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Judgment is a tool to use on all subjects, and comes in everywhere.
Therefore in the essays that I make of it here, I use every sort of
occasion. Ifit is a subject I do not understand at all, even on that
I essay my judgement, sounding the ford from a good distance;
and then, finding it too deep for my height, I stick to the bank.
And this acknowledgement that I cannot cross over is a token
of its action, indeed one of those it is most proud of. Sometimes
in a vain and nonexistent subject I try to see if it will find the
wherewithal to give it body, prop it up, and support it. Sometimes
I lead it to a noble and well-worn subject in which it has nothing
original to discover, the road being so beaten that it can walk only
in others’ footsteps. There it plays its part by choosing the way
that seems best to it, and of a thousand paths it says that this
one or that was the most wisely chosen.

I take the first subject that chance offers. They are all equally
good to me. And I never plan to develop them completely. For I do
not see the whole of anything; nor do those who promise to show
it to us. Of a hundred members and faces that each thing has, I
take one, sometimes only to lick it, sometimes to brush the surface,
sometimes to pinch it to the bone. I give it a stab, not as wide but
as deep I know how. And most often I like to take them from some
unaccustomed point of view. I would venture to treat some matter
thoroughly, if I knew myself less well. Scattering a word here,
there another, samples separated from their context, dispersed,
without a plan and without a promise, I am not bound to make
something of them or to adhere to them myself without varying
when I please and giving myself up to doubt and uncertainty and
my ruling quality, which is ignorance.

— MICHEL DE MONTAIGNE, EssAys, "OF DEMOCRITUS AND
HerAcLITUS" (1572-1580) de Montaigne [1958]






MepiAnyn

Ta &idiaotata xepika dedopéva ouyxvd £€XoUv oUVAPTIOES AUTO-
OUOXETIONG PE EAAEUTTIKEG 100UYEelS KAPITUAeGg, pia 18610tta yve-
OTf] WG OTATIOTIKI] avicotportia. Ot mapdpeTpotl avicotportiag e-
plrlapBavouv v KAion g AAeyng (1) yovia mpooavatoAlopou)
d og OX£€0n HE TO OUCTNPA CUVIETAYHEV®OV, KAl Tov Aoyo R tov
KUPOV PNK®V cuoxetiong. H exktipnon tng avicorportiag eivat
ONHUAVTIKY Vid EPAPHOYEG OTIS YVEWEITOTNHEG, OtV enegepyaoia
ONpatog Kat e1kOvag, Kabwg Kat oe 1atpikeg epappoyeg. Ot dery-
PATIKEG EKTIPLOEIS TRV IIAPAPEIPRV AVICOTPOITiAG £ival Xp1rotpeg
Y1ld TOV 0p10p10 KATAAATA®V XOPIK®OV HOVIEA®V KAl Yld T X®P1KI)
TapePBOAT] 0€ OUVOAA X®OPIKA H1a0TIapTOV 6e60EVOV.

Eni tou mapoviog, n eKUipnon g avicotportiag yivetatl eite pe
pebodo ng péyiotng mbavopavelag, n ormoia gival UTIOAOY10TIKA
ATAlNTIKY, 1] PE MV €6ETAOT EUMEIPIKOV BAPOYPAPPAT®V ATt
EUIEIPOYVAOHOVEG, 1 ortoia propei va o8nyr)oel 08 UTIOKEIHEVIKA
antotedéopata. Mn ermBAenopeveg Kal UMTOAOY1OTIKA AroteAeopa-
TIKEG peEBodo1 eKkTipnoNg g avioorportiag sivatl anapaitnteg yla
1] YEWOTATIOTIKY avAaAuorn, Kab®wg Katl yla ouotrpata autopato-
TIONHEVNG TIAPATHPNONG KAl £yKA1png MPosldomnoinong os mept-
MIOOEIS TTEPBAAAOVIIKGOV ATIEAGV.

Y& apketd ermotnpovika nedia, meplAapBavopévey Kal ToV YE®-
EMMOTNUAV, eivatl S1abéoo povo éva deiypa dedopévav, egattiag
TOU KOOTOUG TOV LEIPNOE®V 1] AAA@V ieploplop®v. Emouéveg, éva
MPOBANIA € TIPAKTIKO EVO1APEPOV £1vaAl 1] EKTIINOT TOV TTAPAIE-
TPWV aV1ooTPOITiag amo eva deiypa, 1o oroio propet emiong va £xet
aKavovioTtn XWP1KY katavopr]. [Ipoodata npotdOnke pia vrolo-
Y10TIKA ATIOTEAEOPATIKT] EKTIPLTPA avigoTportiag yia delypata pe
KOAVOVIKEG 1] AKAVOVIOTEG XWPIKEG KATAVOUEG, 11 ortoia Baoiletat
otnv Tautdinta Eoolavrg tng Zuvdiakupavong tou Swerling.

Ze autv v gpyaoia, Baocigopevor oty Tautdtnta Eoolavng tng
ZuvdlakUpavong avarntuooeTal —He avaAuTikoug UTTOAOY10l0UG—
Hla pnir €éKGEAOcH) yld TNV ouvdaptnon uKkvotntag mbavotntag
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for(R.8), n omoia va 1oxvel yla ykaouowavd, otatiotiKd Opolo-
yevn kat mapayeyiopa tuyaia nedia. H ouvaptnon rmukvotntag
mbavétntag fi r(R, §) xapakmpidel 1 Katavour] T@V eKTPAOEGV
avicotportiag (R, §) g exkupfplag. L ouvéxela, Paoiidpevor
Ot oUVAPTNor NUKVOTHtag rmbavotntag jé,R(R, d), urtodoyidoupe
Hla TIPOOEYYIOTIKI] EKPPAOT) f;gg(f%, 8) n orola ivat ave§dptnn
ATo TV CUVAPTI 0T AUTOCUOXETIONG KAl TTAPEXEL CUVTNPNTIKEG TTe-
PLOXEG EPITIOTOOUVNG Y1d TS EKTIP@PEVES Ttapapétpous. Emiong
npoteivoupe €va otatotiko €Aeyxo tootportiag Paoti{opevo otnv
TIPOOEYY10TIKY] OUVAPTNOL) MTUKVOTHTAg rbavotntag.

H Sewpnukr) avaiuon emaAnBsvetal amo nmpooopolnoelg TIOU ITe-
plAapBavouv 6ebopéva os TAEYHA, aAdd KAl X@PlKA didorapta
b6edopéva. [Mapouoiddoupe I XPNON TRV TIEPIOXWV EUITIOTOOUVNG
oe duo oevapla pe npaypatka dedopéva, mmpospxopeva amo At-
YViII@puUxela, Kat oe €va oevaplo meptBaAAoviodoyikou KivEuvou
rou reptAapBdvel tyv eknoprr aktvoBodiag yappa egattiag a-
TUXHHATOoG.

Ta anoteAéopata autng g £pyaciag PItopouv va XPnotpornot)-
Youv ylua va nmapéxouv (a) pia autdévourn mpooEyylor tng Katavo-
png wv (R, 8), (B) apxikég TéS aviootporiag 1€ UIOAOYIoTIKA
ATIOTEAEOPATIKO TPOTTO Y1d TNV MEPATTEP® PeATinOoN NG EKTIPNONG
He ) p€Bodo g peyiotng rmbavodavelag Kat (y) pia Xpron ek
TOV IPOTEP®V (a priori) ouvdptnon nukvotntag rmbavotntag yla
eKTiNOon avicotportiag pe ) pébodo Bayes.

Ev katakAeidi, n epyaoia aut napouotdalel éva miaiolo ya v
ATIOTEAEOHPATIKY] TIOCOTIKOTIOINO0N TNG OTATIOTIKYG ONIAVIIKOTTAG
aAlaywv otnv avicotportiia Xopkev debopéveov. H aviyveuon
OTATIOTIKA ONHAVIIKAG AVICOTPOTITiAg 08 TIPOKATAPKIIKA dedopéva
TIPOEPXOHEVA ATTO HIEPEVUVITIKES YEDTPLOEIS £lval ONUAVIIKI) yid
Tov 0Xeb1a0o10 Kal TNV EKPETAAAEUOT] OPUXEIV, emMeldr) EMMITPETIEL
peyaldutepn akpiBela otnv avaAuon g XWP1KNG petaBAntotntag
10U Kottdopatog. Aebopévou Ot pla onpaviiky addayr otnv a-
V100TpOTIia PIopel va OUVENMAYETAL ONPAVIIKI] PETaBOAL TOU @QU-
O1KOU OUOTNHATOG, OMKG Yia apddetypa éKAuon pUN®V OO Tie-
pBAAAov AOY®m atuxXnpatog, IIPOTEIVOUNE TV EVOOPATOON NG a-
ViXVEUONG avicoTportiag 0 OUCTHHATA £YKA1PNG IIPOEISO0IToinong.
'‘Ooov adopd TG 1ATPIKEG ePAPHIOYEG, He Bdon ta amnoteAéopata
g rapovoag epyaociag, propetl va vAoronOel évag aAyopidpog
Baolopévog otnv aviootportia yla v aviXveuor aveopdAldv oe
dedopéva anod ynolakég paoctoypadies.
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Exrtevng IlepidAnyn

X1 rapouoa gpyacia e§etadovial o1 OTatioTKEG 1810 TeG pag ve-
ag pebodou ektipnong otatiotkng avicotporiiag. Yrmoloyiletat
AVOAUTIKA 11 PaBnpatiky €KPpact) tng KOWrg oUuvdaptnong Itu-
KvVOTNTag mbavotntag t@V EKTIPINOE®V OTATIOTIKAS AVIOOTPOTIiag
Kl 1 €éKPPAOT) TRV MEPLOXWV eprmotoouvng. Emniong unoloyidetat
AVAAUTIKA 1] PN-TIAPAPETIPIKY EKPPAOT TG KOIVAG OUVAPTNONS
mBavotnTag Katl IV IEPIOXWV EUITIOTO0UVNG, OMOG £ITIONG KAl £-
vag PN -mapapeTpikog EAeyX0g OTATIOTIKLG avigotportiag. Katomy
napouotaoviatl EPappoyEg o€ OUVOETIKA KAt Ipaypatika dedopie-
va.

ZUGQ YE@EMOTNEG ouxva gival §1a6£o110 povo £va delypa xopika
ataktev 6edopévav, OTIOG yia TIapddelypia éva aUVoAo LETPTIoE®V
OUYKEVIP®OTG EVOG PUITOU oty atpoodpailpd. Ol onpavilkotepes
attieg mou meplopidouv ) AfPn PEIProE®V Katd 1o H0KoUV, eivat
10 KOOT0G, aAAd Kat to evdexopevo ta onpeia detypatoAnyiag va
etvat Suonpootta. ITapopolot eploplopol UIapxouv Kat oe aAAa
EMOTNPOVIKA Tedia, OMG otV enedepyacia onuartog, 1 oe 1atpt-
Keg epappoyég. H extipnon tov tipev g petpnoung 8iotntag
ota onpeia mou dev UTIAPYXOUV HETIPLOELS, TMpAaypatonoleital pe
xopkn mapepboin. O1 péBodol Xwpikng rapspBoAng propouv
va Ratnyoplonoinfouv os duo peyadeg KAAOELS, TIS AlTIOKOATIKEG,
KAl TG otoxaotkeg uedodouvg mapeubofng. H owkoyévela pebo-
dwv yvaoot oug yewermotpes og kriging Paoiletat o Sewpia
IOV TUyaiov medlov Kal avnKel OTlg otoxaotikeg pebodoug, ot o-
Toieg £XOUV TO TIPOCOV OTL IPOOPEPOUV EKTIUNON TOV OPaUdTev
TPO6Asyng.

H Yewpia tov tuxaiov nediov eivatl 1o pabnpatikd epyaleio mou
XPNotponoteital yia i) meplypadn Xopikov 6edopévev Kat yia tnyv
avdruén otoXaotkav pefodwv XopikAg rnapspBoing. Mia pé-
P10 TG PUOIKNG 1610TTag avIilotolXel o Pia Kataotaor (state)
Tou tuyaiou nediou (random field) X(s) n oroia eivat pia moAu-
dwaotatn tuxaia petaBAnt) oto onpeio pe davvoua Yéong s. H
ouvdptnon auvtoouoyétiong (autocorrelation function) n omoia



MEPLYPAPEL TNV XWP1KI] CUOCXETION TOU Tuxaiou niediou. Auo ouvn-
9e1g ouvaptnoelg autoouoyETiong ivatl n ykaouotlavr] (Yorapa-
ypadog A.7.1) kat n ouvdptnon Matérn (Yrnontapaypagog A.7.2).

Zuyvd 1 ouvaptnorn auvtoouoyEtong didtaoctatev dedopévav na-
pouolalel EAAEUTTIKEG 100U PEIS KAPITUAEG, TO OITO10 TIPAKTIKA O1)-
paivel Ot n X®P1KY CUCKETION £XEl §APTNON Ao v Kateubuvon.
H 16161tnta avtr, yveott) g otatotiky avicotpornia (statistical an-
isotropy), neptypdgetal pe Suo apap€Tpoug: v KAion g €A-
Aswyng 8 kat tov Aoyo R (anisotropy ratio) tov KUplev a§ovev tng,
o0 ortoiog eivat i00g kat pe tov Adyo 1@V U0 KUP1OV PNKOV CUOXE-
tong (correlation lengths) & xkat &, R = &/& (BA. Zxnpa 1.5).
[Mapadelypata 100TpOrmKOV Kal aviCOTPOIIK®V OUVIETIKOV TUXAi-
oV nediev pe ykaouolavn kat Matérn ouvdaptnorn autoouoyXETiong
napouotadoviat ota Lxnpata 2.1 kat 2.2.

[Tapodo mou eival epdaveg OTL APKETEG PUOIKEG dlepyaoieg ivat
OTATIOTIKA AVIOOTPOTIEG, GUXVA HOVIEAOTIO0UVTAL HE 100TPOTTIKEG
OUVAPTIOEIS AUTOOUOYXETIONG. AYVO®VIAG Tr OTATIOTIKY] AVIOOTPO-
riia, ano@eUyoupe Vv eKTiPNon U0 EMITAEOV TTAPAPETIP®V, TV
R xat §). TuvhBeg 1 eKTIINON TOV MTAPAPETPOV TG OTATIOTIKLG
avicotportiiag npaypartoroteital pe pebodoug Ornwg 1 rmoKoOI)-
on eUMEPKOV Baploypappdiov, pia d1adikaoia UMOKEEVIKT),
ylati umelogpxeoatl o avBpIiivog TIapdyoviag o oToiog Kpivet av
TO EPIEPIKO Baploypappa eivatl 100TPOIIKO 1) AVICOTPOITKO, KAl
1] UMOAOY10TIKA anautntky pébodog g ueyomg mdavopaveiag
(maximum likelihood). Eropévag ot mapanave pebodot dev eivat
16aVIKEG Y1a AUTOPATOIIOUPEVEG EPAPHOYES. XPNOT0O1OVIAG 1-
OOTPOITIKA POVIEAA OF TEPIUTIWOELG OTIOU £ival epdavrg 1 Uapsn
aviocotportiag ota dedopéva, odnyoupaote o eKTIPLN0ELG UTIOOEE -
otepng akpiBelag.

Mua véa, urntodoylotikd arotedsopatikn pébodog ektipnong ota-
TIOTIKNG avicotportiag npotddnke npoopata. H péBodog autr
Baoidetar otnv Tautotnra Eoolavng tng Zuvdiakupavong (Covari-
ance Hessian Identity, ®cdpnpa 2.1.1). Zuvdéetr pe availutiko
TPOIT0 TG MTAPAPETPOUS AVICOTPOTHAG PE TIAPAPETPOUG TIOU HITO-
POUV va eKUINO0UV amo Ti§ YWPIKEG Tapaywyoug Tou delypatog
(@eopnua 2.1.2). To Seswpnua arattei va wnpouvial 6Uo0 TIPo-
UnoBeoelg: To delypa va eival apketd peyddo wote va prnopel va
XpnowornoinOei 10 Epyodikd Oswpnua Kal va Urndpxouv ol X®-
pkég napdywyot tou nediou. To Epyodiko @swpnpa ermrpénet
TNV MPOOCEYY10T PEOKV TNV ITOU UTIoAoyidovial oe 0Aeg TIG Kata-



otdoelg tou tuyaiou mediou, 1ig omnoieg ote He Hrabetoupe otnv
npagn, HPe HNEoeg TIHEG UTIOAOYIOHUEVEG AT 1o povadikd detypa
rou ouvrfeg Stabétoupe. Av |D| eivat to epBadov tng meploxng
KAl @ 1 P€Or arootact HETady oV onpeiov deitypatoAnyiag ot
duo mpounobéoelg ouvoyidovial wg eEng:

D] > max(&, &) rat a < min(§, &).

AnAadn oto Seiypa mpPEmetl va mepPLEXOVIal APKETEG OUCXETIONE-
VEG UTIOTIEPIOXEG, KAl 1] detypatoAnyia mpemnel va eival apketa
TTUKVI] OOTE VA KATAYPAPETAL EMTAPKAOG 1 XWPIKI HETABANTOtnTa
ToU Tu)Xaiou mediou, yia tov aglormoto UroAOYIoHo TV X®OPIKOV
apay®y®v aro to detypa.

It rapouoda epyacia PEAET®VIAL Ol OTATlOTIKES 1OI0TNTES TNG TTPO-
avagpepBeioag ekpnIPlag otatiotikng aviootrportiag. ITo ocuyke-
Kplpéva, urodoyidoviat pe avaAutikd TpOro, 1 KOwr ouvapt-
on nukvotntag mbavotntag (joint probability density function)
Ja r(R, 8) tov exupnosmv aV100TPOTTiag KAl 01 AVTIOTO1XEG TIEPLOXES
eprtiotoouvng (confidence regions). Ilpoxkurttet pia pntr) EKPppaon
g for(R, ) Kat eV TiEPIOXOV EPITIOTOOUVNG, TIOU G110 TIPOTITO-
9€touv 1) yvoon tng ouvaptnong autoouoxEtiong. 'auvto, faoilo-
HEVOL 0T OUVAPTNOT MTUKVOTNtag rmbavotntag vrodoyioupe pa
TIPOOEYY10TIKI] €K(PPAOT) fa(gg(f{ 8) n oroia eivat UN-TLapapueTpikn
(non-parametric), 6nAadn dev anattel yvoon g ouvdapinong au-
ToouoyxEtong. H f;gg(f%, 8) e€aptatat povaya armd 1o 1éyedog Tou
detypatog N kat ano v eKTPIN0nN T@V MTAPAPETPOV AVICOTPOITiAG.

H &iadikaocia rmou akoAoubnOnke yia tov urtoAoytopo mg fs. r(R. H)
propet va cuvowtotet ota e§hG: A0BEVIOV TV AVaAUTIK®V EKPPA-
oewVv (Bewpnpa 2.1.2) mou ocuvdéouv TG TAPAPETPOUS AVICOTPO-
rmag pe tg napapérpoug Qy mou Propouvyv va ekupnbouv ard 1o
GsiyucAl, av gival yveotr 1 Katavoun fQ(Qu, Qo 012) TV ekTPL-
O£V Qy, EKTEAMOVIAG TOUG anapaitntoug petacxnpatiopoug rmba-
voutag (Oswpnua Jacobi, Iapdptnpa A.1), propel va urtodoyt-
0Bei 1 katavour] fo r(R,8) tev exupnosav (R, 8). H axoloubia
1OV PETACXNUATIOPN®V artattel €va evoldpeco Prjpa, tov urtodo-
Y10p0 g ouvdptnong nukvotntag mbavotntag fq(ga. §o) 1oV Ao-
YoV (Ga, §o), OTIOS KAl KATIO1EG TIPOCEYYIOEIS V1A VA £1val EPIKTOG
0 avajutikog UTTOAOY1010G T®V KATAVOH®V KAl yid TOV avaAutt-
KO UMOAOY1OPO PN-TIAPAPETPIK®OV arnotedeopdtev. To Sewpnpa
Jacobi ekppddet ) Satr)pnon mbavotntag Katd tmy npaypato-



noinon aAlayov petabAntig. H dwatrpnon tng mbavointag katd
Vv akodoubia TV PETAoXNIATION®V

fQ(Qu, Qo2. O12) = fq(@a, Go) = Sor(R.9),

avarnapiotatal oto Lxfpa 2.8.

