
Technical University of Crete, Greece

School of Electronic and Computer Engineering

Grammatical Inference

for Event Recognition

Nikolaos Kofinas

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Professor Minos Garofalakis (ECE)

Associate Professor Aggelos Bletsas (ECE)

Chania, July 2014

http://www.tuc.gr
http://www.ece.tuc.gr

Nikolaos Kofinas ii July 2014

Abstract

As robot technology finds applications in the real world (search and rescue, daily house-

hold tasks, etc.), huge amounts of data are generated during autonomous robot missions.

In such applications, it is often desirable to recognize high-level events that may have

occurred during a mission either online or offline. Event Recognition in robot missions cur-

rently relies on human expertise and time-consuming data annotation. A modern method

to recognize events is to employ Probabilistic Context-Free Grammars (PCFGs), which

are formal models that can capture complex patterns in discrete sequences and can be

used to parse incoming sensor data streams in order to detect patterns that may signal the

occurrence of some event of interest. Recent experimentation with such methods on data

from Autonomous Underwater Vehicle (AUV) missions indicated that interesting events

can be recognized by parsing sequences of sensor data using an intuitive hand-written

PCFG. This thesis introduces a generic procedure which can be used to automatically

construct PCFGs which encode sensor data sequences that typically appear during nor-

mal robot operation using recorded logs from past missions. The resulting PCFGs can be

used to recognize abnormal events in new missions evidenced by sensor data sequences

which cannot be interpreted as normal. The proposed procedure consists of two parts:

(a) the transformation of sensor streams into discrete sequences either to form a training

corpus offline or to generate input for online parsing and (b) a Grammatical Inference

algorithm in order to learn a compact PCFG consistent with a given training corpus.

The learning part relies on a local search method over the space of possible grammars

using chunk and merge operations. The search method aims to find a compact grammar

that also maximizes its posterior probability, in a Bayesian sense, with respect to a given

training corpus. The proposed procedure is evaluated on a variety of domains ranging

from data-sets generated by typical context-free grammars to data-sets generated from

real robot missions (NAO robot walk and AUV navigation). The results indicate that

our approach is capable of producing reliable PCFG-based event recognizers, which may

yield some false positive signals, but in general succeed in capturing abnormalities.

Nikolaos Kofinas iv July 2014

Acknowledgements

I would like to dedicate this work to my father who had a hard time, but managed to

move forward.

I would like to thank my advisor Michail G. Lagoudakis for his important guidance dur-

ing my Master’s Thesis and also for the trust he showed in me.

Fanoulitsa stood by me during the difficult times that I had in the last two years and

more importantly she stood next to me during the stressing period between November

and December, while I was preparing to follow my dream.

I would also like to say a big “thank you” to all my friends Nikos, Manolis I, Mitsos,

Keimis, Giannis & Fia, because they tolerate all my trolling. I hope that the distance

will not break our friendship and our trolling.

To the guys at the office Aggelos, Stelios, Manolis II and Lefteris, I would like to say that

we spent some great “office hours” together.

Finally, I would like to thank my parents Gely and Fanis for all the support they gave

me throughout the last seven years of my life, while I was studying in the city of Chania.

Nikolaos Kofinas vi July 2014

Contents

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Contribution . 2

1.3 Thesis Outline . 3

1.4 Basic Notation . 3

2 Background 5

2.1 Alphabets and Languages . 5

2.2 Grammars . 6

2.2.1 Chomsky Hierarchy . 7

2.3 Context-Free Grammars . 7

2.3.1 Probabilistic Context-Free Grammars 9

2.3.2 From a CFG to a PCFG . 10

2.3.3 Chomsky Normal Form . 10

2.4 Parsing . 11

2.4.1 CYK for CFGs . 11

2.4.2 CYK for PCFGs . 12

2.5 Grammatical Inference . 13

2.5.1 Input and Dependencies . 14

2.5.2 Gold’s Theorem . 15

3 Our Problem 17

3.1 Problem Statement . 17

3.2 Related Work . 18

3.2.1 Problem-specific algorithms . 18

3.2.2 Generic algorithms . 19

Nikolaos Kofinas vii July 2014

CONTENTS

3.2.3 Event Recognition with the use of (P)CFG 21

4 Our Approach 23

4.1 Normal and Abnormal Events . 23

4.2 Data Logs to Words . 24

4.2.1 Quantization . 24

4.2.2 Corpus creation . 25

4.2.3 Quantization and corpus creation example 26

4.3 Grammar Learning . 28

4.3.1 Learning Objective . 28

4.3.2 Learning strategy . 29

4.3.3 Initialization of the PCFG . 30

4.3.4 Grammar manipulation: Chunk and Merge 33

4.3.5 Effective posterior computations 36

4.3.6 Search strategy . 38

4.3.7 Learning example . 41

5 Results 49

5.1 Standard Context-Free Grammars . 49

5.1.1 The Effect of λ Value . 51

5.1.2 Omphalos Competition Data-set 53

5.2 Data-set 1: Synthetic Data . 55

5.3 Data-set 2: NAO Robot Data . 56

5.4 Data-set 3: Noptilus AUV Data . 59

6 Conclusion 63

6.1 Future Work . 64

References 69

A Learned PCFGs 71

A.1 PCFG for Data-set 1 . 71

A.2 PCFG for Data-set 2 . 73

A.3 PCFG for Data-set 3 . 80

Nikolaos Kofinas viii July 2014

List of Figures

2.1 Chomsky Hierarchy of Languages . 8

2.2 CYK completed table . 14

4.1 Data and quantization regions . 27

4.2 An example of the chunking operation 33

4.3 An example of the merging operation . 34

5.1 Results for different λ’s during the learning of Lr2 52

5.2 Results for different λ’s during the learning of Lr3 53

5.3 Results from the synthetic data-set (red bars: false-negative events, ma-

genta bars: false-positive events) . 54

5.4 Evaluation data for the synthetic data set 55

5.5 The NAO mission . 56

5.6 X-axis accelerometer of NAO robot during normal operation 57

5.7 Abnormal events of the NAO mission . 58

5.8 The Noptilus AUVs . 59

5.9 Path of the AUV during normal operation 59

5.10 Path of the AUV during abnormal operation 60

5.11 Data stream of the z-angle AUV sensor during normal operation 61

5.12 Data stream of the z-angle AUV sensor during abnormal operation . . . 61

Nikolaos Kofinas ix July 2014

LIST OF FIGURES

Nikolaos Kofinas x July 2014

List of Tables

5.1 Learning results for several text-book PCFGs 50

5.2 Learning results for PCFGs with different production probabilities 50

5.3 Learning results for regular languages . 51

Nikolaos Kofinas xi July 2014

LIST OF TABLES

Nikolaos Kofinas xii July 2014

List of Algorithms

1 CYK algorithm for CFG . 12

2 CYK algorithm for PCFG . 13

Nikolaos Kofinas xiii July 2014

LIST OF ALGORITHMS

Nikolaos Kofinas xiv July 2014

Chapter 1

Introduction

1.1 Thesis Motivation

As robot technology finds applications in the real world (search and rescue missions,

daily household tasks, elderly care assistants, autonomous warehousing, autonomous cars,

etc.), huge amounts of data are generated during autonomous robot missions. These data

contain mostly diverse sensor measurements at a very fine time resolution and can hardly

be analyzed by hand. In such applications, it is often desirable to recognize high-level

events that may have occurred during a mission either online (recognition in real time,

during the mission) or offline (post-processing recognition, after the mission). Event

Recognition in robot missions is important, because high-level events describe situations

that cannot be recognized directly from reading a few sensor data, but rather situations

that can be recognized only by “mining” series of timed observations and identifying

complex patterns. Such events may have a significant impact in the progress of the

mission. High-level mission events may include detection of an environmental change,

completion of an individual sub-task, a systematic drift in robot’s motion, a mechanical

malfunction of a robot in the team, etc. The designer of a robot team is typically

responsible to provide the appropriate event recognizers, which will monitor various sensor

streams in order to recognize events.

Event recognition in robot missions currently relies on human expertise and time-

consuming data annotation. A modern method to recognize events is to employ Prob-

abilistic Context-Free Grammars (PCFGs), which are formal models from theoretical

computer science widely used in natural language processing. The key component of a

Nikolaos Kofinas 1 July 2014

1. INTRODUCTION

PCFG is a set of syntactic rules, which define how valid symbol sequences (words) can

be derived using a discrete alphabet of symbols. The formalism of PCFGs provides an

intuitive way to define a formal language consisting of all the valid words that can be

derived from the grammar. PCFGs can capture complex patterns in discrete sequences

and thus, can be used to parse incoming sensor data streams in order to detect patterns

that may signal the occurrence of some event of interest. Recent experimentation with

such methods on data from Autonomous Underwater Vehicle (AUV) missions indicated

that interesting events, such as collisions with the sea bottom, can be recognized by pars-

ing sequences of sensor data, such as depth and pitch measurements, using an intuitive

hand-written PCFG. In addition, the structure of PCFGs allows the construction of hier-

archical event recognizers that may recognize complex events on the basis of recognized

simpler events using a hierarchy of PCFGs.

1.2 Thesis Contribution

This thesis introduces a generic procedure which can be used to automatically construct

PCFGs which encode sensor data sequences that typically appear during normal robot

operation using recorded logs from past missions. The resulting PCFGs can be used to

recognize abnormal events in new missions evidenced by sensor data sequences which

cannot be interpreted as normal. The proposed procedure consists of two parts: (a) the

transformation of sensor streams into discrete sequences either to form a training corpus

offline or to generate input for online parsing and (b) a Grammatical Inference algorithm

in order to learn a compact PCFG consistent with a given training corpus. The first part

uses quantization methods in order to transform a stream of sensor data into sequences

of symbols (words) that collectively can be viewed as members of a formal language.

The learning part relies on a local search method over the space of possible grammars

using chunk and merge operations that modify the structure and the derivation power of

a grammar. The search method aims to find a compact grammar that also maximizes its

posterior probability, in a Bayesian sense, with respect to a given training corpus. The

learning objective is to strike a balance between compactness and generalization, taking

into account the fact that the training corpus contains only words that belong to the

target language (positive examples).

Nikolaos Kofinas 2 July 2014

1.3 Thesis Outline

The proposed procedure is evaluated on a variety of domains ranging from data-sets

generated by typical context-free grammars to data-sets generated from real robot mis-

sions (NAO robot walk and AUV navigation). More specifically, our approach is demon-

strated on the following tests: (a) learning of known textbook context-free grammars, (b)

learning a PCFG recognizer for synthetic (sinusoidal) data, (c) learning a PCFG recog-

nizer for data generated by a walking Aldebaran NAO humanoid robot and (d) learning

a PCFG recognizer for data generated during a mission with an AUV of the EU-funded

project NOPTILUS. The results indicate that our approach is capable of producing reli-

able PCFG-based event recognizers, which may yield some false positive signals, but in

general succeed in capturing abnormalities.

1.3 Thesis Outline

Chapter 2 presents the theory behind formal languages and grammars, the definition of

context-free grammars and their probabilistic extension. Furthermore, it presents the

CYK parser, which is the most efficient parser for context-free grammars, and presents

the basic ideas of Grammatical Inference and its limitations. In Chapter 3 we define the

problem of Event Recognition in robot missions and our goal of automatically creating

PCFG event recognizers from past missions. Furthermore, we discuss related work on

Grammatical Inference of context-free grammars and its relationship to our problem. In

Chapter 4 we describe in detail all steps of our approach to the problem of automatically

constructing PCFG event recognizers and we present a complete illustrative example of

the proposed learning procedure. In Chapter 5 we present experimental results demon-

strating the performance of our approach in different domains. Finally, in Chapter 6

we discuss the results of this thesis and we care pointing out possible future research

directions.

1.4 Basic Notation

• a, b, c, . . . represent symbols

• Σ represents an alphabet, that is, a set of symbols

• a∗ means that the symbol a can appear zero or more times

Nikolaos Kofinas 3 July 2014

1. INTRODUCTION

• a+ means that the symbol a can appear one or more times

• an means that the symbol a appears exactly n times

• w is a word, that is, any sequence of symbols

• |w| denotes the length of a word w

• wR is the reverse word of a word w

• O is a corpus, that is a finite set of words

• F ∗ represents the set of all words with zero or more symbols from F

• Σ∗ represents all the words over some alphabet Σ

• L represents a language, that is, any subset of Σ∗

• G is a grammar over some alphabet

• |G| is the length of grammar, the number of symbols required to be represented

• Lower-case letters in a grammar represent terminal symbols

• Upper-case letters in a grammar represent non-terminal symbols

Nikolaos Kofinas 4 July 2014

Chapter 2

Background

2.1 Alphabets and Languages

An alphabet is a finite set of symbols. The most common and well-known alphabet is the

Latin alphabet Σ = {a, b, . . . , z}, but any finite set of different symbols can be named an

alphabet, e.g. Σ = {a, 0, 2,%,#}.
Given an alphabet, we can construct words; a word w is simply a sequence of one or

more symbols taken from the alphabet. Thus, the word “corresponding” (not including

the quotes) is a word over the Latin alphabet and the word “020202a%” is a word over the

second alphabet defined above. The length |w| of a word w is the number of symbols it

contains. The set of all the possible words that can be constructed from a given alphabet

Σ is denoted by Σ∗.

Now we can define a language L over an alphabet Σ as any subset of Σ∗, that is,

an arbitrary set of words from Σ∗. It must be noted that every word by itself can be a

language. Some extreme language cases are: Σ∗, {a}, {b}, { }
Note that a language L can be finite or infinite. Finite languages can be specified by

listing all the possible words, however this cannot be done for infinite languages, thus we

are using the following scheme:

L = {w ∈ Σ∗ : word w satisfies property P}

In the above scheme, w are all the (infinite) possible words that belong in the language

and P is a set of properties that all these words must satisfy. A simple example of such

Nikolaos Kofinas 5 July 2014

2. BACKGROUND

a language specification is the following:

Lex =
{
w ∈ {a, b, c}∗ : w has an even number of a’s and b’s and only two c’s

}
Some of the words that belong to this language Lex are: “acca”, “abababcc”, “cc”, etc.

2.2 Grammars

Any language can be represented compactly or even be defined (or generated) using a

grammar. A grammar G is a formal structure characterized by a set of terminal symbols,

which are the base symbols forming sequences, a set of non-terminal symbols, which are

intermediate symbols that characterize structural components of valid sequences, and a

set of production rules. Formally, a grammar G = (V,Σ, R, S) consists of the following:

• V is a finite set of non-terminal symbols

• Σ is an alphabet

• R is a finite set of production rules of the form leftSide→ rightSide

• S is the start symbol, a distinguished non-terminal symbol from V

A typical convention is to represent non-terminal symbols by uppercase letters and the

start symbol by S, whenever this is possible. The length of a grammar |G| is the total

number of mathematical and alpharithmetic symbols required to be represented on paper.

