

TE C H N I C A L UN I V E R S I T Y O F CR E T E

Hardware Accelerated Basic Blocks for Power-Aware
Intercommunication in HPC and Embedded Systems

Nickos Tampouratzis
e-mail: ntampouratzis@isc.tuc.gr

 Supervisor Professor: Papaefstathiou Ioannis

Professor Pnevmatikatos Dionisios

Professor Dollas Apostolos

 Co-Supervisor: Dr. Mattheakis Pavlos

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

MAY 2014

2

3

Abstract

In the past, a transition to the next fabrication process typically translated to more transistors and

frequency and less power. The higher frequencies paired with innovations in computer architecture

defined the semiconductor industry and research until the mid-90s. At that point architecture

research saturated and industry resided to the technology scaling for performance gains. During the

mid-00s frequency scaling saturated as well. Transistor count, the only resource which reliably kept

scaling, along with intra-chip parallelism, which could leverage and extend the existing knowledge of

old-days supercomputers, emerged as the only solution to keep Moore’s law live. In parallel systems,

computing nodes cooperate to solve processing intensive problems. The communication between

nodes is achieved through a variety of protocols. Traditionally, research has focused on optimizing

these protocols and identifying the most suitable ones per system and application. Recently, an

attempt to unify the primitive operations of the proposed intercommunication protocols has been

realized through the Portals system. Portals offer a set of low level communication routines which

can be composed to model complex protocols. However, Portals modularity comes at a performance

cost, as communication protocols have been tuned and many of their timing critical parts have been

decoupled from the main execution thread and in many cases accelerated as dedicated hardware.

This work targets to close the performance gap between a generic and reusable intercommunication

layer, Portals, and the several monolithic but highly tuned protocols. A software driven hardware

accelerated system is suggested which resides on execution of actual software to highlight the critical

parts of the communication routines. Accelerating the bottlenecks starts by modeling the hardware

in untimed virtual prototypes and the software in a range of candidate embedded processors. A novel

path from hardware prototypes to actual silicon allows rapid characterization of the accelerator in

terms of power, performance and area. The suggested approach triggers a speedup from one order

of magnitude in bottleneck components of Portals, while it is up to two orders of magnitude faster in

both MPI and GA baseline implementations in a recent embedded processor.

4

5

Acknowledgements

I would like to thank my supervisor Dr. Ioannis Papaefstathiou and my industry supervisor Dr.

Pavlos Mattheakis for the guidance, support, constructive remarks, devoted time, as well as

the opportunities and challenges they presented me. Moreover, I would like to thank

Professors Dionisios Pnevmatikatos and Apostolos Dollas for their co-advising and their

participation in my Master Thesis committee. I would also like to thank Antonis Psathakis for

his guidance in On-Chip SRAM power consumption. Furthermore I also thank the current

members of Telecommunication Systems Institute (TSI) for their valuable advice, G. Chrisos,

B. Savvakos, A. Brokalakis, K. Georgopoulos, Antonis Nikitakis, K. Miteloudi, P. Malakwnakis,

C. Rousopoulos, S. Apostolakis, S. Nikolakaki and E. Strataki. Finally, I would like to thank my

friends and family, my father George, my mother Irene,my brother Manos, as well as Xrysa

for their love, support and encouragement.

 This work was carried out with the financial support of Telecommunication Systems

Institute (Chania Crete Greece) in the framework of the FASTCUDA, HERMES and R3-COP

European programs with scientific support of Ioannis Papaefstathiou.

6

7

Contents

1 Introduction ... 13

2 An overview of the Portals API ... 16

 2.1 One Sided versus Two-Sided Communication ... 17

 2.2 Two-sided non-blocking versus blocking operation .. 17

 2.3 An overview of Portals Data Movements .. 18

 2.4 Portals Lists .. 19

 2.5 Eager versus Rendezvous Protocol .. 22

 2.6 Portals Completion Events... 24

 2.7 Portals Memory Descriptors .. 24

 2.8 Matching & non-Matching Network Interface .. 24

 2.9 Portals Data movements in detail ... 26

 2.9.1PtlAppend .. 26

 2.9.2PtlPut ... 27

 2.9.3 PtlGet .. 28

 2.9.4 Portals PtlPut Two-Sided Communication Example ... 29

3 Software-driven development of a mixed Software & Hardware Portals System 31

 3.1 Introduction to Virtual Platform .. 32

 3.2 Portals Accelerator using Imperas OVP ... 32

 3.3 Accelerator Intercommunication .. 36

 3.3.1 Master Ports ... 36

 3.3.2 Slave Ports .. 38

 3.4 Portals Accelerator Model ... 39

 3.4.1 Message Buffers ... 40

 3.4.2 Portals Message Processor ... 40

 3.4.3 Memory Descriptor & Counting Event Tables ... 41

 3.4.4 List Manager ... 42

 3.4.5 Dynamic Memory Allocator .. 44

 3.5 Rendezvous Protocol ... 44

 3.6 One-sided Communication .. 45

8

 3.6.1 Our implementation of One-sided Communication ... 46

 3.6.2 Global Arrays Implementation through One-Sided Communication 48

 3.7 Summary of Implemented Routines .. 51

4 From Virtual Accelerator to Silicon ... 54

 4.1 Introduction to High Level Synthesis ... 54

 4.2 Hierarchy of Hardware Implementation ... 56

 4.3 Transformation to Cycle-Accurate SystemC .. 57

 4.3.1 Module Interfaces and Synthesizable Code Style... 57

 4.3.2 Generic Data Structures ... 59

 4.3.3 Cycle Accurate Timing Model ... 60

 4.4 ListManager implementation .. 61

 4.5 Micro-architecture Exploration ... 62

 4.5.1 Resolving loops ... 62

 4.5.2 Memory Implementation ... 63

 4.6 Implementation of multi-node Platform ... 64

 4.7 Hardware Acceleration Verification .. 66

5 Results ... 69

 5.1 Benchmarks ... 70

 5.2 Abstraction level specification results ... 70

 5.3 Portals Queues ... 71

 5.3.1 Average Search Depth in Portals Queues ... 72

 5.3.2 Average Search Depth in Portals Queues using our Hashing Scheme 72

 5.4 MPI Results .. 76

 5.4.1 Results of MPI_Collective Routines .. 77

 5.4.2 Results of NAS Parallel Benchmarks ... 78

 5.4.3 Portals Accelerator versus MPI Accelerator ... 80

 5.4.4 Rendezvous versus Eager Protocol ... 82

 5.5 Global Arrays Results ... 83

 5.6 Area & Power Results .. 86

 5.6.1 Area & Power of H/W Accelerator ... 86

 5.6.2 Results of ListManager Lighter Edition ... 88

9

6 Conclusions and Future Work ... 90

Bibliography ... 92

10

List of Figures

Figure 2.1 Send-Receive point-to-point Operation ... 17

Figure 2.2 (a) Blocking Receive (b) Non Blocking Receive commands .. 18

Figure 2.3 (a) Put (b) Get (c) Swap Atomic Operation ... 19

Figure 2.4 Portals Target Lists ... 20

Figure 2.5 Simple example of Target Lists ... 21

Figure 2.6 (a) CPU non-Blocking Receive (b) Offload Non Blocking Receive schemes 22

Figure 2.7 Communication pattern for eager protocol ... 23

Figure 2.8 Communication pattern for rendezvous protocol ... 23

Figure 2.9 Synchronous Portals Get from a list entry.. 25

Figure 2.10 Synchronous Portals Get from a match list entry .. 25

Figure 2.11 Portals Matching Function ... 26

Figure 2.12 Target manipulation of Portals PTLAppend function ... 27

Figure 2.13 Target manipulation of Portals PTLPut function .. 28

Figure 2.14 Target manipulation of Portals PTLGet function .. 29

Figure 3.1 OVP Platform with our Portals Accelerator .. 34

Figure 3.2 Accelerator's master ports ... 37

Figure 3.3 Accelerator's slave ports .. 38

Figure 3.4 Portals Accelerator Processor .. 40

Figure 3.5 (a) MDTable (b) CTTable ... 41

Figure 3.6 Portals List Manager ... 42

Figure 3.7 Circular Allocator Buffer ... 43

Figure 3.8 Communication pattern for triggered rendezvous protocol .. 45

Figure 3.9 One-Sided communication protocol using Two-Sided communication Protocol 46

Figure 3.10 PRQ extension to support one-sided communication ... 47

Figure 3.11 PtlWin Structure ... 48

Figure 3.12 GATable implementation ... 49

Figure 3.13 Global Array division... 50

Figure 4.1 Productivity of new design using different abstraction layers ... 55

Figure 4.2 Hierarchy of H/W SystemC files ... 56

Figure 4.3 Hardware Accelerator intercommunication .. 65

Figure 4.4 Productivity gains with software-driven SoC design .. 66

Figure 4.5 Design Flow .. 67

Figure 4.6 Hardware Accelerator Verification Phases ... 68

Figure 5.1 Productivity gains in our design using HLS tool .. 71

Figure 5.2 Average Search Depth .. 72

Figure 5.3 Hashing Scheme with (a) two buckets (b) four buckets ... 73

11

Figure 5.4 Maximum and Average Search Depth for 128 nodes w.r.t. Number of Buckets 73

Figure 5.5 Queue Processing Speedup (a) 16 nodes, (b) 32 nodes, (c) 64 nodes, (d)128 nodes 74

Figure 5.6 Realistic scenario where node 0 has received numerous Unexpected Messages 75

Figure 5.7 Performance of Intel E8400, ARM A9 and Hardware Portals Processor (non-Hashing) 76

Figure 5.8 Performance of hashed-based ARM A9 and Hardware Portals Processor 76

Figure 5.9 Speedup of MPI Collective Routines .. 77

Figure 5.10 Speedup of IS Benchmark (a) 32 nodes (b) 128 nodes ... 78

Figure 5.11 Speedup of FT Benchmark (a) 32 nodes (b) 128 nodes .. 78

Figure 5.12 Speedup of EP Benchmark (a) 32 nodes (b) 128 nodes ... 79

Figure 5.13 Speedup of DT Benchmark (a) 32 nodes (b) 128 nodes ... 79

Figure 5.14 Portals-MPI Accelerator Overhead using AlltoAll Routine in (a) 32-node (b) 128-node .. 81

Figure 5.15 Portals-MPI Accelerator Communication Overhead using NAS Benchmarks in 128nod . 82

Figure 5.16 Performance of Eager and Rendezvous Protocols ... 83

Figure 5.17 Global Array Addition Operation .. 84

Figure 5.18 Speedup of Addition Benchmark (a) 32 nodes (b) 128 nodes .. 84

Figure 5.19 Global Array Multiplication Operation (a) 16-node (b) 32-node Platform 85

Figure 5.20 (a) Performance (b) Speedup of Global Array Multiplication Operation 85

Figure 5.21 Speedup of Molecular Dynamic Benchmark (a) 32 node (b) 128-node Platform 86

Figure 5.22 Power and Area Estimation flow .. 87

Figure 5.23 (a) Power, (b) Area using AlltoAll benchmark .. 87

Figure 5.24 Performance of Lighter Edition LM using AlltoAll benchmark ... 88

Figure 5.25 (a) Power, (b) Area of Lighter Edition LM using AlltoAll benchmark 89

12

List of Tables

Table 3.1 Memory Mapping .. 35

Table 3.2 Implemented Portals Routines .. 52

Table 3.3 Implemented MPI Routines ... 52

Table 3.4 Implemented GA Routines .. 53

Table 5.1 NAS Benchmark Suite .. 70

Table 5.2 Dynamic Power Consumption for SRAMs.. 87

13

1
Introduction

Nowadays there is renewed interest in high-performance computing community in parallel

programming models due to the need to satisfy applications requirements with low power.

Achieving an exascale level of performance requires several fundamental changes in

hardware and software that will likely impact all areas of high-performance computing [1].

Hence, systems with numerous CPUs, along with extensive use of customized accelerators,

have been recently proposed as, probably, the only viable solution offering high performance

at a low energy budget [2].

 Unfortunately, in highly parallel systems with a vast number of cores there are a lot of

factors which can trigger significant system’s underutilization. The major factor of them is

communication, during which, cores may remain idle, waiting to synchronize or to exchange

data to each other. Increasing the number of cores in a system also increases the execution

14

time spent in communication, as each core has less work to do and usually more other cores

to communicate with, because the problem is divided into more stages. Hence, a crucial

challenge is communication’s overhead reduction as the number of cores is increased.

 Portals is an intermediate layer which intends to allow scalable, high-performance network

communication between nodes of a parallel computing system. Portals is based on the

concept of elementary building blocks that can be combined to support a wide variety of

upper-level point-to-point and partitioned global address space (PGAS) network protocols

[3]. Especially, the ultimate destination in memory of an incoming message is determined at

the receiver by comparing contents of the message header with the contents of structures

at the destination. This flexibility allows for efficient implementations of both one-sided and

two-sided communications.

 Portals protocol has been developed only in software until now by Sandia national

laboratories. However, many communication protocols (such as MPI) today provide a simple

mapping to hardware which may not be conducive to building upper layer protocols. The

most works offloads the MPI communication tasks to co-processors, embedded processors

on the NIC or even to dedicated hardware [4]. To the best of our knowledge, there isn't

complete hardware implementation to offload the Portals building blocks and upper-level

protocols which based on it.

 The development of each new embedded platform is mainly comprised of two phases, the

software and hardware one. While the software phase should be initiated as early as

possible, the hardware phase needs several months or years. To reduce the product

development time, virtual platforms are used giving to the software developers a virtual

model of the hardware platform at the very earliest stage of the products development.

Virtual models usually allows to instantiating an abundance of popular architectures (such as

MIPS, ARM, PowerPC) along with widely used peripheral models, such as USB, DMA

controllers etc. The above processors with their peripherals can be co-simulated with the

under-development hardware models with respect to accuracy of most significant

architecture parts and simulation speed.

 This work presents Open Virtual Platform (OVP) framework for exploring accelerator-based

architectures for multiprocessor systems. This framework allows for the instantiation of

processor models along with under-development accelerators, so that architecture

parameters can be evaluated with realistic software and not with corner testcases and

synthetic benchmarks. Moreover, and more importantly, this work presents certain novel

Portals acceleration core using the existing OVP framework.

 Subsequently, a hardware implementation flow is inserted creating the cycle accurate

model of our Portals processor using Cadence C-to-silicon high level synthesis tool.

Moreover, a set of rules of thumb are presented, guiding the transformation of untimed

functional descriptions to cycle accurate ones. Then, using the C-to-silicon high level

15

synthesis tool, the cycle accurate descriptions are optimized and synthesized with a modern

standard cell technology library.

 Finally, to demonstrate the effectiveness and accuracy of our work, certain tasks of

Message Passing Interface (point-to-point) and Global Arrays (PGAS) [5] upper layer

Protocols are implemented using Portals Routines within a number of widely used MPI and

GA benchmarks.

 This master's thesis is organized as follows. Chapter 2 introduces an overview of the Portals

API and basic operations of this. Chapter 3, initially presents a framework allowing for the

rapid exploration of novel parallel architectures when executing real-world applications and

Portals Accelerator integration using existing framework. Subsequently the same Chapter

describes the Portals routines which are implemented as well as the architectures for

offloading certain Portals tasks. Chapter 4 presents the transformation from virtual

accelerator to silicon using state-of-the art synthesis tool as well as multithread Platform

integration with our H/W Portals Accelerator. Chapter 5 presents our real-world

experimental results, based on different MPI and GA parallel benchmarks. Finally, in Chapter

6, conclusion and future work are presented.

16

2
An overview of the Portals API

Portals intermediate layer has been developed for nearly twenty years by Sandia National

Laboratories and the University of New Mexico and it is intended to allow scalable, high-

performance network communication between nodes of a parallel computing system. This

chapter initially introduces the concepts of one-sided, two-sided, blocking and non-blocking

communication operation in Portals protocol. Afterwards, it presents an overview of the

Portals basic data movements. Subsequently, it demonstrates the operation of Portals Lists,

completion event mechanism, rendezvous protocols as well as memory descriptors

definition. At the end, matching and non-matching Network Interface is analyzed as well as

lists operations of data movements are described in details.

17

2.1 One Sided versus Two-Sided Communication
In two-sided communication both sender and receiver require an implicit synchronization

where the messages are matched using a combination of tag (message identifier). In other

words, both sender and receiver must issue one communication routine so as to exchange

one Data Packet. On the other hand, in one-sided communication, one process accesses the

remote memory of another process directly without interrupting the progress of the later

process. Using this programming model could reduce the punitive synchronization costs of

multi-core machines, compared to two-sided communication. Portals provide both two-

sided and one-sided data movement operations, but unlike other one-sided programming

interfaces, the target of a remote operation is not a virtual address. Instead, the ultimate

destination in memory of an incoming message is determined at the receiver by comparing

contents of the message header with the contents of structures at the destination. This

flexibility allows for efficient implementations of both one-sided and two-sided

communications. In particular, Portals is aimed at providing the fundamental operations

necessary to support a high-performance and scalable implementation of the Message

Passing Interface (MPI) standard and Partitioned Global Address Space (PGAS) Models.

2.2 Two-sided non-blocking versus blocking operation
As described in chapter 1, the communication can consume a huge part of the run time of a

parallel application. So, the communication time in those applications can be addressed as

overhead because it does not progress the solution of the problem in most cases. Using

overlapping techniques enables the user to move communication and the necessary

synchronization in the background and use parts of the original communication time to

perform useful computation. Figure 2.1 illustrates an abstract view of two processor

distributed memory system when exchanging one message. Processor P1 executes one

point-to-point send command, while processor P2 executes one receive command so as to

accept message.

Figure 2.1: Send-Receive point-to-point Operation

There are two scenarios which P2 can accept the message as depicted in Figure 2.2. The send

command is non-blocking which means that P1 is able to resume its computation right after

P1

Send Message

P2

Receive Message

18

message is dispatched. On the other side, P2 either executes a blocking receive operation, or

follows a non-blocking receive scenario. In blocking case, which is depicted in Figure 2.2a, if

the message has not yet arrived when P2 executes blocking receive command, P2 must

remain in blocked state until the actual message finally arrives. Otherwise, if the message has

already reached in P2 when the receive command is executed, it would be delivered

immediately to P2 user space, and the computation would be resumed. On the other hand,

in non-blocking scenario P2 returns instantly to computationb when it executes a non-

blocking receive command. So, at some point, P2 needs the data contained in the message

and thus waits for the message to arrive by executing a blocking wait command. As soon as

the message arrives in P2, blocking wait command returns to computationa indicating the

successful arrival of data. To sum up, in case of blocking operation P2 remains idle more time

than non-blocking operation; so the later must be used from programmers to overlap the

communication using independent computation routines.

