using
B and LTF weighting schemes (see Tal@€l) for contextual window size# =1, ..., 10.

5.6 Evaluation Results

In this section, we present results for associative vs semalation classification using the
dataset described in Sectiéd. We used the support vector machine classifier provided by
Weka; similar results were obtained using naive Bayes clasgiiistrreported here due to lack
of space). Note that for the case of individual features, priming coefficient, the classifiers
were fed with scalars, i.e., the values for the respectigtufe. The evaluation was performed
according to al0-fold validation procedure. The evaluation results areortgul in terms of
classification accuracy.

In Fig. 5.1(a), the classification accuracy is shown for: (i) total Mess/\;fn(wi,wj),
computed according tb(3) (solid line), and (i) priming coefficient¥;, (w;, w;), computed
according to 5.4) (dotted line). Classification accuracy is plotted as a fioncof m, the
distance between words. It is clear that total relatednebigees very poor accuracy that
lies close to chance. The poor performancenat= 0 is an indication that the asymmetry
of priming at the bigram level can not discriminate assaw@aand semantic relations. The
priming coefficient obtains good accuracy arowty, for most values ofn, excluding the
valuem = 1. The discriminative ability of the priming coefficient ingares for distance

*htt p: / / www. cs. wai kat 0. ac. nz/ m / weka/
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Figure 5.1: Classification accuracy for: (a) total relats\;/, (w;, w;), and priming coeffi-
cient¥?/ (w;, wj;) as a function of distance: for the Jaccard.{) hit-based metric, (b) semantic
similarity S# (w;, w;) and sIopeSIZI: (w;, w;) metrics as a function of the window siZ#, us-
ing the binaryB weighting scheme. Histograms for associative and semjpaitis: (c) priming
coefficient¥{ (w;, w;), (d) similarity slopeSHZ=2(w;, w;).

values around 6 or 7 (although the differences in performame not statistically significant).
In Table5.3, the classification precision is summarized for a numbeitdfdsed metrics for the

Hit-based Accuracy
metrics | Total related.| Priming coef.
J 53.2% 86.5%
C 52.7% 86.5%
I 56.5% 85.7%
G 62.9% 86.5%

Table 5.3: Classification accuracy for total relatedneskpriming coefficient.

total relatedness and priming coefficient. These resulte wistained by joining the individual
features for distances, = 0, ..., 10 into a single vector. Again, significantly higher results,
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up t086.5%, are achieved by the priming coefficient. There is no sigaificifference among
the hit-based metrics.

In Fig. 5.1(b), the classification accuracy as a function of the wind@e &/ is shown
for. (i) context-based simiIarit;SH(wl-,wj) computed according ta2(20 defined in Sec-
tion 2.2.4.2(solid line), and (ii) similarity sIopeSﬁyz (w;, w;) computed according tcb(5)
(dotted line). For both of them, the binafy weighting scheme was used. Context-based sim-
ilarity S* (w;,w;) is shown to be a relatively poor discriminator of assocétis semantic
relations, and the achieved accuracy remains & — 62%, for all values ofHH. The sim-
ilarity slope sg; (w;, w;) metric also performs poorly with the exception of windéiv= 2;
performance folSE=2 (w;, w;) exceeds0% accuracy. Classification accuracies for both met-

| Metrics of semantic similarity Accuracy |
SH (w;,w;), B scheme 62.6%
SH (w;,w;), LTF scheme | 62.6%
Sp* (wi, w;), B scheme 71.8%
Sy (wi,w;), LTF scheme | 64.3%
WN: Leacock-Chodorow 71.0%

WN: Resnik 75.6%
WN: Vector 54.2%

Table 5.4: Accuracy for context-based similarity, simtlaslope and WordNet-based (WN)
similarity metrics.

rics ST (w;, w;), Sﬁ: (ws,w;) and for bothB and LTF weighting schemes are presented in
Table5.4. Results are computed for the joined feature vector coingimalues computed
for contextual window size$l = 1,...,10. For comparison, we have also included the ac-
curacy for three WordNet-based similarity metrics, nametpacock-Chodorow.eacock and
Chodorow[199g, ResnikResnik[1995, and VectorPatwardhan and Pederg@90§. These
metrics were computed using the WordNet::Similarity paekaleveloped by Pedersen and itis
freely available through CPAN The S (w;, w;) similarity metrics achieve relatively low ac-
curacy, below63%. WordNet-based metrics display diverse performance nanyom 54.2%

for the Vector metric t6r5.6% for the Resnik metric. The accuracy achieved by the slope
Sﬁ; (ws, w;) metric is up t071.8% for the B weighting scheme. It is interesting to note that
the best performing WordNet-based metric (Resnik) hastaotial differences with the Vector
metric, since it exploits the taxonomic paths of the WordiNetarchy. The Leacock-Chodorow
metric also relies on taxonomic features and it is shown liee performance comparable to
the Resnik metric. The Vector metric, which yields the wpesttormance among the WordNet

metrics, is quite close to the context-based metidS((w;, w;)), since both approaches utilize

'http://search. cpan. org/
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lexical features. This is a weak indication that the incoagtion of taxonomy-based similarity
achieves better discrimination between associative amdusic relations.

To further investigate the behaviour of the best perfornfeagures, we have plotted their
histograms for associative and semantic word pairs. In3=ifc), we show the histogram for
the priming coefficient? (w;, w;). The priming coefficient for the associative relations &nd
to be lower than that of semantic relations, especially &ogér values of distance.. The
histograms of the values of/=%(w;, w;) metric are shown in Figs.1(d). Both histograms
have positive means, i.e., context-based semantic sitpilacreases when going from window
size one to size two. However, the increase for associagiegions is higher.

We have also combined the best performing featuresk §j)priming coefficient using the
G hit-based metric, and (il$Hyz (w;, w;) text-based metric using scheme, by simply taking
the union of their feature sets. This combination achieVigthtyy higher accuracy of 87.8%.
Finally, we report results separately on dataset 2 thag@msisynonyms as semantic pairs, and
compare the results with datasets 1 and 3. The results asenteel in Tablé.5 Note that

| Features | Setl,3| Set2 | Allsets |
We (w;,w;) | 87.7% | 82.8% | 86.5%
St (wi,wy) | 76.1% | 56.9% | 71.8%
Both features 87.8%

Table 5.5: Accuracy for datasets 1, 3 vs dataset 2.

the accuracy drops for dataset 2 (synonyms) for both theipgirooefficient and, especially,
the similarity slope. This is an indication that synonymsyimibe harder to separate from
associative pairs; however, due to the limited size of @atag9 assoc. and9 sem. relations)
no general conclusions can be drawn.

Also, some preliminary results on the classification betwsemantic and associative re-
lations using linguistic patterns (on the same web corpus)peovided. The most accurate
pattern for associative relations is A1 (complex NPs) adhgeclassification accuracy of 66%.
For semantic relations the S1 pattern with coordinativestations performs better, although
its performance is below 60%. When all four patterns were wsassification accuracy of up
to 73.5% is achieved.

Last, in order to further validate our best performing feat@C , we used some types of
relations taken from the field of semantic role labelinguasag that they can serve as associa-
tive ones. Regarding semantic relations we retained th#ioek of dataset 1. In particular, we
considered four distinct types of relations taken from tkenEval2010-Task 8, “Multi-Way
Classification of Semantic Relations Between Pairs of NatinHendrickx et al.[201(:

(i) “Cause—Effect”, (ii) “Instrument—Agency”, (iii) “Comonent-Whole”, and (iv) “Member—
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Collection”. For each type of the above relations, we ckatelistinct dataset including the

semantic relations of dataset 1 and an equal number of rdgdmtected examples. For each
dataset we evaluated the proposed priming coefficient degathe classification of semantic

and associative relations. For all datasets the classificatcuracy is very similar and exceeds
80%, even for medium values of distance (= 3). These results provide an additional confir-
mation regarding the good performance of the proposedrizaithile they are consistent with

the results obtained for the datasets assembled by cagsitientists.

