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Abstract

Classical statistics and quantum mechanics are two important research �elds
of mathematics and natural sciences. We make a blend of these by creating a
novel algorithm for the determination of an unknown matrix, by estimating the
values of a single parameter from which the matrix elements are assumed to
be determined. Basics of statistical parametric estimation theory and theory of
quantum walks (QWs) are the main ingredients of the method. Among the var-
ious methodologies employed in parametric estimation theory e.g. the methods
of moments, the Bayesian methodology and maximum likelihood estimation, we
choose the latter one to combine with the formalism of QW on integers in order
to accomplish the task of estimation. The QW enters in the estimation algo-
rithm via its so called reshu ing matrix which operates in the "quantum coin"
Hilbert space. Using elements from representation theory of the ISO(2) Lie
algebra (a.k.a. Euclidean algebra), from the formalism of completely positive
trace preserving maps, and from basic theory of Chebyshev polynomials, the
dynamics of �nite steps of QW is completely derived analytically. Constructing
and evaluating the analogue of quantum statistical moments for the walker�s
position operator, and by introducing simplifying assumptions in the form of
closed paths for QWer, we end up with the likelihood function. Imposing the
maximum likelihood condition, �nally leads to validation of value intervals for
the solicited parametric estimation.
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1 Introduction

The aim of my thesis is to describe a very simple procedure of �nding the ele-
ments of a matrix. Firstly, we set a matrix with the elements that we search.
We insert this matrix on the QW as the so called reshu ing matrix. The un-
known elements of the initial matrix are now elements of the QW. After that, we
calculate the occupation probability distribution of the position of the walker.
The occupation probability distribution contains the elements of the matrix
that we search. Thus, we consider the occupation probability distribution as a
probability density function with parameters the unknown elements. The �nal
and most important step is the estimation procedure. The starting point is the
probability density function with the parameters that we set. We create the
stochastic likelihood function using the probability density function. The ob-
jective is to maximize the stochastic likelihood function for the parameters with
methods of calculus. The critical points of the stochastic likelihood function are
the candidates for the title of the maximum likelihood estimator. We choose the
critical point that satis�es the criterion of the second derivative for each one of
the parameters and this critical point is the maximum likelihood estimator for
each one of the parameters. The maximum likelihood estimators are the values
for the elements of the initial unknown matrix. Thus, we �nd the unknown
elements with the maximization of a stochastical function.

My thesis has two areas of study, QW and statistics. The problem that I
tackle is estimation via QW. I will describe my method brie�y. I made maxi-
mum likelihood estimation with the help of the QW. I did it in order to check if
the maximum likelihood estimation method works with the QW. My target was
to understand if I can use maximum likelihood estimation in order to search
the parameter of a matrix, which is involved as a reshu ing matrix of a QW.
I applied maximum likelihood estimation with the probability density function
extracted from a QW. I used Chebyshev polynomials in order to solve the prob-
lem of applying maximum likelihood estimation with a QW. I provide an outline
of my thesis.
Chapter 2. Mathematical Preliminaries. We expand all these concepts
and mathematical background that is required for the understanding of the the-
sis. If the reader feels con�dent, may omit the study of this chapter.
Chapter 3. Quantum Walk on Integers. We talk about the fundamentals
of the QW on the line of the integers.
Chapter 4. Estimation Theory. This chapter refers to the maximum like-
lihood estimation method.
Chapter 5. Parametric Estimation via QW.We apply a special method of
maximum likelihood estimation, using a probability density function extracted
from a QW.

9



2 Mathematical Preliminaries

2.1 Postulates of Quantum Mechanics

We now provide the postulates of quantum mechanics [18] upon which we build
up our work on QWs. In quantum mechanics there are two mathematical for-
malisms to describe a physical quantum system. The state vectors and the
density operators. Both approaches are mathematically equivalent and conse-
quently choosing one or the other is a matter of convenient description of the
properties of the system to be studied. We formulate Postulates 1; 2; 3 and 4
in the parlance of state vectors and additionally de�ne density operators in the
context of Postulate 1.
State Space
The postulate provides the mathematical framework with which we describe

closed (that is isolated) physical systems. Postulate 1: Each isolated physical
system is associated with a Hilbert space H, herein after known as the state
space of the system. The physical system is completely described by its state
vector, which is a unit vector j i 2 H: The dimension of H depends on the spe-
ci�c degrees of freedom of the physical property under consideration. Postulate
1 implies that a linear combination of state vectors is a state vector. This is
known as the superposition principle and it is a quantum mechanical description
of physical systems. In particular any vector state j i may be desrcibed as a
superposition of basis states

fjeii 2 Hg = ei; i = 1; 2; :::; n; (1)

i.e
j i =

X
i

ci jeii ; (2)

where ci 2 C; i = 1; 2; :::; n:
An alternative description of quantum states is given by the density operator

(also called density matrix). The density operator is positive Hermitian and has
trace equal to 1. A quantum system whose state j i is known exactly is said to
be in a pure state. The density operator in a pure state is given by

� = j i h j : (3)

A density operator also describes mixed quantum states. A mixed state may be
obtained from a source randomly producing pure states. For example, suppose
that a quantum system has a quantum state picked from a set of posssible
quantum states fj iig according to a probability distribution fpig : Then, its
density operator is given by

� =
X
i

pi j iii h j : (4)

Density operators do not uniquely represent a probability distribution over pure
states as it is possible to have two di¤erent quantum state ensembles giving rise
to the same density operator.
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The qubit
In mathematical computation, information is stored and manipulated in the

form of bits. The mathematical structure of a classical bit is rather simple. It
su¢ ces to de�ne two logical values, traditionally labelled as f0; 1g, and to relate
these values to two di¤erent outcomes of a classical measurement. So, classical
bit lives in a scalar space.
In quantum computation, information is stored, manipulated and measured

in the form of qubits. A qubit is a physically entity described by the laws of
quantum mechanics. Simple examples of qubits include two orthogonal polar-
izations of a photon (e.g. horizontal and vertical), the alignment of a

�
spin� 1

2

�
nuclear spin in a magnetic �eld or two states of an electron orbiting atom. A
qubit may be mathematically represented as a unit vector in a two dimensional
Hilbert j i 2 H2: A qubit j i may be written in general form as

j i = a jpi+ � jqi ; (5)

where �; � 2 C; and
j�j2 + j�j2 = 1; (6)

and fjpi ; jqig is an arbitrary basis spanning H2: The choice of fjpi ; jqig is often
fj0i ; j1ig ; the so called computational basis states which form an orthonormal
basis for H2: In general j i is a coherent superposition of the basis states jpi
and jqi and can be prepared in an in�nite number of ways simply by varying
the values of the complex coe¢ cients � and � subject to the normalization
constraint. We can rewrite j i as

j i = ei
�
cos

�

2
j0i+ ei� sin �

2
j1i
�
; (7)

where ; � and � 2 R. Since, ei has no observable e¤ects, we can ignore it.
Thus,

j i = cos �
2
j0i+ ei� sin �

2
j1i : (8)

The numbers � and � de�ne a point on the unit 3-dimensional sphere known as
Bloch Sphere [8].
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Bloch Sphere representation of a qubit j i

(Bloch Sphere)
When we know with certainty the initial state of the qubit, we have to use

a vector representation. An example of this statement is to prepare a qubit in
the state

j i = j0i+ j1ip
2

; (9)

that is an equally weighted superposition of the canonical basis fj0i ; j1ig : How-
ever, let us consider a di¤erent scenario in which a qubit j	i is initially prepared
in one of the quantum states fj i1 ; j i2 ; j i3 ; :::; j ing where each one of the
states is selected with probability 1

n : We do not know what state was chosen to
prepare j	i but we do know that only preparations j ii 2 f1; 2; :::; ng are al-
lowed. In this case, a convenient representation for j	i is the associated density
operator

�	 =
1

n

nX
k=1

j ikk h j : (10)

Evolution of a closed quantum system
Postulate 2 (Unitary Operator Version)
The evolution of a closed quantum system with state vector j	i is described

by a unitary transformation ~U . The state of a system at time t2 according to
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its state at time t1 is given by

j	(t2)i = ~U j	(t1)i : (11)

Postulate 2 only describes the mathematical properties that an evolution op-
erator must have. The speci�c evolution operator required to describe the be-
haviour of a particular quantum system depends on the system itself. In the
case of single qubits, any unitary operator can be realised in physical systems.
Postulate 2 can also be stated with the famous Schrödinger equation.
Postulate 2 (Hermitian Operator Version)
The evolution of a closed quantum system is described by Schrödinger equa-

tion

i~
d j i
dt

= ~H j i ; (12)

where ~ is Planck�s constant and ~H is a �xed Hermitian operator known as the
Hamiltonian of the closed system. We have to note that ~H is the Hamiltonian
of Postulate 2 and H is the Hadamard operator. The Hamiltonian of particular
physical systems must be determined and calculated for each case. The search
of the Hamiltonian of a particular physical system is a di¢ cult task. The e¤ect
of the Hadamard operator is represented in the following two equations

H j0i = 1p
2
fj0i h0j+ j0i h1j+ j1i h0j � j1i h1jg j0i = 1p

2
(j0i+ j1i) ; (13)

and

H j1i = 1p
2
fj0i h0j+ j0i h1j+ j1i h0j � j1i h1jg j1i = 1p

2
(j0i � j1i) : (14)

Quantum Measurements
In quantum mechanics, measurement is a non trivial and highly counter

intuitive process. Firstly, because measurement outcomes are inherently prob-
abilistic, i.e. regardless the carefulness in the preparation of a measurement
procedure, the possible outcomes of such a measurement will be distributed ac-
cording to a certain probability distribution. Secondly, once a measurement has
been performed, a quantum system is unavoidably altered due to the interaction
with measurement apparatus. Consequently, for an arbitrary quantum system,
pre measurement and post measurement quantum states are di¤erent in general.
Postulate 3
Quantum measurements are described by a set of measurements operatorsn
~Mm

o
, index m labels the di¤erent measurement outcomes which act on the

state space of the system being measured. Measurement outcomes correspond
to values of observables, such as position, energy and momentum, which are
Hamiltonian operators corresponding to physically measurable quantities. Let
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j i be the state of the quantum system immediately before the measurment.
Then, the probability that result m occurs is given by

p (m) = h j ~My
m
~Mm j i ; (15)

and the post measurement state is

j ipm =
~Mm j iq

h j ~My
m
~Mm j i

: (16)

Operators ~Mm must satisfy the completeness relation, i.e.X
m

~My
m
~Mm = 1; (17)

because that guarantees that probabilities p (m) will sum to oneX
m

h j ~My
m
~Mm j i =

X
m

p (m) = 1: (18)

Let us work out a simple example. Assume we have a polarized photon with
associated polarization orientations horizontal and vertical. The horizontal po-
larization direction is denoted by j0i and the vertical polarization direction is
denoted by j1i : Thus, an arbitrary initial state for our photon can be desrcibed
by the quantum state

j i = a j0i+ � j1i ; (19)

where � and � are complex numbers constrained by the normalization condition

j�j2 + j�j2 = 1; (20)

and fj0i ; j1ig is the computational basis spanning H2: Now, we construct two
measurement operators

~M0 = j0i h0j ; (21)

and
~M1 = j1i h1j ; (22)

and two measurement outcomes �0; �1: Then, the full observable used for mea-
surement in this experiment is

~M = �0 j0i h0j+ �1 j1i h1j : (23)

According to Postulate 3, the probabilities of obtaining outcome �0 or outcome
�1 are given by

p (�0) = j�j2 ; (24)

and
p (�1) = j�j2 : (25)
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Corresponding to post measurement quantum states are as follows. If

outcome = �0; (26)

then
j ipm = j0i ; (27)

and if
outcome = �1; (28)

then
j ipm = j1i : (29)

Composite Quantum systems
We now focus on the mathematical description of a composite quantum

system, i.e. a system made up of several di¤erent physical systems.
Postulate 4 The state space of a composite quantum system as the tensor

product of the component system state spaces.

� If we have n quantum systems expressed as state vectors labeled j i1 ; j i2 ; :::; j in
then the joint state of the total system is given by

j iT = j i1 
 j i2 
 :::
 j in : (30)

� Similarly, if we have n quantum systems expressed as density operators
�1; �2; :::; �n then the joint state of the local system is given by

�T = �1 
 �2 
 :::
 �n (31)

(in the absence of any knowledge of correlations) :

Reduced Density operator
Let us suppose we have a density operator describing a composite quantum

system C and we are interested in studying the properties of one subsystem
of C (such a situation would happen for example if after creating a bipartitte
quantum system we had access to only one particle). The description of such a
subsystem as provided by the reduced density operator.

De�nition 1 Let A,B be two physical systems whose state is described by a
density operator �AB : The reduced density operator for a system A is de�ned as

�A = TrB
�
�AB

	
; (32)

where TrB is the partial trace over system B. The partial trace is given by

TrB fja1i ha2j 
 j�1i h�2jg � ja1i ha2jTr fj�1i h�2jg � ja1i ha2j h�1 j�2i : (33)
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2.2 Various De�nitions

De�nition 2 Inner product vector space. An inner product vector space V is a
complex vector space, equiped with an inner product h� j�i : V�V �! C;satisfying
the following axioms. 8a; b; c; d 2 V; ; � 2 C

1)
ha jbi = hb jai� ; (34)

2)
ha jai � 0; (35)

and
ha jai = 0() a = 0; (36)

3)
ha jb+ �ci =  ha jbi+ � ha jci : (37)

The inner product introduces the norm on

V : kak =
p
ha jai: (38)

De�nition 3 Functional. Let V be a vector space over a �eld F . A linear
functional is a linear function f : V �! F:

De�nition 4 Dirac notation. Let H be a Hilbert space. A vector  2 H is
denoted j i and is referred as a ket. The corresponding linear functional is
denoted h j and is referred as bra. Thus, h�j can be seen as an operator that
maps each state � into a functional h�j such that

h�j (j i) = h� j i : (39)

We de�ne
j iy � h j : (40)

Column and row representation of kets and bras. Let H be an n-dimensional
Hilbert space. Then, j i 2 H can be represented as an n dimensional column
vector, and its corresponding functional h j 2 H� can be seen as an n dimen-
sional row vector. Therefore, h� j i is the usual row column matrix operator
that computes the inner product in �nite dimensional vector spaces. j i $ h j
corresonds to transposition and conjuction

We now discuss linear operator in Hilbert spaces and their outer product
representation.