Figure 2.2: (a) Blocking Receive (b) Non Blocking Receive commands

2.3 An overview of Portals Data Movements
Portals use two basic data movements operations Ptl_Put and Ptl_Get. In case of Ptl_Put

operation, the sender sends one (or more) Data Packet(s) to receiver, while in Ptl_Get

operation one node (which requires data from some other node) sends one Header (Ptl_Get)

to other node waiting for response. Another Portals movement operation category is

Ptl_Atomic (a combination of Ptl_Put and Ptl_Get) operation. Especially, it can be either a

swap operation which is used for data exchange or an accumulate operation which combines

the incoming data with the data that resides at receiver process.

 Every data movement operation involves two processes (nodes), the initiator (Sender) and

the target (Receiver). In other words, the initiator is the process that initiates the data

movement operation, while the target is the process that responds to the operation by

Non-Blocking
Send Blocking

Receive

Blocked
(Idle time)

Computation

Non-Blocking
Send Non-Blocking

Receive

Computationb

Computationa

Blocking Wait

P1
P2

P1
P2

19

accepting the data for a put operation, replying with the data for a get operation, or updating

a memory location for, and potentially responding with the result from, an atomic operation.

 Another considerable Portals routine is the Ptl_Append routine. Ptl_Append is used from

target node when it wants to receive (in Ptl_Put) or send (in Ptl_Get) message data for two-

sided communication. In other words, with this routine target responds to the operation

(such as MPI Receive Command). Figure 2.3 illustrates an abstract view of Portals Put, Get

and Swap Atomic operations.

Figure 2.3: (a) Put (b) Get (c) Swap Atomic Operation

2.4 Portals Lists
Portals uses three lists at target side so as to manage its messages: Priority, Unexpected and

Overflow List. Priority List stores the header of the expected messages through Ptl_Append

operation, Unexpected List stores the headers of unexpected messages, while Overflow List

stores the data of small unexpected messages as illustrated in Figure 2.4.

Initiator Target

Put Request (may include Data)

Acknowledgement (optional)

Initiator Target

Get Request (only Header)

Acknowledgement (optional)

Reply (Data)

Initiator Target

Swap Request (only Header)

Get (Data)

Put (Data)

20

Figure 2.4: Portals Target Lists

UM and OF Lists grow with programs which use eager put commands and in which the sender
assumes that the receiver has enough space to buffer the header and payload are sent
respectively, while PR List grows with target receive commands. In other words, at message
arrival the priority list are first processed and, if no matching entry was found, then overflow
list are processed to find available space for message payload. If there is available space, a
message payload is delivered into the overflow list and its header is linked into the
unexpected list. On the other hand, when a new list entry is appended to the priority list, the
unexpected list is first searched for a match. If a match is found (i.e., had the list entry been
on the priority list when the message arrived, the message would have been delivered into
that list entry), the list entry is not inserted, the header is removed from the unexpected list,
and the application is notified a match was found in the unexpected list.
 Figure 2.5 illustrates how to grow lists in target side through an example. We assume that
we have four communication nodes in a system. We examine the target side when node 1,
node 2 and node 3 send messages (initiators) to Node 0 (target). Initially, in Portals
initialization function, node 0 issues PtlAppend(PTL_OVERFLOW_LIST) so as to allocate space
for unexpected messages (Figure 2.5a). Subsequently, node 0 wants to receive one message
from node 1, hence it issues PtlAppend (PTL_PRIORITY_ LIST,1) so as to insert one entry in
Priority List as shown in Figure 2.5b. Later, two incoming messages arrive in node 0 from
nodes 2 and 3 (Figure 2.5c and Figure 2.5d respectively), as a result two headers1 in UM List
are inserted, since the node 0 don’t wait messages from those nodes. Then, node 0 issues
PtlAppend(PTL_PRIORITY_LIST,2) command when it wants to receive the corresponding
message (Figure 2.5e), as a result corresponding UM entry is deleted. Finally, the expected
message from node 1 arrives (Figure 2.5f) and node 0 issues PtlAppend
(PTL_PRIORITY_LIST,3) for the last message from node 3 (Figure 2.5g).

1 When one unexpected message arrived in a target node, header is saved in unexpected message list, while
payload is saved in Overflow List.

 21

Figure 2.5: Simple example of Target Lists

 Unfortunately, the size of three Lists affects Portal’s communication overhead, as

applications may traverse a significant number of entries searching for a certain message.

Hence, accelerating queue as well as other communication operations can result to reduced

Portals overhead. Figure 2.6a describes in more detail the Ptl_Put operation executed by P2

during a non-blocking2 receive comparing with Figure 2.2. In the abstract view (Figure 2.2) it

was assumed that a non-blocking receive call returns as soon as the receive is posted. Looking

at the scenario in more detail a number of operations should be performed in order to

execute fully receive command. When the target wants to receive one message from other

node it calls Ptl_Append routine so as to append a receive request. During this process it

must first search in UM List in case of message has received in the past (Process UM).

Accordingly, when the message arrives in P2 the computation is not instantly resumed, since

the Priority list has to be traversed in order to check whether a matching receive has been

posted in the past (Process PR). If there isn’t any matching receive in Priority List, it traverses

OF List to find sufficient space to save the unexpected message (Process OF). Ptl_CT_Wait is

one blocking command which waits for the message arrival. In Figure 2.6a UM, PR, OF Process

2 All Data movements in Portals are non-blocking (such as Ptl_Put, Ptl_Append) except from Ptl_CT_Wait.

22

and CT_Wait have to be performed by the host processor, incurring a significant overhead in

the case of a large queues. Offloading all communication intensive processes from the host

processor to an accelerator allows for extensive overlap between the computation-

communication without further involvement as illustrated in Figure 2.6b.

Figure 2.6: (a) CPU non-Blocking Receive (b) Offload Non Blocking Receive schemes

2.5 Eager versus Rendezvous Protocol
Historically, two-sided communication implementations have had to choose between eager

messaging protocols that require buffering and rendezvous protocols that sacrifice overlap

and strong independent progress in some scenarios [7]. The typical choice is to use an eager

protocol for short messages and switch to a rendezvous protocol for long messages. This

subsection presents both eager and rendezvous protocols.

 The eager protocol sends whole messages including Header and Payload eagerly as

illustrated in Figure 2.7. If a message is expected3, it is delivered directly into the userSpace

Buffer and an ack (optionally) is generated to notify the sender that the message was

successfully delivered (Figure 2.7a). On the other hand, if the message is unexpected, there

are two probable scenarios. In the first scenario (Figure 2.7b) the receiver discards the

payload of the message while it keeps the Header so as to issue a get request to retrieve the

payload when PtlAppend command is issued. In the second scenario, target node has

sufficient bounce buffer to save the payload so that initiator doesn't send the payload second

time as illustrated in Figure 2.7c.

3 When PtlAppend has been issued by target node before the message arrives the message is expected, else
the message is unexpected.

Ptl_Put
Ptl_Append

P1
P2

Process UM

Computationb

Process PR

Ptl_CT_Wait

Process OF

Computationa

Ptl_Put
Ptl_Append

P1
P2

Process UM

Computationb

Process PR

Ptl_CT_Wait

Process OF

Computationa

Process
Wait

Independent
Computation

 23

Figure 2.7: Communication pattern for eager protocol

 In case of Rendezvous protocol, initiator only sends a piece of message4 and sufficient

information in the header to allow the target to issue a get operation to retrieve the message

when the PtlAppend command is posted as illustrated in Figure 2.8. If the message is

expected the first part of the message is delivered directly into the receive buffer, otherwise

it is delivered into bounce buffers. If the total size of message is greater than eager_limit,

target issues PtlGet so as to retrieve the remainder payload.

Figure 2.8: Communication pattern for rendezvous protocol

4 The size of message is determined from one variable, called eager_limit.

PtlPut PtlAppend PtlPut

PtlAppend

(a) Expected
(c) Unexpected
(bounce buffer)

PtlPut

PtlAppend

(b) Unexpected
(discard payload)

PtlGet

PtlPut PtlAppend

(a) Expected

PtlGet

PtlPut

PtlAppend

(b) Unexpected

PtlGet

24

2.6 Portals Completion Events
Portals provides two mechanisms for recording completion events, full events and counting

events. Full events provide a complete picture of the transaction, including what type of

event occurred, which buffer was manipulated, and identifying any errors that occurred.

Counting events, on the other hand, are designed to be lightweight and provide only a count

of successful and failed operations (or successful bytes delivered). The delivery of events (full

events or counting events) is manipulated when creating a number of other structures (such

as creation of priority list). In this work counting events are implemented in Portals

Accelerator because it was a lighter edition of Portals events with sufficient information of

transactions. A counting event is allocated through a call to PtlCTAlloc(), queried with

PtlCTGet(), PtlCTWait(), set with PtlCTSet(), incremented with PtlCTInc(), and freed through

a call to PtlCTFree().

2.7 Portals Memory Descriptors
A memory descriptor contains information about a region of a process5 memory and

optionally points to an event queue or counting event where information about the

operations performed on the memory descriptor are recorded. Memory descriptors are

initiator side resources that are used to encapsulate the association of a network interface

(NI) with a description of a memory region. They provide an interface to register memory and

to carry that information across multiple operations (an MD is persistent until released).

PtlMDBind() is used to create a memory descriptor and PtlMDRelease() is used to unlink and

release the resources associated with a memory descriptor.

2.8 Matching & non-Matching Network Interface
The Portals API supports the use of two network interfaces, physical network interface and

logical network interface. A Portals physical network interface is a per-process abstraction of

a physical network interface, while a logical network interface associated with a single

physical network interface share the same network id and process id (nid/pid), but all other

resources are unique to a logical network interface. Logical network interfaces may be

matching or non-matching and can be addressed by either logical (rank) or physical (nid/pid)

identifiers. In this work logical network interface is used which is addressed by logical (rank)

identifiers for simplicity reasons.

 In non-matching Portals interface, the initiator needs to send (i) number of target node

(rank number), (ii) number of initiator node, (iii) Portal’s Operation, (iv) length of Payload,(v)

5 A memory descriptor describes a memory region using a base address and length.

25

remote offset, and (optional) other header data. Figure 2.9 illustrates a synchronous6 Portals

Get Operation using non-matching NI, as a result the first list entry (LE) in a list always

matches. In addition to the standard address components, in matching network interface

(Figure 2.10) a portals address additionally includes a set of match bits. For a matching logical

network interface, each match list entry specifies two bit patterns: a set of “do not care” bits

(ignore bits) and a set of “must match” bits (match bits). Along with the source node ID (NID),

these bits are used in a matching function to select the correct match list entry. Incoming

match bits are compared to the match bits stored in the match list entry using the ignore bits

as a mask. An optimized version of this is shown in the Figure 2.11.

Figure 2.9: Synchronous Portals Get from a list entry

Figure 2.10: Synchronous Portals Get from a match list entry

6 This transaction is synchronous because the target has been issued a Ptl_Append(PTL_PRIORITY_LIST) before
the initiators get request.

Memory Descriptor
(MD)

Initiator Target

LELE LE

Counting EventCounting Event

Counting Event

Counting Event

Get Request

Data (Reply)

initiator Id
target Id

operation
remote offset

payload Length
header Data

Priority List

Memory Descriptor
(MD)

Initiator Target

ME

ME

ME

Counting Event

Counting Event

Counting Event

Counting Event

Get Request

Data (Reply)

initiator Id
target Id

operation
remote offset

payload Length
header Data
Match bits

Priority List

26

((incoming_bits ^ match_bits) & ~ignore_bits) == 0

Figure 2.11: Portals Matching Function

2.9 Portals Data movements in detail
This section describes the details of Portals Data movements, the Portals lists operation of

each transaction, and finally it shows the basic PtlPut transaction using C code as example.

2.9.1PtlAppend

The PtlAppend() function creates a single match list entry which is specified by ptl_list.

Especially, ptl_list can be either PTL_PRIORITY_LIST or PTL_OVERFLOW_LIST and the

corresponding entry is appended to the end of the appropriate list specified by ptl_list as

illustrated in Figure 2.12.

 In case of PTL_PRIORITY_LIST, when a match list entry is posted to the priority list, the

unexpected list is searched to see if a matching message has been delivered in the

unexpected list prior to the posting of the match list entry. If so, an appropriate overflow list

entry passes the data to user space, the matching header is removed from the unexpected

list, and a match list entry is not inserted into the priority list. On the other hand, if the

message not found in Unexpected Message List, then a match list entry is posted to the

priority list.

 In case of PTL_OVERFLOW_LIST, the target inserts an Overflow List entry so as to save the

Unexpected Messages in the future.

 27

Figure 2.12: Target manipulation of Portals PTLAppend function

2.9.2PtlPut

The PtlPut() function initiates a non-blocking7 put operation as illustrated in Figure 2.13.

When a message arrives in target side, the priority list is searched to see if a matching

message has been posted beforehand. If so, the payload of the message passes immediately

to the user space, and a match list entry is not inserted into the unexpected list. Otherwise,

if the message not found in Priority List, the overflow list is searched to see if there is

sufficient space to save the unexpected payload to the bounce buffer. If so, the payload of

message is stored in Overflow List, while a match list entry is posted to the unexpected

message list. Otherwise, the target discards the message and increments the drop counter.

7 In Portals there isn’t blocking put operation (such as MPI_Send in MPI two-sided protocol).

Is Priority List?

Insert entry in
Overflow List

UM list empty?

get next matching
list entry

no

yes Insert entry in
Priority List

Match?

yes

no

no

yes

Pass the Data to User
(through OF List)

Start

End

28

Figure 2.13: Target manipulation of Portals PTLPut function

2.9.3 PtlGet
The PtlGet function initiates a non-blocking remote read operation. In PtlGet transaction the target

does not use an Overflow List entry, because it doesn’t send Payload (just the message header) as a

result there aren’t Unexpected Payloads. When a get header arrives in target side (Figure 2.14),

the priority list is searched to see if a matching message has been posted in the priority list

prior to the header arrival. If so, the target immediately sends the payload of message back

to initiator. Otherwise, if the message not found in the Priority List, a match list entry is

posted to the unexpected message list with the header of the get operation.

PR list empty? OF list empty?

get next matching
list entry

no

yes
discard message

Match?

yes

no

yes

Insert message in
Unexpected List

Start

End

get next matching
list entry

no

Match?

yes

Pass the Data to User

no

increment
drop count

29

Figure 2.14: Target manipulation of Portals PTLGet function

2.9.4 Portals PtlPut Two-Sided Communication Example

The following example shows the PtlPut two-sided Portals transaction using matching

network interface as described in Portals 4 Library [8]. Initially, target allocates buffer space

to store the unexpected messages with PtlMEAppend function. In addition, all nodes must

be synchronized so as to ensure the bounce buffer creation. Subsequently, node 1 (initiator)

initializes the MD structure and binds a MD entry. On the other side, node 0 (target) initializes

the ME entry structure, allocates one CT entry, and issues PtlMEAppend(PTL_PRIORITY_LIST)

so as to accept the message. Then initiator selects the target node, sends the message

(through PtlPut) and releases MD. Finally, target node waits for the message arrival, checks

the success counter, and frees the CT entry.

PR list empty?
Insert message in
Unexpected List

yes

Start

End

get next matching
list entry

no

Match?

yes

Send Data to initiator

no

30

Example Two-Sided Send-Receive transaction in Portals

1 #define BUFSIZE 4096

2 if(rank == 0){ /* Create OF List entry in target side */

3 unexpected_e.length = BUFSIZE; /* Size of unexpected entry */

4 PtlMEAppend(&unexpected_e, PTL_OVERFLOW_LIST, &unexp_handle);

5 }

6 Barrier(); /* Synchronize all nodes */

7

8 if(rank == 1){ /* Bind space and store the data */

9 send= 15; /* Send the value 15 to target */

10 write_md.start = &send;

11 write_md.length = sizeof(Uns32);

12 PtlMDBind(&write_md,&write_md_handle);

13 }

14

15 if(rank == 0){

16 value_e.start = &rcv;

17 value_e.length = sizeof(Uns32);

18 value_e.match_id.rank = 1; /* Source */

19 value_e.match_bits = 1;

20 value_e.ignore_bits = 0;

21 PtlCTAlloc(ni_h, &value_e.ct_handle);

22 PtlMEAppend(&value_e, PTL_PRIORITY_LIST,&value_e_handle);

23 }

24

25 if(rank == 1){

26 ptl_process_t peer;

27 peer.rank = 0; /* Send the DP to 0 target node */

28 Uns32 match_bits = 1;

29 PtlPut(write_md_handle, sizeof(Uns32), peer, match_bits);

30 PtlMDRelease(write_md_handle);

31 }

32

33 if(rank == 0){ /* Read value in target side */

34 PtlCTWait(value_e.ct_handle, 1, &ctc);

35 printf("success %d\n",(Uns32)ctc.success);

36 printf("receive value %d\n",rcv);

37 PtlCTFree(value_e.ct_handle);

38 }

31

3
Software-driven development of a mixed

Software & Hardware Portals System

This chapter introduces a software framework for exploring accelerators’ architectures

within a multi-parallel system while mainly focusing at the exploration of our novel Portals

Accelerator. The presented framework is based on the virtual platform simulation

environment OVP. Initially, it analyzes our novel Portals Accelerator implementation and its

intercommunication using the OVP environment, and finally it presents Rendezvous protocol

and One-Sided communication implementations.

32

3.1 Introduction to Virtual Platform
The development of each new embedded platform is mainly comprised of two phases, the

software and hardware one. While the software phase should be initiated as early as

possible, the hardware phase needs several months or years. The most common practice for

developing embedded software is to start to develop initial software in a desktop running a

general purpose operating system before the real hardware or prototype release. When a

prototype of the embedded system or chip is available the software is ported to this target

environment using cross compilers and related tools. Later, when final Hardware is available,

further modifications are needed for the product release. There are many challenges when

using this traditional approach. Initially, there are significant differences in host-based and

target hardware environment. Moreover, hardware prototype is often physically unreliable,

not readily available in developments sites (especially those off-shore), and worst of all, it is

often available only very near to the end of the targeted product development schedule.

These challenges become acute as more processors interact in the embedded system. One

solution is the MPSoC Software developing using separate processors which are emulated by

distinct host threads. This approach provides limited controllability, observability, and

debugability especially when tracking down complex multi-processor issues, such as bugs

which are often very hard to reproduce reliably and isolate in complex real-time hardware.