5.7 Conclusions

Motivated by findings in the psycholinguistics and compotal linguistics literature, we in-
vestigated the problem of automatically classifying iieled between words into either associa-
tive or semantic, using information extracted from the wBlvo new features were proposed
designed specifically for this classification task, namiblg, priming coefficient measuring the
asymmetry in the order of appearance of the word pair andrtediider difference (slope) of
the context-based semantic similarity with respect to threextual window size. For associa-
tive relations the priming coefficient takes significantigaler values as the distance between
the two words increases, while for semantic relations prgs less affected by word distance.
For words that are semantically related their contextumllarity is higher for immediate rather
than for distant context (small vs. large contextual windpvfor associative relations context
similarity is less affected by window size. The priming daéént is shown to be a good fea-
ture for discriminating between the two classes, achieeiagsification accuracy up to 86%.
The slope of the contextual similarity achieves good cf@sgion results, up tG2% accuracy.
Overall, we have shown that it is feasible to classify asgo@ and semantic relations without
using lexical or syntactic patterns, but rather generauistic properties measured through
lexical corpus statistics, e.g., order of appearance,ccovoence, distance, contextual similar-
ity. We make availablé a resource containing more theud00 priming coefficients, computed
for the pairs of the experimental datasets.

Further research is needed with larger datasets to ve®futiiversality of these claims.
Also special cases of associative and semantic relatiamddhe investigated and the relative
performance of the proposed features should be evaluathd.pioposed features could be
also relevant for investigating the differences betweeioua types of semantic relationships,
as well as for studying the priming phenomenon across diffdanguages within the proposed
computational framework.

'http://ww t el ecomtuc. gr/ ~i osi f e/ downl oads. ht m
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Chapter 6

Applications of Network-based DSMs

6.1 Introduction

In this section, we investigate the application of the nekamased similarity metrics for three
problems. In Sectio®.2, visual and textual features are integrated for the creaifomulti-
modal networks . In Section6.3, the semantic neighborhoods are utilized for determiriieg t
semantics of compositional expressions. Specificallytileerain network-based metrics are
adapted for estimating the semantic similarity betweempaoun pairs. In Sectio6.4, the
network similarity metrics are applied to the constructidra simple noun taxonomy.

6.2 Network-based DSMs of Words and Images

Using the distributional hypothesis of meaning for estingatsemantic similarity between
words is limited to a single modality, i.e., text. Howevetcarding to cognitive science the
semantic properties of concepts are also determined byettarés of other modalities, e.g.,
color Barsalou et alf2009. In this section, a preliminary attempt is presented talsdhe cre-
ation of multimodal network-based DMSs, using featuresagxed from text and images. The
key idea is to use both types of features for the definitioneofiantic neighborhoods and the
computation of network-based similarity metrics as désctiin Chapted. It should be noted
that the key idea of this section heavily relies on the wordppsed inBruni et al.[2011].
The contribution of this section deals with the adaptatibthe aforementioned idea on the
network-based framework.

The visual features used in experiments of this section Wardly provided by Elia Bruni (Center for
Mind/Brain Sciences (CIMeC) of the University of Trentoprfmore details seBruni et al.[2011]].
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6.2.1 The Visual Analogue of Bag—of—Words Models

The “Bag-of-Words” (BoW) model is a widely-used approachifoplementing unstructured
DSMs. The main characteristic of BoW model is that the sytitaelations between the tar-
get words and their contextual features are not taken irtowatt. In essence, the contextual
features under Bow model can be regarded as a lexicon, whigpiesented as set of lexical
entries. The BoW model often is utilized for the constructitSM 1, where the contextual fea-
tures are encoded in a matrix, while the similarity betweends is estimated using functions
of vectors (i.e., rows of matrix). The notion of “Bag-of-Me&—Words” (BoVW) model was
inspired by the BowW model in an attempt to represent imag#smaspect to a common “visual
lexicon” Bruni et al.[2017]]; Csurka et al[2004; Sivic and Zissermaf2003. Given an image
collection the following steps are followed for the constion of the BoVW modeBruni et al.
[2017: 1) Salient local regions, e.glp x 10 pixels, are identified and represented as vectors.
Local regions were reported to be more robust to occlusiodssaatial variation: compared
to global regions-ei-Fei and Peron2005. Note that, multiple vectors may be used for each
region. In such cases, vectors contain different type diufea. The local regions are also
referred to as keypoints. 2) The identified keypoints argepted into a space that is shared
between the images of the collection. Next, the projectamesclustered, while each cluster is
considered as a visual word. 3) Every image is then repredeatt vector that includes such
visual words.

6.2.2 Multimodal Network Creation

In this section, the creation of semantic networks is bridftgcribed. What is new here is
the network creation based on visual features, since theagip of Chapte#d was followed
regarding the text modality. In particular, the visual teat we experimented with were based
on the work described iBruni et al.[201]] in which the VLFeat implementationedaldi and
Fulkerson[2013 was applied. The extraction procedure is summarized d@asl A stan-
dard detector, Difference of Gaussian (Dd®@yve [2004, was employed for the identification
of keypoints and their assignment into visual words. Thdeskaariant Feature Transform
(SIFT) was used for the representation of keypoints by adi@nsional vector. SIFT ex-
hibits a number of useful properties: invariance to imagdesrientation, noise, distortion,
as well as partial invariance changes of illumination. Fhmeans algorithm was applied for
clustering the detected keypoints ir2000 clusters, i.e., visual words. In order to obtain a
more granular analysis of the images the number of visuatisvaras increased by6. This
was performed using a one-levelx 4 pyramid of spatial histograms. This way each image

! Note that the Bow model can be also used without adopting &V
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was represented by a vector with dimensions correspondiBgK visual words.

Recall from Chapte4 that the network creation consists of two main steps: 1) cgatjpn
of semantic neighborhoods, and 2) computation of simylatiores. Regarding text modality
two types of similarity metrics (in conjunction with the pextive features) were applied: co-
occurrence-based (CC) and context-based (CT). Here,catyipe of feature, i,e., visual (VS),
is available for both steps, while the similarity betweemges is estimated using the cosine of
their respective features. In this section, we focus ontjéocases where VS is used (i) either
for Step 1 or Step 2, (i) for both steps. When VS is used forgiep only, the other step can
be performed using either CC or CT. In total, there maoembinations.

6.2.3 Experimental Networks and Datasets

An important step for the creation of the intended multimodzwork is the mapping of the
noun lexicon within the image collection. Of course, it igtguifficult to find an one—to—
one mapping, i.e., a certain image represents a certain nowruni et al.[2017]], the image
collection of the ESP-Game dataset was used, in which eaaddnvas annotated with a textual
description (set of tags), i.e., multiple tags were allowedimage. In order to obtain a visual
representation for each tag the following approach wasv@t: Each tag was associated
to the set of images that were tagged with it. Then, each tagrepresented by a vector
of visual words computed by summing the vectors of the cpmeding images. In total, 11K
unique tokens were used as tags. For the creation multinmetiabrks we used the intersection
between our existing noun network consisting &762 members) and the set of tags used
in Bruni et al.[2017. This resulted to a set df, 450 nouns for which a semantic network
was created as described in SectiR.2 For evaluation purposes,we used the noun pairs of
() Rubenstein-Goodenough (R®ubenstein and Goodenoul96q and (ii) WordSim353
(WS353)Finkelstein et al[2009 datasets which were included the seBot50 nouns: 35 and
175 pairs, respectively.

6.2.4 Evaluation Results

In this section, the performance of the network-based anjl metrics is evaluated against
human ratings using Pearson’s correlation coefficient.

The baseline performance is presented in Téklevith respect to the co-occurrence-based
(CC), contextual (CT) and visual features (VS). For the a#s€C the bast performing co-
occurrence-based metric was applied: Google-based Senraiatedness defined bg.(18).
The cosine similarity, defined b0, was employed for the CT and VS features. An imme-
diate context windowX = 1 was used for CT. It is clear that the co-occurrence featurgiene
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Feature used || Subset of Subset of
for RG dataset WS353 datase
similarity metric || (35 pairs) (175 pairs)
CC 0.85 0.61
CT 0.67 0.25
VS 0.47 0.33

Table 6.1: Performance of baseline metrics using co-oenaa-based (CC), contextual (CT)
and visual features (VS).

outperforms the other types of features for both dataseisléar winner emerges between the
CT and VS features.