It is possible to construct valid sequences (words) belonging to the language defined

by a grammar through a process known as derivation. Derivation begins with the start

symbol of the grammar and iteratively transforms the current symbol sequence of the

derivation by applying rules of the grammar to the derivation, until the sequence contains

only terminal symbols and no rule can be applied anymore. Depending on the exact form

of the rules we have different types of grammars. The differentiation comes mostly on

what is allowed in the left and the right sides of the grammar rules. These differentiations

are described in detail below.

Nikolaos Kofinas 6 July 2014

2.3 Context-Free Grammars

2.2.1 Chomsky Hierarchy

The famous linguist Noam Chomsky described the hierarchy of different classes of lan-

guages based on the complexity of their representation [1]. Figure 2.1 presents the fol-

lowing hierarchy:

1. Regular Grammars are those generating regular languages. Their rules are re-

stricted to having only one non-terminal symbol on the left side and one terminal

symbol followed by one or none non-terminal symbol on the right side.

2. Context-Free Grammars are those generating context-free languages. Their

rules are restricted to having only one non-terminal symbol on the left side and

any combination of terminal and non-terminal symbols on the right side. The term

context-free comes from the fact that a rule can replace a non-terminal symbol in

the production, without taking into account its context (symbols surrounding that

symbol in the production).

3. Context-Sensitive Grammars are those generating context-sensitive languages.

The rules of those grammars are restricted to being of the form αNβ → αγβ,

where α and β are any combinations of terminal and non-terminal symbols, N is a

single non-terminal symbol, and γ is any non-empty combination of terminal and

non-terminal symbols.

4. Unrestricted Grammars are those generating Turing-enumerable languages, that

is, languages that can be recognized by a Turing machine. The rules of those

grammars are unrestricted, that is, they take the form α → γ, where α and γ are

any combinations of terminal and non-terminal symbols, with the requirement that

α contains at least one non-terminal symbol.

2.3 Context-Free Grammars

Context-Free Grammars (CFGs) are formal tools used widely in Computer Science and

Natural Language Processing for specifying the syntax of programming and natural lan-

guages and for parsing documents to identify their syntactic correctness and structure.

A CFG G is formally defined as a 4-tuple (V,Σ, R, S), where R ⊆ V × (Σ ∪ V)+. This

Nikolaos Kofinas 7 July 2014

2. BACKGROUND

Turing-enumerable languages

Context-Sensitive languages

Context-Free languages

Regular languages

Figure 2.1: Chomsky Hierarchy of Languages

means that the left side of each rule is any single non-terminal symbol, whereas the right

side is any non-empty sequence of terminal and non-terminal symbols.

The characterization context-free implies that rules can be applied to any non-terminal

symbol in a derivation sequence, regardless of the context, that is, the symbols preceding

or following the chosen symbol. The power of CFGs is that, given an arbitrary sequence

of terminal symbols (a word), a syntactic tree can be constructed through a procedure

known as parsing that describes the structural elements of the input word, provided that

the word can be derived from the grammar. If the input word cannot be derived from

the grammar, parsing yields no syntactic tree.

A simple context-free grammar with only two production rules that generates the

language L = {anbn : n ≥ 1} is the following:

G = (V,Σ, R, S)

V = {S}

Σ = {a, b}

R = {S → aSb, S → ab}

A common representation convention is to rewrite the rules R so that production rules

referring to the same non-terminal symbol are grouped into a single rule with several

productions. For example R in the grammar above can be written as R = {S → aSc|ab},

Nikolaos Kofinas 8 July 2014

2.3 Context-Free Grammars

where the special symbol | is used to separate different productions of the same rule. This

convention is useful offers a compact representation. The word aaabbb can be derived as

follows

S ⇒ aSb⇒ aaSbb⇒ aaabbb

and its syntactic tree is the following

S

bS

bS

ba

a

a

In contrast, the word aabbbb cannot be derived from this grammar and thus, no syntactic

tree exists in this case.

2.3.1 Probabilistic Context-Free Grammars

Probabilistic Context-Free Grammars (PCFGs) extend CFGs by adding a probability

value to each production rule so that the probability values over all rules for a certain

non-terminal symbol form a valid probability distribution (they are non-negative and

they sum up to one). During derivation, a specific production of a rule for replacing a

non-terminal symbol is drawn from the corresponding probability distribution. A PCFG

implicitly defines a joint probability distribution over all possible sequences derived from

the grammar. This probability value for any given sequence denotes “how probable it is

for the grammar to generate the given sequence” and, therefore, how well the grammar

fits the sequence and vise versa. Sequences that cannot be derived from the grammar

have a derivation probability value of zero.

A formal definition of a PCFG G can be given as a 5-tuple:

G = (V,Σ, R, P, S)

It can be seen that the only difference compared to CFGs is the addition of P , which lists

the production probabilities of each production rule r ∈ R. These probabilities reflect the

likeliness of selecting some rules to substitute a non-terminal symbol during a derivation.

To make the representation of a PCFG simpler, the representation of P and R are

represented jointly. The reason for this convention is that it makes easier to understand

Nikolaos Kofinas 9 July 2014

2. BACKGROUND

the probability that corresponds to a production of a rule. The example CFG of the

previous subsection extended to PCFG will look like:

G = (V,Σ, R, S, P)

V = {S}

Σ = {a, b}

RP = {S → aSb (0.2), S → ab (0.8)}

2.3.2 From a CFG to a PCFG

To transform a context-free grammar to a probabilistic one, we must assign probabilities

to its production rules. To this end, a referenced corpus O, that is, a collection of

words which can be derived from the grammar, is required. There are several learning

algorithms whose goal is to infer probabilities that maximize the likelihood of PCFG with

respect to the reference corpus O.

The most known among them is the Inside-Outside algorithm [2], which belongs to

the family of Expectation-Maximization (EM) algorithms [3].

Inside-Outside takes into account all possible derivations that can produce the same

word in the corpus and yields very accurate probabilities. This algorithm’s complexity is

O(n3) where n is the number of production rules of the grammar.

2.3.3 Chomsky Normal Form

A (P)CFG is said to be in Chomsky Normal Form (CNF) [4], when it follows these rules:

1. The right side of any production rule with the start symbol S on the left side

consists of exactly two non-terminal symbols

2. The right side of any production rule with any other non-terminal symbol on the

left consists of exactly two non-terminal symbols or one terminal symbol

As a consequence, a (P)CFG in CNF can produce words whose lengths are greater or

equal to two. The simple PCFG that was described above in CNF becomes:

G = (V,Σ, R, S, P)

Nikolaos Kofinas 10 July 2014

2.4 Parsing

V = {S,N1, A,B}

Σ = {a, b}

RP = {S → AN1 (0.2), S → AB (0.8), N1 → SB (1.0), A→ a (1.0), B → b (1.0)}

The drawback of CNF is that the grammar becomes larger and harder to understand,

but, on the other hand, as we shall see in the next section, the best parser available for

parsing (P)CFGs assumes that the grammar is given in CNF. However, it is proven [5]

that any (P)CFG can be easily transformed into an equivalent one in CNF, excluding

words of length less than two.

2.4 Parsing

A parser is used every time it is needed to determine whether a word can be derived

from a given grammar. There are a number of different formal ways to automatically

construct a parser given a grammar [6]. One of them is the bottom-up approach, which

is used by the bison parser generator. The problem with those parsers is that they are

sacrifice generality for the sake of efficiency.

Since our grammars are PCFGs, there are two families of generic parsers, efficient

enough to be considered: Earley [7] and Cocke-Younger-Kasami (CYK) [8] parsers. Typ-

ically, Earley parsers are considered to be superior to CYK parsers, since for a given input

of length n and grammar of length |G|, they exhibit an O(n · |G|) complexity. However,

for ambiguous grammars, Earley parsers present the same complexity as CYK parsers,

Θ(n3 · |G|). Additionally, CYK parsers are far easier to construct and use in practice.

2.4.1 CYK for CFGs

The CYK parser, shown in Algorithm 1, can only be used with context-free grammars in

CNF. For any input word it asserts if this word can be derived from the grammar or not.

The importance of the CYK algorithm stems from its high efficiency in certain situations.

The worst case running time of CYK is Θ(n3 · |G|), where n is the length of the input

word and |G| is the size of the CNF context-free grammar G. This makes it one of the

most efficient parsing algorithms in terms of worst-case asymptotic complexity, although

other algorithms exist with better average running time in many practical scenarios.

Nikolaos Kofinas 11 July 2014

2. BACKGROUND

Algorithm 1 CYK algorithm for CFG

Input: CNF CFG G = (V,Σ, R, S) and word = s1 · · · sn where n ≥ 2

Output: word ∈ L(G) or word /∈ L(G)

1: N [i, j] = ∅, i = 1, . . . , n, j = i, . . . , n

2: for i := 1 to n do

3: N [i, 1] := {A : (A→ si) ∈ R}
4: end for

5: for j := 1 to n− 1 do

6: for i := 1 to n− j do

7: for k := i to i+ j − 1 do

8: if (A→ BC) ∈ R and B ∈ N [i, k] and C ∈ N [k + 1, i+ j] then

9: N [i, i+ j] := N [i, i+ j] ∪ {A}
10: end if

11: end for

12: end for

13: end for

14: if S ∈ N [1, n] then

15: return word ∈ L(G)

16: else

17: return word /∈ L(G)

18: end if

2.4.2 CYK for PCFGs

If we were to parse a word with respect to a PCFG, it would be better to know whether it

can be generated from the grammar and, also, the probability that this can be done. The

CYK algorithm can be modified to handle PCFGs with only some minor changes. The

basic change is that table N in each cell stores additionally a probability value for each

member of the corresponding set in that cell. Therefore, when we add a new entry (a left

side of some production rule) to a cell of table N , we also calculate the corresponding

probability. This probability takes into account the probabilities of all the components

of the production rule, as shown in the complete description in Algorithm 2. If there is

an update to an existing entry of the table, the highest probability is kept.

Figure 2.2 presents the resulting table N after a run of the CYK Algorithm 2. The

Nikolaos Kofinas 12 July 2014

2.5 Grammatical Inference

Algorithm 2 CYK algorithm for PCFG

Input: CNF PCFG G = (V,Σ, R, P, S) and word = s1 · · · sn where n ≥ 2

Output: P (word) (if word ∈ L(G) then P (word) > 0, else P (word) = 0)

1: N [i, j] = ∅, i = 1, . . . , n, j = i, . . . , n

2: for i := 1 to n do

3: N [i, 1] := {A, P (A→ si) : (A→ si) ∈ R}
4: end for

5: for j := 1 to n− 1 do

6: for i := 1 to n− j do

7: for k := i to i+ j − 1 do

8: if (A→ BC) ∈ R and B ∈ N [i, k] and C ∈ N [k + 1, i+ j] then

9: prob := P (A→ BC) ∗ PN [i,k](B) ∗ PN [k+1,i+j](C)

10: if A ∈ N [i, i+ j] and PN [i,i+j](A) < prob then

11: PN [i,i+j](A) := prob

12: else if A /∈ N [i, i+ j] then

13: N [i, i+ j] := N [i, i+ j] ∪ {A, prob}
14: end if

15: end if

16: end for

17: end for

18: end for

19: if S ∈ N [1, n] then

20: return PN [1,n](S)

21: else

22: return 0

23: end if

input to this run is the PCFG presented above (Section 2.3.1) and the word: “aaaabbbb”.

The output of resulting probability for this word is 0.0064.

2.5 Grammatical Inference

Grammatical inference [9] in machine learning is the process of learning a formal grammar

from a set training set (a set of words, or a set of syntactic trees, or ..). More generally,

Nikolaos Kofinas 13 July 2014

2. BACKGROUND

a A S (0.0064)

a A S (0.032) N1 (0.032)

a A S (0.16) N1 (0.16)

a A S (0.8) N1 (0.8)

b B

b B

b B

b B

Figure 2.2: CYK completed table

grammatical inference is the way of learning new production rules that can parse (or

generate) words that are part of the training set. There are various types of inference

algorithms, each one of them focusing on languages that belong to different levels in the

Chomsky Hierarchy. The problem of learning formal grammars for regular languages

has been considered solved, since efficient algorithms have been proposed. On the other

hand, there are no generic algorithms that can efficiently learn and handle languages with

richer formalism, such as context-free and context-sensitive languages.

2.5.1 Input and Dependencies

The Grammatical Inference algorithms can be categorized based on the type of the input

training set:

1. positive data, where all input data belong to the target language

2. positive and negative data, where the input data are labeled as belonging or not

to the target language

Additionally, some algorithms need an oracle that can answer membership queries. A

membership query posted to the oracle, takes as input a word and answers if that word

belongs to the target language or not. While this can be done easily, if the oracle knows

the grammar that generates the target language, it is impossible to automatically an-

swer such a query, if the grammar is unknown, which is common in real-world problems.

Nikolaos Kofinas 14 July 2014

2.5 Grammatical Inference

Sometimes a human can play the role of the oracle, typically in natural language prob-

lems, but in most cases this cannot be done.

The data that the algorithms need as input can be categorized in:

1. words which must be annotated as positive or negative

2. syntactic trees of pre-parsed positive words

As it can be understood, input data in the form of syntactic trees rely on heavy annotation

and they are mainly used in natural-language processing, where such annotation exists.

2.5.2 Gold’s Theorem

It can be proven that for any given set of words generated by a grammar capable of

infinite recursion, there is an indefinite number of grammars that could have produced

the same data. Note that these grammars may in general generate different languages. E.

Mark Gold proved [10] that it is impossible to learn a grammars for an infinite languages

with certainty. More specifically, he showed that any formal language generated by a

grammar capable of infinite recursion is un-learnable from positive words alone, in the

sense that it is impossible to formulate a procedure that will discover with certainty the

correct grammar given any arbitrary sequence of positive words.

Nikolaos Kofinas 15 July 2014

2. BACKGROUND

Nikolaos Kofinas 16 July 2014

Chapter 3

Our Problem

3.1 Problem Statement

Autonomous robot missions can generate a great deal of data that can be processed so

as to find important events that may occur throughout any past or ongoing mission or

identify a strange event in a future mission. Important events may vary from a minor

mechanical failure to something more elaborate, e.g. that the robot has drifted due to

some external disturbance that is difficult to notice.