 The usage of Open Virtual Platform (OVP) [9] is to reduce the product development time

by months, especially for MPSoC platforms, giving to the software developers a virtual model

of the hardware platform at the very earliest stage of the products development. OVP usually

allows to instantiating an abundance of popular architectures (such as MIPS, ARM, PowerPC)

along with widely used peripheral models, such as USB, DMA controllers etc. The above

processors with their peripherals can be co-simulated with the under-development hardware

models with respect to accuracy of most significant architecture parts and simulation speed.

 OVP advantages would have been useless without an accurate efficient simulator. For this

reason, Imperas which initiated the OVP platform, has made available the OVPsim simulation

tool. OVPsim provides infrastructure for describing platforms with one or more processors

containing shared memory and busses in arbitrary topologies and peripheral models.

Performance of OVPsim depends on several factors (such as the processor variants used in

the platform, the exact nature of the application itself), but typically estimation is hundreds

of millions of simulated instructions per second. Finally, OVPsim provides the ability to hook

up to any popular external debugger that supports the GNU protocol, such as GDB.

3.2 Portals Accelerator using Imperas OVP
This section introduces a framework for exploring accelerator's architecture and especially

presents the implementation of our Portals Accelerator using OVPsim. In this thesis, the Open

33

Risc 1000 (OR1K) processor model was selected to be the computation core of each node,

while the same design process can be followed in case of different process models (such as

ARM, Power PC etc.) since the presented results are independent with the processor model.

Innovative CPU Manager (ICM) API is used for OR1K initialization and instantiation.

Moreover, certain functions (such as icmPrintf) can performed at the host machine and not

at the simulated platform. This feature along with the ability to hook the execution software

running on a processor directly providing the GDB debugger can be reduce significantly the

development process in a multiprocessor platform. During system's simulation, each of the

OR1K processors is executed in the host machine at predefined time slices. The scheduler

selects one processor and simulated it for one time slice. Especially, the simulator calculates

the number of instructions that should be executed by that processor in a time slice, and

then simulating for that number of instructions. When this processor has simulated for a time

slice, it is suspended and the next processor is simulated for the same time. This is a pseudo-

parallel approach which emulates the concurrent behavior of an actual multi-processor

platform. We get the better trade-off between simulation and accuracy of results using time

slice of 1ms.

34

Figure 3.1: OVP Platform with our Portals Accelerator

 An overview of Platform which is used in this work is shown in Figure 3.1. The platform

consists of N processing nodes and each node comprised of one OR1K processor model, its

memory, and one Portals Accelerator connected in a local bus. In turn, Portals Accelerator

comprised of a dynamic memory allocator peripheral for the unexpected received Portals

messages, a list manager for its queue processing and an Accelerator Buffer. Furthermore,

Figure 3.1 shows the space reserved for the memory mapped intercommunication. The field

which corresponds to the Portals accelerators is consistent among all processors because one

global address scheme is used for PtlPut and two global address schemes for PtlGet

transaction. In PtlPut transaction, initiator node writes the message to the appropriate global

space in 'PUT GLOBAL ADRESS SCHEME', while target node can read the message from the

same space. In PtlGet transaction, when the initiator node writes the header of the message

NODES[0]

PROCESSOR[0] PORTALS
ACCELERATOR[0]

LOCAL BUS [0]

INSTRUCTIONS

STACKM
EM

O
R

Y
[0

]

BUFFER

PUT[0][0]

PUT[0][1]

...

PUT[0][N-1]

PUT[1][0]

PUT[1][1]

...

PUT[1][N-1]

...

PUT[N-1][0]

PUT[N-1][1]

...

PUT[N-1][N-1]

PUT
GLOBALL
ADDRESS
SCHEME

PUT[0][0] GET_H[0][0] GET_P[0][0]

PUT[0][1] GET_H[0][1] GET_P[1][0]

...
PUT[0][N-1] GET_H[0][N-1] GET_P[N-1][0]

GET_H[0][0]

GET_H[0][1]

...

GET_H[0][N-1]

GET_H[1][0]

GET_H[1][1]

...

GET_H[1][N-1]

...

GET_H[N-1][0]

GET_H[N-1][1]

...

PUT_H[N-1][N-1]

GET HEADER
GLOBALL
ADDRESS
SCHEME

GET_P[0][0]

GET_P[1][0]

...

GET_P[N-1][0]

GET_P[0][1]

GET_P[1][1]

...

GET_P[N-1][1]

...

GET_P[0][N-1]

GET_P[1][N-1]

...

GET_P[N-1][N-1]

GET PAYLOAD
GLOBALL
ADDRESS
SCHEMENODES[1]

PROCESSOR[0] PORTALS
ACCELERATOR[1]

LOCAL BUS [1]

INSTRUCTIONS

STACKM
EM

O
R

Y
[1

]

BUFFER

PUT[1][0] GET_H[1][0] GET_P[0][1]

PUT[1][1] GET_H[1][1] GET_P[1][1]

...
PUT[1][N-1] GET_H[1][N-1] GET_P[N-1][1]

NODES[N-1]

PROCESSOR[N-1] PORTALS
ACCELERATOR[N-1]

LOCAL BUS [N-1]

INSTRUCTIONS

STACK

M
EM

O
R

Y
[N

-1
]

BUFFER

PUT[N-1][0] GET_H[N-1][0] GET_P[0][N-1]

PUT[N-1][1] GET_H[N-1][1] GET_P[1][N-1]

...
PUT[N-1][N-1] GET_H[N-1][N-1] GET_P[N-1][N-1]

...

PUT[i][j]

Initiator

Target

GET_H[i][j]

Initiator

Target

GET_P[i][j]

Target

Initiator

35

request in 'GET HEADER GLOBAL ADRESS SCHEME', the target reads the header from the

same space. Later on, the target, in turn, responds to initiator request with the message

Payload using the 'GET PAYLOAD GLOBAL ADRESS SCHEME'. In other word, there is a unique

global address which associates an address interval with the Portals buffer of a specific node.

We use three global address schemes because one node may issue PtlPut and PtlGet

operation concurrently to some other node (i.e. in Rendezvous Protocol).

 The memory of each node consists of two parts, instructions and stack as illustrated in

Figure 3.1. Those parts, along with the space reserved for the memory mapped

intercommunication as well as the accelerator buffer memory are shown in Table 3.1. The

size of 'PUT GLOBAL ADRESS SCHEME' is determined form following equation.

𝑃𝑈𝑇𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 = 𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒 − 1 (1)

 In this work, up to 128 Software processors are instantiated with maximum

PortalsMessageSize 8192 bytes for our results. With this configure the PUTGlobalSize has size

07ffffff bytes. Similar to (1), the GetHeaderGlobalSize is computed with the following

equation.

𝐺𝑒𝑡𝐻𝑒𝑎𝑑𝑒𝑟𝐺𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 = 𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝐻𝑒𝑎𝑑𝑒𝑟𝑆𝑖𝑧𝑒 − 1 (2)

As described in Chapter 2, Portals Header contains Source, Destination, LocalOffset,

RemoteOffset, MessageLength integers, PayloadStart pointer and MatchBits with Uns64. In

other words, PortalsHeaderSize and GetHeaderGlobalSize should be at least 32 and 7ffff

bytes respectively. Hence, fffff bytes are sufficient for 'GET HEADER GLOBAL ADDRESS SPACE'.

The remainder range (from 0x60100000 to 0x6fffffff) is assigned for 'GET PAYLOAD GLOBAL

ADDRESS SPACE' which are sufficient according to (1) equation. Finally, range from

0x70000000 to 0x7fffffff is assigned for dynamic memory allocator buffer, while ListManager

and other accelerator structures allocate their buffer in range 0x58000000 up to 0x5fffffff.

Address Size Mapped
Low High

0x00000000 0x0fffffff 0fffffff Instructions

0x90000000 0xffffffff 6fffffff Stack

0x50000000 0x57ffffff 07fffff PUT GLOBAL ADRESS SHEME

0x58000000 0x5fffffff 07fffff Portals Accelerator Buffers

0x60000000 0x600fffff 000fffff GET HEADER GLOBAL ADDRESS SPACE

0x60100000 0x6fffffff 0fefffff GET PAYLOAD GLOBAL ADDRESS SPACE

0x70000000 0x7fffffff 0fffffff Dynamic Memory Allocator Buffer
Table 3.1: Memory Mapping

36

 The Portals Accelerator is modeled by the OVP Innovative CPU Manager (ICM) API and

configured by the Peripheral Programming Model (PPM) as outlined in detailed in the next

section. Moreover, Behavioral Modeling (BHM) API allows passing parameters to the

peripheral during instantiation. This feature was used to assign an ID to each accelerator, so

that the address interval of the local Portals buffer can be identified. For instance, assigning

ID = 1 to an accelerator in a system with 128 nodes, resulted to assigning to the local buffer

the global address interval of [LowGlobalAddress+1*128*PortalsMessageSize :

LowGlobalAddress+2*128* Portals MessageSize-1] for PtlPut and PtlGet response (Payload)

operation. Similar to the above operations, for the same ID=1, the global address interval of

PtlGet Header transaction is [LowGlobalAddress+1*128*PortalsHeaderSize :

LowGlobalAddress +2*128*PortalsHeaderSize-1]. Although the above memory mapping can

be assigned during the initialization phase of platform, OVPsim requires to perform this task

in the instantiation phase in order to assign certain permissions to each address as described

in the following section. Whenever one message was written at the local buffer of Portals

Accelerator, it is consumed immediately by the appropriate target's accelerator preventing

buffer overwrites.

3.3 Accelerator Intercommunication
This section presents the bus connections as well as accelerator intercommunication with
other nodes, its buffer and UserBuffer. The bus connects the platform nodes to a common
address space so that all processor read/write commands are directed to Portals Accelerator
Buffers. Portals Accelerator connects to the bus through master and slave ports depending
on whether it creates or responds to bus transactions as described in next subsections in
detail.

3.3.1 Master Ports

This subsection describes the master ports which connect the Accelerator with node's buffer

as well as with other nodes. Especially, the accelerator uses a master port to initialize bus

transactions to read/write to the memory. Figure 3.2 illustrates the Accelerator's master

ports which are created in this work. Accelerator in our platform uses five master ports to

communicate with the local bus. One master port (1 in Figure 3.2) is used to read/write the

node's UserSpace, so that the processor is not interrupted in any way. Another master port

(5 in Figure 3.2) is used to store/restore unexpected messages payload in allocator buffer,

while three master ports (2-4 in Figure 3.2) are allocated to communicate (read/write Portals

messages) with other nodes, one for each Global Address Scheme.

37

Figure 3.2: Accelerator's master ports

 Innovative CPU Manager (ICM) API is used to create Global Address Schemes and connect

them to local bus. Code 1 describes the PUT_GLOBAL_ADDRESS_SCHEME creation and how

it is connected with the local bus. Initially, we select the Base Address according to Table 3.1.

Subsequently, we create a new Global memory with Read-Write privilege and size

𝑁𝑃𝑅𝑂𝐶𝑆2 ∗ 𝑃𝑜𝑟𝑡𝑎𝑙𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑖𝑧𝑒 − 1 with icmNewMemory OVP command, while we

connect it to each accelerator bus with icmConnectMemoryToBus. Similar code has been

used for the other two Global Memories, while it can be used for any other Global memory

instantiation using Imperas OVPsim.

Code 1 Create and Connect Global memory to bus

1 #define PUT_GLOBAL_BASE 0x50000000 //* Base Address *//

2 //* Bind Space for PUT GLOBAL ADDRESS SCHEME *//

3 icmMemoryP PutMsgMemory = icmNewMemory("PutGlobalMem",ICM_PRIV_RW,

4 NPROCS*NPROCS*PTL_MESSAGE_SIZE-1)

5 //* Connect PUT GLOBAL ADDRESS SCHEME to Accelerator buses *//

6 for AccId=0,...,NPROCS:

7 icmConnectMemoryToBus(LocalBus[AccId], PutMsgMemory,

8 PUT_GLOBAL_BASE)

9

Code 2 Master Ports Operations

1 //* Master ports Handler *//

2 ppmAddressSpaceHandle msgPayloadHandle[NPROCS]

3 for i=0,...,NPROCS: //* Open NPROCS master ports to each Acc *//

4 msgPayloadHandle[i] = ppmOpenAddressSpace(PortNames[i])

5 //* Connect each master port to local bus *//

6 icmConnectPSEBus(Acc[AccId], LocalBus[i], PortNames[i])

7

8 //* Select the master port for reading *//

9 msgAddr = PUT_GLOBAL_BASE + AccId*NPROCS*PTL_MESSAGE_SIZE +

10 msgSrc*PTL_MESSAGE_SIZE;

10

11 //*Read the Payload from msgAddr and store it to PayloadBuffer *//

12 ppmReadAddressSpace(msgPayloadHandle[msgSrc], msgAddr,

13 PTL_MESSAGE_SIZE, PayloadBuffer);

LOCAL BUS[N]

ACCELERATOR[N]

(1) (2) (3) (4) (5)

UserSpace
Memory

(1)

Allocator
Buffer

(5)

PUT[N][0]
PUT[N][1]

…
PUT[N][N]

GET_H[N][0]
GET_H[N][1]

…
GET_H[N][N]

GET_P[0][N]
GET_P[1][N]

…
GET_P[N][N]

(4)(3)(2)

38

14

15 for i=0,...,NPROCS: //* Close the master ports *//

16 ppmCloseAddressSpace(msgPayloadHandle[i]);

 Furthermore, PPM API is used to manipulate the master ports with open, close, read, write

operations as described in Code 2. Primarily, NPROCS8 message Handler are allocated in each

accelerator so that each accelerator reads/writes to target accelerator global memory.

Subsequently, NPROCS master ports with appropriate names are opened and connect the

accelerator(AccId) with all accelerator's local buses. Whenever the accelerator wants to

receive9 one message from certain node, it must identify the source node, message address

and temporary buffer for incoming message store. Message address can be computed with

global address base as well as the initiator and target identifiers (lines 9-10). At the end of

Portals instantiation, all master ports must be closed with ppmCloseAddressSpace OVP

command. With similar way other four master ports have been implemented, while this way

can be used for any type Accelerator development using OVPsim.

3.3.2 Slave Ports

 In previous subsection portals message exchange was described using master ports. Except
from data packet placement in correct positions according to initiator node, accelerator
needs a mechanism to be triggered in right time. Hence, a number of slave ports are used so
that the accelerator can be respond to bus transactions. Each accelerator is triggered from
three events (one for each incoming message type) as illustrated in Figure 3.3. PPM API is
responsible for slave port creation and ICM API for connection with bus as described in Code
3.

Figure 3.3: Accelerator's slave ports

8 One handler for each incoming message from Portals Accelerator. Total NPROCS2 handlers are allocated in
our platform.
9 ppmWriteAddressSpace is used for writing to master port and it has the same parameters with
ppmReadAddressSpace.

LOCAL BUS[N]

ACCELERATOR[N]

(1)

PUT[N][0]
PUT[N][1]

…
PUT[N][N]

GET_H[N][0]
GET_H[N][1]

…
GET_H[N][N]

GET_P[0][N]
GET_P[1][N]

…
GET_P[N][N]

(3)(2)(1)

PUT
REGISTER

(2)

GET_H
REGISTER

GET_P
REGISTER

(3)

 39

 OVPsim uses especially variables (called registers) as slave port handler (Figure 3.3).
Initially, PPM_REG_WRITE_CB function must initialize these registers, while
ppmCreateRegister creates both a register object(put_message_cb_reg in Code3) that
can be accessed by Imperas Debugger and also reads and writes events that can trigger the
Portals Accelerator. Register is accessible through the port associated with the memory
region IF_Window. Each Slave Port can transfer information with size REQ_SIZE to peripheral;
this property is used to transfer initiator ID so that the accelerator knows the initiator node
which sends the trigger request. Subsequently, NPROCS slave ports with appropriate names
are opened and connect the accelerator(AccId) with all accelerator's local buses, while the
address in each slave port is determined by the range of the bus connection10. Moreover,
PPM_REG_WRITE_CB function with the put_message_cb_reg register is used from
Accelerator to handle the incoming portals messages. Finally, slave ports are closed with
ppmCloseAddressSpace OVP command.

Code 3 Create and Connect slave ports to bus

1 //* Initialize message CallBacks *//

2 PPM_REG_WRITE_CB(put_message_cb_reg)

3 //* Create NPROCS CallBack Registers to each Accelerator *//

4 for i=0,...,NPROCS:

5 ppmCreateRegister(IF_Window[i], REQ_SIZE, put_message_cb_reg)

6 //* Open NPROCS slave ports to each Accelerator *//

7 ppmOpenSlaveBusPort(PortNames[i], IF_Window[i], REQ_SIZE)

8 //* Connect each slave port to local bus *//

9 icmConnectPSEBus(Acc[AccId], LocalBus[i], PortNames[i],

10 PUT_GLOBAL_BASE + AccId*NPROCS*REQ_SIZE + i*REQ_SIZE,

11 PUT_GLOBAL_BASE + AccId*NPROCS*REQ_SIZE + i*REQ_SIZE+REQ_SIZE-1)

12 //* ...*//

13 PPM_REG_WRITE_CB(put_message_cb_reg){

14 //* Handle Portals message *//

15 }

16 //* ...*//

17 for i=0,...,NPROCS: //* Close the slave ports *//

18 ppmCloseSlaveBusPort(IF_Window[i]);

3.4 Portals Accelerator Model
The framework presented in section 3.2 allows integrating under-development hardware

within a complete parallel system simulation model, as a result complete software

applications can be executed and not just specific, corner case scenarios. Hence, our selection

was to initially model our hardware at the untimed functional level[Cai and Gajski 2003] in

which the low level timing issues are hided for the sake of simulation execution time, while

later on, pure hardware model is developed as described in detail in Chapter 4.

10 Low & High Address of slave port are determined in line 10 & 11 respectively.

40

 The basic components of Portals accelerator processor are shown in Figure 3.4. Slave ports

is used to triggered the Portals Accelerator, while master ports to read/write to global

address spaces as described in section 3.3. Functionality of each component is analyzed in

the following subsections.

Figure 3.4: Portals Accelerator Processor

3.4.1 Message Buffers

 Three Message Buffers are placed at the three slave ports triggering the Accelerator for
three different types of incoming Portals messages. These Buffers store the request of
incoming messages in order, so that Portals command by processor is transformed to a
simple memory write to appropriate address. In this way, the host-processor is instantly
allowed to continue its computations just after it writes the Portals command to the Message
Buffer. Unlike, master ports do not need Buffers because Header and Payload of Portals
messages are stored in Global Memory.

