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Abstract 

In the past, a transition to the next fabrication process typically translated to more transistors and 

frequency and less power. The higher frequencies paired with innovations in computer architecture 

defined the semiconductor industry and research until the mid-90s. At that point architecture 

research saturated and industry resided to the technology scaling for performance gains. During the 

mid-00s frequency scaling saturated as well. Transistor count, the only resource which reliably kept 

scaling, along with intra-chip parallelism, which could leverage and extend the existing knowledge of 

old-days supercomputers, emerged as the only solution to keep Moore’s law live. In parallel systems, 

computing nodes cooperate to solve processing intensive problems. The communication between 

nodes is achieved through a variety of protocols. Traditionally, research has focused on optimizing 

these protocols and identifying the most suitable ones per system and application. Recently, an 

attempt to unify the primitive operations of the proposed intercommunication protocols has been 

realized through the Portals system. Portals offer a set of low level communication routines which 

can be composed to model complex protocols. However, Portals modularity comes at a performance 

cost, as communication protocols have been tuned and many of their timing critical parts have been 

decoupled from the main execution thread and in many cases accelerated as dedicated hardware. 

This work targets to close the performance gap between a generic and reusable intercommunication 

layer, Portals, and the several monolithic but highly tuned protocols. A software driven hardware 

accelerated system is suggested which resides on execution of actual software to highlight the critical 

parts of the communication routines. Accelerating the bottlenecks starts by modeling the hardware 

in untimed virtual prototypes and the software in a range of candidate embedded processors. A novel 

path from hardware prototypes to actual silicon allows rapid characterization of the accelerator in 

terms of power, performance and area. The suggested approach triggers a speedup from one order 

of magnitude in bottleneck components of Portals, while it is up to two orders of magnitude faster in 

both MPI and GA baseline implementations in a recent embedded processor. 
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1 
Introduction 

 
 
 
Nowadays there is renewed interest in high-performance computing community in parallel 

programming models due to the need to satisfy applications requirements with low power. 

Achieving an exascale level of performance requires several fundamental changes in 

hardware and software that will likely impact all areas of high-performance computing [1]. 

Hence, systems with numerous CPUs, along with extensive use of customized accelerators, 

have been recently proposed as, probably, the only viable solution offering high performance 

at a low energy budget [2]. 

   Unfortunately, in highly parallel systems with a vast number of cores there are a lot of 

factors which can trigger significant system’s underutilization. The major factor of them is 

communication, during which, cores may remain idle, waiting to synchronize or to exchange 

data to each other. Increasing the number of cores in a system also increases the execution 
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time spent in communication, as each core has less work to do and usually more other cores 

to communicate with, because the problem is divided into more stages. Hence, a crucial 

challenge is communication’s overhead reduction as the number of cores is increased.  

   Portals is an intermediate layer which intends to allow scalable, high-performance network 

communication between nodes of a parallel computing system. Portals is based on the 

concept of elementary building blocks that can be combined to support a wide variety of 

upper-level point-to-point and partitioned global address space (PGAS) network protocols 

[3]. Especially, the ultimate destination in memory of an incoming message is determined at 

the receiver by comparing contents of the message header with the contents of structures 

at the destination. This flexibility allows for efficient implementations of both one-sided and 

two-sided communications. 

   Portals protocol has been developed only in software until now by Sandia national 

laboratories. However, many communication protocols (such as MPI) today provide a simple 

mapping to hardware which may not be conducive to building upper layer protocols. The 

most works offloads the MPI communication tasks to co-processors, embedded processors 

on the NIC or even to dedicated hardware [4]. To the best of our knowledge, there isn't 

complete hardware implementation to offload the Portals building blocks and upper-level 

protocols which based on it. 

   The development of each new embedded platform is mainly comprised of two phases, the 

software and hardware one. While the software phase should be initiated as early as 

possible, the hardware phase needs several months or years. To reduce the product 

development time, virtual platforms are used giving to the software developers a virtual 

model of the hardware platform at the very earliest stage of the products development. 

Virtual models usually allows to instantiating an abundance of popular architectures (such as 

MIPS, ARM, PowerPC) along with widely used peripheral models, such as USB, DMA 

controllers etc. The above processors with their peripherals can be co-simulated with the 

under-development hardware models with respect to accuracy of most significant 

architecture parts and simulation speed.  

   This work presents Open Virtual Platform (OVP) framework for exploring accelerator-based 

architectures for multiprocessor systems. This framework allows for the instantiation of 

processor models along with under-development accelerators, so that architecture 

parameters can be evaluated with realistic software and not with corner testcases and 

synthetic benchmarks. Moreover, and more importantly, this work presents certain novel 

Portals acceleration core using the existing OVP framework. 

   Subsequently, a hardware implementation flow is inserted creating the cycle accurate 

model of our Portals processor using Cadence C-to-silicon high level synthesis tool. 

Moreover, a set of rules of thumb are presented, guiding the transformation of untimed 

functional descriptions to cycle accurate ones. Then, using the C-to-silicon high level 
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synthesis tool, the cycle accurate descriptions are optimized and synthesized with a modern 

standard cell technology library. 

   Finally, to demonstrate the effectiveness and accuracy of our work, certain tasks of 

Message Passing Interface (point-to-point) and Global Arrays (PGAS) [5] upper layer 

Protocols are implemented using Portals Routines within a number of widely used MPI and 

GA benchmarks. 

   This master's thesis is organized as follows. Chapter 2 introduces an overview of the Portals 

API and basic operations of this. Chapter 3, initially presents a framework allowing for the 

rapid exploration of novel parallel architectures when executing real-world applications and 

Portals Accelerator integration using existing framework. Subsequently the same Chapter 

describes the Portals routines which are implemented as well as the architectures for 

offloading certain Portals tasks. Chapter 4 presents the transformation from virtual 

accelerator to silicon using state-of-the art synthesis tool as well as multithread Platform 

integration with our H/W Portals Accelerator. Chapter 5 presents our real-world 

experimental results, based on different MPI and GA parallel benchmarks. Finally, in Chapter 

6, conclusion and future work are presented. 
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2 
An overview of the Portals API 

 
 
 
Portals intermediate layer has been developed for nearly twenty years by Sandia National 

Laboratories and the University of New Mexico and it is intended to allow scalable, high-

performance network communication between nodes of a parallel computing system. This 

chapter initially introduces the concepts of one-sided, two-sided, blocking and non-blocking 

communication operation in Portals protocol. Afterwards, it presents an overview of the 

Portals basic data movements. Subsequently, it demonstrates the operation of Portals Lists, 

completion event mechanism, rendezvous protocols as well as memory descriptors 

definition. At the end, matching and non-matching Network Interface is analyzed as well as 

lists operations of data movements are described in details. 
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2.1 One Sided versus Two-Sided Communication 
In two-sided communication both sender and receiver require an implicit synchronization 

where the messages are matched using a combination of tag (message identifier). In other 

words, both sender and receiver must issue one communication routine so as to exchange 

one Data Packet. On the other hand, in one-sided communication, one process accesses the 

remote memory of another process directly without interrupting the progress of the later 

process. Using this programming model could reduce the punitive synchronization costs of 

multi-core machines, compared to two-sided communication. Portals provide both two-

sided and one-sided data movement operations, but unlike other one-sided programming 

interfaces, the target of a remote operation is not a virtual address. Instead, the ultimate 

destination in memory of an incoming message is determined at the receiver by comparing 

contents of the message header with the contents of structures at the destination. This 

flexibility allows for efficient implementations of both one-sided and two-sided 

communications. In particular, Portals is aimed at providing the fundamental operations 

necessary to support a high-performance and scalable implementation of the Message 

Passing Interface (MPI) standard and Partitioned Global Address Space (PGAS) Models. 

2.2 Two-sided non-blocking versus blocking operation 
As described in chapter 1, the communication can consume a huge part of the run time of a 

parallel application. So, the communication time in those applications can be addressed as 

overhead because it does not progress the solution of the problem in most cases. Using 

overlapping techniques enables the user to move communication and the necessary 

synchronization in the background and use parts of the original communication time to 

perform useful computation. Figure 2.1 illustrates an abstract view of two processor 

distributed memory system when exchanging one message. Processor P1 executes one 

point-to-point send command, while processor P2 executes one receive command so as to 

accept message. 

 
Figure 2.1: Send-Receive point-to-point Operation 

 

There are two scenarios which P2 can accept the message as depicted in Figure 2.2. The send 

command is non-blocking which means that P1 is able to resume its computation right after 

P1

Send Message

P2

Receive Message



 

 
18 

message is dispatched. On the other side, P2 either executes a blocking receive operation, or 

follows a non-blocking receive scenario. In blocking case, which is depicted in Figure 2.2a, if 

the message has not yet arrived when P2 executes blocking receive command, P2 must 

remain in blocked state until the actual message finally arrives. Otherwise, if the message has 

already reached in P2 when the receive command is executed, it would be delivered 

immediately to P2 user space, and the computation would be resumed. On the other hand, 

in non-blocking scenario P2 returns instantly to computationb when it executes a non-

blocking receive command. So, at some point, P2 needs the data contained in the message 

and thus waits for the message to arrive by executing a blocking wait command. As soon as 

the message arrives in P2, blocking wait command returns to computationa indicating the 

successful arrival of data. To sum up, in case of blocking operation P2 remains idle more time 

than non-blocking operation; so the later must be used from programmers to overlap the 

communication using independent computation routines. 

 

 

 
Figure 2.2: (a) Blocking Receive (b) Non Blocking Receive commands 

2.3 An overview of Portals Data Movements 
Portals use two basic data movements operations Ptl_Put and Ptl_Get. In case of Ptl_Put 

operation, the sender sends one (or more) Data Packet(s) to receiver, while in Ptl_Get 

operation one node (which requires data from some other node) sends one Header (Ptl_Get) 

to other node waiting for response. Another Portals movement operation category is 

Ptl_Atomic (a combination of Ptl_Put and Ptl_Get) operation. Especially, it can be either a 

swap operation which is used for data exchange  or an accumulate operation which combines 

the incoming data with the data that resides at receiver process. 

   Every data movement operation involves two processes (nodes), the initiator (Sender) and 

the target (Receiver). In other words, the initiator is the process that initiates the data 

movement operation, while the target is the process that responds to the operation by 

Non-Blocking 
Send Blocking 

Receive

Blocked
(Idle time)
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Non-Blocking 
Send Non-Blocking 

Receive

Computationb
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P1
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accepting the data for a put operation, replying with the data for a get operation, or updating 

a memory location for, and potentially responding with the result from, an atomic operation. 

   Another considerable Portals routine is the Ptl_Append routine. Ptl_Append is used from 

target node when it wants to receive (in Ptl_Put) or send (in Ptl_Get) message data for two-

sided communication. In other words, with this routine target responds to the operation 

(such as MPI Receive Command). Figure 2.3 illustrates an abstract view of Portals Put, Get 

and Swap Atomic operations. 

 

 
Figure 2.3: (a) Put (b) Get (c) Swap Atomic Operation 

2.4 Portals Lists 
Portals uses three lists at target side so as to manage its messages: Priority, Unexpected and 

Overflow List. Priority List stores the header of the expected messages through Ptl_Append 

operation, Unexpected List stores the headers of unexpected messages, while Overflow List 

stores the data of small unexpected messages as illustrated in Figure 2.4. 

Initiator Target

Put Request (may include Data)

Acknowledgement (optional)

Initiator Target

Get Request (only Header)

Acknowledgement (optional)

Reply (Data)

Initiator Target

Swap Request (only Header)

Get (Data)

Put (Data)
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Figure 2.4: Portals Target Lists 

 

UM and OF Lists grow with programs which use eager put commands and in which the sender 
assumes that the receiver has enough space to buffer the header and payload are sent 
respectively, while PR List grows with target receive commands. In other words, at message 
arrival the priority list are first processed and, if no matching entry was found, then overflow 
list are processed to find available space for message payload. If there is available space, a 
message payload is delivered into the overflow list and its header is linked into the 
unexpected list. On the other hand, when a new list entry is appended to the priority list, the 
unexpected list is first searched for a match. If a match is found (i.e., had the list entry been 
on the priority list when the message arrived, the message would have been delivered into 
that list entry), the list entry is not inserted, the header is removed from the unexpected list, 
and the application is notified a match was found in the unexpected list. 
   Figure 2.5 illustrates how to grow lists in target side through an example. We assume that 
we have four communication nodes in a system. We examine the target side when node 1, 
node 2 and node 3 send messages (initiators) to Node 0 (target). Initially, in Portals 
initialization function, node 0 issues PtlAppend(PTL_OVERFLOW_LIST) so as to allocate space 
for unexpected messages (Figure 2.5a).  Subsequently, node 0 wants to receive one message 
from node 1, hence it issues PtlAppend (PTL_PRIORITY_ LIST,1) so as to insert one entry in 
Priority List as shown in Figure 2.5b. Later, two incoming messages arrive in node 0 from 
nodes 2 and 3 (Figure 2.5c and Figure 2.5d respectively), as a result two headers1 in UM List 
are inserted, since the node 0 don’t wait messages from those nodes. Then, node 0 issues 
PtlAppend(PTL_PRIORITY_LIST,2) command when it wants to receive the corresponding 
message (Figure 2.5e), as a result corresponding UM entry is deleted. Finally, the expected 
message from node 1 arrives (Figure 2.5f) and node 0 issues PtlAppend 
(PTL_PRIORITY_LIST,3) for the last message from node 3 (Figure 2.5g). 
    

 

                                                           
1 When one unexpected message arrived in a target node, header is saved in unexpected message list, while 
payload is saved in Overflow List. 
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Figure 2.5: Simple example of Target Lists 

 

   Unfortunately, the size of three Lists affects Portal’s communication overhead, as 

applications may traverse a significant number of entries searching for a certain message. 

Hence, accelerating queue as well as other communication operations can result to reduced 

Portals overhead. Figure 2.6a describes in more detail the Ptl_Put operation executed by P2 

during a non-blocking2 receive comparing with Figure 2.2. In the abstract view (Figure 2.2) it 

was assumed that a non-blocking receive call returns as soon as the receive is posted. Looking 

at the scenario in more detail a number of operations should be performed in order to 

execute fully receive command. When the target wants to receive one message from other 

node it calls Ptl_Append routine so as to append a receive request. During this process it 

must first search in UM List in case of message has received in the past (Process UM). 

Accordingly, when the message arrives in P2 the computation is not instantly resumed, since 

the Priority list has to be traversed in order to check whether a matching receive has been 

posted in the past (Process PR). If there isn’t any matching receive in Priority List, it traverses 

OF List to find sufficient space to save the unexpected message (Process OF). Ptl_CT_Wait is 

one blocking command which waits for the message arrival. In Figure 2.6a UM, PR, OF Process 

                                                           
2 All Data movements in Portals are non-blocking (such as Ptl_Put, Ptl_Append) except from Ptl_CT_Wait. 
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and CT_Wait have to be performed by the host processor, incurring a significant overhead in 

the case of a large queues. Offloading all communication intensive processes from the host 

processor to an accelerator allows for extensive overlap between the computation-

communication without further involvement as illustrated in Figure 2.6b. 