De�nition 5 Linear Operator. Let H1 and H2 be Hilbert spaces. Then, a
linear operator A is a linear function between H1 and H2 i.e. A:H1 �! H2 such
that

8 j ii 2 H1; aj 2 C =) A

 X
m

am j im

!
=
X
m

A (j im) =
X
m

am j�im ;

(41)
with j�im 2 H2:

16



De�nition 6 Outer product representation. Let j i ; jai 2 H1 and j�i 2 H2.
Then, the outer product j�i h j is the linear operator from H1 to H2 de�ned by

(j�i h j) (jai) � j�i h jai � h jai j�i : (42)

De�nition 7 Hermitian operator. Let H be a �nite Hilbert space and A:H �!
H a linear operator. If

A = Ay; (43)

then A is a Hermitian operator.

De�nition 8 Positive operator. Let H be a Hilbert space and A:H �! H a
linear operator. A is a positive operator if and only if

8 j i 2 H =) h jA j i � 0: (44)

De�nition 9 Unitary operator. Let H be a Hilbert space and U : H �! H a
linear operator. U is a unitary operator if UUy = 1 = UyU where 1 is the
identity operator. Unitary operators are the key elements in the formulation of
quantum mechanics because they preserve the inner product between vectors.

If j�i = U jbi and j�i = U jdi =) h� j�i = hbjUyU jdi = hbj1 jdi = hb jdi :
(45)

De�nition 10 Normal Operator. Let H Hilbert space and A:H �! H a linear
operator. A is normal if

AAy = AyA: (46)

Unitary and Hermitian operators are both normal matrices.

Theorem 11 (Spectral Theorem) For every normal operator A acting on a
�nite dimensional Hilbert space H; there is an orthonormal basis of H consisting
of the eigenvectors jaii of A. Thus, the spectral decomposition of the operator
A is

A =
X
i

�i jaii haij ; (47)

where �i are the eigenvalues of the operator A:

De�nition 12 Operator functions. Let f : C �! C be a function and

A =
X
i

�i jii hij ; (48)

be a spectral decomposition for a normal operator A. Then, the operator function
f (A) is de�ned by

f (A) =
X
i

f (�i) jii hij : (49)
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2.3 Pauli Matrices

The Pauli matrices are a set of three 2x2 complex matrices which are Hermitian
and Unitary. They are indicated by the greek letter � and are de�ned as follows

�x =

�
0 1
1 0

�
; �y =

�
0 �i
i 0

�
; �z =

�
1 0
0 �1

�
: (50)

They have also the following properties

�2x = �2y = �2z = �i�x�y�z = 1; (51)

det (�i) = �1; i = x; y; z; (52)

Tr f�ig = 0; i = x; y; z: (53)

2.4 Superoperator - CPTP maps

We have a random density matrix �. The operator that acts on the density
matrix � is called superoperator, is represented as E and the action is described
as

�
E�! E(�): (54)

The superoperator E must satisfy the following conditions.
Linearity

E(
X
i

ai�i) =
X
i

aiE(�i); (55)

and
0 � Tr[E(�)] � 1: (56)

A superoperator is CPTP if the following extra conditions are satis�ed

8 � > 0 =) E(�) > 0; (57)

and
Tr fE (�)g = Tr f�g : (58)

The most known representation of a superoperator E(�) is the representation

E(�) =
X
i

Ai�A
y
i ; (59)

where the operators Ai are linear andX
i

AyiAi � 1: (60)

We call the operators Ai generators of the superoperator E(�). The set of
the generators Ai of the superoperator E is not unique. A superoperator can be
given by many di¤erent sets of generators. If the superoperator has

Tr fE (�)g = Tr� = 1; (61)
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is linear

E
 X

i

pi�i

!
=
X
i

piE (�i ) (62)

and (1
 E) � is a positive operator then there is a Kraus analysis or operator
sum representation as follows

E (�) =
X
k

Ak�A
y
k; (63)

where
AiA

y
i = 1 (trace precerving condition) (64)

Matrices Ai and A
y
i are called Kraus operators. Furthermore, If

E (1) = 1; (65)

then E is called unital map.

2.5 Tensor Product

Now we focus on the tensor product, a method to build vector spaces from
other vector spaces. The tensor product is crucial to representing mutliparticle
quantum systems.

De�nition 13 Let V and W be vector spaces (over a �eld F ) of dimension m
and n respectively. Let X be the tensor of V and W; i.e. X = V 
W . The
elements of X are linear combinations of vectors jai 
 jbi where jai 2 V and
jbi 2 W . In particular, if fjiig and fjjig are orthonormal bases for V and W
then fjii 
 jjig is a basis for X. Let A and B be linear operators on V and W
respectively. Then 8 jai1 ; jai2 2 V ; jbi1 ; jb2i 2W and  2 F =)

1)
 (jai1 
 jbi1) = ( jai1)
 jbi1 = jai1 
 ( jbi1) ; (66)

2)
(jai1 + jai2)
 jbi1 = jai1 
 jbi1 + jai2 
 jbi1 ; (67)

3)
jai1 
 (jbi1 + jbi2) = jai1 
 jbi1 + jai1 
 jbi2 ; (68)

4)
A
B (jai1 
 jbi1) = A jai1 
B jbi1 ; (69)

5) A generalization of the previous step is straighforward. Let jaii 2 V; jbii 2
W and ti 2 F =)

A
B
 X

i

ti jaii 
 jbii

!
=
X
i

tiA jaii 
B jbii : (70)
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A short hand notation for jai 
 jbi is simply jabi or ja; bi. Furthermore, the
tensor product of jai with n times jai 
 jai 
 :::
 jai can also be conveniently
written as jai
n : The kronecker product is a convenient and simple matrix
representation of the tensor product. Let A = (aij) ; B = (bij) be two matrices
of order m� n and p� q respectively.

A =

266664
a11 � � � a1n
�
�
�

� � �
�
�
�

am1 � � � amn

377775 ; (71)

and

B =

266664
b11 � � � b1q
�
�
�

� � �
�
�
�

bp1 � � � bpq

377775 ; (72)

Then A
B is given by

A
B =

266664
a11 � � � a1n
�
�
�

� � �
�
�
�

am1 � � � amn

377775

266664
b11 � � � b1q
�
�
�

� � �
�
�
�

bp1 � � � bpq

377775 : (73)

Thus,

A
B =

266664
a11B � � � a1nB
�
�
�

� � �
�
�
�

am1B � � � amnB

377775 ; (74)

where the matrix A
B is of order mp� nq:

2.6 Trace and Partial Trace

Let A 2 Mn (F ) be a matrix of order n with entries (aij) from a �eld F . The
trace of the matrix A is de�ned as

Tr fAg =
X
i

aii: (75)

The trace of a matrix A is the sum of all diagonal elements of the matrix.
We consider V; W two �nite dimensional vector spaces with dimensions m and
n, respectively. For the space V we denote as L(V ) the space of linear operators
on V . The partial trace over the space V , TrV , is a mapping

T 2 L(V 
W ) �! TrW (T ) 2 L(V ); (76)
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and
TrV : L(V 
W ) �! L(V ); (77)

such that
TrV (R
 S) = [TrR]S;8R 2 L(V );8S 2 L(W ): (78)

Example 14 We consider the matrix

A =

�
1 2
4 5

�
: (79)

The trace of the matrix A is

TrA = a1;1 + a2;2 = 1 + 5 = 6: (80)

Example 15 We consider the matrix

Z =

�
A B
C D

�
; (81)

where A;B;C;D are matrices. The Z matrix can be expressed as

Z = j0i h0j 
A+ j0i h1j 
B + j1i h0j 
 C + j1i h1j 
D: (82)

The partial trace of the matrix Z is

TrV fZg = [Tr j0i h0j]| {z }
1

A+ [Tr j0i h1j]| {z }
0

B + [Tr j1i h0j]| {z }
0

C + [Tr j1i h1j]| {z }
1

D: (83)

Thus,

TrV fZg = A+D: (84)

2.7 Density Matrix - Operator

Amatrix � is called density matrix if and only if � > 0 [positive eigenvalues], � =
�y [2 real eigenvalues] and Tr f�g = 1 [sum of the eigenvalues=1] : If Tr

�
�2
	
=

1 then the densiy matrix � describes a pure quantum state and if Tr�2 < 1 then
the density matrix � describes a mixed state. The set of all density matrices on
the Hilbert space H is de�ned as

�(H) =
�
� 2 Lin (H) s:t: �y = �; � > 0; T r f�g = 1

	
: (85)

If �2 = � then � = j i h j [projector operator] : (86)
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2.8 Hilbert Space and its Dual

We consider a Hilbert space H = Cn�1 which contains vectors, polynomials and
matrices. Each vector is de�ned as ji 2 H and it is called ket. Its dual space is
H� = C1�n and each vector is de�ned as hj 2 H�:

Example 16 Discrete and Continuous Hilbert Spaces

We consider the continuous Hilbert space H� =
n
j�i ; d�2�

o
�2[0;2�)

and its

dual H�� =
n
h�j ; d�2�

o
�2[0;2�)

: The completeness is described as

2�Z
0

j�i h�j d�
2�

= 1: (87)

We consider the discrete Hilbert space Hm = fjmigm2Z and its dual Hm� =
fhmjgm2Z . The completeness is described asX

m2Z
jmi hmj = 1: (88)

2.9 Dirac Delta Function

Dirac function with centre 0

� (x) =

�
0; x 2 R
1; x = 0 : (89)

Dirac function with centre a 2 R

�(x� a) =
�
0; x 6= a

1; x = a
: (90)

For a function f (x), its Dirac transformation with center � is

f (a) =

+1Z
�1

� (x� a) f (x) dx; (91)

where

1Z
�1

�(x� a)dx = 1; a > 0: (92)
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2.10 Classical Statistics

The branch of Mathematics that deals with random phenomena is the proba-
bility theory [24]. An example of a random phenomenon is the throwing of a
coin. The base for the mathematical study of random phenomena is a typical
mathematical structure called probability space.
The uncertainty of a stochastical experiment (
;A) is determined on the

structure of the space with probability (
;A; P ) of the experiment as follows.
1) The sample space 
 consists of all the possible results$ of the stochastical

experiment and it re�ects the kind of the information that we have or request
from the experiment
2) Th ��algebra A of the possibilities of the experiment

a) contains the 
 space
b)

8A 2 A =)Ac 2 A; (93)

c)

8 (Ai)1i=1 2 A =)
1\
i=1

Ai 2 A: (94)

The delicacy of A � P0 = fA : A � 
g ; re�ects the detail of the information
that we have or request from our experiment.

3) The likely function P of the experiment (
; A) is a function P : A 2
A �!P (A) 2 [0; 1] such that P (
) = 1,

P

 1[
i=1

Ai

!
=

1X
i=1

P (Ai) ; (95)

and
8 (Ai)1i=1 2 A; (96)

where Ai is a sequence of independent and disjoint possibilities.
The likely function P on A de�nes the distribution of the total "probability

mass" on the space 
 and it re�ects the frequency whereby are happening or
could be happen the various possibilities A 2 A of the experiment (
;A) :

De�nition 17 (possibilities independecy ) A group of possibilities A1; A2; ::; An; ::
is called a group of independent possibilities if and only if the possibilities of each
�nite subgroup are independent.

2.10.1 Statistical Random Variable

De�nition 18 (random variable) An experiment is a situation with a set
of possible outcomes. Let (
;A) an experiment, then a function X : $ 2

 7! X ($) 2 R is called random variable (r:v:) if and only if (X � x) =
f$ 2 
 : X � xg 2 A;8x 2 R: The random variable X is the function that
depicts the set 
 of all the possible results $ of an experiment.
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De�nition 19 (discrete random variable) The random variables x1; ::; xn that
their carrier is a discrete �nite or countable set of distinct values of the form
Sx = fx1 < x2 < ::: < xn < :::g and their distribution is determined from a prob-
ability density function (p:d:f) pX : R 7�! [0;+1) where

pX (x) = P (X = x) ; (97)

such that pX (x) � 0 ,8x 2 Sx andX
x2SX

pX (x) = 1; (98)

are called discrete random variables.

De�nition 20 (continuous random variable) The random variables x1; :::; xn that
their carrier is a set of the form (a; �) ;where �1 � a < � � 1 and their dis-
tribution is determined from a probability density function (p:d:f:) fX : R 7�!
[0;+1) such that fX (x) � 0; 8x > 0; whereZ

R

fX (x) dx = 1; (99)

and

P (x 2 B) =
Z
B

fX (x) dx; (100)

8B 2 B; are called continuous random variables. Furthermore, a random vari-
able is called continuous if P (X = x) = 0;�1 < x < +1:

De�nition 21 (Borel Algebra) The smallest ��algebra that contains all the
semi straight lines (�1; x] is called the Borel set and is de�ned as

B = � f(�1; x]; x 2 Rg : (101)

2.10.2 Probability Density Function

De�nition 22 (discrete density function) Let X : 
 �! A be a discrete
random variable. Since the outcomes of an experiment are uncertain in general,
we associate with each outcome x 2 A a probability pX (x) where pX (x) =
P (X = x) :The real function px that is de�ned on R as pX (x) = P (X = x) is
called discrete probability density function of x: A number x is called possible
value of the function p if pX (x) > 0:Furthermore, a real function p (x) de�ned
on R is called discrete probability density function if the following properties are
satis�ed 1) The density function is positive

pX (x) � 0;8x 2 R: (102)

2) The possibility
fx : pX (x) 6= 0g ; (103)
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is �nite or in�nity countable subset of R: Suppose that fx1; x2; :::g is that set.
Then X

i

pX (xi) = 1: (104)

De�nition 23 (continuous density function) Continuous probability den-
sity function is a non negative function fx (x) such that

+1Z
�1

fX (x) dx = 1: (105)

2.10.3 Indicator Function

The indicator function is de�ned as

1A (x) =

�
1; if x 2 A
0; if x =2 A: (106)

2.10.4 Probability Distribution

Probability distribution assigns a probability to each measurable subset of the
possible outcomes of a random experiment survey, or procedure of statistical
inference. A probability distribution can either be univariate or multivariate. A
univariate distribution gives the probabilities of a single random variable taking
on various alternative values. A multivariate distribution gives the probabilities
of a random vector taking on various combinations of values. We describe below
some common univariate discrete and continuous probability distributions.