3.4.2 Portals Message Processor

 The Portals Message Processor orchestrates the data flow through all Accelerator's
components according to the control flow imposed by each Portals command. Initially, when
one request message is placed at the message buffer, message processor decodes the
'command type' which determines the type of command and the message (Header and may

PUT
Slave Port

GET_H
Slave Port

GET_P
Slave Port

P
U

T
M

aste
r P

o
rt

G
E

T_
H

M
aste

r P
o

rt

G
E

T_
P

M
aste

r P
o

rt

M
es

sa
ge

B

u
ff

er

PORTALS
Message
Processor

PRQ

UMQ

OFQ

Allocator Lists

Dynamic
Memory
Allocator

List Manager

PRQ

UMQ

OFQ

Accelerator
Buffer

MD Table

CT Table

M
es

sa
ge

B

u
ff

er
M

es
sa

ge

B
u

ff
er

 41

be Payload) position in Global Address Scheme. Hence, besides the message buffers, the
message processor communicates with master ports which have access in Global Address
Schemes and with Accelerator buffers. Moreover, the message processor issues certain list
operations to the list manager according to message condition and asks for memory space
from the dynamic memory allocator so as to save the unexpected messages.

3.4.3 Memory Descriptor & Counting Event Tables

 As described in Chapter 2, a memory descriptor contains information about a region of a
process memory and optionally points to counting event where information about the
operations performed on the memory descriptor are recorded. In other words, whenever
initiator issues a Portals command, it must bind a memory descriptor so as to declare the
range of User Space memory. As illustrated in Figure 3.5a Memory Descriptor Table is created
which contains MAX_MD_ENTRIES memory descriptors. Each memory descriptor contains a
pointer to UserSpace memory as well as the size of its memory. In addition, ct_handle is used
for information about completion of PtlGet transaction, while used is a boolean variable for
MDTable allocation criteria11. Target node ID is used as hash key for allocation criteria so that
certain range of MDTable is traversed; for instance, in a system with 64 nodes only
MAX_MD_ENTRIES/64 entries are traversed in each MDBind command.

Figure 3.5: (a) MDTable (b) CTTable

 Another significant portals structure is counting event which is responsible for completion

movements. Each counting event contains both a count of succeeding events and a count of

failing events, while operation variable stores the type of Portals movement (PtlPut or

PtlGet). Similar to MDTable, CTTable is created which contains MAX_CT_ENTRIES counting

events structures as illustrated in Figure 3.5b. With this table, the appropriate event can be

searched in constant time since ct_handle is the pointer of CTTable, while PtlCTAlloc

command has computation cost (O(MAX_CT_ENTRIES)) in which searches for free entry.

11 When used is zero the specific entry is free, else this entry is used.

MD Entry

MD Entry

MD Entry

MD Entry

MD Entry

MemoryStart

MemorySize

ct_handle

used

CT Entry

CT Entry

CT Entry

CT Entry

CT Entry

success

failure

operation

used

M
A

X
_M

D
_

E
N

T
R

IE
S

M
A

X
_C

T_
EN

TR
IE

S

42

Number of initiator node is used as hash key for computation cost reduction by factor of 64,

in 64 nodes platform.

3.4.4 List Manager

The list manager performs three basic list operations, search, insert and delete on the OFQ,
UMQ and PRQ lists. In addition, a free list is maintained including all the Accelerator Buffer
positions which are not allocated yet by either of the lists. Each list is implemented by a head
and a tail pointer. When a new item is inserted in one of the three lists, header of the free
list advances to the next free entry, while the newest item is added at the end of the list so
as to preserve the message order updating the list (OFQ, UMQ, PRQ) tail's pointer to point to
the new element. Similarly, when one item is removed from some of three lists, the tail of
the free list is updated to point to that element, while the tail which shows to removed item
is updated to point one item back.

 Figure 3.6 illustrates the high-level architecture of our list manager in a 128-node platform.
OFQ elements are shown in blue, UMQ elements are shown in red, while PRQ and free
elements are shown in green and grey respectively. Allocator buffer (illustrated with blue) is
accelerator memory which is connected with accelerator through master port

Figure 3.6: Portals List Manager

(Figure 3.2), while UserSpace (illustrated with green) is the application memory. In other
words, unexpected message payload is copied in Allocator Buffer, while expected message
payload (PRQ) is a simple pointer to user space.
 In Portals initiator function, the platform allocates OFQ entries, so that each unexpected
incoming message stores its payload. In Figure 3.6, 128 (0-127) OFQ elements with 8192
bytes are allocated; so that unexpected messages with different initiators can be stored in
their own allocator buffer. The size of OFQ entry is determined by Portals Init function and

Next Pointer

0

127

0

127

127

31

14

Initiator Id

8192

8192

1800

1024

64

4096

Size

0xff

0xff

789

14

28

123

456

Match Bits Data Addr

Allocator Buffer

...

User Space

O
FQ

Head

Tail

Head

TailP
R

Q

Head

TailU
M

Q

Head

TailFr
e

e

160

43

can have any size depending on the application, while ignore bits must be 0xff so as to always
match according to match function as described in Chapter 2. OFQ entry contains local_offset
which shows the allocator buffer section which is used. Initially, local_offset is zero, when
unexpected messages arrive the local_offset advances 'message_size' bytes so as to accept
the next message payload. For example in Figure 3.6, the payload of first unexpected
message is stored to the top of allocator buffer and OFQ local_offset advances 1024 bytes.
Subsequently, payload of second unexpected message is stored in 1024 - 1088 allocator
buffer position. In case of allocator buffer overflow, implementation of circular array [10] is
used as illustrated in Figure 3.7. Whenever payload of unexpected message is greater than
(OF_Size minus local_offset), a portion of payload is stored in the bottom of buffer and
remainder payload is stored to the top of the buffer. Finally, start variable is used to check
the full buffer case.

Figure 3.7: Circular Allocator Buffer

 As the number of communicating nodes increases, the number of list entries increases
triggering an increase in the time needed in order to linearly search them. For this reason,
one of the most promising solution to this issue is to utilize a hashing scheme, so that almost
constant search times will be enjoyed even at very large systems. When a collision takes
place, chaining can be performed by adding the newest item at the end of the list so as to
preserve the message order. However, hash-based software implementations are slower, as
a number of operations (e.g. calculating the hash function for a key) have to be executed
before touching the first entry. For this reason our scheme utilizes a simple hash function
which has as hash key the source field of the Portals message. The hashing function assumes
that the number of available buckets is a power of two, leading to an efficient hardware
implementation. For example, in a hashing scheme with M buckets, a message with initiator
id equal to i, is assigned to the bucket corresponding to the result of the modulo function
i%M which for M being a power of 2 reduces to i&(M-1), which is analyzed to a simple binary
'&' operation and a subtraction by 1.

...

local_offset

...

wrap around

start

44

3.4.5 Dynamic Memory Allocator

 As described in the above subsection, during Portals Init function, a number of OFQ entries
are inserted with the appropriate Allocator Buffers so as to store the Payload of unexpected
messages. The OFQ payload is not critical during OF search and thus it should not consume
valuable space in the Accelerator Buffer. So, our Accelerator processor contains a mechanism
for allocating and freeing the data corresponding to the payload. Especially, a dynamic
memory allocation scheme was implemented in the Accelerator Processor. Our allocator is
based on the buddy memory allocation algorithm [11] which can be very efficiently
implemented in hardware since it mainly comprises of binary operations.

3.5 Rendezvous Protocol
 This section presents the Portals implementation of rendezvous protocol, and how MPI
commands can be integrated with rendezvous protocols. As described in Chapter 2, eager
protocol ensures asynchronous progress in both expected and unexpected cases. Especially,
in expected cases PtlAppend is posted before incoming data and the message is
asynchronously delivered in the user buffer, while in unexpected cases PtlAppend is posted
after the incoming data begins arriving and either the get request is issued to retrieve the
remainder message, or payload is stored in Allocator buffer. However in case of unexpected
messages eager protocol wastes the bandwidth in payload retransmission or uses enormous
amount of allocator buffer in long messages. In contrast, traditional rendezvous protocols
(presented in Chapter 2) ensures asynchronous progress only for unexpected messages, as
the header data is immediately available when PtlAppend is posted, while the protocol does
not ensure asynchronous progress for expected messages, as the target node must enter the
library after the header arrives to issue the get request. In other words the target processor
should be interrupted to calculate the PtlGet arguments after the header arrives.

 Portals provides a mechanism through which an application can schedule message
operations that initiate when a counting event reaches a threshold. Operations which contain
this mechanism (using Portals counting events) are called triggered operations.
 In this work PtlTriggeredGet operation is implemented by extending the PtlGet argument
list to include a counting event on which the operation will trigger and a threshold at which
it triggers. So, triggered rendezvous protocol is implemented utilizing Portals Triggered
operations to issue the target-side get request without involving the host processor as
illustrated in Figure 3.8. The first eager_limit bytes of the message are sent to the target when
the PtlPut is posted. If the message is expected, the first part of the message is delivered
directly into the target UserSpace buffer, otherwise it is delivered into bounce buffers. A
counting event which counts bytes delivered is attached to the target buffer, and a triggered
get is scheduled to execute when a message larger than the eager limit arrives. The counting
event is modified whether the message is expected or unexpected, so the protocol provides
asynchronous process in either case.
 Figure 3.8 presents the MPI send-receive non-blocking commands and how they
manipulate the Portals routine to use triggered rendezvous protocol. Especially, MPI_IRecv
and MPI_Isend commands call PtlTriggeredGet, PtlAppend and Ptl_Put operations
respectively. In an expected scenario, PtlTriggeredGet operation is called but Get request is

45

posted just the first part of message arrives in target side using PtlCTInc command, otherwise
(unexpected scenario) just the first part of the message arrives, a counting event is created
and takes the threshold value. Later on, when MPI_IRecv is placed, Get request is sent
immediately, as the counting event has the appropriate threshold value. Finally, in both
scenarios, matching information for the get movement must be pre-calculated, rather than
retrieved from the header data.

Figure 3.8: Communication pattern for triggered rendezvous protocol

3.6 One-sided Communication
Initially, this section introduces one-sided implementations as presented in the literature
emphasizing their drawbacks in the most of them. Subsequently presents our novel one-
sided Portals implementation, and finally it presents the Global Arrays implementation using
the proposed one-sided implementation.

 As presented in the literature, there is an abundance of implementations of one-sided
communication. For instance in [12] are presented three different implementations of one-
sided communication using two-sided semantics. Unfortunately, all of these
implementations are sub-optimal since they use send-receive commands in both initiator and
target node, while they are computation-intensive because they use IProbe and blocking
Receive operations as illustrated in Figure 3.9. Particularly, Figure 3.9 illustrates One-Sided
Get operation using (a) Two-Sided semantics, (b) Two-Sided semantics in a Multi-thread
target implementation and (c) Multi-thread target implementation with Shared Memory. In
first scenario, target uses one thread for communication and computation, which calls IProbe
command constantly wasting the resources of this thread. Second scenario uses two thread
in target side, a communicator thread (Pi) and a process thread(Pj). In this case
communicator thread is responsible for target communication calling IProbe routine, while
the process thread communicates only with Pi whenever it needs the incoming message.
Finally, in third scenario shared memory is used for on-node communication to reduce the
number of memory copies and eliminate superfluous communication with the communicator
thread.

PtlPut
PtlAppend

(a) Expected

PtlTriggeredGet

(b) Unexpected

MPI_ISend MPI_IRecv

PtlCTInc

PtlPut

MPI_ISend

PtlCTInc

PtlAppend
PtlTriggeredGet

MPI_IRecv

PtlCTWait PtlCTWait

46

Figure 3.9: One-Sided communication protocol using Two-Sided communication Protocol

3.6.1 Our implementation of One-sided Communication

This subsection presents our novel implementation of one-sided operations eliminating the
above common drawbacks. Especially, in our implementation the target of a remote
operation is not a virtual address but the ultimate destination in memory of an incoming
message is determined at the target node by comparing contents of the message header with
the contents of structures at the destination. In more details, target node inserts PRQ entries
with unique match_bits12, which points to accessible UserSpace Buffers as illustrated in
Figure 3.10. In Priority List one cluster is added which manages the one-sided entries from all
nodes using PTL_SRC_ANY option. Figure 3.10 presents the additional cluster (One-Sided
cluster), and the conventional clusters13 which are used by two-sided communication with
our hashing scheme. Hashing scheme is not used in One-Sided communications because
target node doesn't know the initiator node during priority entry insertion and the number
of Priority One-Sided entries is quite small; as the target usually allocates large amount of
UserSpace (as pseudo-shared memory), while the initiator can access on different positions
of it through remote_offset.

12 Each One-Sided Priority entry uses unique match_bit so as to separate the Buffer requests.
13 In Figure 3.10 illustrates 64-node platform with four buckets, so each cluster accepts messages from 16
different nodes.

Send

Recv

initiator target

IProbe

Send
Recv

Send

Recv

initiator target

IProbe

Send
Recv

Pi Pj

Send

Recv

initiator target

IProbe

Send
Recv

Pi Pj
Sh

ared
 M

em
o

ry

(a) Two-sided (b) Two-sided
Multi-thread

(c) Two-sided
Multi-thread – Shared

Get Get Get

Communication Computation Message

IProbe

47

Figure 3.10: PRQ extension to support one-sided communication

 Subsequently, such as all commons one-sided communication protocols, the user must
allocate memory and then exposes it in a window. For this reason PtlWinCreate command is
implemented which inserts One-Sided Priority List entry using a unique match_bits, and
subsequently announces the match_bits to all One-Sided participate nodes through
Broadcast collective routine as described in Code 4. Moreover, PtlWin structure is
implemented which keeps all information about One-Sided participants nodes and their
match_bits.

Code 4 PtlWinCreate (void * base_buf , Uns32 size, Ptl_win win)

1 src = nodeId(); //* Get node ID *//

2 if (base_buf != NULL){ //* Create PRQ entry with base_buf addr *//

3 win->match_bits[src] = AssignUniqueMatchBit();

4 PtlPRInsert(base_buf, size, win);

5 }

6 else{ //* Set the node's match_bits equal to zero *//

7 win->match_bits[src] = 0;

8 } //* Send match_bits to other participant nodes *//

9 BroadCast(win->match_bits[src]);

 PtlWin is a simple structure which contains MatchBits and IntraNodes arrays as illustrated
in Figure 3.11. IntraNodes array has NPROCS elements with 1 bit size which contains the
nodes which participate in One-Sided communication, while MatchBits array saves the
match_bits of each participant node. If match bit is equal to zero, this node hasn't memory
for sharing, while some node can participate in One-Sided communication and its match bit
is equal to zero14 (as node 1 in Figure 3.11).

14 In this case the node can only use One-Sided operations to fetch or put remote data, while can't accept
One-Sided operations from other nodes because it hasn't pseudo-shared memory.

Next Pointer

1

2

3

Size

1024

4096

2048

Match Bits Data Addr
Head

Tail

Head

Tail

...

Head

Tail

C
lu

st
e

r0
C

lu
st

e
r3

O
n

e
-S

id
e

d
C

lu
st

e
r

Buffer A

Buffer B

Buffer C

sr
c

=
0

-
15

sr
c

=
48

 -
 6

4
SR

C
_A

N
Y

P
R

Q

48

Figure 3.11: PtlWin Structure

 Hence, each participating node knows the match_bits of other participants using MatchBits
array. For instance, in a 64-node system if node 0 wants to issue a remote put/get operation
to node 2, it can find the node 2 match_bit in O(1) from the MatchBits array. Subsequently,
when the message arrives in node 2, only the One-Sided cluster is traversed so as to find the
appropriate PRQ entry and the appropriate buffer memory concurrently. In all cases, the
target must have called PtlWinCreate before incoming One-Sided messages arrives. Hence,
One-Sided message is never unexpected since PRQ entry was inserted by PtlWinCreate
command. As a result, UMQ and OFQ Lists are never traversed in One-Sided communication,
while in case of a PRQ entry is not found, fatal error is occurred.

3.6.2 Global Arrays Implementation through One-Sided Communication

Global Arrays provides a shared memory style programming environment in the context of

distributed array data structures (called "global arrays"), while from the user perspective, a

global array can be used as if it was stored in shared memory. This subsection presents our

Global arrays implementation using One-Sided communication commands.

 Initially, one table (called GATable) is created with MAX_GA_ENTRIES15 of GAEntry

structure16 for Global Array information. GAEntry, in turn, contains the necessary Global

Array characteristics, such as its name, type (integer, float, double), number of dimensions

(ndim), elements number of each array dimension (dims), pointer of node pseudo-shared

memory (buffer), and one Ptlwin entry as illustrated in Figure 3.12.

15 Implementation can support up to MAX_GA_ENTIES different Global Arrays.
16 Each entry refers to one Global Array.

5

0

3

0

4

N
P

R
O

C
S

MatchBits

1 byte

1

1

1

0

1

IntraNodes

1 bit

... ...

0

1

2

N-1

N

N
P

R
O

C
S

0

1

2

N-1

N

49

Figure 3.12: GATable implementation

 Code 5 shows our implementation of NGA_Create routine. NGA_Create must be called from

all participate processors so as to divide the Global array in equal sizes and distribute it in

each processor. Initially, it searches for available GATable entry and save the GA

characteristics on it. Subsequently, it computes the array size (see next paragraph) which

allocate it (with conventional UserSpace allocation scheme (malloc)) from this node. Finally,

it creates one window using PtlWinCreate command so as to acknowledge its match_bits to

other participants nodes.