Ene1bn o1 de1ypatikég eEKTUPNOELS TOV Qy MPOKUITIOUV Aro £va A-
Spotopa (2.18) yivopévev X®PKOV Napaywyeyv X; mave o 0Aa
1a onpeia derypatoAnyiag s, propet va epappoodet 1o Kevipr-
K0 Optako Oswpnua, oty eKOOXT TOU yid eEAAPPA CUCKETIOPEVES
Tuyaieg petaBAnteg, OMMG €ival T YIVOPEVA XOPIKOV TTAPAYOYROV
X (2.12) ano ta onoia mpoxkuntouy ta Q. Ot MPOoORoIWoeElg O
urtoAdoylotn] enaAnBevouv v unobeon autr), ONIOG @AiveTal OTo
Zxnua 4.3. Enopéveg o1 eKTIProels tov Qy akoAoubouv pia yka-
ouOo1avr] KATtavoprn) Iplov petaBAntav, yla v oroia anatteitatl o
unoAoy1lopég tou mivaxa ouvdiacmiopdg Cg, 6meg autdg opidetat
oto Afjppa 2.2.1. To kabéva and ta €8 otoikeia tou 3 X 3 oup-
petpkou mivaka Cg unodoyiloviar aBpoidoviag ndve oe 6da ta
N? 81aviopatd Ipy, = Sp — Sm, OTOU S, etval ta Stavuopata 9é-
ongkatnm=1,..., N. Ot ouvaptrioeig Cy (1) Tou abpoiopatog
£CAPTOVIAL ATIO TIG TIAPAYRYOUS TG CUVAPTNONG AUTOOUCXETIONSG.

H 61adoyxn) twv addayov petaBAntov rou npoavapépdnkav, rpay-
patorolieital € avaAuTiKo Tporio. [IpoKUITIEl 0Tl 1] TAPAUETOLKN
KATAVOPT] eKTIA0E@V avicotporiag fr r(R, §) éxet v eEnig pop-
%n:

2R |R? - 1

Jor(R,&;:mg, Cy) = - fa(@; mg, Cy).

(f@ cos? § + sin® 9)
OItou
~ ~ 2(R2_ A
Ja@:mg, Cg) =2V K (2B° N + 1) &0,

(@ewpnpa 2.2.2). H mapauetpikn neploxr] eprmotoouvng didetat
Ao TNV KAPITUAD R, 8 nou wavoroovv v ediowon :

| B*(@ mq. Cg) - €(@; mg, Cg)| N> = In(1 - p),

(ITopopa 2.2.1), omou p n otabun epmotoocuvng (confidence
level), m.x. p = 0.95. Ot ouvtedeotég B, K, A e€aptédviatl and
1] CUVAPTN O AUTOOUCYETIONG.

Kpatovtag povo tov pwto opo tou abpoiopatog (2.18), mou av-
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uotoixet ota davuopata r = 0, MPOKUITEL 1) UN-TAPAUETOLKN
KATAVOUI) f;gg(f?, ) (®svpnpa 3.1.1) yua v oroia dsv anattei-
1Al EKTIPNON APAPEIP®V TG OUVAPTNONG AUTOCUCXETIONG. Xtd
Zxnpata 3.1 kat 3.2 napouctddovial o1 YPAPIKEG TAPACTACELS
TOV PN-TMIAPAPEIPIKOV KATAVOP®V Yia S1adopeg TIHEG AviooTpo-
miag Kat Anboug dedopévav N, o1 omoieg eival acUPPETPEG Kal
Hn-ykaouowaveg. 'Onog eivatl avapevopevo, yla peyalo peyebog
delypatog, MPOKUITTOUV OTEVOTEPES HI-TIAPAPETPIKEG KATAVOHES
KAl PIKPOTEPES HIN-TIAPAUETPIKEG TTEPLOXEG EUITIOTOOUVNG, TO O-
oio onpaivel OTL Ol EKTIPINOEIS AVIOOTPOITiAg £XOUV HIKPOTEPT
aBeBaiotnta yua peyada N.

H un-mapauetpucy katavoprn EKTIPUNOE®V AVIOOTPOITIAG £XEL TNV
£§1G popo):

0,3 4 2R|R2_1| 0/ 2
SR E:R 8. N) = — [ P(R,6;:R 8,N),

(IAQZ cos? & + sin® 8)

ortou

By = (24,) /2 [(R2 — 1)(R2 - 1) cos(2(8 — &) — (R* + 1)(R? + 1)] ,
Ro = (o) *2RP (R + 1) - (R — 1) cos(2)| .

orou

Ay = (R*+ 1D)(BR* +2R% + 3) + 2R*(R? - 1)?
+(R* - 1)*(R* = 1)®>cos(4(5 - 9))
—4(R* - 1)(R* = 1) cos(2(8 — 9)).
H xatavour 8(33(1??, 8) e€aptdtatl povaya arnd Tig apapéTpous avi-
ootportiag R, & kat to péyebog tou detypatog N. H un-rtapauctpkn
meploxn eprotoouvng 6idetatl amod v KAPITUATN TIOU TIPOKUITIEL
ano ta R, & nou wavoroovv mv efiowon :
- 1 In(1-
B(Z) i M
2 N
H meploxr) eprmotoouvng e§aptdtal amd 1o eminedo eprmotoou-
vng p Kat 1o péyebog tou detypatog N. Amo T Pn-TapapeTpiky)
E€KPPAOT] TOV IEPLOX®V EUITIOTOOUVIG OUVEITAYETAL O AKOAOUOO0g
PN-TIAPAPETPIKOS OTaTIoTKOG £Agy)X0¢ ootpomiag. AoBEéviog tou



peyeboug detypatog N kat tou Babpou eprmotoouvng p, TIPOKU-
et o Sdotnua avicotporukév Adyev (R, R,) yia 1o oroio ot 6-
IO1EG EKTINOEIS AVIOOTPOITIKOU Adyou R propouv va SewmpnBotv
og otdabprn eprotoouUvng p OTL AVIIOTOLXOUV O€ OTATIOTIKA 100TPO0-
rukd riedia. Andadn av 1o R avrikel oto akodoubo Staotpa:

N Jl - 2\Iap;N(1 - ap;N) Jl +2 ap;N(l - ap;N)

Re
1- 2ap;N 1- 2ap;N

orou £, = —21In(1 — p) xat a,y = £,/N, t61€ 10 Setypa eivat ota-
TIOTIKA 100TPOITIKO O otaburn gpruotoouvng p (@sopnpa 3.2.1).

It ouvéyela, 10 9e@pnTIKO MAAiclo avapopikA Pe T1G OTATIOTIKEG
1610TNTEG TOV EKTIPIOE®V AVICOTPOITIAG EAEYXETAL PE TIPOCOHOIW-
oe1g Monte Carlo ot omoieg paypatonoi}fnKav oe UTIOAOY10TIKO
iep1B8aAiov MATLAB®, kat niepltdapBdavouv dedopéva oe Agypa
(Evointa 4.1), dedopéva exktog mAeypatog (Evotnta 4.2), adda kat
dedopéva mpoepxopEva amno mpaypatikeg perprjoelg. ITo ouy-
KeKpIPEva, pedet|Onkav debopéva evog osvapiou repiBaddovt-
KOU K1vOUVOU avapoplkd HE TNV €KMOUT] aktivoBoldiag yappa
eCattiag atuynuatog (Evomnta 4.3), addda kat ebopéva mpoep-
Xopeva amnod HlepeuvnTIKEG YEDTPNOES o dUuo Atyvitwpuyeia g
EAAdbdag, oto Apuvtalo kat ot Mauporninyr (Evounta 4.4). Ze
OAEG TIG TIEPUTIROELS EEETACTNKE AV O1 TIEPLOXEG EUITIOTOOUVNG (0Tn)
HN-TIAPAHETIPIKY KAl Ot TIAPAPEIPIKY] TOUG £KOOXI), OTMOU rtav
EPIKTO), TIEPIYPAPOUV EMAPKAOG T NETABANTOTNTA TV EKTIIICEDV
aviootportiag.

L1 nepimwon v ouvletikov dedopévav, eival YvmOTEG eK TV
TIPOTEPHV O1 CUVAPTHOEIS AUTOCUOXETIONG, EMTOPEVROG PITOPEL va U-
rodoyofet apidpnukd o nivaxkag Cg €101 Gote va urodoyiobouv
Ol TIAPAPETIPIKES TEPLOXEG eprmiotoouvng (2.31). O umoloyilopog
tou mivaka Cg yivetatl mpooeyylotikd oote va arnopeuxOei o uro-
Aoylopog abpotlopdtev pe peyadlo mAnbog opwv. Ta abpoiopa-
ta 2.21 npooeyyidovral aBpoidovtag oe N’ < N? 6poug evidg piag
YEITOV1ag otnyv oroia o1 aBpotdpeveg oUvVApPTIOElS £X0UV ONpav-
TIKN ouvelopopd oto dBpotopa, ESiowon (2.24) kat Zxnpa 2.4.

Zto Zxnua 4.1 aneikovidovial ta anoteAéopata yla tuyaia media
L€ 100TPOITIKI] YKAOUO1AVY] GUVAPTNOT AUTOOUOXETIONG, OT0 ZX1-
pa 4.2 ta anotedéopata yla tuxaia media pe 100TpoIky ouvap-
non autoouoxétong Matérn, eve oto Zxnpa 4.4 nnapouotadovrat



Ta AnoTeAE0PATA Y1d AVICOTPOITIKEG yKaAouolaveg kat Matérn ou-
VAPTNOEIS AUTOCUOXETIONG. ZTd OXNHATA Ol EKTIPNOELS AVIoOTPO-
riiag avarapiotdvial e yadddioug otaupous oto erminedo (R, §)
KAl Ol TIAPAPETPIKEG TIEPIOXEG EPITIOTOOUVIG PE TTPACIVEG KANUITU-
Aeg. O1 KOKKIVEG KAPITUAEG AVTIOTOLXOUV OTIS HI-TIAPAPETPIREG
TEPIOXEG epruioTtoouvng. Ilapatnpoupe OTL Ol TIAPAMPEIPIKEG TTe-
PlOXEG EPITIOTOOUVNG TIEPIYPAPOUV TIOAU KAAd T petaBAntotnta
TOV EKTIPNNOE®V aviootportiag, aildd onwg avadepape mponyou-
PéVeg, amattouv T yveor g ouvdaptnong autoouoxetong. Ot
HN-TIAPAPETPIKEG TIEPLOXEG EUTTIOTOOUVIG £1val EUPUTEPEG KAl TTe-
PIKAEIOUV TIG TIAPAPETIPIKEG TIEPLOXES eprniotoouvng. H €AAewyn
YV®ONG g OUVAPTNONG AUTOCUOXETIONG onpaivetl EéAAswyrn) mAnpo-
popiag, ylautod ol Pn-IapapeIpikEG MEPLOXEG EPITIOTOOUVNG £ivat
EUPUTEPES ATTO TIG MAPAPETPIKEG TIEPLOXES EPITIOTOOUVNG

I'a ) dnpoupyia ouvBetik®v didonaptov dedopévav, eTnAex0On-
KE TUXaia éva P1KPO T0C00TO ONHEI®V ATto £va oAU ITUKVO detypa
0€ KAVOVIKO TTAEYHA £VOG 100TPOTITIKOU TUXaiou mediou pe autoou-
oxéuon Matérn. Xin ocuvéxela emAéxOnkav tuyaia umooUvoAa
onpeiwv Kat npaypatono|fnkav ekupnoelg avicotportiag. Ta
arnotedéopata avanaplotovial oto Xxnua 4.6 kat ouykpivoviat
EMTUX®S HE T PN-TIAPAPETIPIKI] TIEPLOXT] EPITIOTOOUVIG.

Xt ouvéxela e€etaobnKav epapuoyeg os npaypatka dedopéva.
H mpotn epappoyn apopd tig PEIPr|oelg aktivoBodiag yappa a-
o éva diktuo atobnmpwv ot leppavia ot ornoieg xprnopomnot-
HOnKav otV AoKnorn oUyKplong pefodov Xmpikng rapepBoArg
SIC2004. Ta 6edopéva nieptdapBavouv duo oevdapila: To oevaplo
KAvovikeVv petproe®v (normal, §nAadr) eviog opiov aocpaleiag),
Kal T0 0evAPlo €vOg UMMOTIOEPEVOU aTUuXpatog (emergency sce-
nario). Ta 6e6opéva mapouoialoviat oto Lxnpa 4.7. Yrodoyidov-
1aG TS PN-TIAPAPETPIKEG KATAVOHEG EKTIHIOERDV AVICOTPOTIAG Yid
Ta duo oevapla MpokuUITtel O eivatl otatotika onuavtukd oda@po-
PETKES, OTIOG @aivetal kat oto xrua 4.8. Eriong eetaodnke av
01 EKTIPNOE1S AVIoOoTPOITiag yia Ta 8€Ka oUVOAd KAVOVIK®V PETP-
0e®V A0 S1APOPETIKEG XPOVIKEG OTIYHEG, HITOPOUV va Sempnbouv
OoTtatiotKa dtapopetikég. Xt1o Zynpa 4.10 kat ot §éka exupn-
O€1G AV1O0TPOTITiag KEITOVIAL EVIOG TNG 11 IIAPAPEIPLIKIG TIEPLOXTS
€UTTIOTOOUVNG 1) OTIoia £X€1 UTIOAOY1O0TEL XPNO10TIO1OVIAG TIG HE-
0EG TIPEG TV Qy Autd onpaivetl 0Tl Ol EKTIPOPEVES TTAPAPETPOL
av1ooTPOoTIiag KAl ToV §€KA OUVOA®V KAVOVIKGOV TGOV v £ival
OTATIOTIKA S1aPOPETIKEG.



H 6eUtepn epappoyn apopa dedopéva mpoegpxopeva ano ta At-
yvitopuxeia tou Apuviaiou kat ing Maupornyng, mou Bpiokov-
tat kovta otn ITtoAepaida (Exnpata 4.11 xat 4.12). ITo ouy-
KEKPIEVA, €EETACHNKAV PETPTOEIS OUVOAIKOU TtdX0oug Atyvitn a-
O H1EPEUVITIKEG YEWTPTOEIS MTOU MPAYHATOIION|ONKAV € OKOIIO
TV EKTIPINOTN TOV YEMAOYIKOV AroOspdt®v Atyvitn OTi§ OUYKEKPL-
péveg eploxes. [Ipaypatomo)Onke eKTipnon aviootportiag Kat
UTIoAoyioOnKe 1 PN-TIAPAPETPIKT] KATAVOUL] TRV EKTIHIOERDV AV1-
ootportiag (Zxnpata 4.13 kat 4.15. 'Onwg KAt oty MePini®orn 1oV
ouvBetikaV drdomaptav dedopévav, ermAgxdnkav tuxaia 1000 u-
roouvoda pe 50% 1OV apXIK@V HEIPNOL®V OOTE vd IIPOKUYPOUV
TEXVNTA TIOAAQ OUVOAQ PETPHOERDV TOU 1610U PUOIKOU (ATVOHEVOU
Kal va damotebei av n PetaBAntotnia TV EKTIUNOE®V AVIOO-
TPOTTiAg MEPIYPAPETAL EMAPKAOG ATIO TI PI-TIAPAPETPIKI] TTEPLOXT)
eprmotoouvng (Zxnpata 4.14 kat 4.16). Emupoofetng, urolo-
yidovtatl pe apOpntiky] 0AOKANP®ON TOV PN-TIAPAPEIPIKOV KATA-
VOOV 01 Katavopés tov R kat & kat ouykpivovial pe autég rou
eEKTIPNONKav amnod 10 ouvodo twv 1000 ektproe®v avicotporiag
yla kaBe opuyeio. Kat yia ta duo opuyeia, n pn-napaperpikn ou-
VAPTNOT MTUKVOTNTAG TIOavoTnTag meplypadel o apa oAU KaAo
Babpo n petaBAniointa 1OV EKTIPNOE®V AVIOOTPOTITiAG.

Zuvoyidoviag, n epyaocia mapouoialel Eva AN peg MAAiolo avado-
PIKA 1€ TIG OTATIOTIKEG 1610TNTEG EKTIPTNOEWV OTATIOTIKNAG AVIO0TPO-
niiag. YroloyioBnke 1 yevikn padnpatikn €éKEaot) g KOvng
oUVAPTNONG ITUKVOTNTAG TOavOTNTtag T®V EKTIPNOE®V AVIOOTPO-
niag Kabwg Kat 1 €KAot TG AVIIOTO1XNG MEPLOXNS EPITIOTO0U-
vngG. Xt OUvEXEld UTToAOYioOnKe pia pn-rmapapeTpiky] EKPPAOT)
NG KOWNg ouvdaptnong rukvotntag rmbavotntag n ortoia odnyet
0 CUVINPNTIKEG TIEPLOXEG eurmiotoouvng. Ta amoteAéopata wng
gpyaociag pmopouv €UKOAA va ernektabouv Oote va ouprepldap-
Bavouv Aoyapiduorxavovika tuxaia nedia. Emiong vnodoyiocOnke
£vag Pn-TapapeTpikog OTaTioTKOG EAeyX0G 100tportiag. Ate§rxon-
oav ripooopolwoelg Monte Carlo yia tov €éAeyX0 TV arnotedeopd-
TV, EVE MApouclacOnKav epappoyég oe nmpaypanka dedopéva
arno éva oevaplo reptBaAdoviikou Kivduvou kat dedopéva amod At-
yvuaepuyeia.

Ze peddovukn épsuva Sa propouoce va SiepeuvnBel 1 epappoyn)
TOV AMOTEAEOPAT®OV O Un mapaywylioya tuxaia edia pe ) xpn-
o1 evog ruprjva egopdduvong (smoothing kernel), oe tpididorata
tuxaia nebia, 6NOG KAl ota Aeyopeva Zrnaptiatika tuxaia nedia.



Aedopévou Ol 01 PeTaBOAEG VOGS UOIKOU CUOTIHATOG 0d8nyouv
oe petaBolég g avicotportiag, eivatl duvatn n vAoroinon adyo-
piOpwv avixveuong otatiotikd ONPAVIIKGOV AAAAYy®OV avioOoTpOoIti-
ag Ol OTTOi01 PITOPOUV Vd eVOPAT®O0UV 0g ouoTpAta £YKAPNG
nipoe1dornoinong, 1] akKopd va Xprotponotnfouyv yia v avixveuorn
aveOPaAlov o edopéva ano Pneplakeg pactoypadieg.
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Abstract

Two-dimensional data often have autocovariance functions with
elliptical equipotential contours, a property known as statistical
anisotropy. The anisotropy parameters include the tilt of the
ellipse (orientation angle) d with respect to the coordinate system
and the ratio R of the principal correlation lengths. Anisotropy
estimation is important for applications in the geosciences, in
signal and image processing, as well as in medical imaging. Sam-
ple estimates of anisotropy parameters are needed for defining
suitable spatial models and for the interpolation of incomplete
data sets.

Currently, anisotropy estimation is performed via the method
of maximum likelihood, which is a computationally intensive
procedure, or by inspection of empirical variograms by human
experts, which often leads to subjective results. Unsupervised
and computationally efficient methods of anisotropy estimation
are thus needed for geostatistical analysis as well as for early-
warning or automatic monitoring systems.

In several scientific disciplines, including the geosciences, only
a single data sample is available, due to measurement costs or
other limitations. Thus, a problem of practical interest is the
estimation of anisotropy parameters from a single sample, which
may also possess an irregular spatial distribution. A computa-
tionally efficient anisotropy estimator for single samples with
regular or irregular spatial distributions, was recently proposed
and is based on Swerling’s Covariance Hessian Identity (CHI).
The purpose of this thesis is to derive —by means of analytical
calculations— an explicit expression for the sampling joint prob-
ability density f; g(R. ), which is valid for Gaussian, stationary
and differentiable random fields. The sampling joint probabil-
ity density Jfo.r(R, 8) characterizes the distribution of anisotropy
statistics (R, ) of the CHI estimator. Based on the sampling
joint probability density f» r(R, 8), we derive an approximation

3(3; (R, d) that is independent of the autocovariance function and



provides conservative confidence regions for the anisotropy pa-
rameters (R, §). We also formulate a statistical test for isotropy
based on the approximation fa(gg(f{ 3).