Discrete Probability Distributions Binominal B (n; r) with parameters
(n; r) 2 � = N� [0; 1] : The probability density function is de�ned as

pX (xjn; r) =
�
n

r

�
rx (1� r)n�x 1SBX (x) ; (107)

and the carrier is SBX = f0; 1; :::; ng :
The Binomial distribution describes experiments that consist of a number

of idependent identical trials with two possible outcomes. Sucess with prob-
ability r and failure with probability q = 1 � r. Thus, the random variable
X = number of sucesses can take any value from f0; 1; :::; ng and its distri-
bution is described by the Binomial distribution. The probability pX (x) of
obtaining x sucesses from n trials is given by

pX (xjn; r) =
�
n

r

�
rx (1� r)n�x 1SBX (x) : (108)

Poisson P (�) with parameter � 2 � = (0;+1) : The probability density
function is de�ned as
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pX (xj�) = e��
�x

x!
1SPX (x) (109)

and the carrier is SPX = f0; 1; :::g :

Continuous Probability Distributions Normal DistributionN
�
�; �2

�
with

parameters
�
�; �2

�
2 R� R+: The probability density function is de�ned as

f
�
xj�; �2

�
=

1p
2��

exp

(
� (x� �)

2

2�2

)
1SNX (x) ; (110)

and the carrier is SNX = f�1;+1g :
Gamma Distribution � (�; �) with parameters (a; �) 2 R2+: The probability

density function is de�ned as

f (xja; �) = �a

� (a)
xa�1e��x1S�X (x) ; (111)

where

� (a) =

+1Z
0

�
xa�1e�x

	
dx; a > 0;� (a+ 1) = a� (a) ; a > 0;�

�
1

2

�
=
p
�;� (n) = (n� 1) ;

(112)
and the carrier is S�X = f1; 2; :::g :
Geometrical Distribution Geom (p) with parameter p: The probability den-

sity function is de�ned as

P (X = x) = p (1� p)x�1 1SGX (x) ; (113)

and the carrier is SGX = f1; 2; :::g :

2.10.5 Multivariate Random Variables

De�nition 24 (multivariate random variable) A vector x
¯
=(x1; :::; xn)

T of
real random variables de�ned on the same space with probability (
;A; P ) is
called n�dimensional or multivariate random variable.

We denote a r dimensional vector of the Rr space as X
¯
= (X1; :::; Xr) : For

each $ 2 
 we obtain the functional vector X ($) = (X1 ($) ; :::; Xr ($)) :

Example 25 The probability density function of the n-dimensional normal dis-
tribution Nn (��;�) where �� 2 Rn;� 2 Rn�Rn (is a symmetrical and positive de�nite matrix)
is de�ned as

fn (x¯
j��;�) = 1

(2�)
n
2 j�j

1
2

exp

�
�1
2
(x
¯
� ��)T ��1 (x

¯
� ��)

�
1 (x
¯
2 Rn) : (114)
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For n = 2, x
¯
� N2 (��;�) � N2

�
�1; �2j�21; �22j�

�
the probability density func-

tion is de�ned as

f2 (x1; x2) =
1

2��1�2
p
1� �2

� expf� 1

2 (1� �2)

"�
x1 � �1
�1

�2
+

�
x2 � �2
�2

�2
� 2�

�
x1 � �1
�1

��
x2 � �2
�2

�#
g;

(115)

where x1; x2 2 R with parameters �1; �2 2 R and �21; �22 > 0, � 2 [�1; 1] :

De�nition 26 The random variables x1; :::; xn de�ned on the same (
;A; P )
are called independent if and only if for each B1; :::; Bn 2 B, the possibilities
(x1 2 B1) ; :::; (xn 2 Bn) are independent, i.e.

P (x1 2 B1; :::; xn 2 Bn) =
nY
i=1

P (xi 2 Bi) : (116)
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3 Theory of Quantum Walk

3.1 Introduction

A stochastic process is a system which involves in time undergoing chance �uc-
tuations. We can describe such a system with a family of random variables fXtg
where Xt measures, at time t the property of the system which is of interest.
Random walks are a particular type of stochastic processes, and are relevant as
mathematical entities as well as in many �elds like physics and computer sci-
ence. A particular kind of stochastic process is a classical random walk (CRW)
on a line. The simplest classical walk on a line consists of a particle (the walker)
jumping to either left or right depending on the outcomes of a probability sys-
tem (the coin) with (at least) two mutually exclusive results, i.e. the particle
moves according to a probability distribution. The generalization to random
walks on spaces of higher dimensions (graphs) is straightforward. An example
of a random walk on a graph is a particle moving on a lattice where each node
has six vertices and the particle moves according to the outcomes produced by
tossing a dice. CRWs, a subset of stochastic process (that is, processes whose
evolution involves chance) have proved to be a very powerful tool for the de-
velopment of stochastic algorithms. The main idea behind the mechanics of
CRWs is the following. Assume we have a particle (walker) that is allowed to
move on a lattice. The actual movements of the particle on the lattice, i.e. the
evolution of the system, are performed according to a probability distribution.
This process is clearly stochastic and it is known as a CRW on a line. The
quantum mechanical counterparts of random walks are the QWs. There are
two models of QWs. The �rst model is called discrete QW and it consists of
two quantum mechanical systems (a walker and a coin) as well as an evolution
operator which is applied to both systems only in discrete time steps. In the
second model named continuous QWs the evolution operator of the system can
be applied at any time. In both cases the QW is performed on discrete graph.
The key idea behind QWs is to apply the corresponding evolution operator to
the initial quantum state several times, without performing intermediate mea-
surements. By doing so, quantum interference will cause a behaviour radically
di¤erent from that of a CRW. Discrete QWs on a line is the most studied model
of discrete QWs [2], [8]. In order to perform a discrete QW with non trivial
evolution it was proposed to use an additional quantum system, a coin. Thus, a
discrete QW comprises two quantum systems, coin and walker along with a coin
unitary operator (to toss a coin) and a conditional shift operator (to displace
the walker either left or right depending on the accompanying coin state com-
ponent). The walker is a quantum system living in a Hilbert space of an in�nite
but countable dimension Hw: It is customary to use vectors from the canonical
(computational) basis of Hw as position states for the walker. Thus, we denote
the walker as jpositioni 2 Hw, and a¢ rm that the canonical basis states jiiw
that span Hw as well as any superposition of the form

P
i ai jiiw subject toX

i

jaij2 = 1; (117)
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are valid states for jpositioni. The walker is usually initialised at the origin, i.e.

jpositioniinitial = j0iw : (118)

The coin is a quantum system living in a two dimensional Hilbert space Hc.
The coin may take the canonical basis states j0i and j1i as well as any super-
position of these basis states. Therefore, jcoini 2 Hc and a general normalised
state of the coin may be as

jcoini = a j0ic + b j1ic ; (119)

where
jaj2 + jbj2 = 1: (120)

An initial state of a QW can be de�ned as

j iinitial = jpositioniinitial 
 jcoiniinitial : (121)

The evolution of a QW is divided into two parts that closely resemble the
behaviour of a CRW. In the classical case, chance plays a key role in the evo-
lution of the system. This is evident in the following example. We �rst toss a
coin (either biased or unbiased) and then, depending on the coin outcome, the
walker moves one step either to the right or to the left. In quantum case the
equivalent of the previous process is to apply an evolution operator to the coin
state followed by a conditional shift operator to the total quantum system. The
purpose of the coin operator is to render the coin state in superposition, and
the randomness is introduced by perfoming a measurement on the system after
both evolution operators have been applied to the total quantum system several
times.

3.2 Quantum Walk on Integers

Preliminaries. Let a random walker hopping on the line of the integers Z: The
position of the walker is described as jmi ;m 2 Z and the number of the step is
enumerated as n 2 f1; 2; :::g : The move of the walker is decided from the toss
of a coin. The coin tossing "drives" the walk. If the coin heads, then the walker
goes left with a direction to the negative side. If the coin tails, then the walker
goes right with a direction to the positive side. We have two systems. The coin
and the walker system. The two systems interact each other. Each system is
described by a Hilbert space. The coin Hilbert space

Hc = span fj+i = heads; j�i = tailsg ; (122)

admits as basis the vectors j�i = 1p
2
(j0i�j1i):OnHc operate the step operators;

i.e. fP+; P�g 2 End(Hc): The walker Hilbert space isHw = span fjmigm2Z :On
Hw operate the step operators E� and the position operator L i.e. fE�; Lg 2
End(Hw):
The quantum system of the coin is described by the density matrix �c and

the quantum system of the walker is described by the density matrix �w. We
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use the tensor product 
 to create the total space Hc
Hw. The system in the
total space Hc 
Hw is described by the density matrix �c 
 �w if there is no
coupling between the two systems: The �c 
 �w is a separable density matrix
of the composition of coin and walker systems. We de�ne a CRW step via the
action of the unitary operator

Vcl = P+ 
 E+ + P� 
 E�; (123)

in the total space Hc 
Hw, with the following unitary transformation

�c 
 �w ! Vcl (�c 
 �w)V
y
cl: (124)

If the total system �c
 �w is decoupled initially, i.e. �c
 �w; then action of
Vcl creates a coupling of the two systems. Subsequently after the action of the
classical, we eliminate the coin quantum system by tracing out its operators, as
follows

�c 
 �w
unitary transformation! Vcl(�c 
 �w)V

y
cl

decoupling! Trc(Vcl(�c 
 �w)V
y
cl): (125)

The partial trace for the coin space is a dynamic realization of the coin
tossing process. The CRWer density matrix will now be expressed by means of
the CPTP map EVcl(�w) operating on the walker degree of freedom as follows

EVcl(�w) = Trc

n
Vcl(�c 
 �w)V

y
cl

o
: (126)

This map is identi�ed with a single step and subsequent steps are identi�ed
with successive actions of EVcl : For n steps the action of EVcl is described as

EnVcl(�w) = EVcl(�
n�1
w ) = Trc

n
Vcl(�c 
 �n�1w )V ycl

o
; (127)

while for the (n+ 1) th step it reads

En+1Vcl
(�w) = EVcl(�nw) = Trc

n
Vcl(�c 
 �nw)V

y
cl

o
: (128)

We quantize the above CRW using a quantization rule (see below for details).
We examine two quantization rules, the U rule and the " rule. This time we use
the U rule. The transformation

Vcl ! Vq = (VclU 
 1) (129)

will occur, where the matrix U is the coin evolution operator and 1 is the shift
operator. The QW density matrix is now

EVq (�w) = Trc
�
Vq (�c 
 �w)V yq

	
: (130)
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The occupation probability distribution of the position states of the walker
system after one evolution step occurs if we calculate the diagonal elements of
EVcl(�w) using the eigenbasis jmi of the position operator L; is

pm = hmj EVcl(�w) jmi : (131)

After n evolution steps the occupation probability distribution will be

p(n)m = hmj EVcl(�(n)w ) jmi ;m = 0;�1;�2; ::: (132)

The QW deals in a quantum way the coin and walker systems. The target
of our master thesis is a general and systematic framework of quantization of
classical walks. The CRW is a transformation into a QW via a quantization rule.
The essential feature for this transformation is the dynamic interactions among
the two physical systems. The coin system has two sides (head, tails). Each
side represents a movement to the left or to the right. We denote the density
matrix of the coin as �c 2 �c (H). The walker states vectors are labelled by
integers and in this way we denote the direction of the motion of the walker and
the density matrix of the walker is denoted as �w 2 �w (H).
Qws create position probability distributions which give rise to statistical

moments that have a di¤erent distribution law than those of CRWs. QWs
helped for the invention of newer and faster algorithms in quantum computation
like the Grover algorithm.
The standard deviation of a QW is O (t) and the corresponding of a classical

walk isO
�p
t
�
where t is the number of the steps. The QW di¤uses quadratically

faster. The classical walk lives in the subballistic regime and the QW lives in
the ballistic regime.

3.3 Group Theory of QW

The coin Hilbert space Hc = l2 (f+;�g) = span fj+i ; j�ig ; is spanned by the
orthogonal vectors h+ j�i = h� j+i = 0; that form a complete basis, i.e.

j+i h+j+ j�i h�j = 1: (133)

The projectors in the basis vectors fj+i ; j�ig of coin space are P+ =
j+i h+j ; P� = j�i h�j ; and satisfy the orthogonality relation P+P� = 0; and
the completeness relation

P+ + P� = 1Hc : (134)

The walker Hilbert space Hw = l2 (Z) = span fjmigm2Z ; is spanned by the
orthogonal vectors hm jm0i = �mm0 ; that form a complete basis i.e.X

m2Z
jmi hmj = 1Hw

: (135)
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We can use a new basis for Hilbert space for the walker which results from the
application of the discrete Fourier transform F to the vector span (jmi)m2Z :
The resulting space will be denoted H�

w; it is the dual space of Hw; and reads

H�
w = L2 ([k; k + 2�) ;

d�

2�
) =

�
j�i ;� 2 [k; k + 2�); d�

2�

�
� l2 (Z) ; (136)

for some 0 � k < 2�; where

j�i =
X
m2Z

ei�m jmi : (137)

The generalized orthonormality of the elements of the dual space is

h�
���0� = �(�� �0) =

X
n2Z

ein(���
0); (138)

and the completeness reads is

k+2�Z
k

j�i h�j d�
2�

= 1H�
w
: (139)

Vectors jmi and j�i are connected as follows
j�i ! jmi

jmi =
k+2�Z
k

e�im� j�i d�
2�
; (140)

jmi ! j�i
j�i =

X
m2Z

ei�m jmi : (141)

Similarly the completeness relations and the respective resolution of units
1H�

w
and 1Hw are connected as follows
1H�

w
! 1Hw

1H�
w

=

k+2�Z
k

j�i h�j d�
2�

=
X
mm0

k+2�Z
k

ei�me�i�m
0 d�

2�| {z }
jmi hm0j

�mm0

=
X
mm0

jmi hm0j �mm0 = 1Hw
; (142)

where B = [k; k + 2�) � S1 is called in the Brillouin Zone in the context of
physics applications and is identi�ed with a 1 dimensional circle S1;
1Hw

! 1H�
w
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1Hw =
X
m

jmi hmj=
X
m

k+2�Z
k

k+2�Z
k

eim� j�i


�0
�� e�im�0 d�

2�

d�0

2�

=

k+2�Z
k

k+2�Z
k

 X
m

eim(���
0)

!
| {z }

�(���0)

j�i


�0
�� d�
2�

d�0

2�

=

k+2�Z
k

j�i h�j d�
2�

= 1H�
w
: (143)

3.4 The Euclidean algebra generators acting on spaces Hw

and H�
w

Next, we are study the main points of the Euclidean algebra and its representa-
tions in the spaces Hw and H�

w:More explicitly, we study the operators involved
in the theory of QW, their de�ning commutation relations, actions on vectors
spacesHw andH�

w and the associated matrix representation and functional rep-
resentations carrying by the coressponding discrete and continuous basis vectors
of these spaces.
We consider the algebra ISO (2) with generators

ISO (2) = span fL;E+; E�g : (144)

The position L and step operators E+; E�; are connected by the following
commutation relations

[L;E�] = �E�;
�
E+; E_

�
= 0: (145)

The action of step operator E� on jmi is

E� jmi = jm� 1i : (146)

Furthermore, we can take the a power of the operator E� such that

(E�)
a jmi = E�a jmi = jm� ai ; a 2 Z:

The position operator L admits basis vectors jmi 2 Hw; as eigenvectors i.e.
L jmi = m jmi : Therefore, the matrix representation of ISO (2) generators in
the discrete m�basis of space Hw reads,

L =
X
m2Z

m jmi hmj ; E� =
X
m2Z

jm� 1i hmj : (147)
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The step operators E� admits basis vectors j�i 2 H�
w; as eigenvectors i.e.