Code 5 NGA_Create (int type, int ndim, int ndims[], char array_name[])
Crete one Global Array, divide it and distribute it in each processor

Output: Return index of GATable

1 me = nodeId(); //* Get node ID *//

2 //* Index of available GATable Entry *//

3 GAIndex = SearchAvailableGATableEntry();

4 //* Set the GA characteristics *//

5 GATable[GAIndex].name = array_name;

6 GATable[GAIndex].type = type;

7 GATable[GAIndex].ndim = ndim;

8 GATable[GAIndex].dims = dims;

9 //* Compute the array size for each node *//

10 size_of_thread = SizeOfNode(me,ndim,dims);

11 GATable[GAIndex].buffer = allocate(size_of_thread); //allocate it

12 //* Create one window and return the win properties *//

13 PtlWinCreate(GATable[GAIndex].buffer, size_of_thread,

 &GATable[GAIndex].win);

14 return GAIndex;

 Figure 3.13 shows Global array transformation and the pseudo-shared memory division in

each participant node. For instance, in Figure 3.13(a) is created a Global array with 9

elements, as a result all nodes must allocate 2 elements except from node0 which must

allocate 3 elements. Similar, in Figure 3.13(b) a Global array is created with 11 elements, as

GAEntry

GAEntry

GAEntry

GAEntry

...

char name[]

void * buffer

int type

int ndim

int* dims

GAEntry

GATable

M
A

X
_G

A
_E

N
TR

IE
S

G
A

En
try

PtlWin win

50

a result the first three nodes (0 up to 2) allocate 3 elements while node 3 allocates only 2

elements. In other words, the modulo of Global Array begins to share from nodes with the

smallest id to bigger id. This procedure divides the Global Array with fairness; as the

maximum divergence among the nodes is 1 element.

Figure 3.13: Global Array division

 Code 6 shows the basic transformation functions for targetID and RemoteOffset

computation giving the Global Array Index, as well as the number of GA elements giving the

number of node. For example, in Global Array with 9 elements, the 5th Global Array element

is stored in node 2 with remote_offset 0, while in Global Array with 11 elements, the 5th

element is stored in node 1 with remote_offset 2, etc. Finally, two or greater dimension array

is transformed to one-dimension array so as to compute the target and remote_offset in the

same way.

Code 6 Global Array Transformation Functions

Input: Index of Global Array element

Output: Node which this element is stored

1 int Target(int index, int total_size){

2 int mod = total_size % NPROCS;

3 int div = total_size / NPROCS;

4 return (index<= (mod*div)+mod)? index/(div+1): (index-mod)/div;

5 }

Input: Index of Global Array element

Output: Offset of node's memory which this element is stored

1 int RemoteOffset(int index, int total_size){

2 int mod = total_size % NPROCS;

3 int div = total_size / NPROCS;

4 return (index<= (mod*div)+mod)? index%(div+1): (index-mod)%div;

5 }

Input: Node Identifier

Output: Number of Global array elements which are stored in this node

1 int SizeOfNode(int me, int total_size){

2 int div = total_size / NPROCS;

3 int flag = (total_size % NPROCS) > me;

0

Pseudo-Shared Memory

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

node 0 node 1 node 2 node 3

0

Pseudo-Shared Memory

1 2 3 4 5 6 7 8

0 1 2 3 4 9 10

node 0 node 1 node 3

9 10

5 6 7

node 2

8

(a) Global Array with 9 elements (b) Global Array with 11 elements

51

4 return div + flag;

5 }

 Moreover, all global array functions are implemented minimizing the communication cost.

For instance, if one node wants to fill the whole one-dimension array it must call the

NGA_Put17 function only one time as shown below:

NGA_Put(g_a, lo, hi, buf);

In a simple version of NGA_Put, it issues N PtlPut operations to send the data to appropriate

node using the above transformation functions. In our implementation NGA_Put groups the

PtlPut calls which have the same target ID. For example, in a 4-node platform, the user

creates one-dimension global array with 16 elements, so each node contains 4 element of

global array. If node 0 calls NGA_Put, then only four PtlPut transactions (with four elements

each one) are called, instead of 16 PtlPut transaction with one element each one. Finally, an

abundance of GA functions18 not use any of Portals communication function, because each

node simple write in its UserSpace memory without communication cost.

3.7 Summary of Implemented Routines
This section summarizes Portals (Table 3.2), MPI (Table 3.3) and GA (Table 3.4) routines which

are implemented in this work.

Portals Routine Brief Description

PtlPut Initiates an non-blocking two & one-sided put operation

PtlGet Initiates a remote two & one-sided read operation

PtlAppend Creates a single Priority or Overflow match list entry

PtlMDBind Creates a memory descriptor to be used by the initiator

PtlMDRelease Releases the internal resources associated with a memory descriptor

PtlTriggeredGet Initiates a PtlGet operation when a counting event reaches a threshold

PTL_Barrier Blocks until all processes in the communicator have reached this routine

PtlCTAlloc Allocates a counting event that counts either movement operations or bytes

PtlCTFree Releases the resources associated with a counting event

PtlCTWait Provides blocking semantics to wait for a counting event to reach a given value

PtlCTInc Provides the ability to increment the success or failure field of a counting event

PtlWinCreate Creates a window for One-Sided Portals Communication

PtlWinfree Releases the window for One-Sided Portals Communication

PtlWinFence Synchronizes all Intra-Node19 processors

17 In this case, user must assign lo=0, hi = N, where N is dims[0]. buf contains the data which node wants to
save to Global Array.
18 such as GA_Add, GA_Scale, GA_Zero
19 Intra-Node processor is one processor which participate in a common window.

52

PtlPRInsert Inserts a PR entry to one-Sided Cluster

PtlPRDelete Deletes the PR entry to one-Sided Cluster

Table 3.2: Implemented Portals Routines

MPI Routine Brief Description

MPI_Init Initialize the MPI execution environment through Portals environment

MPI_Finalize Terminates MPI execution environment

MPI_ISend Begins a nonblocking send

MPI_Irecv Begins a nonblocking receive

MPI_Recv Blocking receive for a message

MPI_Wait Waits for an MPI request to complete

MPI_Alltoall Sends data from all to all processes

MPI_Alltoallv Sends data from all to all processes; each process may send a different amount of
data and provide displacements for the input and output data

MPI_Allreduce Combines values from all processes and distributes the result back to all processes

MPI_Reduce Reduces values on all processes to a single value

MPI_Bcast Broadcasts a message from one process to all other processes

MPI_Barrier Blocks until all processes in the communicator have reached this routine

MPI_Comm_rank Determines the rank of the calling process in the communicator

MPI_Comm_size Determines the size of the group associated with a communicator

Table 3.3: Implemented MPI Routines

GA Routine Brief Description

GA_Init Initialize the GA execution environment through Portals environment

GA_Terminate Terminates GA execution environment

GA_Nodeid Determines the rank of the calling process in the communicator

GA_Nnodes Determines the size of the group associated with a communicator

NGA_Create Creates Global Array with pseudo-shared memory

GA_Destroy Destroys the Global Array from all nodes

GA_Duplicate Duplicates an existing array

NGA_Put Performs remote write. The data is simply accessed as if it were in shared
memory

NGA_Get Performs remote read. The data is simply accessed as if it were in shared memory

NGA_Acc Performs atomic remote update to a patch (a section of the global array)

NGA_Read_inc Performs atomic remote update to an element in the global array

GA_Print Prints the entire array to the standard output

GA_Fill Assigns a single value to all the elements in an array

GA_Sync Acts as a barrier, which synchronizes all the processes and ensures that all the
Global Array operations are complete at the call

53

GA_Add Adds two arrays and saves the results to third array

GA_Dgemm Performs matrix multiplication: C := alpha * A * B + beta * C, where alpha and
beta are scalars, and A, B and C are matrices

GA_Zero Sets all the elements in the array to zero

GA_Scale Scales all the elements in the array by val factor

GA_Copy Copies the contents of one array to another

GA_Dgop Combines values from all processes and distributes the result back to all
processes

NGA_Distribution Finds out the range of the global array that each process owns

NGA_Access Provides access to local data in the specified patch of the array owned by the
calling node

Table 3.4: Implemented GA Routines

54

4
From Virtual Accelerator to Silicon

This chapter presents the most significant enhancements/changes needed so as to transform

the functionality of the Portals accelerator to silicon as well as micro-architecture exploration

for an efficient implementation for our design. Finally, it describes the implementation of

multi-node H/W platform and the verification methods which is used so as to verify our cycle-

accurate accelerator behavior.

4.1 Introduction to High Level Synthesis
Since the last decade, the electronics industry has been challenged by the increasing

complexity of digital systems combined with tight time-to-market schedule. In order for chip

design projects to succeed, designers must create and verify differentiated hardware more

quickly than their competitors. Unfortunately, today's design flows begin by manually writing

an RTL description, modeling the C/C++ function behavior. Moreover, the RTL description

codifies the micro-architecture that will be implemented, largely determining the final

Performance, Power and Area (PPA) with minimal ability to explore more optimal

alternatives. This inflexibility has negatively affected the risk/reward tradeoff of introducing

new hardware.

 Figure 4.1 illustrates the productivity of new design using different abstraction layers as

described in [13]. Starting with the transistor level, moving up to gate level, and then to RTL,

55

hardware design productivity has kept pace with the advances in silicon capacity. In the last

decade the productivity has lagged because the shift from RTL to higher level descriptions

has taken longer than expected due to the lack of production-worthy high-level synthesis

tools. So, in order to make the next productivity leap, high-level synthesis must deliver an

automated path for the entire design from Cycle-Accurate high level descriptions to RTL while

delivering PPA that is at least as good as what is achieved with handwritten RTL.

Figure 4.1: Productivity of new design using different abstraction layers

 Until now, over 30 industrial and open-source High Level Synthesis tools are released as

described in [14]. In this work Cadence C-to-Silicon compiler is selected which reads in a

SystemC description of the hardware architecture and generates a Verilog RTL micro-

architecture utilizing the high-level constraints that are unique to the target product

requirements and process library [13]. The implementation constrains are kept separate

from the designs functionality, as a result the same verified SystemC model is easily re-

targeted for different end products with different requirements and process libraries. Finally,

Ctos contains an amount of verification methodologies at the implementation process; one

of them eliminates the most bugs before RTL is even created while if bugs need to be fixed

later during implementation the automated engineering change order (ECO) capability is

applied so that the project can stay on schedule.

1

10

100

1000

10000

Transistor Gates RTL HLS

P
ro

d
u

ct
iv

it
y

(G
at

e
s/

D
ay

)

56

4.2 Hierarchy of Hardware Implementation
This section presents an abstract of our novel Portals Hardware Acceleration

implementation. Especially, Figure 4.2 illustrates the SystemC files which are used in this

work. Each archive icon consists from its implementation file (.cpp) and a header file(.hpp)

so that the below modules in the hierarchy can connect with it.

Figure 4.2: Hierarchy of H/W SystemC files

 Figure 4.2 is separated to three frames, the Portals Hardware implementation frame,

MPI/GA wrappers frame and application frame. Initially in first frame, top of the module is a

list Hardware implementation with insert/search/delete operations for the three Portals list

and allocator implementation. At the next hierarchy layer, there are two basic Accelerator

modules; the list manager implementation which orchestrates three fast lists modules (one

for each Portals List) and the allocator implementation which is used for dynamic memory

allocation for the Unexpected message payloads, while in the same layer, vendor ram is

implemented for the UM payload buffer with handwritten RTL Verilog as described in detail

in the next sections. Subsequently, functionality of Portals routines are implemented by

accelerator module, while a multithread platform is implemented so as to evaluate the

effectiveness and accuracy of our Hardware Accelerator. Furthermore, a driver module

implements the Portals routines using our novel H/W Accelerator and connects them with

our multithread platform as described in detail in the next sections. In second frame, mpi

and ga drivers implements the corresponding routines as described in Chapter 3 using Portals

implemented routines in H/W. Finally, in third frame is the application which uses either MPI

List.cpp

#include “driver.hpp”
int main(){
 <main body>
}

List.hpp

LM.cpp

LM.hpp

Alloc.cpp

Alloc.hpp

SRAM.v

SRAM.lib

SRAM.xml

Acc.cpp

Acc.hpp

threads.cpp

threads.hpp

Driver.cpp

Driver.hpp

MPI.cpp

MPI.hpp

GA.cpp

GA.hpp

Portals Hardware Implementation

Application

Synthesis

MPI / GA Wrappers

Synthesis Synthesis

Synthesis

Synthesis

57

or GA routines. All files are written in SystemC language, while list, listmanager, allocator and

accelerator files are written in synthesizable SystemC.

4.3 Transformation to Cycle-Accurate SystemC
This section shows the most significant enhancements/changes needed so as to transform

the functionality of the Portals accelerator in C to a fully synthesizable SystemC module.

Those transformations can act as a guideline for any accelerator design using the proposed

design flow.

4.3.1 Module Interfaces and Synthesizable Code Style

In our high-end simulation environment, the behavior of the hardware is described in

separate virtual entities each one comprised of a set of procedures/functions (implementing

the actual functionality) and data structures (implementing the underlying hardware

structures). For example, our list manager entity is implemented as a set of insert, search and

delete functions together with a set of structures modeling the lists and the underlying

allocating nodes. Describing such a software entity in hardware requires its interfaces to the

other entities and enriching its functionality with timing information.

 The following code-segment compares the basic building blocks of our listManager
implementation in Untimed C and Synthesizable SystemC respectively. In both
implementations SRAMEntry is declared which stores the payload and points to the next
element. Untimed C includes special keywords (void*) in order to disassociate the
architecture from the data, while hardware description languages (HDLs) have no such
capabilities; so C++ templates are used to separate the architecture from the data dependent
operations as described in detail in the next section. Furthermore, SystemC SC_MODULE is
created to describe our implementation20. In addition, in order to convert the untimed high-
level software to cycle-accurate hardware implementation, clk and reset signals must be
determined as well as all data that feed the entity's functions (sc_in) and those that are the
results of the function's execution (sc_out). Moreover, all memories which related with the
module are declared in SC_MODULE while the final implementation21 is determined in
scheduling phase as described in the following sections. Subsequently, SC_CTOR constructor
describes the type and number of processes which the module can support. For instance our
listManager contains four different processes; one for list initialization and three for list
operations (insert, search, delete). All processes are implemented with the most common
type of SystemC process, the SC_CTHREAD. The main reason behind our selection was that
CtoS is able to perform more advanced transforms and optimizations on thread processes
than other processes types. For example, CtoS can move operations to different states to

20 A SystemC module is simply a C++ class that derives from SystemC class sc_module, which can be conveniently

specified using the SC_MODULE macro.
21 CtoS provides several options for mapping an array in SystemC to a physical memory implementation; such

as SRAM, DRAM, number of ports, latency etc.

58

share hardware, insert additional cycles to resolve timing problems, and pipeline loops to
improve performance. As a result with this process it is easier to convert untimed C or C++
code to a SystemC thread process.

Untimed C ListManager Header File SystemC ListManager Header File

1 struct SRAMEntry{ template <class DataType>

2 void *payload; class SRAMEntry{

3 void *next; DataType payload;

4 }; unsigned long next;

5 };

6

7 struct ListManager SC_MODULE(listManager){

8 List *allocated; List allocated[LISTS_NUM];

9 List unallocated; List unallocated;

10 SRAMEntry **SRAM; SRAMEntry SRAM[SRAM_SIZE];

11 };

12 sc_in<bool> clk;

13 sc_in<bool> reset;

14

15 int searchList(ListManager *list, sc_out<bool> itemFound;

16 int listId, sc_in<unsigned short> listId;

17 void *element, sc_in<DataType> element;

18 SRAMEntry **previous, sc_out<unsigned long>previous;

19 SRAMEntry **current); sc_out<unsigned long>current;

20

21 SC_CTOR(listManager):

22 SC_CTHREAD(search, clk.pos);

23 ...

24 }

25 }

 Above code-segment is placed in header file so as to declare the interface of the module,

while the following code-segment describes the actual module functionality for search

operation. Code before the first wait() resets all outputs signals with the write() SystemC

function, while the following lines describe the module functionality using an infinite while

loop. Since this process describes the intended hardware, the function of the thread should

never return, as this would terminate the thread. In contrast it should call wait() to mark the

end of a clock cycle and suspend the process until the next clock event. Two significant

differences between the Untimed C and SystemC are the iterator and CompareData

implementations. Iterator is implemented as a simple unsigned long integer (pointers are

prohibited) which points to the next position of SRAM, while CompareData is placed in

Message Header in order to disassociate the architecture from the data22.

22 Each message Header contains its CompareData inline function, as a result changing Header File
CompareData function is changed concurrently.

59

Untimed C Search Thread SystemC Search Thread

1 searchList(ListManager *list, void listManager::search_thread(){

2 int listId, void *element <Reset all output signals>

3 char (*compareData)(void *,void *), previous.write(0);

4 SRAMEntry **previous, current.write(0);

5 SRAMEntry **current itemFound.write(0);

6){ wait();

7 while(1){

8

9 SRAMEntry *iter = unsigned long iter =

10 (list->allocated[listId]).head; allocated[listId].head;

11 *previous = NULL; previous.write(0);

12 bool itemFound = 0; itemFound.write(0);

13

14 for(;iter;){ for(;iter;){

15 if(compareData if(SRAM[iter].payload.

16 (iter->payload,element)){ CompareData(element)){

17 itemFound = 1; itemFound.write(1);

18 *current = iter; current.write(iter);

19 break; break;

20 } }

21 *previous = iter; previous.write(iter);

22 iter=iter->next; iter = SRAM[iter].next;

23 wait();

24 } }

25 return itemFound; }

26 }

4.3.2 Generic Data Structures

The architecture and the functionality of a hardware module can be independent from data

type it supports. Higher level languages like the ones used at the functional level (e.g. C, C++)

include special keywords (e.g. void*) in order to disassociate the architecture from the data.

Synthesizable portions of the hardware description languages (HDLs) have no such

capabilities and hence moving directly from high-level to low-level descriptions requires

mixing architecture with data specific code, resulting to error-prone and probably non-

reusable code.

 In our untimed high-level software an abundance of modules were implemented using void

pointers, while in SystemC their functionality were encapsulated in a SystemC module and

the architecture was separated from the data dependent operations using C++ templates, as

shown in the following code of the list manager's Untimed C and SystemC code respectively.

60

Untimed C Dynamic Memory Declaration SystemC Static Memory Declaration

1 void initFastList(fastList *listP, 1 template <class DataType, long

2 int LISTS_NUM, long SRAM_SIZE 2 SRAM_SIZE, long LISTS_NUM>

3 void (*init_data)(void *)){ 3

4 <Allocate 1st dimension of SRAM> 4 SC_MODULE(listManager){

5 listP->SRAM = calloc(SRAM_SIZE, 5 ...

6 sizeof(SRAMEntry *)); 6 SRAMEntry <DataType>

7 <Allocate 2nd dimension of SRAM> 7 SRAM[SRAM_SIZE];

8 for(i = 0;i < SRAM_SIZE;i++){ 8 sc_in<DataType> element;

9 listP->SRAM[i] = calloc(1, 9 ...