We validate the theoretical analysis by means of simulations
involving data on square lattices as well as scattered data. We
illustrate the use of confidence regions with two real-data case
studies; lignite mining data and an environmental emergency
scenario which involves the accidental release of gamma radia-
tion are used.

The results of this research can be used to provide (i) a stand-
alone approximate estimate of the (R, §) distribution (ii) computa-
tionally efficient initial values for maximum likelihood estimation,
and (iii) a useful prior probability density function for Bayesian
anisotropy inference.

Overall, this work provides a framework for efficiently quanti-
fying the statistical significance of anisotropy variations. The
identification of significant anisotropy in preliminary data from
exploratory drill holes is important for the design and opera-
tion of mines, because it allows more accurate analysis of the
spatial variability of the deposit. Since a significant anisotropy
change may imply a significant change in the physical system,
for example accidental release of a pollutant in the environment,
we propose that early-warning systems incorporate anisotropy
detection. Regarding medical applications, an anisotropy-based
algorithm for detecting abnormalities in digital mammography
data can be constructed based on the results obtained in this
work.



Acknowledgements

This work was partially funded by INTAMAP, a project funded
by the European Commission, under the Sixth Framework Pro-
gramme, Contract N. 033811 with the DG INFSO, action Line IST-
2005-2.5.12 ICT for Environmental Risk Management. More
information on INTAMAP can be found at www.intamap.org.

The author acknowledges the contribution of the Public Power
Corporation of Greece S.A. and Mr. Christos Roumpos for pro-
viding drill holes data for the Amynteon and Mavropigi lignite
mines, and Andreas Pavlides for his hard work on providing
quality data sets derived from the original raw measurements.

None of these could be possible without the help of my brother
Eftichis Petrakis and our mutual friend, Tasos Sifalakis, who
gave me the opportunity to meet and work with my advisor,
Dionissis Hristopulos. Apart from being a supportive advisor, he
provided an excellent working environment, despite the calami-
ties the “economic crisis” has brought to all of us.

Since my roots are from the Physics department of the University
of Crete, I wish to thank my professors who during my under-
graduate years they always reminded us to focus on the essence
of Physics. I remember the words of my advisor there, Grigoris
Athanasiou, that in order to get a feeling of a problem in hand, we
should try to find a proper geometrical representation of it. Also,
I am mostly grateful to Stephanos Trachanas, for his inspiring
lectures (my writing and teaching style is mostly influenced by
his) and Petros Ditsas for his psychological support during my
graduate years at the University of Crete.

And last, but not least, I thank my parents for their support
throughout my study years, and my close friends Antonis and
Stelios who are always tolerant on the quirks and peculiarities
of my character.

Xvii


http://www.intamap.org




Contents

Contents xix
List of Figures xxi
List of Tables xxiii
Nomenclature XXV
1 Introduction 1
1.1 Modeling Spatial Processes in the Geosciences . . . . . . . . . 1
1.2 Spatial Random Fields . . . . . . ... ... ... .. ..... 6
2 Anisotropy statistics 11

2.1 Anisotropic Random Fields and the Covariance Hessian Identity 11
2.2 Sampling Joint Probability Density Function of Anisotropy

Statistics . . . . . . L. oL o 18
2.2.1 Central Limit Theorem and Joint Probability Density
Function of Slope Tensor Estimates Q .......... 19
2.2.2 Joint Probability Density Function of Slope Tensor Ele-
ments . . . . ... Lo e 19
2.2.3 Numerical Approximation of the Covariance Matrix C5 . 21
2.2.4 Probability Density Function of Slope Tensor Ratios . . 23
2.2.4.1 Dimensional Analysis . . . . . .. ... ... .. 26

2.2.4.2 Asymptotic Probability Density Function Limit . 27
2.2.5 Joint Probability Density Function of Anisotropy Statistics 27

2.2.6 Confidence Regions . . . . . . ... ... ........ 28

3 Non-parametric Anisotropy Statistics 31
3.1 Non-parametric Joint Probability Density Function and Confi-

dence Region . . . . .. ... ... ... ... .. 31

3.2 Statistical Test of Isotropy . . . . . . . . . . ... ... .... 34

4 Applications 37

4.1 Simulated Lattice Random Fields . . . . . . . ... ... ... 37



CONTENTS

4.2 Simulated Scattered Data . . . . .. ... ... ... 44
4.3 Environmental Emergency Scenario . . . ... ... .. ... 48
4.4 Geologic ReservesData. . . . . . ... ... ... ....... 52
5 Discussion and Conclusions 61
5.1 Discussion and Conclusions . . . . . . . ... ... ... ... 61
5.2 Publications and Presentations . . . . . . ... ... ... .. 62
5.3 Future Work . . . . . .. . ... 0oL 62
Appendices 65
A Mathematical Details 67
A.l1 Jacobi’s Theorems . . . . .. .. ... .. ... .. ...... 67
A.2 Probability Density Function of Gradient Product Tensor . . . 68
A.2.1 Probability Density Function of Diagonal Elements of
Gradient Product Tensor . . . . . .. ... .. ..... 69
A.2.2 Probability Density Function of Non-diagonal Elements
of Gradient Product Tensor . . . . . . . ... ... ... 69
A.3 Proofof Lemma 2.2.1 . . . . . . ... . ... .. ........ 71
A.4 Proof of Theorem 2.2.1 . . . . . . . .. . . .. ... ...... 72
A5 Proofof Lemma 2.2.3. . . .. ... ... ... ... ..., 73
A.6 Proof of Theorem 2.2.2 . . . . . . . . .. .. ... .. ..... 74
A.7 Some Properties of Common Covariance Functions . . . . . . 74
A.7.1 The GaussianModel . . . . . . . ... ... ... .... 75
A.7.2 The Whittle - Matérn Model . . . . . . . . . .. .. ... 75
B Selected MATLAB® Scripts 77
B.1 Non-parametric Joint Probability Density Function . . . . . . 78
B.2 Subsampling Procedure for Mining Data . . . . . . ... . .. 81
References 85



List of Figures

1.1
1.2

1.3

1.4
1.5

2.1

2.2

2.3

2.4
2.5

2.6

2.7

2.8

3.1

3.2

3.3

The spatial interpolation problem . . . . . . ... ... ...
Example of ozone concentration prediction over California
using ordinary kriging . . . . . . . .. ..o
Example of ordinary kriging standard error map regarding
the ozone concentration prediction map over California . . .
Random fields innature . . . . . . ... ... ... .....
Anisotropy detection as a preprocessing step . . . . . . ..

Examples of Gaussian random fields with isotropic correla-
tion functions . . . . . ... . ..o
Examples of Gaussian random fields with anisotropic corre-
lation functions . . . . . . . ... oo
Extension of the Central Limit Theorem for correlated random
variables . . . .. .. 0000 Lo
Approximation of a sum over lag vectors . . . . . ... . ..
Plots of Cy,q(r) for an isotropic and anisotropic Gaussian
correlation function . . . . . ... ..o
Numerical examination of the accuracy of the first-term ap-
proximation for a 1D Gaussian correlation function . . . . .
The non-monotonic behavior of the square of the second
derivative of the Gaussian correlation function . .. . . ..
Schematic illustrating the transformation of confidence re-
gions across different coordinate systems . . . . ... . ..

Non-parametric JPDF for R = 1.2, 8 = 20° for 100 and 500
sampling points . . . . . . ... ..o L oL
Non-parametric JPDF for R = 3, & = 10° for 100 and 500
sampling points . . . . . . ... ..o L oL
Evolution of the lower and upper limits of the 95% confidence
interval for the isotropic case versus the number of sampling
points . . . . .. Lo



LIST OF FIGURES

3.4

4.1

4.2

4.3

4.4

4.5
4.6

4.7
4.8

4.9

4.10

4.11
4.12

4.13

4.14

4.15

4.16

Non-parametric PDF for the isotropic case and 100 sampling
points . . . . .. Lo

Anisotropy estimates and confidence regions of isotropic
lattice random fields with Gaussian correlations . . . . . . .
Anisotropy estimates and confidence regions of isotropic
lattice random fields with Matérn correlations . . . . . . . .
Normal probability plots for the slope tensor estimates which
justify theuse of CLT . . . . . . . .. ... ... ... ....
Anisotropy estimates and confidence regions of anisotropic
lattice random fields . . . . . . .. .. ..o
Natural neighbor interpolation weight calculation . . . . . .
Anisotropy estimates and confidence regions of artificial
isotropic scattereddata . . . . . . .. ... ...
Visualization of the SIC2004 exhaustive datasets . . . . . .
JPDFs for the SIC2004 exhaustive radioactivity dose rate
datasets . .. ... ... Lo o
Visualization of the first of the additional ten normal SIC2004
datasets . . . . . . . . ..o e
Anisotropy estimates for the 10 background dose rate sets
and 95% confidence region . . . . . . ... ... ... ...
Satellite image of lignite mines near the city of Ptolemaida
Chart of lignite mines and thermoelectric power plants near
the city of Ptolemaida . . . . . . . . . ... ... ... ...
Visualization of the Amynteon lignite data and the corre-
sponding non-parametricJPDF . . . . . .. . ... ... ..
Testing the validity of the non-parametric confidence region
estimation via subsampling, for the Amynteon dataset
Visualization of the Mavropigi lignite data and the corre-
sponding non-parametricJPDF . . . . . .. . ... ... L.
Testing the validity of the non-parametric confidence region
estimation via subsampling, for the Mavropigi dataset

XXii

59



List of Tables

4.1 Summary statistics of the SIC2004 radioactivity dose rate
exhaustivedatasets . . . . .. ... ... ... ... ..
4.2 Summary statistics of the Amynteon and Mavropigi lignite
thicknessdatasets . . . . . .. ... ... . ... .00,

xXxiii






Nomenclature

Roman Symbols

o()

Cov (Xl , X2)

Crx(k)

cxx(T)
d
det(M)
dim(v)
E[X]

F'(p.v)

Jx(x)

le Xo (xl ) xZ)

Big-O notation: If f(x) € O(g(x)), f is bounded above by g
(up to a constant factor) asymptotically

Covariance of the random variables X; and X,

Covariance spectral density, i.e., the Fourier transform of
the covariance function c(r)

(Auto)covariance function of the spatial random field X(s)
Number of spatial dimensions

Determinant of the matrix M

Dimension of vector v

Expectation of the random variable X

Integral scale factor (also known as integral range)

Inverse of the x? cumulative distribution function of proba-
bility p and 2 degrees of freedom

The set of all observable events, F C Q

Inverse of the chi-square (x?) cumulative distribution func-
tion of probability p and v degrees of freedom

Probability density function of the random variable X

Joint probability density function of the random variables
X; and X,



NOMENCLATURE

Kv()
Kurt (X)

my

X(s)

Covariance Hessian matrix
Unit imaginary number V-1

Wavevector: If s belongs to the direct space, k belongs to the
reciprocal (or Fourier) space

Modified Bessel function of the second kind of order v
Excess kurtosis of X

Mean of the random variable X

Number of sample (data) points

Set of natural neighbors of s

Confidence level probability

The probability associated with each event; P(J) € [0, 1]
Mean slope tensor (for random fields)

Anisotropy ratio

Position vector of a point belonging in D

Skewness of X

Variance of the random variable X

Scalar spatial random field

Greek Symbols

Lattice constant
Chi-square distribution
Gamma function

Order of the modified Bessel function; smoothness parameter
of the Matérn covariance function; degrees of freedom of the
x? distribution

Sample state (ensemble) that includes all possible states
(realizations) of the spatial random field



NOMENCLATURE

o

¢

Superscripts

*

t

(0)

Field state
Anisotropy orientation angle

Correlation length

Sample, X; = X(s;, ®") corresponding to a specific state &"
of the field X(s).

Transpose of a vector or matrix

First-term approximation

Other Symbols

| D]

0;X(8s)

lI's i

Acronyms
CHI

CHM

CLT

CR

GIS

GKP
GSRF

iid

Enclosed area of the spatial domain D c R?

Partial derivative of X(s) with respect to the i-th component
of s

Sample-based estimate (statistic) of the random variable X
Euclidean norm of vector s

Quod Erat Demonstrandum, or “which had to be demon-
strated” in Latin

Covariance Hessian Identity
Covariance Hessian Matrix
Central Limit Theorem
Confidence Region

Geographic Information System
Gradient Kronecker Product
Gaussian Spatial Random Field

independent and identically distributed (referring to random
variables)

XXVii



NOMENCLATURE

INTAMAP Interoperability and Automated Mapping, a project funded
by the European Commission (DG INFSO, FP6)

JPDF Joint Probability Density Function

PPC Public Power Corporation of Greece, S.A.

ppm parts per million

SIC Spatial Interpolation Comparison exercise, organized in 1997

and 2004 by the Radioactivity Environmental Monitoring
Group (Institute for Environmental and Sustainability, Joint
Research Centre, European Commission)

SRF Spatial Random Field

WSS Wide Sense Stationary random field

XXViii



Chapter

Introduction

1.1 Modeling Spatial Processes in the Geosci-
ences

ATASETS collected to study the Earth usually come in the form of two- or
three-dimensional scattered points to which attributes are attached.
Unlike datasets from other scientific fields such as mechanical engineering
where experiments are held in a controlled environment, geoscientific data
often possess a highly irregular spatial distribution. For example, bathymet-
ric data are collected at a high sampling rate along each ship’s track, but
there can be a very long distance between two ships’ tracks. Also, geologic
and oceanographic data, respectively, are gathered from boreholes and
water columns; data are therefore usually abundant vertically but sparse
horizontally Fisher et al. [2005]. In order to model, visualize and better
understand such datasets, spatial interpolation is performed to estimate the
value of an attribute at unsampled locations. Spatiotemporal interpolation
is required for natural phenomena in which the temporal dimension is
important and cannot be neglected. In this work we study the statistical
properties of two-dimensional spatial datasets. Furthermore, we present
applications on artificial (simulated) and real geoscientific data. In partic-
ular the real data involve radioactivity gamma dose rate measured over a
network of fixed stations scattered over Europe, and lignite measurements
from exploratory drill holes from two Greek lignite mines.

Geostatistics refer to the general class of statistical models and tools
developed for statistical analysis of data originating from Geosciences, Chilés
& Delfiner [1999]; Goovaerts [1997]; Isaaks & Srivastava [1990]; Journel
& Huijbregts [2003]; Kitanidis [1997]; Wackernagel [1997]. Geostatistics
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Ordinary Kriging
Prediction Map

Ozone (ppm)
Filled Contours

0.0465 - 0.066428947

0.066428947 - 0.079267383
0.079267383 - 0.087538038

Measurement Sites 0.087538038 - 0.09286608

0.09286608 - 0.096298461
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O 0.04650 - 0.07360

O  0.07361 - 0.09499 - 0.101626503 - 0.109897158
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0.096298461 - 0.101626503

0.11371 - 0.13740 [l 0.122735594 - 0.142664541
0.13741 - 0.17360 [ 0.142664541 - 0.1736

Figure 1.1: Example illustrating the spatial interpolation problem: Given a
scattered dataset, for example ozone concentration measurements (in ppm)
over California, estimations are required over the whole spatial domain,
including locations where measurements are not available. On the left map,
measurement values are represented as colored circles, where red colors
denote high values. On the right map, ordinary kriging interpolation results
are represented as filled contours.

relies on the theory of random functions or also known as random fields,
in order to model the uncertainty associated with spatial estimation and
simulation Christakos [1992]; Yaglom [1987]. An example illustrating
the use of geostatistical tools for spatial interpolation of environmental
variables is portrayed in Figures 1.1-1.3. These figures were produced
using a demo version of the commercial' Geographic Information System
(GIS) software ArcGIS® Geostatistical Analyst Johnston et al. [2003, 2008];
Krivoruchko [2008]. The example scenario involves a network of fixed ozone
concentration measurement stations over California which provides the

'This example is for illustratory purposes only. The results of this work can be
reproduced without the need of any commercial software. Most of the algorithms are
already implemented in R, the open-source programming language for statistical computing,
as a part of the INTAMAP project.
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maximum value of ozone concentration in parts per million (ppm) over
the past eight hours?. Given a set of measurements (ozone concentration,
Fig. 1.1, left), sampled at several points in space, an estimation of the
observable is required at locations where no measurements exist. Usually,
the estimated values are presented in the form of a map over a specified
spatial domain, (e.g., on the right in Fig. 1.1), along with an associated map
displaying the error assessment of the estimates, if the error evaluation
is possible. Contour maps, or probability maps of exceeding a threshold
value can also be produced. Such maps, such as in Fig. 1.2, can serve as
a visual aid for experts to assess the potential health hazards of unusual
levels of ozone concentration, to decide issuing an alert, or to take even
more extreme measures.

Many interpolation and approximation methods were developed in order
to predict values of spatial phenomena at unsampled locations. For a
review of the interpolation methods utilized in Geosciences, see Li & Heap
[2008]. In general, the methods can be classified into two classes depending
whether randomness is taken into account:

Deterministic spatial interpolation methods Randomness is not taken
into account. There is no assessment of prediction errors. Examples
of such interpolation methods are: nearest neighbors, triangular
irregular network related interpolations, natural neighbors®, inverse
distance weighting, regression models, several spline-based models
and Fourier series interpolation models.

Stochastic spatial interpolation methods Randomness is taken into ac-
count. Assuming random errors, these methods provide an assess-
ment of prediction errors. This is the key advantage of the stochastic
methods. Examples of stochastic (or geostatistical) interpolation
methods are the several flavors of kriging and its extensions: Simple,
Ordinary, Universal, Block, Indicator, Disjunctive kriging, kriging
with an external drift, cokriging, etc.

The extensive variety of interpolation methods makes evident that a univer-
sal interpolation method cannot exist. Moreover, even for an ideal dataset
(optimally-sampled, noise-free), there exists an infinite number of interpola-
tion functions which pass through a given set of data points. The processes
to be modeled are usually very complex, data are spatially heterogeneous

2This is an artificial scenario, created for demonstration purposes and based on real
measurements during 1996. For data credits see Johnston et al. [2008].
3The natural neighbors interpolation method is introduced and used in Section 4.2.
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Ozone Prediction Map over California

Using Geostatistical Analyst's Ordinary Kriging

Legend

Ozone Concentration (ppm)
I 0.0465 - 0.0664
[ 0.0665 - 0.0793
[ 00794-00875

0.0876 - 0.0929
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[ 0.1100-0.1227
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I 0.1428-0.1736

Probability of Exceeding 0.12 ppm
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0 50 100 200 Kilometers
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Figure 1.2: Ozone concentration prediction over California. The map was
obtained using the ordinary kriging prediction method as implemented in
the ArcGIS® Geostatistical Analyst package.
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Ozone Standard Error Map over California

Using Geostatistical Analyst's Ordinary Kriging

Legend
Ozone Standard Error (ppm)

I 0.0117-0.0131
[ 0.0132-0.0143
[ 0.0144-0.0151
0.0152- 0.0158
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[ 0.0177-0.0181
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0 50 100 200 Kilometers
I Y Y O |

Figure 1.3: Ordinary kriging standard error map associated with the predic-
tion map of Fig. 1.2. Note that sparsely-sampled areas have larger error
values.
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and often based on less than optimal sampling configurations, and signifi-
cant noise or discontinuities can be present. In addition, datasets can be
very large (N ~ 10°-10°), originating from various sources with different
accuracies Mitas & Mitasova [1999]. An important criterion for adopting (or
dismissing) a specific method is its consistency with the physical laws which
the process obeys. Physical laws set constraints on the observables, and
not every interpolation method respects such constraints; for example, near-
est neighbors interpolation cannot be used for modeling spatially smooth
natural processes, since it leads to discontinuous estimation surfaces. In
order to take such constraints into account, prior knowledge of the under-
lying process is required. Usually such prior knowledge is unavailable and
therefore some general assumptions should initially be made. Several other
requirements address limitations on selecting an interpolation method. For
example, we should take into account if a method produces artifacts e.g.,
unexpectedly high or low estimation values or fails to provide estimation val-
ues over a particular sub-domain. The computer processing time required
in order to obtain an estimation is also an issue, e.g., the computation
of a forecast regarding a spatiotemporal process at a future date, should
finish earlier than that given date. Quoting Lewis Fry Richardson* from
the early days of numerical weather prediction models: "Perhaps some
day in the dim future it will be possible to advance the computations faster
than the weather advances. . . But that is a dream.” Lynch [2008]. Despite
the advances in science and technology since Richardson’s days, a good
physical understanding of the process and good quality data can not be
substituted by any complicated mathematical model, advanced algorithmic
scheme, or the abundance of today’s computer processing power.