 
Figure 2.6: (a) CPU non-Blocking Receive (b) Offload Non Blocking Receive schemes 

2.5 Eager versus Rendezvous Protocol 
Historically, two-sided communication implementations have had to choose between eager 

messaging protocols that require buffering and rendezvous protocols that sacrifice overlap 

and strong independent progress in some scenarios [7]. The typical choice is to use an eager 

protocol for short messages and switch to a rendezvous protocol for long messages. This 

subsection presents both eager and rendezvous protocols. 

   The eager protocol sends whole messages including Header and Payload eagerly as 

illustrated in Figure 2.7. If a message is expected3, it is delivered directly into the userSpace 

Buffer and an ack (optionally) is generated to notify the sender that the message was 

successfully delivered (Figure 2.7a). On the other hand, if the message is unexpected, there 

are two probable scenarios. In the first scenario (Figure 2.7b) the receiver discards the 

payload of the message while it keeps the Header so as to issue a get request to retrieve the 

payload when PtlAppend command is issued. In the second scenario, target node has 

sufficient bounce buffer to save the payload so that initiator doesn't send the payload second 

time as illustrated in Figure 2.7c. 

                                                           
3 When PtlAppend has been issued by target node before the message arrives the message is expected, else 
the message is unexpected. 
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Figure 2.7: Communication pattern for eager protocol 

   In case of Rendezvous protocol, initiator only sends a piece of message4 and sufficient 

information in the header to allow the target to issue a get operation to retrieve the message 

when the PtlAppend command is posted as illustrated in Figure 2.8. If the message is 

expected the first part of the message is delivered directly into the receive buffer, otherwise 

it is delivered into bounce buffers. If the total size of message is greater than eager_limit, 

target issues PtlGet so as to retrieve the remainder payload. 

 

 
Figure 2.8: Communication pattern for rendezvous protocol 

                                                           
4 The size of message is determined from one variable, called eager_limit. 
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2.6 Portals Completion Events 
Portals provides two mechanisms for recording completion events, full events and counting 

events. Full events provide a complete picture of the transaction, including what type of 

event occurred, which buffer was manipulated, and identifying any errors that occurred. 

Counting events, on the other hand, are designed to be lightweight and provide only a count 

of successful and failed operations (or successful bytes delivered). The delivery of events (full 

events or counting events) is manipulated when creating a number of other structures (such 

as creation of priority list). In this work counting events are implemented in Portals 

Accelerator because it was a lighter edition of Portals events with sufficient information of 

transactions. A counting event is allocated through a call to PtlCTAlloc(), queried with 

PtlCTGet(), PtlCTWait(), set with PtlCTSet(), incremented with PtlCTInc(), and freed through 

a call to PtlCTFree(). 

 

2.7 Portals Memory Descriptors 
A memory descriptor contains information about a region of a process5 memory and 

optionally points to an event queue or counting event where information about the 

operations performed on the memory descriptor are recorded. Memory descriptors are 

initiator side resources that are used to encapsulate the association of a network interface 

(NI) with a description of a memory region. They provide an interface to register memory and 

to carry that information across multiple operations (an MD is persistent until released). 

PtlMDBind() is used to create a memory descriptor and PtlMDRelease() is used to unlink and 

release the resources associated with a memory descriptor. 

 

2.8 Matching & non-Matching Network Interface 
The Portals API supports the use of two network interfaces, physical network interface and 

logical network interface. A Portals physical network interface is a per-process abstraction of 

a physical network interface, while a logical network interface associated with a single 

physical network interface share the same network id and process id (nid/pid), but all other 

resources are unique to a logical network interface. Logical network interfaces may be 

matching or non-matching and can be addressed by either logical (rank) or physical (nid/pid) 

identifiers. In this work logical network interface is used which is addressed by logical (rank) 

identifiers for simplicity reasons.  

   In non-matching Portals interface, the initiator needs to send (i) number of target node 

(rank number), (ii) number of initiator node, (iii) Portal’s Operation, (iv) length of Payload,(v) 

                                                           
5 A memory descriptor describes a memory region using a base address and length. 
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remote offset, and (optional) other header data. Figure 2.9 illustrates a synchronous6 Portals 

Get Operation using non-matching NI, as a result the first list entry (LE) in a list always 

matches. In addition to the standard address components, in matching network interface 

(Figure 2.10) a portals address additionally includes a set of match bits. For a matching logical 

network interface, each match list entry specifies two bit patterns: a set of “do not care” bits 

(ignore bits) and a set of “must match” bits (match bits). Along with the source node ID (NID), 

these bits are used in a matching function to select the correct match list entry. Incoming 

match bits are compared to the match bits stored in the match list entry using the ignore bits 

as a mask. An optimized version of this is shown in the Figure 2.11. 

 

 
Figure 2.9: Synchronous Portals Get from a list entry 

 

 
Figure 2.10: Synchronous Portals Get from a match list entry 

 

                                                           
6 This transaction is synchronous because the target has been issued a Ptl_Append(PTL_PRIORITY_LIST) before 
the initiators get request. 
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((incoming_bits ^ match_bits) & ~ignore_bits) == 0 

Figure 2.11: Portals Matching Function 

 

2.9 Portals Data movements in detail 
This section describes the details of Portals Data movements, the Portals lists operation of 

each transaction, and finally it shows the basic PtlPut transaction using C code as example. 

 

2.9.1PtlAppend 

The PtlAppend() function creates a single match list entry which is specified by ptl_list. 

Especially, ptl_list can be either PTL_PRIORITY_LIST or PTL_OVERFLOW_LIST and the 

corresponding entry is appended to the end of the appropriate list specified by ptl_list as 

illustrated in Figure 2.12.  

   In case of PTL_PRIORITY_LIST, when a match list entry is posted to the priority list, the 

unexpected list is searched to see if a matching message has been delivered in the 

unexpected list prior to the posting of the match list entry. If so, an appropriate overflow list 

entry passes the data to user space, the matching header is removed from the unexpected 

list, and a match list entry is not inserted into the priority list. On the other hand, if the 

message not found in Unexpected Message List, then a match list entry is posted to the 

priority list. 

   In case of PTL_OVERFLOW_LIST, the target inserts an Overflow List entry so as to save the 

Unexpected Messages in the future. 
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Figure 2.12: Target manipulation of Portals PTLAppend function 

 

2.9.2PtlPut 

The PtlPut() function initiates a non-blocking7 put operation as illustrated in Figure 2.13. 

When a message arrives in target side, the priority list is searched to see if a matching 

message has been posted beforehand. If so, the payload of the message passes immediately 

to the user space, and a match list entry is not inserted into the unexpected list. Otherwise, 

if the message not found in Priority List, the overflow list is searched to see if there is 

sufficient space to save the unexpected payload to the bounce buffer. If so, the payload of 

message is stored in Overflow List, while a match list entry is posted to the unexpected 

message list. Otherwise, the target discards the message and increments the drop counter. 

 

                                                           
7 In Portals there isn’t blocking put operation (such as MPI_Send in MPI two-sided protocol). 
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Figure 2.13: Target manipulation of Portals PTLPut function 

 

 

2.9.3 PtlGet 
The PtlGet function initiates a non-blocking remote read operation. In PtlGet transaction the target 

does not use an Overflow List entry, because it doesn’t send Payload (just the message header) as a 

result there aren’t Unexpected Payloads. When a get header arrives in target side (Figure 2.14), 

the priority list is searched to see if a matching message has been posted in the priority list 

prior to the header arrival. If so, the target immediately sends the payload of message back 

to initiator. Otherwise, if the message not found in the Priority List, a match list entry is 

posted to the unexpected message list with the header of the get operation. 
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Figure 2.14: Target manipulation of Portals PTLGet function 

 

 

 

 

2.9.4 Portals PtlPut Two-Sided Communication Example 

The following example shows the PtlPut two-sided Portals transaction using matching 

network interface as described in Portals 4 Library [8]. Initially, target allocates buffer space 

to store the unexpected messages with PtlMEAppend function. In addition, all nodes must 

be synchronized so as to ensure the bounce buffer creation. Subsequently, node 1 (initiator) 

initializes the MD structure and binds a MD entry. On the other side, node 0 (target) initializes 

the ME entry structure, allocates one CT entry, and issues PtlMEAppend(PTL_PRIORITY_LIST) 

so as to accept the message. Then initiator selects the target node, sends the message 

(through PtlPut) and releases MD. Finally, target node waits for the message arrival, checks 

the success counter, and frees the CT entry. 
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Example Two-Sided Send-Receive transaction in Portals 
 

1  #define BUFSIZE 4096 

2  if(rank == 0){ /* Create OF List entry in target side */ 

3     unexpected_e.length = BUFSIZE; /* Size of unexpected entry */ 

4     PtlMEAppend(&unexpected_e, PTL_OVERFLOW_LIST, &unexp_handle); 

5  } 

6  Barrier(); /* Synchronize all nodes */ 

7    

8  if(rank == 1){ /* Bind space and store the data */    

9     send= 15; /* Send the value 15 to target */    

10    write_md.start  = &send; 

11    write_md.length = sizeof(Uns32);       

12    PtlMDBind(&write_md,&write_md_handle); 

13 }    

14           

15 if(rank == 0){    

16    value_e.start         = &rcv; 

17    value_e.length        = sizeof(Uns32); 

18    value_e.match_id.rank = 1; /* Source */ 

19    value_e.match_bits    = 1; 

20    value_e.ignore_bits   = 0;   

21    PtlCTAlloc(ni_h, &value_e.ct_handle); 

22    PtlMEAppend(&value_e, PTL_PRIORITY_LIST,&value_e_handle);   

23 }          

24     

25 if(rank == 1){    

26    ptl_process_t peer;         

27    peer.rank = 0; /* Send the DP to 0 target node */ 

28    Uns32 match_bits = 1; 

29    PtlPut(write_md_handle, sizeof(Uns32), peer, match_bits); 

30    PtlMDRelease(write_md_handle); 

31 } 

32       

33 if(rank == 0){ /* Read value in target side */      

34    PtlCTWait(value_e.ct_handle, 1, &ctc);     

35    printf("success %d\n",(Uns32)ctc.success);     

36    printf("receive value %d\n",rcv);   

37    PtlCTFree(value_e.ct_handle);   

38 } 
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3 
Software-driven development of a mixed 

Software & Hardware Portals System 
 
 
 

This chapter introduces a software framework for exploring accelerators’ architectures 

within a multi-parallel system while mainly focusing at the exploration of our novel Portals 

Accelerator. The presented framework is based on the virtual platform simulation 

environment OVP. Initially, it analyzes our novel Portals Accelerator implementation and its 

intercommunication using the OVP environment, and finally it presents Rendezvous protocol 

and One-Sided communication implementations. 
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3.1 Introduction to Virtual Platform 
The development of each new embedded platform is mainly comprised of two phases, the 

software and hardware one. While the software phase should be initiated as early as 

possible, the hardware phase needs several months or years. The most common practice for 

developing embedded software is to start to develop initial software in a desktop running a 

general purpose operating system before the real hardware or prototype release. When a 

prototype of the embedded system or chip is available the software is ported to this target 

environment using cross compilers and related tools. Later, when final Hardware is available, 

further modifications are needed for the product release. There are many challenges when 

using this traditional approach. Initially, there are significant differences in host-based and 

target hardware environment. Moreover, hardware prototype is often physically unreliable, 

not readily available in developments sites (especially those off-shore), and worst of all, it is 

often available only very near to the end of the targeted product development schedule. 

These challenges become acute as more processors interact in the embedded system. One 

solution is the MPSoC Software developing using separate processors which are emulated by 

distinct host threads. This approach provides limited controllability, observability, and 

debugability especially when tracking down complex multi-processor issues, such as bugs 

which are often very hard to reproduce reliably and isolate in complex real-time hardware. 

   The usage of Open Virtual Platform (OVP) [9] is to reduce the product development time 

by months, especially for MPSoC platforms, giving to the software developers a virtual model 

of the hardware platform at the very earliest stage of the products development. OVP usually 

allows to instantiating an abundance of popular architectures (such as MIPS, ARM, PowerPC) 

along with widely used peripheral models, such as USB, DMA controllers etc. The above 

processors with their peripherals can be co-simulated with the under-development hardware 

models with respect to accuracy of most significant architecture parts and simulation speed. 

   OVP advantages would have been useless without an accurate efficient simulator. For this 

reason, Imperas which initiated the OVP platform, has made available the OVPsim simulation 

tool. OVPsim provides infrastructure for describing platforms with one or more processors 

containing shared memory and busses in arbitrary topologies and peripheral models. 

Performance of OVPsim depends on several factors (such as the processor variants used in 

the platform, the exact nature of the application itself), but typically estimation is hundreds 

of millions of simulated instructions per second. Finally, OVPsim provides the ability to hook 

up to any popular external debugger that supports the GNU protocol, such as GDB. 

  

3.2 Portals Accelerator using Imperas OVP 
This section introduces a framework for exploring accelerator's architecture and especially 

presents the implementation of our Portals Accelerator using OVPsim. In this thesis, the Open 
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Risc 1000 (OR1K) processor model was selected to be the computation core of each node, 

while the same design process can be followed in case of different process models (such as 

ARM, Power PC etc.) since the presented results are independent with the processor model. 

Innovative CPU Manager (ICM) API is used for OR1K initialization and instantiation. 

Moreover, certain functions (such as icmPrintf) can performed at the host machine and not 

at the simulated platform. This feature along with the ability to hook the execution software 

running on a processor directly providing the GDB debugger can be reduce significantly the 

development process in a multiprocessor platform. During system's simulation, each of the 

OR1K processors is executed in the host machine at predefined time slices. The scheduler 

selects one processor and simulated it for one time slice. Especially, the simulator calculates 

the number of instructions that should be executed by that processor in a time slice, and 

then simulating for that number of instructions. When this processor has simulated for a time 

slice, it is suspended and the next processor is simulated for the same time. This is a pseudo-

parallel approach which emulates the concurrent behavior of an actual multi-processor 

platform. We get the better trade-off between simulation and accuracy of results using time 

slice of 1ms.  
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Figure 3.1: OVP Platform with our Portals Accelerator 

   An overview of Platform which is used in this work is shown in Figure 3.1. The platform 

consists of N processing nodes and each node comprised of one OR1K processor model, its 

memory, and one Portals Accelerator connected in a local bus. In turn, Portals Accelerator 

comprised of a dynamic memory allocator peripheral for the unexpected received Portals 

messages, a list manager for its queue processing and an Accelerator Buffer. Furthermore, 

Figure 3.1 shows the space reserved for the memory mapped intercommunication. The field 

which corresponds to the Portals accelerators is consistent among all processors because one 

global address scheme is used for PtlPut and two global address schemes for PtlGet 

transaction. In PtlPut transaction, initiator node writes the message to the appropriate global 

space in 'PUT GLOBAL ADRESS SCHEME', while target node can read the message from the 

same space. In PtlGet transaction, when the initiator node writes the header of the message 
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request in 'GET HEADER GLOBAL ADRESS SCHEME', the target reads the header from the 

same space. Later on, the target, in turn, responds to initiator request with the message 

Payload using the 'GET PAYLOAD GLOBAL ADRESS SCHEME'. In other word, there is a unique 

global address which associates an address interval with the Portals buffer of a specific node. 