The most effort-consuming procedure for the robot designer is the creation of specific

recognizer (and possible handlers) for each individual important event. As robots become

more complex and start becoming a part of our complex environment, researchers need

a way to capture events without relying on specific recognizers. Another problem arises

when a new, unexpected event occurs during a missions, which was not even anticipated

during the design. In this case, either the event goes unnoticed or the researchers must

analyze a large volume of logged data, annotate them to find the event and then create

the corresponding recognizer for it.

For these reasons, there is need to find a way to create event recognizers for robot

missions without significant human involvement. To this end, our goal is to come up with

a learning algorithm, which will create event recognizers automatically using annotated

data from various missions. This annotation must be kept at high level, because the

detailed annotation of data is, also, very effort-consuming for the designer.

A modern method to recognize events is to use a Probabilistic Context-Free Grammar

(PCFG), which parses incoming sequences of sensor data from the mission to determine

Nikolaos Kofinas 17 July 2014

3. OUR PROBLEM

if any event occurred during the mission. Recent experimentation with such methods on

data from Autonomous Underwater Vehicle (AUV) missions indicated that interesting

events, such as collision with the bottom of the sea, can be easily recognized by parsing

sequences of depth and pitch sensor data using an intuitive hand-written grammar. An

advantage of this approach is that the PCFG itself is a human-readable structure, which

can provide a clear explanation and/or interpretation of when and why an event occurs

or becomes recognized. The main disadvantage of this approach is that the creation

of a correct PCFG for just one event take a lot of effort and time. Our goal in this

thesis is to provide a Grammatical Inference method which will be capable of learning

appropriate PCFGs for Event Recognition directly from lightly-annotated mission data.

Such a method will be very useful in creating PCFGs automatically for a variety of events,

without putting much effort on the design.

3.2 Related Work

The idea of Grammatical Inference of context-free grammars has been successfully applied

to a variety of fields, such as pattern recognition, computational biology, and natural

language processing [11]. This is an indication that Grammatical Inference of CFGs

is a promising direction towards our goal namely Event Recognition. The following

subsections present the related work in Grammatical Inference of CFGs, discussing the

advantages and disadvantages of each approach, as well as its limited exploitation so far

in Event Recognition.

3.2.1 Problem-specific algorithms

This section reviews Grammatical Inference algorithms, which do not handle the whole

class of context-free grammars, but only specific sub-classes of them.

Non-Terminal Separated Grammars Omphalos [12] was a context-free language

learning competition, whose winner was Alexander Clark of King’s College London. His

winning algorithm [13] is limited to the class of Non-Terminal Separated (NTS) languages

which is subclass of context-free languages. This approach is not suitable for our problem,

Nikolaos Kofinas 18 July 2014

http://www.irisa.fr/Omphalos/

3.2 Related Work

as it cannot be determined in advance whether our training data (words) can be described

as a language of the NTS class.

Contextual Binary Feature Grammars Clark et al. [14] defined a new class of

grammars known as the Contextual Binary Feature Grammars (CBFG) and proposed

an algorithm that can learn any language of this class. Since it has been proven that

this class does not enclose all possible CFGs [15], the algorithm is not suitable for our

problem. Additionally, their approach requires an oracle that can answer the membership

queries, but in our problem there is no way to create such an oracle.

Substitutable Languages Clark et al. [16] defined another class of grammars, called

Substitutable Grammars. Once again, this class does not include all possible context-free

grammars and, thus, it is not suitable for our approach. It should be mentioned that this

approach is one of the few that guarantee polynomial-time complexity.

3.2.2 Generic algorithms

This section reviews Grammatical Inference algorithms, which handle the whole class of

context-free grammars.

Binary Feature Grammars Clark et al. [17] describe an algorithm that can learn

any language belonging to the class of Binary Feature Grammars (BFG) in polynomial

time. The class of context-free languages is a subclass of BFGs and, thus, this approach

seems to be suitable. The downside of this approach is that it needs an oracle that can

answer the membership queries which is not available in our problem.

String Kernels This approach [18] handles Grammatical Inference in a different way.

Instead of learning the structure of a grammar, e.g. the non-terminal symbols and pro-

duction rules, it learns how to represent a language as hyperplanes in a high-dimensional

feature space. Unfortunately, this representation provides no insight in the structure of

the language itself and appears is a black box to the end user. While this approach

can handle all context-free languages, we did not use it because our goal is to infer the

structure of the target language and thus understand the nature of the event.

Nikolaos Kofinas 19 July 2014

3. OUR PROBLEM

Minimum Description Length There are several approaches [19, 20] that try to uti-

lize the idea of minimum description length to learn any context-free grammar. The idea

of minimum description length describes a way to compare two grammars based on their

representation length and on the effective compression they achieve on the initial training

corpus. These algorithms are based on local search initiated with a naive grammar that

lists all words of the training corpus as separate production rules. At each step, they

create all the possible successors of the current grammar, using various grammar modi-

fication operations, and they select the best successor to continue with. This process is

repeated until no improvement can be achieved in the neighborhood of the current gram-

mar. These local search approaches are not efficient enough for our problem, because

even for a simple grammar they require a large number of positive data and often yield

an over-generalized grammar, which derives many words outside the target language.

Emile This algorithm [21] works with a corpus of only positive words. The basic idea

of the algorithm is that it arranges all the symbols of all the words on both sides of a two

dimensional matrix. Each cell (i, j) of the matrix is marked, if the sequence sisj, where

si is the symbol corresponding to row i and sj is the symbol corresponding to column j,

is part of any word in the corpus. Then, the algorithm tries to find clusters inside this

matrix and creates non-terminals from those clusters. While this algorithm is interesting,

it was tested in our problem and the results was not satisfying. It failed to generalize

and it created grammars that were over-fitted to the training corpus.

Iterative Bi-clustering Tu et al. [22] presented an approach similar to Emile. The

key difference is that this approach generates a PCFG directly in CNF. The first step

of the algorithm is also to create a matrix similar to that of Emile, but the cells of the

matrix store the number of times the sequence sisj appears in the corpus. Then, it uses

a bi-clustering algorithm to extract the best bi-cluster from the matrix. At this point, a

new rule is created based on the extracted sub-matrix. This procedure cannot generalize

and, thus, the authors introduced a second procedure, which checks whether there are

possible merges between two existing rules of the grammar. If there are any, then the

corresponding two rules are merged into a single rule referring to a new non-terminal

symbol. Finally, the rows and columns of the matrix are updated to match the new

non-terminal symbol. These two procedures are repeated until the matrix is reduced to

Nikolaos Kofinas 20 July 2014

3.2 Related Work

1 × 1. This approach seemed to be very suitable for our problem, because it can learn

any context-free grammar, as well as calculate the probabilities of the rules directly from

the corpus. However, its main disadvantage is the CNF requirement, which prevents

performing efficient local search.

Bayesian Learning This local search approach [23] tries to find the best successor of

a grammar by comparing the posterior probabilities of the successors grammars. The key

idea of this approach is similar to that of Bi-clustering and Minimum Description Length

that were discussed above. It uses the same operations as the Minimum Description

Length, which are quite similar to the ones that Bi-clustering approach uses. The goal

of this approach is to find a grammar that maximizes the posterior probability P (G|O)

of a grammar G over a training corpus O. This probability cannot be computed directly,

but is given by Bayes’ rule:

P (G|O) =
P (G)P (O|G)

P (O)

This algorithm is the most suitable for our problem and served as the base idea behind

our learning algorithm.

3.2.3 Event Recognition with the use of (P)CFG

The idea of using Grammatical Inference to learn the appropriate recognizers for Event

Recognition has also been investigated by Geyik et al. [24]. Their goal is to recognize

three distinct events in video sequences from a parking lot: (a) Enter and Park, (b) Enter

and Leave, and (c) Leave Parking. Their approach needs fully annotated data with these

three events.

A similar approach [25] tried to categorize computer log files, by checking if they have

an anomaly or not. In this work, the input data that used to train the CFG consisted of

highly-annotated log files, where all useless data (not related to the target anomaly) had

been eliminated.

While these two pieces of work tried to accomplish something similar to what we are

trying to accomplish, they did not exploit effectively a principled learning approach of

those used for Grammatical Inference in other domains. In both cases, certain heuristics

were introduced for convenience, resulting in questionable learning outcomes (grammars).

Nikolaos Kofinas 21 July 2014

3. OUR PROBLEM

Nikolaos Kofinas 22 July 2014

Chapter 4

Our Approach

4.1 Normal and Abnormal Events

As discussed in Section 3.1, the design of recognizers for specific events is a time-

consuming process. Additionally, the annotation of data to indicate where an event

(if any) has occurred within a mission is also a difficult task and sometimes impossible

to accomplish. Our experience so far indicates that it is rather difficult to write down

all possible events that may be useful to recognize, let alone the problem of finding the

corresponding grammars or mission logs containing occurrences of these events. To avoid

these difficulties, we suggest a different, somewhat generic, approach in which we try to

identify significant events without going through time-consuming annotations for specific

events.

To this end, we decided to separate events into two broad categories: the first con-

taining all normal events that occur during normal mission operation and the second

containing all other events which can be described as abnormal. Abnormal events are

rare events that typically do not occur during a normal mission. The target of our ap-

proach now is to learn grammars that model those normal events. There is an abundance

of data from normal missions, which can be used towards this purpose. If these grammars

are inferred successfully, any sequence of data that cannot be recognized as belonging to

the language of the learned grammars can be considered as abnormal.

The advantage of this approach is that we only need data from normal missions to

proceed. These can be easily collected simply by observing missions and by keeping

only the ones that were completed without any problems or surprises. Additionally, the

Nikolaos Kofinas 23 July 2014

4. OUR APPROACH

detection of abnormal events as anything that occurs outside the nominal measurements

of normal missions may lead to detection of rare, but possibly interesting, events that

cannot be easily characterized or localized to specific measurements in advance. On

the other hand, the main disadvantage is where to draw the line between normal and

abnormal data. If the normal data used for training do not cover the entire range of

normal missions, it is possible that ignored normal events will be detected as abnormal.

Also, if abnormal data are included (by mistake) in the training set, the corresponding

abnormal events will never be recognized.

4.2 Data Logs to Words

Robot mission data logs typically consist of streams of different sensor measurements

(accelerometer, gyrometer, depth meter, GPS, etc.). The first step towards learning a

PCFG for Event Recognition is to translate robot mission data to words. In particular,

we must specify an alphabet to represent the possibly continuous sensor measurements

as discrete symbols. Thus, we need to map sensor values to symbols or in other words

quantize the data. Then, the readings of a sensor over time can be translated to words

by choosing appropriate time windows.

4.2.1 Quantization

Quantization is the procedure of constraining a continuous set of values to a relatively

small discrete set [26]. In our approach this small set is our alphabet. The quantizer is

responsible for this discretization and maps the input values to the corresponding symbols

from the alphabet. The size of the desired alphabet is given by the user and determines

the granularity of the discretization. As a convention any chosen alphabet is enhanced by

two extra symbols to indicate possible measurements above and below the typical range

of the sensor.

In our approach we tried two types of quantizers:

• The scalar (uniform) quantizer creates n uniformly distributed quantization re-

gions over the range of the input values, where n is the size of our desired alphabet.

Nikolaos Kofinas 24 July 2014

4.2 Data Logs to Words

• The Lloyd-max quantizer also creates n quantization regions. The difference is

that it distributes these regions over the range of the input values based on the

minimization of the Mean-Squared Error between the discretized and the continuous

data.

In practice, we observed that these two approaches produced similar results and thus in

the rest of this work we will adopt the scalar quantizer which is more intuitive and easier

to visualize.

4.2.2 Corpus creation

Once the alphabet and the translation to symbols have been determined, we must find a

way to forms words from the stream of data. In their work Geyik et al. [24] had already

words to work with, because their data logs had a known start and end point and therefore

it was trivial to form the corresponding words. In our problem, after quantization we

have to deal with large sequences of symbols, one such sequence for each sensor from

each mission.

A naive approach is to take every such sequence as a single word. Focusing on one

sensor, each mission contributes a large word in the corpus. The main disadvantage of

this approach is the creation of very large words. The CYK parsing algorithm we are

using can parse only complete words and thus, under this approach, we must wait for a

mission to end and only then can we parse the resulting word to recognize an event. As a

result, an event can only be recognized after the end of the mission. Another disadvantage

is that we need a lot of missions to create a large enough corpus for training the grammar.

Additionally, events of interest typically do not span the entire length of a mission, but

rather they occur at specific times during a mission. Besides the difficulty of recognizing

localized events into long words, even a successful event recognizer in this case would not

be able to provide information about the time the event occurred during the mission.

Due to these disadvantages, we decided that it is more suitable to break the mission

into many words to add to the corpus. The guiding principle in doing so, is to choose an

appropriate time window over the length of the mission which is likely to include events

of interest. This approach will create a large amount of words into the corpus from fewer

missions. The disadvantage of this approach is that restricting the length of the words

Nikolaos Kofinas 25 July 2014

4. OUR APPROACH

may degenerate the underlying language to be a member of the more restricted class of

regular languages.

To split the sequence of data of a mission into smaller non-overlapping words, we

investigate three different ways:

1. Words of a standard fixed length n.

2. Words whose length follows a uniform distribution over a fixed range [n− n
2

: n+ n
2
].

3. Words whose length follows a normal distribution N(n, n
2
) around a fixed length n.

At this point it must be mentioned that the user needs to provide three values as in-

put: the size of the alphabet, the nominal length of words n, and the splitting method

(standard, uniform, or normal).

4.2.3 Quantization and corpus creation example

In this section, we will present an example of the quantization and corpus creation method

described above. We will use an alphabet of size 4, a nominal word length equal to 12,

and a normal distribution to split the “mission” into words. Our data will be provided

by a cosine function in the time window [0 : 4π]. Figure 4.1 presents the generated data

and the uniform quantization regions. As we can see the 4 symbols of the alphabet are

b, c, d, e enhanced with the extra symbols a, f which are reserved for outlier values outside

a typical range.