1.2 Spatial Random Fields

Spatial random fields (SRFs), also known as spatial random functions
Christakos [1992]; Yaglom [1987], are used in several other scientific and
engineering disciplines that study spatially distributed processes, (e.g.,
image processing, theory of transport in heterogeneous media, wave propa-
gation in random media). Natural processes which can be considered as

4Lewis Fry Richardson (1881-1953) was an English mathematician, physicist, meteorol-
ogist, psychologist and pacifist who pioneered modern mathematical techniques of weather
forecasting, and the application of similar techniques to studying the causes of wars and
how to prevent them. He is also noted for his pioneering work on fractals. Since 1997,
the Lewis Fry Richardson Medal is been awarded by the European Geosciences Union
for "exceptional contributions to nonlinear geophysics in general" Wikipedia contributors
[2012a].
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(@) Looking "up" (b) Looking "down" (c) Looking "inside"

Figure 1.4: Random fields in nature: (a) From the primordial light where
everything is bathed in, the cosmic microwave background radiation (source
image: Hinshaw et al. [2009]), (b) the oceans of our planet, and (c), the
"innerspace": a mammogram (source image: Richard & Bierme [2010]).

realizations of a spatial random field are illustrated in Figure 1.4. Spatial
random fields with Gaussian joint probability density function are also used
in machine learning, where they are known as Gaussian processes Ras-
mussen & Williams [2006].

For convenience, isotropic SRF models are often used, even though
many real data sets display anisotropic patterns. Physical anisotropy
implies different values of a specific variable along different directions and
is expressed by means of tensor coefficients (e.g., electrical conductivity
tensor). Statistical anisotropy characterizes scalar processes (e.g., values of
gray-scale images, pollutant concentrations), the correlation range of which
depends on the spatial direction. Herein we focus on statistical anisotropy,
which implies SRFs with autocovariance functions that possess elliptical
equipotential contours.

A problem of practical interest is the estimation of anisotropy parameters
from a single available sample. Estimation of anisotropy parameters, is a
topic of ongoing research activity in various signal and image processing
applications Feng et al. [2008]; Jiang [2005]; Le Bihan et al. [2001]; Okada
et al. [2005]; Olhede [2008]; Richard & Bierme [2010]; Wang & Leckie [2012];
Xu & Choi [2009], as well as in data assimilation Weaver & Mirouze [2012].
The characterization and measurement of anisotropy in biological materials
is important for diagnostic and medical reasons Ranganathan et al. [2011];
Richard & Bierme [2010]. Improved methods for estimating anisotropy are
necessary in various research fields.

Usually anisotropy estimates are obtained using maximum likelihood,
which is a computationally demanding procedure. In the case of geosci-
entific applications, the choice between an isotropic or anisotropic model
usually requires inspection of empirical variograms from a human expert, a

7
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Rotate and Rescale

Anisotropic Field Isotropic Field

Figure 1.5: Anisotropy detection as a preprocessing step: Since the CHI
anisotropy estimation and rotation/rescaling of initial data is computa-
tionally simple, anisotropy detection is a crucial preprocessing step since
preprocessed data can be modeled with a simpler isotropic model.

procedure not suitable for automatic monitoring applications Pebesma et al.
[2011], which can be subjective. The calculation of empirical variograms is
also a computationally demanding procedure, especially when data size is
large, e.g., data originating from GIS applications.

On the other hand, rotating and rescaling of anisotropic data is a com-
putationally trivial preprocessing task which simplifies data representation
and modeling. The preprocessed data can then be modeled with an isotropic
spatial model with less parameters to be estimated. The anisotropy removal
preprocessing procedure is depicted in Figure 1.5. Thus if anisotropy re-
moval is going to be used as an initial preprocessing step, it should be fast
and efficient. The importance of preprocessing data prior to modeling is
stressed by paraphrasing a “silly” theorem from the neural networks com-
munity, “modeling will always succeed, given the right preprocessor”® Hertz
et al. [1991]. The methods currently available for anisotropy estimation are
computationally complex for being used as an initial preprocessing step

5The proof is simple: The preprocessor solves the initial problem and encodes the result
into a simple form where a trivial model could reproduce the answer.

8



1.2 - Spatial Random Fields

before the actual modeling. A method for providing anisotropy estimates
without the computational cost of solving the entire modeling problem is
necessary.

The Covariance Hessian Identity (CHI) method Chorti & Hristopulos
[2008]; Hristopulos [2002] is a non-parametric, non-iterative method for
obtaining semi-analytic estimates of SRF anisotropy parameters from two-
dimensional data sets. Nevertheless, anisotropy estimates are statistics,
i.e., random variables, the values of which fluctuate between different
samples. The fluctuations in the two parameters, as we show below, are
inter-dependent and non-Gaussian. If the joint distribution of the fluctua-
tions is known, it is possible to evaluate whether deviations of anisotropy
statistics between different data sets are statistically significant. Another
practical question is whether an estimated anisotropy value actually means
significant departure from isotropy; if not, simpler, isotropic autocovariance
functions can be used for spatial modeling. Significant changes in anisot-
ropy over time may suggest a crucial change in the underlying physical
processes. For example, an accidental release of radioactivity may signif-
icantly alter the anisotropy of radioactivity patterns over the monitored
area. Reliable and computationally fast detection of systematic changes in
spatial distributions is crucial, especially for automatic monitoring systems
Pebesma et al. [2011].

Answering questions as the above, requires mathematical expressions
for the confidence regions of anisotropy statistics. In this thesis, we derive
a non-parametric approximation of the sampling Joint Probability Density
Function (JPDF) and Confidence Region (CR) of anisotropy statistics for
differentiable, Gaussian random fields. We prove this expression using CHI,
the Central Limit Theorem, Jacobi’s multivariate transformation theorem,
and a perturbation expansion. The term “non-parametric” implies that
the approximation is independent of the SRF autocovariance function
(henceforward, covariance function for simplicity). The non-parametric
approximation is shown to yield a sampling JPDF which is more dispersed
in parameter space than the exact JPDF. This implies a wider confidence
region for the anisotropy statistics. Hence, if a sample is classified as
isotropic at confidence level p based on the approximate JPDF, it is actually
isotropic at p’ > p. These estimates can be used as a prior in Bayesian
inference Schmidt & O’Hagan [2003].

The rest of the thesis is structured as follows: In Chapter 2 we present
essential definitions and an overview of CHI, on which the mathematical
development of the joint PDF is based. Then, we derive a general expression
for the JPDF, using the Central Limit Theorem and the conservation of prob-
ability under variable transformation. In addition, we obtain an equation

9
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that determines the confidence regions of anisotropy statistics. In Chapter 3
we derive the non-parametric approximation of the JPDF and the corre-
sponding confidence region expression and we formulate a non-parametric
test for isotropy. In Chapter 4 we compare the non-parametric estimates
of confidence regions with the results of numerical simulations, and we
illustrate the application of confidence regions using real data regarding an
environmental emergency scenario over Germany and data from two Greek
lignite mines. Finally, in Chapter 5 we review the main results obtained in
this work, we present our conclusions, and we outline directions for future
research.

10



Chapter

Anisotropy statistics

2.1 Anisotropic Random Fields and the Covari-
ance Hessian Identity

N the following, boldface symbols are used for vectors, matrices and
tensors; the superscript “t” denotes the transpose of a vector or matrix.
Let D c R? denote the spatial domain and |D| the enclosed area. The
vector s € D denotes the position of a point in D and ||s|| denotes the
Euclidean norm of s. Let X(s, ®) represent a scalar SRF on the probability
space (Q,F,P) . The state index » determines the field state and will be
suppressed in the following for the sake of brevity. The SRF X(s) represents
a scalar variable, e.g., temperature, dose rates, or grey-scale intensity levels
of a digital image. The events in J comprise the measured SRF realization(s)
or sample states(s). E [-] denotes the expectation over the ensemble of states,
and the operator

Cov(Z.2) =E[Z214] -E[Z]E[Z]. (2.1)

denotes the covariance of the random variables Z; and Z,.

We will focus on Gaussian SRFs (GSRFs) that possess normal joint
probability density functions with variance o2. Wide-sense stationarity
will be assumed, i.e., that the mean m, = E[X(s)] is constant, and the
covariance function

cxx(r) = E[X(s) X(s + )] — m? (2.2)

10 denotes the sample space (ensemble) that includes all the possible states (realizations)
of the SRF, J is the set of all observable events, F C Q, and P(J) € [0, 1] is the probability
associated with each event.

11
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is independent of s. Let €; denote the unit vector in the spatial direction i,
(i = 1,2). If the partial derivatives d%c(r)/dr? in the orthogonal directions
i=1,2exist atr = (0, 0), the SRF is differentiable in the mean square sense
(m.s.s) for every s € D, i.e.,

X(s + he;) — X(s)|?

0;X(s) — .

limE[ ] =0, Vi=1,2. (2.3)
h—0

For Gaussian SRFs, mean square differentiability practically implies that
the derivatives of the sample states exist almost surely Yaglom [1987]. We
will focus on SRFs that possess at least continuous first-order derivatives in
the mean square sense. In addition, we will assume short-range correlations,
namely that the covariance falls off sufficiently fast as ||r|| — oo, so that the
correlation area V, := al,% f dr c(r) is finite.

In general, a state (realization) of the SRF can be decomposed into a
deterministic trend my(s), a fluctuation y(s), and a noise term 7(s) according
to Goovaerts [1997]

X(s) = my(s) + xa(s) + n(s). (2.4)

The trend represents large-scale variations of the field, corresponding to
the ensemble average Kanevski & Maignan [2004]. The fluctuation models
faster variations, which may appear as quasi-random changes, and have a
cut-off scale A determined by the spatial resolution of the experiment. Any
fluctuations that occur at smaller scales can not be resolved, and they are
incorporated with various other random perturbations in the noise term,
which is modeled as a zero-mean white Gaussian SRF. In the following, we
assume that the trend is removed from the initial SRF, and we will use the
symbol X(s) for the residual, i.e., the fluctuation and the noise components.

The spatial dependence of the SRF fluctuations is determined by means
of the covariance function or the structure function (semivariogram). In
many cases, one can assume that the fluctuation is a Wide Sense Stationary
(WSS) SRF, or a SRF with WSS increments Christakos [1992]; Papoulis & Pillai
[2002]; Yaglom [1987]. For WSS SRF's the structure function (semivariogram)
yx(r), defined as

Y1) = SEIX(E) - XG5+ 0P 2.5)

contains the same information as the covariance. In practice the structure
function is often estimated instead of the covariance Yaglom [1987]. The
structure function has a sill that is equal to the variance o2 of the SRF, and
the following relation holds Jupp et al. [1988]; Papoulis & Pillai [2002],

Vx(r) = Of - Cxx(r)- (2.6)

12
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An SRF X(s) has second-order stationary increments if the SRF ¥Y(s) =
X(s) — X(sg) is WSS. Such an SRF is also called intrinsic Stein [2001]. The
category of intrinsic SRF’s includes fractional Brownian motion Mandelbrot
[1968]. In this case, the translation invariance of the covariance is lost. The
structure function is still purely a function of the space lag, but it increases
without bound. One can investigate anisotropy in the intrinsic SRFs by
focusing on their increments, which are WSS.

The fluctuation SRF is isotropic if the covariance function depends purely
on the magnitude of the distance vector, i.e., c(r) = c(||r]]), where ||r|| is
the Euclidean norm of the vector r. An anisotropic covariance function can
be expressed as cx(r) = c(||r]|4), where ||r||, is an anisotropic norm. In two
dimensions, if

A A
t 1 12
= , A = ,
r =(r;,rp) and [ o , ]
then the square of the anisotropic norm is

Kl = r'Ar = A7 + Aoty + 2A197T1 1. (2.7)

The matrix A reflects the scaling and rotation effect of the anisotropy. The
elements of A are variables of the anisotropy parameters. Specifically,

cos 8)2 (sin 8)2
Al = + (283.)
1 S
cos 8)2 (sin 8)2
Ay = + (2.8b)
& 1
1 1 .
Ay = §—12 — §—22 sin & cos . (2.8¢)

The anisotropy parameters involve the orientation (rotation) angle, &
which determines the orientation of the principal axes, and the anisotropic
ratio

_&

&
which represents the ratio of the principal correlation lengths & over §
(chosen arbitrarily). In the coordinate system of the principal axes r’, the
matrix A is diagonal. The correlation lengths &, i = 1,2 of X(s) determine
the local rate of change of the covariance function along the principal
directions, i.e.,

R (2.9)

- a ?cy(r)
§l=-— ——| . (2.10)
(o ar’; o0
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where a > 0 is an O(1) constant.

Realizations of isotropic and anisotropic Gaussian random fields gen-
erated by computer simulations using the Fourier Filtering Method Pardo-
Iguzquiza & Chica-Olmo [1993] are shown in Figures 2.1 and 2.2. The
covariance function is plotted along the horizontal (x) and vertical (y) axis
and compared with sample-based estimates. Estimates of the covariance
function can be calculated from a single realization of a RF X(s) by means
of the ergodic theorem which states that under certain mild conditions,
ensemble expectations can be replaced by spatial averages Yaglom [1987].
The sample-based estimates of the covariance function in Figs. 2.1 and 2.2
were obtained utilizing the function xcorr of MATLAB®. Deviations are
due to finite size of the sample domain which makes the replacement of
expectations to spatial averages to be approximate.

Furthermore, we assume that the sample, X; comprises the values
Xy = X(Sk, &) of the field X(s) for a specific state »*, where s, k=1,..., N
are sampling locations. We will denote sample-based estimates by the “hat”
symbol, e.g., R represents the estimate of the anisotropic ratio R.

The Covariance Hessian Matrix H (CHM) of a stationary, at least once
differentiable, SRF X(s) is defined as follows

(1)

By = ==
L=y

ij=1,2. 2.11)

Let Xy = 9;X(s) 9;X(s), i = 1,2 be the Gradient Kronecker Product (GKP)
tensor; X is a symmetric second-rank tensor. The expectation of GKP,
henceforward called the mean slope tensor and denoted by Q, is defined as

follows
9y = E[3:X(s) 9:X(s)| . (2.12)

The mean slope tensor is also known as the matrix of spectral moments,
and plays a key role in determining the local maxima and excursion sets of
random fields Adler [1981]. Swerling has proved the following Covariance
Hessian Identity (CHI) Swerling [1962]:

Theorem 2.1.1 (Swerling’s Covariance Hessian Identity). Let X(s) be a
statistically stationary GSRF with a covariance function that admits partial
derivatives 6*cx(r)/or? in the orthogonal directions i = 1,2 at r = (0,0).
Then, the mean slope tensor is connected to the covariance Hessian matrix

as follows:
Q= H(r)|—- (2.13)

The mean slope tensor Q is nonnegative definite since it is the covariance
matrix of the random vector [0, X(s), 9 X(s)]": Based on the Cauchy-Schwarz

14
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Figure 2.1: Examples of Gaussian random fields with isotropic correlation
functions: A realization of a zero-mean, unit-variance Gaussian random
field with correlation length ¢ = 20 over a 1000 X 1000 square grid and
(a) Gaussian, (c) Matérn covariance (v = 1.5). Theoretical and estimated
covariance functions across the x (horizontal) and y (vertical) directions for
the (b) Gaussian and (d) Matérn covariance. Deviations from theory are due
to finite-size effects. The horizontal line in (b) and (d) is the value of the
normalized isotropic Gaussian correlation function at r = §.
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Figure 2.2: Examples of Gaussian random fields with anisotropic correlation
functions: A realization of a zero-mean, unit-variance Gaussian random
field with correlation length § = 10 over a 1000 X 1000 square grid and
(a) Gaussian covariance with R = 2, § = 30° and (c) Matérn covariance
with v = 1.5, R= 0.4 and 8 = —20°. Theoretical and estimated covariance
functions across the x (horizontal) and y (vertical) directions for the (b)
Gaussian and (d) Matérn covariance. Deviations from theory are due to
finite-size effects. The horizontal line in (b) and (d) is the value of the
normalized isotropic Gaussian correlation function at r = £. Note that § is
smaller than of Fig. 2.1.
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inequality, (E[0;X(s) 3:X(s)])*> < E[{6:X(s)}?] E[{6.X(s)}?]. it follows that
det(Q) > 0.

CHI is valid in any number of spatial dimensions. In two dimensions,
the anisotropy parameters (R, d) satisfy the following theorem Chorti &
Hristopulos [2008]:

Theorem 2.1.2. Let X(s) be a statistically stationary and anisotropic GSRF
respecting the conditions of 2.1.1, and &,i = 1,2 represent the principal
correlation lengths of X(s). We define the anisotropy ratio R = & /&, and the
orientation (rotation) angle, 8, as the angle between the horizontal axis of the
coordinate system and the first principal axis of the SRF (arbitrarily defined).
We also define the slope tensor ratios of the elements Qy, i,j = 1,2:

Q2 1+R*tan*9
Q.. R+tan28’

Qa = (2.14)

tan (R? — 1
=22 ( ). (2.15)
Qll R2? + tan? &

Then, the anisotropy parameters are given by

1 20,
o = st ‘1(1 g ) (2.16)
—
1_q -1/2
R = |1+ d . (2.17)
qqa — (1 + gq) cos? &

Proof. The proof, which is based on Theorem 2.1.1, is shown in Chorti &
Hristopulos [2008]. The only difference is that therein R = Ry(;) = § /& is
used, while above we defined R = & /& in (2.9). The results from Chorti &
Hristopulos [2008] apply by means of the transformation R — 1/R. [

Equations (2.14)-(2.15) are invariant under the pair of transformations
tan® — —(tand)~!, that is, & » 8 + n/2, and R — 1/R. By restricting the
parameter space to R € [0, o) and 8 € [-1/4, /4), or equivalently R € [1, c0)
and 8 € [-1/2, /2), the pair (R, §) satisfying (2.14)-(2.15) for given (4q. §o)
is unique, thus ensuring that the transformation (g4, §,) — (R, d) is one-to-
one. Theorem 2.1.2 permits estimating the anisotropy parameters if the
mean slope tensor can be estimated from the data Chorti & Hristopulos
[2008]; Hristopulos [2002].
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2.2 Sampling Joint Probability Density Function
of Anisotropy Statistics

The sampling values of Q; will be denoted by the random variable Qy In the
following, the hat over a mathematical symbol denote random variables that
are sample-based estimates (statistics). We propose the spatially averaged
slope tensor estimate Qy Lj=1,2:

R 1 1
0y = ; Xy(s) = ; X (1) X(s10). (2.18)

Equation (2.12) involve the expectation of the GKP elements, which are
random functions. By invoking the ergodic theorem, ensemble expectations
can be replaced by spatial averages (2.18) over the domain of a single
realization. Additionally, the field derivatives 0;,X(s), i = 1,2 are replaced by
their estimates, éi(s), i = 1,2. In practice, estimates of the field derivatives
are obtained by applying a simple interpolation method (in the case of
scattered data) and using the centered-difference derivative approximation
on the resulting interpolated surface. The JPDF of the mean slope tensor
estimate Q can be approximated by using the Central Limit Theorem
considering that (2.18) involve averages of the random variables Qy Since
the slope tensor estimates are not independent random variables, the
extension of the classical CLT for short-range correlations is applied.

For each sample of the SRF, in general a different estimate of the tensor
Qy- is obtained, leading through application of (2.16) and (2.17) to different
estimates of R and 8. Hence, a probability distribution is obtained for R
and 8. In this section we will calculate the joint PDF of R and § from an
ensemble of states. The calculation of f; z(R, 8) is based on the application
of the classical Central Limit Theorem (CLT). As stated below, this implies
N > 1, a condition that is satisfied in most applications of interest. The
derivation of fa,R(IA?, ) involves several technical steps that include the
variable transformations from Q to (44. §o) and finally to (R,8) and the
respective transformations of the PDFs. In order to maintain focus in the
main text, some of the proofs are relegated to Appendices. In Appendix A.1,
Jacobi’s theorems related to the transformation of probability distributions
under a variable transformation are reviewed Papoulis & Pillai [2002]. In
Appendix A.2, we calculate the univariate PDFs of the gradient components
and the GKP tensor elements. The covariance matrix of the GKP tensor
elements is derived in Appendix A.3. The JPDF of the GKP tensor elements is
derived in Appendix A.4 based on the Central Limit Theorem. Appendix A.5
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presents the proof of Lemma 2.2.3, which determines the bivariate JPDF of
the average slope tensor ratios, ¢,, and q,. Finally, Appendix A.6 proves
the explicit relation for the JPDF of the anisotropy statistics, (2.30), as
formulated in Theorem 2.2.2.