Type of feature for Number of neighbors

Selection Similarity 10 | 50 | 100 | 150 | 200
of neighbors| computation
Subset of RG dataset (35 pairs)

CC VS 0.64 | 0.79| 0.79 0.70 | 0.67

CT VS 0.78 1 0.76 | 0.69 | 0.66 | 0.65

VS CcC 0.58| 0.55 | 0.29 | 0.36 | 0.29

VS CT 0.48 | 0.42 | 0.25 | 0.33 | 0.27

vVS | vS [ 043]0.40[0.23]0.27]0.26

Subset of WS353 dataset (175 pairs)

CcC VS 0.44 | 0.59 | 0.66 | 0.70| 0.64

CT VS 0.44 |1 0.47 | 0.38 | 0.32 | 0.34

VS CcC 0.47 0.41 | 0.37 | 0.32 | 0.32

VS CT 0.34 | 0.33 | 0.34 | 0.28 | 0.28

| vs | vsS ]037]030]031]027]0.27 |

Table 6.2: Performance fdv/,, neighborhood-based metric for several number of neighbors

The performance of the neighborhood-based metfjg defined by 4.2), is presented
in Table 6.2 for different neighborhood sizes. This is shown for all camations of textual
(CC or CT) and visual (VS) features used for neighbor sedactind similarity computation.
The main point of interest here is to investigate the perforoe of the visual features when
used either for neighbor selection or computation of thel famailarity score (or for both
steps). It is clear that the highest performance is obtaivieeh textual features (in particular
CC) are used for neighbor selection. Best results are aataivhen 50-150 neighbors are
taken into consideration. For both datasets the achievaglation is higher compared to
the baseline metric relying of visual features alone. Ferdhse of the WS353 dataset, this

102



correlation score outperforms all baselines. In additsmems that small neighborhood sizes
yield better results when visual features are used for heigkelection. Regarding WS353,
when visual features are used for both neighborhood sefeetnd similarity computation,
the achieved correlation is slightly higher than the respedaseline. The performance of

Type of feature for Number of neighbors
Selection Similarity 10 | 50 | 100 | 150 | 200
of neighbors| computation
Subset of RG dataset (35 pairs)
CcC VS 0.44| 0.34 | 0.33 | 0.35 | 0.31
CT VS 0.29 | 0.37 | 0.35 | 0.33 | 0.33
VS CcC 0.73 ] 0.86 | 0.89 | 0.88 | 0.86
VS CT 0.64 | 0.67 | 0.61 | 0.59 | 0.58
VS | vS  [040[045]0.44]0.35]0.27
Subset of WS353 dataset (175 pairs)
CcC VS 0.18 | 0.24 | 0.21 | 0.22 | 0.23
CT VS 0.21 | 0.28| 0.27 | 0.25 | 0.22
VS CcC 0.62 | 0.67 | 0.67 | 0.65 | 0.64
VS CT 0.33 ] 0.26 | 0.22 | 0.20 | 0.19
| vs | vsS ]017]034]033]0.31]0.29 |

Table 6.3: Performance fdt,, neighborhood-based metric for several number of neighbors

the neighborhood-based metrit;,, defined by 4.3), is presented in Tablé.3 for different
number of neighbors. The results are shown for all comlonatiof textual (CC or CT) and
visual (VS) features used for neighbor selection and sithjlaomputation. For both datasets
this performance is better compared to all baselines. A&encase of thel/,, metric and
the WS353 dataset, the achieved correlation is slightlizdrighat the respective baseline when
visual features are used for both neighborhood selectidrsiamilarity computation. Unlike the
M,, metric, the best performance &f, is achieved when visual features are used for neighbor
selection (for 50—100 neighbors). The poor performancé®if,, metric observed when the
neighborhoods are computed according to visual featurgshmattributed to the following
reasons: visual features may include semantically ireglemeighbors, and only one neighbor
is used by theM,, metric for estimating the final similarity. Th&, metric appears to be
more robust tha/,, for the case of noisy neighborhoods, due to the use of moghbers
according to a averaging-related scheme.

The first research attempt for combining the textual andali$eatures for the task of
semantic similarity estimation was proposed-ieng and Lapatf201qJ. The key idea was to
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train topic models over a corpus of news articles contaifioth images and textual content.
In particular, word semantics were represented as pratyatbistributions over a set of topics.
The similarity between words was estimated using a numbeivefgence metrics including
the Kullback-Leibler and the Jensen-Shannon divergenoce.e®luation purposeh4 pairs

of the WS353 dataset were used. The bimodal model yielddtehigprrelation scored(31)
that the text-based model.24) * . A simpler model for combining textual and visual features
was proposed iBruni et al.[201] and applied for the same task (estimation of similarity
between nouns usir2f0 pairs taken from the WS353 dataset). The cosine similariy used
as similarity metrics for all modalities. The textual andual feature vectors were combined
by a simple concatenation after normalizing the values efitidividual vectors. Overall, the
highest correlation (Spearman) score was reported forithedal vector (.51). The textual
features yielded higher performance than the visual featOr44 and0.32, respectively.

The proposed network-based DSM was shown to be portables tosth of visual features,
given the availability of BoVW model. However, the explaiten of visual features only (for
both neighborhood and similarity computation) did not jdeva significant improvement of
the baseline performance. The most interesting obsenvetigards the synergistic use of tex-
tual and visual features. The best performing modality feighborhood and similarity com-
putation appear to depend on the used similarity metric. eMimecifically, for the case of
the M,, metric, the highest performance was obtained using thedkfto-occurrence-based)
features for neighborhood selection and the visual featiaresimilarity computation. Regard-
ing the R,, metric, the highest performance was achieved using theis@lvand the textual
(co-occurrence-based) features for neighborhood andesitpicomputation, respectively. Our
current findings constitute a promising starting point viahiin agreement with the literature
of cognitive science: the human semantic knowledge is lamitt organized on the basis of
both verbal and non-verbal informati@arsalou et al[200; Rogers and McClellanf2004.
However, the design parameters of the proposed model sheuli/estigated in more depth.
Despite the fact that our model enables the incorporatidnimmbdal features, the underlying
steps (i.e., neighborhood and similarity computation) pegormed according to unimodal
features. This simplification may deviate from the humanndidg system, e.g., multimodal
features may be used for either neighborhood selection iamtasty computation. In addi-
tion, it should be stressed out that the textual and visuwUfes were combined and used for
the particular task of word semantic similarity estimati@ur observations need to be further
validated with respect to other semantic tasks.