We use three global address schemes because one node may issue PtlPut and PtlGet 

operation concurrently to some other node (i.e. in Rendezvous Protocol). 

   The memory of each node consists of two parts, instructions and stack as illustrated in 

Figure 3.1. Those parts, along with the space reserved for the memory mapped 

intercommunication as well as the accelerator buffer memory are shown in Table 3.1. The 

size of 'PUT GLOBAL ADRESS SCHEME' is determined form following equation. 
 

𝑃𝑈𝑇𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 = 𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒 − 1                    (1) 
 

 In this work, up to 128 Software processors are instantiated with maximum 

PortalsMessageSize 8192 bytes for our results. With this configure the PUTGlobalSize has size 

07ffffff bytes. Similar to (1), the  GetHeaderGlobalSize is computed with the following 

equation. 
 

𝐺𝑒𝑡𝐻𝑒𝑎𝑑𝑒𝑟𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 = 𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑖𝑧𝑒 − 1                    (2) 
 

As described in Chapter 2, Portals Header contains Source, Destination, LocalOffset, 

RemoteOffset, MessageLength integers, PayloadStart pointer and MatchBits with Uns64. In 

other words, PortalsHeaderSize and GetHeaderGlobalSize should be at least 32 and 7ffff 

bytes respectively. Hence, fffff bytes are sufficient for 'GET HEADER GLOBAL ADDRESS SPACE'. 

The remainder range (from 0x60100000 to 0x6fffffff) is assigned for 'GET PAYLOAD GLOBAL 

ADDRESS SPACE' which are sufficient according to (1) equation. Finally, range from 

0x70000000 to 0x7fffffff is assigned for dynamic memory allocator buffer, while ListManager 

and other accelerator structures allocate their buffer in range 0x58000000 up to 0x5fffffff. 
 

Address Size Mapped 
Low High 

0x00000000 0x0fffffff 0fffffff Instructions 

0x90000000 0xffffffff 6fffffff Stack 

0x50000000 0x57ffffff 07fffff PUT GLOBAL ADRESS SHEME 

0x58000000 0x5fffffff 07fffff Portals Accelerator Buffers 

0x60000000 0x600fffff 000fffff GET HEADER GLOBAL ADDRESS SPACE 

0x60100000 0x6fffffff 0fefffff GET PAYLOAD GLOBAL ADDRESS SPACE 

0x70000000 0x7fffffff 0fffffff Dynamic Memory Allocator Buffer 
Table 3.1: Memory Mapping 
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   The Portals Accelerator is modeled by the OVP Innovative CPU Manager (ICM) API and 

configured by the Peripheral Programming Model (PPM) as outlined in detailed in the next 

section. Moreover, Behavioral Modeling (BHM) API allows passing parameters to the 

peripheral during instantiation. This feature was used to assign an ID to each accelerator, so 

that the address interval of the local Portals buffer can be identified. For instance, assigning 

ID = 1 to an accelerator in a system with 128 nodes, resulted to assigning to the local buffer 

the global address interval of [LowGlobalAddress+1*128*PortalsMessageSize : 

LowGlobalAddress+2*128* Portals MessageSize-1] for PtlPut and PtlGet response (Payload) 

operation. Similar to the above operations, for the same ID=1, the global address interval of 

PtlGet Header transaction is [LowGlobalAddress+1*128*PortalsHeaderSize : 

LowGlobalAddress +2*128*PortalsHeaderSize-1]. Although the above memory mapping can 

be assigned during the initialization phase of platform, OVPsim requires to perform this task 

in the instantiation phase in order to assign certain permissions to each address as described 

in the following section. Whenever one message was written at the local buffer of Portals 

Accelerator, it is consumed immediately by the appropriate target's accelerator preventing 

buffer overwrites.  

3.3 Accelerator Intercommunication 
This section presents the bus connections as well as accelerator intercommunication with 
other nodes, its buffer and UserBuffer. The bus connects the platform nodes to a common 
address space so that all processor read/write commands are directed to Portals Accelerator 
Buffers. Portals Accelerator connects to the bus through master and slave ports depending 
on whether it creates or responds to bus transactions as described in next subsections in 
detail. 

3.3.1 Master Ports 

This subsection describes the master ports which connect the Accelerator with node's buffer 

as well as with other nodes. Especially, the accelerator uses a master port to initialize bus 

transactions to read/write to the memory. Figure 3.2 illustrates the Accelerator's master 

ports which are created in this work. Accelerator in our platform uses five master ports to 

communicate with the local bus. One master port (1 in Figure 3.2) is used to read/write the 

node's UserSpace, so that the processor is not interrupted in any way. Another master port 

(5 in Figure 3.2) is used to store/restore unexpected messages payload in allocator buffer, 

while three master ports (2-4 in Figure 3.2) are allocated to communicate (read/write Portals 

messages) with other nodes, one for each Global Address Scheme. 
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Figure 3.2: Accelerator's master ports 

 

   Innovative CPU Manager (ICM) API is used to create Global Address Schemes and connect 

them to local bus. Code 1 describes the PUT_GLOBAL_ADDRESS_SCHEME creation and how 

it is connected with the local bus. Initially, we select the Base Address according to Table 3.1. 

Subsequently, we create a new Global memory with Read-Write privilege and size  

𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒 − 1 with icmNewMemory OVP command, while we 

connect it to each accelerator bus with icmConnectMemoryToBus. Similar code has been 

used for the other two Global Memories, while it can be used for any other Global memory 

instantiation using Imperas OVPsim. 

Code 1 Create and Connect Global memory to bus 
 

1  #define PUT_GLOBAL_BASE 0x50000000 //* Base Address *// 

2  //* Bind Space for PUT GLOBAL ADDRESS SCHEME *// 

3  icmMemoryP PutMsgMemory = icmNewMemory("PutGlobalMem",ICM_PRIV_RW,                            

4                            NPROCS*NPROCS*PTL_MESSAGE_SIZE-1) 

5  //* Connect PUT GLOBAL ADDRESS SCHEME to Accelerator buses  *// 

6  for AccId=0,...,NPROCS: 

7    icmConnectMemoryToBus(LocalBus[AccId], PutMsgMemory, 

8                         PUT_GLOBAL_BASE) 

9   

  

Code 2 Master Ports Operations  

 

1  //* Master ports Handler *//  

2  ppmAddressSpaceHandle msgPayloadHandle[NPROCS] 

3  for i=0,...,NPROCS: //* Open NPROCS master ports to each Acc *//   

4    msgPayloadHandle[i] = ppmOpenAddressSpace(PortNames[i])                        

5    //* Connect each master port to local bus *// 

6    icmConnectPSEBus(Acc[AccId], LocalBus[i], PortNames[i])     

7     

8  //* Select the master port for reading *// 

9  msgAddr = PUT_GLOBAL_BASE + AccId*NPROCS*PTL_MESSAGE_SIZE +        

10           msgSrc*PTL_MESSAGE_SIZE; 

10 

11 //*Read the Payload from msgAddr and store it to PayloadBuffer *// 

12 ppmReadAddressSpace(msgPayloadHandle[msgSrc], msgAddr,                    

13                    PTL_MESSAGE_SIZE, PayloadBuffer); 
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14 

15 for i=0,...,NPROCS: //* Close the master ports *//   

16   ppmCloseAddressSpace(msgPayloadHandle[i]); 

 

 

   Furthermore, PPM API is used to manipulate the master ports with open, close, read, write 

operations as described in Code 2. Primarily, NPROCS8 message Handler are allocated in each 

accelerator so that each accelerator reads/writes to target accelerator global memory. 

Subsequently, NPROCS master ports with appropriate names are opened and connect the 

accelerator(AccId) with all accelerator's local buses.  Whenever the accelerator wants to 

receive9 one message from certain node, it must identify the source node, message address 

and temporary buffer for incoming message store. Message address can be computed with 

global address base as well as the initiator and target identifiers (lines 9-10). At the end of 

Portals instantiation, all master ports must be closed with ppmCloseAddressSpace OVP 

command. With similar way other four master ports have been implemented, while this way 

can be used for any type Accelerator development using OVPsim. 

3.3.2 Slave Ports 

   In previous subsection portals message exchange was described using master ports. Except 
from data packet placement in correct positions according to initiator node, accelerator 
needs a mechanism to be triggered in right time. Hence, a number of slave ports are used so 
that the accelerator can be respond to bus transactions. Each accelerator is triggered from 
three events (one for each incoming message type) as illustrated in Figure 3.3. PPM API is 
responsible for slave port creation and ICM API for connection with bus as described in Code 
3.  

   

 
Figure 3.3: Accelerator's slave ports 

 

                                                           
8 One handler for each incoming message from Portals Accelerator. Total NPROCS2 handlers are allocated in 
our platform. 
9 ppmWriteAddressSpace is used for writing to master port and it has the same parameters with 
ppmReadAddressSpace. 
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   OVPsim uses especially variables (called registers) as slave port handler (Figure 3.3). 
Initially, PPM_REG_WRITE_CB function must initialize these registers, while 
ppmCreateRegister creates both a register object(put_message_cb_reg in Code3) that 
can be accessed by Imperas Debugger and also reads and writes events that can trigger the 
Portals Accelerator. Register is accessible through the port associated with the memory 
region IF_Window. Each Slave Port can transfer information with size REQ_SIZE to peripheral; 
this property is used to transfer initiator ID so that the accelerator knows the initiator node 
which sends the trigger request. Subsequently, NPROCS slave ports with appropriate names 
are opened and connect the accelerator(AccId) with all accelerator's local buses, while the 
address in each slave port is determined by the range of the bus connection10. Moreover, 
PPM_REG_WRITE_CB function with the put_message_cb_reg register is used from 
Accelerator to handle the incoming portals messages. Finally, slave ports are closed with 
ppmCloseAddressSpace OVP command. 

 

Code 3 Create and Connect slave ports to bus 
 

1  //* Initialize message CallBacks *//  

2  PPM_REG_WRITE_CB(put_message_cb_reg) 

3  //* Create NPROCS CallBack Registers to each Accelerator *// 

4  for i=0,...,NPROCS: 

5    ppmCreateRegister(IF_Window[i], REQ_SIZE, put_message_cb_reg)  

6    //* Open NPROCS slave ports to each Accelerator *// 

7    ppmOpenSlaveBusPort(PortNames[i], IF_Window[i], REQ_SIZE)                        

8    //* Connect each slave port to local bus *// 

9    icmConnectPSEBus(Acc[AccId], LocalBus[i], PortNames[i],      

10   PUT_GLOBAL_BASE + AccId*NPROCS*REQ_SIZE + i*REQ_SIZE, 

11   PUT_GLOBAL_BASE + AccId*NPROCS*REQ_SIZE + i*REQ_SIZE+REQ_SIZE-1) 

12   //* ...................................................*// 

13   PPM_REG_WRITE_CB(put_message_cb_reg){ 

14     //* Handle Portals message *// 

15   } 

16   //* ...................................................*// 

17 for i=0,...,NPROCS: //* Close the slave ports *//   

18   ppmCloseSlaveBusPort(IF_Window[i]); 

 

 

3.4 Portals Accelerator Model 
The framework presented in section 3.2 allows integrating under-development hardware 

within a complete parallel system simulation model, as a result complete software 

applications can be executed and not just specific, corner case scenarios. Hence, our selection 

was to initially model our hardware at the untimed functional level[Cai and Gajski 2003] in 

which the low level timing issues are hided for the sake of simulation execution time, while 

later on, pure hardware model is developed as described in detail in Chapter 4. 

                                                           
10 Low & High Address of slave port are determined in line 10 & 11 respectively. 
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   The basic components of Portals accelerator processor are shown in Figure 3.4. Slave ports 

is used to triggered the Portals Accelerator, while master ports to read/write to global 

address spaces as described in section 3.3. Functionality of each component is analyzed in 

the following subsections. 

 

 
Figure 3.4: Portals Accelerator Processor 

3.4.1 Message Buffers 

   Three Message Buffers are placed at the three slave ports triggering the Accelerator for 
three different types of incoming Portals messages. These Buffers store the request of 
incoming messages in order, so that Portals command by processor is transformed to a 
simple memory write to appropriate address. In this way, the host-processor is instantly 
allowed to continue its computations just after it writes the Portals command to the Message 
Buffer. Unlike, master ports do not need Buffers because Header and Payload of Portals 
messages are stored in Global Memory. 

 

3.4.2 Portals Message Processor 

   The Portals Message Processor orchestrates the data flow through all Accelerator's 
components according to the control flow imposed by each Portals command. Initially, when 
one request message is placed at the message buffer, message processor decodes the 
'command type' which determines the type of command and the message (Header and may 
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be Payload) position in Global Address Scheme. Hence, besides the message buffers, the 
message processor communicates with master ports which have access in Global Address 
Schemes and with Accelerator buffers. Moreover, the message processor issues certain list 
operations to the list manager according to message condition and asks for memory space 
from the dynamic memory allocator so as to save the unexpected messages. 

 

3.4.3 Memory Descriptor  & Counting Event Tables 

   As described in Chapter 2, a memory descriptor contains information about a region of a 
process memory and optionally points to counting event where information about the 
operations performed on the memory descriptor are recorded. In other words, whenever 
initiator issues a Portals command, it must bind a memory descriptor so as to declare the 
range of User Space memory. As illustrated in Figure 3.5a Memory Descriptor Table is created 
which contains MAX_MD_ENTRIES memory descriptors. Each memory descriptor contains a 
pointer to UserSpace memory as well as the size of its memory. In addition, ct_handle is used 
for information about completion of PtlGet transaction, while used is a boolean variable for 
MDTable allocation criteria11. Target node ID is used as hash key for allocation criteria so that 
certain range of MDTable is traversed; for instance, in a system with 64 nodes only 
MAX_MD_ENTRIES/64 entries are traversed in each MDBind command. 

 
 

 
Figure 3.5: (a) MDTable (b) CTTable 

 
   Another significant portals structure is counting event which is responsible for completion 

movements. Each counting event contains both a count of succeeding events and a count of 

failing events, while operation variable stores the type of Portals movement (PtlPut or 

PtlGet). Similar to MDTable, CTTable is created which contains MAX_CT_ENTRIES counting 

events structures as illustrated in Figure 3.5b. With this table, the appropriate event can be 

searched in constant time since ct_handle is the pointer of CTTable, while PtlCTAlloc 

command has computation cost (O(MAX_CT_ENTRIES)) in which searches for free entry. 

                                                           
11 When used is zero the specific entry is free, else this entry is used. 
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Number of initiator node is used as hash key for computation cost reduction by factor of 64, 

in 64 nodes platform.  