10 sizeof(SRAMEntry)); 10 List allocated[LISTS_NUM];

11 init_data(&(listP->SRAM[i])->payload); 11 }

12 } 12

13 <Allocate Allocated Lists> 13

14 listP->allocated = calloc(LISTS_NUM, 14

15 sizeof(List)); 15

16 }

 In the case of Untimed C, the type of Portals queues is assigned dynamically through

init_data fynction. In contrast in SystemC the DataType is substituted at compile time by a

structure modeling a Portals message whereas in the case of memory allocator's list, it is

substituted by a corresponding allocation entry. Above code-segment shows the data

structure declarations and dependencies in both untimed C and SystemC language.

4.3.3 Cycle Accurate Timing Model

In the case of untimed software, the functions releasing the actual functionality of a software
entity are fed with data only whenever they are called. In a hardware implementation, each
function is triggered during every clock cycle and thus certain signals should be added in
order to mimic the software's control flow. In this thesis, a pair of signals
enable_function_name, disable_function_name are added at each function, so that a four-
phase hand shake protocol is applied by both the calling and the callee function thread.
During the reset phase both interface signals are low. A calling function triggers the
enable_function_name, while callee function triggers the disable_function_name.
Whenever the calling function wants to call the callee function, it asserts the
enable_function_name, while if the callee function is able to process the request it
responds by asserting the disable_function_name, and begins the execution according to
its control flow. When the processing is finished, the callee checks whether the calling
function has reset the enable_function_ name and if this is the case, it resets the
disable_function_name signal and returns to its initial state.

 Moreover actual hardware requires specifying the functionality that should be processed
at every clock cycle. In other words, the operations executed at every state of the control
flow should be explicitly defined either source code or micro-architecture specification
during scheduling phase as described in the next sections. In case of source code definition

61

the control flow is performed by inserting wait statements which represent the clock
registers separating the combinational logic.
 The following code-segment shows the four-phase handshake protocol and iteration
performing (for MDTable traversing) in MD_Bind function. The wait statement inserted
guarantees that each clock cycle performs one for iteration.

Cycle Accurate Timing Model MD_Bind

1 void PortalsAcc::MD_Bind(){

2 ...

3 while(1){

4 while(enable_bind.read() == 0){wait();}

5 disable_bind.write(1);

6 ...

7 <function body>

8 for(i=0;i<MD_ENTRIES;i++){

9 <processing>

10 ...

11 MDTable[i].used = 1;

12 wait();

13 }

14 ...

15 while(enable_bind.read() == 1){wait();}

16 disable_bind.write(0);

17 }

18 }

4.4 ListManager implementation
The list manager performs three basic list operations as described in Chapter 3, however as
the number of communicating nodes increases, the number of list entries increases triggering
an increase in the time needed in order to linearly search them. For this reason, hashing
scheme is implemented which assumes that the number of available buckets is a power of
two, leading to an efficient hardware implementation. For example the modulo function i%M
reduces to i&(M-1). Although in Software implementation this is analyzed to a binary '&' and
a subtraction by 1, in hardware no logic is needed, as the hashing function reduces to
selecting the M LSBs of i. The above indicate that the hardware implementation of the
proposed hashing scheme has negligible overhead. Following code-segment shows our
PriorityList hashing function. PriorityList is responsible for both one-sided and two-sided
communication. Especially, if the incoming message is two-sided the above modulo function
is used, whether if it is one-sided the last23 cluster is assigned to PRListId. For instance, for
PR_LIST_NUM equal to 16, 17 clusters are implemented in total; two-sided communication
uses cluster with range 0-15, while one-sided uses the 16th cluster24.

23 One more cluster is implemented for OneSided communication in PriorityList.
24 OneSided communication not uses our hashing scheme as described in the previous Chapter.

 62

Priority List Hashing Function

1 if(OneSidedCommunication == 0){

2 PRListId.write(Source & (PRLIST_NUM-1));

3 }

4 else{

5 PRListId.write(PRLIST_NUM);

6 }

 Finally, in this work a Lighter Edition List of the manager is implemented targeting area and

power savings. This version uses only one list for PR,UM,OF Lists representation. Hence,

different message Header is used for insert, search and delete functions which contain

Portals List kind information.

4.5 Micro-architecture Exploration
In the Specifying Micro-architecture step of the CtoS flow, the designer provides additional

information to help CtoS implement his design as closely as possible to his design goals[15].

This section presents our micro-architecture declarations for an efficient implementation for

our design, focusing in un-resolving loops and memories.

4.5.1 Resolving loops

 At many times, in HLS languages there are combinational loops which must be eliminated
before synthesis because they cannot be implemented in hardware. A loop is said to be
combinational if at least one program execution from the top to the bottom of the loop does
not include waiting for a clock edge. In Ctos there are two common operations to resolve the
combinational loops, (i) unroll and (ii) break them with different advantages and drawbacks
in each one. Completely loop unrolling essentially eliminates the loop increasing the number
of operations, because operations inside the loop are copied many times. In other words all
loop operations are executed in one cycle increasing dramatically both area and
performance. On the other hand, loop braking is another option which simply inserts states
in the loop increasing the latency required to implement the behavior and decreasing the
area. In this work both of the two above operations are used in different loops. Specifically,
if the loop contains a small number of operations inside the loop and the total number of
iterations is quite small, then the unroll operation is used, while in case of loops with many
iterations break operation is used so as to keep the critical path short. The following code-
segment is an example of higher_power_of_two function which computes the higher
power of two at given 32bit number_input and CT_Alloc function for CTTable
allocation. In the first loop, unroll operation is used as the max_number of iteration is 32 and
the loop contains only one comparator and shift left operation. On the other hand, in the
second loop, break operation is used through wait statement as the loop needs to read and
write the one port CTTable array25.

25 One port Array needs one clock cycle to read or write their elements.

63

Higher Power of two Returns the power of two which is greater or equal to input number

1 leadZeroPos = 32;

2 mask0 = 1 << (leadZeroPos-1);

3 for(;leadZeroPos>=0;leadZeroPos--){

4 if(number_input > mask0){

5 break;

6 }

7 mask0 >>= 1;

8 }

Portals CT Table Allocation

1 for(j=0;j<CT_ENTRIES;j++){

2 <search for free CTTable entry>

3 CTTable[i].used = 1;

4 wait();

5 }

4.5.2 Memory Implementation

 This subsection presents the possible options for mapping an array to physical memory

using Ctos and subsequently it describes the options which are used in this work. Especially,

CtoS provides four options for mapping an array in SystemC to a physical memory

implementation: (i) flatten, (ii) built-in, (iii) prototype and (iv) vendor array; each option is

optimal for a different array use case or access pattern. Flatten option creates an array of

registers; this option is best for very small arrays while it increases the number of registers

dramatically. Buit-in operation implements the arrays as built-in SRAMs; this is the desired

choice when the number of array words is medium (nearly 256 words or fewer [15]), but

multi-process access is required. Prototype operation has fastest runtime but it does not

represents actual hardware, hence it must be replaced before final implementation. Finally,

in vendor option the designer inserts handwritten Verilog RAM implementation; typically a

better option for very large arrays.

 In this work only built-in and vendor options are used because the flatten option increases

the number of registers dramatically, while prototype option does not represent actual

hardware. More specifically, the Accelerator Buffer (Figure 3.4) is implemented with fast (2-

ports read / 2 ports write) SRAMs26 using built-in option because these entries should be

performed efficiently without having to access the local host memory. Additionally, the

buffer for unexpected messages payload is implemented using a 4MB Vendor (2-ports read

/ 2 ports write) DRAM as described in the following code-segment using handwritten Verilog

26 2ports read SRAM can read and fetch two elements per clock cycle, and simultaneously (2ports write) can
write two elements per clock cycle.

64

Vendor DRAM. Moreover, Vendor DRAM technology library is used so as to describe the

DRAM constrains while xml file is used to include the above DRAM to whole design.

Handwritten Verilog Vendor DRAM

1 reg [DATA_WIDTH-1:0] MEM [0:NUM_WORDS-1];

2

3 //write behavior port

4 always @(posedge CLK) begin

5 if(CE0 & WE0) begin

6 MEM[A0] <= D0;

7 end

8 end

9

10 ...

11

12 //read behavior port

13 always @(posedge CLK) begin

14 if(CE2) begin

15 Q2 <= MEM[A2];

16 end

17 end

4.6 Implementation of multi-node Platform
This section presents our implementation of multi-node Hardware platform so that

architecture parameters can be evaluated with realistic software programs and not with

corner testcases and synthetic benchmarks.

 The following code-segment shows the union of SystemC hardware threads to software

threads in top module. Initially, top module creates NPROCS SystemC processes with

different names and thread numbers (thread_no) using SC_CTHREAD. Subsequently, each

SystemC thread creates a S/W thread with the given thread_no. Hence, main function is

created with NPROCS SystemC threads, while pthread_self function is used for node

identification.

Union of Software - Hardware threads

1 THREADS *node[NPROCS];

2 <Create Hardware Threads>

3 for(i = 0; i<NPROCS;i++){

4 sprintf(name,"NODE%d",i);

5 node[i] = new THREADS(name);

6 node[i]->clk (clock);

7 node[i]->reset (reset);

8 node[i]->thread_no(i);

9 }

65

10

11 void THREADS::create_thread(){

12 <Each Hardware Thread calls one Software Thread>

12 pthread_create(&(tid[thread_no]), &main);

13 pthread_join(tid[thread_no]);

14 }

 An overview of Hardware Accelerator intercommunication which is used in this work is

shown in Figure 4.3. Similar to our Software implementation, one hardware accelerator has

2 local ports (one input & one output) to communicate with its processor, and 2 connection

ports to communicate with the other accelerators. Especially, each processor is a Software

thread which is created from pthread_create function, so it has not inputs and outputs

ports27; in Figure 4.3 processor is shown to has ports for the sake of uniformity. Moreover,

unlike the Software implementation, in hardware implementation each accelerator has only

one remote input and remote output28, as a result it can receive only one message at any

time. Hence, in case of two initiators send one message to same destinator at the same time,

the destinator can't receive one of two messages. For this reason, one queue is placed in

each remote accelerator input with max_size equal to NPROCS29 as illustrated in Figure 4.3.

Figure 4.3: Hardware Accelerator intercommunication

27 Each processor calls its Portals accelerator simply.
28 In Software implementation each accelerator has NPROCS ports (one for each incoming message from
different initiator). In Hardware, this approach is prohibitive because the number of inputs and outputs (and
silicon area) are increased dramatically.
29 This size supports the case of all nodes send one message to same destinator node.

NODES[N-1]

PROCESSOR[N-1]

PORTALS
ACCELERATOR[N-1]

local
inputs

local
outputs

remote
inputs[N-1]

remote
outputs[N-1]

inputs

outputs

NODES[0]

PROCESSOR[0]

PORTALS
ACCELERATOR[N-1]

local
inputs

local
outputs

remote
inputs[0]

remote
outputs[0]

inputs

outputs

...

OUTPUT[0]

REMOTE
OUTPUTS
SCHEME

OUTPUT[1]

OUTPUT[N-2]

OUTPUT[N-1]

...

INPUT[0]

REMOTE
INPUTS
SCHEME

INPUT[1]

INPUT[N-2]

INPUT[N-1]

...

M
E

SS
A

G
E

[1
]

...
M

E
SS

A
G

E
[N

-2
]

Queue

N
P

R
O

C
S MAX SIZE

NPROCS

66

4.7 Hardware Acceleration Verification
A major benefit of SystemC-based high-level-synthesis (HLS) design that is rarely explored is

improved verification turnaround and productivity. In other words, a SystemC block design

can be expressed in 80% fewer lines of code than RTL, which minimizes the number of

potential bugs while promoting functional verification at the interface, function, and protocol

levels. Figure 4.4 presents the positive productivity gains in this level of code compaction as

described in [16].

Figure 4.4: Productivity gains with software-driven SoC design

 A highly productivity relies on the design and verification progressing concurrently, from a

high level of abstraction all the way to gate-level implementation as shown in Figure 4.5

[16]. For verification, the focus is to verify functionality at the highest possible level of

abstraction available, and then avoid duplication of effort by directing additional verification

activities towards the new and modified design functionality added at each stage of the

design refinement process.

0

25

50

75

100

SystemC
(synthesizable)

RTL Verilog
(human)

Si
m

u
la

ti
o

n
 T

im
e

(%
)

0

200

400

800

1000

RTL Verilog
(human)

SystemC (for synthesis)
C/C++ (algorithm)

Li
n

e
s

o
f

C
o

d
e

600

67

Figure 4.5: Design Flow

 The goal is a single common verification environment that spans the different abstraction

levels of the SoC design. A single common verification plan is defined such that it outlines the

features to be verified in each specific level of design. As architectural decisions are made

that bring the design closer to implementation, the verification environment is concurrently

extended to test those architectural choices.

 Totally, our design is verified through three stages as illustrated in Figure 4.6. Initially, pure

SystemC simulation model is verified (Figure 4.6a) so as to compare the SystemC instruction-

accurate accelerator behavior with the software one (implemented in untimed C) using wide

range of testbenches as described in Chapter 5. In the next step (Figure 4.6b), Verilog

behavioral model is generated by Ctos environment with the appropriate wrapper (Top

Wrapper), while verification wrapper is used to compare the Verilog behavioral model with

the pure SystemC model. Finally in the third verification step (Figure 4.6c) RTL Verilog with

exported RAMs is generated by Ctos during the scheduling step using the micro-architecture

specifications. Similar to second step, wrapper is used to compare the RTL Verilog model with

the pure SystemC model.

D
es

ig
n

SystemC
Virtual Prototype

SystemC
HLS-Ready

RTL Gates

Model System
Early Software

Driver Develelopment

Explore Architecture
Analyze tradeoffs

Generate RTL

Measure QoR
Generate Gates

Place and Route
Generate GDSII

V
er

if
ic

at
io

n
 P

la
n

Hardware/Software
Partition

Primary Functional
Verification
and Debug

Regress RTL
LEC: Function

 Algorithm
 - Function
 - Performance

 Architecture
 - Function
 - Protocol Timing

 Micro-Architecture
 - Function
 - Register Timing

 Implementation
 - Function
 - Gate Timing

Simulation Environment: Single Testbench

STA: Gate Timing

68

Figure 4.6: Hardware Accelerator Verification Phases

 A verification wrapper is a SystemC model with a parameterized constructor that

configures the design to be simulated. In addition to the model under test, the original

SystemC model can also be instantiated as a reference model inside a wrapper for

cycle-by-cycle comparisons of the model under test output and the original SystemC

model output as described in the following code-segment for our Portals Accelerator.

Union of Software - Hardware threads

1 SC_MODULE(wrapper){

2 ...

3 PortalsAcc ref; // SystemC reference model

4 PortalsAcc_ctos rtl; // RTL model

5 ...

6 }

7

8 void compare_outputs(){

9 int out_ref;

10 while(1) {

11 wait();

12 while(!OUT1_VALID_ref.read()) wait();

13 out_ref = OUT1_ref.read();

14 while(!OUT1_VALID.read()) wait();

15 if(out_ref != OUT1.read())

16 cout << " Verification wrapper has found a mismatch! "

17 }

18 }

Verification Wrapper

SC sim

Top Wrapper

VL sim

testbench SSC simtestbench SSS

Verification Wrapper

SC sim

Top Wrapper

RTL

testbench S S

RAM

(a) SystemC Simulation
Model

(b) Verilog Behavioral
Model

(c) Verilog RTL model
with exported RAMs

69

5
Results

This chapter provides the experimental results of our work. Section 5.1 describes certain
benchmarks of widely used NPB suite, and one Molecular Dynamic benchmark in order to
prove the accuracy of the introduced framework. Section 5.2 illustrates the abstraction level
specification results using HLS tool. Section 5.3 presents the average and maximum search
depth of Portals Queues using realistic scenario benchmarks. Sections 5.4 - 5.5 present MPI
and GA Results of a wide variety of Routines, and finally, Section 5.6 presents the Area and
Power Results of Portals Accelerator. We compare the performance of our novel system with
that of a high-end Intel CPU E8400 as well as with an ARM Cortex A9 [ARM 2013] state-of-
the-art embedded processor executing the exact same MPI (from the most widely used
openMPI library) and GA tasks on top of the Fedora 14 Linux OS and Ubuntu 12.04 Linux OS
respectively. The high end processor performance is measured using the Intel VTune [vtu
2012] profiler. The embedded processor is evaluated using the API provided by the OVP
simulation for measuring exactly the number of cycles consumed with the average CPI and
frequency of ARM A9. Finally, the performance gain of our Portals hardware approach is
evaluated with cycle accurate model of SystemC when compared with the same Portals
Routines in Software.

70

5.1 Benchmarks
Four benchmarks of widely used NAS Parallel Benchmarks (Table 5.1) and one molecular
dynamic benchmark were used to evaluate the suggested Portals implementation presented
in Chapters 3 and 4.
 The NAS Parallel Benchmarks (NPB) are comprised of a set of parallel algorithms designed

to evaluate the performance of parallel supercomputers [17]. The benchmarks are derived

from computational fluid dynamics (CFD) applications, adaptive mesh, parallel I/O, multi-

zone applications, computational grids etc. We select IS, FT, EP and DT NAS benchmarks as

they utilize a wide range of MPI routines. EP is an “embarrassingly parallel” kernel, which

evaluates an integral by means of pseudorandom trials. FT is a 3-D partial differential

equation solution using FFTs. This kernel performs the essence of many “spectral” codes. It

is a rigorous test of long distance communication performance. IS implements a large parallel

integer sort algorithm. This kernel performs a sorting operation that is important in “particle

method” codes. It tests both integer computation speed and communication performance.

Finally, DT (Data Traffic) works with randomly generated data using trees and a shuffle as

data flow patterns.

 Molecular Dynamics (MD) is widely used to simulate many particle systems ranging from
solids, liquids, gases, and biomolecules on Earth, to the motion of stars and galaxies in the
Universe. We select Molecular Dynamics of Lennard-Jones System benchmark which
computes energy fluctuation (using Global Arrays) per particle in a wide range of pressure
and temperature values[18].