1 Scores refer to Pearson’s correlation coefficient. NoteithBeng and Lapatf201( the performance of the
visual features was not reported.
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6.3 Network-based DSMs for Noun—Noun Expressions

A limitation of network-based DSMs presented in Chagtés that the estimation of semantic
similarity is considered at the word level only. Howeveg ttomputation of semantic similar-
ity between phrases or sentences are important for a nurhlagplications, such as grammar
induction, paraphrasing and textual entailment. Thislested with the principle otomposi-
tionality stating that the the semantics of a complex (multi-word)yesgion is determined by
the semantics of its constituents. In this section, we inyate the task of semantic similarity
estimation between compositional short phrases (mordfgadly, noun—noun (NN)) within
the framework of network-based DSMs. Although, NN are adeisibly shorter larger textual
fragments, e.g., entire sentences, we believe that thissiassnable way to proceed, i.e., from
shorter to larger fragments. In particular, the followimgtmain issues are addressed:

1. How to represent the semantics of compositional expressi

2. How to exploit the above representation for estimatirgggémantic similarity between
two complex expressions.

One of the main aspects of this effort is the decompositiothefproblem into the two
aforementioned sub-problems: representation of sensaatid similarity estimation. This
is somewhat different compared to the majority of composél models that are mainly fo-
cused on the second part investigating functions applideatmre vectors/itchell and Lapata
[201d. A recent approach that is similar to our perspective isuhsed inTurney[2017.
The main idea proposed by Peter Turney is the exploitatiotwof distinct models for the
problem of estimating the semantic similarity between twmpositional phrases. The first
model (referred to as the “domain space”), and it is meantdpresenting the semantics of
the constituents. The purpose of the second model (reftorad the “function space”) is to
represent the modifications of meaning that take place ®icse of compositional phases,
e.g., for “traffic light”, “traffic” modifies the meaning of ijht”. The domain space is built
following the typical procedure of VSM, however, only noum® considered as contextual
features. The motivation for this filtering is that the domai topic of a word is determined by
the nearby occurring nouns. The function space is creatdtkatomain space by considering
only verb-based patterns that occur in close proximity wlih target word. The motivation
for employing only verb patterns is hypothesis that the fiom¢role a word is captured by the
verbs that occur near it.
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6.3.1 Representation of Compositional Semantics and Sinaility Metrics

As an example of a simple compositional complex expressmmsider a NN denoted as

¢ = (¢i1 ci2), Wherec;; and ;o are its respective constituents. Also, I€f; and N;» be

the semantic neighborhoods @f andc;s, respectively. Following the principle of composi-
tionality we hypothesize that the semanticgodire determined by the semantic neighborhoods
of its constituent8aldwin [2004; Frege[1884. Also, we expect that the meaning of the NN
would be more specific compared to the meaning of its partsteMpecifically, we assume
that the composed meaning will be related with the sharedimgaf the constituents. Hence,
we assume that the semanticscpfcan be captured by considering the overlap between the
semantic neighborhood¥;; and V;;. If the neighborhoods are represented as sets, we de-
fine a hybrid neighborhooﬁfi’ for ¢; computed by taking the intersection df; and N, i.e.,

!

N, = Nj1 N Njp. Extension modeMurphy [200] can be considered as a cognitive ana-
logue for the proposed neighborhood intersection, undeaisumption that neighbors reflect
semantic features. The basic idea is that each individuateqt is represented by a set of se-
mantic features, while the composed semantics of multipfeepts is driven by “extending”
the individual set of features (i.e., gradually considgnnore features) until the convergence
to a “sufficient” overlap of features. This is also relatedhathe work in the framework of
prototype theory regarding the definition of composite emts on the basis of simple ones
Osherson and Smitli987]]. According toOsherson and Smiff1981], the composite seman-
tics of two concepts can be determined by a function thatstéik® account: (i) the degree
according to which the one concept falls in the (semantitdresion of the other, and (ii) the
relatedness between the one concept and the prototypesfadiof the other.

It should be stressed out that although the aforementioppdoach may be valid for
the particular case of NN, different models may apply foreottypes of multi-word expres-
sions. For example, ségaroni and Zamparel[i201q for the distributional representation of
adjective—nouns (AN), where the semantics of adjectivesnaodeled via a linear function
from a vector (noun representation) to another vector (Atasentation). A survey of com-
positional models and the underlying theoretical backgdowith references to different types
of multi-word expression, is presented Baroni et al.[2013; Mitchell and Lapatg201d;
Turney[2012.

Using the above considerations we show how the networkebasgtrics),, and R,,, (de-
fined in Chapte by (4.4.2 and 4.4.3 respectively) can be adapted for the estimation of
semantic similarity between two (compositional) NIN= (¢;1 ¢;2) ande; = (cj1 ¢j2).

Compositional Maximum Similarity of Neighborhoods
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The similarity betweem; = (¢;1 ¢;2) ande; = (¢j1 ¢j2) can be estimated as:

M,,(ci, ¢;) = max{dij, d;i}, (6.1)

where

1 1
01 = max, 5 (e, @) + S(eyw) ), b = max, 5 (S(e,0) + Slejzy)).
z €N, 2 yeN, 2

¢i; (or ¢;;) denotes the maximum similarity between(or ¢;) and the neighbors af; (or ¢;).
NZ-' and NZ-' are the hybrid (i.e., the result of intersection) neighlooids ofc; andc;, respec-
tively. S is a similarity metric as defined in Chaptér

Compositional Correlation of Neighborhood Similarities

The similarity betweem; = (¢;1 ¢;2) ande; = (¢j1 ¢j2) can be estimated as:

!

R, (ci,cj) = max{rij, kji}, (6.2)

where

12 12 ! /

N. N. N. N
Rij :p(CZ 7b7cfj 7b)7 Rji :p(Cz ]70_7' J)

(S(cit, zm)+S(cio, xm)))

(NN

(S(Cil, .%'2)+S(CZ‘2, 1‘2)), ey

DO =

! 1
Ci = <§(S(ci1,x1)+5(cz‘2,w1))7

NZ-, ={z1,z2,...,2m}.
f ’

Note thath.Vi, CiN], and CJ].VJ' are defined similarly t@j‘iNl. The p function stands for the
Pearson’s correlation coefﬁcieer,i' is the hybrid neighborhood of NN, andS is a similarity
metric as defined in Chaptdr

!

6.3.2 Experiments and Evaluation Results

For the evaluation of the composition network-based netne used a dataset of NN pairs
Mitchell and Lapatg201Q. In total, 108 pairs are included, which were rated by human
subject regarding their semantic similarity in a 1-7 scAl@umber of examples of NN pairs
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\ Pair | Similarity degree]

marketing director—assistant manader high
telephone number—phone call high
capital market—future development medium
research contract—training programme  medium
bedroom window—education officer low
league match—family allowance low

Table 6.4: Examples of NN paiiditchell and Lapat42010.

along with their respective similarity degree is presernte@iable6.4. In our experiments we
used the pairs whose constituents were included in our mkt@f, 752 nouns: 92 out of 108
pairs. The performance of the compositional network-basexlarity metrics, was evaluated
against human ratings using Spearman’s correlation cimeffit. Note that the average inter-
annotator agreement computed in terms of correlation cosfti can be regraded as the upper
bound for the performance of metrics. Regarding the 92 piis bound equals t0.66

Type of feature for Number of neighbors
Selection Similarity 10 50 100 | 150 200
of neighbors| computation
M, metric
CcC CcC 0.19 | 0.52 | 0.57 | 0.62 | 0.60
CcC CT 0.05 0.31 | 0.24 | 0.37 0.36
CT CcC 0.23 0.39 |0.28 | 0.25 0.17
CT CT 0.07 0.21 | 0.12 | 0.08 0.01
R, metric
CcC CcC —0.04 | —0.01 | 0.39 | 0.26 0.40
CcC CT —0.02 | 0.10 | 0.08 | —0.08 | —0.17
CT CcC 0.10 0.36 | 0.59 | 0.60 0.55
CT CT —0.16 | —0.02 | 0.07 | 0.08 0.14

Table 6.5: Performance fat/, and R,, neighborhood-based metrics for several number of
neighbors. Performance upper boufAdi6 (average inter-annotator agreement).

As in the case of word-level semantic similarity estimatisee Chapted) two basic steps
are required: 1) computation of semantic neighborhoodd, 22ncomputation of similarity
scores (thes metric in 6.1) and 6.2)), resulting into the following combinations:

! Spearman’s correlation was used in order to compare thisesth the literature. Note, that almost identical
performance was observed when using Pearson’s corretaigfficient.
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e Compute neighborhoods and similarity scores using a carosece-based metric (CC/CC).

e Compute neighborhoods using a co-occurrence-based pwinpute similarity scores
using a context-based metric (CC/CT).

e Compute neighborhoods using a context-based metric; cngimilarity scores using
a co-occurrence-based metric (CT/CC).

e Compute neighborhoods and similarity scores using a cthtsed metric (CT/CT).

For the above approaches, the co-occurrence-based efGoogle-based Semantic Relat-
edness defined b2 (19) and the context-based metl’=! (defined by 2.20) were used.