E� j�i = e�i� j�i : Furthermore, the position operator L acts on these vec-
tors via a di¤erential operator, i.e.

L j�i = 1

i

#

#�
j�i : (148)

Therefore, the matrix representation of ISO (2) generators in the continous
��basis of space H�

w reads,

E� =

2�Z
0

e�i� j�i h�j d�
2�
; L j�i =

2�Z
0

1

i

#

#�
j�i h�j d�

2�
: (149)

Proposition 27 Given the interrelation between the m�basis and the ��basis
vectors and additional the step-wise action of E� on the ��basis vectors, we
show that the ��basis vectors are eigenvectors of E� and furthermore, that
they form a conjugate unitary pair.
Proof. Firstly, we prove that the ��basis is eigenbasis of E�:We have to prove
that E� j�i = e�i� j�i : We begin with the action E� on j�i and we expand j�i
to the jmi basis.

E� j�i = E�[
1

(2�)

X
m2Z

e�im� jmi]

=
1

(2�)

X
m2Z

e�im�E� jmi

=
1

(2�)

X
m2Z

e�im� jm� 1i : (150)

by setting m� 1 = l 2 Z and substituting for jmi we obtain that

E� j�i =
1

(2�)

X
l2Z

e�i(l�1)� jli

= e�i�[
1

(2�)

X
l2Z

e�il� jli]

= e�i� j�i : (151)

Next, we prove the existence of the conjugate unitary pair E�E� = 1Hw
by

using the above relation,

E+ j�i = e+i� j�i
E�E+ j�i = e�i�e+i� j�i
E�E+ j�i = j�i ; (152)

and in the same way E+E� j�i = j�i : Thus, E�E� = 1Hw :
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3.5 Quantization of the CRW

We transform a CRW to a QW by introducing a non trivial unitary rotation
matrix that acts locally in the coin vector space. This action operating on the
density matrix �c; is in the form of an adjoint action, i.e. �c ! U�cU

y (to be
called the U quantization rule); or in the form of a convex combination of such
unitary actions, i.e. �c ! �U1�cU

y
1 + (1 � �)U2�cU

y
2 ; 0 � � � 1 (to be called

the E quantization rule).
The rules that we use, will be called quantization rules, and they assume a

kind of interaction between the walker and the coin systems. We can consider
that the source of the quantization is an underlying quantum or classical noise
that is larking in the background of these two physical systems.

De�nition 28 (Quantization of a CRW) The quantization of a random walk
is the incorporation of a unitary operator U in the coin space called the coin
ressu�ing matrix.

3.5.1 U quantization rule and Original Tracing Scheme

The density matrix of the n step for the walker is de�ned as

�(n)w = EV n
q
(�w) = Trc

n�
V nq
�
(�c 
 �w)

�
V nq
�yo

: (U rule Original Scheme)

We observe that n is transformed as a power of the matrix Vq:The action of
Vq = VclU 
 1 on �c 
 �w is described below

Example 29

�(n)w = EV n
q
(�w) = Trc

n�
V nq
�
(�c 
 �w)

�
V nq
�yo

= Trc
�
(VclU 
 1)n(�c 
 �w)(VclU 
 1)ny

	
= Trc

�
(VclU)

n
�c(VclU)

ny 
 �w
	

= �wTr fAdjn(Vcl)(U)(�c)g (153)

3.5.2 U quantization rule and V k model

The density matrix of the n step for the walker is de�ned as

�(n)w = EV k
q
(�(n�1)w ) = Trc

n�
V kq
�
(�c 
 �(n�1)w )

�
V kq
�yo

(U rule V k model)

We observe that n remains in its position, i.e. as a power of �w: The transfor-
mation of �c at each step by the unitary matrix U is

�c ! U�cU
y = Adj(U)(�c): (154)

The action of Vq = VclU 
 1 on �c 
 �w is described below
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�(n)w = EV k
q
(�(n�1)w ) = Trc

n
(V kq )(�c 
 �(n�1)w )(V kq )

y
o

= Trc

�
(VclU 
 1)k (�c 
 �(n�1)w )

h
(VclU 
 1)k

iy�
= �(n�1)w Tr

�
Adjk (VclU) (�c)

	
: (155)

3.5.3 " quantization rule and Original Tracing Scheme

A generalized version for the U quantization rule is the " quantization rule. The
" quantization rule employs a completely positive trace preserving map (CPTP)
"; which acts on the coin density matrix. The density matirx �c at each step is

�c
"! "(�c) =

= S1�cS
y
1 + :::+ Sn�cS

y
n

= Adj(S1)(�c) + :::+Adj(Sn)(�c)

=
X
i

Adj (Si) (�c) ; (156)

where (S1; :::; Sn) are Kraus generators. The CPTP map that we use, is not
necessary unital

"(1) 6= 1: (157)

Then we applicate Adj(Vcl) on �c
 �w for the accomplishment of the action
of

Adj(Vcl)("
 1); (158)

on the combined system. The density matrix of the n step for the walker is
de�ned as

�(n)w = EV n
q
(�w) = Trc

n
[Vcl ("
 1)]n (�c 
 �w)

h
V ycl

ino
= Trc

("
Vcl

 X
i

Adj(Si)
 1
!#n

(�c 
 �w)
h
V ycl

in)

= �wTr

( 
Vcl
X
i

Adj(Si)

!n
�c

h
V ycl

in)

= �wTr

(X
i

Adjn(VclSi) (�c)

)
: (159)

3.5.4 " quantization rule and V k model

The density matrix of the n step for the walker is de�ned as
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�(n)w = EV k
q
(�(n�1)w ) =

= TrcfVcl("k 
 1):::Vcl(("1 
 1)(�c 
 �(n�1)w )V ycl:::V
y
cl)g

= �(n�1)w Tr
�
Adj

�
V kcl
�
("k:::"1 (�c))

	
; (160)

where "1; :::; "k are di¤erent CPTP maps, that are not necessary unital.

3.5.5 Quantization Rules Summary

The quantization rules are summarized on the following table

Original Scheme V k model
U rule �

(n)
w = �wTr fAdjn(Vcl)(U)(�c)g �

(n)
w = �

(n�1)
w Tr

�
Adjk (VclU) (�c)

	
" rule �

(n)
w = �wTr

�P
i

Adjn(VclSi) (�c)

�
�
(n)
w = �

(n�1)
w Tr

�
Adj

�
V kcl
�
("k:::"1 (�c))

	
(161)

3.6 Density Matrix of the QWer

If we express the density matrix in the discrete basis jmi then

�w =
X

m;m02Z
�mm0 jmi hm0j : (162)

Alternative, if we express the density matrix in the continuous basis j�i then

�w =

2�Z
0

2�Z
0

�
�
�
�; �0

�
j�i


�0
��	 d�d�0
(2�)2

: (163)

We search the density matrix of the walker. The walker performs a QW. Firstly,
the density matrix �w must satisfy three conditions i)

Tr f�wg = 1; (164)

ii) Hermitian �w = �yw iii) Positive De�nite

8x
¯
2 Cnxn; (x¯ ) �w (x¯ )

T � 0: (165)

We calculate the density matrix �w using a certain base. We will use the basis
j�i, for � 2 [0; 2�) which is the set of the eigenvectors of the two step operators
E+; E�. We suppose that using the above basis, the �w density operator will
have the form

�w =

2�Z
0

8<:
2�Z
0

�(�; �0) j�i


�0
��9=; d�d�0

(2�)2
: (166)
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The limits of the integrals are 0 and 2� because the � basis lives in the space
[0; 2�):We have divided the integral with 2� to succeed the normalization of the
integral. The basis j�i is a continous basis because it represents an angle. Thus,
we use integral

R
instead of using a sum

P
which is used in discrete basis. The

j�i


�0
�� locates the elements of which are in the matrix �w: We consider that

we expand the density matrix �w using the discrete basis jmi

�w =
X

m;m02Z
(�w)mm0 jmi hm0j : (167)

By means of the intertransformation betwwen jmi and j�i basis. We obtain

�w =
X

m;m02Z
(�w)mm0 jmi hm0j

=
X

m;m02Z
(�w)mm0 [

1

2�

2�Z
0

eim� j�i d�][ 1
2�

2�Z
0

e�im
0�0


�0
�� d�0]; (168)

then �nally

�w =

2�Z
0

2�Z
0

X
m;m02Z

(�w)mm0ei(m��m
0�)0

| {z }
�(�;�0)

j�i


�0
�� d�d�
(2�)

2 : (169)

We have �nd now the function �(�; �0); which is the kernel of the �w density
matrix in the continuous basis. The �rst step of the walk means that we will
apply the evolution operator EV 2

�
we use V 2 tracing scheme

�
to the density

matrix �w such that

EV 2(�w) =

2�Z
0

2�Z
0

X
m;m02Z

(�w)mm0ei(m��m
0�)0

| {z }
�(�;�0)

EV 2(j�i


�0
��) d�d�
(2�)

2 ; (170)

where the kernel can be expressed as the Fourier transform of the matrix ele-
ments

�(�; �0) =
X

m;m02Z
(�w)mm0ei(m��m

0�0); (171)

= F [(�w)mm0 ]: (172)

Therefore, to compute the action of EV 2(�w) we need to compute EV 2(j�i


�0
��).

The map EV 2 is representing the " quantization rule using the tracing scheme
V 2: The V k QW model is described by the map
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EV k(�w) = TrcfVcl["k 
 1]:::[Vcl["1 
 1](�c 
 �w)V
y
cl]:::V

y
clg: (173)

The V 2 QW model is

EV 2(�w) = TrcfAdj(Vcl) � ("� 
 1)Adj(Vcl) � ("t 
 1) � (�c 
 �w)g
= TrcfAdj(Vcl) � ("� 
 1)Adj(Vcl) � "t(�c)
 �w)g
= TrcfVcl("� 
 1)[Vcl[�"t(�c)
 �w)]V

y
cl)Vclg: (174)

For �w = j�i


�0
�� ; we have that

EV 2(j�i


�0
��) = TrcfVcl("� 
 1)[Vcl["t(�c)
 j�i



�0
��)]V ycl)V yclg

= j�i


�0
��TrfVcl"� [Vcl["t(�c))]V ycl)V yclg

= j�i


�0
��Tr �Adj2 (Vcl) ("�+t (�c))	 : (175)

Thus, EV 2(�w) is described as

EV 2(�w) =

2�Z
0

2�Z
0

F [(�w)mm0 ]Tr
�
Adj2 (Vcl) ("�+t (�c))

	
j�i


�0
�� d�d�
(2�)

2 : (176)

Example 30 We consider the following density matrix of the walker in the
discrete basis jmi :

�w = 0:3 j�1i h�1j+0:7 j+1i h+1j+(3+2i) j�1i h+1j+(3�2i) j+1i h�1j (177)

The matrix representation of �w will be

�w =

:::
�1
0
+1
:::

::: �1 0 +1 :::266664
::: ::: ::: ::: ::
::: 0:3 0 3 + 2i :::
::: 0 0 0 :::
::: 3� 2i 0 0:7 :::
::: 0 0 0 :::

377775: (178)

I will calculate the above �(�; �0) and the representation of the above �w on
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the continuous basis j�i : We will use the following formulae

�(�; �0) =
X

n;n02Z
(�w)nn0e

i(n��n0�0)

= �(�1);(�1) expfi[(�1)�� (�1)�0]g
�+ �(+1);(+1) expfi[(+1)�� (+1)�0]g
�+ �(�1);(+1) expf[(�1)�� (+1)�0]g
�+ �(+1);(�1) expfi[(+1)�� (�1)�0]g

= 0:3 expfi(�0 � �)g+ 0:7 expfi(�� �0)g
�+ (3 + 2i) expf��� �0g+ (3� 2i) expf�� �0g: (179)

3.7 Asymptotics of QW and the double horn Distribution

Limit probability distribution of a double horn shape evaluates its asymptotic
behaviour. The statistical correlations between the random coin and walker of a
CRW are replaced by quantum correlations and this is achieved by appropriate
quantization of the coin walker system and by their dynamic interaction between
them in the course of time evolution of the walk. We construct an asymptotic
probability function of the walk. This limit probabilty density function is ob-
tained and has a distinct double horn shape. We use Hw = span fjmigm2Z ,
Hc = span fj+i ; j�ig and �(0)w = j0i h0j : Then a general density matrix for the
walker is written as

�w =

2�Z
0

2�Z
0

�
�
�; �0

�
j�i


�0
�� d�d�0
(2�)

2 : (180)

For initial state �(0)w = j0i h0j ; we take that �(0)w
�
�; �0

�
= 1: To start inves-

tigating the dynamics of the walk we suppose that initially a pure coin density
matrix �c = jci hcj ; and that its �rst evolution step involves k applications of
the Vq before tracing out the coin system. This choice speci�es the V kq QW
model. Then the once evolved matrix j�i



�0
�� is

j�i


�0
�� E�! EV k

q

�
j�i


�0
��� = Trc

n�
V kq
� �
�c 
 j�i



�0
��� �V kq �yo ; (181)

which is written by means of the Kraus generators, de�ned as

A� (k;�; c) = h�jV k (�) jci ; (182)
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as follows

EV k

�
j�i


�0
��� = A+ (k;�; c) j�i



�0
��A+ (k;�; c)y

+A� (k;�; c) j�i


�0
��A� (k;�; c)y

= (A+ (k; �; c)A+
�
k; �0; c

��
+A� (k; �; c)A�

�
k; �0; c

��
) j�i



�0
��

= A
�
k; �; �0; c

�
j�i


�0
�� : (183)

This means, that the n th-step evolution map operates multiplicative on
j�i h�j0 viz.

EnV k
q

�
j�i


�0
��� = A

�
k; �; �0; c

�n j�i 
�0�� ; (184)

with A
�
k; �; �0; c

�
to be referred as the characteristic function of the walk. Then

the walker desnity matrix evolves as

EnV k
q
(�w) = E(n�1)

V k
q

 X
i=�

Ai (k;�; c) �wAi (k;�; c)
y
!