The quantized log sequence translated to symbols is the following:

“b c c c c c c c c c c c d d d d d d d d d d

e d d d d d

d d d d d d c c c c c c c c c c b

b b b b b b b b b b b b b b b b c c c c c c c c c c c d d d d d d d d d d e e e e e e

e d d d d d d d d d d

c c c c c c c c c c c b”

The next step is to use a normal distribution N(12, 6) to split this large word to smaller

ones. The resulting corpus has the following 20 words:

Nikolaos Kofinas 26 July 2014

4.2 Data Logs to Words

0 2 4 6 8 10 12

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Data

Segments

'a'

'b'

'c'

'd'

'e'

'f'

Figure 4.1: Data and quantization regions

1. “b b b b b b b b b b b b b b”

2. “b b b b b b b b c c c c c c c c”

3. “c c c c d d d d d d d”

4. “d d d d e e e e e e e e”

5. “e e

e e e”

6. “e e e e e e e e e e e d d d d d d d d d d

d c c c c”

7. “c c c c c c c b b b b b b b b”

8. “b b b b b b b b b b b b b b b b b b b”

9. “b b b”

10. “b b b b b b b b b”

11. “b b b b b b b c c c c”

12. “c c c c c c c c d d d d d d d d”

13. “d d d”

14. “d e e e e e e e e e e e e e e e”

15. “e e e e e e”

16. “e e e e e e e e e e e e e”

17. “e e e e e e e e e e e d d d d d d”

18. “d d d d d c c c c c c c c c c”

19. “c c b b b b b b b b b b b b b b b b b”

20. “b b b b b”

Nikolaos Kofinas 27 July 2014

4. OUR APPROACH

4.3 Grammar Learning

During our research we found out that the Bayesian unsupervised learning approach is

very suitable to our problem. The reason is that we do not know if our data belong to

a specific subclass of context-free grammars and thus we need a generic approach that is

able to learn any context-free grammar.

4.3.1 Learning Objective

The goal in our learning algorithm is to find the grammar G that maximizes the posterior

probability over a training corpus O:

G∗ = arg max
G

P (G|O)

There is no known way to compute this probability and therefore, we use Bayes’ rule:

G∗ = arg max
G

P (G)P (O|G)

P (O)
= arg max

G
P (G)P (O|G)

where P (G) is the prior probability of the grammar and P (O|G) is the probability of the

current corpus given the grammar (likelihood).

Grammar prior There is not straight-forward way to define the prior probability of a

grammar and, thus, we are adopted a choice which is based only on the description length

of the grammar. This choice is the most commonly used in the literature [19, 20, 23],

when the prior of a grammar must be calculated. The key idea is that the shortest

grammar is more probable among all other grammars, based on Occam’s Razor principle

(simpler is better). We define that each symbol used in the representation of a grammar,

increases its description length by one. Therefore, the prior probability of a grammar

can be calculated as:

P (G) =
1

2|G|

where |G| is length of the grammar. The exponential in the denominator penalizes heavily

long representations. In other words, each addition of a symbol, reduces the prior by half.

As we observed in our experiments, the base of the exponential has no significant impact,

as long as it is larger than 1. To provide an example, consider the following grammar:

G = (V,Σ, R, S)

Nikolaos Kofinas 28 July 2014

4.3 Grammar Learning

V = {S}

Σ = {a, b, c}

R = {S → abc | bbc}

To calculate the prior we take into account only the representation of the rules. The

length of this representation is 9, because there is one symbol on the left side (S), six

symbols in total on the right sides and two separator symbols (→, |). Thus, the prior of

the grammar is:

P (Gprior) =
1

29
= 0.001953

Likelihood The likelihood P (O|G) is the probability of grammar G to produce the

entire corpus O. Assuming that the words in the corpus O are iid, the likelihood can

be expressed as the product of all parsing probabilities of the words in corpus O given

grammar G:

P (O|G) =
∏
w∈O

P (w|G)

where P (w|G) is the probability of word w to be derived from grammar G.

4.3.2 Learning strategy

Since we can compute the prior P (G) and the likelihood P (O|G) of any grammar G given

a corpus O, we now focus on how to setup a search procedure in order to find a grammar

that maximizes the posterior P (G|O).

Note that the search space of possible grammars is not a vector space, as common

in maximum-likelihood optimization problems. The implication is that commonly used

techniques, such as gradient following, cannot be applied. In addition, the search space is

rather complex and cannot be generated systematically due to the diversity in the struc-

ture of grammars (non-terminal symbols, rules, productions, probabilities, start symbol).

As a result, systematic search algorithms cannot be applied to cover the entire search

space and therefore search completeness cannot be guaranteed by any search algorithm.

Additionally, we note that our search problem aims to find the best possible grammar

in the search space. Even though we can evaluate the goodness of any grammar, any

search algorithm applied to our problem can never be sure if the best possible grammar

has been reached. The implication is that no termination criterion can be defined.

Nikolaos Kofinas 29 July 2014

4. OUR APPROACH

For these reasons we focus on local search algorithms, whereby search is initialized

at some initial guess (a complete grammar) and proceeds iteratively by checking for an

improved grammar within the “neighborhood” of the current guess and moving there.

The neighborhood of a grammar can be defined in numerous different ways even though

there is no single choice which is better than the others; our definition of a neighborhood

will be based on two common grammar manipulation operations (chunk and merge) [20,

23]. The details of our local search procedure are described in the following sections.

4.3.3 Initialization of the PCFG

The initialization of the grammar for our local search procedure consists of three steps:

1. Create non-terminals to replace the terminal symbols in the corpus

2. Introduce a Start symbol with one production for each word of the corpus

3. Calculate the count (probability) for each distinct production

Step 1: From symbols to non-terminals In the first step we create non-terminals

to replace all the terminal symbols in the training corpus. There is a one-to-one cor-

respondence between the terminal symbols and the newly-created non-terminals. These

non-terminals are created only to simplify our implementation and they will be ignored in

all subsequent learning steps. To give an example, consider the following training corpus:

O =



a b c c c c
a a a b c
a a b b b c
a a b b c c
a a a b c c c c
a a a a a a b c
a a b b b c


There are three unique terminal symbols that appeared in this training corpus a, b,

and c and thus, three new non-terminal symbols N1, N2, and N3 will be created. Each

one of them will have single production N1 → a, N2 → b, and N3 → c. Now, all the

Nikolaos Kofinas 30 July 2014

4.3 Grammar Learning

occurrences of the terminal symbols in the corpus will be replaced with the corresponding

non-terminal symbols and the training corpus becomes:

Onew =



N1 N2 N3 N3 N3 N3

N1 N1 N1 N2 N3

N1 N1 N2 N2 N2 N3

N1 N1 N2 N2 N3 N3

N1 N1 N1 N2 N3 N3 N3 N3

N1 N1 N1 N1 N1 N1 N2 N3

N1 N1 N2 N2 N2 N3


The complete grammar, at this point, has four non-terminal symbols and three produc-

tions:

Ginit1 = (V,Σ, R, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

R = {N1 → a, N2 → b, N3 → c}

Step 2: Production of the Start symbol Given that the corpus now contains only

non-terminal symbols, a single rule for the start symbol S will be created with as many

productions as the words in the corpus:

Ginit2 = (V,Σ, R, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

R =



S → N1 N2 N3 N3 N3 N3

S → N1 N1 N1 N2 N3

S → N1 N1 N2 N2 N2 N3

S → N1 N1 N2 N2 N3 N3

S → N1 N1 N1 N2 N3 N3 N3 N3

S → N1 N1 N1 N1 N1 N1 N2 N3

S → N1 N1 N2 N2 N2 N3

N1 → a
N2 → b
N3 → c



Nikolaos Kofinas 31 July 2014

4. OUR APPROACH

This grammar, despite its large size, derives precisely the words of the corpus O, but it

lacks in compactness. For a complete PCFG, the only missing part at this point are the

production probabilities.

Step 3: Production counts In this final step, we assign un-normalized probabilities

to all productions of the grammar. For simplicity, we refer to the un-normalized prob-

abilities as the counts of the productions. First,we delete all duplicate productions and

then we assign to them a count which reflects the number of occurrences in the corpus:

Ginit3 = (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

RP =



S → N1 N2 N3 N3 N3 N3 (1)
S → N1 N1 N1 N2 N3 (1)
S → N1 N1 N2 N2 N2 N3 (2)
S → N1 N1 N2 N2 N3 N3 (1)
S → N1 N1 N1 N2 N3 N3 N3 N3 (1)
S → N1 N1 N1 N1 N1 N1 N2 N3 (1)
N1 → a (19)
N2 → b (12)
N3 → c (14)


This is the complete initial PCFG, which is nevertheless over-fitted to the training

corpus and does not generalize beyond the training corpus. This generalization and the

compactness of the grammar will be achieved through our learning algorithm.

Note that the prior P (Ginit) of this grammar can be easily computed from the defi-

nition and it will be rather small due to the lack of compactness in the representation.

The structure of Ginit allows us to compute the likelihood P (O|Ginit) directly from the

grammar, Ginit since the corpus O has now been incorporated into the grammar:

P (O|Ginit) =
∏

r∈Rinit

∏
pr∈r

 Pinit(pr)∑
qr∈r

Pinit(qr)


Pinit(pr)

where Pinit(pr) is the probability of production pr (or the corresponding count in case of

un-normalized probabilities). The underlying principle is that each production p is used

P (p) times to parse the corpus and thus its probability must appear P (p) times within

the likelihood, as reflected in the exponent.

Nikolaos Kofinas 32 July 2014

4.3 Grammar Learning

N1 → a a a b c d (15)

N2 → a b c a a d (22)

N3 → d d a b c a d (9)

=⇒

N1 → a a N4 d (15)

N2 → N4 a a d (22)

N3 → d d N4 a d (9)

N4 → a b c (46)

Figure 4.2: An example of the chunking operation

4.3.4 Grammar manipulation: Chunk and Merge

To create the neighborhood of the current grammar in the search space, we present

two widely-used grammar manipulation operations (chunk and merge) which modify the

grammar to create its successors.

Non-terminal chunking The chunk operator creates a new non-terminal symbol and

the corresponding rule so that the new symbol derives a specific sub-sequence (of length

at least two) that appears in the productions of the grammar. When a new rule is created

through chunking, all the occurrences of this sub-sequence are replaced by the new non-

terminal symbol. As a result, this operator can change the grammar length but does not

modify the language of the grammar. A chunk that shrinks the grammar (reduces the

length) will increase the prior and thus, the posterior will be increased too. This operator

is incapable of affecting the generalization of the grammar, but it can produce a diversity

of new non-terminals and rules which will be used in sub-sequence merging operations.

Figure 4.2 shows a simple example of the chunking operator. In this scenario, the sub-

sequence that will be chunked is “a b c”, the new non-terminal symbol is N4, and the

corresponding new rule is N4 → a b c. As mentioned above, in all the productions of the

grammar, the appearances of the sub-sequence “a b c” are replaced by the non-terminal

N4 and the new rule have been added to the grammar. Additionally, the total size of the

grammar, in this case, is reduced by one, because:

1. 9 occurrences of symbols have been removed (three replacements of “a b c”)

2. 3 occurrences of the new symbol (N4) were added through the replacements

3. 5 symbols were added to represent the new rule (N4 → a b c)

Nikolaos Kofinas 33 July 2014

4. OUR APPROACH

N1 → a N2 a N3 c

N2 → a N1 a N3 d

N3 → d N2 d c d

=⇒
N1 → a N2 a N2 c

N2 → a N1 a N2 d

| d N2 d c d

Figure 4.3: An example of the merging operation

As mentioned before, after each chunk operation only the prior probability of the grammar

changes. More specifically, the chunk operation adds/subtracts symbols in/from the

representation of the grammar Gold and, thus, the posterior of the new grammar Gnew

after a chunk operation can be calculated by:

P (Gnew|O) = P (Gold|O)
1

2|Gnew|−|Gold|

The fraction on the right is known as the gain in the prior over the previous grammar:

PGainprior =
1

2|Gnew|−|Gold|

Non-terminal symbol merging The merge operator condenses two existing non-

terminal symbols Nx and Ny into one by merging their production and eliminating one of

the symbols (e.g. merge productions of Ny into Nx and delete Ny). All the occurrences

of the eliminated symbol (Ny) in all other productions of the grammar are replaced by

the symbol that remains (Nx). It must be noted that the non-terminal symbols that

derive only terminal symbols do not participate in the merge operation. In Figure 4.3

a simple example of the merging operation is presented. In this scenario, the rules that

will be merged are N2 and N3 and they are merged into N2. Also, all occurrences of

symbol N3 in the grammar are replaced by N2. The merge operation affects both the

prior and the likelihood of the grammar, because it shrinks and generalizes the grammar.

The length of the grammar is reduced at least by one, because of the deletion of at least

one symbol. Additionally, the grammar may shrink even more because of the merging of

identical productions that may appear after the replacement of the eliminated symbol.

In any case, the prior of the grammar is increased. Additionally, the merge operation

affects the generalization of the grammar, because after merging, all productions of the

merged symbols are now available at all of their occurrences. Due to this generalization,

the resulting grammar can potentially derive words outside the original corpus. The

Nikolaos Kofinas 34 July 2014

4.3 Grammar Learning

likelihood can be increased or decreased depending on the rules being merged and, thus,

it must be recomputed after each merge. A naive way to accomplish that is to re-parse the

whole initial corpus to update the derivation probability of each word. This procedure,

however, is rather slow and will adds unnecessary overhead to the running time of the

learning algorithm. Since the effects of the merge operation are in general localized,

we can compute the likelihood incrementally considering the previous likelihood and the

changes made by the operation:

P (O|Gnew) =
∏

r∈Rnew

∏
pr∈r

 Pnew(pr)∑
qr∈r

Pnew(qr)


Pnew(pr)

= P (O|Gold)

∏
r∈R̂new

∏
pr∈r

 Pnew(pr)∑
qr∈r

Pold(qr)


Pnew(pr)

∏
r∈R̂old

∏
pr∈r

 Pold(pr)∑
qr∈r

Pold(qr)


Pold(pr)

where R̂new and R̂old are the subsets of rules Rnew and Rold respectively affected by the

merge operation (note that R̂new and R̂old are always different). Again, the fraction on

the right is known as the gain in the likelihood over the previous grammar:

PGainlikelihood =

∏
r∈R̂new

∏
pr∈r

 Pnew(pr)∑
qr∈r

Pold(qr)


Pnew(pr)

∏
r∈R̂old

∏
pr∈r

 Pold(pr)∑
qr∈r

Pold(qr)


Pold(pr)

The above incremental computation is feasible due to the structure of the initial grammar

which incorporates the corpus O (Section 4.3.3). If the merge operation affects only the

productions of the two merged symbols and, also, no pair of these productions collapses

into one, as in the example of Figure 4.3, the likelihood decreases. To see this, notice that

the probabilities of the two merged rules in R̂old will collapse and split over more choices

(the merged productions) within one rule in R̂new. On the other hand, if the merge

Nikolaos Kofinas 35 July 2014

4. OUR APPROACH

operation causes the collapse of productions in any rule of the grammar, the likelihood

may increase or decrease.