2.2.1 Central Limit Theorem and Joint Probability Den-
sity Function of Slope Tensor Estimates Q

The classical CLT for scalar random variables is discussed in Feller [1971];
Gnedenko & Kolmogorov [1954]; Levy [1954]. An extension of the classical
CLT applies to vector random variables Anderson [1984]:

Theorem 2.2.1 (Multivariate CLT). Let us assume N independent and
identically distributed vector variables Z;, k = 1, ..., N with mean m and
covariance matrix C,,. The random vector Z. = (Z, + ... Zy)/N is asymptot-
ically (i.e., for N — oo) normally distributed with mean m and covariance
matrix C; /N.

The same theorem also applies to correlated random variables, i.e.,
random fields Z(s). The main requirements are stationarity and finite range
of correlations. Stationarity ensures that the correlations between a pair of
points only depend on the distance but not the location of the pair. If the
size of the correlated areas is defined as V, := mgx ((ozi Ozj)_l f drczz, (r)),

the requirement is that V., be finite and |D|/V, > 1. This follows by a
straightforward extension of the scalar case Bouchaud & Georges [1990].
An intuitive explanation of the constraint on the correlation range in the
scalar case is as follows: consider that D comprises “blobs” of size o V..
The point at the center of the blob is correlated with other points inside the
blob and uncorrelated with points outside the blob. Hence, one can think
of the blobs as representing independent random variables, viz. Fig. 2.3.
Assuming a uniform distribution of sampling points, each blob contains,
on average, a number of points N, ~ N V,./D. Thus, the effective number of
“independent units” is Nz = N/N,, = |D|/V,. If V. is finite and N > 1, CLT
applies to q given by (2.18). Note that Nz > 1 also implies N > 1, since
N = Neg X N,

2.2.2 Joint Probability Density Function of Slope Tensor
Elements

We define the vector Q = (Q11, Qsa, O12)! that comprises the independent com-
ponents of the slope tensor statistics. According to (2.18), Qy = % Zl,le Xii(Sic).
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Figure 2.3: The sample’s spatial domain D can be divided into small blobs
d; of approximate size V., which can be assumed to be approximately
uncorrelated. The sum (2.18) is performed over points belonging to approx-
imately uncorrelated blobs e.g., d, and d;. Thus the PDF of the sum will be
approximately Gaussian, according to the Central Limit Theorem.

The univariate PDFs of the Xj(s,), are derived in Appendix A.2.

Lemma 2.2.1 (Covariance matrix CQ). For a statistically stationary, and
anisotropic GSRF, sampled at points s; .. .Sy, the covariance matrix CQ is

defined by C;j;q = Cov (Qy le)for iLjkl1=1,2, ie.,

Ciinn Ciigz Cinae
Cs=|Caa11 Ca22 Coiaf- (2.19)

C12,11 C12,22 C12,12
The matrix (2.19) is symmetric. If we define the tensor covariance function
Cyjia(r) = Hy(r)Hy(r) + Hy(r)Hy (), (2.20)

then the six independent elements (upper triangular entries) of Cg are given
by the following series

1
G = NZ Z Cyj1a(Tnm)

Tnm

1 1
=N [Qik O + Ou ij] + N2 Z Cijia(Tnm), (2.21)
Cnm#0
where ry, = S, — Sy, (nnm = 1,...,N) is the lag vector between two

locations s, and S,,.

20



2.2 - Sampling Joint Probability Density Function of Anisotropy Statistics

Proof. The proof is given in Appendix A.3. [

The leading term % [Qik Qi + Qu ij] in (2.21) leads to the non-parametric
approximation of fa,R(fQ, d) as shown below. The sums over r,,, # 0 con-
tribute parametric corrections that involve the covariance function. By
definition, Cg is a symmetric matrix, namely Cyq = Ciqy.

Lemma 2.2.2 (Joint PDF of Q). Let a statistically stationary and anisotropic
GSRF X(s) with covariance c(r) that is short-ranged and its spectral density
satisfies Cyx(K) o o(lk™®>¢) where k = |K|| and € > 0. Then, the joint

PDF of Qn, le, and Q22 tends to the following trivariate Gaussian as
N — 00,|D| -

= 1 1.7 t -1/A
~(O: ) = -3(Q-mg)'C5™ (Q-mg)
R@me €)= G dacy 2:22)
where the ensemble mean mg is given by
1 N
mg' =~ > BIXii(50). o8, Xia(60)] = Q1. O Gr2). (2.23)
k=1

and the covariance matrix CQ is defined by (2.19) and (2.21).

Proof. The proof is based on Theorem 2.2.1 and presented in Appendix A.4.
The condition Cy(K) U O(k™37¢), € > 0 implies that Vi — oo, Je > 0, Co, >

0, such that Cy(k) < C,/k**®. This condition is not particularly restrictive,
since it is satisfied by most finite-range, differentiable covariance functions,
including the Gaussian, Matérn with v > 1 and Spartan covariance models.

|

The normal probability plots of 011, 012, Qo of simulated data, shown
in Fig. 4.3, confirm the asymptotic normality of the univariate PDFs in
agreement with the CLT.

2.2.3 Numerical Approximation of the Covariance Matrix
Ca
A numerical approximation of the covariance of the slope tensor ele-

ments (2.21) require knowledge of the correlation function and the summa-
tion of the series (2.21) over all lag vectors. As we will show in the following,
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0,0) (0,0)

Figure 2.4: Approximation of the sum (2.21). The lag vector r,, (left) has a
minor contribution to the sum, in contrast to vectors with smaller lengths,
e.g., I'ym. In order to avoid summing over N? lag vectors, we can keep
one position vector fixed, i.e., s,, and let the second vector i.e., s, vary
within a smaller domain D’ with N’ < N? points (right). The sum can be
approximated by multiplying the partial sum with N.

the full summation can be avoided, especially in the case of dense regular
grids, since an approximation can be obtained by performing the sum in a
smaller set of lag vectors and generalizing the result to the whole domain

D.

Consider the points s; belonging to a discretization of the domain D,
and i = 1...N. The lag vectors between two points in D also lie within D.
Equation (2.21) is a sum of the function Cj, (1) evaluated over N2 lag vectors
r. If the dominant contribution of C;;;q(r) to the sum is due to a subdomain
D" c D centered at r = 0 € D’ then the sum can be performed only within
D’. Neglecting edge effects, the result can be used for an approximation to
the full sum as follows:

D Conm) = NX D" Cypaltum) (2.24)
rom€D rym€D’
—_—
N2 terms N’ terms

The right-hand side sum is over N’ < N? lag vectors; thus less computation
time is required. The summation approximation is depicted schematically
in Figure 2.4: The lag vector r,, has length ||rpq|| > ¢ while r,,;; has length
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comparable (or smaller) to . Instead of performing the sum over all the
N? lag vectors, we choose a fixed position vector, e.g., s,, and perform the
sum over the N’ lag vectors contained in the smaller domain D’. One of
these lag vectors is r,,;,,. The approximation (2.24) requires full knowledge
of the covariance function while the derivation of the non-parametric JPDF
requires the restriction to evaluate (2.21) over the zero-length lag vectors
only.

A good approximation is obtained if the domain D’ is a domain where
Cij(r) is non-vanishing. In most cases, a domain with radius ~ 3¢ is
sufficient. For example, consider a Gaussian correlation function with
unit variance. Figure 2.5a shows plots of C;;jq(r) for an isotropic Gaussian
covariance function of unit correlation length, and Figure 2.5b demonstrates
plots of Cyq(r) for an anisotropic Gaussian correlation function having
& =1, & = 2 and anisotropy angle & = 30°. In both cases, a square
domain with side ~ 3¢ or ~ 3max(§;, &) is appropriate for the summation
approximation.

The accuracy of approximating the covariance matrix (2.19) (summation
of the series (2.21)), by keeping the first term in the sums (2.21), is examined
for the 1-D Gaussian covariance case, where the covariance matrix reduces
to only one element, Cy, 1, = 2/N?X YN | H;,(r,)%. In Figure 2.6, we plot the
ratio of the first-term approximation C(lol),11 = 2/N X @? of the covariance
to the covariance Ci; 1, as a function of £/a where a is the lattice constant
and L/ where L is the size of the 1D lattice. The ratio C(lol),11 /Ci1.11 depends
strongly on §/a and weakly on L/¢. The first-term approximation becomes
accurate for {/a < 3. The non-monotonic behavior of C(lol)’11 /Ci111 is due to
the non-monotonic behavior of the square of the second derivative of the
Gaussian correlation function H;,(r)?, which is plotted in Fig. 2.7.

2.2.4 Probability Density Function of Slope Tensor Ra-
tios

Albeit Q involves three independent elements, the anisotropic parameters
are determined from two slope tensor ratios, c.f. (2.14)-(2.15). Next, we
derive the JPDF of the slope tensor ratios f4(q; mg, C5) where q = (qq, ao)"
and qq, G, are the slope tensor ratio estimates as defined in Theorem 2.1.2,
from the joint PDF of Q

Lemma 2.2.3 (PDF of slope tensor ratios). For a statistically stationary and
anisotropic GSRF X(s) with a covariance c«(r) that satisfies the conditions of

Lemma 2.2.2, the PDF f4(q; mqg, Cg) of the slope tensor ratios 4q, 4o is given
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Cr111(P)

Cr1,1,2) Ci,122(7)

Ci2:12(7) Crana(P) Cap0(7)

(a) Isotropic: £ =1, 02 = 1.

G (™) Ci,1;12(7) Ci,122(7)

oo
o

(b) Anisotropic: § =1, & =2,8=30° 02 = 1.

Figure 2.5: Plots of Cy;.q(r) for an (a) isotropic and (b) anisotropic Gaussian
correlation function. In both cases Cy.(r) is essentially non-vanishing
within a square of side ~ 2¢ or ~ 3max(&, &).
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~100

Figure 2.6: Numerical examination of the accuracy of the first-term approxi-

. (0) . . . .
mation C(1 1) 1; of the covariance C;, ;;, for a 1D Gaussian correlation function.

The ratio C(lol)’11 /Ci1.1:1 is plotted against £/a where a is the lattice constant
and L/§ where L is the size of the lattice. The approximation strongly
depends on £/a and becomes accurate for §/a < 3. The non-monotonic
decrease is due to the behavior of H,,(r)?, depicted in Fig. 2.7.

3.5f

2.5f

2
H,,(r€)
N

1.5¢

05l /\
G 1 L L 1

0 0.5 1 1.5 2 25 3 35 4
r/e

Figure 2.7: The non-monotonic behavior of the square of the second
derivative of the Gaussian correlation function H;,(r/§)?, as a function of
the ratio r/¢.
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by the expression

K c B2 B
q:mg,Cs) = — e 2 [\/2ne8A B? + 4A) erfc( )—43«/71], (2.25)
Jl@ma. Co) = o ( i

where erfc(+) is the complementary error _function,
2 S
erfc(x) = — e " dt
(x) N fx

A and B are functions of the random vector q as well as CQ and mg, while C
and K are functions of C5 and mq only. These functions are given below.

AW@.Cy =§4'C 4. (2.26a)
B(§, mg, C3) = —2my, C;@1 q. (2.26b)
C(mg, C5) = mg, Ca mg, (2.26¢)
K(Cg) = (2m)~*? [det(Cy)] ™"/ (2.26d)

Proof. Theorem A.1.2 is employed for the transformation of the JPDF f5 of
the random vector Q which is a trivariate Gaussian (2.22), to the JPDF fg
of the random vector q. Details are given in Appendix A.5. [ |

The joint PDF of q given by (2.25) is quite different from the Gaussian
form of the joint PDF of Q.

2.2.4.1 Dimensional Analysis

Since ¢a.{, are dimensionless, so is fq; the coefficients A, B, C, K, never-
theless, have dimensions due to their dependence on Cz and mg. In
addition, (2.25) implicitly depends on N through CQ, c.f. (2.21). Below, we
express (2.25) in terms of dimensionless coefficients and N, instead of the
A B,C, K.

First, let c(r) = o2 p(r; p) where p = (§,R,8) and -1 < p(r;p) < 1
is the dimensionless autocorrelation function. Based on (2.21) and the
definition of the covariance Hessian matrix (2.11), it follows that Ca =

N? & o *P(q; R, ), where P(§; R, 8) is a dimensionless matrix that depends

X

on the functional form of p(r; p). Similarly, A = N & o;* A(q; R, 9), B =

X

N2 &0 2B(q;R 9), C = N*C(q; R, 8), and K = N3 ¢°0,°K(q; R, &), where

the scalar coefficients A, B, €, K depend implicitly on p(r). Based on the
above scaling relations, we propose the following transformations that
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involve the dimensionless functions B(q; R, 8), C(q; R, 8), K(q; R. 8), which
are independent of N, o2 and &:

B = 2N V2AB, (2.27a)
C=2N?C, (2.27b)
K = V2A%? K. (2.270)

Then, the slope-tensor-ratios PDF (2.25) is expressed as follows:
fo(@;mg, Cg) = Ke eV [\/EeEN"’(zfa2 N2 + 1) erfc(BN) — 2 BN] . (2.28)

The JPDF and the resulting confidence regions depend on R, 8 and the
functional form of p(r; p).

2.2.4.2 Asymptotic Probability Density Function Limit

Since A > 0 and B < 0, B < 0, the argument of erfc(BN) in (2.28) is
negative. Therefore, for N — oo, and x = BN, it follows that erfc(x) ~
2 +ex (n‘l/ 2x 1+ O(x‘z)) Abramowitz & Stegun [1970]. Hence, to leading-
order in N, (2.28) is approximated as follows:

fa@:mg, Cg) =2 VK (2B°N? + 1) V0. (2.29)

Numerical comparisons show that the absolute relative error between the
exact, (2.28), and the approximate, (2.29), JPDF is less than ~ 107° for
N =50 and ~ 107° even for N = 30. The numerical computations are based
on the non-parametric approximation of Cg derived in Section 3.1.

2.2.5 Joint Probability Density Function of Anisotropy
Statistics

Theorem 2.2.2 (Joint PDF of anisotropy statistics). For a statistically sta-
tionary and anisotropic GSRF X(s) with a covariance c(r) that satisfies the
conditions of Lemma 2.2.2, the JPDF of the statistics R and 8 is given by the
following equation:

2RIR% - 1|

JSor(R.&;mg, Cg) = = fo(@;mg, Cy), (2.30)

(Rz cos2 § + sin® é)

where fy(q; mg, CQ) is given by (2.28).
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Proof. The sequence of probability transformations concludes with the final
transformation of (R, §) to (R, 9), to obtain the JPDF Jor of (R, 9). Details
are given in Appendix A.6. [ |

The function f; g(R, d) is clearly non-Gaussian; it depends on mg and
Cgy via fq(q; mq, C5), while q is expressed in terms of (R.8) using (2.14)
and (2.15). If degrees are used, instead of radians, fa,R(R 9) should be mul-
tiplied by /180, which is the absolute value of the Jacobian determinant
of the transformation from radians to degrees.

2.2.6 Confidence Regions

Herein, we derive expressions for confidence regions of the anisotropy
statistics (R, §). Confidence regions are used instead of intervals due to
the asymmetry of f; z(R,8). The confidence region for a probability level
p € [0, 1] is the “volume” of parameter space which contains the sampled
values of the statistics with probability p. for the same probability level p,
the confidence volume & of Q lie in [0, o) X [0, 00) X (—00, o) ; the confidence
region €’ of  lie in [0, 00) X (=00, c0) and the confidence region C” of (R, )
lie in [0, o) X [—1t/4, n/4).

The confidence region is defined by the following equivalent equations:

fg d@f@(@lla Qoa. le;mQ, C3). € C[0,00)X[0,00) X (—00, 00)
p =1 [, dé4uddo fy(Ga. Go;mg. Cg). € C [0, 00) X (—00, )
Jo, dRAS f5 r(R, &;mg, Cy). C” c [0, ) X [-1t/4, T/4)

The above equations represent the evolution of the confidence region under
the variable transformations Q — q- (R, 9) as shown schematically in
Fig. 2.8.

Corollary 2.2.1 (Parametric equation of confidence regions). For a statis-
tically stationary and anisotropic GSRF X(s) with a covariance c(r) that
satisfies the conditions of Lemma 2.2.2, the confidence region corresponding
to level p € (0, 1) in (R, §)-space is given by the parametric equation

[f32(q;mQ, Cs) - C(§; mg, CQ)] N? = In(1 - p), 2.31)
where B, C are given respectively by (2.27a)-(2.27b) and q translates into
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C' CH

9o R

Figure 2.8: Schematic illustrating the transformation of confidence regions
at level £, across different coordinate systems.

(R, H) by means of

) 1 2§
5 = 5tam‘l(1 o ) 2.32)
—dd
A -1/2
. 1-
R = |1+- o ] , (2.33)
Ja — (1 4+ gq)cos?

which are the equivalent of (2.14) and (2.15) for sample values.

Proof. The JPDF f@ is given by the trivariate Gaussian (2.22) with mean
mg and covariance Cg. Hence, the confidence region of @ is an ellipsoid in
[0, ) X [0, 00) X (—00, 00) whose surface satisfies the equation

@-mg)' C5' (@ -mg) =0, (2.34)

where £, = F'(x*> = p,2) is the inverse of the chi-square cumulative dis-
tribution function with v = 2 degrees of freedom Siotani [1964]. Under
the transformation Q — q, the ellipsoid is projected onto an ellipse, and
following the transformation § — (R, ) into an asymmetric convex curve,
as shown schematically in Fig. 2.8. Based on (A.22), the equation of the
corresponding ellipsoid in (u, g4, §,)-space is given by

A(§, C3) u® + B@ mg, Cg) u+ C(mg, Cz) — £, = 0,

where the coefficients A, B, C are given by (2.26). For the quadratic equation
to have a unique real solution u = Q; for any §, the discriminant should
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vanish, i.e.,
B*(§:mg,. Cg) — 4A(§; Cg) [Cmg. Cg) - 4,] = 0. (2.35)

We can verify, using (2.26), that (2.35) represents an ellipse in the space of
q.,i.e.,

q'[(C3' mg) (C3' mo)' — (mfy €' mg - 2,) C5'| 4 = 0.
Using the dimensionless scaling functions (2.27) in (2.35) we obtain the
parametric equation 2(C — B*)N? = £, where by definition F(¢,, v = 2) = p;
since F(x,v = 2) = 1 — exp(—x/2) it follows that £, = —21In(1 — p) finally
leading to (2.31). |

WHAT RELIGION ARE You?
EXPERIMENTAUST MONOTHEISM.