3.4.4 List Manager 

The list manager performs three basic list operations, search, insert and delete on the OFQ, 
UMQ and PRQ lists. In addition, a free list is maintained including all the Accelerator Buffer 
positions which are not allocated yet by either of the lists. Each list is implemented by a head 
and a tail pointer. When a new item is inserted in one of the three lists, header of the free 
list advances to the next free entry, while the newest item is added at the end of the list so 
as to preserve the message order updating the list (OFQ, UMQ, PRQ) tail's pointer to point to 
the new element. Similarly, when one item is removed from some of three lists, the tail of 
the free list is updated to point to that element, while the tail which shows to removed item 
is updated to point one item back.  

   Figure 3.6 illustrates the high-level architecture of our list manager in a 128-node platform. 
OFQ elements are shown in blue, UMQ elements are shown in red, while PRQ and free 
elements are shown in green and grey respectively. Allocator buffer (illustrated with blue)  is 
accelerator  memory  which is  connected  with  accelerator through master port 

Figure 3.6: Portals List Manager 

 

(Figure 3.2), while UserSpace (illustrated with green) is the application memory. In other 
words, unexpected message payload is copied in Allocator Buffer, while expected message 
payload (PRQ) is a simple pointer to user space. 
   In Portals initiator function, the platform allocates OFQ entries, so that each unexpected 
incoming message stores its payload. In Figure 3.6, 128 (0-127) OFQ elements with 8192 
bytes are allocated; so that unexpected messages with different initiators can be stored in 
their own allocator buffer. The size of OFQ entry is determined by Portals Init function and 
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can have any size depending on the application, while ignore bits must be 0xff so as to always 
match according to match function as described in Chapter 2. OFQ entry contains local_offset 
which shows the allocator buffer section which is used. Initially, local_offset is zero, when 
unexpected messages arrive the local_offset advances 'message_size' bytes so as to accept 
the next message payload. For example in Figure 3.6, the payload of first unexpected 
message is stored to the top of allocator buffer and OFQ local_offset advances 1024 bytes. 
Subsequently, payload of second unexpected message is stored in 1024 - 1088 allocator 
buffer position. In case of allocator buffer overflow, implementation of circular array [10] is 
used as illustrated in Figure 3.7. Whenever payload of unexpected message is greater than 
(OF_Size minus local_offset), a portion of payload is stored in the bottom of buffer and 
remainder payload is stored to the top of the buffer. Finally, start variable is used to check 
the full buffer case. 
 

 
Figure 3.7: Circular Allocator Buffer 

   As the number of communicating nodes increases, the number of list entries increases 
triggering an increase in the time needed in order to linearly search them. For this reason, 
one of the most promising solution to this issue is to utilize a hashing scheme, so that almost 
constant search times will be enjoyed even at very large systems. When a collision takes 
place, chaining can be performed by adding the newest item at the end of the list so as to 
preserve the message order. However, hash-based software implementations are slower, as 
a number of operations (e.g. calculating the hash function for a key) have to be executed 
before touching the first entry. For this reason our scheme utilizes a simple hash function 
which has as hash key the source field of the Portals message. The hashing function assumes 
that the number of available buckets is a power of two, leading to an efficient hardware 
implementation. For example, in a hashing scheme with M buckets, a message with initiator 
id equal to i, is assigned to the bucket corresponding to the result of the modulo function 
i%M which for M being a power of 2 reduces to i&(M-1), which is analyzed to a simple binary 
'&' operation and a subtraction by 1. 
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3.4.5 Dynamic Memory Allocator 

    As described in the above subsection, during Portals Init function, a number of OFQ entries 
are inserted with the appropriate Allocator Buffers so as to store the Payload of unexpected 
messages. The OFQ payload is not critical during OF search and thus it should not consume 
valuable space in the Accelerator Buffer. So, our Accelerator processor contains a mechanism 
for allocating and freeing the data corresponding to the payload. Especially, a dynamic 
memory allocation scheme was implemented in the Accelerator Processor. Our allocator is 
based on the buddy memory allocation algorithm [11] which can be very efficiently 
implemented in hardware since it mainly comprises of binary operations. 

3.5 Rendezvous Protocol 
   This section presents the Portals implementation of rendezvous protocol, and how MPI 
commands can be integrated with rendezvous protocols. As described in Chapter 2, eager 
protocol ensures asynchronous progress in both expected and unexpected cases. Especially, 
in expected cases PtlAppend is posted before incoming data and the message is 
asynchronously delivered in the user buffer, while in unexpected cases PtlAppend is posted 
after the incoming data begins arriving and either the get request is issued to retrieve the 
remainder message, or payload is stored in Allocator buffer. However in case of unexpected 
messages eager protocol wastes the bandwidth in payload retransmission or uses enormous 
amount of allocator buffer in long messages. In contrast, traditional rendezvous protocols 
(presented in Chapter 2) ensures asynchronous progress only for unexpected messages, as 
the header data is immediately available when PtlAppend is posted, while the protocol does 
not ensure asynchronous progress for expected messages, as the target node must enter the 
library after the header arrives to issue the get request. In other words the target processor 
should be interrupted to calculate the PtlGet arguments after the header arrives. 

   Portals provides a mechanism through which an application can schedule message 
operations that initiate when a counting event reaches a threshold. Operations which contain 
this mechanism (using Portals counting events) are called triggered operations.  
   In this work PtlTriggeredGet operation is implemented by extending the PtlGet argument 
list to include a counting event on which the operation will trigger and a threshold at which 
it triggers. So, triggered rendezvous protocol is implemented utilizing Portals Triggered 
operations to issue the target-side get request without involving the host processor as 
illustrated in Figure 3.8. The first eager_limit bytes of the message are sent to the target when 
the PtlPut is posted. If the message is expected, the first part of the message is delivered 
directly into the target UserSpace buffer, otherwise it is delivered into bounce buffers. A 
counting event which counts bytes delivered is attached to the target buffer, and a triggered 
get is scheduled to execute when a message larger than the eager limit arrives. The counting 
event is modified whether the message is expected or unexpected, so the protocol provides 
asynchronous process in either case.  
   Figure 3.8 presents the MPI send-receive non-blocking commands and how they 
manipulate the Portals routine to use triggered rendezvous protocol. Especially, MPI_IRecv 
and MPI_Isend commands call PtlTriggeredGet, PtlAppend and Ptl_Put operations 
respectively. In an expected scenario, PtlTriggeredGet operation is called but Get request is 



 

 
45 

posted just the first part of message arrives in target side using PtlCTInc command, otherwise 
(unexpected scenario) just the first part of the message arrives, a counting event is created 
and takes the threshold value. Later on, when MPI_IRecv is placed, Get request is sent 
immediately, as the counting event has the appropriate threshold value. Finally, in both 
scenarios, matching information for the get movement must be pre-calculated, rather than 
retrieved from the header data. 
 

 
Figure 3.8: Communication pattern for triggered rendezvous protocol 

3.6 One-sided Communication 
Initially, this section introduces one-sided implementations as presented in the literature 
emphasizing their drawbacks in the most of them. Subsequently presents our novel one-
sided Portals implementation, and finally it presents the Global Arrays implementation using 
the proposed one-sided implementation. 

   As presented in the literature, there is an abundance of implementations of one-sided 
communication. For instance in [12] are presented three different implementations of one-
sided communication using two-sided semantics. Unfortunately, all of these 
implementations are sub-optimal since they use send-receive commands in both initiator and 
target node, while they are computation-intensive because they use IProbe and blocking 
Receive operations as illustrated in Figure 3.9. Particularly, Figure 3.9 illustrates One-Sided 
Get operation using (a) Two-Sided semantics, (b) Two-Sided semantics in a Multi-thread 
target implementation and (c) Multi-thread target implementation with Shared Memory. In 
first scenario, target uses one thread for communication and computation, which calls IProbe 
command constantly wasting the resources of this thread. Second scenario uses two thread 
in target side, a communicator thread (Pi) and a process thread(Pj). In this case 
communicator thread is responsible for target communication calling IProbe routine, while 
the process thread communicates only with Pi whenever it needs the incoming message. 
Finally, in third scenario shared memory is used for on-node communication to reduce the 
number of memory copies and eliminate superfluous communication with the communicator 
thread. 
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Figure 3.9: One-Sided communication protocol using Two-Sided communication Protocol 

3.6.1 Our implementation of One-sided Communication 

This subsection presents our novel implementation of one-sided operations eliminating the 
above common drawbacks. Especially, in our implementation the target of a remote 
operation is not a virtual address but the ultimate destination in memory of an incoming 
message is determined at the target node by comparing contents of the message header with 
the contents of structures at the destination. In more details, target node inserts PRQ entries 
with unique match_bits12, which points to accessible UserSpace Buffers as illustrated in 
Figure 3.10. In Priority List one cluster is added which manages the one-sided entries from all 
nodes using PTL_SRC_ANY option. Figure 3.10 presents the additional cluster (One-Sided 
cluster), and the conventional clusters13 which are used by two-sided communication with 
our hashing scheme. Hashing scheme is not used in One-Sided communications because 
target node doesn't know the initiator node during priority entry insertion and the number 
of Priority One-Sided entries is quite small; as the target usually allocates large amount of 
UserSpace (as pseudo-shared memory), while the initiator can access on different positions 
of it through remote_offset. 

 

                                                           
12 Each One-Sided Priority entry uses unique match_bit so as to separate the Buffer requests.  
13 In Figure 3.10 illustrates 64-node platform with four buckets, so each cluster accepts messages from 16 
different nodes. 
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Figure 3.10: PRQ extension to support one-sided communication 

   Subsequently, such as all commons one-sided communication protocols, the user must 
allocate memory and then exposes it in a window. For this reason PtlWinCreate command is 
implemented which inserts One-Sided Priority List entry using a unique match_bits, and 
subsequently announces the match_bits to all One-Sided participate nodes through 
Broadcast collective routine as described in Code 4. Moreover, PtlWin structure is 
implemented which keeps all information about One-Sided participants nodes and their 
match_bits. 

 

Code 4  PtlWinCreate (void * base_buf , Uns32 size, Ptl_win win) 
 

1  src = nodeId(); //* Get node ID *// 

2  if (base_buf != NULL){ //* Create PRQ entry with base_buf addr *// 

3    win->match_bits[src] = AssignUniqueMatchBit(); 

4    PtlPRInsert(base_buf, size, win); 

5  } 

6  else{ //* Set the node's match_bits equal to zero *// 

7    win->match_bits[src] = 0; 

8  } //* Send match_bits to other participant nodes *// 

9  BroadCast(win->match_bits[src]); 

   

   

   PtlWin is a simple structure which contains MatchBits and IntraNodes arrays as illustrated 
in Figure 3.11. IntraNodes array has NPROCS elements with 1 bit size which contains the 
nodes which participate in One-Sided communication, while MatchBits array saves the 
match_bits of each participant node. If match bit is equal to zero, this node hasn't memory 
for sharing, while some node can participate in One-Sided communication and its match bit 
is equal to zero14 (as node 1 in Figure 3.11).  
 

                                                           
14 In this case the node can only use One-Sided operations  to fetch or put remote data, while can't accept 
One-Sided operations from other nodes because it hasn't pseudo-shared memory. 
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Figure 3.11: PtlWin Structure 

   Hence, each participating node knows the match_bits of other participants using MatchBits 
array. For instance, in a 64-node system if node 0 wants to issue a remote put/get operation 
to node 2, it can find the node 2 match_bit in O(1) from the MatchBits array. Subsequently, 
when the message arrives in node 2, only the One-Sided cluster is traversed so as to find the 
appropriate PRQ entry and the appropriate buffer memory concurrently. In all cases, the 
target must have called PtlWinCreate before incoming One-Sided messages arrives. Hence, 
One-Sided message is never unexpected since PRQ entry was inserted by PtlWinCreate 
command. As a result, UMQ and OFQ Lists are never traversed in One-Sided communication, 
while in case of a PRQ entry is not found, fatal error is occurred.  

3.6.2 Global Arrays Implementation through One-Sided Communication 

Global Arrays provides a shared memory style programming environment in the context of 

distributed array data structures (called "global arrays"), while from the user perspective, a 

global array can be used as if it was stored in shared memory. This subsection presents our 

Global arrays implementation using One-Sided communication commands.  

   Initially, one table (called GATable) is created with MAX_GA_ENTRIES15 of GAEntry 

structure16 for Global Array information. GAEntry, in turn, contains the necessary Global 

Array characteristics, such as its name, type (integer, float, double), number of dimensions 

(ndim), elements number of each array dimension (dims), pointer of node pseudo-shared 

memory (buffer), and one Ptlwin entry as illustrated in Figure 3.12.  

                                                           
15 Implementation can support up to MAX_GA_ENTIES different Global Arrays. 
16 Each entry refers to one Global Array. 
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Figure 3.12: GATable implementation 

   Code 5 shows our implementation of NGA_Create routine. NGA_Create must be called from 

all participate processors so as to divide the Global array in equal sizes and distribute it in 

each processor. Initially, it searches for available GATable entry and save the GA 

characteristics on it. Subsequently, it computes the array size (see next paragraph) which 

allocate it (with conventional UserSpace allocation scheme (malloc)) from this node. Finally, 

it creates one window using PtlWinCreate command so as to acknowledge its match_bits  to 

other participants nodes. 

 

Code 5  NGA_Create (int type, int ndim, int ndims[], char array_name[] ) 
Crete one Global Array, divide it and distribute it in each processor 

Output: Return index of GATable 

 

1  me = nodeId(); //* Get node ID *// 

2  //* Index of available GATable Entry *// 

3  GAIndex = SearchAvailableGATableEntry();  

4  //* Set the GA characteristics *// 

5  GATable[GAIndex].name = array_name; 

6  GATable[GAIndex].type = type; 

7  GATable[GAIndex].ndim = ndim; 

8  GATable[GAIndex].dims = dims; 

9  //* Compute the array size for each node *// 

10 size_of_thread = SizeOfNode(me,ndim,dims); 

11 GATable[GAIndex].buffer = allocate(size_of_thread); //allocate it  

12 //* Create one window and return the win properties *// 

13 PtlWinCreate(GATable[GAIndex].buffer, size_of_thread, 

                &GATable[GAIndex].win); 

14 return GAIndex; 

   

   

   Figure 3.13 shows Global array transformation and the pseudo-shared memory  division in 

each participant node. For instance, in Figure 3.13(a) is created a Global array with 9 

elements, as a result all nodes must allocate 2 elements except from node0 which must 

allocate 3 elements. Similar, in Figure 3.13(b) a  Global array is created with 11 elements, as 
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a result the first three nodes (0 up to 2) allocate 3 elements while node 3 allocates only 2 

elements. In other words, the modulo of Global Array begins to share from nodes with the 

smallest id to bigger id. This procedure divides the Global Array with fairness; as the 

maximum divergence among the nodes is 1 element. 
 

 
Figure 3.13: Global Array division 

   Code 6 shows the basic transformation functions for targetID and RemoteOffset 

computation giving the Global Array Index, as well as the number of GA elements giving the 

number of node. For example, in Global Array with 9 elements, the 5th Global Array element 

is stored in node 2 with remote_offset 0, while in Global Array with 11 elements, the 5th 

element is stored in node 1 with remote_offset 2, etc. Finally, two or greater dimension array 

is transformed to one-dimension array so as to compute the target and remote_offset in the 

same way. 
 