Independently of the operation applied, the total gain of the new grammar over the

inital posterior is given by:

PGainnew = PGainprior PGainlikelihood PGainold

4.3.5 Effective posterior computations

Representation of the posterior During the first steps of experimentation with our

implementation, we found out that the posterior took very small values (less than 10−50)

and we started to run into numerical problems due to the precision of our machine. In

order to resolve these problems and make the implementation numerically stable, we

store the logarithm of the posterior instead of the posterior itself, a common practice in

such calculations based on the monotonic nature of the logarithmic function:

G∗ = arg max
G

P (G|O) = arg max
G

logP (G|O) = arg max
G

(
logP (G) + logP (O|G)

)
where log is the base 10 logarithmic function. Similarly, we store the logarithm of the

gain Gain instead of the gain PGain itself, which can now be updated as follows:

Gainnew = Gainprior +Gainlikelihood +Gainold

where Gainprior is now given by:

Gainprior = −(|Gnew| − |Gold|) log 2

and Gainlikelihood is now given by:

Gainlikelihood = Pnew(pr)
∑

r∈R̂new

∑
pr∈r

log

 Pnew(pr)∑
qr∈r

Pold(qr)

−Pold(pr)
∑

r∈R̂old

∑
pr∈r

log

 Pold(pr)∑
qr∈r

Pold(qr)


Additionally, with this representation we transform the divisions into subtractions and

the powers into multiplication which yield a significant speedup in the execution.

Nikolaos Kofinas 36 July 2014

4.3 Grammar Learning

Normalization and regularization of the posterior During the implementation

phase, we also observed that the two components of the posterior, the prior and the

likelihood, do not take values in comparable ranges. This problem goes unnoticed under

chunk operations, because chunks change only the prior and but not the likelihood.

However, in a merge operation bot the prior and the likelihood, but the likelihood is

the dominant component because of a high value range. We noticed that the problem

was amplified, when we had large corpora because, as we mentioned above, the initial

grammar contains un-normalized counts. An example that demonstrates the problem is

the following: Consider the merge of two rules which have only one production each and

both productions have a count equal to 100. We make the assumption that this merge

does not change anything else in the grammar. If we merge these two rules, the grammar

is shrank by only one symbol so the prior gain is:

Gainprior = − ((|Gold| − 1)− |Gold|) log 2 = log 2 = 0.3010

and the likelihood gain is:

Gainlikelihood = 2

(
100 log

(
100

200

)
− 100 log

(
100

100

))
= −60.21

We can see that the two numbers differ by two orders of magnitude and in fact this was

the reason that our first implementation was generating grammars that were over-fitted

to the training corpus, simple because merge operations seemed to decrease the gain over

the posterior. The solution to this problem is simple; when we construct the grammar,

we divide all counts in the grammar with the total number of words in the corpus (corpus

normalization). With this simple modification, the value of the gain of the likelihood after

any merge operation is restricted to the range [−1 : +1]. While this solution seemed to

work, we found out that now the algorithm tended to create over-generalized grammars.

The reason, in this case, is that, if a merge shrinks the grammar by more than three

symbols, the prior gain is equal to 0.9030, which is large enough to allow “bad” merges

to be chosen. In other words, the dominant component now becomes the prior. We

experimented with different ways of calculating the prior beyond the proposed one, but

we did not overcome this problem. The solution we adopted is to introduce a non-negative

regularization factor λ to the prior:

G∗ = arg max
G

(
λ logP (G) + logP (O|G)

)

Nikolaos Kofinas 37 July 2014

4. OUR APPROACH

This regularization factor tries to make the prior comparable to the likelihood and,

as we show in Chapter 5, for small values of λ this solution effectively prevents over-

generalization.

4.3.6 Search strategy

Maximum chunk size In describing the chunk operation, no limit was set for the

maximum length of the sequence being chunked. It is possible to leave the operator

unrestricted and search for chunks of any length. Nevertheless, the enumeration of all

possible chunks of any length for a grammar with large productions (such as a just

initialized grammars) is slow. For this reason, we defined the maximum sub-sequence

length of any possible chunk equal to 15. This value can be easily changed in order to

adapt our algorithm to different situations, where a bigger maximum chunk length may

be useful. Moreover, we experimented with a maximum chunk length equal to two in

order to force the learning algorithm to learn grammars directly in CNF format. This

idea came from Tu et al. [22], where they proposed a similar chunking step (the bi-

clustering step) with chunk length equal to two. Our results were not satisfiable, because

local search under this constraint gets easily stuck to local maxima. A common trick to

escape from local maxima is to use look-ahead techniques, which allow to discover good

successors that lie beyond a few intermediate bad ones.

Best-First Search and Beam Search The first local search algorithm we imple-

mented was Best-First Search (BFS). BFS is a greedy local search algorithm, which

selects and proceeds to the best grammar among all successors, by comparing their over-

all gains. The basic implementation of the BFS does not use look-ahead and, thus, it

easily gets stuck to local maxima. While the following context-free languages:

L1 = {anbn : n ≥ 1}

L2 = {a2n : n ≥ 1}

L3 = {(ab)n(cd)n : n ≥ 1}

can be easily learned using BFS, BFS fails to learn more complex languages, such as

palindromes:

L4 = {wwR : w ∈ {a, b}∗}

Nikolaos Kofinas 38 July 2014

4.3 Grammar Learning

or languages that describe correct mathematical expressions with addition and parenthe-

ses such as the following:

a+ a+ (a+ a), (((a+ (a+ a)))), (a+ a) + (a+ a)

An extension of BFS is the Beam Search (BS) algorithm, which is also a greedy local

search algorithm, but it can explore simultaneously more that one paths. BS has two

parameters: beam depth, which is the maximum number of nodes (grammars) in the beam,

and beam width, which is the maximum number of unexpanded nodes in the beam. The

depth controls how many nodes the algorithm can use for look-ahead and the width how

many different paths it can follow. BS starts by inserting into the beam the first node

(initial grammar), which is marked as “unexpanded”. At each iteration, it expands the

unexpanded node, which yields the largest gain among all the unexpanded nodes in the

beam. All of its successors are inserted into the beam, marked as “unexpanded”, while

the expanded node gets marked as “expanded” and is re-inserted into the beam. After

that, the beam is checked to find out if the top #depth nodes contain at most #width

unexpanded ones. If this upper limit is violated, the unexpanded node with the least

gain value is deleted from the beam and the check is repeated, until there is no violation

of the upper limit. Finally, all nodes that are not included in the top #depth nodes are

deleted from the beam. The process is repeated until all top #depth nodes are marked

as “expanded” and then the BS terminates by returning as goal node the one with the

largest gain value among all the remaining nodes in the beam. A special case of BS is

obtained, when we set depth and width equal to 1 then BS reduces to BFS. If we set

width equal to 1 and depth equal to m, then BS becomes BFS with m-nodes look-ahead.

While BS is a greedy, non-optimal, local search algorithm, it can give very good results

and in most cases it discovers very good grammars. The width and the depth can be

easily changed by the user to fit the problem at hand; in our case, we set width equal to

5 and depth equal to 17.

Recalculation of Probabilities After the search phase, the algorithm ends up with

a PCFG whose probabilities may not model the corpus accurately any more. This may

happen, because after the application of a merge operation, the counts may become in-

valid and they cannot be recalculated without re-parsing the whole corpus. As mentioned

before, re-parsing of the entire corpus is a rather slow procedure and, therefore, we chose

Nikolaos Kofinas 39 July 2014

4. OUR APPROACH

to skip it and let the algorithm continue with inaccurate counts. We observed that in

practice this has no significant impact on the construction of the grammar and, there-

fore, we chose to recalculate the correct probabilities only after search is completed and

returns with good grammar. We recalculate the probabilities of the final grammar using

the Inside-Outside algorithm [2]. During this phase, it is possible that some productions

will end up with probabilities less than a small number ε. This small value indicates

that such a production is either useless or only a few words in the corpus use it in their

derivations. For this reason, we prune these productions from the grammar and then we

re-parse the entire corpus. If all words are still parsed with probability greater than zero,

then these productions remain pruned. Otherwise, they are added back to the gram-

mar productions since they play a key role to the correct parsing of the corpus. In our

implementation, we chose ε = 10−6.

Incremental Search While the algorithm presented so far works well, when the corpus

does not contain a large number of distinct words, we noticed that it fails to find a correct

grammar, when the corpus contains a large number of distinct words. An illustrative

example can be given using the language L = {anbn : n ≥ 1}. The PCFG for this

language is the following:

G = (V,Σ, R, S, P)

V = {S,A,B}

Σ = {a, b}

RP = {S → ASB (p), S → AB (1− p), A→ a (1.0), B → b (1.0)}

When p = 0.2, generating a total of ten thousand words from this grammar results in a

corpus, which has on average about six distinct words (the first six words up to n = 6). In

this case, our search algorithm works fine and reconstructs the true grammar. However,

when p = 0.9 generating a equally-sized corpus yields about 70 distinct words. Our

search fails to reconstruct the original grammar and terminal with an over-generalized

grammar, which represents the language L = {anbm : n,m ≥ 1}. To overcome this

problem we decided to break the initial corpus into batches of words in order to feed the

learning algorithm with these batches, one at a time. This incremental search procedure

consists of the following steps:

Nikolaos Kofinas 40 July 2014

4.3 Grammar Learning

1. Copy the initial corpus to a primary corpus

2. Sort the words in the primary corpus from the most frequent to the less frequent

3. Form the first training batch using the first k distinct words

4. Initialize the first PCFG using the first training batch

5. Execute the search procedure until termination

6. Parse the entire primary corpus with the resulting PCFG

7. Transfer all parsed words from the primary corpus to a secondary corpus

8. Recalculate the probabilities of the PCFG using the secondary corpus

9. If the primary corpus is not empty, form a new training batch with the k most-

frequent distinct words of the primary corpus, otherwise terminate

10. Use the new training batch to append the Start rule of the current grammar with

productions that can derive the words of the new batch

11. Go to Step 5

This incremental search procedure can easily handle corpora containing a large number

of distinct words with better control on over-generalization. The value of parameter k

can be arbitrary; in our implementation we frequently set it to be equal to one-tenth of

the total size of the initial corpus.

4.3.7 Learning example

We will present a simple example of our learning algorithm on the problem of learning

the language Lexample = {ancbn : n ≥ 1} from a small corpus Oexample with 18 words,

which is listed bellow:

1. a c b

2. a c b

3. a c b

4. a c b

5. a c b

6. a c b

Nikolaos Kofinas 41 July 2014

4. OUR APPROACH

7. a c b

8. a a c b b

9. a a c b b

10. a a c b b

11. a a c b b

12. a a c b b

13. a a c b b

14. a a a c b b b

15. a a a c b b b

16. a a a c b b b

17. a a a c b b b

18. a a a a c b b b b

The corpus is chosen to be small in order to make the example easier to understand

and, thus, the incremental search approach will not be used. Also, the width of the

Beam Search will be equal to one and the depth equal to two (one-step look-ahead), thus

at any time the beam will contain at most two grammars and at most one unexpanded.

Finally, we will set the max chunk size equal to five in order to keep the example relatively

small.

The initial grammar, according to Section 4.3.3, will be:

Gexample1 = (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

RP =



S → N1 N2 N3 (0.39)
| N1 N1 N2 N3 N3 (0.33)
| N1 N1 N1 N2 N3 N3 N3 (0.22)
| N1 N1 N1 N1 N2 N3 N3 N3 N3 (0.06)

N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)


The algorithm begins by initializing the gain to zero, Gain1 = 0, and inserting Gexample1

into the beam:

beam = {Gexample1(Gain = 0, unexpanded), empty}

The next step is to expand this grammar, since it is the only node in the beam. It marks

this grammar as expanded, finds all its successors, and re-inserts them into the beam.

Due to the size of the beam width being one, only one successor will be produced. At

Nikolaos Kofinas 42 July 2014

4.3 Grammar Learning

this step, only the chunk operator can be used, because we do not have two non-terminal

symbols which can be merged. As already mentioned, N1, N2, and N3 do not participate

in the merge operation. All the possible chunks are the following:

1. N1N2 (0)

2. N1N1N2 (1)

3. N1N1N1N2 (0)

4. N1N1N1N1N2 (−2)

5. N2N3 (0)

6. N2N3N3 (1)

7. N2N3N3N3 (0)

8. N2N3N3N3N3 (−2)

9. N1N1 (0)

10. N1N1N1 (−1)

11. N1N1N1N1 (−3)

12. N1N2 (0)

13. N2N2N2 (−1)

14. N2N2N2N2 (−3)

15. N1N2N3 (3)

16. N1N1N2N3N3 (5)

17. N1N1N2N3 (3)

18. N1N1N1N2N3 (1)

19. N1N2N3N3 (3)

20. N1N2N3N3N3 (1)

The numbers in parentheses denote by how many symbols each chunk shrinks the gram-

mar. As we can observe, chunk 16 shrinks the grammar the most (five symbols) and,

thus, this is the one selected to produce the single successor. The new gain is:

Gain2 = Gain1 + 5 log 2 = 0 + 1.5051 = 1.5051

The resulting grammar is:

Gexample2 = (V,Σ, R, P, S)

V = {S,N1, N2, N3, N4}

Σ = {a, b, c}

Nikolaos Kofinas 43 July 2014

4. OUR APPROACH

RP =



S → N1 N2 N3 (0.39)
| N4 (0.33)
| N1 N4 N3 (0.22)
| N1 N1 N4 N3 N3 (0.06)

N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)
N4 → N1 N1 N2 N3 N3 (0.61)


Now the beam takes the form:

beam = {Gexample2(Gain = 1.5051, unexpanded), Gexample1(Gain = 0, expanded)}

Now, the algorithm expands Gexample2 , whose candidate chunks are:

1. N1 N4 N3 (−1)

2. N1 N2 N3 (−1)

3. N1 N1 N4 N3 (−3)

4. N1 N1 N2 N3 (−3)

5. N1 N4 N3 N3 (−3)

6. N1 N2 N3 N3 (−3)

7. N1 N4 (−2)

8. N1 N1 N4 (−3)

9. N1 N2 (−2)

10. N1 N1 N2 (−3)

11. N4 N3 (−2)

12. N4 N3 N3 (−3)

13. N2 N3 (−2)

14. N2 N3 N3 (−3)

15. N1 N1 (−2)

16. N3 N3 (−2)

It can be easily seen that there is no chunk that shrinks the grammar. Let’s take a look

at the result of the only possible merge between S and N4:

Gexample3 = (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

Nikolaos Kofinas 44 July 2014

4.3 Grammar Learning

RP =



S → N1 N2 N3 (0.39)
| S (0.33)
| N1 S N3 (0.22)
| N1 N1 S N3 N3 (0.06)
| N1 N1 N2 N3 N3 (0.61)

N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)


The resulting grammar is shrunk by three symbols, therefore the gain is increased, but

also the likelihood is changed. The algorithm calculates the new gain:

Gain3 = Gain2 + 3 log 2− likelihod(S)old + likelihood(S)new

= 1.5051 + 0.903

− (0.39 log(0.39) + 0.33 log(0.33) + 0.22 log(0.22) + 0.06 log(0.06))

+ (0.39 log(0.39
1.28

) + 0.61 log(0.61
1.28

) + 0.22 log(0.22
1.28

) + 0.06 log(0.06
1.28

))

= 2.2988

The resulting grammar after the merge is inserte asd Gexample3 into the beam:

beam = {Gexample3(Gain = 2.2988, unexpanded), Gexample2(Gain = 1.5051, expanded)}

Now, it’s time to expand Gexample3 , which does not have any non-terminal symbols to

merge, so only chunks are possible:

1. N1 N2 N3 (−1)

2. N1 N1 N2 N3 N3 (−3)

3. N1 S N3 (−1)

4. N1 N1 S N3 N3 (−3)

5. N1 N1 (−2)

6. N3 N3 (−2)

7. N1 N2 N3 N3 (−3)

8. N1 N1 N2 N3 (−3)

9. N1 S N3 N3 (−3)

10. N1 N1 S N3 (−3)

11. N1 N2 (−2)

12. N2 N3 (−2)

13. N1 S (−2)

14. S N3 (−2)

There is no chunk that can shrink the grammar and thus the algorithm will select the

least-worst among them. The “best” chunks, namely 1 and 3, are tied, but eventually

Nikolaos Kofinas 45 July 2014

4. OUR APPROACH

they lead the search into the same grammar, so the algorithm will choose to perform the

first of these chunks greedily at this step. The resulting grammar and it’s gain are the

following:

Gexample4 = (V,Σ, R, P, S)

V = {S,N1, N2, N3, N5}

Σ = {a, b, c}

RP =



S → N5 (0.39)
| N1 S N3 (0.22)
| N1 N1 S N3 N3 (0.06)
| N1 N5 N3 (0.61)

N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)
N5 → N1 N2 N3 (1.00)


Gain4 = Gain3 +−1 log 2 = 1.9978

The beam now is:

beam = {Gexample3(Gain = 2.2988, expanded), Gexample4(Gain = 1.9978, unexpanded)}

Now the top grammar in the beam is the same as in the previous step Gexample3 but,

since it is already expanded, the algorithm will proceed with Gexample4 . Since all chunks

are bad, the expansion will proceed with the merge of S and N5:

Gexample5 = (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

RP =



S → S (0.39)
| N1 S N3 (0.22) (0.83)
| N1 N1 S N3 N3 (0.06)
| N1 S N3 (0.61)
| N1 N2 N3 (1.00)

N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)



Nikolaos Kofinas 46 July 2014

4.3 Grammar Learning

In this merge, we have an extra increase to the gain because two productions of S became

identical and so they merged into one and the grammar shrank by a total of seven symbols.

The new gain is:

Gain5 = Gain4 + 7 log 2− likelihod(S)old + likelihood(S)new

= +1.9978 + 2.1070

− (0.39 log(0.39
1.28

) + 0.22 log(0.22
1.28

) + 0.06 log(0.06
1.28

) + 0.61 log(0.61
1.28

))

+ (0.83 log(0.83
1.89

) + 0.06 log(0.06
1.89

) + 1.0 log(1.0
1.89

))

= 4.0875

Now, Gexample5 becomes the best grammar inside the beam:

beam = {Gexample5(Gain = 4.0875, unexpanded), Gexample3(Gain = 2.2988, expanded)}

As it can be seen, Gexample5 is close enough to the target grammar and in fact, if the

algorithm chooses the “best” of the chunks which does not shrink the grammar (N6 →
N1SN3) and then the only possible merge, the gain will eventually increase and the

resulting grammar will be the target one.

The final grammar that the algorithm will eventually return is presented below with its

production probabilities normalized to one. The final gain of this grammar is Gainfinal =

5.9700.

Gexamplefinal
= (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

RP =


S → N1 S N3 (0.49)

| N1 N2 N3 (0.51)
N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)


In the resulting grammar, we can note the generalization that our algorithm achieved.

The final grammar can produce words that fall outside the training corpus (e.g. a a a a a c b b b b b

with probability 0.0294).

In the original corpus, the word a c b appears with a probability of seven out of

eighteen; if we try to generate eighteen words using the final grammar, nine of them

Nikolaos Kofinas 47 July 2014

4. OUR APPROACH

will probably be a c b due to the 0.51 probability. This mismatch is the reason we

need to recalculate the final probabilities using the Inside-Outside algorithm. After the

completion of the Inside-Outside algorithm the final learned grammar will be:

Gexamplefinal
= (V,Σ, R, P, S)

V = {S,N1, N2, N3}

Σ = {a, b, c}

RP =


S → N1 S N3 (0.38)

| N1 N2 N3 (0.62)
N1 → a (1.00)
N2 → c (1.00)
N3 → b (1.00)



Nikolaos Kofinas 48 July 2014

Chapter 5

Results

We will demonstrate the accuracy of our approach first by testing our learning algorithm

on some textbook context-free languages (e.g. L1 = {anbn : n ≥ 1}) and then on some

languages which belong to the class of regular languages. After that, we will present the

results of our event recognition approach in three data-sets. The first data-set consists

of artificially generated data, the second data-set consists of some data that we extract

from a mission with an Aldebaran NAO humanoid robot, and the third data-set consists

of data generated from a mission of an underwater autonomous vehicle (UAV).

5.1 Standard Context-Free Grammars

In this section, we use simple text-book grammars to demonstrate the capability of our

learning algorithm to learn context-free grammars. Table 5.1 presents all the languages we

used for testing. All these languages are CFGs, in which we assigned our own probabilities

to make them PCFGs. We choose to set high probabilities to the productions that

terminate the derivation process of the grammar and smaller probabilities to the ones

which are capable of recursion. This choice was made because, as Table 5.2 indicates,

when the productions that are capable of recursion have high probability, then we need

a bigger learning corpus in order to learn the correct grammar.

In both tables, X means that the learning algorithm returned the exact correct gram-

mar, BG means that the learning algorithm returned a bigger, but correct, grammar

compared to the original one, OG means that the resulting grammar was over-generalized

and it could create words that do not belong to the original language, and OF means

Nikolaos Kofinas 49 July 2014

5. RESULTS

Table 5.1: Learning results for several text-book PCFGs

Corpus size

Language 10 100 1000 10000

anbn, n ≥ 1 X X X X

ancbn, n ≥ 1 X X X X

(ab)n(cd)n, n ≥ 1 X X X X

Parenthesis (()())() X X X X

(a+ (a+ (a+ a)) X X X X

wcwR, w ∈ Σ{a, b} OG X X X

wwR, w ∈ Σ{a, b} OF X* X* X*

a2nbn, n ≥ 1 X X X X

cn(a|d)n, n ≥ 1 X X(λ = 0.4) X(λ = 0.3) X(λ = 0.4)

cn(a|d)na2mbm, n,m ≥ 1 OF OG OG OG

Table 5.2: Learning results for PCFGs with different production probabilities

Corpus size

anbn, n ≥ 1 10 100 1000 10000

S → aSb (0.2) | ab (0.8) X X X X

S → aSb (0.4) | ab (0.6) X X X X

S → aSb (0.6) | ab (0.4) BG X X X

S → aSb (0.8) | ab (0.2) OG X X X

that the grammar was over-fitted to the training corpus and it could not create words

outside the corpus that nevertheless belong to the original language.

Clearly, our learning algorithm can successfully learn text-book grammars possibly

with some tuning on λ, but it failed to learn a concatenation of context-free grammars

(which is also a CFG) shown in the last line of Table 5.1. Also, for the language L =

{wwR, w ∈ Σ{a, b}} marked with X∗ in the table, the initial learned grammar was wrong

and after the recalculation of probabilities and the prune of a useless production, it

became the correct one. Finally, it must be mentioned that for some languages and

corpus sizes the regularization factor λ was shifted from the initial value of 1.0 to a

smaller value in order to avoid over-generalization.

Nikolaos Kofinas 50 July 2014

5.1 Standard Context-Free Grammars

Table 5.3: Learning results for regular languages

Corpus size

Language 10 100 1000 10000

Lr1 X X X X

Lr2 OF X (λ = 0.04) X (λ = 0.04) X (λ = 0.04)

Lr3 OG OG OG OG

Lr4 X(λ = 0.3) X(λ = 0.24) X(λ = 0.24) X (λ = 0.24)

Apart from context-free languages, the learning algorithm has been checked against

some handwritten regular languages:

Lr1 = {a2n, n ≥ 1}

Lr2 = {a+b+c+}

Lr3 = {aa+bb+cc+dd+ | bb+cc+dd+ | cc+dd+ | dd+}

Lr4 = {kldc | dckl | cdzl | zlcd | dczl | zldc | cdkl | klcd}

The results are presented in Table 5.3 and, as we obverse, they are not as good compared

to the ones from context-free languages. These results are a strong indicator that our

algorithm is biased towards over-generalization and for this reason the regularization

factor λ must be chosen independently for each learning problem.

5.1.1 The Effect of λ Value

The merge operator affects both the prior and the likelihood and, since these two quan-

tities are not directly comparable, the regularization factor λ is used. We conducted an

experiment, where we used different values for λ in order to evaluate the effect it has on

the learning process. We chose two different regular languages from the most challeng-

ing presented above, L2 and L3, in order to create two different training corpora which

contained 10000 words each. Then, for each corpus, we used our learning algorithm in

order to learn the corresponding grammar. Next, from each learned grammar, we derived

100000 words in order to parse them with the corresponding correct grammar. If there

were words that the correct grammar was unable to parse, then the learned grammar

was over-generalized. We also used the correct grammar to derive 100000 words, which

Nikolaos Kofinas 51 July 2014

5. RESULTS

0.10.20.30.40.50.60.70.80.91
0

1

2

3

4

5

6

7

8

9

10
x 104

lambda

N
um

be
r

of
 W

or
ds

 n
ot

 p
ar

se
d

Over−generalize
Under−generalize

Figure 5.1: Results for different λ’s during the learning of Lr2

were then parsed with the learned grammar. If there were words that the learned gram-

mar failed to parse, then the learned grammar was under-generalize (over-fitted) to the

training corpus. Figure 5.1 and Figure 5.2 present the results and the effect of λ on the

learning process.

Ideally our learning algorithm must return a grammar which is equivalent to the target

grammar and thus ideally we want both over-generalization and under-generalization

(over-fitting) indicators to be zero. It turns out that for the first language (Figure 5.1)

we can achieve the goal, when setting λ to a small value, e.g. λ = 0.02, for which

both indicators become zero. However, for the second one (Figure 5.2), which was more

complicated, we could not find a good value for λ and our algorithm did not return a

grammar equivalent to the correct one. Even though for small values of λ both indicator

seem to approach zero, in reality the grammar becomes over-fitted to the training corpus.

Nikolaos Kofinas 52 July 2014

5.1 Standard Context-Free Grammars

0.10.20.30.40.50.60.70.80.91
0

1

2

3

4

5

6

7

8

9

10
x 104

lambda

N
um

be
r

of
 W

or
ds

 n
ot

 p
ar

se
d

Over−generalize
Under−generalize

Figure 5.2: Results for different λ’s during the learning of Lr3

5.1.2 Omphalos Competition Data-set

To further assess the performance of our learning algorithm we attempted to test it

and evaluate it in a well-known competition on grammatical inference. The training and

evaluation corpora of the Omphalos competition [12] are freely available on the Omphalos

website. The site offers an evaluation form in which anyone can submit their parsing

results of the evaluation corpus and automatically get an answer if the entire parsing

result was correct or not. Unfortunately, it is impossible to know the percentage of the

corpus that was parsed correctly. We must note that we contacted the administrators of

the site and they told us that the evaluation process is protected by cryptography and

thus they cannot tell us anything about the percentages of our results.

Nikolaos Kofinas 53 July 2014

5. RESULTS

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE6

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE12

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE24

(a) 4 symbols

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE6

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE12

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE24

(b) 8 symbols

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE6

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE12

standard uniform normal
0

10

20

30

40

50

60

70

80

90

100
SIZE24

(c) 12 symbols

Figure 5.3: Results from the synthetic data-set (red bars: false-negative events, magenta

bars: false-positive events)

Nikolaos Kofinas 54 July 2014

5.2 Data-set 1: Synthetic Data

0 2 4 6 8 10 12 14 16 18
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Original data
Abnormal events

Figure 5.4: Evaluation data for the synthetic data set

5.2 Data-set 1: Synthetic Data

In this experiment we created synthetic data for training and testing and then we added

various types of noise (abnormalities) to the test set in order to construct an evaluation

corpus. The function that provided the data was the cosine function and the training

data are similar to the ones presented in Section 4.2.3 with the only change that the time

window here is [0 : 30π].

In this experiment we tested three different alphabet sizes (4, 8, 12), three different

nominal word lengths (6, 12, 24), all three split approaches (standard, uniform, normal),

and after experimentation we set λ to be equal to 0.05.

Figure 5.3 presents the results for all combinations. The accuracy of the learned PCFG

is measured by calculating the number of false-positive event recognitions (magenta bar),

which means that some words corresponding to abnormal events were parsed successfully

and were taken as normal, and the number of false-negative event recognitions (red bar),

which means that certain words corresponding to normal events failed to be parsed and

were taken as abnormal. Ideally, both these numbers must be zero. The standard split

method gave us the best results in all combinations of size and symbols.

Nikolaos Kofinas 55 July 2014

5. RESULTS

(a) normal (b) normal (c) normal (d) normal

(e) normal (f) normal (g) abnormal (h) abnormal

Figure 5.5: The NAO mission

The best result was obtained when we used the standard split method, nominal word

length equal to 6, and alphabet size equal to 4. For this setting, Figure 5.4 presents

the parsing result on a distinct evaluation data set where we have identified precisely all

occurrences of abnormal events (noise, shifting, and phase change). It is easy to see that

our approach identifies all the abnormal events and it does not get affected neither by the

shift of the cosine function nor by the change of the cosine to a sine function during the

mission. On the other hand, it identifies the transition from the cosine to sine and back

to cosine as abnormal events, which is correct because the training set did not include

such transitions.

5.3 Data-set 2: NAO Robot Data

In order to construct a real data-set, we designed a simple mission for the Aldebaran

NAO humanoid robot and then we added an external disruption to this mission in order

to create an abnormal event. The normal operation of the NAO robot is to walk at

Nikolaos Kofinas 56 July 2014

5.3 Data-set 2: NAO Robot Data

0 2000 4000 6000 8000 10000 12000 14000 16000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X−
Ac

ce
le

ro
m

et
er

Figure 5.6: X-axis accelerometer of NAO robot during normal operation

constant speed following a circular trajectory on the ground. In order to generate data

for our training set (normal data), the robot was allowed to complete a total of 20 cycles.