=

Z 2�

0

Z 2�

0

�
�
�; �0

�
A
�
k; �; �0; c

�n j�i 
�0�� d�d�0: (185)

Next, we proceed to evaluate the quantum moment of the walker�s position
operator L for the n-step evolved density matrix

hLsin = Tr fLsEnV k (�w)g

=
1

2�is

Z 2�

0

d�#s�
�
�
�
�; �0

�
An
�
k; �; �0; c

��
�0=�

=
X
m2Z

msP (n)m � hmsin : (186)

In last equation,
P (n)m = hmj EnV k (�w) jmi (187)

is the classical probability distribution for the walker to be in position m after
n evolution steps and hmsin are the classical statistical moments of the walker
position. The asymptotic behaviour of these moments for large n is

hLsin = hnsin

=
ns

2�is

Z 2�

0

h (2�; t) d�

�
�
�
�; �0

�� #

#�
A
�
k; �; �0; c

��s�
�0=�

+O
�
ns�1

�
: (188)

Hence, mn converges weakly to

h (�; k; c) = �i
�
#

#�
A
�
k; �; �0; c

��
�=�0

; (189)
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and � assumes the role of a random variable with probability measure �(�;�)
2� .

An alternative expression for the function h; useful in our further investiga-
tions is given below

h
�
�0; k; c

�
= Trf(� + V (�)y �V (�) + � � �+ V (�)y(k�1) �V (�)(k�1))�cg;

where � := Uy0�3U0:
We proceed to evaluate the asymptotic probability density function of the

walk. Firstly, we must resort the concept of the dual of completely trace pre-
serving map. Consider the dual map

E�V k
q
: B (Hw) �! B (Hw) ; (190)

de�ned on the set of bounded operators acting on the walker Hilbert space Hw

of some given CPTP map

EV k
q
: D (Hw) �! D (Hw) ; (191)

operating on the desnity matrices �w 2 D (Hw), with operator sum realization

EV k (�w) =
X
i=�

Ai (k;�; c) �wAi (k;�; c)
y
: (192)

This dual map is de�ned to act on bounded operators X 2 B (Hw) ;as

E�V k
q
(X) =

X
i=�

Ai (k;�; c)
y
XAi (k;�; c) : (193)

By virtue of the last de�nition, the expectation value (quantum moments) of
the scaled powers of position operator

�
L
n

�s
; evaluated after n steps of the walker

which is now in the state
�(n)w = EnV k

q
(�w) ; (194)

becomes ���
L

n

�s��
n

= Tr

�
�(n)w

�
L

n

�s�
; (195)

or dually is determined by the equation��
L

n

�s�
n

�
�
E�nV k

q

��
L

n

�s��
0

= Tr

�
�wE�nV k

q

��
L

n

�s��
: (196)

Specializing to the V 2q model and taking the case where initially �w = j0i h0j ;
and �c = jci hcj ; with

jci = cos� j+i+ i sin� j�i ; (197)

we get the limit

lim
n�!1

�
E�nV 2

q

��
L

n

�s��
0

=

Z 2�

0

h (�)
s d�

2�
=

Z 1

�1

ys

�
p
1� y2

dy: (198)
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The resulting value of the quantum moment is seen in the last equation to
be given as statistical moment of the random variable ys with respet to the limit
probaility density function determined as follows

P (y) =
1

�
p
1� y2

;�1 � y � 1 (199)

This probability density function determines asymptotically the occupation prob-
abilities for the scaled position variable of our QW. In the �gure below we present
its graph which has the shape of a double horn peaked at the position y = �1:
This is very much in di¤erence with the Gaussian shape of the limit probability
density function that occurs in a CRW but shares the double horn shape with
the limit of another model of QW, although the two distributions di¤er in their
exact functional form. Also, in the �gure below we have included the position
occupation probabilities of the QW after a large number of steps in order to
show their tendency towards asymptotic values.

(200)

The double horn [3] shaped limit probability distribution function for the
QW of the V 2q model is given in the plot above. Furthermore, superimposed to
it are given the occupation probabilities of the walk as evaluated after n = 36
evolution steps.

3.8 Miscellaneous Examples

Example 31 Calculate the density matrix of the walker for the �rst step, using
the U quantization rule and the orginal tracing sheme. Let �c = jci hcj and
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Vcl =
X
i=�

Pi 
 Ei:

Solution 32 The density matrix of the walker for the �rst step is

�(1)w = EV 1
q
(�w) = TrcfVq(�c 
 �w)V yq g

�c=jcihcj= TrcfVq(jci hcj 
 �w)V yq g
Vq=Vcl(U
1)

= TrcfVcl(U 
 1)(jci hcj 
 �w)(Uy 
 1)V
y
clg

= TrcfVcl[(U jci hcjUy)
 �w]V
y
clg

Vcl=

X
i=�

Pi
Ei

=
V y
cl=

X
j=�

Pj
Ej

Trcf
X
i;j=�

Pi(U jci hcjUy)Pj 
 Ei�wEjg

=
X
i;j=�

Tr
�
Pi(U jci hcjUy)Pj

	

 Ei�wEj

=
X
i=�

[hij (U jci hcjUy) jii]Ei�wE
y
i

=
X
i=�

[hij (U jci hijU�) jci]Ei�wE
y
i

=
X
i=�

[hij (U � U�) jci]Ei�wE
y
i : (201)

For the particular case of the reshu ing matrix U being a SO(2) rotation
the general formula above, yields

�(1)w = EVq (�w) =
�
E+�wE

y
+

�
cos2 � +

�
E��wE

y
�

�
sin2 �: (202)

Example 33 Calculate the density matrix of the walker for the �rst step, using
the U quantization rule and the orginal tracing sheme. Let �c = j0i h0j, �w =
jmi hnj and Vcl = E+ 
 P+ + E� 
 P�:

Solution 34 The density matrix of the walker for the �rst step is

�(1)w = EV 1
q
(jmi hnj) = Trc

�
Vq(j0i h0j 
 jmi hnj)V yq

	
= Trc

(�
E+ E+
E� E�

��
jmi hnj 0
0 0

��
E+ E+
E� E�

�y)

= Trc

��
jm+ 1i hnjE� jm+ 1i hnjE+
jm� 1i hnjE� jm� 1i hnjE+

��
= jm+ 1i hn� 1j+ jm� 1i hn+ 1j : (203)
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Example 35 Calculate the density matrix of the walker for the �rst step, using
the U quantization rule and the orginal tracing sheme. Let �c = j0i h0j, �w =
j�i


�0
�� and Vcl = E+ 
P+ +E� 
P�: After that, calculate the n actions of E

on �w:

Solution 36 The density matrix of the walker for the �rst step is

�(1)w = EVq (j�i


�0
��) = TrcfVq[j0i h0j 
 j�i



�0
��]V yq g

= Trcf
�
E+ E+
E� E�

� �
j�i


�0
�� 0

0 0

� �
E+ E+
E� E�

�y
g

= Trc

��
ei� j�i



�0
��E� ei� j�i



�0
��E+

e�i� j�i


�0
��E� e�i� j�i



�0
��E+

��
= 2 cos(�� �0) j�i



�0
�� : (204)

Now, we want to calculate the n actions of E on �w: Firstly, we apply EVq
another time

E2Vq (j�i


�0
��) = EVq (2 cos(�� �0) j�i



�0
��)

= 22 cos2(�� �0) j�i


�0
�� : (205)

Thus, for n the action EnVq on �w = j�i


�0
�� ; we obtain

EnVq (j�i


�0
��) = 2n cosn(�� �0) j�i 
�0�� : (206)

Next, we express EnVq (j�i


�0
��) in terms of Chebychev polynomials [12]. The

trigonometric de�nition of the �rst kind of Chebychev polynomials is

Tn(cos#) = cos(n#); (207)

and of the second kind is

Un(cos#) =
sin[(n+ 1)#]

sin#
: (208)

We know that

EV n
q
(j�i



�0
��) = 2n cosn(�� �0) j�i 
�0�� : (209)

We see the term cosn(���0) , thus it can be used the �rst kind of Chebychev
polynomials. We know that

Tn(cos#) = cos(n#); (210)

and
cos(�� �0) = T1[cos(�� �0)]: (211)
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We take the n�th power of cos� expressed by the �rst kind of Chebychev
polynomials. We obtain that

cosn(�� �0) = Tn1 [cos(�� �0)]: (212)

I will express cosn(�� �0) in a better form. If n is odd then

cosn � =
2

2n

n�1
2X

k=0

�
n

k

�
cos[(n� 2k)�]: (213)

If n is even then

cosn � =
1

2n

�
n
n
2

�
+
2

2n

n
2�1X
n=0

�
n

k

�
cos[(n� 2k)�]: (214)

Let � = (�� �0) be a change of variables: If n is odd then

cosn(�� �0) = 2

2n

n�1
2X

k=0

�
n

k

�
cos[(n� 2k)(�� �0)]: (215)

The Chebyshev polynomial of �rst kind is de�ned as

Tn(cos#) = cos(n#): (216)

Thus,

cosn(�� �0) =
2

2n

n�1
2X

k=0

�
n

k

�
cos[(n� 2k)(�� �0)]

=
2

2n

n�1
2X

k=0

�
n

k

�
T(n�2k)[cos(�� �0)] (217)

Considering all the above, we can express EnVq (j�i


�0
��) in two di¤erent ways.

In the �rst way, for every n the map EnVq (j�i


�0
��) is expressed as

EnVq (j�i


�0
��) = 2n cosn(�� �0) j�i 
�0�� = Tn1 [cos(�� �0)] j�i



�0
�� : (218)

In the second way, we for n odd

EnVq (j�i


�0
��) = 2n cosn(�� �0) j�i 
�0�� ; (219)

where

cosn(�� �0) = 2

2n

n�1
2X

k=0

�
n

k

�
T(n�2k)[cos(�� �0)]; (220)
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and for n even

EnVq (j�i


�0
��) = 2n cosn(�� �0) j�i 
�0�� ; (221)

where

cosn(�� �0) = 1

2n

�
n
n
2

�
+
2

2n

n
2�1X
n=0

�
n

k

�
T(n�2k)[cos(�� �0)] j�i



�0
�� : (222)

3.9 Quantum Optical Walk: An Application of QW

An application of the quantization rule on a CRW is a quantum optical walk [1].
Firstly, we consider a continuous family of Completely Positive Trace Preserving
Maps (CPTP)

E = ft! "t 2 Hc; "0 = id; t � 0g ; (223)

acting on the Hc space and the semigroup composition law de�ned as

"t1 � "t1 = "(t1+t2); (224)

where t denotes time. We have to describe what a quantum optical walk is.
It is a physical phenomenon in which a two level atom beam, the coins, cross
a quantum optical cavity which maintain a quantum mode identi�ed as the
walker system. Thus, the beam is the coin and the cavity is the walker system.
The beam "walks" on the cavity. The coin+walker interaction is realized with
a V 2 (" rule) QW model. It takes account the interaction of the coin with
some external enviroment that is mathematically described as a CPTP time
independent map "t: This interaction begins at time t = 0 and it continues
while the beam crosses the cavity. The evolution of the walk of the beam is
described as follows. The beam enters the cavity at some time t with state
" (�c) : The atom is the coin part of the QW. It interacts with the walker cavity
mode. For the V 2 model two successive coin+walker ineractions occur. The
interaction at time t and a second at time t+ � :

"t (�c)
 �w
t�! Vcl ["t (�c)
 �w]V

y
cl

(t+�)�! Vcl ("� 
 1)
n
Vcl ["t (�c)
 �w]V

y
cl

o
V ycl

= (Vcl)
2
["�+t (�c)
 �w]

�
V ycl

�2
(225)

One step of the QW consists of two external enviroment interactions taken
together with two Vcl actions in appropriate order. After that, the atom leaves
the cavity, the atom clock is reset and a new atom enters tha cavity. The total
change of the walker�s density matrix between two successive steps is

�(n)w = EV 2(�(n�1)w )

= Trc

n
[Adj(Vcl)("� 
 1)Adj(Vcl)"t]
 1(�c 
 �(n�1)w )

o
(226)
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for n = 1; 2 or more explicitly

�(n)w = EV 2

�
�(n�1)w

�
=

X
ijk=�1

hij "t (�c) jji hkj "� (jii hjj) jkiEi+k�(n�1)w Ej+k (227)

where Ek jli = jl + ki : For k > 0; Ek = Ek+ and for k < 0; Ek = E�k� : The
quantized V 2 walk proceeds with steps of length 0 and 2:
Suppose now, that in the basis of j�i the walker density matrix has the form

�w =
X
k;l2Z

dkl jki hlj

=
X
k;l2Z

dkl

0@ 2�Z
0

e�ik� j�i d�
2�

1A0@ 2�Z
0

eil�
0 

�0
�� d�0
2�

1A
=

2�Z
0

2�Z
0

8<:X
k;l2Z

dkle
�i(k��l�0)

9=; j�i 
�0�� : (228)

We set �(�; �0) =
X
k;l2Z

dkle
�i(k��l�0), thus

�w =

2�Z
0

2�Z
0

�
�(�; �0) j�i



�0
��	 d�d�0
(2�)

2 : (229)

We want to calculate the action of E on �w matrix �w
E�! EV 2 (�w) : First,

we caculate the action of E on j�i


�0
��

EV 2

�
j�i


�0
��� = Trc

n
Vcl (�) ("� 
 1)

h
Vcl (�)

�
"t (�c)
 j�i



�0
���V ycl ��0�iV ycl ��0�o

= Trc

�
V 2cl (�) "�+t (�c)

�
V ycl
�
�0
��2�

j�i


�0
�� ; (230)

and setting

A
�
�; �0

�
= Trc

�
V 2cl (�) "�+t (�c)

�
V ycl
�
�0
��2�

; (231)

results for the 1st step into

EV 2

�
j�i


�0
��� = A

�
�; �0

�
j�i


�0
�� ; (232)

and for the n th step into

E(n)V 2

�
j�i h�j0

�
= An

�
�; �0

�
j�i h�j0 : (233)
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For the n th step the action of E on �w is

E(n)V 2 (�w) =

2�Z
0

2�Z
0

�
�
�; �0

�
An
�
�; �0

�
j�i


�0
�� d�d�0
(2�)

2 : (234)

The discrete probability distribution that determines the occupation proba-
bility of the site m on walker�s ladder, after n steps reads

p(n)m = hmj E(n)V 2 (�w) jmi

=

2�Z
0

2�Z
0

n
A(n)

�
�; �0

�
hm j�i



�0 jmi

o d�d�0
(2�)

2

=

2�Z
0

2�Z
0

n
A(n)

�
�; �0

�
e�im�eim�

0
o d�d�0
(2�)

2

=

2�Z
0

2�Z
0

n
A(n)

�
�; �0

�
e�im(���

0)
o d�d�0
(2�)

2 : (235)

By a change of variable

�; �0 �!
�
�+ = �+ �0

�� = �� �0
()

�
� =

�++��
2

�0 =
�+���

2

; (236)

we see that if A
�
�+; ��

�
is a function of the �� only, i.e.