Code 6  Global Array Transformation Functions  
 

Input:  Index of Global Array element 

Output: Node which this element is stored 

1  int Target(int index, int total_size){ 

2    int mod = total_size % NPROCS; 

3    int div = total_size / NPROCS; 

4    return (index<= (mod*div)+mod)? index/(div+1): (index-mod)/div; 

5  } 

 

Input:  Index of Global Array element 

Output: Offset of node's memory which this element is stored 

1  int RemoteOffset(int index, int total_size){ 

2    int mod = total_size % NPROCS; 

3    int div = total_size / NPROCS; 

4    return (index<= (mod*div)+mod)? index%(div+1): (index-mod)%div; 

5  } 

 

Input:  Node Identifier 

Output: Number of Global array elements which are stored in this node 

1  int SizeOfNode(int me, int total_size){ 

2    int div  = total_size / NPROCS; 

3    int flag = (total_size % NPROCS) > me; 

0

Pseudo-Shared Memory

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

node 0 node 1 node 2 node 3

0

Pseudo-Shared Memory

1 2 3 4 5 6 7 8

0 1 2 3 4 9 10

node 0 node 1 node 3

9 10

5 6 7

node 2

8

(a) Global Array with 9 elements (b) Global Array with 11 elements



 

 

51 

4    return div + flag; 

5  } 

 

   

   Moreover, all global array functions are implemented minimizing the communication cost. 

For instance, if one node wants to fill the whole one-dimension array  it must call the 

NGA_Put17 function only one time as shown below: 
 

NGA_Put(g_a, lo, hi, buf); 
 

In a simple version of NGA_Put, it issues N PtlPut operations to send the data to appropriate 

node using the above transformation functions. In our implementation NGA_Put groups the 

PtlPut calls which have the same target ID. For example, in a 4-node platform, the user 

creates one-dimension global array with 16 elements, so each node contains 4 element of 

global array. If node 0 calls NGA_Put, then only four PtlPut transactions (with four elements 

each one) are called, instead of 16 PtlPut transaction with one element each one. Finally, an 

abundance of GA functions18 not use any of Portals communication function, because each 

node simple write in its UserSpace memory without communication cost. 

3.7 Summary of Implemented Routines  
This section summarizes Portals (Table 3.2), MPI (Table 3.3) and GA (Table 3.4) routines which 

are implemented in this work. 

 

Portals Routine Brief Description 

PtlPut Initiates an non-blocking two & one-sided put operation 

PtlGet Initiates a remote two & one-sided read operation 

PtlAppend Creates a single Priority or Overflow match list entry 

PtlMDBind Creates a memory descriptor to be used by the initiator 

PtlMDRelease Releases the internal resources associated with a memory descriptor 

PtlTriggeredGet Initiates a PtlGet operation when a counting event reaches a threshold 

PTL_Barrier Blocks until all processes in the communicator have reached this routine 

PtlCTAlloc Allocates a counting event that counts either movement operations or bytes 

PtlCTFree Releases the resources associated with a counting event 

PtlCTWait Provides blocking semantics to wait for a counting event to reach a given value 

PtlCTInc Provides the ability to increment the success or failure field of a counting event 

PtlWinCreate Creates a window for One-Sided Portals Communication 

PtlWinfree Releases the window for One-Sided Portals Communication 

PtlWinFence Synchronizes all Intra-Node19 processors 

                                                           
17 In this case, user must assign lo=0, hi = N, where N is dims[0]. buf contains the data which node wants to 
save to Global Array. 
18 such as GA_Add, GA_Scale, GA_Zero 
19 Intra-Node processor is one processor which participate in a common window. 
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PtlPRInsert Inserts a PR entry to one-Sided Cluster 

PtlPRDelete Deletes the PR entry to one-Sided Cluster 

Table 3.2: Implemented Portals Routines 

 

MPI Routine Brief Description 

MPI_Init Initialize the MPI execution environment through Portals environment 

MPI_Finalize Terminates MPI execution environment 

MPI_ISend Begins a nonblocking send 

MPI_Irecv Begins a nonblocking receive 

MPI_Recv Blocking receive for a message 

MPI_Wait Waits for an MPI request to complete 

MPI_Alltoall Sends data from all to all processes 

MPI_Alltoallv Sends data from all to all processes; each process may send a different amount of 
data and provide displacements for the input and output data 

MPI_Allreduce Combines values from all processes and distributes the result back to all processes 

MPI_Reduce Reduces values on all processes to a single value 

MPI_Bcast Broadcasts a message from one process to all other processes 

MPI_Barrier Blocks until all processes in the communicator have reached this routine 

MPI_Comm_rank Determines the rank of the calling process in the communicator 

MPI_Comm_size Determines the size of the group associated with a communicator 

Table 3.3: Implemented MPI Routines 

 

GA Routine Brief Description 

GA_Init Initialize the GA execution environment through Portals environment 

GA_Terminate Terminates GA execution environment 

GA_Nodeid Determines the rank of the calling process in the communicator 

GA_Nnodes Determines the size of the group associated with a communicator 

NGA_Create Creates Global Array with pseudo-shared memory 

GA_Destroy Destroys the Global Array from all nodes 

GA_Duplicate Duplicates an existing array 

NGA_Put Performs remote write. The data is simply accessed as if it were in shared 
memory 

NGA_Get Performs remote read. The data is simply accessed as if it were in shared memory 

NGA_Acc Performs atomic remote update to a patch (a section of the global array) 

NGA_Read_inc Performs atomic remote update to an element in the global array 

GA_Print Prints the entire array to the standard output 

GA_Fill Assigns a single value to all the elements in an array 

GA_Sync Acts as a barrier, which synchronizes all the processes and ensures that all the 
Global Array operations are complete at the call 
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GA_Add Adds two arrays and saves the results to third array 

GA_Dgemm Performs matrix multiplication: C := alpha * A * B + beta * C, where alpha and 
beta are scalars, and A, B and C are matrices 

GA_Zero Sets all the elements in the array to zero 

GA_Scale Scales all the elements in the array by val factor 

GA_Copy Copies the contents of one array to another 

GA_Dgop Combines values from all processes and distributes the result back to all 
processes 

NGA_Distribution Finds out the range of the global array that each process owns 

NGA_Access Provides access to local data in the specified patch of the array owned by the 
calling node 

Table 3.4: Implemented GA Routines 
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4 
From Virtual Accelerator to Silicon 

 

This chapter presents the most significant enhancements/changes needed so as to transform 

the functionality of the Portals accelerator to silicon as well as micro-architecture exploration 

for an efficient implementation for our design. Finally, it describes the implementation of 

multi-node H/W platform and the verification methods which is used so as to verify our cycle-

accurate accelerator behavior. 

4.1 Introduction to High Level Synthesis 
Since the last decade, the electronics industry has been challenged by the increasing 

complexity of digital systems combined with tight time-to-market schedule. In order for chip 

design projects to succeed, designers must create and verify differentiated hardware more 

quickly than their competitors. Unfortunately, today's design flows begin by manually writing 

an RTL description, modeling the C/C++ function behavior. Moreover, the RTL description 

codifies the micro-architecture that will be implemented, largely determining the final 

Performance, Power and Area (PPA) with minimal ability to explore more optimal 

alternatives. This inflexibility has negatively affected the risk/reward tradeoff of introducing 

new hardware. 

   Figure 4.1 illustrates the productivity of new design using different abstraction layers as 

described in [13]. Starting with the transistor level, moving up to gate level, and then to RTL, 
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hardware design productivity has kept pace with the advances in silicon capacity. In the last 

decade the productivity has lagged because the shift from RTL to higher level descriptions 

has taken longer than expected due to the lack of production-worthy high-level synthesis 

tools. So, in order to make the next productivity leap, high-level synthesis must deliver an 

automated path for the entire design from Cycle-Accurate high level descriptions to RTL while 

delivering PPA that is at least as good as what is achieved with handwritten RTL. 

 

 
Figure 4.1: Productivity of new design using different abstraction layers 

   Until now, over 30 industrial and open-source High Level Synthesis tools are released as 

described in [14]. In this work Cadence C-to-Silicon compiler is selected which reads in a 

SystemC description of the hardware architecture and generates a Verilog RTL micro-

architecture utilizing the high-level constraints that are unique to the target product 

requirements and process library [13]. The implementation constrains are kept separate 

from the designs functionality, as a result the same verified SystemC model is easily re-

targeted for different end products with different requirements and process libraries. Finally, 

Ctos contains an amount of verification methodologies at the implementation process; one 

of them eliminates the most bugs before RTL is even created while if bugs need to be fixed 

later during implementation the automated engineering change order (ECO) capability is 

applied so that the project can stay on schedule. 
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4.2 Hierarchy of Hardware Implementation 
This section presents an abstract of our novel Portals Hardware Acceleration 

implementation. Especially, Figure 4.2 illustrates the SystemC files which are used in this 

work. Each archive icon consists from its implementation file (.cpp) and a header file(.hpp) 

so that the below modules in the hierarchy can connect with it. 

Figure 4.2: Hierarchy of H/W SystemC files 

    Figure 4.2 is separated to three frames, the Portals Hardware implementation frame, 

MPI/GA wrappers frame and application frame. Initially in first frame, top of the module is a 

list Hardware implementation with insert/search/delete operations for the three Portals list 

and allocator implementation. At the next hierarchy layer, there are two basic Accelerator 

modules; the list manager implementation which orchestrates three fast lists modules (one 

for each Portals List) and the allocator implementation which is used for dynamic memory 

allocation for the Unexpected message payloads, while in the same layer, vendor ram is 

implemented for the UM payload buffer with handwritten RTL Verilog as described in detail 

in the next sections.  Subsequently, functionality of Portals routines are implemented by 

accelerator module, while a multithread platform is implemented so as to evaluate the 

effectiveness and accuracy of our Hardware Accelerator. Furthermore, a driver module 

implements the Portals routines using our novel H/W Accelerator and connects them with 

our multithread platform as described in detail in the next sections. In  second frame, mpi 

and ga drivers implements the corresponding routines as described in Chapter 3 using Portals 

implemented routines in H/W. Finally, in third frame is the application which uses either MPI 

List.cpp

#include “driver.hpp”
int main(){
   <main body>
}
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or GA routines. All files are written in SystemC language, while list, listmanager, allocator and 

accelerator files are written in synthesizable SystemC. 

4.3 Transformation to Cycle-Accurate SystemC 
This section shows the most significant enhancements/changes needed so as to transform 

the functionality of the Portals accelerator in C to a fully synthesizable SystemC module. 

Those transformations can act as a guideline for any accelerator design using the proposed 

design flow.  

4.3.1 Module Interfaces and Synthesizable Code Style 

In our high-end simulation environment, the behavior of the hardware is described in 

separate virtual entities each one comprised of a set of procedures/functions (implementing 

the actual functionality) and data structures (implementing the underlying hardware 

structures). For example, our list manager entity is implemented as a set of insert, search and 

delete functions together with a set of structures modeling the lists and the underlying 

allocating nodes. Describing such a software entity in hardware requires its interfaces to the 

other entities and enriching its functionality with timing information. 

   The following code-segment compares the basic building blocks of our listManager 
implementation in Untimed C and Synthesizable SystemC respectively. In both 
implementations SRAMEntry is declared which stores the payload and points to the next 
element. Untimed C includes special keywords (void*) in order to disassociate the 
architecture from the data, while hardware description languages (HDLs) have no such 
capabilities; so C++ templates are used to separate the architecture from the data dependent 
operations as described in detail in the next section. Furthermore, SystemC SC_MODULE is 
created to describe our implementation20. In addition, in order to convert the untimed high-
level software to cycle-accurate hardware implementation, clk and reset signals must be 
determined as well as all data that feed the entity's functions (sc_in) and those that are the 
results of the function's execution (sc_out). Moreover, all memories which related with the 
module are declared in SC_MODULE while the final implementation21 is determined in 
scheduling phase as described in the following sections. Subsequently, SC_CTOR constructor 
describes the type and number of processes which the module can support. For instance our 
listManager contains four different processes; one for list initialization and three for list 
operations (insert, search, delete). All processes are implemented with the most common 
type of SystemC process, the SC_CTHREAD. The main reason behind our selection was that 
CtoS is able to perform more advanced transforms and optimizations on thread processes 
than other processes types. For example, CtoS can move operations to different states to 

                                                           
20 A SystemC module is simply a C++ class that derives from SystemC class sc_module, which can be conveniently 

specified using the SC_MODULE macro. 
21 CtoS provides several options for mapping an array in SystemC to a physical memory implementation; such 

as SRAM, DRAM, number of ports, latency etc. 
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share hardware, insert additional cycles to resolve timing problems, and pipeline loops to 
improve performance. As a result with this process it is easier to convert untimed C or C++ 
code to a SystemC thread process. 
 

Untimed C ListManager Header File                                 SystemC ListManager Header File 

 

1  struct SRAMEntry{                        template <class DataType> 

2    void *payload;                         class SRAMEntry{ 

3    void *next;                              DataType payload; 

4  };                                         unsigned long next; 

5                                           }; 

6                                            

7  struct ListManager                       SC_MODULE(listManager){ 

8    List *allocated;                         List allocated[LISTS_NUM]; 

9    List unallocated;                        List unallocated;       

10   SRAMEntry **SRAM;                        SRAMEntry SRAM[SRAM_SIZE]; 

11 };                                          

12                                            sc_in<bool> clk; 

13                                            sc_in<bool> reset; 

14                                             

15 int searchList( ListManager *list,         sc_out<bool> itemFound; 

16   int listId,                              sc_in<unsigned short> listId; 

17   void *element,                           sc_in<DataType> element; 

18   SRAMEntry **previous,                    sc_out<unsigned long>previous; 

19   SRAMEntry **current );                   sc_out<unsigned long>current;  

20                                               

21                                            SC_CTOR(listManager):   

22                                              SC_CTHREAD(search, clk.pos); 

23                                              ... 

24                                            } 

25                                          } 

   

   Above code-segment is placed in header file so as to declare the interface of the module, 

while the following code-segment describes the actual module functionality for search 

operation. Code before the first wait() resets all outputs signals with the write() SystemC 

function, while the following lines describe the module functionality using an infinite while 

loop. Since this process describes the intended hardware, the function of the thread should 

never return, as this would terminate the thread. In contrast it should call wait() to mark the 

end of a clock cycle and suspend the process until the next clock event. Two significant 

differences between the Untimed C and SystemC are the iterator and CompareData 

implementations. Iterator is implemented as a simple unsigned long integer (pointers are 

prohibited) which points to the next position of SRAM, while CompareData is placed in 

Message Header in order to disassociate the architecture from the data22. 