The performance oM,’l andR;l is presented in Tablé.5for a different sizes of neighbor-
hoods. First, it is interesting to observe that both metoegorm quite well give the perfor-
mance upper bound (6). However, the highest score (0.62) is achieve(M;’y For both met-
rics the highest correlation is reached 160 neighbors. This is observed when the (CC/CC)
and (CT/CC) combinations are used Mfl andR;, respectively. This is consistent with the
best performance of (CC/CC) and (CT/CC) combinationsMgrand R,,, respectively, for the
case of single word similarity estimation (see Ta#l&in Chapterd). However, the (CC/CT)
combination appears to yield poor performance when apqpl;heM,’L metric, as opposed to
the corresponding metric (i.e}{,,) for the case of single words. This is an indication that the
context plays a lesser role for longer expressions.

In Mitchell and Lapatg201d, nine compositional models were applied for estimating
the similarity between NN pairs. In particular, the undenyidea of these models regarding
the representation of the (compositional) semantics of Hi-uvard expression is the appli-
cation of a function over the vectors that represent the séosaof constituents (i.e., sin-
gle words). The latter were constructed according to the#&yp/SM. Given a NN phrase,
every composition model resulted into a (single) vectargdresentation. The similarity be-
tween two NN phrases was estimated as the cosine of theieataap vectors. The models
used inMitchell and Lapatgd201Q were evaluated using a set o8 NN pairs. The high-
est performance0(49 Spearman’s correlation coefficieh) was reported for a model based

L A different methodology was followed when computing theretation coefficient. The usual approach (used
in the literature regarding the standard datasets of giityikasks) is to average the human scores, and then compute
the correlation coefficient between the averaged scoredhenscores estimated by the experimental models. In
Mitchell and Lapat4201Q, it is reported only that the human scores were not average@urney[2014, more
details are given about the evaluation based on a persomahuaication between Peter Turney and Jeff Mitchell.
The basic idea isz people rated, pairs, yieldingz x y ratings, which were vectorized. However, one score for
each pair was estimated by the used models. In order to malethputation of correlation feasible, the model's
scores of were duplicatedtimes.
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on vector multiplication, which was equal to the upper boohgerformance (i.e., the aver-
age inter-annotator agreement). Tarney[2017, the similarity between two NN was com-
puted within the framework of a dual-space model that comdbatomain and function models:
S(ciscj) = g(Sa(cin,cjn) + Salcin, cja + S¢(ein, ¢ji) + S¢(ci, ¢j2)), where theg(.) func-

tion denotes the geometric measy(.) and .Sy (.) stand for the similarities estimated over the
domain and function models, respectively. Tarney[2017, the same dataset was used as
in Mitchell and Lapatg201(d, however, the upper bound of performance was computed as
the leave-one-out (Spearman’s) correlation between theahuratings. The aforementioned
dual model yielded).54 correlation, which it was reported to be equal to the uppemboof
performance.

Overall, both co-occurrence and contextual features umeukighbor selection yield com-
parable performance. However, the utilization of theséufes appears to depend on the used
similarity metric: co-occurrence-based for thé metric and context-based for the, met-
ric. A limitation of the proposed approach is that the wordesrin not taken into account for
the computation of the hybrid neighborhood, as well as ftmeding the semantic similar-
ity between NN. The sensitivity of (computational) semamtiodels to word order is an open
research issu€urney[2017.

6.4 Network-based DSMs for Simple Taxonomy Creation

In this section, the network-based similarity metrics dibgd in Chapte#d are applied for the
creation of simple taxonomy of nouns. In particular, the ElSSQlatasetBaroni et al.[2009
was used, which constitutes a three-level taxonomy depioye6.1. The lowest level of the
taxonomy consists of (instances of) the following six case(i) “birds”, (ii) “land animals”,
(iii) “greens”, (iv) “fruits”, (v) “tools”, and (vi) “vehicles”. The middle level includes the con-
cepts (i) “animals”, (ii) “vegetables”, and (iii) “artifas”, while the upper level is distinguished
into “living beings” and “objects”.

The original ESSLLI dataset consists of 44 nouns (instgna#e used the subset of those
nouns that was covered by the network&1%52 nouns presented in Chaptér 31 nouns
(instances). For each taxonomic level, the network-basettica were applied for the con-
struction of a similarity matrix upon which themeans clustering algorithm was incorporated.
The purity of clusterspP, was used as evaluation metric, defined®asoni and Lenc[201(:

k
pP= % ; mjax(c{), (6.3)
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Figure 6.1: Taxonomy of ESSLLI datagearoni et al[2009.

Wherecg is the number of nouns assigned to tHecluster that belong to thg" groundtruth
class. The number of clusters is denotedcbwhile ¢ is the total number of nouns included in
the dataset. Purity expresses the fraction of nouns thahdeb the true class, which is most
represented in the clust&aroni and Lenc[201(d, taking values in the rang@, 1], wherel
stands for perfect clustering.

The performance of\f,, and R,, is presented in Tablé.6 for different sizes of neigh-
borhoods, with respect to the three taxonomic levels: tamiom —low. For the above ap-
proaches, the co-occurrence-based (CC) métrigGoogle-based Semantic Relatedness de-
fined by @.19) and the context-based (CT) metrid’=! (defined by 2.20) were used. The
performance of baseline co-occurrence-based and camased metrics is also shown. We ob-
serve that both network-based metrics outperform the in&spurity, while their performance
is comparable. For both/,, and R,, the highest purity scores are achieved for neighborhoods
including 50 — 150 members. Regarding thig metric, the highest results are obtained when
CT is used for the selection of neighbors, for which the use@fand CT for the computation
of similarity have comparable performance. For the cRsdahe best purity is yielded when
CT is utilized for both neighbor selection and similarityngoutation. Overall, the achieved
purity scores are comparable with the best performancetexpin the literaturéBaroni and
Lenci[2014, where structured DSMs where employed for creating thelaiity matrix upon
which thek-means clustering algorithm was applied. Unlike the tas&imiilarity estimation
(see Sectiorb.2 and Sectior6.3, as well as Chaptef), for this task the CT feature appears
to perform better than CC regarding the estimation of siitylaThis is also observed for the
baseline performance. This difference may be attributettheécsimilarity matrix with which
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Type of feature for Number of neighbors
Sel. of |  Sim. 10 50 100 150 200
neigh. | comp.
Baseline CC: 0.65-0.68-0.71
Baseline CT: 0.65-0.87-0.77
M,, metric
CcC CC 0.55-0.68-0.74 0.84-0.68-0.81] 0.58-0.74-0.84 0.81-0.84-0.74 0.77-0.94-0.77
CcC CT 0.55-0.61-0.58 0.68-0.68-0.77, 0.55-0.81-0.81] 0.84-0.87-0.74 0.61-0.90-0.74
CT CC 0.81-0.90-0.87, 1-0.94-0.90 1-0.94-0.84 1-0.94-0.87 | 0.90-0.90-0.81
CT CT 0.77-0.94-0.84 0.97-0.94-0.84 1-0.90-0.81 | 0.94-0.90-0.84 0.97-0.90-0.84
R,, metric
CcC CC 0.58-0.61-0.45 0.61-0.61-0.61] 0.81-0.77-0.77| 0.77-0.81-0.74 0.81-0.74-0.77
CcC CT 0.58-0.71-0.71 0.58-0.65-0.61 0.61-0.65-0.61 0.61-0.61-0.68 0.61-0.58-0.65
CT CC 0.68-0.61-0.55 0.71-0.87-0.68 0.71-0.81-0.87| 0.65-0.81-0.87| 0.65-0.81-0.87
CT CT 0.87-0.81-0.71 1-0.94-0.90 1-0.94-0.81 1-0.94-0.81 1-0.94-0.81

Table 6.6: Performance fav/,, and R,, neighborhood-based metrics for different number of
neighbors. Purity is shown for all three levels of the taxogotop - medium - low.

the clustering algorithm is fed. In general, it was obsered the use of CT features tend to
result into similarity matrices that are less sparse coethto the use of CC features.