NAS Parallel Benchmark Brief Description

IS Implements a parallel integer sort algorithm

FT Finds a 3D partial differential equation solution using FFTs

EP Evaluates an integral by means of pseudorandom trials

DT Generates randomly data using trees
Table 5.1: NAS Benchmark Suite

5.2 Abstraction level specification results
 This section describes the results of the abstraction levels which are used until the cycle

accurate RTL Verilog. As described in Figure 5.1 the lines of code is tripled from UntimedC to

synthesizable SystemC. The main reason is that synthesizable languages require micro-

architecture specification as well as interface definition enriching the functionality with

timing information. Especially, in the case of untimed software, the functions releasing the

actual functionality of a software entity are fed with data only whenever they are called. In a

hardware implementation, each function is triggered during every clock cycle and thus

71

certain signals should be added in order to mimic the software's control flow. Moreover

actual hardware requires specifying the functionality that should be processed at every clock

cycle inserting wait statements which represent the clock registers separating the

combinational logic. Finally, higher level languages like UntimedC include special keywords

(e.g. void) in order to deassociate the architecture from the data, while HDLs have no such

capabilities and hence the architecture was separated from the data dependent operations

using C++ templates.

 The goal of HLS is to let hardware designers efficiently build and verify hardware, by giving

them better control over optimization of their design architecture, and through the nature

of allowing the designer to describe the design at a higher level of tools while the tool does

the RTL implementation. A major benefit of moving to this level of design that is rarely

explored is improved verification turnaround and productivity. Our SystemC block design can

be expressed in 90% fewer lines of code than Verilog RTL as illustrated in Figure 5.1.

Figure 5.1: Productivity gains in our design using HLS tool

5.3 Portals Queues
This section examines the scalability of the Portal implementation presented in Chapter 3

using the MPI collective routine MPI AlltoAll. MPI_Alltoall is a collective operation in which

all processes send the same amount of data to each other, and receive the same amount of

data from each other. Hence, it is expected that the size of the Portals queues grows linearly

with the number of nodes in the parallel system. Initially, we measure the average and the

maximum search depth of Portals queues, observing that as the number of nodes increases

12.6 %

0

25

50

75

100

Untimed C RTL Verilog
(HLS tool)

Li
n

e
s

o
f

co
d

e
(%

)

3.7 %

SystemC
(synthesizable)

 72

the average search depth increases by the same factor, doing the search cost of multi-

thousand node platform prohibitive. We attach this problem utilizing our hashing scheme

presented in Chapter 3. The results indicate that our hashing scheme with small number of

buckets can be traverse the Portals Lists in almost constant time. Finally, we examine a

realistic scenario where a host node has received numerous unexpected messages.

5.3.1 Average Search Depth in Portals Queues

This subsection shows the average search depth of Portals queues as measured in our
embedded platform as illustrated in Figure 5.2. For the three lists average search depth were
shown to grow linearly (x-axis is exponential) with the number of processing nodes. In MPI
AlltoAll Routine as described in 5.2 all nodes "do the same work", as a result PRQ and UMQ
Lists have the same average search depth (call same number of MPI_ISend and MPI_IRecv
Routines). On the other hand the OFQ has greater average search depth from PRQ/UMQ
because Portals allocates constant number of OFQ entries during initialization. More
specifically, Ptl_Init allocates N OFQ entries (one of each node), where N is the number of
nodes. In MPI AlltoAll Routine on average half of messages are unexpected, as a result OFQ
has average search depth N/2 approximately30.

Figure 5.2: Average Search Depth

5.3.2 Average Search Depth in Portals Queues using our Hashing Scheme

As the number of communicating nodes increases, the number of list entries increases
(Figure 5.2) triggering an increase in the time needed in order to linearly search them. For
this reason we utilize a hashing scheme, so that the lists can be traversed in almost constant
search times. Figure 5.3 illustrates the average search depth using our hashing scheme. While

30 N is the number of nodes.

0

10

20

30

40

50

60

70

2 4 8 16 32 64 128

A
ve

ra
ge

 S
e

ar
ch

 D
e

p
th

NPROCS

PRQ/UMQ

OFQ

73

the curves of Figures 5.2 and 5.3 are identical, the average search depth is decreased by half,
doubling the number of buckets.

Figure 5.3: Hashing Scheme with (a) two buckets (b) four buckets

Figure 5.4: Maximum and Average Search Depth for 128 nodes w.r.t. Number of Buckets

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

A
ve

ra
ge

 S
e

ar
ch

 D
e

p
th

NPROCS

PRQ/UMQ OFQ

0

5

10

15

20

2 4 8 16 32 64 128

A
ve

ra
ge

 S
e

ar
ch

 D
e

p
th

NPROCS

PRQ/UMQ OFQ

22
11 6 3 2 1 1 10

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

P
R

Q
 E

n
tr

ie
s

Hash Buckets for 128 Procs

Max.Search Depth Avg.Search Depth

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

U
M

Q
 E

n
tr

ie
s

Hash Buckets for 128 Procs

Max.Search Depth Avg.Search Depth

65

33

17
9 5 3 2 20

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

O
FQ

 E
n

tr
ie

s

Hash Buckets for 128 Procs

Max.Search Depth

Avg.Search Depth

74

 Subsequently, Figure 5.4 shows the results of the maximum search depth and the average

search depth of the PRQ - UMQ - OFQ when the MPI AlltoAll benchmark is executed. In this

experiment, 128 nodes with 1, 2, 4, 8, 16, 32, 64 and 128 buckets were simulated. The

configuration with a single bucket matches the one of the conventional serialized list-based

scheme. The serialized list-based solution has worst-case depth of 128 entries in all of the

three lists. Increasing the number of buckets by a factor of 8 results to decreasing the

maximum search depth by the same factor. The above shows that the messages are evenly

split to hash buckets. However, the maximum search depth only affects the resources utilized

and the average search depth is a better metric for the performance of the system. The same

figure demonstrates that average search depth for PRQ/UMQ is 22 entries, which can be

reduced to 11, 6, 3, 2, 1 for configurations with 2, 4, 8, 16, 32 buckets respectively, while the

OFQ begins with 65 in serialized version, a number which is reduced to 33, 17, 9, 5, 3 with 2,

4, 8, 16, 32 buckets respectively.

Figure 5.5: Queue Processing Speedup (a) 16 nodes, (b) 32 nodes, (c) 64 nodes, (d)128 nodes

0

100

200

300

400

500

PRQ UMQ OFQ

1,9 1,4 2

Sp
e

e
d

u
p

NPROCS 16

S/W Hashing(4 Buckets)

H/W Non-Hashing

H/W Hashing(4 Buckets)

0

200

400

600

800

PRQ UMQ OFQ

3,4 2,2 3,2

Sp
e

e
d

u
p

NPROCS 32

S/W Hashing(8 Buckets)

H/W Non-Hashing

H/W Hashing(8 Buckets)

0

500

1000

1500

PRQ UMQ OFQ

6,4 3,8 5,9

Sp
e

e
d

u
p

NPROCS 64

S/W Hashing(16 Buckets)

H/W Non-Hashing

H/W Hashing(16 Buckets)

0

500

1000

1500

2000

2500

3000

PRQ UMQ OFQ

12,5 7,11 11,1

Sp
e

e
d

u
p

NPROCS 128

S/W Hashing(32 Buckets)

H/W Non-Hashing

H/W Hashing(32 Buckets)

75

 Finally, Figure 5.5 shows the queue processing speedup using MPI Alltoall Routine as a
benchmark for 16, 32, 64, 128 nodes and nodes/4 as number of buckets. As the number of
nodes is increased by a factor of 2, the speedup is increased approximately by the same factor
for Hashing schemes (buckets is increased too), while non Hashing schemes speedup is
constant.

5.3.3 Realistic scenario which unloads the UMQ

However, as the number of nodes increases, it is more likely that a certain host node will
traverse more and more queue entries before finding a match in the queue. In this section
we initially, introduce a certain benchmark which unloads a queue with a predefined number
of entries, mimicking the realistic scenario where a host node has received numerous
unexpected messages and the matching entry is always found at the tail of the queue. In this
benchmark all nodes send unexpected messages to node 0 with tags in descending order,
while the node 0 receives messages with tags in ascending order. For example, Figure 5.6
shows the UM List of node 0. All nodes send 4 messages to node 0 with the order which
shown in this figure. If node 0 calls the MPI_Rcv procedure with tag source*j, with source in
range {0,..,3} and j in range {0,..,3}, then the matching entry is always at the tail of the
Unexpected Queue. In other words, the total number of items traversed is:

n + (n − 1) + ... + 2 + 1 =
(𝑛 ∗ (𝑛 + 1))

2

PROC 2PROC 3 PROC 1 PROC 0

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Figure 5.6: Realistic scenario where node 0 has received numerous Unexpected Messages

 Figure 5.7 shows our embedded portals software, portals processor in Hardware scheme
and a high end host processor with no hashing scheme executing the above realistic scenario.
Results show that our Portals Hardware processor is at least one order of magnitude faster
than both the high-end processor and the embedded CPU. Initially, high-end CPU processor
is faster than embedded Portals Software, but after 16384 messages high end processor
suffers from performance degradation due to high number of cache misses. On the other
side, for simulated embedded processor we use 1MB cache, while in Portals Hardware we
use the same size of cache with 2 ports for read/write for the sake of simulation speed and
our aim to get the best possible results.

76

Figure 5.7: Performance of Intel E8400, ARM A9 and Hardware Portals Processor (non-Hashing)

 Finally, Figure 5.8 illustrates our Portals Hash-Based Hardware processor is compared with
the ARM A9 embedded state of the art CPU executing the above benchmark utilizing the
proposed hashing scheme in software. Results demonstrate that Portals Hash-Based
Hardware processor is steadily 2 orders of magnitude faster than the embedded CPU.

Figure 5.8: Performance of hashed-based ARM A9 and Hardware Portals Processor

5.4 MPI Results
In this section we discuss the performance of our novel approach when executing some of
the collective MPI Routines as well as 4 different benchmarks of the NAS benchmark suite.
Furthermore, we evaluated the Portals overhead comparing our Portals approach with MPI
accelerator in [19]. Finally, we measure the performance of Triggered Rendezvous Protocol.

0,01

0,1

1

10

100

1000

10000

8192 16384 32768 65536 131072

Ti
m

e
 (

se
c)

Queue Length

Intel E8400

Portals Embedded Software

Basic Portals Processor

0,0001

0,001

0,01

0,1

1

10

100

8192 16384 32768 65536 131072

Ti
m

e
 (

se
c)

Queue Length

Portals Embedded Software
with Hashing

Hash-Based Portals
Processor

77

5.4.1 Results of MPI_Collective Routines

Two of the most commons MPI Collective Routines are MPI_AlltoAll and MPI_AllReduce.
These routines were used as a vehicle to examine the performance of our Portals Software
implementation running on the embedded processor & Hardware Accelerator. The main
reason behind our selection was that these routines use non-blocking Send-Receive
commands and there is communication among all nodes.

Figure 5.9: Speedup of MPI Collective Routines

 Figure 5.9 illustrates the speedup when compared with the ARM A9 embedded CPU, by
both the basic hardware device as well as the hash-based module when the above routines
are executed on 8,16,32,64 and 128 parallel system with N/4 buckets. S/W hashing scheme
has approximately same performance with S/W non-hashing scheme as we measure whole
MPI routines (with the idle time which the target waits packets from other nodes (PtlCTWait
Routine)) and not only the queue processing speedup as described in [19]. In contrast we
achieve significant speedup at H/W Portals Accelerator because we have implemented
entirely these routines in Hardware as described in previous sections. Furthermore, H/W

0

20

40

60

80

100

120

140

160

180

8 16 32 64 128

1,02 1,08 1,26 1,37 1,55

Sp
e

e
d

u
p

NPROCS

AlltoAll

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

20

40

60

80

100

120

8 16 32 64 128

1,01 1,10 1,23 1,32 1,36

Sp
e

e
d

u
p

NPROCS

AllReduce

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

78

Hashing scheme has significant difference with H/W non-hashing because Hardware
ListManager can operate 2 orders of magnitude faster than the S/W ListManager. Finally, we
can see that the intercommunication speedup increases with the number of nodes, as a result
speedup is expected to be much higher in multi-thousand node systems.

5.4.2 Results of NAS Parallel Benchmarks

We evaluated the performance (in communication routines) and accuracy of our Software
and Hardware Platform when executing 4 different benchmarks of NAS Parallel benchmark
suite.

Figure 5.10: Speedup of IS Benchmark (a) 32 nodes (b) 128 nodes

Figure 5.11: Speedup of FT Benchmark (a) 32 nodes (b) 128 nodes

0

50

100

150

200

1,1 1,1 1,2 1,1 1,2 1,1

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)
H/W non Hashing
H/W Hashing (N/4 Buckets)

0

50

100

150

200

250

1,3 1,2 1,2 1,2 1,2 1,2

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

20

40

60

80

100

AlltoAll Reduce Bcast Average

1,1 1,3 1 1,1

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

50

100

150

200

1,3 1,3 1 1,2

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

79

Figure 5.12: Speedup of EP Benchmark (a) 32 nodes (b) 128 nodes

Figure 5.13: Speedup of DT Benchmark (a) 32 nodes (b) 128 nodes

Figures 5.10 - 5.13 demonstrate the speedup triggered by (a) the software-based approach
utilizing our hashing function, (b) our Portals hardware accelerator without hashing and (c)
our Portals hardware accelerator utilizing our hashing scheme for IS, FT, EP, DT NAS Parallel
benchmark within a 32-node platform (left) and 128-node platform (right). Speedup of S/W
hash-based approach varies from 10% to over 30%. This speedup is much lower comparing
the MPI Accelerator in [19] because we measure whole MPI routines and not only the queue
processing speedup. Moreover in Figure 5.13, there isn't any speedup in MPI_Send Routine
for the S/W Platform because this Routine simply sends the Data Packet from one node to
other without traversing any of the Portals Lists. In contrast, our H/W platform speedup
varies from 20x to over 150x for non-hashing and hashing scheme respectively within a 32-
node H/W Platform. We can observe that H/W hashing scheme has important speedup

0

50

100

150

200

1,13 1,17 1 1,1

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

50

100

150

200

250

300

1,2 1,3 1 1,2

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

50

100

150

MPI_Send MPI_Recv Average

1 1,2 1,1
15,4

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

50

100

150

200

250

MPI_Send MPI_Recv Average

1 1,3 1,210,2

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

 80

comparing non-hashing H/W scheme because all routines' computations have been
implemented in H/W. Particularly, all H/W routines computations are translated to specific
Hardware modules achieving constant execution time; as a result the performance
bottleneck is the List Manager. So, using our hashing scheme is achieved almost constant
execution time in collective routines which traverse a significant number of queues, as
Reduce, AllReduce, AlltoAll. In contrast in Bcast routine is not achieved speedup with our
hashing scheme, because there isn't any queue traversing (one node sends only one message
to other nodes). When moving to a larger system, speedup grows as demonstrated in Figures
5.10b - 5.13b; in particular it varies from 20x to over 250x. In multi-thousand node systems
this speedup is expected to be much higher [20].

5.4.3 Portals Accelerator versus MPI Accelerator

Portals is a network programming interface which can support both point-to-point interfaces

such as MPI as well as the various partitioned global address space models such as PGAS. So,

Portals Accelerator implements additional routines comparing with MPI Accelerator as

described in [19]. For this reason, we measure the performance overhead of Portals

Accelerator with the following procedures31:

(i) MD_Bind

(ii) MD_Release

(iii) CT_Alloc

(iv) CT_Free

(v) OF_Insert (MPI_Init)

(vi) OF_Search

Particularly, MD_Bind and MD_Release Portals procedures traverse MD_Table to find the

Memory Region in initiator User Space which has been allocated before node begins to send

the data packet, while MPI allocates the User Space during MPI_Send routine. Moreover,

Portals uses counting events to acknowledge the transaction completion traversing the

CT_Table with CT_Alloc and CT_Free procedures, while MPI Accelerator simply waits to

receive the Data Packet with MPI_Wait procedure. Finally, Portals accelerator uses Overflow

list to save the Payload of Unexpected Messages, while MPI accelerator allocates space for

UM payload during MPI Send routine. Figure 5.14 summarizes the overhead (%) per each

Portals procedure which differs from MPI Accelerator using MPI AlltoAll routine as

benchmark. Simulation time for Bind, Release, Alloc, Free, OF_Insert Routines is the same for

both non-hashing and hashing schemes because our hashing scheme isn’t used from these

routines.

31 These routines cause additional overhead comparing with MPI Accelerator.

81

Figure 5.14: Portals-MPI Accelerator Overhead using AlltoAll Routine in (a) 32-node (b) 128-node

In Figure 5.14, overhead in these routines seems to be greater in hashing schemes because

total simulation time of AlltoAll Routine in hashing schemes is less than total simulation time

in non-hashing schemes. In contrast overhead for OF_Search is much smaller in hashing

schemes because it uses our hashing scheme. To summarize, in a 32-node platform Portals

Accelerator overhead is approximately 25% and 12% for our S/W and H/W implementation

respectively, while in 128-node platform overhead varies from 9% to 15% for S/W

implementation and 10% to 12% for H/W implementation respectively.

0

5

10

15

20

25

30

1 0,61,2 0,70,4 0,60,3 0,7 1

O
ve

rh
e

ad
 (

%
)

S/W non Hashing S/W Hashing (8 Buckets) H/W non Hashing H/W Hashing (8 Buckets)

0

2

4

6

8

10

12

14

16

18

0,2 0,10,3 0,20,4 0,3

O
ve

rh
e

ad
(%

)

S/W non Hashing S/W Hashing (32 Buckets) H/W non Hashing H/W Hashing (32 Buckets)

82

Figure 5.15: Portals-MPI Accelerator Communication Overhead using NAS Benchmarks in 128node

Finally, Figure 5.15 summarizes the communication overhead when executing 4 different
benchmarks of NAS benchmark suite. Each application poses different demands with regards
to communication of nodes. In EP and FT benchmarks there are more Unexpected Messages
during communication process than IS and DT, hence Overflow List must be traversed more
frequently in EP and FT than IS and DT, as a result these benchmarks have greater overhead.
Finally, DT benchmark has few communication routines and minor Portals overhead.