                                                           
22 Each message Header contains its CompareData inline function, as a result changing Header File 
CompareData function is changed concurrently.  
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Untimed C Search Thread                                                  SystemC Search Thread 
 

1  searchList( ListManager *list,           void listManager::search_thread(){   

2    int listId, void *element                <Reset all output signals> 

3    char (*compareData)(void *,void *),      previous.write(0); 

4    SRAMEntry **previous,                    current.write(0); 

5    SRAMEntry **current                      itemFound.write(0); 

6    ){                                       wait(); 

7                                             while(1){ 

8                                               

9   SRAMEntry *iter =                           unsigned long iter =    

10       (list->allocated[listId]).head;             allocated[listId].head; 

11  *previous = NULL;                           previous.write(0); 

12  bool itemFound = 0;                         itemFound.write(0);   

13                                                 

14  for(;iter;){                                for(;iter;){ 

15    if(compareData                              if(SRAM[iter].payload. 

16            (iter->payload,element)){                CompareData(element)){ 

17      itemFound = 1;                              itemFound.write(1); 

18      *current = iter;                            current.write(iter);   

19      break;                                      break; 

20    }                                           }  

21    *previous = iter;                           previous.write(iter); 

22    iter=iter->next;                            iter = SRAM[iter].next; 

23                                                wait(); 

24  }                                           } 

25 return itemFound;                          } 

26                                          } 

   

4.3.2 Generic Data Structures 

The architecture and the functionality of a hardware module can be independent from data 

type it supports. Higher level languages like the ones used at the functional level (e.g. C, C++) 

include special keywords (e.g. void*) in order to disassociate the architecture from the data. 

Synthesizable portions of the hardware description languages (HDLs) have no such 

capabilities and hence moving directly from high-level to low-level descriptions requires 

mixing architecture with data specific code, resulting to error-prone and probably non-

reusable code. 

   In our untimed high-level software an abundance of modules were implemented using void 

pointers, while in SystemC their functionality were encapsulated in a SystemC module and 

the architecture was separated from the data dependent operations using C++ templates, as 

shown in the following code of the list manager's Untimed C and SystemC code respectively.  
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Untimed C Dynamic Memory Declaration                           SystemC Static Memory Declaration 

  

1  void initFastList(fastList *listP,         1  template <class DataType, long  

2    int LISTS_NUM, long SRAM_SIZE            2    SRAM_SIZE, long LISTS_NUM> 

3    void (*init_data)(void *)){              3    

4    <Allocate 1st dimension of SRAM>         4  SC_MODULE(listManager){  

5    listP->SRAM = calloc(SRAM_SIZE,          5    ... 

6      sizeof(SRAMEntry *));                  6    SRAMEntry <DataType> 

7    <Allocate 2nd dimension of SRAM>         7       SRAM[SRAM_SIZE]; 

8    for(i = 0;i < SRAM_SIZE;i++){            8    sc_in<DataType> element;     

9     listP->SRAM[i] = calloc(1,              9    ... 

10       sizeof(SRAMEntry));                  10   List allocated[LISTS_NUM]; 

11     init_data(&(listP->SRAM[i])->payload); 11 }      

12   }                                        12         

13   <Allocate Allocated Lists>               13         

14   listP->allocated = calloc(LISTS_NUM,     14     

15     sizeof(List));                         15 

16 } 

 

   

   In the case of Untimed C, the type of Portals queues is assigned dynamically through 

init_data fynction. In contrast in SystemC the DataType is substituted at compile time by a 

structure modeling a Portals message whereas in the case of memory allocator's list, it is 

substituted by a corresponding allocation entry. Above code-segment shows the data 

structure declarations and dependencies in both untimed C and SystemC language. 

4.3.3 Cycle Accurate Timing Model 

In the case of untimed software, the functions releasing the actual functionality of a software 
entity are fed with data only whenever they are called. In a hardware implementation, each 
function is triggered during every clock cycle and thus certain signals should be added in 
order to mimic the software's control flow. In this thesis, a pair of signals 
enable_function_name, disable_function_name are added at each function, so that a four-
phase hand shake protocol is applied by both the calling and the callee function thread. 
During the reset phase both interface signals are low. A calling function triggers the 
enable_function_name, while callee function triggers the disable_function_name. 
Whenever the calling function wants to call the callee function, it asserts the 
enable_function_name, while if the callee function is able to process the request it 
responds by asserting the disable_function_name, and begins the execution according to 
its control flow. When the processing is finished, the callee checks whether the calling 
function has reset the enable_function_ name and if this is the case, it resets the 
disable_function_name signal and returns to its initial state. 

   Moreover actual hardware requires specifying the functionality that should be processed 
at every clock cycle. In other words, the operations executed at every state of the control 
flow should be explicitly defined either source code or micro-architecture specification 
during scheduling phase as described in the next sections. In case of source code definition 
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the control flow is performed by inserting wait statements which represent the clock 
registers separating the combinational logic.  
   The following code-segment shows the four-phase handshake protocol and iteration 
performing (for MDTable traversing) in MD_Bind function. The wait statement inserted 
guarantees that each clock cycle performs one for iteration.  
 

Cycle Accurate Timing Model MD_Bind  
 

1  void PortalsAcc::MD_Bind(){ 

2    ... 

3    while(1){ 

4      while(enable_bind.read() == 0){wait();} 

5      disable_bind.write(1); 

6      ... 

7      <function body> 

8      for(i=0;i<MD_ENTRIES;i++){ 

9        <processing> 

10       ... 

11       MDTable[i].used = 1; 

12       wait(); 

13     } 

14     ... 

15     while(enable_bind.read() == 1){wait();} 

16     disable_bind.write(0); 

17   } 

18 } 

   

4.4 ListManager implementation 
The list manager performs three basic list operations as described in Chapter 3, however as 
the number of communicating nodes increases, the number of list entries increases triggering 
an increase in the time needed in order to linearly search them. For this reason, hashing 
scheme is implemented which assumes that the number of available buckets is a power of 
two, leading to an efficient hardware implementation. For example the modulo function i%M 
reduces to i&(M-1). Although in Software implementation this is analyzed to a binary '&' and 
a subtraction by 1, in hardware no logic is needed, as the hashing function reduces to 
selecting the M LSBs of i. The above indicate that the hardware implementation of the 
proposed hashing scheme has negligible overhead. Following code-segment shows our 
PriorityList hashing function. PriorityList is responsible for both one-sided and two-sided 
communication. Especially, if the incoming message is two-sided the above modulo function 
is used, whether if it is one-sided the last23 cluster is assigned to PRListId. For instance, for 
PR_LIST_NUM equal to 16, 17 clusters are implemented in total;  two-sided communication 
uses cluster with range 0-15, while one-sided uses the 16th cluster24. 
 
 

                                                           
23 One more cluster is implemented for OneSided communication in PriorityList. 
24 OneSided communication not uses our hashing scheme as described in the previous Chapter.  
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Priority List Hashing Function  
 

1 if(OneSidedCommunication == 0){ 

2   PRListId.write(Source & (PRLIST_NUM-1)); 

3 }    

4 else{      

5   PRListId.write(PRLIST_NUM);     

6 }      

   

   Finally, in this work a Lighter Edition List of the manager is implemented targeting area and 

power savings. This version uses only one list for PR,UM,OF Lists representation. Hence, 

different message Header is used for insert, search and delete functions which contain 

Portals List kind information.  

4.5 Micro-architecture Exploration 
In the Specifying Micro-architecture step of the CtoS flow, the designer provides additional 

information to help CtoS implement his design as closely as possible to his design goals[15]. 

This section presents our micro-architecture declarations for an efficient implementation for 

our design, focusing in un-resolving loops and memories.  

4.5.1 Resolving loops 

   At many times, in HLS languages there are combinational loops which must be eliminated 
before synthesis because they cannot be implemented in hardware. A loop is said to be 
combinational if at least one program execution from the top to the bottom of the loop does 
not include waiting for a clock edge. In Ctos there are two common operations to resolve the 
combinational loops, (i) unroll and (ii) break them with different advantages and drawbacks 
in each one. Completely loop unrolling essentially eliminates the loop increasing the number 
of operations, because operations inside the loop are copied many times. In other words all 
loop operations are executed in one cycle increasing dramatically both area and 
performance. On the other hand, loop braking is another option which simply inserts states 
in the loop increasing the latency required to implement the behavior and decreasing the 
area. In this work both of the two above operations are used in different loops. Specifically, 
if the loop contains a small number of operations inside the loop and the total number of 
iterations is quite small, then the unroll operation is used, while in case of loops with many 
iterations break operation is used so as to keep the critical path short. The following code-
segment is an example of higher_power_of_two function which computes the higher 
power of two at given 32bit number_input and CT_Alloc function for CTTable 
allocation. In the first loop, unroll operation is used as the max_number of iteration is 32 and 
the loop contains only one comparator and shift left operation. On the other hand, in the 
second loop, break operation is used through wait statement as the loop needs to read and 
write the one port CTTable array25. 

                                                           
25 One port Array needs one clock cycle to read or write their elements.   
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Higher Power of two Returns the power of two which is greater or equal to input number 
 

1 leadZeroPos = 32; 

2 mask0 = 1 << (leadZeroPos-1); 

3 for(;leadZeroPos>=0;leadZeroPos--){    

4   if(number_input > mask0){ 

5     break; 

6   } 

7   mask0 >>= 1; 

8 }  

   

Portals CT Table Allocation 
 

1 for(j=0;j<CT_ENTRIES;j++){ 

2   <search for free CTTable entry> 

3   CTTable[i].used = 1;    

4   wait(); 

5 } 

   

4.5.2 Memory Implementation 

   This subsection presents the possible options for mapping an array to physical memory 

using Ctos and subsequently it describes the options which are used in this work. Especially, 

CtoS provides four options for mapping an array in SystemC to a physical memory 

implementation: (i) flatten, (ii) built-in, (iii) prototype and (iv) vendor array; each option is 

optimal for a different array use case or access pattern. Flatten option creates an array of 

registers; this option is best for very small arrays while it increases the number of registers 

dramatically. Buit-in operation  implements the arrays as built-in SRAMs; this is the desired 

choice when the number of array words is medium (nearly 256 words or fewer [15]), but 

multi-process access is required. Prototype operation has fastest runtime but it does not 

represents actual hardware, hence it must be replaced before final implementation. Finally, 

in vendor option the designer inserts handwritten Verilog RAM implementation; typically a 

better option for very large arrays. 

   In this work only built-in and vendor options are used because the flatten option increases 

the number of registers dramatically, while prototype option does not represent actual 

hardware. More specifically, the Accelerator Buffer (Figure 3.4) is implemented with fast (2-

ports read / 2 ports write) SRAMs26 using built-in option because these entries should be 

performed efficiently without having to access the local host memory. Additionally, the 

buffer for unexpected messages payload is implemented using a 4MB Vendor (2-ports read 

/ 2 ports write) DRAM as described in the following code-segment using handwritten Verilog 

                                                           
26 2ports read SRAM can read and fetch two elements per clock cycle, and simultaneously (2ports write) can 
write two elements per clock cycle. 
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Vendor DRAM. Moreover, Vendor DRAM technology library is used so as to describe the 

DRAM constrains while xml file is used to include the above DRAM to whole design. 

 

Handwritten Verilog Vendor DRAM 
 

1  reg [DATA_WIDTH-1:0] MEM [0:NUM_WORDS-1]; 

2 

3  //write behavior port 

4  always @(posedge CLK) begin 

5    if(CE0 & WE0) begin 

6      MEM[A0] <= D0; 

7    end 

8  end 

9 

10  ... 

11 

12 //read behavior port 

13 always @(posedge CLK) begin 

14   if(CE2) begin 

15     Q2 <= MEM[A2]; 

16   end 

17 end 

   

4.6 Implementation of multi-node Platform 
This section presents our implementation of multi-node Hardware platform so that 

architecture parameters can be evaluated with realistic software programs and not with 

corner testcases and synthetic benchmarks. 

   The following code-segment shows the union of SystemC hardware threads to software 

threads in top module. Initially, top module creates NPROCS SystemC processes with 

different names and thread numbers (thread_no) using SC_CTHREAD. Subsequently, each 

SystemC thread creates a S/W thread with the given thread_no. Hence, main function is 

created with NPROCS SystemC threads, while pthread_self function is used for node 

identification. 

 

Union of Software - Hardware threads 
 

1  THREADS *node[NPROCS]; 

2  <Create Hardware Threads> 

3  for(i = 0; i<NPROCS;i++){ 

4    sprintf(name,"NODE%d",i); 

5    node[i] = new THREADS(name); 

6    node[i]->clk (clock); 

7    node[i]->reset (reset); 

8    node[i]->thread_no(i); 

9  } 
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10 

11 void THREADS::create_thread(){ 

12   <Each Hardware Thread calls one Software Thread> 

12   pthread_create(&(tid[thread_no]), &main); 

13   pthread_join(tid[thread_no]); 

14 } 

 

   An overview of Hardware Accelerator intercommunication which is used in this work is 

shown in Figure 4.3. Similar to our Software implementation, one hardware accelerator has 

2 local ports (one input & one output) to communicate with its processor, and 2 connection 

ports to communicate with the other accelerators. Especially, each processor is a Software 

thread which is created from pthread_create function, so it has not inputs and outputs 

ports27; in Figure 4.3 processor is shown to has ports for the sake of uniformity. Moreover, 

unlike the Software implementation, in hardware implementation each accelerator has only 

one remote input and remote output28, as a result it can receive only one message at any 

time. Hence, in case of two initiators send one message to same destinator at the same time, 

the destinator can't receive one of two messages. For this reason, one queue is placed in 

each remote accelerator input with max_size equal to NPROCS29 as illustrated in Figure 4.3. 

 

Figure 4.3: Hardware Accelerator intercommunication 

 

                                                           
27  Each processor calls its Portals accelerator simply. 
28 In Software implementation each accelerator has NPROCS ports (one for each incoming message from 
different initiator). In Hardware, this approach is prohibitive because the number of inputs and outputs (and 
silicon area) are increased dramatically. 
29 This size supports the case of all nodes send one message to same destinator node. 
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4.7 Hardware Acceleration Verification 
A major benefit of SystemC-based high-level-synthesis (HLS) design that is rarely explored is 

improved verification turnaround and productivity. In other words, a SystemC block design 

can be expressed in 80% fewer lines of code than RTL, which minimizes the number of 

potential bugs while promoting functional verification at the interface, function, and protocol 

levels. Figure 4.4 presents the positive productivity gains in this level of code compaction as 

described in [16]. 

 
Figure 4.4: Productivity gains with software-driven SoC design 

   A highly productivity relies on the design and verification progressing concurrently, from a 

high level of abstraction all the way to gate-level implementation as shown in Figure 4.5 

[16].  For verification, the focus is to verify functionality at the highest possible level of 

abstraction available, and then avoid duplication of effort by directing additional verification 

activities towards the new and modified design functionality added at each stage of the 

design refinement process. 
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Figure 4.5: Design Flow 

 

   The goal is a single common verification environment that spans the different abstraction 

levels of the SoC design. A single common verification plan is defined such that it outlines the 

features to be verified in each specific level of design.  As architectural decisions are made 

that bring the design closer to implementation, the verification environment is concurrently 

extended to test those architectural choices. 