6.5 Conclusions

The integration of textual and visual features for the éomabf multimodal semantic net-
works yielded promising results. In particular, we imprévan the unimodal baseline perfor-
mance when both types of features were used by the proposedrkérased similarity metrics
(WS353 dataset). However, the end—to—end use of visualrBsaseems to result into noisy
networks that do not achieve top performance. The netwadeth DSMs appear to the com-
positionality framework (at least for the case of houn—noufhe simple idea of taking the
intersection of semantic neighborhoods in order to repitebee semantics of compositional
expressions for the case of NN proved quite effective. Allse,adaptation of the word-level
network similarity metrics yielded quite high performancéose to the upper bound as indi-
cated by the average inter-annotator agreement. Howéaeegpplicability of this approach
needs to be further investigated using larger and more eongpressions, e.g., AN.

The network-based similarity metrics were also appliedh® ¢onstruction of a simple
three-level taxonomy of nouns, obtaining quite good pentmice. For this task, the utilization
of contextual features appeared to perform slightly betenpared to the co-occurrence based
features. This suggests that the relative performanceatdifes may vary according to the task
under investigation. Last but not least, larger taxonoroégsbe used for the justification of the
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aforementioned observations.
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Chapter 7

Conclusions and Future Research

In this section, the main contributions and conclusionshaf work are discussed. Also, the
related ongoing work is briefly presented, while interegfinture directions are outlined.

7.1 Main Contributions and Conclusions

The main contributions of this work deal with the creationlariguage-agnostic DSMs us-
ing web harvested data. The “language agnostic” charaatem refers to the fact that no
language-specific features (and related tools) are enmghlbyehe underlying algorithms. It
was shown that the web is a valuable source for corpora oreallore specifically, a query-
based approach was employed for harvesting web data. Tlab#ity of this approach was
also investigated with respect to a large lexicon. It wassshthat the massive aggregation
of web data enables the representation of less-dominarnt sesrses within corpora. A num-
ber of parameters of DSMs were investigated for the task wfasgic similarity estimation
between words, including the extraction and weighting oftertual features. In addition, a
network-based implementation of DSMs was proposed in coatioin with three novel sim-
ilarity metrics, motivated by the assumptions of maximumssesimilarity and attributional
similarity. The network-based DSMs were extended towareatmn of multimodal networks
based on textual and visual features. and the estimatiomifsty beyond the word level.
Finally, motivated by the literature of cognitive science imvestigated the discrimination of
associative versus semantic relations, and the perfomnainihie proposed network similarity
metrics with respect to the word concreteness/abstrachi@xt, we discuss the main conclu-
sions of this thesis.
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7.1.1 DSMs based on Vector Space Model

The typical implementation of DSMs is the widely-used VSMigh relies on the word-
context matrix. In this framework, we investigated a numiifequery types submitted to web
search engines for corpora creation. Very good results olai@ned using conjunctive AND
gueries according to which the co-occurrence of word-pairhie same document was ex-
plicitly requested. The word co-occurrence was regardeal ssmantic filter that retains the
relatedness of word senses. Towards this direction we demaded that the similarity esti-
mates are more accurate if we consider the two closest searseshe maximum pair-wise
sense similarity score. In the contrary, the employmenndividual queries for corpora cre-
ations was shown to yield poor results. This was attribubetthé lack of sense coverage in the
corpus.

We investigated a number of parameters for context-baseithsity metrics including the
context window size and the relative weighting of contekfeatures. For the case of nouns,
we found that the very immediate context encoding mostlyasstit dependencies yielded bet-
ter performance. Also, the simple binary weighting of cahial features was observed to
have comparable performance with other frequency-basgghtireg schemes. Unlike (single-
word) common nouns, the highest performance regardinggse af multi-word medical terms
1 was obtained for larger context window. The use of narrowdem size implicitly imposes a
strong syntactic filtering, according to which certain tyjpé contextual features are captured,
(mainly) including function words (e.g., articles and aamjtions), nouns and adjectives. Such
feature types may exhibit different roles in the reprederiaof noun semantics. Unlike com-
mon nouns biomedical terms are not expected to have musigrsises. The high performance
of larger window size (compared to common nouns) indicdtasthe pragmatic information is
essential for the their semantic representation. Thepseireme used for feature weighting in
the cosine similarity metric is related to a simple cogeitivodel presented imgram[2007.
According to this model the similarity between two concegaa be estimated by considering
the overlap of their semantic attributes, which are assidmieary values.

In addition to context-based similarity estimation, wedstigated several well-established
similarity metrics that rely directly on the co-occurrerafehe words under investigation. We
observed that the critical factor is the proximity of the @meurring words. Many research
efforts consider word co-occurrence at the document leveltd the straightforward use of
number of hits returned by web search engines. However,leni@guistic contexts, such
as sentences, appear to better reflect the semantic redatedhthe co-occurring words. We
believe that co-occurrence and the close proximity of wbklps the development of word as-

1 A non-compositional approach was followed for the multirdronedical terms.
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sociations, which constitute the primary information tym®n which more complex semantic
representations are built. Kahnemarj20171], a dual-system framework is described regarding
the processing of knowledge during semantic tasks: a syst@ssociative relations is rapidly
activated by experienced stimuli, while the associatioesfarther processed by a subsequent
system of semantic nature. The close proximity of co-og@egmwords seems to agree with the
limited capacity of the immediate (also referred to as wagkihuman memory: experimental
findings suggest that certain number of information churskshe efficiently processed by the
(typical) human memory systeniller [1955.

7.1.2 Network-based DSMs

Despite the good performance of corpora constructed byuootiye AND queries, the under-
lying methodology is not efficient for estimating the pais@isimilarities between the entries
of a lexicon of sizeV. This is due to the quadratic query complexityN?). In order to tackle
this limitation in scalability, we proposed a method formana creation exhibiting linear query
complexity with respect taV. The key idea was the employment thousands of individual
queries (one query for each entry of the lexicon) and theeaggion of the harvested data.
Such a corpus has one basic difference compared to typigabieo the frequency of word oc-
currence deviates from Zipf's law. This idiosyncrasy of thsulting corpus was beneficial for
the task of similarity estimation: the domination of vergduent words was smoothed, while
rare words were better represented within the corpus. Thgereation is important given that
the senses of a word do not occur equiprobably. More spdbifittae conditional probabilities
of word senses appeéto follow a power-law. The sense coverage of corpora deperitie®
methodology followed for their creation, while it is crigicfor DSMs. The aforementioned
aggregation of data enables the discovery of less freqaases for polysemous words, given
that a large lexicord. is used. The basic idea is that instances of a wgrcan be found implic-
itly, i.e., within data retrieved fow;, wherew; # w;. This applies whem; is a polysemous
andw; stands as an infrequent (lexicalized) sense0fGiven this corpus, the typical context-
based cosine similarity metric yielded poor performance tusense disambiguation issues.
The notion of semantic neighborhoods was introduced inrdadbetter capture the semantics
of the words of interest. The members of neighborhoods warad to encode a variety of
lexical relations including synonymy, taxonomic relaspras well as a long list of associa-
tive relations. More specifically, we investigated bothammurrence-based and context-based
metrics for the creation of semantic neighborhoods. Werebsdethat the neighbors captured
by co-occurrence-based metrics tended to formulate moeetdissociative relations with the

! This observation was made after analyzing the SemCor3 gagged corpusosif and Potamianof20133.
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reference nouns. The presence of relations of a broadeinsiefpeagmatic scope was stronger
for the neighborhoods computed by contextual metrics. titiaah, the neighborhoods created
using co-occurrence-based metrics were found to haveggreaionym coverage.