Then, we applied a force to the shoulder of the robot in order to make it move straight

forward deviating from the circular trajectory (abnormal data). Figure 5.5 presents

screen-shots that were captured during this mission and show the movement of the NAO

robot. Ideally, we wanted to train a PCFG able to catch the change from the circular

movement to the straight one as an abnormal event.

We experimented with data from two sensors, the x-axis accelerometer and the y-axis

accelerometer and we found out that only when we trained our PCFG with the data from

the x-axis accelerometer we were able to capture part of the abnormal event. Figure 5.6

presents the data of the x-axis accelerometer during the normal operation of the NAO

robot.

We used our approach to create a training corpus from these x-axis accelerometer

sensor data and we found out that the best results were obtained, when using the following

combination of parameters: standard split, alphabet size equal to 12, nominal word size

equal to 12, and λ equal to 0.05. Despite the small value of λ, all the learned PCFGs

Nikolaos Kofinas 57 July 2014

5. RESULTS

0 500 1000 1500 2000
−0.5

0

0.5

1

1.5

2

2.5

X−
Ac

ce
le

ro
m

et
er

Original data
Abnormal events

Figure 5.7: Abnormal events of the NAO mission

were over-generalized and they parsed the abnormal events as normal. When we conduct

a closer investigation to the parsing probabilities, we observed that some words which

correspond to abnormal event had a very small probability, less than 10−40 compared to

the probabilities of words corresponding to normal events. For this reason, we decided to

apply a threshold (10−40) on the parsing probability and we marked every word parsed

with probability less than this threshold as indicating an abnormal event.

Figure 5.7 presents the event recognition results on the evaluation data, obtained

during the second phase of the mission with the NAO robot. It must be noted that the

external disturbance occurs during the window [1580 : 1760]. It is easy that the majority

of the abnormal event was successfully recognized. There are some additional regions

which had been marked as abnormal events; these regions include measurements whose

values fall outside the maximum and minimum values experienced in the training set.

Thus, the corresponding symbols are outliers and, thus, the learned PCFG fails to parse

the corresponding words, and correctly marks them as abnormal events.

Nikolaos Kofinas 58 July 2014

5.4 Data-set 3: Noptilus AUV Data

Figure 5.8: The Noptilus AUVs

Figure 5.9: Path of the AUV during normal operation

5.4 Data-set 3: Noptilus AUV Data

This data-set came from a mission conducted with an Autonomous Underwater Vehicle

(AUV) of the EU-funded project Noptilus [27] [www.noptilus-fp7.eu]. The AUV that

was used in this mission is one of those shown in Figure 5.8. The training data-set came

from a pre-specified mission and Figure 5.9 presents the path that the AUV followed

during this normal mission. The operator of the robot repeated the normal mission,

but near the end of the mission the robot was forced to maneuver in a cycle around

itself in order to create an abnormal event. Figure 5.10 presents the path that the robot

followed during the second mission, where the only difference compared to the first one

is the extra cycle near the end of the mission. In order to find which sensor contains

Nikolaos Kofinas 59 July 2014

www.noptilus-fp7.eu

5. RESULTS

Figure 5.10: Path of the AUV during abnormal operation

valuable data in order to recognize this event, we examined all the Inertial Measurement

Unit (IMU) sensors (accelerometers, gyro-meters, depth-meters). We found out that the

sensor measuring the z-angle of the robot provides enough information about this event

and, thus, it was the one we used to create a training and an evaluation data-set. This

sensor stream has high density and for this reason we down-sampled it by 100 in order

to create the corresponding data-sets. The resulting training data-set is presented in

Figure 5.11.

For this data-set we found out that the best results were obtained, when we used

the following combination of parameters: standard split, nominal word size equal to 6,

alphabet size equal to 12, and lambda equal to 0.05. Figure 5.12 shows the events that

our learned PCFG recognized as abnormal in the evaluation set. It can be easily seen

that it correctly recognizes the beginning and the ending of the abnormal event, which

have a unique footprint compared to the training set. Additionally, the PCFG recognizes

some normal events as abnormal; the reason behind these false-negatives is that the

training set is relatively small and does not contain many normal operation data, which

can generalize the learned PCFG even more.

Nikolaos Kofinas 60 July 2014

5.4 Data-set 3: Noptilus AUV Data

0 50 100 150 200 250 300 350 400 450
−3

−2

−1

0

1

2

3

Z
−

an
gl

e

Figure 5.11: Data stream of the z-angle AUV sensor during normal operation

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

Z
−

an
gl

e

Original data
Abnormal events

Figure 5.12: Data stream of the z-angle AUV sensor during abnormal operation

Nikolaos Kofinas 61 July 2014

5. RESULTS

Nikolaos Kofinas 62 July 2014

Chapter 6

Conclusion

The domain of event recognition is still in its infancy, nevertheless it will gain importance

in the future, as it aims at discovering discrete phenomena within vast amounts of data.

Approaches based on Grammatical Inference have been little investigated, nevertheless

it seems that they offer a great potential.

This thesis took a small step in this direction by showing that it is possible to auto-

matically learn PCFGs appropriate for event recognition directly from data. To obtain

concrete results, this work had to focus on the problem of recognizing normal versus ab-

normal events due to the typical abundance of data from normal operation. The nature

of the data we had to work with was totally different from typical data coming from

domains, such as Natural Language Processing, where Grammatical Inference is mostly

used. The proposed procedure is quite generic and can be used to automatically con-

struct PCFGs, which encode sensor data sequences that typically appear during normal

robot operation, using recorded logs from past missions.

Leaving out the data preprocessing and the data quantization part, the process of

learning a PCFG is a rather complex and challenging problem. It can be seen as an

instance of structure prediction, given that a formal grammar represents an object with

rich, but well-defined, structure. Due to the complexity of the problem, the proposed

approach had to focus on local search methods with a small number of grammar manip-

ulation operations. Nevertheless, in order to obtain some assurance that the proposed

algorithm correctly learns all parts of a grammar structure, a significant amount of our

work was dedicated on the problem of learning well-known (textbook) grammars with a

variety of structural features (recursion, symmetry, repetition, etc.). The success of the

Nikolaos Kofinas 63 July 2014

6. CONCLUSION

proposed approach on such problems is a strong indication that the learned grammars

in event recognition domains, where no ground truth is available, will likely correctly

capture the underlying patterns behind the target events.

The proposed procedure was evaluated on two real-world event recognition domains

with promising results. The results indicate that our approach is capable of producing

reliable PCFG-based event recognizers, which may yield some false positive and false

negative signals, but in general succeed in capturing abnormalities. Despite the incorrect

event reports, the proposed approach offers a filter, which can direct the attention of a

mission operator to specific parts of a mission containing interesting information.

6.1 Future Work

The work in this thesis can be used as the base for several future research directions,

some of which are listed below. Additionally, there are several ideas in our approach

which can be investigated in more depth in order to produce more accurate results.

Prior probability

The model we used to calculate the prior probability of a grammar may not be the best

choice and in general it seems implausible that a unique optimal choice exists. Our choice

often leads the search down a wrong path and, while we tried some different models, none

of them led us to better results. However, there are several other ideas that can be used

in order to define the prior and, thus, this is an interest area for future research.

Grammar manipulation operations

In this thesis, we presented and used only two basic grammar manipulation operations,

namely chunk and merge. In related work, we found that other operations exist, such

as un-chunk and append a non-terminal greedily at the end of a production, which may

have a positive effect to our local search procedure. The addition of a new operation to

our approach can be easily done without major changes, as it affects only the locality of

the search space.

Nikolaos Kofinas 64 July 2014

6.1 Future Work

Combined sensor streams

In all our Event Recognition examples conducted with real mission data, we recognized

events using only one sensor stream at a time. It would be interesting to conduct a study

to find out whether more than one sensor streams can be combined to create words for a

single corpus. The results of such a study could enable the recognition of more elaborate

events, which require data from more than one sensor in order to be recognized.

Multi-robot event recognition

It is not straightforward how the proposed approach can be applied to event recognition

in a multi-robot mission. There are several challenging problems, such as the fusion of

data streams from more than one robots, in order to make the recognition of a team event

possible. A team event necessarily relates to data from more that one robot, for example

determining if the entire team has reached a given formation. In such scenaria, it is not

clear how exactly the parsing will take place. A naive idea is to have a coordinator robot

which collects all data, does the parsing, and communicates back the outcome. However,

it seems possible that other approaches which rely on distributed parsing or hierarchical

decomposition may be more effective.

Nikolaos Kofinas 65 July 2014

6. CONCLUSION

Nikolaos Kofinas 66 July 2014

References

[1] Chomsky, N.: Three models for the description of language. IRE Transactions on

Information Theory 2(3) (1956) 113–124

[2] Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using the

inside-outside algorithm. Computer speech & language 4(1) (1990) 35–56

[3] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society. Series

B (Methodological) 39(1) (1977) 1–38

[4] Chomsky, N.: On certain formal properties of grammars. Information and control

2(2) (1959) 137–167

[5] Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012)

[6] Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice

Hall (1997)

[7] Earley, J.: An efficient context-free parsing algorithm. Communications of the ACM

26 (1983) 57–61

[8] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling.

Prentice Hall (1972)

[9] de la Higuera, C.: Grammatical Inference, Learning Automata and Grammars.

Cambridge University Press (2010)

[10] Gold, E.M.: Language identification in the limit. Information and control 10(5)

(1967) 447–474

Nikolaos Kofinas 67 July 2014

REFERENCES

[11] Stevenson, A., Cordy, J.R.: Grammatical inference in software engineering: An

overview of the state of the art. In Czarnecki, K., Hedin, G., eds.: Software Language

Engineering. Volume 7745 of Lecture Notes in Computer Science. Springer (2013)

204–223

[12] Starkie, B., Coste, F., van Zaanen, M.: The omphalos context-free language learning

competition (2004) http://www.irisa.fr/Omphalos/.

[13] Clark, A.: Learning deterministic context free grammars: the Omphalos competi-

tion. Machine Learning 66(1) (2007) 93–110

[14] Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently

learn context-free languages. Journal of Machine Learning Research 11 (2010) 2707–

2744

[15] Clark, A., Eyraud, R., Habrard, A.: A note on contextual binary feature grammars.

In: Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects

of Grammatical Inference. (2009) 33–40

[16] Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-

free languages. Journal of Machine Learning Research 8 (2007) 1725–1745

[17] Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of

context free languages. In: Proceedings of International Colloquium on Grammatical

Inference. (2008) 29–42

[18] Clark, A., Florêncio, C.C., Watkins, C.: Languages as hyperplanes: grammatical

inference with string kernels. Machine Learning 82 (2011) 351–370

[19] Petasis, G., Paliouras, G., Spyropoulos, C.D., Halatsis, C.: eg-GRIDS: context-free

grammatical inference from positive examples using genetic search. In Paliouras, G.,

Sakakibara, Y., eds.: Grammatical Inference: Algorithms and Applications. Volume

3264 of Lecture Notes in Computer Science. Springer (2004) 223–234

[20] Sapkota, U., Bryant, B.R., Sprague, A.: Unsupervised grammar inference using the

minimum description length principle. In Perner, P., ed.: Machine Learning and

Data Mining in Pattern Recognition. Volume 7376 of Lecture Notes in Computer

Science. Springer (2012) 141–153

Nikolaos Kofinas 68 July 2014

http://www.irisa.fr/Omphalos/

REFERENCES

[21] Adriaans, P., Trautwein, M., Vervoort, M.: Towards high speed grammar induction

on large text corpora. In Hlavac, V., Jeffery, K., Wiedermann, J., eds.: SOFSEM

2000: Theory and Practice of Informatics. Volume 1963 of Lecture Notes in Com-

puter Science. (2000) 173–186

[22] Tu, K., Honavar, V.: Unsupervised learning of probabilistic context-free grammar

using iterative biclustering. In Clark, A., Coste, F., Miclet, L., eds.: Grammatical

Inference: Algorithms and Applications. Volume 5278 of Lecture Notes in Computer

Science. Springer (2008) 224–237

[23] Stolcke, A.: Bayesian learning of probabilistic language models. PhD thesis, Uni-

versity of California, Berkeley (1994)

[24] Geyik, S.C., Szymanski, B.K.: Event recognition in sensor networks by means of

grammatical inference. In: Proceedings of IEEE INFOCOM. (2009) 900–908

[25] Memon, A.U.: Log file categorization and anomaly analysis using grammar inference.

Master’s thesis, Queen’s University, Canada (2008)

[26] Gallager, R.G.: Principles of digital communication. Cambridge University Press

(2008)

[27] Chatzicristofis, S.A., Kapoutsis, A.C., Kosmatopoulos, E.B., Doitsidis, L., Rovas,

D., Sousa, J.B.: The Noptilus project: Autonomous multi-AUV navigation for

exploration of unknown environments. In: Proceedings of the IFAC Workshop on

Navigation, Guidance, and Control of Underwater Vehicles (NGCUV). Volume 3.