   Totally, our design is verified through three stages as illustrated in Figure 4.6. Initially, pure 

SystemC simulation model is verified (Figure 4.6a) so as to compare the SystemC instruction-

accurate accelerator behavior with the software one (implemented in untimed C) using wide 

range of testbenches as described in Chapter 5. In the next step (Figure 4.6b), Verilog 

behavioral model is generated by Ctos environment with the appropriate wrapper (Top 

Wrapper), while verification wrapper is used to compare the Verilog behavioral model with 

the pure SystemC model. Finally in the third verification step (Figure 4.6c) RTL Verilog with 

exported RAMs is generated by Ctos during the scheduling step using the micro-architecture 

specifications. Similar to second step, wrapper is used to compare the RTL Verilog model with 

the pure SystemC model. 
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Figure 4.6: Hardware Accelerator Verification Phases 

 

     A verification wrapper is a SystemC model with a parameterized constructor that 

configures the design to be simulated. In addition to the model under test, the original 

SystemC model can also be instantiated as a reference model inside a wrapper for 

cycle-by-cycle comparisons of the model under test output and the original SystemC 

model output as described in the following code-segment for our Portals Accelerator. 
 

Union of Software - Hardware threads 
 

1  SC_MODULE(wrapper){ 

2    ... 

3    PortalsAcc ref;      // SystemC reference model 

4    PortalsAcc_ctos rtl; // RTL model 

5    ... 

6  } 

7  

8  void compare_outputs(){ 

9    int out_ref; 

10   while(1) { 

11     wait(); 

12     while(!OUT1_VALID_ref.read()) wait(); 

13     out_ref = OUT1_ref.read(); 

14     while(!OUT1_VALID.read()) wait(); 

15     if( out_ref != OUT1.read() ) 

16       cout << " Verification wrapper has found a mismatch! " 

17     } 

18 } 

   
 

 

   

   

     

     

     

Verification Wrapper

SC sim

Top Wrapper

VL sim

testbench SSC simtestbench SSS

Verification Wrapper

SC sim

Top Wrapper

RTL

testbench S S

RAM

(a) SystemC Simulation 
Model

(b) Verilog Behavioral 
Model

(c) Verilog RTL model 
with exported RAMs



 

 
69 

     

 
 
 
 
 
 
 
 
 
 
 
 

5 
Results 

 
 
 
This chapter provides the experimental results of our work. Section 5.1 describes certain 
benchmarks of widely used NPB suite, and one Molecular Dynamic benchmark in order to 
prove the accuracy of the introduced framework. Section 5.2 illustrates the abstraction level 
specification results using HLS tool. Section 5.3 presents the average and maximum search 
depth of Portals Queues using realistic scenario benchmarks. Sections 5.4 - 5.5 present MPI 
and GA Results of a wide variety of Routines, and finally, Section 5.6 presents the Area and 
Power Results of Portals Accelerator. We compare the performance of our novel system with 
that of a high-end Intel CPU E8400 as well as with an ARM Cortex A9 [ARM 2013] state-of-
the-art embedded processor executing the exact same MPI (from the most widely used 
openMPI library) and GA tasks on top of the Fedora 14 Linux OS and Ubuntu 12.04 Linux OS 
respectively. The high end processor performance is measured using the Intel VTune [vtu 
2012] profiler. The embedded processor is evaluated using the API provided by the OVP 
simulation for measuring exactly the number of cycles consumed with the average CPI and 
frequency of ARM A9. Finally, the performance gain of our Portals hardware approach is 
evaluated with cycle accurate model of SystemC when compared with the same Portals 
Routines in Software. 
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5.1 Benchmarks 
Four benchmarks of widely used NAS Parallel Benchmarks (Table 5.1) and one molecular 
dynamic benchmark were used to evaluate the suggested Portals implementation presented 
in Chapters 3 and 4.  
   The NAS Parallel Benchmarks (NPB) are comprised of a set of parallel algorithms designed 

to evaluate the performance of parallel supercomputers [17]. The benchmarks are derived 

from computational fluid dynamics (CFD) applications, adaptive mesh, parallel I/O, multi-

zone applications, computational grids etc. We select IS, FT, EP and DT NAS benchmarks as 

they utilize a wide range of MPI routines. EP is an “embarrassingly parallel” kernel, which 

evaluates an integral by means of pseudorandom trials. FT is a 3-D partial differential 

equation solution using FFTs. This kernel performs the essence of many “spectral” codes. It 

is a rigorous test of long distance communication performance. IS implements a large parallel 

integer sort algorithm. This kernel performs a sorting operation that is important in “particle 

method” codes. It tests both integer computation speed and communication performance. 

Finally, DT (Data Traffic) works with randomly generated data using trees and a shuffle as 

data flow patterns. 

   Molecular Dynamics (MD) is widely used to simulate many particle systems ranging from 
solids, liquids, gases, and biomolecules on Earth, to the motion of stars and galaxies in the 
Universe. We select Molecular Dynamics of Lennard-Jones System benchmark which 
computes energy fluctuation (using Global Arrays) per particle in a wide range of pressure 
and temperature values[18]. 
 

 

NAS Parallel Benchmark Brief Description 

IS Implements a parallel integer sort algorithm 

FT Finds a 3D partial differential equation solution using FFTs 

EP Evaluates an integral by means of pseudorandom trials 

DT Generates randomly data using trees 
Table 5.1: NAS Benchmark Suite 

 

5.2 Abstraction level specification results 
   This section describes the results of the abstraction levels which are used until the cycle 

accurate RTL Verilog. As described in Figure 5.1 the lines of code is tripled from UntimedC to 

synthesizable SystemC. The main reason is that synthesizable languages require micro-

architecture specification as well as interface definition enriching the functionality with 

timing information.  Especially, in the case of untimed software, the functions releasing the 

actual functionality of a software entity are fed with data only whenever they are called. In a 

hardware implementation, each function is triggered during every clock cycle and thus 
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certain signals should be added in order to mimic the software's control flow. Moreover 

actual hardware requires specifying the functionality that should be processed at every clock 

cycle inserting wait statements which represent the clock registers separating the 

combinational logic. Finally, higher level languages like UntimedC include special keywords 

(e.g. void)  in order to deassociate the architecture from the data, while HDLs have no such 

capabilities and hence the architecture was separated from the data dependent operations 

using C++ templates. 

   The goal of HLS is to let hardware designers efficiently build and verify hardware, by giving 

them better control over optimization of their design architecture, and through the nature 

of allowing the designer to describe the design at a higher level of tools while the tool does 

the RTL implementation. A major benefit of moving to this level of design that is rarely 

explored is improved verification turnaround and productivity. Our SystemC block design can 

be expressed in 90% fewer lines of code than Verilog RTL as illustrated in Figure 5.1. 

 

 
Figure 5.1: Productivity gains in our design using HLS tool 

 

5.3 Portals Queues 
This section examines the scalability of the Portal implementation presented in Chapter 3 

using the MPI collective routine MPI AlltoAll. MPI_Alltoall is a collective operation in which 

all processes send the same amount of data to each other, and receive the same amount of 

data from each other. Hence, it is expected that the size of the Portals queues grows linearly 

with the number of nodes in the parallel system. Initially, we measure the average and the 

maximum search depth of Portals queues, observing that as the number of nodes increases 
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the average search depth increases by the same factor, doing the search cost of multi-

thousand node platform prohibitive. We attach this problem utilizing our hashing scheme 

presented in Chapter 3. The results indicate that our hashing scheme with small number of 

buckets can be traverse the Portals Lists in almost constant time. Finally, we examine a 

realistic scenario where a host node has received numerous unexpected messages. 

5.3.1 Average Search Depth in Portals Queues 

This subsection shows the average search depth of Portals queues as measured in our 
embedded platform as illustrated in Figure 5.2. For the three lists average search depth were 
shown to grow linearly (x-axis is exponential) with the number of processing nodes. In MPI 
AlltoAll Routine as described in 5.2 all nodes "do the same work", as a result PRQ and UMQ 
Lists have the same average search depth (call same number of MPI_ISend and MPI_IRecv 
Routines). On the other hand the OFQ has greater average search depth from PRQ/UMQ 
because Portals allocates constant number of OFQ entries during initialization. More 
specifically, Ptl_Init allocates N OFQ entries (one of each node), where N is the number of 
nodes. In MPI AlltoAll Routine on average half of messages are unexpected, as a result OFQ 
has average search depth N/2 approximately30.  
 

 
Figure 5.2: Average Search Depth 

 

5.3.2 Average Search Depth in Portals Queues using our Hashing Scheme 
 

As the number of communicating nodes increases, the number of list entries increases 
(Figure 5.2) triggering an increase in the time needed in order to linearly search them. For 
this reason we utilize a hashing scheme, so that the lists can be traversed in almost constant 
search times. Figure 5.3 illustrates the average search depth using our hashing scheme. While 

                                                           
30 N is the number of nodes. 
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the curves of Figures 5.2 and 5.3 are identical, the average search depth is decreased by half, 
doubling the number of buckets.  
 

   
Figure 5.3: Hashing Scheme with (a) two buckets (b) four buckets 

  
 

   
 

 
Figure 5.4: Maximum and Average Search Depth for 128 nodes w.r.t. Number of Buckets 
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   Subsequently, Figure 5.4 shows the results of the maximum search depth and the average 

search depth of the PRQ - UMQ - OFQ when the MPI AlltoAll benchmark is executed. In this 

experiment, 128 nodes with 1, 2, 4, 8, 16, 32, 64 and 128 buckets were simulated. The 

configuration with a single bucket matches the one of the conventional serialized list-based 

scheme. The serialized list-based solution has worst-case depth of 128 entries in all of the 

three lists. Increasing the number of buckets by a factor of 8 results to decreasing the 

maximum search depth by the same factor. The above shows that the messages are evenly 

split to hash buckets. However, the maximum search depth only affects the resources utilized 

and the average search depth is a better metric for the performance of the system. The same 

figure demonstrates that average search depth for PRQ/UMQ is 22 entries, which can be 

reduced to 11, 6, 3, 2, 1 for configurations with 2, 4, 8, 16, 32 buckets respectively, while the 

OFQ begins with 65 in serialized version, a number which is reduced to 33, 17, 9, 5, 3 with 2, 

4, 8, 16, 32 buckets respectively.  

  

  
Figure 5.5: Queue Processing Speedup (a) 16 nodes, (b) 32 nodes, (c) 64 nodes, (d)128 nodes 
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   Finally, Figure 5.5 shows the queue processing speedup using MPI Alltoall Routine as a 
benchmark for 16, 32, 64, 128 nodes and nodes/4 as number of buckets. As the number of 
nodes is increased by a factor of 2, the speedup is increased approximately by the same factor 
for Hashing schemes (buckets is increased too), while non Hashing schemes speedup is 
constant. 
 

5.3.3 Realistic scenario which unloads the UMQ 

However, as the number of nodes increases, it is more likely that a certain host node will 
traverse more and more queue entries before finding a match in the queue. In this section 
we initially, introduce a certain benchmark which unloads a queue with a predefined number 
of entries, mimicking the realistic scenario where a host node has received numerous 
unexpected messages and the matching entry is always found at the tail of the queue. In this 
benchmark all nodes send unexpected messages to node 0 with tags in descending order, 
while the node 0 receives messages with tags in ascending order. For example, Figure 5.6 
shows the UM List of node 0. All nodes send 4 messages to node 0 with the order which 
shown in this figure. If node 0 calls the MPI_Rcv procedure with tag source*j, with source in 
range {0,..,3} and j in range {0,..,3}, then  the matching entry is always at the tail of the 
Unexpected Queue. In other words, the total number of items traversed is: 

n + (n − 1) + ... + 2 + 1 = 
(𝑛 ∗ (𝑛 + 1))

2
 

 

PROC 2PROC 3 PROC 1 PROC 0

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1  0

 
Figure 5.6: Realistic scenario where node 0 has received numerous Unexpected Messages 

 
   Figure 5.7 shows our embedded portals software, portals processor in Hardware scheme 
and a high end host processor with no hashing scheme executing the above realistic scenario. 
Results show that our Portals Hardware processor is at least one order of magnitude faster 
than both the high-end processor and the embedded CPU. Initially, high-end CPU processor 
is faster than embedded Portals Software, but after 16384 messages high end processor 
suffers from performance degradation due to high number of cache misses. On the other 
side, for simulated embedded processor we use 1MB cache, while in Portals Hardware we 
use the same size of cache with 2 ports for read/write for the sake of simulation speed and 
our aim to get the best possible results.  
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Figure 5.7: Performance of Intel E8400, ARM A9 and Hardware Portals Processor (non-Hashing) 

   Finally, Figure 5.8 illustrates our Portals Hash-Based Hardware processor is compared with 
the ARM A9 embedded state of the art CPU executing the above benchmark utilizing the 
proposed hashing scheme in software. Results demonstrate that Portals Hash-Based 
Hardware processor is steadily 2 orders of magnitude faster than the embedded CPU.  

 
Figure 5.8: Performance of hashed-based ARM A9 and Hardware Portals Processor 

 

5.4 MPI Results 
In this section we discuss the performance of our novel approach when executing some of 
the collective MPI Routines as well as 4 different benchmarks of the NAS benchmark suite. 
Furthermore, we evaluated the Portals overhead comparing our Portals approach with MPI 
accelerator in [19]. Finally, we measure the performance of Triggered Rendezvous Protocol. 
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5.4.1 Results of MPI_Collective Routines 
 

Two of the most commons MPI Collective Routines are MPI_AlltoAll and MPI_AllReduce. 
These routines were used as a vehicle to examine the performance of our Portals Software 
implementation running on the embedded processor & Hardware Accelerator. The main 
reason behind our selection was that these routines use non-blocking Send-Receive 
commands and there is communication among all nodes. 
 

 

 

 
Figure 5.9: Speedup of MPI Collective Routines 

 
   Figure 5.9 illustrates the speedup when compared with the ARM A9 embedded CPU, by 
both the basic hardware device as well as the hash-based module when the above routines 
are executed on 8,16,32,64 and 128 parallel system with N/4 buckets. S/W hashing scheme 
has approximately same performance with S/W non-hashing scheme as we measure whole 
MPI routines (with the idle time which the target waits packets from other nodes (PtlCTWait 
Routine)) and not only the queue processing speedup as described in [19]. In contrast we 
achieve significant speedup at H/W Portals Accelerator because we have implemented 
entirely these routines in Hardware as described in previous sections. Furthermore, H/W 
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Hashing scheme has significant difference with H/W non-hashing because Hardware 
ListManager can operate 2 orders of magnitude faster than the S/W ListManager. Finally, we 
can see that the intercommunication speedup increases with the number of nodes, as a result 
speedup is expected to be much higher in multi-thousand node systems. 
 

5.4.2 Results of NAS Parallel Benchmarks  
 

We evaluated the performance (in communication routines) and accuracy of our Software 
and Hardware Platform when executing 4 different benchmarks of NAS Parallel benchmark 
suite.  
 