\WHICH 157
WE BELEVE THERE'S ONE GOD,
BUT WERE TRYING T2 IND THE
ERROR BARS ON THAT NUMBER.

f T

— RANDALL MUNROE, XKCD
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Chapter

Non-parametric Anisotropy
Statistics

3.1 Non-parametric Joint Probability Density
Function and Confidence Region

T{e expressions for the JPDF, f r(R, 8; mg, C5), and the confidence re-
gions of the anisotropy statistics derived above depend on the matrix
Cs., given by (2.21). This matrix involves a series that does not, in general,
admit a closed form expression. An approximate, analytical expression
can be derived by keeping only the leading term in the covariance matrix
series (2.21). The truncation is justified if c(r) has short-range correla-
tions, which implies that Hy(r) decays fast for [[r|| > max(¢;, &). Then, the
leading-order approximation of CQ is given by the zero order term in the
series expansions i.e.,

9 1 T Q110912
Ca~ N 2 95, Q12922 = Cg). (8.1
Q11912 Q12902 %(Q%g + 911922)

Since Cg) does not account for correlations, we expect that it will lead
to a joint PDF with higher uncertainty, and hence wider confidence regions,
than the true PDF. We confirmed this hypothesis by means of numerical
simulations (see Section 4.1). In addition, Cg), as evidenced in (2.21), has
an 1/N scaling prefactor in contrast with 1/N? for the truncated terms. To
accommodate this sample-size dependence, the scaling relations (2.27) are
accordingly modified below.
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Theorem 3.1.1 (Non-parametric JPDF). For a statistically stationary and
anisotropic GSRF X(s) with covariance c(r), anisotropy parameters (R, 9),
sampled at N points and satisfies the conditions of Lemma 2.2.2, the non-
parametric approximation of the JPDF for the anisotropy statistics (R, 9) is
expressed as

AR, 8:R.8.N) = |det(J»r)| f{”(R.&; R.8. N), (3.2a)
where
SOR.8:R.8.N) =2 VK, (2B2N +1) eN(BE-1/2), (3.2b)
The coefficients B, and K, are given by the following expressions

By = (24,)717? [(R2 — 1)(R?-1)cos(2(8 - ) — (R + 1)(R* + 1)] ,  (8.3a)
3

Ko = (mAo)*?R*[(R? + 1) - (R* - 1) cos(28) | (3.3b)

whereas A, is given by
Ay = (R? - 1D2(R% - 1)%cos(4(d - 8)) — 4(R* - 1)(R* — 1) cos(2(86 — 8))

(3.3¢)
+(R*+ 1D(BR* + 2R? + 3) + 2R*(R% - 1)~

Proof. Equations (3.3a)-(3.3c) are derived by replacing CQ with Cg), defined
by (3.1), in (2.26). Also the asymptotic result (2.29) of Lemma 2.2.3 is
modified accordingly to accommodate the 1/N scaling prefactor of Cg) and

obtain the non-parametric JPDF q(o). The B, and K, are obtained from the
following dimensionless scaling functions (2.27a)-(2.27c¢)

B=2VN V2AB,,
C=2NC,,
K = V2A%%K,,

and from the B, C,and K given respectively by (2.27). In the non-parametric
approximation, the coefficient C in the exponent of (2.29) is reduced to
Co = 1/2 in the exponent of (3.2b). n

Figures 3.1 and 3.2 demonstrate representative plots of the non-parametric
JPDF based on (3.2). Note the bimodal structure of the JPDF for N = 100

32



3.1 - Non-parametric Joint Probability Density Function and Confidence
Region

(@) N =100 (b) N = 500

Figure 3.1: Non-parametric JPDF for R = 1.2, § = 20° and N = 100, 500
based on (3.2).
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Figure 3.2: Non-parametric JPDF for R = 3, 8 = 10° and N = 100, 500
based on (3.2).

in Fig. 3.1 with one mode at R = 1.2 and the other (smaller) at R = 0.8.
This is due to the considerable spread of §, which results from the relatively
small number of sampling points, and the degeneracy of the solution, i.e.,
the fact that the combination (R, 8) is equivalent to (1/R, 8 — ©/2); hence,
there is an extended degenerate peak at (0.83, —70°), part of which is folded
back into the primary domain. On the other hand, for R = 3 the smaller
dispersion of 8 leads to a single mode even for N = 100. Anisotropy angle
uncertainty increases as R — 1 as expected.

Corollary 3.1.1 (Non-parametric confidence region). For a statistically
stationary and anisotropic GSRF X(s) with a covariance c,(r) that satisfies
the conditions of Lemima 2.2.2, the non-parametric equation of the confidence
region corresponding to level p is given by

p_l_Whd-p

55 < (3.4)
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3. NON-PARAMETRIC ANISOTROPY STATISTICS

Proof. The equation is derived by applying the modified scaling relations of
Theorem (3.1.1) to the general result (2.35) of Theorem (2.2.1). [ |

3.2 Statistical Test of Isotropy

Theorem 3.2.1 (Isotropic ratio). Let X(s) be a statistically isotropic GSRF
(R = 1) with correlation length £ sampled at N points. In addition, assume
that (i) |D| > & and (i) N > 1. The sample values of the statistic R are
contained with probability p in the following interval:

Jl — Zﬂap;N(l — ap;N) Jl +2 ap;N(l — ap;N)

1- 2ap;N 1- 2ap;N

A

R €

] , (3.5)

where £, = F'(x* = p.2) = —21In(1 - p) is the inverse of the chi square
cumulative distribution function with two degrees of freedom and a,,y = £,/N.

Proof. |D| > &2 and N > 1 enforce the asymptotic conditions of Corol-
lary 3.1.1. For R = 1 the trigonometric terms in By, i.e., in (3.3a) vanish,
showing explicitly that the confidence region is independent of 8. Plugging
the resulting (3.3a) in (3.4), the following parametric equation is obtained:
N(R? - 1)? — 20,(R* + 1) = 0. The constraint N > 2¢, ensures that the roots
are real numbers. This is satisfied for N > 1; for example, for p = 0.95 it
implies N > 12. The two admissible (positive) roots of the quartic equation
are given by (3.5). [ ]

Equation (3.5) is independent of the covariance function and thus
provides a non-parametric approximation of the confidence region for R.
The JPDF (3.2) is independent of  and S for R = 1. The dependence on N
of the 95% confidence interval for R is shown in Fig. 3.3. The PDF, fr(R), of
Rfor R=1and N = 100 is shown in Fig. 3.4, including the 95% confidence
region predicted by (3.5). Note that the PDF vanishes, instead of peaking,
at R = 1. This is not an artifact of the non-parametric approximation, since
the complete PDF (2.30) also vanishes at R = 1. This is due to the root of
the Jacobian (A.23) at R = 1. Isotropy corresponds to a single point (1, 0)
in the (qq, §o)-space which in turn is mapped to the straight line R=1in
the (R, 9)-Space and & can take any value in [—-1/4, ©/4). The vanishing of
the density at R = 1 is also borne out in numerical simulations that do not
use the Jacobian (see Figure 4.6d below). This counter-intuitive behavior
of fx(R), emphasizes the usefulness of Theorem 3.2.1 as a test for isotropy.
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3.2 - Statistical Test of Isotropy
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Figure 3.3: Evolution of the lower and upper limits of the 95% confidence
interval for the isotropic case (R = 1) versus the number of sampling points
N based on (3.5).

%.6 0.8 1 1.2 1.4 1.6

R

Figure 3.4: Non-parametric PDF, fr(R), for the isotropic case (R = 1) and
N = 100 sampling points based on (3.2). The shaded area represents the
95% confidence interval, (0.77, 1.29), of R based on (3.5).
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Chapter

Applications

N the following, values of statistics derived from a sample of N > 1 points
will be denoted by a star superscript, e.g., Q; R*,5". Average values of
the statistics over M different samples will be denoted by a bar over the
respective symbol, i.e., Qy Estimation of Q; is based on discretized partial
derivative operators, QXi(sk), where i = 1, 2. Discretization introduces errors
that increase as the sampling pattern becomes sparser. A “good” sampling
pattern is characterized by a typical distance a between nearest neighbors
which is approximately uniform (ideally, a regular lattice pattern is best) and
a < min(§, &), where &, & are the principal correlation lengths. Different
possibilities for 0X;(s;) are investigated in Chorti & Hristopulos [2008].
The parameters mg and Cj in (2.30) are unknown since they represent
ensemble properties. For simulated data mg and Cg are replaced by the
averages of the sample estimates, mg ~ (Q11. 929, 912)! and Cy ~ Ca. In

the non-parametric approximation, Cg) is obtained from (3.1) by replacing

Qy with Qy.

4.1 Simulated Lattice Random Fields

We generate multiple SRF realizations with specified (R, ) to validate the
expression for the confidence region of the anisotropy statistics (3.4). The
simulations are conducted on 100 X 100 square grids with lattice constant
a = 1, by means of the Fourier Filtering Method Lantuéjoul [2002]; Pardo-
Iguzquiza & Chica-Olmo [1993]. We use Gaussian, c(r) = o2 exp(-r?/¢&?),
and Matérn, c(r) = 022!V r'T'(v)~! VK, (r/§), covariance functions'. In

IThese expressions correspond to the isotropic case.
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4. APPLICATIONS

the Gaussian case, the range of correlations is controlled by ¢ but in the
Matérn case by both ¢ and the smoothness parameter v; the latter adjusts
the differentiability of the random field between two extremes obtained
for v = 1 (non-differentiable exponential function) and v — oo (infinitely
differentiable Gaussian function). For given £, the field becomes smoother
by increasing v. To compensate for this effect, we use rescaled correlation
lengths & = &/0. where [, is the integral scale factor. For Matérn correlations
in d = 2 it follows that £, = 2 y/v, while for Gaussian correlations ?, = m,
Hristopulos & Zukovié [2011].

The non-parametric confidence region obtained by (3.4), is compared
with the CHI anisotropy estimates obtained from Ns = 1000 SRF samples.
For each sample, we estimate the expectation (2.12) by means of the
spatial average (2.18). Then, we obtain estimates (IAQ*, 3*) of the anisotropy
parameters by applying (2.16)-(2.17). We assume that (R, 9) are unknown
a priori, and we estimate them based on R, 8. The latter are obtained by
calculating the average slope tensor

1 &

Q:ﬁ - Qi’ (4.1)

S

over the available realizations and then applying Theorem 2.1.2. The use of
6 helps to reduce biases due to finite grid size and the approximation of
derivatives by means of finite differences Chorti & Hristopulos [2008]. In
addition, it compensates for potential deviations of the simulated SRF from
the target anisotropy values due to the Fourier filtering method.

In Figs. 4.1, 4.2 and 4.4 we compare the cloud of (R*, &) estimates
obtained from each realization with the non-parametric confidence region
obtained by (3.4). The latter is denoted by the solid lines that contain the
cloud. The estimated anisotropy vector, based on 6 is denoted by a small
circle inside the cloud. In addition, we include the parametric confidence
region given by (2.31); Cg is estimated by numerical summation of the
series (2.21) using a square window function of side ~ 3¢ around a grid
point s, at the center of the grid, as explained in subsection 2.2.3. This
restricts the sum over s,, to correlated neighbors. The summation over
all s, is approximated by multiplying the result with the grid size?>. So
long as (i) the window area exceeds [2 max(&;, &)]? and (ii) a < min(&, &),
the truncated approximation is stable for different box sizes and shapes

2This approximation introduces errors in the summands from points near the grid
boundaries; however, the fraction of boundary points for an L X L grid varies as O(1/L)
and is thus negligible for large grids.

38



4.1 - Simulated Lattice Random Fields

(e.g., rectangular window). Fig. 4.1 investigates the isotropic case (R = 1)
while the anisotropic case R = 1.5, = —30° is considered in Fig. 4.4. The
non-parametric confidence region is more extended than the cloud and also
encloses the parametric confidence region (contour lines inside the cloud).
This result is justified, since the non-parametric approximation excludes
higher-order correlated terms that reduce the uncertainty in Cz. The
assumption of slope tensor normality, which was based on the application
of CLT in Lemma 2.2.2, is graphically confirmed by the normal probability
plots in Figs. 4.3a-4.3c.

We conducted numerical experiments (not shown here) for several values
of the ratio &/a and various N in order to confirm that the non-parametric
JPDF is more extended in parameter space more than the actual JPDF.
When &/a — 0, i.e., as the simulated SRF tends to random uncorrelated
noise, the scatter cloud of the anisotropy estimates expands and tends
to fill the non-parametric confidence region. On the other hand, as &/a
increases, i.e., for dense sampling of the SRF, the scatter cloud shrinks
inside the corrected confidence region. These observations confirm that the
non-parametric approximation encloses the actual confidence region. This
is expected from an information-theoretic viewpoint, since the additional
information incorporated in the covariance function should lead to less
uncertainty (i.e., a tighter confidence region) than the non-parametric
approximation which discards covariance terms for non-zero distances.
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(a) Random field (Gaussian covariance). (b) Scatter plot of estimates and CR.
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(c) Lower cluster (ﬁ < 1) of estimates (b) (d) Upper cluster (IA? > 1) of estimates (b)
and the numerical summation CR. and the numerical summation CR.

Figure 4.1: (a) A realization of an isotropic SRF with Gaussian correlations
(§ = 4) over an 100 x 100 square grid. (b) Scatter plot of anisotropy
estimates (crosses) and non-parametric confidence region (outer contours)
for 1000 realizations of isotropic RF with Gaussian correlations. Confidence
regions are based on anisotropy parameters obtained from the mean slope
tensor elements. Non-parametric confidence regions (outer contours) are
obtained by (3.4). Tighter confidence regions (inner contours) are calculated
numerically using the appropriate covariance function and incorporate the
covariance-dependent terms in (2.21). (c¢)-(d): The clusters of the scatter
plot (b) in detail, depicting the estimates (crosses), numerical summation
CR (contour) and the anisotropy parameters (circle, upper border of (b) and
(d)) used for the calculation of the CR. Confidence interval for isotropy is
(R_,R,) = (0.975, 1.025).
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(d) Upper cluster (R > 1) of estimates (b)
and numerical summation CR.

(c) Lower cluster (IA? < 1) of estimates (b)
and numerical summation CR.

Figure 4.2: (a) A realization of an isotropic SRF with Matérn correlations
(§ = 2.51, v = 2) over an 100X 100 square grid. (b) Scatter plot of anisotropy
estimates (crosses) and non-parametric confidence region (outer contours)
for 1000 realizations of isotropic random field with Matérn correlations.
Confidence regions are based on anisotropy parameters obtained from the
mean slope tensor elements. Non-parametric confidence regions (outer
contours) are obtained by (3.4). Tighter confidence regions (inner contours)
are calculated numerically using the appropriate covariance function and
incorporate the covariance-dependent terms in (2.21). (c)-(d): The clusters
of the scatter plot (b) in detail, depicting the estimates (crosses), numerical
summation CR (contour) and the anisotropy parameters (circle, bottom
border of (c) and (d)) used for the calculation of the CR. Confidence interval
for isotropy is (R_,R,) = (0.975, 1.025).
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Figure 4.3: Normal probability plots for the slope tensor estimates (Matérn
case) justify the use of CLT in Lemma 2.2.2.
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Figure 4.4: (a) and (c): Scatter plot of anisotropy estimates and non-
parametric confidence region (outer contour) for 1000 realizations of an-
isotropic random field with Gaussian (£ = 4) and Matérn (£ = 2.51, v = 2)
correlations, both having R = 1.5, § = —30°. A single realization for each
field is shown in (b) and (d). Tighter confidence region (inner contour) is
numerically calculated and incorporates the covariance-dependent terms
in (2.21).
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4. APPLICATIONS

4.2 Simulated Scattered Data

We simulate scattered data using the following method: First, a realization
of an GSREF is generated on a regular grid. Then, we randomly choose a
fraction of the grid points to mimic scattered data of a real process. Next,
we generate several random subsamples from the scattered data set and
perform anisotropy estimation for each subsample. The subsamples should
respect the conditions specified in the opening paragraph of Section ??.
The procedure is depicted in Figure 4.6. Figure 4.6a demonstrates an
GSREF realization on a 1000 X 1000 grid, generated by means of the Fourier
Filtering Method. The zero-mean, unit-variance isotropic GSRF has a
Matérn covariance with v = 2 and § = 15. A randomly extracted set of
scattered 2000 points is shown in Figure 4.6b.

The subsampling procedure should not be confused with the spatial
nonparametric bootstrap procedure, which involves generating new sam-
ples, called bootstrap samples, by resampling from the actual data, and
computing estimates for these new samples. Then, the distribution of these
bootstrap estimates serves as a proxy for the actual distribution of the
data estimates, so that statistical inference, such as the construction of
confidence intervals, can be performed Loh [2008]. As a simpler alternative
to spatial bootstrap, we decided to subsample the original data sets into
smaller subsets in such a manner to artificially increase the available re-
alizations of the same random field describing the actual natural process.
The percentage of original data points used should be large enough to retain
the spatial properties of the original dataset and keep the interpolation/es-
timation errors to a minimum. On the other hand, the percentage should
be kept as small as possible, in order to be able to obtain more subsamples
and provide a clear picture of the behavior of the anisotropy estimator on
the (R, §)-plane. The aim is to confirm that the behavior is captured by
the analytical result obtained in Section 3.1. It was found experimentally
that keeping 50% of the original datasets regarding the scattered data
scenarios was a good compromise. For the interpolation, we employed the
natural neighbor interpolation method Fisher et al. [2005] as implemented
in MATLAB®. The choice was made for computation speed and for the
interpolation surface smoothness properties discussed below. Details of
the impact of different interpolators on anisotropy estimation can be found
in Chorti & Hristopulos [2008].

The natural® neighbor interpolation method is a deterministic spatial

SNot to be confused with the nearest neighbor interpolation; a well-known method of
spatial interpolation. Nearest neighbor interpolation does not produce smooth interpolation
surfaces, thus it is inappropriate for the CHI method.

44



4.2 - Simulated Scattered Data

Figure 4.5: Natural neighbor interpolation. The colored circles, which
represent the interpolating weights, w;, are generated using the ratio of the
shaded area to that of the cell area of the surrounding points. The shaded
area is due to the insertion of the point to be interpolated into the Voronoi
tessellation. From Wikipedia contributors [2012b].

interpolation method which is based on the Voronoi tessellation of a discrete
set of spatial points Sibson [1981]. The interpolant fits the data at the nodes
exactly, is local, and guarantees continuity in first and second derivatives,
except at the nodes Boissonnat & Cazals [2000]; Sambridge et al. [1995].
The discontinuities at the nodes is not an issue in practice, since the
interpolation grid is unlikely to include a node. While these properties hold
in any dimension, so far efficient procedures for performing natural neighbor
interpolation exist only in 2D. Being a deterministic interpolation method, an
error estimate is not available. Also, since it provides smooth interpolation
surfaces, it is suitable for random field gradient estimates required by the
CHI method. It has been shown that the method behaves consistently for
different sample distributions, and since it does not require user-defined
parameters, it is appropriate for automatic mapping applications Fisher
et al. [2005]; Ledoux & Gold [2008].

The natural neighbor interpolation concerns a weighted summation
where the selection of neighbors and their corresponding weight calculation
is based on Voronoi tessellation. For each s € D, the estimate (interpolant)
is calculated as the weighted sum over the set N(s) of neighbors of s

Xs)= ), wi X)),

SiEN(S)

where X(s) is the interpolant at s, w; are the weights and X(s;) are the
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4. APPLICATIONS

known data values at s; € D. The neighbors s; used in the estimation are
selected using the adjacency relationships of the Voronoi diagram. For each
s there exist a set of neighbors N(s) that both surround and are close to s.
The weights are calculated by finding how much of each of the surrounding
areas is ‘stolen’ when inserting s into the tessellation. The weight calculation
is schematically depicted in Figure 4.5.

Figure 4.6c demonstrates a specific subsample of the scattered data set,
containing 1000 points. The depicted field corresponds to the interpolation
of the 1000 points used to estimate (R*,5*). Figure 4.6d demonstrates
the non-parametric confidence region (contour lines) along with the scat-
ter cloud of anisotropy estimates, generated by randomly selecting 1000
subsamples of 1000 points from the scattered data set. The absence of
estimates near the line R = 1 is apparent and is expected since the JPDF
should vanish at R = 1; viz. Fig 3.4 and the accompanied discussion
in Section 3.2. Deviations from the non-parametric CR are due to the
sparseness of the subsamples and edge effects, which both introduces
interpolation artifacts. Such artifacts can be seen in Fig. 4.6¢ at the right
side (x ~ 0, y ~ 450-650) and bottom side (x ~ 500-700, y ~ 0) and since
they are elongated and oriented either horizontally or vertically, they intro-
duce anisotropy estimates with either high or low anisotropy ratios and
anisotropy angles near zero. This explains the few anisotropy estimates
in the scatter plot of Fig. 4.6d which lie around 8 = 0° and does not ap-
pear to follow the calculated non-parametric CR. The confidence interval
for isotropy is (R_,R,) = (0.925,1.081) as derived from (3.5) by inserting
N = 1000. With the exception of the few anisotropy estimates in the right
side of Fig. 4.6d, the anisotropy estimates cloud is contained within the
calculated isotropy confidence interval.
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(a) Realization of isotropic Matérn SRF (b) Scattered data locations (2000 random
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ization purposes).
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timation).

Figure 4.6: Non-parametric confidence region estimation for scattered
data. (a) Realization of isotropic Matérn SRF with { = 15, v = 2 on a
103 x 103 square grid. (b) Locations of random sample (2000 points) and
interpolated field. (c) Specific subsample realization and interpolated field
used for anisotropy estimation. (d) Anisotropy estimates generated from
1000 random subsamples of 1000 points; curve corresponds to 95% non-
parametric confidence region calculated with N = 1000 and anisotropy
parameters estimated from the mean slope tensor elements. Confidence
interval for isotropy is (R_,R,) = (0.925,1.081).
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4. APPLICATIONS

Table 4.1: Summary statistics of radioactivity dose rate exhaustive data
sets (nSv/h) and CHI anisotropy estimates. Abbreviations: min: minimum
sample value; max: maximum sample value; std: sample standard devi-
ation; skew: sample skewness coefficient?; kurt: sample excess kurtosis
coeflicient.