A
�
�+; ��

�
= A

�
��
�
; (237)

then p(n)m is a classical probability distribution and it is de�ned as

p(n)m =
1

(2�)

2�Z
0

A(n)
�
��
�
e�im��d��: (238)

3.10 Classicality Criterion

Criterion 37 Su¢ cient and necessary condition [1] for quantum e¤ects in V 2

QW model on Z is that the characteristic function A
�
�; �0

�
occuring in one step

evolution
EV 2

�
j�i


�0
��� = A

�
�; �0

�
j�i


�0
�� ; (239)

expressed in terms of coordinates

�� �0 = ��; (240)
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i.e. A
�
�+; ��

�
should be a function of variables. If

AV

�
�+; �_

�
= AV

�
��
�
; (241)

then the occupation probability distribution p(n)m is a classical probability distri-
bution and it describes a CRW.

Proof. We know that

An
�
�; �0

�
e�im(���

0) =
1

2�

2�Z
0

An
�
��
�
e�im��d��; (242)

(=))
F
�
p(n)m

�
= A(n)

�
��
�
= A1

�
��
�
A(n�1)

�
��
�
; (243)

then
p(n)m = F�1

�
A1
�
��
�
An�1

�
��
��
: (244)

Thus,
p(n)m =

X
m0

p
(1)
m�m0p

(n�1)
m0 : (245)

A recurrence relation describing a CRW.
((=) Given a recurence relation of the form

p(n)m =
X
m0

p
(1)
m�m0p

(n�1)
m0 : (246)

If we assume that initially m = 0 then

F
�
p(n)m

�
= An

�
��
�
: (247)

3.10.1 Examples U-rule

Example 38 Let V model with density matrix

EVq
�
�(n)w

�
= Trc

n
Vq

�
�c 
 �(n�1)w

�
V yq

o
; (248)

where
AVq

�
�+; ��

�
= h+j �c j+i ei�� + h�j �c j�i e�i�� : (249)

I observe that
AV q

�
�+; ��

�
= AV q

�
��
�
: (250)

The classicality criterion is satis�ed . Thus, the occupation probability distribu-
tion is classical and it�doesnt give a QW.
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Example 39 Let V 2 model with density matrix

�c = j+i h+j (251)

and resu�ing matrix is the matrix

U�
4
= ei(

�
4 )�2 : (252)

The density matrix of the n step is

EV 2
q

�
�(n)w

�
= Trc

n�
V 2
� �
�c 
 �(n�1)w

� �
V 2
�yo

; (253)

where
AV 2

q

�
�+; ��

�
= cos2 �� � i cos�+ sin��: (254)

I obsreve that
AV 2

q

�
�+; ��

�
6= AV 2

q

�
��
�
: (255)

The classicality criterion is not satis�ed. Thus, the occupation probability dis-
tribution is not classical and gives a QW.

3.10.2 Examples "-rule

Let

�c = diag (q; 1� q) ; 0 � q � 1 (256)

density matrix, for q = 1
2 ; �c =

1
21 then

"t (�c) = S0 (t) �cS
y
0 + S1 (t) �cS

y
1 (t) ; (257)

where

S0 (t) =

�
cos (�t) 0
0 1

�
(258)

and

S1 (t) =

�
0 0

sin (�t) 0

�
; (259)

We know that
cos (�t) =

p
1� e�2�t (260)

and

AV 2
q

�
�+; ��

�
= e�i2��

�
1� q cos2 �t

�
+ei2��q cos2 �t cos2 �� + q cos2 �t sin2 ��

= AV 2

�
��
�
: (261)

"t (�c) = diag
�
q cos2 �t;�q cos2 �t+ 1

�
(262)
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I observe that

AV 2
q

�
�+; ��

�
= AV 2

q

�
��
�
: (263)

The classicality criterion is satifs�ed. Thus, the occupation probability dis-
tribution is classical and it doesn�t give a QW.

Example 40 We consider the density matrix

�c = diag (q; 1� q) ; 0 � q � 1; q 6= 1

2
; (264)

where
" (�c) = R0�cR

y
0 +R1�cR

y
1; (265)

R0 =
1p
2
1;R1 =

1p
2
U�

4
; (266)

and

AV 2
q

�
�+; ��

�
=

3 (1 + 2q)

16
ei2�� +

3 (1� 2q)
16

e�i2��

+
i (1� 2q) sin�� cos�+

4
+
1

4
: (267)

I observe that
AV 2

q

�
�+; ��

�
6= AV 2

q

�
��
�
: (268)

The classicality criterion is not satis�ed. Thus, the occupation probability dis-
tribution is not classical and it gives a QW.

3.11 Memory E¤ects in QWs

Example 41 Let Hc = C2 = span fj0; j1iig ; the coin space with dimension
dc = 2 and Hw = span fjmigm2Z ; the walker space. We use the matrix

Vq = Vcl (U 
 1) = (P0 
 E+ + P1 
 E�)U 
 1: (269)

We consider as

U = Up =

� p
p

p
1� pp

1� p �pp

�
; (270)

thus for p = 1
2 we get the 2� 2 Hadamard matrix

Up= 1
2
= H2x2 =

1p
2

�
1 1
1 �1

�
: (271)

Furthermore, we consider the coin density matrix as �c = j0i h0j :The QW den-
sity matrix for the �rst step is

�(1)w = EVq (�w) = Trc

n
Vq

�
�c 
 �(0)w

�
V yq

o
=

= Trc

��
pE+�wE� 0

0 (1� p)E��wE+

��
; (272)
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thus,
�(1)w = pE+�wE

y
+ + (1� p)E��wE

y
�:

We calculate now the occupation probability distribution for the �rst step

p(1)m = hmj �(1)w jmi

=
X
i

(pE+ � E+ + (1� p)E� � E�)mi
�
�(0)w

�
ii
; (273)

thus,

diag
�
�(1)w

�
= �diag

�
�(0)w

�
(274)

where
� = pE+ � E+ + (1� p)E� � E� (275)

and diag
�
�
(1)
w

�
, diag

�
�
(0)
w

�
are diagonal matrices with elements the diagonal

elements of matrices �(1)w ; �
(0)
w respectively. Matrix � is double stochastic matrix

since it admits the all-ones vector e = (1; 1; :::); as left and right eigenvector i.e.
�e = e and eT� = eT :

We obtain that

�ce = pE+e+ (1� p)E� = pe+ (1� p) e = e (276)

and

eT�c = peTE+ + (1� p)E� = peT (1� p) eT = eT : (277)

Thus, the matrix �c is double stochastic. Finally the density matrix of the
walker for the n step is

�(n)w = EV n
q
(�w) = Trc

n�
V nq
�
(�c 
 �w)

�
V nq
�yo

(278)

and the diagonal elements are satisfying the following

diag
�
�(n)w

�
= �cdiag

�
�(n�1)w

�
: (279)

[4], [5].

3.12 QW Applications in Quantum Information Science
and Technology

A basic and important application of the QW are the quantum algorithms [7].
Qws give new methods for the designing of quantum algorithms. A famous
category of algorithms a¤ected by QWs is the search algorithms. In 1996 Lov
Grover was the inventor of a very important quantum search algorithm, which
increased the speed of searching in very di¢ cult search problems. Grover�s algo-

rithm solves any search problem with N possible solutions in time O
�p

N
�
:We
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will mention some quantum algorithms that use QWs. Firstly, we have the QW
on the "glued trees" graph. "Glued trees" are graphs of exponential size. We
consider that we have a "glued tree" graph with two particular vertices, the
entrance and the exit. Our problem is to �nd the exit if we begin from the
entrance. A classical algorithm would require exponential time for the solu-
tion contrary to a quantum algorithm that require polynomial time. One more
quantum algorithm is for searching on grids. We have N items placed on a
d-dimensional grid. Our problem is to �nd an item with a certain property. In
one unit of time step we can control if the item in the location that we are is the
one that we search or we can move to an adjacent location of the grid. It should
be noted that this problem is more di¢ cult than the Grover�s search problem
because we are able to transpose only to an adjacent location in each step in
the unit of time contrary to Grover�s algorithm that we can go everywhere we
want. This problem can be solved with a discrete or with a continuous time
QW. Another application of QWs is the simulation of stochastic unitary CPTP
maps.
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4 Estimation Theory

4.1 Fundamentals of Statistical Inference

Let (
;A; P ) a probability space with unknown the likely function P 2 P (a family of likely functions) :
Within the parametric statistics we suppose the family

P = fP� : � 2 �g ; (280)

with � � Rk; k 2 N; where every likely function P� depends from the unknown
parameter � 2 � but it is a known function.

Example 42 The following

P� (B) =

Z
B

�
2��2

��1
exp

(
� (x� �)

2

2�2

)
dx; (281)

is a likely function, where B 2 B, � =
�
�; �2

�
2 � = R� (0;+1) � R2:

One of the basic purposes of parametric statistics is the estimation of the
unknown parameter �0 2 � � Rk: The estimators of the parameter � 2 � are
statistical functions and thus generally random variables themselves.
In the estimation we are interested to identify the real unknown value �0

of the parameter � 2 �: Let x
¯
= (x1; :::; xr) be a r dimensional random vari-

able (r:v:) which follows a probability distribution with a probability density
function f

�
x
¯
; ��
�
; where �� 2 
 � Rs; s � 1 is an s dimensional parameter.

In probability theory and its applications we consider that the parameter �� is
known and theoretically we can calculate any probability that involves the ran-
dom variable x and the parameter ��: In more practical problems the parameter
�� is considered as unkonwn. The need of searching the parameter �� creates some
of the most important problems of the statistical inference called estimation of
the parameter ��: This estimation is leaned in experimental data and there are
many methods for its realization.

De�nition 43 (estimator) Every statistical function
~

�� : X � Rmn �! A �
Rk; that is used for the estimation of the unknown parameter �� 2 � is called
estimator of ��:

There are two types of estimators. The estimators at point and the estima-
tors at set. The estimators at point give us the speci�c value of the estimator
while the estimator at set give us the set in which the estimator will be.

De�nition 44 Let x
¯ 1
; x
¯ 2
; :::; x

¯ n
independent and identically distributed random

variables with probability density function f
�
x
¯ i
; ��
�
; for every i 2 f1; :::; ng and

let �� 2 
 � Rs; s � 1 be an s dimensional parameter. Estimator
~

�� of the
parameter �� is called any statistical function of the variables x

¯ 1
; x
¯ 2
; :::; x

¯ r
2 Rr

which is used for the estimation of the parameter ��:
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The choice of the estimator is based on some criterions. The criterion of
bias, minimum dispersion, Bayes, minimum squares, tendecy and maximum
likelihood are some of them. We will examine the criterion of the maximum
likelihood in this thesis.

4.2 Maximum Likelihood Estimation

Maximum likelihood estimation [24] is one of the most preferred method of pa-
rameter estimation in statistics and it is used to many statistical methods, such
as non-linear modeling with non-normal data. In classical statistics we have
probability density functions. We have discrete and continuous probability dis-
tributions. We are interested in continuous probability distributions which are
de�ned as f

�
x
¯
; ��
�
: The variable x

¯
is "following" the probability distribution,

for example a Gaussian, and �� is the so called parameter. The parameter esti-
mation problem is described as the problem of �nding an appropriate value of
the parameter � under some cirmumstances. The parameter �� belongs to the
set of parameters �.
Let x

¯
= (x1; :::; xn) independent and identically distributed random variables

with probability density function px
�
x
¯
j��
�
; �� 2 �; and we suppose that the result

$0 of an experiment, gave the sample X¯
($0) =x¯

0;whereby we want to estimate
the real value ��0 of the unknown parameter �� 2 �; i.e. the real distribution
p (:::j�0 ) which created the sample. If the value of the unknown parameter was
�; then the probability of observing this speci�c sample X

¯
0 is

P� (X¯
=x
¯ 0
) =

nY
i=1

px
�
x0i j��

�
: (282)

Since where from all the elements of the sample space X , the unknown
p
�
:::j��0

�
, i.e. ��0 elected the x¯

0; it is intuitively satisfactory estimator of the

unknown ��0; that
�
�� 2 � from which is maximized the observation probability

P�
�
X
¯
=x
¯
0
�
of this speci�c sample x

¯
0 that really happened, i.e. the

�
�� 2 � is

satisfying that
P�
��

�
X
¯
=x
¯
0
�
= max

��2�
p�
�
X
¯
=x
¯
0
�
; (283)

if of course such a maximum exists. If the sample comes from a continuous
distribution f

�
:::j��

�
; �� 2 � then the above equality will be

P�
�
x0i � " < xi � x0i + "

�
= (2")

n
nY
i=1

f
�
x0i j��

�
;8" > 0; (284)

where i = 1; :::; n and �� 2 � = �: Thus, the estimator
�
�� of ��0, must satisfying

the following

f
�
x
¯
0j
�
��
�
= max

�2�
f
�
x
¯
0j
�
��
�
; (285)
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if of course such a maximum exists. We are interested in the estimators found
using the criterion of the maximum likelihood. Firstly, we de�ne the likelihood
function.

De�nition 45 Let x1; :::; xn independent and identically distributed random
variables with probability density functions px

�
::j��
�
if they are discrete, or fx

�
:::j��

�
if they are continuous and �� 2 �. The stochastic function L : � �! R with

L
�
��jx
¯

�
=

� nY
i=1

px
�
xij��

�
; if xi is discrete

nY
i=1

fx
�
xij��

�
; if xi is continuous

; (286)

is called Stochastical Function of Likelihood or Likelihood Function of the para-
meter �� 2 �:

We observe that for each x
¯
2 X ; the likelihood of �� on x

¯
, i.e. L

�
X
¯
=x
¯
j��
�
;

is exactly the probability density function of the stochastical sample X on the
point x

¯
, calculated with the parameter ��: We observe likelihood as a function

of �� for a given sample rather than a function of the sample.

4.3 Construction of the Maximum Likelihood Estimators

Suppose that for each �� 2 � � Rk; with probability density function px
�
xj��
�

or fx
�
xj��
�
; then there is a maximum

max
��2�

L
�
��
�
� max

��2�
L
�
x
¯
j��
�
: (287)

This happens because L
�
��
�
is a concave function of �� 2 �: Then each statistical

function
�
��n �

�
�� (x
¯
) : $ 2 
 7�!