Based on semantic neighborhoods, three novel metrics chrs@rsimilarity were pro-
posed. These metrics were motivated by the assumptions xifam sense similarity and
attributional similarity. According to the first assumptithe most salient information in the
neighborhood of a word are semantic features denoting sexigbis word. We believe that
the space of semantic neighborhood can be break down intiptadkub-spaces” of lower di-
mensionality. In addition, we assume that such sub-spadlestthe semantic of word senses.
For the semantic neighborhoods used in this thesis, this ¢sacurrently supported by a num-
ber of preliminary resultd for the task of word similarity estimation. The integratiohthe
multiple low-dimensional spaces into a global repres@natonstitute an equally challenging
subsequent step. The motivation behind the second assumigtihat neighborhoods encode
semantic attributes of words. Also, the underlying assiongs that two semantically sim-
ilar words are expected to have co-varying similaritieshwispect to their neighbors. The
cognitive analogue of this assumption can be found in the &iffoachrRogers and McClel-
land[2004 according to which semantically related items (i.e., @pts lexicalized by words)
are characterized by “coherent sets of multiple propethias all covary reliably”. However,
our sequential/flat approach does not follow the PDP framlewsince each neighborhood is
treated as a single set (of properties), which is not sewslhticoherent. In total four com-
binations of co-occurrence and context features were tigagged for the computation of the
proposed metrics consisting of two phases: computatiormisitic neighborhoods and sim-
ilarity score. It was observed that the best performing sypkfeatures vary with respect to
the underlying assumption. For example, the highest esaliarding the maximum sense
similarity assumption were obtained when the semantichigichoods were defined using co-
occurrence metrics. In general, the best performing neidtdod size was observed to depend
on the adopted assumption: larger neighborhoods for thémuax sense similarity assumption
compared to the assumption of attributional similarity. e@ll, the proposed network-based
metrics outperformed the respective baselines.

In addition, the proposed approach for network-based DSksextended across textual
and visual features. The integration of textual and visaatures yielded promising results,
e.g., for the WS353 dataset the unimodal baseline metrics awgperformed when both types
of features were used. This observation seems to be in agreemith the cognitive assump-

1 Work conducted by Georgia Athanasopoulou (ECE Departnigetthnical University of Crete) based on
existing and novel dimensionality reduction algorithmésd) similar ideas are discusseddarlgren et al[2009
even without strong experimental evidence.
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tion suggesting that knowledge from different modalitisSused into a common semantic
representatiofiRogers and McClellanf2004. However, such a fusion is not truly performed
within the proposed bimodal network, since each of the uyithey steps (i.e., neighborhood
and similarity computation) rely on unimodal features. \Whdve that the study of multimodal
features should include the aspect of semantic abstréobiocreteness, for which the influence
of verbal and non-verbal experience is assumed to differ.

The network-based DSMs were also adapted within the conipasiity framework. The
semantic neighborhoods were exploited for representiegsémantics of compositional ex-
pressions The main network-based metrics were adapte@ twothposite neighborhoods for
estimating the semantic similarity between two complexresgions. Very good performance
was achieved, however, the applicability of this approasbds to be further investigated with
respect to more complex expressions. The proposed netvasdd metrics were also applied
for the creation of a simple three-level taxonomy of nourtse €xcellent performance of sim-
ilarity metrics with respect to the upper level (living bgivs. object) is in agreement with
the cognitive theories about the process of knowledge aitigui. More specifically, coarse-
grained distinctions are reported to be acquired before-§regned distinctions, while basic
categories are expected to be “maximally informative astrditive” Mandler[2003; Rogers
and McClelland[2004. A difference regarding our network-based model is thataih not
demonstrate the developmental process of semantic repatisa as in the case of the PDP
frameworkRogers and McClellanf2004. Nevertheless, this process can be simulated by our
approach given the appropriate selection of the underligrigon, i.e., by using a gradually
enriched lexicon aimed to surrogate the development oft{fhieal) mental lexicon that takes
place from childhood to adulthood.

7.1.3 Cognitive Aspects of Lexical Semantics

Motivated by findings in the psycholinguistics and compotal linguistics literature, we in-

vestigated the problem of automatically classifying iieled between words into either as-
sociative or semantic, using information extracted from web. We proposed the priming
coefficient, which was shown to be a good feature for diserating between the two classes.
The priming coefficient was also applied with respect to ritisimation between synonymy
and some types of relations taken from the field of semante lateling: “Cause—Effect”,

“Instrument—-Agency”, “Component-Whole”, and “MemberH€ction”. Quite high results

were obtained for binary classifications. Moreover, thdgsarance of the proposed network-
based similarity metrics was investigated for the case sfrabt and concrete nouns. A “con-
creteness effect” was observed , i.e., performance forrebmmouns was better than for ab-
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stract noun pairs. In addition, abstract concepts wererhedeled using an attributional net-
work DSM with small semantic neighborhoods.

7.1.4 Summary

Regarding the typical DSMs, the feature of co-occurrence stewn to yield higher perfor-
mance than contextual features for the task of similaritymegion, given that co-occurrence
was considered at the sentence level. However, the relagrfermance of these two features
was reversed for categorical tasks. The proposal of netivased DSMs constitutes the ma-
jor contribution of this thesis, where both co-occurrenod aontext features were used for
defining the semantic neighborhoods and estimating siitiésr The exploitation of word
co-occurrence resulted into semantically more cohereghberhoods. Given such neighbor-
hoods, the network metric relying on the assumption of maxrimnsense similarity obtained the
highest results for the task of similarity estimation. Hue tase of single-word nouns the per-
formance of both co-occurrence and contextual featuresaapg to be comparable when used
for the step of similarity estimation. However, for the cagdonger phrases (noun—nouns)
good performance was obtained only when using co-occuerbased features. Moreover, a
“concreteness effect” was observed for the aforementignettic: higher performance was
achieved for semantically concrete nouns as opposed tageeaf abstract nouns. The inte-
gration of visual and textual features within the netwodsé&d DSMs led to promising results:
the performance of network-based metrics slightly excédle unimodal baselines. However,
the saliency of the two feature types was shown to be uneireag semantically more relevant
neighborhoods were computed by the textual features.

7.2 Ongoing Research and Future Directions

Minimum Error Similarity.  According to the assumption of maximum sense similarity the
similarity of two words can be estimated as the minimum pisevsimilarity of their senses.
Although words often co-occur with their closest sensesdvazcurrences correspond to all
senses. So, the denominator of the typical co-occurreaseebmetrics is overestimated caus-
ing underestimation error for similarities between poiyses words.

Knowing that the probability of word occurrence follows tAg’s law, we empirically
investigated the validity of this observation for the cabe/ord senses. Consider the probabil-
ities of senseg(s;x), k = 1,..., N; for a certain wordwv;. To do so, we estimated the average
probability of word sense§i(s;)); for certain values ofV;, across the words of a lexicon
L. This was performed using maximum likelihood estimationtfee polysemous nouns of
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Figure 7.1 Average probability of word senses for différdagrees of polysemy (number of
senses) as a function of the rank of word sense frequency.

the SemCor3 sense-tagged corpus occurring Witllanging betweer2 and5. The average
probability of word senses is depicted in Figl as a function of the rank of sense frequency
for several values oN; (degrees of polysemy). It is obvious that the senses of a dondot
occur equiprobably. In the contrary, the probabilities ofevsenses appear to follow a power-
law. For example, forV; = 3, the most frequent sense (on average) corresponds tolfhe
of the word probability mass. Moreover, fof; greater thar3 the depicted distribution of less
frequent senses seems not to follow Zipf law. Motivated leyabove observation and adopt-
ing the assumption of maximum sense similarity, a modifiadiva of the point-wise mutual
information was defined dsg % wherep(w;) andp(w;) are the occurrence proba-
bilities of wordsw; andw;, respectively, while the probability of their co-occurceris denoted

by p(w; Awj;). The exponential weightgwas introduced in order to reduce the contribution of
p(w;) andp(w; ) in the similarity metric. The effect of for the task of noun similarity is shown

in Fig. 7.2as a function of the Pearson’s correlation coefficient wépect to human ratings.
The three standard datasets (MC, RG, and WS353) were usdd, thir highest correlation
score was obtained for = 0.90 for all datasets. Based on the above considerations we aim to
investigate a machine leaning-based approach in ordeaito tee optimal weight using generic
features, such as word occurrence and co-occurrence freigge The correlation coefficient
with the human ratings can be used as the basis of the erterian. Overall, this line of re-
search constitutes one of the main dimensions of our futork lesif and Potamiano0134.
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Figure 7.2: The effect in performance of weightor the task of similarity rating with respect
to MC, RG, and WS353 datasets.