(2012) 373–380

Nikolaos Kofinas 69 July 2014

REFERENCES

Nikolaos Kofinas 70 July 2014

Appendix A

Learned PCFGs

A.1 PCFG for Data-set 1

Start Rules:

N8

All Rules:

N4 -> e (1)

N5 -> d (1)

N6 -> c (1)

N7 -> b (1)

N8 -> N10 N19 (0.304781)

-> N11 N13 (0.294821)

-> N9 N13 (0.0848561)

-> N10 N14 (0.0239594)

-> N5 N10 N6 (0.013953)

-> N32 N24 (0.0119522)

-> N10 N7 N6 (0.0119522)

-> N10 N6 N7 (0.0119522)

-> N11 N4 N9 N9 (0.0119522)

Nikolaos Kofinas 71 July 2014

A. LEARNED PCFGS

-> N24 N22 (0.00996015)

-> N9 N10 (0.0139744)

-> N16 N16 (0.0191659)

-> N16 N14 N9 (0.00796812)

-> N16 N16 N6 (0.0656612)

-> N5 N22 N11 (0.00796812)

-> N22 N4 N9 (0.0059761)

-> N14 N10 (0.0239165)

-> N19 N16 N14 (0.0059761)

-> N16 N9 N11 (0.0059761)

-> N22 N16 (0.0059761)

-> N7 N16 N16 (0.0059761)

-> N16 N11 N4 (0.0059761)

-> N6 N10 N5 (0.00949365)

-> N10 N5 N4 (0.0059761)

-> N19 N7 N32 (0.0059761)

-> N11 N11 N11 N5 (0.0059761)

-> N19 N19 N14 N6 (0.0059761)

-> N32 N19 N7 (0.0059761)

-> N4 N10 N5 (0.0059761)

N9 -> N5 N5 (1)

N10 -> N32 N6 (0.144045)

-> N19 N19 N7 (0.743619)

-> N6 N19 N19 (0.0280611)

-> N9 N9 N5 (0.0842746)

N11 -> N4 N4 (1)

N13 -> N9 N24 (0.223496)

-> N22 N4 (0.776504)

N14 -> N6 N6 (1)

Nikolaos Kofinas 72 July 2014

A.2 PCFG for Data-set 2

N16 -> N14 N6 (0.671196)

-> N24 (0.22344)

-> N16 N5 (0.105364)

N19 -> N7 N7 (1)

N22 -> N11 N11 (1)

N24 -> N9 N5 (1)

N32 -> N14 N14 (1)

A.2 PCFG for Data-set 2

Start Rules:

N22

All Rules:

N10 -> l (1)

N11 -> m (1)

N12 -> n (1)

N13 -> k (1)

N14 -> j (1)

N15 -> i (1)

N16 -> h (1)

N17 -> g (1)

Nikolaos Kofinas 73 July 2014

A. LEARNED PCFGS

N18 -> f (1)

N19 -> e (1)

N20 -> c (1)

N21 -> b (1)

N22 -> N22 N10 (0.0988167)

-> N22 N13 (0.101404)

-> N25 N17 (0.00248572)

-> N36 (0.0761842)

-> N25 (0.0135696)

-> N36 N36 N11 (0.0110507)

-> N46 N36 (0.0331366)

-> N36 N88 (0.0172979)

-> N46 (0.000348851)

-> N22 N41 (0.00987287)

-> N22 N46 (0.087794)

-> N33 N13 N10 N36 N13 (0.00108516)

-> N96 (0.162899)

-> N22 N33 N22 (0.00139862)

-> N22 N36 N16 (0.00510243)

-> N36 N22 N148 (0.000961976)

-> N135 N96 N123 (0.000241279)

-> N46 N22 N59 (0.00222254)

-> N33 N36 N41 (0.00472684)

-> N96 N25 (0.0664776)

-> N41 N17 N25 N123 N25 (0.00100128)

-> N25 N22 N22 (0.000962823)

-> N25 N46 N12 N85 (0.000945963)

-> N13 N15 N22 N17 (0.000560699)

-> N22 N36 N33 (0.00758735)

-> N36 N46 N12 N123 N10 (0.000559221)

Nikolaos Kofinas 74 July 2014

A.2 PCFG for Data-set 2

-> N25 N36 N10 N85 N148 (0.000556575)

-> N123 N171 N123 (0.00223468)

-> N41 N132 (0.00433017)

-> N16 N123 N132 N123 N10 (0.000549781)

-> N22 N85 N123 N123 (0.000555378)

-> N135 N46 N59 (0.00154829)

-> N132 N14 (0.00837403)

-> N132 (0.0222318)

-> N132 N33 N46 N33 (0.000502322)

-> N171 N132 N10 (0.000584435)

-> N88 N123 N25 (0.00425822)

-> N17 N132 N148 N17 (0.000425325)

-> N16 N36 (0.000657756)

-> N171 N36 N17 (0.0013266)

-> N17 N148 N14 N59 N171 (0.000558933)

-> N46 N123 N88 N46 (0.00173625)

-> N33 N46 N33 N194 N12 (0.000560697)

-> N123 N148 N135 (0.00166799)

-> N171 N85 N12 N85 N171 (0.000499271)

-> N148 (0.0313721)

-> N148 N46 N25 (0.00408105)

-> N25 N33 N15 N171 (0.000489069)

-> N171 (0.00265529)

-> N22 N11 N25 (0.0247806)

-> N96 N59 N18 (0.00165352)

-> N33 N171 N123 N15 (0.000880047)

-> N123 N22 N22 (0.00436877)

-> N11 N132 N36 N46 (0.000540717)

-> N135 N33 N88 (0.000592179)

-> N148 N33 N96 (0.000475947)

-> N36 N148 N96 (0.000570216)

-> N194 N59 N132 N148 (0.000558533)

-> N13 N132 N33 N123 (0.000559693)

-> N22 N22 N13 N14 (0.00500175)

Nikolaos Kofinas 75 July 2014

A. LEARNED PCFGS

-> N14 N33 N85 N59 N12 (0.000563126)

-> N123 N132 N46 N36 (0.00090129)

-> N96 N171 N59 N17 (0.000705829)

-> N25 N12 (0.0125181)

-> N12 N25 N59 N11 (0.000597978)

-> N15 N148 N132 N88 (0.000560686)

-> N46 N148 (0.00668833)

-> N25 N22 N194 N10 (0.000559608)

-> N36 N171 (0.00590663)

-> N132 N135 N18 N148 N59 (0.000560613)

-> N41 N22 N25 (0.0249729)

-> N11 N25 (0.0201786)

-> N123 N36 (0.0239685)

-> N10 N41 N85 N46 N33 N33 N33 (0.000560699)

-> N14 N171 N22 N132 N14 (0.000562032)

-> N308 N36 N15 N171 N123 (0.000560624)

-> N59 N36 N41 (0.00322199)

-> N46 N41 N59 N33 N10 (0.000193142)

-> N59 N148 N148 N171 N18 (0.000560699)

-> N171 N22 N135 N16 (0.00232534)

-> N41 N85 N10 N46 N46 N135 (0.000560327)

-> N135 N59 N148 (0.00333957)

-> N17 N22 N135 (0.000687102)

-> N135 N148 (0.0119818)

-> N46 N132 (0.0046083)

-> N33 N25 (0.0159947)

-> N25 N16 N135 N171 N17 (0.000708135)

-> N46 N15 N14 N59 N13 N10 N59 (0.000558182)

-> N25 N17 N132 N132 (0.00165103)

-> N59 N171 N135 N16 N88 (0.000560699)

-> N59 N123 N15 N132 N135 N18 (0.000560699)

-> N59 N135 N59 N19 N171 (0.000560699)

-> N41 N194 N11 N194 N41 N41 (0.000560699)

-> N135 N171 N132 N25 (0.00467382)

Nikolaos Kofinas 76 July 2014

A.2 PCFG for Data-set 2

-> N11 N59 N36 N171 N135 (0.000548304)

-> N171 N88 (0.00314423)

-> N135 N17 N25 N171 N14 N14 (0.00054888)

-> N96 N16 N17 N16 N171 N16 N171 N14 (0.000560699)

-> N96 N16 N135 N17 N88 N135 (0.000532872)

-> N16 N171 N88 N96 N17 N15 N171 (0.000560699)

N25 -> N85 (0.128179)

-> N96 (0.0262249)

-> N13 N14 (0.0274903)

-> N132 (0.0580673)

-> N33 N10 (0.0948913)

-> N15 N46 (0.0125291)

-> N33 N33 (0.115698)

-> N41 N41 (0.0664646)

-> N59 N13 (0.113653)

-> N85 N11 (0.118928)

-> N10 N25 (0.104162)

-> N148 N123 (0.011537)

-> N25 N41 (0.0375225)

-> N132 N15 (0.0101792)

-> N46 N15 (0.0104433)

-> N88 N15 (0.0108723)

-> N88 N88 (0.0204053)

-> N25 N148 (0.0327527)

N33 -> N14 N25 (0.00954961)

-> N13 N36 (0.00824086)

-> N13 N33 (0.157816)

-> N10 N10 (0.689254)

-> N59 N59 (0.135139)

N36 -> N194 N11 (0.0211309)

-> N25 N25 (0.764255)

Nikolaos Kofinas 77 July 2014

A. LEARNED PCFGS

-> N25 N33 (0.0880973)

-> N148 N132 (0.0423234)

-> N14 N88 (0.0421794)

-> N46 N88 (0.0420141)

N41 -> N135 (0.00832582)

-> N59 N14 (0.0433603)

-> N12 N12 (0.805652)

-> N12 N11 (0.137935)

-> N88 N25 N123 (0.00472708)

N46 -> N25 N11 (0.0422709)

-> N88 N14 (0.0511733)

-> N308 (0.154853)

-> N10 N11 (0.0629301)

-> N10 N13 (0.0356387)

-> N10 N46 (0.00953674)

-> N14 N14 (0.628395)

-> N17 N171 (0.0138685)

-> N88 N148 (0.00133375)

N59 -> N96 (0.000101872)

-> N46 N25 (0.0292517)

-> N148 (0.011482)

-> N33 N59 (0.0548948)

-> N41 N96 (0.00101768)

-> N18 N18 (0.0196052)

-> N13 N13 (0.726917)

-> N14 N13 (0.106182)

-> N10 N59 (0.0505477)

N85 -> N11 N11 (1)

N88 -> N123 N13 (0.0886616)

Nikolaos Kofinas 78 July 2014

A.2 PCFG for Data-set 2

-> N59 N135 (0.0142394)

-> N135 N25 (0.0102241)

-> N17 N59 N18 (0.00577521)

-> N59 N25 (0.0700186)

-> N18 N135 (0.0106663)

-> N15 N15 (0.800415)

N96 -> N36 N25 (0.833451)

-> N132 N171 (0.119143)

-> N88 N16 N16 (0.00774989)

-> N85 N85 (0.0396563)

N123-> N171 N132 N123 (0.00881157)

-> N15 N14 (0.255602)

-> N11 N33 (0.224341)

-> N16 N17 (0.0705058)

-> N46 N14 (0.44074)

N132-> N88 N46 (0.0507221)

-> N171 N88 (0.0527627)

-> N148 N85 (0.00841541)

-> N132 N135 (0.0509772)

-> N59 N46 (0.10102)

-> N308 (0.0652484)

-> N132 N132 (0.0931487)

-> N15 N132 (0.152982)

-> N16 N16 (0.311828)

-> N88 N132 (0.112896)

N135-> N13 N46 (0.0564223)

-> N16 N135 (0.150395)

-> N19 N19 N18 (0.00807236)

-> N135 N135 (0.179661)

-> N17 N17 (0.605449)

Nikolaos Kofinas 79 July 2014

A. LEARNED PCFGS

N148-> N25 N46 N148 (0.0248898)

-> N41 N12 (0.219645)

-> N59 N33 (0.18068)

-> N171 N14 (0.0102541)

-> N14 N15 (0.189259)

-> N16 N88 (0.0446948)

-> N135 N171 (0.0782591)

-> N171 N171 (0.171563)

-> N148 N25 (0.0807558)

N171-> N25 N10 (0.00484024)

-> N25 N88 (0.133376)

-> N148 N59 (0.015339)

-> N59 N10 (0.0280399)

-> N19 N19 (0.0152456)

-> N88 N16 (0.0587111)

-> N135 N17 (0.259825)

-> N132 N16 (0.225685)

-> N16 N15 (0.258938)

N194-> N11 N41 (1)

N308-> N46 N46 (1)

A.3 PCFG for Data-set 3

Start Rules:

N24

All Rules:

N12 -> j (1)

N13 -> k (1)

Nikolaos Kofinas 80 July 2014

A.3 PCFG for Data-set 3

N14 -> l (1)

N15 -> n (1)

N16 -> b (1)

N17 -> c (1)

N18 -> m (1)

N19 -> i (1)

N20 -> h (1)

N21 -> g (1)

N22 -> e (1)

N23 -> d (1)

N24 -> N29 N29 (0.367347)

-> N26 N26 N26 (0.27551)

-> N27 N27 N27 (0.122449)

-> N25 N25 (0.0612245)

-> N22 N22 N27 N27 (0.0102041)

-> N32 N22 (0.0102041)

-> N14 N25 N20 N21 (0.0102041)

-> N15 N18 N18 N25 (0.0204082)

-> N20 N19 N13 N25 (0.0102041)

-> N32 N20 (0.0102041)

-> N33 N25 N21 (0.0102041)

-> N15 N15 N18 N25 (0.0204082)

-> N25 N33 N18 (0.0102041)

-> N26 N19 N12 N13 N14 (0.0102041)

Nikolaos Kofinas 81 July 2014

A. LEARNED PCFGS

-> N20 N32 (0.0102041)

-> N29 N18 N33 (0.0102041)

-> N16 N17 N16 N29 (0.0102041)

-> N13 N14 N29 N16 (0.0102041)

-> N12 N12 N12 N12 N12 N13 (0.0102041)

N25 -> N33 N14 (0.842105)

-> N13 N19 N20 (0.157895)

N26 -> N21 N21 (0.53795)

-> N29 N21 (0.47205)

N27 -> N23 N23 (1)

N29 -> N15 N15 N15 (1)

N32 -> N26 N26 N21 (0.21485)

-> N29 N26 (0.51274)

-> N25 N33 (0.27241)

N33 -> N14 N14 (1)

Nikolaos Kofinas 82 July 2014

	1 Introduction
	1.1 Thesis Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline
	1.4 Basic Notation

	2 Background
	2.1 Alphabets and Languages
	2.2 Grammars
	2.2.1 Chomsky Hierarchy

	2.3 Context-Free Grammars
	2.3.1 Probabilistic Context-Free Grammars
	2.3.2 From a CFG to a PCFG
	2.3.3 Chomsky Normal Form

	2.4 Parsing
	2.4.1 CYK for CFGs
	2.4.2 CYK for PCFGs

	2.5 Grammatical Inference
	2.5.1 Input and Dependencies
	2.5.2 Gold's Theorem

	3 Our Problem
	3.1 Problem Statement
	3.2 Related Work
	3.2.1 Problem-specific algorithms
	3.2.2 Generic algorithms
	3.2.3 Event Recognition with the use of (P)CFG

	4 Our Approach
	4.1 Normal and Abnormal Events
	4.2 Data Logs to Words
	4.2.1 Quantization
	4.2.2 Corpus creation
	4.2.3 Quantization and corpus creation example

	4.3 Grammar Learning
	4.3.1 Learning Objective
	4.3.2 Learning strategy
	4.3.3 Initialization of the PCFG
	4.3.4 Grammar manipulation: Chunk and Merge
	4.3.5 Effective posterior computations
	4.3.6 Search strategy
	4.3.7 Learning example

	5 Results
	5.1 Standard Context-Free Grammars
	5.1.1 The Effect of Value
	5.1.2 Omphalos Competition Data-set

	5.2 Data-set 1: Synthetic Data
	5.3 Data-set 2: NAO Robot Data
	5.4 Data-set 3: Noptilus AUV Data

	6 Conclusion
	6.1 Future Work

	References
	A Learned PCFGs
	A.1 PCFG for Data-set 1
	A.2 PCFG for Data-set 2
	A.3 PCFG for Data-set 3