�
�� (X
¯
($)) =

�
�� (x
¯
) 2 �; (288)

such that
L
��
��n

�
= max

��2�
L
�
��
�
; (289)

is called maximum likelihood estimator of the parameter �� 2 �: A maximum
likelihood estimator, if it exists is not necessary unique. Let k = dim� = 1
such that � 2 � � R, and we suppose that the likelihood function L (�) exists,
then if exists the maximimum likelihood estimator

�
�n, it must

L0
��
�n

�
= 0: (290)

Thus, we have to solve the equation L0 (�) = 0: Let �� a solution of the equation

L0 (�) = 0; (291)
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and in addition
L00 (��) < 0; (292)

then
�
�n = �� is one (not necessary unique) maximum likelihood estimator. If

generally k 2 N , the equations

L0
�
��
�
= 0; (293)

and
L00
�
��
��
< 0; (294)

must be substituted respectively from

5 L
�
��
�
=

�
#

#�1
L
�
��
�
; :::;

#

#�1
L
�
��
��
= 0
¯
. (295)

A solution �� of the above system with Hessian de�ned as follows

H 0 (��) =

�
#2

#�i#�j
L
�
��
��
��=���

< 0; (296)

is a maximum likelihood estimator
�
��n;where H 0 < 0 means that the k�k matrix

H 0 (��) is negative de�nite, i.e. for each a
¯
2 Rkn f0

¯
g

a
¯
TH 0a

¯
< 0: (297)

Considering the fact that for independent samples the likelihood is a product
of probability density functions, it is easier and equivalent to maximize the
logarithm of the likelihood which is de�ned as

ln = ln
�
��jx
¯

�
= logLn

�
��
�
= logLn

�
��jx
¯

�
=

� nX
i=1

log px
�
xij��

�
; if xi is a discrete variable

nX
i=1

log fx
�
xij��

�
; if xi is a continuous variable

:

(298)
We know that the function log is ascending. Thus, the points of maximum of the
likelihood function L, if they exists are the same with the points of maximum of

the function ln:We search the maximum likelihood estimation
~

��nto the solutions
��
�
of the system

5 ln
�
��
�
=

nX
i=1

5 log fx
�
xij��

�
= 0
¯
. (299)

The above set of equations are called maximum likelihood equations and they
widow the Hessian negative de�nite

H
�
��
��
=

�
#2

#�i#�j
ln
�
��
��
=

"
nX
i=1

#2

#�i#�j
log fx

�
xij��

�#
��=���

< 0: (300)
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If the variables xi are discrete, we simply substitute fx
�
xij��

�
with px

�
xij��

�
:

Summing, if the relevant derivatives exists we will �nd the maximum likelihood

estimators
~

��nusing the equations

5 ln (�) = 0; (301)

and
H
�
��
��
< 0: (302)

4.4 Procedure Step by Step

First Step. We �nd the �rst derivative of L(��)

5 L(��): (303)

Second Step. We set
5 L(��) = 0; (304)

and we solve the equation to locate extrema.
Third Step. We search the appropriate extrema such that

H(
~

��) < 0; (305)

where
~

�� is the solution of the equation

5 L(��) = 0: (306)

Finally, the
~

�� is the maximum likelihood estimator.

4.5 Examples

Example 46 We have a coin. We execute n independent coin tosses and we
have k heads. The toss of the coin is following a Binominal Distribution with
parameter r: Likelihood is given as

L (x1; :::; xn; r) =
Y
n

pX (xi; r) =
n!

(n� k)!r!r
k (1� r)(n�k) : (307)

For n = 100 trials and k = 56 heads the likelihood will be

L (x1; :::; xn; r) =
100!

44!56!
r56 (1� r)44 : (308)

We natural log both sides

ln (L (x
¯
; r)) = ln

�
n!

(n� k)!r!r
k (1� r)(n�k)

�
or

= ln

�
n!

(n� k)!r!

�
+ k ln r + (n� k) ln (1� r)

= 2464 + 56 ln r + 44 ln (1� r) : (309)
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We di¤erentiate for �

@

@�
f2464 + 56 ln r + 44 ln (1� r)g = 0 or

56

r
=

44

1� r or

r =
56

100
: (310)

We verify that the second derivative is negative for p = 56
100 with the following

calculation
@2

@2�

�
ln

�
L

�
x
¯
;
56

100

���
= �100 < 0: (311)

Example 47 Let x1; :::; xn independent and identically distributed variables from
a (stochastical sample) that are following the Gamma(a; �) distribution; with a
known and probability distibution with parameter �: Find the maximum likeli-
hood estimator of the parameter �:

Solution 48 We know that the probability density function of the Gamma (a; �) probability
distribution is

f (xij (a; �)) =
�a

� (a)
xa�1i e��xi1 (xi > 0) : (312)

We set as the parameter for estimation

� = �: (313)

Thus, the probability density function is

f (xij (a; �)) =
�a

� (a)
xa�1i e��xi1 (xi > 0) : (314)

The stochastic likelihood function is

L (�) = L (�jxi) =
nY
i=1

f (xij (a; �)) : (315)

The logarithm of the likelihood function is

l (�) = l (�jxi)
= logL (�jxi)

= log

(
nY
i=1

f (xij (a; �))
)

=

nX
i=1

log

�
�a

� (a)
xa�1i e��xi

�

= na log � � n log (� (a)) + log
 

nY
i=1

xa�1i

!
+ log

0BB@e��
nX
i=1

xi

1CCA :(316)
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We di¤erentiate l (�)

#

#�
fl (�)g =

=
na

�
�

 
nX
i=1

xi

!0BB@e��
nX
i=1

xi

1CCA

e
��

nX
i=1

xi

=
na

�
�

nX
i=1

xi: (317)

We verify that
#2

#2�
fl (�)g = �na

�2
< 0: (318)

Thus, there is maximum value of �:We solve the equation

#

#�
fl (�)g = 0; (319)

to �nd critical points.

#

#�
fl (�)g = 0 or

na

�
�

nX
i=1

xi = 0: (320)

Thus,
� =

na
nX
i=1

xi

=
a

nX
i=1

xi

n

=
a
_
x
; (321)

where
_
x is the arithmetic mean. The estimator ~� of the parameter � is

~� =
a
_
x
: (322)

Example 49 We will present a more di¢ cult problem. We must �nd the es-
timator of a two dimensional parameter �: Let

�
x1
y1

�
; :::;

�
xn
yn

�
independent and

identically distributed variables from a (stochastical) sample following the dis-
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tribution called N1

��
�1
�2

�
;

�
1 1

2
1
2 1

��
with probability density function

f

��
x

y

�
;

�
�1
�2

�
;

�
1 1

2
1
2 1

��
=

1

�
p
3

� expf�2
3
[(x� �1)

2

+(y � �2)
2 � (x� �1) (y � �2)]g: (323)

Find the maximum likelihood estimator of the two dimensional parameter
�
�1
�2

�
2

� � R2:

Solution 50 We set
�� =

�
�1
�2

�
: (324)

The logarithm of the likelihood is

l
�
��
�
= logL

�
��
�

=
nX
i=1

log

�
f

��
xi
yi

�
; ��

��

=
nX
i=1

logf 1

�
p
3

� exp
�
�2
3

h
(xi � �1)

2
+ (yi � �2)

2 � (xi � �1) (yi � �2)
i�
g

= log

�
1

�
p
3

�n
�2
3

nX
i=1

n
(xi � �1)

2
+ (yi � �2)

2 � (xi � �1) (yi � �2)
o

= �n log
�
�
p
3
�

�2
3

nX
i=1

n
(xi � �1)

2
+ (yi � �2)

2 � (xi � �1) (yi � �2)
o
: (325)
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We di¤erentiate l
�
��
�
as follows

#

#��

�
l
�
��
�	

=

= l

��
�1
�2

��
=

� #
#�1

�
l
�
��
�	

#
#�2

�
l
�
��
�	�

= �2
3

� nX
i=1

[�2 (xi � �1) + (yi � �2)]

nX
i=1

[�2 (yi � �2) + (xi � �1)]

�

= �2
3

�
A (�1; �2)

B (�1; �2)

�
: (326)

We di¤erentiate #
#��

�
l
�
��
�	
one more time

#2

#2��

�
l
�
��
�	

=

 
#
#�21

�
l
�
��
�	

#
#�2#�1

�
l
�
��
�	

#
#�1#�2

�
l
�
��
�	

#
#�22

�
l
�
��
�	 !

=

�
#
# fA (�1; �2)g

#
# fA (�1; �2)g

#
# fB (�1; �2)g

#
# fB (�1; �2)g

�
=

�
� 4
3n

2
3n

2
3n � 4

3n

�
= �2

3

�
2n �n
�n 2n

�
: (327)

We must check now that the matrix

� 2
3

�
2n �n
�n 2n

�
; (328)

is negative de�nite. For every vector

a
¯
=
�
a1 a2

�
(329)

we verify that

a
¯
T

�
�2
3

�
2n �n
�n 2n

��
a
¯

< 0 or

�
�
a1 a2

� 2
3

�
2n �n
�n 2n

��
a1
a2

�
< 0 or

�2
3

�
2na21 � 2na1a2 + 2na22

�
< 0: (330)
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Thus, there is a maximum value for
�
�1
�2

�
: I search now the critical values of

#

#
!
�

�
l
�
��
�	
: We solve the equation

#

#��

�
l
�
��
�	
= 0: (331)

The above equation consists of two other equations,

#

#�1

�
��
	

= 0 or

A (�1; �2) = 0 or

4

3

nX
i=1

xi +
4

3
n�1 +

2

3

nX
i=1

yi �
2

3
n�2 = 0 or

�1 =

nX
i=1

xi

n
=

_
x; (332)

and

#

#�2

�
l
�
��
�	

= 0 or

B (�1; �2) = 0 or

4

3

nX
i=1

yi +
4

3
n�2 +

2

3

nX
i=1

xi �
2

3
n�1 = 0 or

�2 =

nX
i=1

yi

n
=

_
y: (333)

Thus, the maximum likelihood estimator of

�� =

�
�1
�2

�
; (334)

is
~

�� =

�_
x
_
y

�
: (335)
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5 Parametric Estimation via QW

Firstly, we determine the probability density function from the QW and then
follow the procedure of the maximum likelihood estimation.

5.1 The Density Matrix Discrete Time Evolution

The density matrix of the walker for a CRW is,

EVcl(�w) = TrcfVcl(�c 
 �w)V
y
clg (336)

where
Vcl = P0 
 E+ + P1 
 E�: (337)

We quantize the CRW using the U rule, which introduces the quantization
map

Vcl ! Vq = (U 
 1)Vcl; (338)

where the unitary reshu ing matrix operating in coin space is used

U =

�
cos � sin �
� sin � cos �

�
2 SU(2); (339)

where SU(2) = fU 2 M2x2; s:t:UU
y = 1 = UyU and detU = 1g: More

speci�cally, U(�) is a real matrix and belongs to the subgroup of orthogonal
matrices i.e. U 2 SO(2) � SU(2):
The density matrix of the walker after one step of QW is

EVq (�w) = TrcfVq(�c 
 �w)V yq g
= Trcf[(U 
 1)| {z }

Vq

Vcl](�c 
 �w)[V
y
cl(U

y 
 1)| {z }
V y
q

]g: (340)

Next we calculate explicitly the matrix Vq, starting with the CRW unitary
evolution operator

Vcl =

2�Z
0

��
ei�1 0
0 e�i�1

�

 j�1i h�1j

�
d�1
2�

; (341)

and obtaining
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Vq = (U 
 1)Vcl

= (

�
cos � sin �
� sin � cos �

�


�
1 0
0 1

�
)

�
2�Z
0

��
ei�1 0
0 e�i�1

�

 j�1i h�1j

�
d�1
2�

=

2�Z
0

��
ei�1 cos � e�i�1 sin �
�ei�1 sin � e�i�1 cos �

�

 j�1i h�1j

�
d�1
2�

: (342)

Setting

M(�) = U(�)Vcl(�) =

�
ei�1 cos � e�i�1 sin �
�ei�1 sin � e�i�1 cos �

�
; (343)

we obtain for Vq

Vq =

2�Z
0

[M(�1)
 j�1i h�1j]
d�1
2�

: (344)

Due to the delta-function orthogonality of the �-basis vectors i. e. h�1j j�2i| {z } =
�(�1��2); the evaluation of kth step density operator of QW requires the eval-
uation of the kth power of matrix Vq; which will be next derived inductively
as follows:

(Initialization Step) For n = 1, the decomposition of Vq previously obtained
reads

Vq =

2�Z
0

[M(�1)
 j�1i h�1j]
d�1
2�

: (345)

For n = 2,
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V 2q = VqVq

= [

2�Z
0

fM(�1)
 j�1i h�1jg
d�1
2�
][

2�Z
0

fM(�2)
 j�2i h�2jg
d�2
2�
]

=

2�Z
0

2�Z
0

8><>:M(�1)M(�2)
 j�1i h�1j j�2i| {z }
�(�1��2)

h�2j

9>=>; d�1
2�

d�2
2�

�
=

2�Z
0

8<:
2�Z
0

M(�1)M(�2)
 j�1i h�2j �(�1 � �2)
d�1
2�

9=; d�2
2�

=

2�Z
0

fM(�2)M(�2)
 j�2i h�2jg
d�2
2�

=

2�Z
0

M(�2)
2 
 j�2i h�2j

d�2
2�

; (346)

(where the reproducing kernel property of delta function viz.