Graph-based Algorithms. In principle, several graph-based algorithms can be appmie
the proposed network-based implementation of DSMs. Horyéve basic question concerns
the interpretation of such algorithms within the framewofhexical semantics, i.e., what type
of semantic information can be revealed. We believe that sypproaches can be considered
at two broad levels, namely, global and local. The entirevogk is considered for the case of
global analysis, which is expected to provide useful cuganding the overall structure. Dur-
ing a preliminary analysis, the PageRank and HITS link aislglgorithms were applied over
the entire network. For example, it was interesting to oleséinat words such as “business”
and “money” exhibited quite high PageRank scores. Howevegries of relevant questions
remain open including the interpretation and exploitatémub and authority scores with re-
spect to DSMs. Local analysis can be formulated at the neitjidod level motivated by the
observation that local properties differ across words.fdbéint words are expected to have
different neighborhood statistics, e.g., the distributad similarities between the targets and
the respective neighbors. We suggest that such differestoasgld be taken into account for
relevant tasks, e.g., the estimation of semantic simjlavite have investigated two simple nor-
malization schemes for network creation using both co-4osecee-based and context-based
similarities. For the case of context-based similaritindraprovement was obtained for the
tasks of noun similarity estimation and classification. o example of local analysis is
the identification of cliques within neighborhoods. A diretilization of this analysis is the
discovery of word senses under the assumption that eacakediignotes the different (at some
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Figure 7.3: Example of cliques for the neighborhood of Hftui

extent) senses of the target. An example of such cliquesisepted in Fig..3, which were
derived from the semantic neighborhood of “fruit”. On thigsks, various similarity metrics
can be investigated following the maximum sense similaaggumption or any other related
approaches. Overall, we believe that the exploitation @f#twork structure enables a number
of different perspectives that may differ across tasksgiranfrom the simple visualization of
concepts up to the discovery of salient semantic features.

Multilingual Networks. The proposed approach for the creation of network-based HSM
can be extended to multilingual linked networks. A commdienence point can be formu-
lated using a shared lexicon. Such a lexicon can be regasiedliat of concepts for each
language of interest, i.e., parallel monolingual lexicohise construction of each monolingual
network can be a distinct process depending only on the cégpdexicon. The most challeng-
ing aspect of this idea is the linking of the individual netiks The linking procedure can be
possibly driven by the mapping between concepts as definda ishared lexicon. Of course,
a number of issues should be carefully addressed, such asihgings other than one-to-one.
Clearly, the linking complexity is quadratic with respeatie number of languages. Thus, the
case of bilingual networks seems a realistic starting paivi expect that the linked network
will be semantically richer compared to its constituentbisTenables the investigation of rel-
evant network similarity metrics under the hypotheses skeatantic features are encoded by
semantic neighborhoods and that a fraction of them are tgai/é.e., exist in both networks).
In addition, more sophisticated analysis can be perfornteditathe semantic diversity (and
other related aspects) of the linked networks. Such diwessinay occur due to various extra-
linguistic factors, such as cultural differences.
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Compositionality. The preliminary work on the estimation of similarity betwe®uns—nouns
worths to be extended to the case of larger textual fragmeetssentences. Under the frame-
work of network-based DSMs, one of the primary questionsimuaithe computation of se-
mantic neighborhoods for such large fragments. For exanhple to define the (composite)
semantic neighborhood for a certain sentence. The coasidierof all respective neighbor-
hoods (i.e., the neighborhoods of component words) via getations like intersection, is
likely to result into poorly populated neighborhoods, esalty for relatively large fragments.
Also, the grammatical dependencies between words areddgnoy such a flat approach. A
hierarchical approach seems to be a more principled saoltitiadhis problem. The key idea
is the definition of semantic neighborhoods at differentesece levels. A range of relevant
tools, from unsupervised chunkers up to trainable parsarsbe employed for the hierarchical
representation of sentences. However, a number of othergssvhich are independent to the
framework of network-based DSMs, remains open. The mastalrproblem deals with the
alignment of the sentences under investigation, i.e., ivbjiecific parts of the sentences should
be taken into account in the process of similarity estinmatio

Some preliminary efforts were conducted for the case of graminduction for spoken
dialogue systems. The basic idea behind grammar inducitireiestimation of similarity be-
tween phrases that are meant to reflect the semantics of grarates. For example, consider a
grammar rule denoting the semantics of “departure city'taBés such as “fly out ¢f City>"
and “depart from< City>" can constitute the right part of this rule, whet€ity> is a label that
stands for the (terminal) concept of “city”. One may arguat the estimation of similarity for
such phrases would be easier than the case sentences, e shorter length. However, an
additional factor of difficulty arises due to the fact thahrmntent words reflect key domain-
specific semantics. For example, the semantic divergerteebe “fly from <City>" and “fly
to <City>" quite fine-grained to be captured by a language-agnospooagh that consults no
domain-specific knowledge resources. We investigated hathcompositional (i.e., treat the
entire phrase as a chunk) and compositional approachestforaging the similarity between
such phrases. The compositional approach was based ondfagig of the pairwise simi-
larities of component words. For both approaches, baséliee no network) context-based
similarity metrics were employed yielding moderate to pperformance. Interestingly, the
highest performance was obtained by a different type ofiosaiased on the charactemgram
overlap of phrases. The compositional aspects of thisegifmin-specific task remains an open
guestion that warrants further research.

Affective text analysis. The analysis of the emotional content of textual data canpipéiea

123



to several tasks related to sentiment analysis and opiniomga Nowadays, the importance
of such applications is greater given the blooming of satiatlia. Semantic similarity is an
essential feature for the affective rating of words andesezgs under the assumption that “se-
mantic similarity can be translated to affective simildriMalandrakis et al[2013. In Malan-
drakis et al[2013, the estimation of continuous valence scores was invegtiwith respect to
single-words, as well as entire sentences. Given a patigubrd (target), the key idea for es-
timating its valence rating is based on the linear combamatif similarities computed between
the target and a set of seed words and the (known) valencgsatif seeds. IMalandrakis

et al.[2013, several well-established (baseline) co-occurrensethaand context-based sim-
ilarity metrics were compared, where the highest resulteeweported for the Google-based
semantic relatedness and cosine similarity using a naroonegt window. Two of the proposed
network-based similarity metrics\{,, and R,,) were also incorporated in the early phases of
the above work regarding the word-level rating. No significant differeme@erformance was
observed between the baseline and the network metrics. ¥etwinvestigate in more depth
the contribution of the network-based metrics following tiecent experimental procedure of
Malandrakis et al[2013 (including also thel,, metric) both at the word- and sentence-level.
Overall, we consider the affective analysis of text one ef thost interesting applications of
the proposed work for future work.

Cognitive Aspects. Another exciting direction for future research is the impmation of
our findings about semantic priming and concreteness#atiistn within the framework of
network-based DSMs. Such findings may shed more light todhmatics encoded by seman-
tic neighborhoods. In particular, it would be interestingltscriminate strong associative from
other semantic relations that hold between the target wamdsheir respective neighbors. In
the same fashion, it would be useful to estimate the degreerfntic concreteness (or ab-
straction) for the nodes of the network. Given the aforeimaet] features, we can investigate
the design of feature-specific networks and similarity mstras well as combinations of them.
Of course, numerous other cognitive aspects, e.qg., typicean be also investigated. Overall,
the spirit of this paragraph can be summarized by modifylrey dtatement of Frederick Je-
linek about statistical language modeling “put languagekbato language modeling” as “put
cognition (back) into DSMs”.

! The majority of this work was conducted by Nikolaos Nikoladalandrakis (Signal Analysis and Interpre-
tation Laboratory, University of Southern California) whige was with the ECE Department, Technical University
of Crete.
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