N = 1008 min mean med max std skew kurt r &
Normal 57.0 97.7 98.6 180.0 19.6 0.4 0.6 1.18 7.36
Emergency 57.0 106.1 98.9 1528.2 92.5 11.3 144.1 0.45 -0.75

4.3 Environmental Emergency Scenario

Application of the method described in Section 4.2 to environmental emer-
gency scenario follows. The data represent daily means of radioactivity
gamma dose rates over part of the Federal Republic of Germany, and
they were provided by the German automatic radioactivity monitoring net-
work Dubois & Galmarini [2005, 2006]. The exhaustive dataset contains
gamma dose rate measurements from 1008 fixed monitoring locations.
The rates are measured in nanosieverts per hour (nSv/h). The normal
data set corresponds to typical background radioactivity measurements
(r 100 nSv/h). The emergency data includes a simulated local release of
radioactivity from the south-west corner of the monitored area that results
in five stations reporting dose rates around 10 times above the background
(exceeding 1000 nSv/h). A measurement station in the German network
triggers an alarm if the dose rate measured exceeds 300 nSv/h. Natural
background radiation in Germany is 40-240 nSv/h. With a dose rate
exceeding 100 uSv/h it is necessary to take protective measures (e.g., to
shelter indoors) Cornford [2006].

Figure 4.7 demonstrates the exhaustive normal and emergency datasets,
using the natural neighbor interpolation method, while Table 4.1 summa-
rizes their statistics. The two rightmost columns of Table 4.1 show the
anisotropy parameters estimated with the CHI method. The normal set data
follows the Gaussian distribution (graph not shown here), and thus has
skewness and excess kurtosis coeflicients close to zero. Data normalization
was initially performed and had negligible impact in the quality of the
anisotropy estimation. For that reason we performed our analysis of the
SIC2004 data on the original data.

4 The skewness of a random variable Z is defined as Skew (2) = E[(Z — uz)]3 /073, The
excess kurtosis as Kurt (Z2) = E[(Z - ,uZ)]4 /0z* — 3. A symmetric distribution has skewness
equal to zero. A distribution with negative skew has a longer left tail while a positive-
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Figure 4.7: Visualization of the SIC2004 exhaustive datasets of mean daily
gamma dose rates using the natural neighbor interpolation method obtained
from the 1008 measurement locations.

We calculated the JPDF and the 95% confidence regions of the anisot-
ropy statistics based on the anisotropy parameters estimated by CHI, i.e.,
performing natural neighbor interpolation and anisotropy estimation using
CHI in both exhaustive data sets and then plotting the non-parametric
confidence regions and JPDFs. The results are shown in Fig. 4.8. There is
no overlap of the two density functions, and the contours corresponding to
the 95% confidence regions do not intersect, which suggests a statistically
significant difference of the anisotropy parameters between the background
and the emergency data. Since the computation of the anisotropy estimates
is very fast, our method provides a straightforward indicator for a significant
physical change in a system.

So far we examined the case where an automatic early warning system
is expected to distinguish between normal (background) and abnormal

skew distribution has a longer right tail. The Gaussian distribution has excess kurtosis
equal to zero. Distributions with negative excess kurtosis are said to be platykurtic while
distributions with positive excess kurtosis are said to be leptokurtic.
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Figure 4.8: Joint probability density functions (surfaces) and confidence
95% regions (solid contours) for the exhaustive radioactivity dose rate data
sets: normal data set (bottom right) and emergency data set (far left).

(emergency) situations. In the following we will investigate a case in which
different measurements are classified as normal and should be classified
as such. As a part of the SIC2004 interpolation exercise, ten additional
data sets of mean daily values measured at 200 monitoring stations were
provided for algorithm training purposes. Each set was randomly drawn
from a different month of the year 2003. No specific date details are publicly
available, according to the rules of the contest Pebesma et al. [2012]. The ten
datasets (numbered 1-10) involve normal (background) gamma dose rates.
In Figure 4.9 a natural neighbor interpolation of the first of the additional
normal datasets is shown. Note that each of the additional datasets has
only 200 data points, in contrast to the exhaustive datasets 4.7, each
having 1008 data points. We calculated the anisotropy parameters for each
of the 10 datasets. Figure 4.10 demonstrates the results along with the
confidence region calculated using the anisotropy parameters estimated
from the mean slope tensor elements as in 4.2. All estimates lie within the
95% CR thus there is no statistically significant change in the anisotropy
parameters of the ten measurements according to the statistical properties
of the anisotropy estimator we examine here. On the other hand, note
that the anisotropy estimates differ from the normal case of the exhaustive
dataset plotted in Fig. 4.8 because the number of data points is ~ 1/5
of the exhaustive data sets, affecting the quality of the interpolation used
for anisotropy estimation, as it can be testified by comparing Figures 4.7a
and 4.9.
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Figure 4.9: Visualization of the first of the additional ten normal SIC2004
datasets of mean daily gamma dose rates containing N = 200 points. The
natural neighbor interpolation method was used.
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Figure 4.10: Anisotropy estimates (crosses) for the 10 background dose
rate sets (number correspond to each dataset) and 95% confidence region
calculated using the mean slope tensor elements. Each dataset has N =
200 points. All estimates lie within the CR thus there is no statistically
significant change in anisotropy.

51



4. APPLICATIONS

Table 4.2: Summary statistics of the Amynteon and Mavropigi lignite
thickness data sets (units: meters) and CHI anisotropy estimates.

Mine N min mean med max std skew kurt R* &
Amynteon 644 0.49 14.12 13.40 54.86 8.69 0.82 1.24 1.16 -33.5
Mavropigi 416 0.36 17.38 13.83 73.62 13.21 1.03 0.94 0.83 -21.6

4.4 Geologic Reserves Data

In this section, we investigate the anisotropy statistics of geologic reserve
estimates from drill measurements obtained from two lignite mines in
Greece. Also we will test the performance of the non-parametric CR using
the subsampling method introduced in subsection 4.2. Additionally, the
sample histograms and kernel-based estimates of the anisotropy parameters
PDFs will be compared to the theoretical PDFs obtained via numerical
integration of the corresponding non-parametric JPDF.

The measurements are obtained from exploratory drill holes made in two
lignite mines in Greece, Amynteon and Mavropigi and are kindly provided
by the Public Power Corporation (PPC) of Greece S.A. Both mines are located
in Ptolemaida, a town in the prefecture of Kozani, Greece and operated by
the Greek PPC. Figure 4.11 demonstrates a satellite map of the region where
the mines and the thermoelectric power plants are located. A schematic
of the area is shown in Figure 4.12 (in Greek, courtesy of the Greek PPC).
While both datasets contain measurements of several variables regarding
lignite quality, we focus on lignite thickness measurements aggregated per
drill hole.

Table 4.2 summarizes the statistics of both mine datasets. Both datasets
are non-Gaussian and asymmetric, as confirmed by the sample kurtosis
and skewness coefficients. A natural neighbor interpolation of the lignite
thickness measurements and the drill hole locations are depicted in Fig-
ures 4.13a and 4.15a. The drill hole locations are also shown. The displayed
ellipse has orientation and semimajor axes ratio according to the anisotropy
parameter estimates. The plotted lengths of the ellipse semimajor axes
does not correspond to the correlation lengths for each principal direction.
Coordinates shifted to zero mean (for each direction) and divided by a factor
of 1000, whereas z-values (lignite thickness, in meters) left unscaled. In Fig-
ures 4.13b and 4.15b the JPDF corresponding to the estimated anisotropy
parameters for each mine is also plotted.

The anisotropy estimates obtained via the subsampling procedure are
depicted in Figures 4.14 and 4.16 along with the corresponding non-
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4.4 - Geologic Reserves Data

parametric CR curves, calculated using the mean slope tensor elements as
in Section 4.2. Furthermore, the univariate PDFs of R and & derived via
numerical integration of the theoretical JPDF are compared to the sample
PDF's estimated from the subsampling anisotropy estimates. The sample
histograms, probability density estimates and theoretical PDFs are depicted
in Figures 4.14b and 4.14c for the Amynteon dataset and in Figures 4.16b
and 4.16c¢ for the Mavropigi dataset. The probability density estimates
are calculated® performing kernel density estimation Bowman & Azzilini
[1997]; Parzen [1962] on the subsamples anisotropy parameter estimates
using the Epanechnikov kernel function Epanechnikov [1969]. The kernel
window size is 0.4° for the kernel estimates of f3(8) and to 0.04 for the
kernel estimates of fz(R). There is good agreement between the sample
PDFs and those obtained from integrating the non-parametric JPDF.

For the Amynteon dataset, consisting of N = 644 data points, the
isotropy test (3.5) provides (R_,R,) = (0.91, 1.10), while the estimated an-
isotropy ratio is R = 1.16. For the Mavropigi dataset, with N = 416, the
isotropy test provides (R_,R,) = (0.89, 1.13), while the estimated anisotropy
ratio is R = 0.83. Both anisotropy ratio estimates lie outside the correspond-
ing isotropy confidence region thus both datasets can not be considered
isotropic at 95% confidence level, according to the statistical test (3.5). The
isotropy hypothesis is rejected in both cases, thus anisotropic models may
be more appropriate for modeling the mining datasets examined here.

5The MATLAB®function ksdensity was used.
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| 2mi ]
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Figure 4.11: Lignite mines in the area near the city of Ptolemaida (red
marker) located at Kozani, Greece. Source images retrieved from Google
Maps: http://goo.gl/maps/Sp80d
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Figure 4.12: Lignite mines and thermoelectric power plants near the city
of Ptolemaida, in the Kozani prefecture, Greece. Chart retrieved from the
Greek Public Power Corporation website.
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Figure 4.13: (a) Visualization of the Amynteon lignite data using the natural
neighbor interpolation. The black dots are the drill hole locations. The
ellipse axes length ratio and orientation represent the anisotropy estimates;
the axes lengths does not correspond to correlation lengths. (b) The nonpara-
metric JPDF calculated for the anisotropy estimates (R, 9 =(1.16,-33.5°)
and N = 644.

56



4.4 - Geologic Reserves Data

40F \& +-t$'
30f

+

20F

10

0.8 0.9 1

(a) Anisotropy estimates via subsampling

7, 0.07

[JHistogram —_ [JHistogram
.......... Kernel Density Estimation — - Kernel Density Estimation
B[] — Theory 0.0 ——Theory

]
DI |

< 0.04

o(

003
0.02

0.01

m 0 10
0 (deg)

b) fr(R) © f>(8)

40

Figure 4.14: Testing the validity of the non-parametric confidence region
estimation via subsampling, for the Amynteon dataset. (a) Anisotropy
estimates (crosses) using 1000 random subsamples each containing 50%
(8322) of the original data points. The solid line depicts the theoretical 95%
confidence region calculated in the same manner as in 4.1. (b) and (c):
Comparison of the univariate theoretical PDFs derived using numerical
integration of the analytical JPDF, to the sample histograms and the kernel
density estimations of the PDFs, calculated from the anisotropy estimates
of (a).
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Figure 4.15: (a) Visualization of the Mavropigi lignite data using the natural
neighbor interpolation. The black dots are the drill hole locations. The
ellipse axes length ratio and orientation represent the anisotropy estimates;
the axes lengths does not correspond to correlation lengths. (b) The nonpara-
metric JPDF calculated for the anisotropy estimates (R, 9 = (0.83,-21.6°)
and N = 416.

58



4.4 - Geologic Reserves Data

1 1.1 1.2
(a) Anisotropy estimates via subsampling

12 0.06

[_JHistogram M [JHistogram
e Kernel Density Estimatonf| | || |- Kernel Density Estimation
10 —— Theory 0.05 — —— Theory

0.04 BNl

N
|_||_I.-.
-10

.0
0 (deg)

b) fr(R) © f>(8)

11 1.2 1.3 -20 10 20 30 40

Figure 4.16: Testing the validity of the non-parametric confidence region
estimation via subsampling, for the Mavropigi dataset. (a) Anisotropy
estimates (crosses) using 1000 random subsamples each containing 50%
(208) of the original data points. The solid line depicts the theoretical 95%
confidence region calculated in the same manner as in 4.1. (b) and (c):
Comparison of the univariate theoretical PDFs derived using numerical
integration of the analytical JPDF, to the sample histograms and the kernel
density estimations of the PDFs, calculated from the anisotropy estimates
of (a).
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Chapter

Discussion and Conclusions

5.1 Discussion and Conclusions

1s work focuses on the estimation of anisotropy by means of the Covari-
’I‘Hance Hessian Identity (CHI) in two-dimensional digital data that are
either scattered or supported on a grid. We derive explicit expressions for the
joint PDF of anisotropy statistics, equation (2.30), and for the correspond-
ing anisotropy confidence regions at any confidence level, equation (2.31).
The main assumptions used are (i) that the data are drawn from a jointly
Gaussian, stationary and differentiable random field (ii) that the covariance
function is short-ranged We also derive a non-parametric approximation
for the joint PDF of the anisotropy statistics, which can be used if the
covariance function is unknown a priori, or to avoid numerical calculations
required for estimating the covariance. The non-parametric approxima-
tion is given by (3.2). The corresponding equation for the non-parametric
approximation of the confidence region is given by (3.4).

Practical application of the results of this research requires the esti-
mation of anisotropy statistics using CHI (or other methods). Accurate
estimation based on CHI requires a large sample size, N > 1, and a sample
domain that is large with respect to the correlation area. The latter may be
difficult to satisfy for data with large anisotropy (R > 1 or R <« 1). In such
cases, the CHI estimate tends to underestimate the actual anisotropy.

We illustrate the application of the joint PDF and the confidence regions
with simulated and real data. The results of this research can be used to
identify significant deviations in anisotropy between data sets, e.g., due to
structural differences or major changes in the underlying physical process.
The computational cost is minimal, since the corresponding expressions
are analytical. The major contribution to the computational cost is the
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estimation of partial derivatives of the random field. The user can freely
choose a more accurate field derivatives estimator, at the cost of additional
computational time.

In the realistic scenarios examined in this work we demonstrated that
the anisotropy statistics follow the proposed CR, by utilizing a subsampling
method to artificially generate realizations of the same underlying physical
process. In practical situations, the anisotropy estimates accompanied by
the analytical results regarding their statistics can be helpful for model
selection. For example, the anisotropy test can serve as an aid to choose
between a simpler isotropic model, and a more complex (since two more
parameters are required) anisotropic model. On the other hand, statistical
significance does not necessarily imply interpolation performance. While
under the proposed isotropy test a small dataset is considered isotropic,
this should not prohibit the expert from choosing an anisotropic model
if the additional complexity leads to interpolation performance. The non-
parametric JPDF which is available in closed form, can be used as Bayesian
prior if the modeling is going to be performed by following the Bayesian
paradigm.

5.2 Publications and Presentations

During the study of the statistical properties of the CHI estimator, two
presentations in international conferences were made Hristopulos et al.
[2008, 2009]. The resulting isotropy test was published (without the proof
details) in Spiliopoulos et al. [2011]. The theoretical framework and most of
the application scenarios that are presented in this work, was submitted at
the Cornell University Library electronic archive and distribution server for
research articles (arXiv.org) and is publicly available Petrakis & Hristopulos
[2012].

5.3 Future Work

Straightforward extension of this work is possible for jointly lognormal
data along the lines of Chorti & Hristopulos [2008]. Application on non-
differentiable random fields is possible if an angle-preserving smoothing
kernel is first applied to the data. The same ideas, albeit with increased
mathematical complication, can be applied in three dimensions as well.

62



5.3 - Future Work

My HOBBY: EXTRAFOLATING

A5 YoU CAN SEE, BY LATE
NEXT MONTH  YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS,
BETTERGET A
BULK RATE ON
WEDDING CAKE.

— RANDALL MUNROE, XKCD

63






Appendices

65






Appendix

Mathematical Details

The mathematical details are included in this Appendix.

A.1 Jacobi’s Theorems

We use Jacobi’s theorems e.g., Papoulis & Pillai [2002]; Soong [2004] to
determine the PDF under the change-of-variables transformations Q@ —
4 - (R

Theorem A.1.1 (Jacobi’s univariate theorem). Let Z be a continuous random
variable and Y = g(Z), where g(Z) is a continuous function in Z. If y = g(z)

admits at most a countable number of roots z; = gj‘l(y), j=1,...,r, then
’ dg; ' (y)
_ -1 j
Jr = j:zlfz(gj ) | |

In the case of a multivariate variable transformation, Jacobi’s theorem
becomes:

Theorem A.1.2 (Jacobi’s multivariate theorem). Let Z and Y be two n-
dimensional continuous random vectors with components (Z,, .. .,Z,) and
(Yy,...,Y,), respectively. The transformation Y = g(Z) represents the set
of equations y; = g(Z), 1 = 1,...,n. Assume that the functions g, are
continuous and possess continuous partial derivatives with respect to each
of their arguments.

1. If the g; define one-to-one mappings, unique inverse functions g;' such
that Z = g '(Y) exist. Then, the transformation of the JPDF fz to fy is

67
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accomplished by means of
S =1z (g7 (V) Idet)l,
where J is the Jacobian of the transformation:

J= ANgits. .. gh)
AYr,---Un)

2. If Y = g(Z) admits at most a countable number of roots Z; = gj_l(y),
j=1,...,r, then

f=D Lo (g ) Idet)l,
j=1
where J; is the Jacobian corresponding to the j-th root, defined by

G- Gin
T Ay,

Theorem A.1.2 also applies if dim(Y) = m < n. Then, the m-dimensional
vector Y is augmented by an (n — m)-dimensional vector Z' = h(Z) where
h(-) is a simple function with continuous partial derivatives. The n — m
dummy variables in Z’ are eliminated from the JPDF of Y by integration.

A.2 Probability Density Function of Gradient
Product Tensor

Below, we obtain the PDF of the gradient components X; = 0,X(s) fori = 1, 2.
Let us define by fx.(d;X = z) the PDF of the gradient component 9;X, and
by fx,(X; = y) the PDF of the gradient product 9,X(s)J;X(s). The following
theorem holds Yaglom [1987]:

Theorem A.2.1 (PDF of field gradient). For a Gaussian, differentiable and
stationary SRF X(s), the gradient component 0;X(S) is a zero-mean Gaussian
SRF with covariance function given by the following expression:

P cxx(T)

E[aiX(s) an(s+r)] =
i07j

(A.1)

In light of (2.13) and (A.1) the variance of 9;X(s) is given by Var (9,X(s)) =
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Q:. Hence, the univariate PDF fx is given by

1 2
fx(0X = 2) = —— e /%91, (A.2)

V21 Qy

A.2.1 Probability Density Function of Diagonal Elements
of Gradient Product Tensor

Theorem A.2.2 (PDF of diagonal elements of gradient product tensor). Let
X(s) be a Gaussian, statistically stationary SRF that admits (in the mean
square sense) all partial derivatives of second-order (at least). Then, the PDF
of X;; is given by the chi square (x2) distribution with one degree of freedom
(v=1):

exp(—55-)

V21Qu y .

Proof. Let us define Z = 9,X(s), (i = 1,2) and Y = X;. The equation
y = g(z) = z? admits two real roots for y > 0, i.e., y; o = = Vz, but no real
roots for y < 0. Since dg~' /dy = +1/(2 +/y), by applying Theorem A.1.1, we
obtain:

S X =y) = (A.3)

1
2y
Equation (A.3) follows from the above and (A.2). The standard density of
the Xf distribution is obtained from (A.3) via the replacement y’ = y/Q;. ®

SxXi=y) = [in( \/!_J) + fx (= \/ﬂ)] , y>o0. (A.4)

The mean and variance of X;; are thus obtained by

E[Xi] = Qu. (A.D)
Var (Xy) = 2(Qu)”. (A.6)

A.2.2 Probability Density Function of Non-diagonal Ele-
ments of Gradient Product Tensor

Theorem A.2.3 (PDF of non-diagonal elements of the gradient product
tensor). Let X(s) be an SRF that satisfies the conditions of Theorem A.2.2.
Then, the PDF of X, = 0,X(S) d;X(s) is given by:

1 exp (y Q12 )Ko (Iyl VO sz)
T Vdet(Q) det(Q) det(Q) )’
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where Q is the slope tensor, det(Q) is its determinant, and K, is the modified
Bessel function of the second kind and order zero. Since Q1o = Qs;, it holds

that fx, (Xo1 = y) = fx,,(Xi2 = y).