5.4.4 Rendezvous versus Eager Protocol

In this Chapter we measure the performance of Eager Protocol and Triggered rendezvous
Protocol as described in Chapter 4. In Figure 5.16 we use MPI AlltoAll Routine with 8 bytes in
each Data Packet (DP). We measure Eager Protocol and two options of Triggered Rendezvous
(i) Eager Limit: 0 bytes, and (ii) Eager Limit: 4 bytes. In eager protocol sender simply sends
whole Data Packet, while in Triggered Rendezvous with eager limit equal to zero the sender
sends only header of DP to receiver, and the receiver issue a get to retrieve the message
when the receive is posted. Finally, in Triggered Rendezvous with eager limit equal to 4 bytes,
the sender sends header of DP and 4 Bytes to receiver. To summarize, in Eager Protocol there
is one transaction (Sender sends whole DP), while in Triggered Rendezvous there are three
transactions (i) Sender sends Header and maybe a portion of DP, (ii) Receiver issues a get to
retrieve DP, (iii) Sender sends the remainder of DP. In eager Protocol there is a single
transaction, but the message might be Unexpected, as a result it is delivered into bounce
buffers at any cost32. For the same reason the Triggered Rendezvous with eager limit 4 bytes
has the worst time, due to the additional Get transaction. The most efficient option is
Triggered Rendezvous with eager limit equal to zero, as this protocol is not wasting the
bandwidth (if the receiver hasn’t space to save the message) and the sender sends Data when

32 In case of the message is unexpected and it contains payload, both UM & OF Lists are traversed to save the
Header and Payload respectively, while in case of the unexpected message not contains payload only UM List
is traversed to save the Header of the message.

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

EP IS FT DT

2.2% 1.3%2.2% 1.1%

O
ve

rh
ea

d

Portals S/W non Hashing Portals S/W Hashing (N/4 Buckets)

Portals H/W non Hashing Portals H/W Hashing (N/4 Buckets)

83

the receive is posted33. In other words, both eager and rendezvous protocols may sends
unexpected payloads and as a result these approaches must traverse the OF List to save the
unexpected payload, while in rendezvous with zero eager limit only the Unexpected List must
be traversed to save the Unexpected Message Header.

Figure 5.16: Performance of Eager and Rendezvous Protocols

5.5 Global Arrays Results
In this section we discuss the performance and accuracy of our approach when executing
some of basic GA Routines as well as one Molecular Dynamic benchmark of Lennard-Jones
System. Initially, we implement two benchmarks using GAs Routines to examine the accuracy
of our Portals Software & Hardware Accelerator. In the first testbench, addition of two 1-d
arrays is implemented34 as illustrated in Figure 5.17, while figure 5.18 illustrates the speedup
of our S/W and H/W Platform in 32-node and 128-node platform.

33 Triggered Rendezvous with eager limit equal to zero not traverses the OF List in any way, because it not
contains Payload with the Header at the initial request.
34 Each array has NPROCS elements; as a result each thread computes one element.

0

0,5

1

1,5

2

2,5

3

4 8 16

2.4 2.3
2.5

Ti
m

e
 (

m
s) Eager Protocol

Rendezvous (Eager Limint 0)

Rendezvous (Eager Limint 4)

0

5

10

15

20

25

30

32 64 128

26.8

21.9

27.2

Ti
m

e
 (

m
s)

NPROCS

Eager Protocol

Rendezvous (Eager Limint 0)

Rendezvous (Eager Limint 4)

84

Figure 5.17: Global Array Addition Operation

Figure 5.18: Speedup of Addition Benchmark (a) 32 nodes (b) 128 nodes

 As described in Chapter 3, in one sided communication we can’t use our hashing scheme,
because we don't know the source node during GA_Create routine, and as a result GA_Put
Routine has the same simulation time in non-hashing and hashing schemes. Furthermore,
GA_Add Routine does not need to use any communication routine, as it traverses elements
belonging to the same thread. Therefore, the speed depends only to the processor. Unlike
GA_Create there is improvement in simulation time using hashing scheme since each node
sends information (such as match_bits) to other nodes about the one sided transaction with
AlltoAll routine.
 In the second benchmark we create and multiply (C=AxB) two 2-d arrays with (NPROCS/4)
x (NPROCS/4) elements each one, as shown in Figure 5.19. Each element in C Array needs
one row from table A and one column from table B; hence it must issue one Get Operation

from A and B arrays. In our benchmark each thread computes
𝑁𝑃𝑅𝑂𝐶𝑆

16
 35elements of table C36,

while each thread needs to get data from (up to
𝑁𝑃𝑅𝑂𝐶𝑆

4
) other threads.

35 With NPROCS>=16.
36 Tables in Figure 5.18 shows the number of thread which the data belonging.

N
P

R
O

C
S

0

1

2

…...

…...

NPROCS - 1

0

1

2

…...

…...

NPROCS - 1

0

1

2

…...

…...

NPROCS - 1

0

50

100

150

200

250

1.1 1 1 11 1

Sp
ee

d
u

p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

0

50

100

150

200

250

300

1.2 1 1 11 1

Sp
e

e
d

u
p

S/W Hashing (N/4 Buckets)

H/W non Hashing

H/W Hashing (N/4 Buckets)

85

Figure 5.19: Global Array Multiplication Operation (a) 16-node (b) 32-node Platform

So, simulation time quadruples by doubling the nodes as illustrated in Figure 5.20a. Figure
5.20b shows the speedup comparing our S/W and H/W non-hashing scheme37.

Figure 5.20: (a) Performance (b) Speedup of Global Array Multiplication Operation

Finally, we evaluated the performance and accuracy of our Platform when executing the Molecular

Dynamic benchmark of Lennard-Jones System using Global Arrays. Figure 5.21 illustrates the

speedup comparing S/W and H/W non-hashing scheme Platforms. Results demonstrate that

the speedup of the H/W approach varies from 60x to over 100x, and 100x to over 170x in

32node and 128-node platform respectively.

37 We don’t measure hashing scheme because it has the same simulation time as described in Addition
benchmark.

0 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11

12 12 13 13 14 14 15 15

16 16 17 17 18 18 19 19

20 20 21 21 22 22 23 23

24 24 25 25 26 26 27 27

28 28 29 29 30 30 31 31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11

12 12 13 13 14 14 15 15

16 16 17 17 18 18 19 19

20 20 21 21 22 22 23 23

24 24 25 25 26 26 27 27

28 28 29 29 30 30 31 31

NPROCS/4

N
P

R
O

C
S/

4 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

N
P

R
O

C
S/

4

NPROCS/4

0 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11

12 12 13 13 14 14 15 15

16 16 17 17 18 18 19 19

20 20 21 21 22 22 23 23

24 24 25 25 26 26 27 27

28 28 29 29 30 30 31 31

0

10

20

30

40

50

60

70

16 32 64 128

Ti
m

e
 (
μ

s)

H/W non Hashing

0

50

100

150

200

250

16 32 64 128

Sp
e

e
d

u
p

H/W non Hashing

86

Figure 5.21: Speedup of Molecular Dynamic Benchmark (a) 32 node (b) 128-node Platform

5.6 Area & Power Results
In this chapter we evaluate the Area and Power of our H/W Portals Accelerator and its
components (such as List Managers, Memory Allocator etc). The silicon results obtained using
Cadence C-to-Silicon high level synthesis tool utilizing 65nm Europractice TSMC standard-cell
technology library in Typical Condition (TC).

5.6.1 Area & Power of H/W Accelerator
We evaluate silicon results using Cadence’s Incisive Enterprise Simulator (INCISIV) and
Encounter RTL Compiler (RC) as described in Figure 5.2238, while we evaluate SRAM Dynamic
Power results using CACTI39 6.5. We use MPI AlltoAll Routine as testbench in a 128-node
platform for our measurements. Table 5.2 summarizes the Portals Accelerator’s SRAMs and
shows the Dynamic Power Consumption of each one as computed by the CACTI model. Figure
5.23a illustrates Portals Accelerator Power and SRAMs Dynamic Power using Cadence and
CACTI models respectively, while Figure 5.23b illustrates Portals Accelerator Area without
SRAMs. Both Power and Area are grown linearly with the frequency, while they are increased
only 2,2x and 1,39x respectively tripling the frequency. Based on those figures it is clear that
module complexity and power consumption is at least an order of magnitude smaller and
lower respectively than that of even a low-power CPU (i.e. ARM Cortex A9 implemented on
a 32nm CMOS technology).

38 TCF is the Cadence standard format to describe switching activity information in a design.
39 CACTI is an Open Source dynamic power model [20].

0

20

40

60

80

100

120

140
Sp

e
e

d
u

p

H/W non Hashing

0

50

100

150

200

Sp
e

e
d

u
p

H/W non Hashing

87

Figure 5.22: Power and Area Estimation flow

SRAM’s Description Capacity Dynamic Power Consumption

Temporary SRAM for UMs 1M x 8 bits 200 mW/GHz

List’s SRAM (PR, UM, OF) 512 x 256 bits 8 mW/GHz

Memory Allocator SRAM 512 x 192 bits 6 mW/GHz

Memory Descriptor Table 256 x 128 bits 2 mW/GHz

Counting Event Table 512 x 128 bits 4 mW/GHz
Table 5.2: Dynamic Power Consumption for SRAMs

Figure 5.23: (a) Power, (b) Area using AlltoAll benchmark

SystemC

Verilog

INCISIV

TCF

testbench

RC

Power & Area
Estimation

5

10

15

20

25

30

500Mhz 1Ghz 1.5 Ghz

P
o

w
e

r
(m

W
)

SRAMs Dynamic Power

Portals Accelerator Power

400000

450000

500000

550000

600000

650000

700000

500Mhz 1Ghz 1.5 Ghz

A
re

a
(u

m
2

)

Portals Accelerator Area

88

5.6.2 Results of ListManager Lighter Edition

This section compares the silicon results of List Manager and its Lighter edition. LM Lighter
Edition implements one list instead of three lists (PR,UM,OF), as a result the queue processing
time is greater than the original List Manager implementation. Figure 5.24 illustrates
simulation time with original and lighter ListManager using non-hashing and hashing
schemes, while Figure 5.25 compares Portals Accelerator Area and Power using both List
Managers.

Figure 5.24: Performance of Lighter Edition LM using AlltoAll benchmark

Lighter LM without hashing increases dramatically the queue processing time as the number

of processors increases, and as a result it demonstrates suboptimal latency. Portals

Accelerator area with Lighter LM has approximately 2,3% less area than Portals with original

LM, while power difference increase linearly with the frequency. So, in cases of low power,

the Lighter LM with hashing scheme has approximately the same queue processing time,

while it can save up to 11% Power and 2,3% Area from Accelerator.

0

10

20

30

40

50

60

16 32 64 128

Ti
m

e
 (

u
s)

NPROCS

LM Queue Time Non-Hashing

LM Light Queue Time Non-
Hashing

LM Queue Time Hashing
(NPROCS/4)

LM Light Queue Time Hashing
(NPROCS/4)

89

Figure 5.25: (a) Power, (b) Area of Lighter Edition LM using AlltoAll benchmark

0

2

4

6

8

10

12

14

500Mhz 1Ghz 1.5 Ghz

P
o

w
e

r
(m

W
)

Portals Power with
Original LM

Portals Power with
Lighter LM

400000

450000

500000

550000

600000

650000

700000

500Mhz 1Ghz 1.5 Ghz

A
re

a
(u

m
2

)

Frequency

Portals Area with Original
LM

Portals Area with Lighter
LM

90

6
Conclusions and Future Work

As the number of cores in highly parallel systems increases dramatically, there are a lot of

factors which can trigger significant system underutilization. One such underutilization

contributor is high intercommunication delay. Although there are several approaches trying

to hide delay (such as asynchronous communications primitives), in most of them the

processor node should keep track of the status of the various messages sent to and/or

received from those millions nodes. This is a time-consuming task, hence offloading it from

the main processor, has emerged as an efficient way to reduce intercommunication delay.

 This work focuses on minimizing the intercommunication delay of many-core platforms

offloading the basic blocks of Portals communication protocol creating the Portals

Accelerator. Portals intermediate communication protocol is selected because it provides an

interface to support both point-to-point interfaces as well as the various partitioned global

91

address space (PGAS) models. Therefore improving the Portals protocol translates to both

point-to-point and PGAS models improvements.

 Portals Accelerator in Software is implemented and integrated in an existing multiprocessor

framework, so that micro-architectural decisions are based on actual software. The Portals

Accelerator is synthesized to actual hardware and thus architectural decisions at the virtual

platform level can be rapidly evaluated in terms of area, power and performance.

Additionally, a multi-thread environment is implemented which connects each node with its

Portals accelerator, and finally, certain tasks of Message Passing Interface (point-to-point)

and Global Arrays (PGAS) upper layer Protocols are implemented so as to evaluate the

effectiveness and accuracy of our Software and Hardware Accelerator.

 Experimental results shows that our Portals Hardware accelerator is from one and up to

three orders of magnitude faster than two general-purpose CPUs executing the same tasks,

with approximately 15% time overhead comparing with hand-made MPI H/W Accelerator in

[19]. Especially, our Hardware Accelerator is up to three order of magnitude faster in

processing Portals queues, while it is up to two order of magnitude faster in both MPI and

GA Routines with the speedup is grown with the number of nodes in the parallel system.

Moreover, our accelerator consumes approximately 100 times less power and it is being

implemented at 1/100th of the silicon area of a small embedded CPU. Finally, the remainder

Portals operations can be offloaded in the future so as to support more upper layer

communication protocols through Portals.

92

Bibliography

[1] P. M. Kogge et al., “ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems,” University of Notre Dame CSE Department Technical Report, TR-2008-13,
Tech. Rep., September 28, 2008.

[2] BORKAR, S. AND CHIEN, A. A. 2011. The future of microprocessors. Commun. ACM 54, 5,
67–77.

[3] Brian W. Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle Wheeler, Keith
Underwood, Rolf Riesen, Arthur B. Maccabe, and Trammell Hudson. Portals 4 Reference
Implementation.

[4]Barrett, B.W.; Brigthwell, R.; Hemmert, K.S.; Pedretti, K.; Wheeler, K.; Underwood, K.D.,

"Enhanced Support for OpenSHMEM Communication in Portals," High Performance

Interconnects (HOTI), 2011 IEEE 19th Annual Symposium on , vol., no., pp.61,69, 24-26 Aug.

2011

[5] http://en.wikipedia.org/wiki/Partitioned_global_address_space

[6] Brian W. Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle Wheeler, Keith

Underwood, Rolf Riesen, Arthur B. Maccabe, and Trammell Hudson. Portals 4.0 Specification.

April 2008

[7] Brian W. Barrett, Ron Brightwell, K. Scott Hemmert, Kyle B. Wheeler, Keith D.

Underwood. Using Triggered Operations to Offload Rendezvous Messages. EuroMPI 2011,

pages 120-129.

[8] https://code.google.com/p/portals4/downloads/list

[9] http://www.ovpworld.org/

[10] Manolis Katevenis, Link and Memory Architectures and Technologies. Lecture in CS-534

– Univ. of Crete and FORTH, Greece page 10

[11] KNUTH, D. E. 1998. The art of computer programming, volume 1 (3rd ed.): Fundamental

Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[12] Jeffrey Daily, Abhinav Vishnu, Bruce Palmer, Hubertus van Dam. PGAS Models Using an

MPI Runtime: Design Alternatives and Performance Evaluation. SCHEDULE: NOV 16-22, 2013.

[13] Cadence C-to-Silicon Compiler High-Level Synthesis datasheet

93

[14] K. Georgopoulos, Ioannis Papaefstathiou. A Concise Review of HLS Tools and

Compilers. July 2014

 [15] Cadence Cadence C-to-Silicon Compiler User Guide. Product Version 11.10 s200, August

2011

[16] http://www.eejournal.com/archives/articles/20131031-cadence/

[17] D. Bailey, E. Barszcz, J. Barton, D. Browning. THE NAS PARALLEL BENCHMARKS. RNR

Technical Report, March 1994.

[18] E. R. Hernández. Molecular Dynamics: from basic techniques to applications. Institut de

Ciència de Materials de Barcelona

[19] Pavlos Mattheakis, Ioannis Papaefstathiou. Significantly Reducing MPI

Intercommunication Latency and Power Overhead in Both Embedded and HPC Systems. ACM

Transactions on Architecture and Code Optimization (TACO), January 2013

[20] BRIGHTWELL, R. AND UNDERWOOD, K. D. 2004. An Analysis of NIC Resource Usage for

Offloading MPI. Parallel and Distributed Processing Symposium, International 9.

[20] http://www.hpl.hp.com/research/cacti/

	Introduction
	An overview of the Portals API
	2.1 One Sided versus Two-Sided Communication
	2.2 Two-sided non-blocking versus blocking operation
	2.3 An overview of Portals Data Movements
	2.4 Portals Lists
	2.5 Eager versus Rendezvous Protocol
	2.6 Portals Completion Events
	2.7 Portals Memory Descriptors
	2.8 Matching & non-Matching Network Interface
	2.9 Portals Data movements in detail
	2.9.1PtlAppend
	2.9.2PtlPut
	2.9.3 PtlGet
	2.9.4 Portals PtlPut Two-Sided Communication Example

	Software-driven development of a mixed
	Software & Hardware Portals System
	3.1 Introduction to Virtual Platform
	3.2 Portals Accelerator using Imperas OVP
	3.3 Accelerator Intercommunication
	3.3.1 Master Ports
	3.3.2 Slave Ports

	3.4 Portals Accelerator Model
	3.4.1 Message Buffers
	3.4.2 Portals Message Processor
	3.4.3 Memory Descriptor & Counting Event Tables
	3.4.4 List Manager
	3.4.5 Dynamic Memory Allocator

	3.5 Rendezvous Protocol
	3.6 One-sided Communication
	3.6.1 Our implementation of One-sided Communication
	3.6.2 Global Arrays Implementation through One-Sided Communication
	3.7 Summary of Implemented Routines

	From Virtual Accelerator to Silicon
	4.1 Introduction to High Level Synthesis
	4.2 Hierarchy of Hardware Implementation
	4.3 Transformation to Cycle-Accurate SystemC
	4.3.1 Module Interfaces and Synthesizable Code Style
	4.3.2 Generic Data Structures
	4.3.3 Cycle Accurate Timing Model

	4.4 ListManager implementation
	4.5 Micro-architecture Exploration
	4.5.1 Resolving loops
	4.5.2 Memory Implementation

	4.6 Implementation of multi-node Platform
	4.7 Hardware Acceleration Verification

	Results
	5.1 Benchmarks
	5.2 Abstraction level specification results
	5.3 Portals Queues
	5.3.1 Average Search Depth in Portals Queues
	5.3.2 Average Search Depth in Portals Queues using our Hashing Scheme

	5.4 MPI Results
	5.4.1 Results of MPI_Collective Routines
	5.4.2 Results of NAS Parallel Benchmarks
	5.4.3 Portals Accelerator versus MPI Accelerator
	5.4.4 Rendezvous versus Eager Protocol

	5.5 Global Arrays Results
	5.6 Area & Power Results
	5.6.1 Area & Power of H/W Accelerator
	5.6.2 Results of ListManager Lighter Edition

	Conclusions and Future Work
	Bibliography