  
Figure 5.10: Speedup of IS Benchmark (a) 32 nodes (b) 128 nodes 

 

  
Figure 5.11: Speedup of FT Benchmark (a) 32 nodes (b) 128 nodes 
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Figure 5.12: Speedup of EP Benchmark (a) 32 nodes (b) 128 nodes 

 

  
Figure 5.13: Speedup of DT Benchmark (a) 32 nodes (b) 128 nodes 

 

Figures 5.10 - 5.13 demonstrate the speedup triggered by (a) the software-based approach 
utilizing our hashing function, (b) our Portals hardware accelerator without hashing and (c) 
our Portals hardware accelerator utilizing our hashing scheme for IS, FT, EP, DT NAS Parallel 
benchmark within a 32-node platform (left) and 128-node platform (right).  Speedup of S/W 
hash-based approach varies from 10% to over 30%. This speedup is much lower comparing 
the MPI Accelerator in [19] because we measure whole MPI routines and not only the queue 
processing speedup. Moreover in Figure 5.13, there isn't any speedup in MPI_Send Routine 
for the S/W Platform because this Routine simply sends the Data Packet from one node to 
other without traversing any of the Portals Lists. In contrast, our H/W platform speedup 
varies from 20x to over 150x for non-hashing and hashing scheme respectively within a 32-
node H/W Platform. We can observe that H/W hashing scheme has important speedup 
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comparing non-hashing H/W scheme because all routines' computations have been 
implemented in H/W. Particularly, all H/W routines computations are translated to specific 
Hardware modules achieving constant execution time; as a result the performance 
bottleneck is the List Manager. So, using our hashing scheme is achieved almost constant 
execution time in collective routines which traverse a significant number of queues, as 
Reduce, AllReduce, AlltoAll. In contrast in Bcast routine is not achieved speedup with our 
hashing scheme, because there isn't any queue traversing (one node sends only one message 
to other nodes). When moving to a larger system, speedup grows as demonstrated in Figures 
5.10b - 5.13b; in particular it varies from 20x to over 250x. In multi-thousand node systems 
this speedup is expected to be much higher [20]. 
 

5.4.3 Portals Accelerator versus MPI Accelerator 
 

Portals is a network programming interface which can support both point-to-point interfaces 

such as MPI as well as the various partitioned global address space models such as PGAS. So, 

Portals Accelerator implements additional routines comparing with MPI Accelerator as 

described in [19]. For this reason, we measure the performance overhead of Portals 

Accelerator with the following procedures31: 

 

(i)   MD_Bind  

(ii)  MD_Release  

(iii) CT_Alloc  

(iv) CT_Free  

(v)  OF_Insert (MPI_Init)  

(vi) OF_Search  

 

Particularly, MD_Bind and MD_Release Portals procedures traverse MD_Table to find the 

Memory Region in initiator User Space which has been allocated before node begins to send 

the data packet, while MPI allocates the User Space during MPI_Send routine. Moreover, 

Portals uses counting events to acknowledge the transaction completion traversing the 

CT_Table with CT_Alloc and CT_Free procedures, while MPI Accelerator simply waits to 

receive the Data Packet with MPI_Wait procedure. Finally, Portals accelerator uses Overflow 

list to save the Payload of Unexpected Messages, while MPI accelerator allocates space for 

UM payload during MPI Send routine. Figure 5.14 summarizes the overhead (%) per each 

Portals procedure which differs from MPI Accelerator using MPI AlltoAll routine as 

benchmark. Simulation time for Bind, Release, Alloc, Free, OF_Insert Routines is the same for 

both non-hashing and hashing schemes because our hashing scheme isn’t used from these 

routines.  

 

                                                           
31 These routines cause additional overhead comparing with MPI Accelerator. 
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Figure 5.14: Portals-MPI Accelerator Overhead using AlltoAll Routine in (a) 32-node (b) 128-node 

 

In Figure 5.14, overhead in these routines seems to be greater in hashing schemes because 

total simulation time of AlltoAll Routine in hashing schemes is less than total simulation time 

in non-hashing schemes. In contrast overhead for OF_Search is much smaller in hashing 

schemes because it uses our hashing scheme. To summarize, in a 32-node platform Portals 

Accelerator overhead is approximately 25% and 12% for our S/W and H/W implementation 

respectively, while in 128-node platform overhead varies from 9% to 15% for S/W 

implementation and 10% to 12% for H/W implementation respectively. 
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Figure 5.15: Portals-MPI Accelerator Communication Overhead using NAS Benchmarks in 128node 

 
Finally, Figure 5.15 summarizes the communication overhead when executing 4 different 
benchmarks of NAS benchmark suite. Each application poses different demands with regards 
to communication of nodes. In EP and FT benchmarks there are more Unexpected Messages 
during communication process than IS and DT, hence Overflow List must be traversed more 
frequently in EP and FT than IS and DT, as a result these benchmarks have greater overhead. 
Finally, DT benchmark has few communication routines and minor Portals overhead. 
 

5.4.4 Rendezvous versus Eager Protocol 
 

In this Chapter we measure the performance of Eager Protocol and Triggered rendezvous 
Protocol as described in Chapter 4. In Figure 5.16 we use MPI AlltoAll Routine with 8 bytes in 
each Data Packet (DP). We measure Eager Protocol and two options of Triggered Rendezvous 
(i) Eager Limit: 0 bytes, and (ii) Eager Limit: 4 bytes. In eager protocol sender simply sends 
whole Data Packet, while in Triggered Rendezvous with eager limit equal to zero the sender 
sends only header of DP to receiver, and the receiver issue a get to retrieve the message 
when the receive is posted. Finally, in Triggered Rendezvous with eager limit equal to 4 bytes, 
the sender sends header of DP and 4 Bytes to receiver. To summarize, in Eager Protocol there 
is one transaction (Sender sends whole DP), while in Triggered Rendezvous there are three 
transactions (i) Sender sends Header and maybe a portion of DP, (ii) Receiver issues a get to 
retrieve DP, (iii) Sender sends the remainder of DP. In eager Protocol there is a single 
transaction, but the message might be Unexpected, as a result it is delivered into bounce 
buffers at any cost32. For the same reason the Triggered Rendezvous with eager limit 4 bytes 
has the worst time, due to the additional Get transaction. The most efficient option is 
Triggered Rendezvous with eager limit equal to zero, as this protocol is not wasting the 
bandwidth (if the receiver hasn’t space to save the message) and the sender sends Data when 
                                                           
32 In case of the message is unexpected and it contains payload, both UM & OF Lists are traversed to save the 
Header and Payload respectively, while in case of the unexpected message not contains payload only UM List 
is traversed to save the Header of the message. 
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the receive is posted33. In other words, both eager and rendezvous protocols may sends 
unexpected payloads and as a result these approaches must traverse the OF List to save the 
unexpected payload, while in rendezvous with zero eager limit only the Unexpected List must 
be traversed to save the Unexpected Message Header. 
 

 

 
Figure 5.16: Performance of Eager and Rendezvous Protocols 

 

5.5 Global Arrays Results 
In this section we discuss the performance and accuracy of our approach when executing 
some of basic GA Routines as well as one Molecular Dynamic benchmark of Lennard-Jones 
System. Initially, we implement two benchmarks using GAs Routines to examine the accuracy 
of our Portals Software & Hardware Accelerator. In the first testbench, addition of two 1-d 
arrays is implemented34 as illustrated in Figure 5.17, while figure 5.18 illustrates the speedup 
of our S/W and H/W Platform in 32-node and 128-node platform. 

                                                           
33 Triggered Rendezvous with eager limit equal to zero not traverses the OF List in any way, because it not 
contains Payload with the Header at the initial request. 
34 Each array has NPROCS elements; as a result each thread computes one element. 
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Figure 5.17: Global Array Addition Operation 

 

  
Figure 5.18: Speedup of Addition Benchmark (a) 32 nodes (b) 128 nodes 

 
   As described in Chapter 3, in one sided communication we can’t use our hashing scheme, 
because we don't know the source node during GA_Create routine, and as a result GA_Put 
Routine has the same simulation time in non-hashing and hashing schemes. Furthermore, 
GA_Add Routine does not need to use any communication routine, as it traverses elements 
belonging to the same thread. Therefore, the speed depends only to the processor. Unlike 
GA_Create there is improvement in simulation time using hashing scheme since each node 
sends information (such as match_bits) to other nodes about the one sided transaction with 
AlltoAll routine.  
   In the second benchmark we create and multiply (C=AxB) two 2-d arrays with (NPROCS/4) 
x (NPROCS/4) elements each one, as shown in Figure 5.19. Each element in C Array needs 
one row from table A and one column from table B; hence it must issue one Get Operation 

from A and B arrays. In our benchmark each thread computes 
𝑁𝑃𝑅𝑂𝐶𝑆

16
 35elements of table C36, 

while each thread needs to get data from (up to 
𝑁𝑃𝑅𝑂𝐶𝑆

4
) other threads. 

                                                           
35 With NPROCS>=16. 
36 Tables in Figure 5.18 shows the number of thread which the data belonging. 
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Figure 5.19: Global Array Multiplication Operation (a) 16-node (b) 32-node Platform 

 

So, simulation time quadruples by doubling the nodes as illustrated in Figure 5.20a. Figure 
5.20b shows the speedup comparing our S/W and H/W non-hashing scheme37. 

 

  
Figure 5.20: (a) Performance (b) Speedup of Global Array Multiplication Operation 

 
Finally, we evaluated the performance and accuracy of our Platform when executing the Molecular 

Dynamic benchmark of Lennard-Jones System using Global Arrays. Figure 5.21 illustrates the 

speedup comparing S/W and H/W non-hashing scheme Platforms. Results demonstrate that 

the speedup of the H/W approach varies from 60x to over 100x, and 100x to over 170x in 

32node and 128-node platform respectively. 

                                                           
37 We don’t measure hashing scheme because it has the same simulation time as described in Addition 
benchmark. 
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Figure 5.21: Speedup of Molecular Dynamic Benchmark (a) 32 node (b) 128-node Platform 

 

 

5.6 Area & Power Results 
In this chapter we evaluate the Area and Power of our H/W Portals Accelerator and its 
components (such as List Managers, Memory Allocator etc). The silicon results obtained using 
Cadence C-to-Silicon high level synthesis tool utilizing 65nm Europractice TSMC standard-cell 
technology library in Typical Condition (TC). 
 

5.6.1 Area & Power of H/W Accelerator 
We evaluate silicon results using Cadence’s Incisive Enterprise Simulator (INCISIV) and 
Encounter RTL Compiler (RC) as described in Figure 5.2238, while we evaluate SRAM Dynamic 
Power results using CACTI39 6.5. We use MPI AlltoAll Routine as testbench in a 128-node 
platform for our measurements. Table 5.2 summarizes the Portals Accelerator’s SRAMs and 
shows the Dynamic Power Consumption of each one as computed by the CACTI model. Figure 
5.23a illustrates Portals Accelerator Power and SRAMs Dynamic Power using Cadence and 
CACTI models respectively, while Figure 5.23b illustrates Portals Accelerator Area without 
SRAMs. Both Power and Area are grown linearly with the frequency, while they are increased 
only 2,2x and 1,39x respectively tripling the frequency. Based on those figures it is clear that 
module complexity and power consumption is at least an order of magnitude smaller and 
lower respectively than that of even a low-power CPU (i.e. ARM Cortex A9 implemented on 
a 32nm CMOS technology). 
 

                                                           
38 TCF is the Cadence standard format to describe switching activity information in a design. 
39 CACTI is an Open Source dynamic power model [20]. 
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Figure 5.22: Power and Area Estimation flow 

 

SRAM’s Description Capacity Dynamic Power Consumption 

Temporary SRAM for UMs 1M x 8 bits 200 mW/GHz 

List’s SRAM (PR, UM, OF) 512 x 256 bits 8 mW/GHz 

Memory Allocator SRAM 512 x 192 bits 6 mW/GHz 

Memory Descriptor Table 256 x 128 bits 2 mW/GHz 

Counting Event Table 512 x 128 bits 4 mW/GHz 
Table 5.2: Dynamic Power Consumption for SRAMs 

 

  
Figure 5.23: (a) Power, (b) Area using AlltoAll benchmark 
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5.6.2 Results of ListManager Lighter Edition 
 
This section compares the silicon results of List Manager and its Lighter edition. LM Lighter 
Edition implements one list instead of three lists (PR,UM,OF), as a result the queue processing 
time is greater than the original List Manager implementation. Figure 5.24 illustrates 
simulation time with original and lighter ListManager using non-hashing and hashing 
schemes, while Figure 5.25 compares Portals Accelerator Area and Power using both List 
Managers.  
 

 
Figure 5.24: Performance of Lighter Edition LM using AlltoAll benchmark 

 

Lighter LM without hashing increases dramatically the queue processing time as the number 

of processors increases, and as a result it demonstrates suboptimal latency. Portals 

Accelerator area with Lighter LM has approximately 2,3% less area than Portals with original 

LM, while power difference increase linearly with the frequency. So, in cases of low power, 

the Lighter LM with hashing scheme has approximately the same queue processing time, 

while it can save up to 11% Power and 2,3% Area from Accelerator. 
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Figure 5.25: (a) Power, (b) Area of Lighter Edition LM using AlltoAll benchmark 
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6 
Conclusions and Future Work 

 
 
 
 
 
As the number of cores in highly parallel systems increases dramatically, there are a lot of 

factors which can trigger significant system underutilization. One such underutilization 

contributor is high intercommunication delay. Although there are several approaches trying 

to hide delay (such as asynchronous communications primitives), in most of them the 

processor node should keep track of the status of the various messages sent to and/or 

received from those millions nodes. This is a time-consuming task, hence offloading it from 

the main processor, has emerged as an efficient way to reduce intercommunication delay. 

   This work focuses on minimizing the intercommunication delay of many-core platforms 

offloading the basic blocks of Portals communication protocol creating the Portals 

Accelerator. Portals intermediate communication protocol is selected because it provides an 

interface to support both point-to-point interfaces as well as the various partitioned global 
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address space (PGAS) models. Therefore improving the Portals protocol translates to both 

point-to-point and PGAS models improvements. 

   Portals Accelerator in Software is implemented and integrated in an existing multiprocessor 

framework, so that micro-architectural decisions are based on actual software. The Portals 

Accelerator is synthesized to actual hardware and thus architectural decisions at the virtual 

platform level can be rapidly evaluated in terms of area, power and performance. 

Additionally, a multi-thread environment is implemented which connects each node with its 

Portals accelerator, and finally, certain tasks of Message Passing Interface (point-to-point) 

and Global Arrays (PGAS) upper layer Protocols are implemented so as to evaluate the 

effectiveness and accuracy of our Software and Hardware Accelerator. 

   Experimental results shows that our Portals Hardware accelerator is from one and up to 

three orders of magnitude faster than two general-purpose CPUs executing the same tasks, 

with approximately 15% time overhead comparing with hand-made MPI H/W Accelerator in 

[19]. Especially, our Hardware Accelerator is up to three order of magnitude faster in 

processing Portals queues, while it is up to two order of magnitude faster in both MPI and 

GA Routines with the speedup is grown with the number of nodes in the parallel system. 

Moreover, our accelerator consumes approximately 100 times less power and it is being 

implemented at 1/100th of the silicon area of a small embedded CPU. Finally, the remainder 

Portals operations can be offloaded in the future so as to support more upper layer 

communication protocols through Portals. 
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