Proof. We define the random vectors Z' = (9, X(s), 3, X(s)) = (X1, X), Y' =
(X:X5, X5). The Jacobian determinant for the transformation Z — Y and its
absolute value are given by

-1 _ -2 1 1
R Bl ' Rt

Yz Yol

det(J) =

Thus, according to Theorem A.1.2, fx,, is given by

© 1
Jx,Xi2 = y1) = f Adys frz (Y1/Yz. Ya) —,

(A.8)
-0 |y2|

where f,, is the bivariate Gaussian PDF of the two-component fluctuation
(21, z2), given by

1 _lth—IZ
M = 2 , A.
Jor(21, 22) o det(Q)e (A.9)

Then, the integration in (A.8) can be evaluated using the integral (3.471.9)
[Gradshteyn & Ryzhik, 2007, p. 368] and the transformation y2 — x, which
lead to (A.7). u

The mean of X, is given by (2.12). The variance is obtained using the
normality of the 0, X(s) and d,X(s) distributions by applying the Isserlis-Wick
moment factorization theorem Isserlis [1918]; Wick [1950]:

E[Xi2] = Qia. (A.10)
Var (X;2) = Q11 Qaz + Q. (A.11)

For |x| — o0, Ky(|x|) = /ﬁe"’d Abramowitz & Stegun [1970]. Hence, based

on (A.7), fx,, decays for large |X;s| as

fX12

1 1 D'
[ X a1

~ ex
M(Qn Go2)'/* VIX2l P VO11 Qo2 + 8ign(Xi2) Q12

where sign(x) = 1,x> 0 A sign(x) = -1,x< 0.

Asymptotic convergence of fy,, to zero for |X;s| — oo requires that the
denominator of the exponent be positive. Q;; and Q,, are positive by
definition. Regardless of the sign of Q,, the positive definiteness of Q (see
Theorem 2.1.1), implies that VQ,, Qs2 > +Q,,. Hence, the denominator is
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indeed positive. The asymptotic dependence of fx,, matches that of the x?
distribution.

A.3 Proof of Lemma 2.2.1

Proof. Using the definition (2.18) we obtain:

N N
1 1 1
Cya = Cov| 21 X(s0). le ()| = <5 Zm] Cov (Xy(5n), Xia(sm))
(A.13)

Due to the translation invariance of X(s), the double series in (A.13) is
reduced to a single series over all (N?) lag vectors Iy, = S, — Sy, (n,m =
1,...,N),i.e.,

Cya = % Z Cov (Xy(So), Xia(so + rnm))

Inm

= %COV (Xy(50). Xia(50)) + % D" Cov (Xy(50), XialSo + Fum))

rnm#0

_ %COV (X4(0). Xia(0)) + % D Cov(Xy(0), Xa(rnm) . (A1)

rnm#0

The third line in (A.14) takes advantage of the stationarity of X(s).

Covariance of the gradient product tensor: Let r denote any lag vector
(including r = 0) between two sampling points. Based on the definition of
the covariance function it follows that

Cov (X4(0), Xia(r)) = E [Xy(0)Xia(r)| - E [ X,(0)| B [Xia(r)] . (A.15)

Note that E [X;(0)Xiu(r)| = E |3,:X(0) 3,X(0) .X(r) X(r)|. According to The-
orem A.2.1, the gradient fields are Gaussian SRFs. Hence, E [Xij(ﬂ) Xkl(r)]
can be calculated using the moment factorization property of multivariate
normal distributions Isserlis [1918]; Wick [1950]:
E [X,(0) Xia(r)| = E[3:X(0) 9,X(0)| E[3,:X(r) X ()]
+ E[8:X(0) 3. X(r)] E [an(()) alX(r)] +E[8:X(0)3,X(r)] E [an(O) akX(r)]
= Hy(0) Hiq(0) + Hyc(r) Hy(r) + Hy(r) Hy(r). (A.16)
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The last equality follows from the definition of the covariance function,
Theorem A.2.1, and the definition (2.11). The second term on the right-
hand side of (A.15) is simply

E [X,(0)| B [Xi(r)] = E [8.X(0) 9,X(0) | E [0,X(r) 9.X(r)] = Hy(0) Hya(0).
(A.17)

Thus, in light of (A.16) and (A.17), equation (A.15) becomes
Cov (X;(0), Xia(r)) = Hye(r)Hy(r) + Hy(r)Hy(r). (A.18)

Using (A.18) in (A.14), and Theorem 2.1.1 to express the zero-lag component
of the covariance Hessian matrix, equation (2.21) is obtained.
]

A.4 Proof of Theorem 2.2.1

Proof. The Xy(s,) are stationary GSRFs by virtue of the stationarity of
the GSRF X(s). Hence, @ya(r) := Cov (X;(s). Xiu(s + 1)) = Cov (X;(0), Xia(r)).
Based on (A.18), @ya(r) = Hy(r)Hy(r) + Hy(r)Hp(r). The range of the GSRF
Xij(Si) is determined by the integral

1
v, = m%x( f dAroga(v). | o) # 0).

ikl \ @y (0)

Based on (A.18), ¢4(0) = Qy Quu + Qu Qi and thus @;4(0) has a finite value
for finite correlation lengths.

To calculate fD dr@yq(r), we assume that [D| — co and express the inte-
gral in terms of the Fourier transform of ¢ (r). Any permissible covariance
function ¢, (r) admits the following pair of transformations, where Cy(K) is
the covariance spectral density:

Cu(T) = f dke*TCyy (K) (A.19)

(2m)?
Cux(k) = f dre T ¢ (1). (A.20)

Based on the above, we obtain Hy(r) = # f dkick; €*"Cy,(K), and thus

1 -
fdl'fpykz(l'): Wfdkkikjkkkl[cxx(k)]2~
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In the above, j = V-1, k-r = Igry + kgry is the inner vector product,
and f dk = f_ 0:0 dk; f_ O:o dl, or f dk = fooo ke dic f02n dg in polar coordinates.
The completeness of the plane-wave basis was used, i.e., f dre/ &) =
(2m)? 6(k + K’), where 6(-) is the Dirac delta function. Existence of this
integral requires integrability of Cy,(k) at it = 0 and at k — co. Since cy,(r)
is short-ranged, the integral f dr c(r) = Cy(0) is finite, and thus the limit
k = 0 is well-behaved. At the limit k — oo, the integral converges (using
polar coordinates) if [Cy,(K)]? falls off faster than k %2¢, where € > 0. This
ensures that the covariance ¢;4(r) is short-ranged. Thus, Theorem 2.2.1
applies to the vector random variable Z;. = ((X1;(Si), Xo2(Sk), X12(s))" leading
to (2.22). [

A.5 Proof of Lemma 2.2.3

Proof. We use Theorem A.1.2 with Z — Q, Y — (§u. §o)!. Since dim(Y) =
2 < dim(Z) = 3, we append to Y the dummy variable u = Q;; > 0. Using
definitions (2.14) and (2.15), the absolute value of the Jacobian determinant
for the transformation (Q11, Qss, Q12) — (Qa, Go- u) is

J — a(Qll’ Q22’ QIZ)
a a(Qd! é\101 u)

= |detJy)| = v
The dummy variable u is integrated according to Theorem A.1.2, leading to
Jo(q; mg, CQ) = f Ja(w, Gou, Gau; mg, CQ) u? du. (A.21)
0

In terms of ¢, and §,, the exponent of the trivariate PDF (2.22) is transformed
as follows

(@ -mg)" Cg (Q-mg) = A@G. Cy) v* + B(4. mg, Cg) u + C(mg, Cg). (A.22)

By virtue of the above, the integral (A.21) is expressed as follows (suppress-
ing the dependence of A, B, C, K for brevity):

Jo(@mg, C3) =K f u? e s ACHBO) gy
(]
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According to (2.26a), A > 0 because CQ is a covariance matrix, and hence
Cs as well as CZ! are positive definite!. Thus, the Gaussian integral above
exists and its value is given by (2.25). [ |

A.6 Proof of Theorem 2.2.2

Proof. Equation (2.30) follows from the transformation (g4, q,) — (R, §) with
Jacobian matrix J; g. According to A.1.2 the transformed PDF is given by

Fr(R.8;mg. Cg) = fo(4; mg. Cg) |det(J5r)|

where det(Js ) is given by

94a  94a . (Az )
3 £ 2R(R° -1
det(Jo,r) = aa? aafz = — - —. (A.23)
C{O C{O (R2 cos2 d + sin® 8)
08 OR

Under the restriction of the parameter space to R € [0,) and & €
[-m/4, /4), or equivalently R € [1,00) and € [-n/2,n/2), the trans-
formation (g4, §,) — (R, d) is one-to-one with a Jacobian determinant given
by (A.23). Finally, based on Theorems A.1.2 and 2.2.3, fa‘R(R ) is given
by (2.30). [ |

A.7 Some Properties of Common Covariance
Functions

There is a plethora of covariance functions used in Geostatistics. In the
following we will define the notion of integral scale factor and demonstrate
some basic properties of two well-known functions, namely the Gaussian
and the Whittle - Matérn (or simply Matérn) covariance functions (or models),
which are examined in this work.

The spatial variability of a random field is controlled by the correlation
length ¢ in both the Gaussian and the Matérn model. The latter has an
additional parameter, v which is the smoothness coefficient and controls
the differentiability of the random field. Specifically, as v increases, the
corresponding random field is smoother. While a second parameter adds

1A square p X p matrix M is positive-definite, denoted by M > 0, if xX*Mx >0 V¥ p x 1
vectors X # 0; then, M~! > 0.
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more flexibility, the spatial variability of a Matérn model is a function of
both ¢ and v. Even in the case of models with only one parameter, the
same value of correlation length across different models, does not guarantee
random fields with the same (or comparable) spatial variability.

In order to be able to compare the spatial variability between different
isotropic covariance functions, the integral scale factor (or integral range)
Hristopulos & Zukovi¢ [2011] in d-dimensions is defined by the equation

c X

dr ¢y v
fl'—(cm(r)} = 0.2 ¢, (0)"/4, (A.24)
CXX

A.7.1 The Gaussian Model
The isotropic Gaussian covariance function is
Cu(r) = o™, (A.25)

where r = ||r|l. The two-dimensional covariance spectral representation is
given by
2
cx(K) = nfzafe_(kf/ 2) (A.26)

The first and second derivatives are

dcgr(r) = ~2(0,/&)*re ", (A.27)
2
d%(r) = =2(0,/&(1 = 2(r/§)")e " (A.28)

Specifically the second derivative at zero lag is

d? e (1)

3 = —2(0,/&)". (A.29)

r=0

The integral scale factor of the Gaussian model in 2-D is £, = m.

A.7.2 The Whittle - Matérn Model

The isotropic Whittle - Matérn covariance function is given by

¢ (r):ozﬂK L (A.30)
w0 = S re g
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where K,(-) is the modified Bessel function of the second kind of order v,
I'(") is the Gamma function. For v — oo the Gaussian model is recovered,
while for v — 1/2 the exponential model is obtained. The Matérn model
corresponds to a non-differentiable field for v < 1 in d = 2.

The d-dimensional covariance spectral density is given by

,JL(w+d/2)  (2rd)

Cu(k) = Ox nd/ZF(v) (1+ (k§)2)u+d/2'

(A.31)

Given the recurrence relation Abramowitz & Stegun [1970]; Gradshteyn &
Ryzhik [2007],

(K2 = 2K (2,

the first and second derivatives of the Matérn covariance function are

dcy (1) _ 2 21-vpv K (5) (A.32)
dr “T(v)ert U\ g) '
den(r) _ 270! ( . (r)_fK (z)) A5
dr? *T(v)Ev2 ¢ e '

Given the limiting form for small arguments of the modified Bessel function
of the second kind Gradshteyn & Ryzhik [2007],

K, (z) = T(v)2""'z%, for z— 0and v > 0,

the second derivative at zero lag is

dex(n)| o2

dr?  2(v-1)E

r=0

(A.34)

The integral scale factor for the Matérn model in d-dimensions is /. =

2n1/2§[—”‘;+(j)/2>] . Ford =2, ¢ = 2.

T USED T© THINK, THEN T TOOK A | | SOUNDS LIKE THE
CORRELATION mpuso STATISTICS CLASS. cmss HELPED.

07 lneleq

— RANDALL MUNROE, XKCD
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Appendix

Selected MATLAB® Scripts

This Appendix provides some of the MATLAB® scripts and functions used
in this work. For a complete package please e-mail the author.

GNU General Public License

The following scripts are free software: you can redis-
tribute them and/or modify them under the terms of the
GNU General Public License as published by the Free
Software Foundation, version 3 of the License, or any
later version.

The following scripts are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details:

www.gnu.org/licenses/gpl-3.0.html

GPLNZ

Free as in Freedom
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B. SELECTED MATLAB® SCRIPTS

B.1 Non-parametric Joint Probability Density Func-

tion

function [p, cr] = jpdfNonParametric(Rhat, thetahat, Qij, N)

%

o® o o°

o® o o°

o° o°

0 0° 0% 0° A° ° A° % A° A° A° O° O O° O° O° O° P o°

<)
©

Non - Parametric Joint Probability and Confidence Region for ...

estimates of
R and theta.

p is the probability calculated over the domain [Rhat, ...
thetahat], provided
by a meshgrid command.

cr is the contour function to be plotted for a given ..
confidence level.

The vector Qij should contain the slope tensor elements in ...

the following
manner: Qij = [Ql1l, Q22, Q12]

N is the number if samples.

As of 22 December 2011

This program is free software: you can redistribute

it and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation, either version 3 of the License, or any
later version.

This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details,
<http://www.gnu.org/licenses/>

Degree to radian conversion

thetahat = thetahat x pi/180 ;

Q11 = Qij(1); Q22 = Q1j(2); Q12 = Qij(3);

%

Non-Parametric CQ

CQ = 2/N x [ Q1172 Q1272 Q11x%Q12 ;

Q1272 Q2272 Q12xQ22 ;
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B.1 - Non-parametric Joint Probability Density Function

Q11xQ12 Q12xQ22 1/2%(Q1272 + Q11xQ22)

% Slope tensor ratios calculated from Rhat, thetahat (which ...

are meshgrids)

qd = ( 1./Rhat.”2 + tan(thetahat).”2 )

(tan(thetahat)./Rhat).”2 ) ;

go = tan(thetahat).x(1 - 1./Rhat.”2) ./ ( 1 + ..

(tan(thetahat)./Rhat).”2 ) ;

q
[Q11 ; Q22 ; Q12] ;

<
Il

% Invert CQ
CQinv = inv(CQ) ;

% Preallocation for A, B
A = zeros(1l, length(q)) ;
B=A;

% Calculate A, B

for i=1:1length(q)

[ones(numel(thetahat), 1) qd(:) qo(:)]"

A(i) = qg(:,1)" * CQinv * q(:,1) ;
B(i) = -2x*v' * CQinv x qg(:,1) ;

end

A = reshape(A, size(qd)) ;

B = reshape(B, size(qd)) ;

% Calculate C and K

C=v' x CQinv x v ;

K = (2xpi)~(-3/2) * sqrt( det(CQinv) ) ;

Reparametrization
B./(2xsqrt(2xA)) ;

c/2 ;
K./(sqrt(2)*A.~(3/2)) ;

X 0O T o°

% Clean-up
clear ABCK

f
q

—h o°
| e}

2+xsqrt(pi) * k.xexp(b.”2-c)

% Absolute value of the Jacobian for the transformation to R, ..

theta

absJ = 2xRhat.x*xabs(Rhat.”2-1)./((Rhat.x*cos(thetahat)).”2 + ..

sin(thetahat).”2).73 ;

p pi/180 .x fq .* abs] ;
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84
ss % Confidence region (confidence level probability)
ss Cr =1—- exp(b.”2 - ¢) ;
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B.2 - Subsampling Procedure for Mining Data

B.2 Subsampling Procedure for Mining Data

Runs the subsampling procedure using mines data.
As of 17 July 2012

This program is free software: you can redistribute

it and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation, either version 3 of the License, or any
later version.

This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details,
<http://www.gnu.org/licenses/>

o

Choose a mine. Mavropigi has duplicates.
%smine = 'Amydaio’;
mine = 'Mavropigi';

% Load data
[X, y, 1] = loadLigniteData(mine) ;

% Artificial data
x = data(:,1) ; y = data(:,2) ; 1 = data(:,3);

o®

% SIC2004 data
%X = normalData(:,1) ; y = normalData(:,2) ; 1L = ..
normalData(:,3);

disp(" ")

disp(['Mine :' mine]) ;

dataSize = length(x) ; disp(['N = ' num2str(dataSize)]);

% Descriptive statistics of z-values (lignite)

disp('——— Descriptive Statistics————— ")

minl = min(l) ; disp(['min : ' num2str(minl)]) ;

meanl = mean(l); disp(['mean : ', num2str(meanl)]);

medianl = median(1l); disp(['median : ',num2str(medianl)]) ;
stdl = std(l); disp(['std dev : ', num2str(stdl)]) ;

skewl = skewness(l) ; disp(['skewness : ', num2str(skewl)]) ;

kurtl = kurtosis(l)-3 ; disp(['excess kurtosis : ', ..
num2str(kurtl)]) ;
maxl = max(l); disp(['max : ', num2str(maxl)]);
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Histogram / Weibull plot
figure ; hist(l, 30) ;
figure ; weibplot(l) ;

o® o o°

Box-Cox ?
[1, lambda] = boxcox(1l); lambda

o® o°

% Data normalization

unitlength = 1000 ; 1lscale = 1;

X = (x-mean(x))/unitlength ; y=(y-mean(y))/unitlength ; 1
1/1lscale;

xmin = min(x); xmax

= Xmax — Xmin;
ymin = min(y); ymax

ymax — ymin;

max(x); xr
max(y); yr

% Interpolation meshgrid
[xint yint] = meshgrid(linspace(xmin, xmax, 200), ..
linspace(ymin, ymax, 200));

% Interpolate using natural neighbor method; contains NaNs
lint = interpolateScatteredData(x', y', 1', xint, yint, ..
"'natural');

% Estimate anisotropy
est = estimateAnisotropy(xint,yint,
interpolateScatteredData(x', y', 1', xint, yint,
'natural', mean(l)));
Rest = est(1); thetaest = est(2);
disp(' Anisotropy ");
disp([Rest, thetaest]);

% Isotropy test
disp('——————— Isotropy test ");
disp(isotropyConfidencelInterval(dataSize)) ;

% Draw anisotropy ellipse
scale = 0.1;
if strcmp(mine, 'Mavropigi')

center = [xmin + 7/8 * xr , ymin + 7/8 x yr];
else

center = [xmin + 7/8 * xr , ymin + 1/8 * yr];
end
semimajor = scale * xr / Rest;

% Ellipse points for visualizing estimated anisotropy

ellp = calculateEllipse(center(l), center(2), semimajor, ..

scalexxr, thetaest ,37);

o)

% Plot data and anisotropy ellipse
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figure ;

hold on

box on

pcolor(xint, yint, 1lint) ; shading flat ;

t = colorbar('peer',gca);

set(get(t, 'ylabel'), 'String', 'Lignite (m)');
plot(x,y,"'.k") ;

plot(ellp(:,1), ellp(:,2), '-k") ;
arrow(center, [ellp(1,1) ,ellp(1,2)
arrow(center, [ellp(28,1), ellp(28,
axis equal tight

xlabel('x (km)') ; ylabel('y (km)') ;

hold off

figbolden;

print('-dpng', '-r400', [lower(mine),'.png']);

1)
2)

1)

%break;

% Do subsampling and plot results
runs = 1000 ;

% Use 50% of the data
samples = round(0.5 * dataSize) ;
disp(['Samples used: ', num2str(samples)]);

% Scatter plot compared to theoretical confidence region
plotConfidencelntervalScattered([x y 1], runs, samples, [0.5 ..

%Isotropy Test for sparse dataset
disp('Isotropy test for sparse set') ;
disp(isotropyConfidenceInterval(samples)) ;

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING."

HEY! GET BACK
Ev
Sy

— RANDALL MUNROE, XKCD
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