2�Z
0

F (�1)�(�1 �

�2)
d�1
2� = F (�2)):
(Inductive Step) For n = k + 1;

V k+1q = Vq:::Vq

= f
2�Z
0

[M(�1)
 j�1i h�1j]
d�1
2�
g:::f

2�Z
0

[M(�k+1)

���k+1� 
�k+1��]d�k+12�

g

=

2�Z
0

:::

2�Z
0

f[M(�1):::M(�k+1)]
 [j�1i h�1j :::
���k+1� 
�k+1��]gd�12� :::d�k+12�

=

2�Z
0

:::

2�Z
0

f[M(�1):::M(�k+1)]
 [j�1i


�k+1

�� �(�1 � �2):::�(�k � �k+1)]gd�12� :::d�k+12�

=

2�Z
0

[M(�k+1):::M(�k+1)

���k+1� 
�k+1��]d�k+12�

=

2�Z
0

[M(�k+1)
k+1 


���k+1� 
�k+1��]d�k+12�
: (347)
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(Final step) Therefore by induction we have shown that

V kq =

2�Z
0

�
Mk(�1)
 j�1i h�1j

	 d�1
2�

: (348)

To explicitly determine operator V kq we proceed to calculate the kth power
of matrix M(�1);

M(�1) =

�
ei�1 cos � e�i�1 sin �
�ei�1 sin � e�i�1 cos �

�
: (349)

To this end, we study the characteristic equation of M; which via the di¤er-
ence

M(�1)� �1 =

�
ei�1 cos � e�i�1 sin �
�ei�1 sin � e�i�1 cos �

�
� �

�
1 0
0 1

�
=

�
ei�1 cos � � � e�i�1 sin �
�ei�1 sin � e�i�1 cos � � �

�
(350)

, reads xM(�1)
(�) := det (M(�1)� �1) = 0; where

xM(�1)
(�) =

�
ei�1 cos � � �

� �
e�i�1 cos � � �

�
+ ei�1e�i�1 sin2 �

= �2 � � cos � cos�1 + 1
= �2 � �Tr fM(�1)g+ detM(�1)
= 0: (351)

We set � = 1
2Tr fM(�1)g ; to obtain

xM(�1)
(�) = �2 � 2��+ 1 = 0: (352)

Utilizing the Cayley-Hamilton theorem [6] which states that any �nite matrix
satis�es its own characteristic equation, we obtain

xM(�1)
(M(�1)) =M2(�1)� 2�M(�1) + 1 = 0;

or

M2(�1) = 2�M(�1)� 1: (353)

Last equation implies that any higher power of M(�1) can be expressed as
a linear combination of M(�1) and the identity matrix 1, i.e.

Mk(�1) =M(�1)Uk�1(�)� 1Uk�2(�); (354)

where Uk(�) is a polynomial of degree k in �; to be speci�ed shortly.
Multipling last equation by M(�1) yields
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Mk+1(�1) = M2(�1)Uk�1(�)�M(�1)Uk�2(�)
(353)
= [2�M(�1)� 1]Uk�1(�)�M(�1)Uk�2(�) (355)

and from eq.(354) by substitution k ! k + 1; we obtain

Mk+1(�1) =M(�1)Uk(�)� 1Uk�1(�); (356)

and then by equating eqs.(355)(356) and elaborating, we obtain

[2�M(�1)� 1]Uk�1(�)�M(�1)Uk�2(�) =M(�1)Uk(�)� 1Uk�1(�); (357)

2�M(�1)Uk�1(�)�1Uk�1(�)�M(�1)Uk�2(�) =M(�1)Uk(�)�1Uk�1(�); (358)

and

M(�1)[2�Uk�1(�)� Uk�2(�)� Uk(�)] = 0: (359)

which, given that M(�1) 6= 0; yields the recurrence relation

2�Uk�1(�)� Uk�2(�)� Uk(�) = 0; (360)

which by substituting k ! k + 2; and multipling by (�1) ; becomes

Uk+2(�)� 2�Uk+1(�) + Uk(�) = 0; (361)

which is identi�ed with the two step recursion relation de�ning Chebyshev poly-
nomials [12]. This relation is initialized by the �rst two polynomials which are
determined by �rst setting k = 1 in eq.(354);

M2(�1) =M(�1)U1(�)� 1U0(�) (362)

and then using eq.(353), to obtain equation

2�M(�1)� 1 =M(�1)U1(�)� 1U0(�); (363)

which provides the two initial polynomials

U0(�) = 1; U1(�) = 2�: (364)

Thus summarizing fUk(�)g1k=0 are the second kind Chebyshev polynomials, and
by means of eq. (354) would determine the density matrix of QW at any step
k via. eq.(348).
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5.2 QW and Maximum Likelihood Parametric Estimation

Having explicit knowledge of the evolution operator V kq for any time step k for
the bipartite system of QWer and coin we proceed to determine the distribution
of occupation probabilities on the integer lattice. To this end we recall that
the density matrix of the QWer after traccing out the coin degrees of freedome
reads

Eq;k(�w) = Trc

8<:
2�Z
0

2�Z
0

�
(Mk(�1; �)�cM

k(�2; �)
y)
 j�1i h�1j �w j�2i h�2j

	 d�1
2�

d�2
2�

9=; :

(365)
We now compute the trace in the coin space,

Trc
�
Mk(�1; �)�cM

k(�2; �)
y	 = Trcf(M(�1; �)Uk�1(�1)

�1Uk�2(�1))�c(M(�2; �)Uk�1(�2)
�1Uk�2(�2))yg

= Trcf(M(�1; �)Uk�1(�1)
�1Uk�2(�1))�c(M(�2; �)yUk�1(�2)
�1Uk�2(�2))g

= Uk�1(�1)Uk�1(�2)Trc
�
M(�1; �)�cM(�2; �)

y	
�Uk�1(�1)Uk�2(�2)Trc fM(�1; �)�cg
�Uk�2(�1)Uk�1(�2)Trc

�
�cM(�2; �)

y	
+Uk�2(�1)Uk�2(�2); (366)

where

�i = �(�i; �) =
1

2
Tr [M(�i; �)]

= cos � cos�i; i = 1; 2: (367)

Next, we calculate the occupation probability distribution P [Xk = x]; for
the walker to be at position x 2 Z in step k: This distribution can be described
by Xk; a classical random variable that determines walker�s position on the
integer lattice i.e. Xk 2 Z 2 f:::;�1; 0;+1; :::g; after k steps.
Denoting the time evolved density matrix by

�(k)w = Eq;k(�(0)w ); (368)

and introducing the position projection operator at the k�th step,

L(k) = jxi hxj ; (369)

where jxi ; x 2 Z; is a positition eigenestate, i.e. L jxi = x jxi : Projection L(k)
is taken as the observable of interest at time k, the expectation value of which
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provides the occupation probability distribution, as

P [Xk = x] = Tr
h
L(k)Eq;k(�(0)w )

i
= Tr

n
jxi hxj �(k)w

o
= hxj �(k)w jxi

� p(k)(xj�): (370)

The likelihood function de�ne for a set of lattice position denoted by a vector
as x

¯
=(x1; :::; xn) ; reads

L(k)n (�jx
¯
) �

nY
j=1

p(k)(xj j�): (371)

The task of maximizing the likelihood is equivalent to the maximization of
its logarithm

l(k)n (�) � l(k)n (�jx
¯
)

= logL(k)n (�)

� logL(k)n (�jx
¯
)

= log
nY
j=1

p(k)(xj j�)

=
nX
j=1

log p(k)(xj j�): (372)

This leads to the need to solve the equation

@

@�
l(k)n (�) = 0; (373)

i.e.
@

@�
l(k)n (�) =

nX
j=1

1

p(k)(xj j�)
@p(k)(xj j�)

@�
= 0; (374)

i.e. for each j we need to determine the roots of function p(k)(xj j�) = hxj j Eq;k(�(0)w ) jxji :
Let us choose a loop for the QW i.e.

L(k)=�(0)w = jxihxj; (375)

where jxi; x 2 Z; a basis vector. This choice implies that the initial and �nal
state for QWer be the same, say some jxi; x 2 Z; then referring to eq. (365);

we compute

Trw

n
L(k) j�1i h�1j �w j�2i h�2j

o
= Trw fjxihxj(j�1i h�1j jxihxj j�2i h�2j)g

= jhxj�1ij2jhxj�2ij2 =
1

(2�)
2 ; (376)
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i.e. independent from variables �1; �2 and x: This choice of the loop implies a
drastic simpli�cation for the likelihood function since now we have that

l(k)n (�jx
¯
) = log

�
p(k) (x

¯
j�)
�n
= n log p(k)(x

¯
j�): (377)

Since for the propabilities p(k) 2 [0; 1] ; we obtain l(k)n = log p(k) < 0; thus
likelihood must be negative and the maximization of likelihood requires

@2l
(k)
n (�jx

¯
)

@�2
< 0; (378)

or by denoting derivative with respect to � with a prime,

p(k)
00
p(k) � p(k)02
p(k)2

< 0: (379)

Therefore the introduction of loop idea, which implies the involvement of
return probabilities in the evaluation of the likelihood function, results into a
factorization of l(k)n into two factors depending separately on n and k; cf. eq.
(377). The task of likelihood maximization is then equivalent to the maximiza-
tion of distribution p(k)(x

¯
j�) for given k 2 N; for those parameters � 2 [��; �)

for which the distribution satis�es

p(k)
00
p(k) < p(k)

02: (380)

After this important remarks we proceed with the evaluation of p(k)(x
¯
j�)

which via eqs. (365, 376, and 377) reads,

p(k)(x
¯
j�) =

1

2�

2�Z
0

2�Z
0

Uk�1(�1)Uk�1(�2)

�Trc
�
M(�1; �)�cM(�2; �)

y	 d�1d�2
(2�)

2

� 1

2�

2�Z
0

2�Z
0

Uk�1(�1)Uk�2(�2)Trc fM(�1; �)�cg
d�1d�2

(2�)
2

� 1

2�

2�Z
0

2�Z
0

Uk�2(�1)Uk�1(�2)Trc
�
�cM(�2; �)

y	 d�1d�2
(2�)

2

+
1

2�

2�Z
0

2�Z
0

Uk�2(�1)Uk�2(�2)
d�1d�2

(2�)
2 : (381)

To proceed we need to evaluate seperately the following three terms Trc
�
M(�1; �)�cM(�2; �)

y	
; T rc fM(�1; �)�cg and Trc

�
�cM(�2; �)

y	 : To this recalling theM matrix from
eq. (349) and choosing the initial coin state to be jci = j0i ; we get

72



Trc
�
M(�1; �)�cM(�2; �)

y	 = ei�1e�i�2 ;

T rc fM(�1; �)�cg = cos �ei�1 ;

T rc
�
�cM(�2; �)

y	 = cos �e�i�2 : (382)

This results into the next expression for the distribution function, in terms
of factorized integrals,

p(k)(x
¯
j�) =

1

2�

0@ 2�Z
0

Uk�1(�1)e
i�1

d�1
2�

1A0@ 2�Z
0

Uk�1(�2)e
�i�2 d�2

2�

1A
� 1

2�

0@ 2�Z
0

Uk�1(�1)e
i�1

d�1
2�

1A0@ 2�Z
0

Uk�2(�2)
d�2
2�

1A
� 1

2�

0@ 2�Z
0

Uk�2(�1)
d�1
2�

1A0@ 2�Z
0

Uk�1(�2)e
�i�2 d�2

2�

1A
+
1

2�

0@ 2�Z
0

Uk�2(�1)
d�1
2�

1A0@ 2�Z
0

Uk�2(�2)
d�2
2�

1A : (383)

An explicit form of probability distribution function above, and subsequently
its optimization with respect to the parameter �; requires the evaluation of inte-
grals with respect to argument � of Chebyshev polynomials and also evaluation
of derivatives with respect to parameter �: To accomplish these tasks the follow-
ing technical lemma will be used, the proof of which is referred to the appendix.

Lemma 51 (Technical Lemma) Let the Chebyshev polynomials of the second
kind Uk(cos�) with respect to cos�; then for polynomials with scaled argument

Uk(�) := Uk(�(�) cos�); (384)

where �(�) = cos � is a function of parameter �; the relations and de�nition of
functions Y2r(�(�)); issued in eqs. (385-389), are valid:

2�Z
0

U2r+1(�(�) cos�)
d�

2�
= 0; (385)

2�Z
0

U2r(�(�) cos�)
d�

2�
=: Y2r(�(�)); (386)
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and also the integrals involving polynomials and trigonometric functions

2�Z
0

U2r(�(�) cos�) cos�
d�

2�
= 0; (387)

and similarly

2

2�Z
0

U2r+1(�(�) cos�) cos�
d�

2�
= Y2r(�(�)) + Y2r+2(�(�)): (388)

Also Ym=odd(�(�)) = 0; and

Ym=even(�(�)) =
1

�

bm=2cX
l=0

cl(�)
(m� 2l � 1)!!
(m� 2l)!! ; (389)

where cl(�) = (�1)l
�
m�l
l

�
(2 cos �)m�2l:

Having state the content of technical lemma we now proceed with the eval-
uation of the distribution function. We will evaluate separately the case of odd
and even number of steps.

5.2.1 Odd number of steps

For k = odd; k� 1 = even; k� 2 = odd; by means of the lemma, all lines exept
the �rst one is zero, and these yields

p(x
¯
j�) = 1

2�

0@ 2�Z
0

Uk�1(�1)e
i�1

d�1
2�

1A0@ 2�Z
0

Uk�1(�2)e
�i�2 d�2

2�

1A ; (390)

or

p(x
¯
j�) =

1

2�

0@ 2�Z
0

Uk�1(�1) cos�1
d�1
2�

+ i

2�Z
0

Uk�1(�1) sin�1
d�1
2�

1A
�

0@ 2�Z
0

Uk�1(�2) cos�2
d�2
2�

� i
2�Z
0

Uk�1(�2) sin�2
d�2
2�

1A ; (391)

which leads to

p(k)(x
¯
j�) = 1

2�

0@ 2�Z
0

Uk�1(�) sin�
d�

2�

1A2

= 0; (392)

which then implies l(k=odd)n (�jx
¯
) = 0:
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5.2.2 Even number of steps

For k = even; k � 1 = odd; k � 2 = even; by means of the lemma, we obtain

p(k)(x
¯
j�) =

1

2�

0@ 2�Z
0

Uk�1(�1) cos�1
d�1
2�

+ i

2�Z
0

Uk�1(�1) sin�1
d�1
2�

1A
�

0@ 2�Z
0

Uk�1(�2) cos�2
d�2
2�

� i
2�Z
0

Uk�1(�2) sin�2
d�2
2�

1A
� 1

2�

0@ 2�Z
0

Uk�1(�1) cos�1
d�1
2�

+ i

2�Z
0

Uk�1(�1) sin�1
d�1
2�

1A
�

0@ 2�Z
0

Uk�2(�2)
d�2
2�

1A
� 1

2�

0@ 2�Z
0

Uk�2(�1)
d�1
2�

1A
�

0@ 2�Z
0

Uk�1(�2) cos�2
d�2
2�

� i
2�Z
0

Uk�1(�2) sin�2
d�2
2�

1A
+
1

2�

2�Z
0

2�Z
0

Uk�2(�1)Uk�2(�2)
d�1d�2

(2�)
2 : (393)

Furtherore, by virtue of the lemma the integrals with cosine terms in the
integrand give zero, and this results in

p(x
¯
j�) =

1

2�

0@1
2
(Yk�2(�(�)) + Yk(�(�))) + i

2�Z
0

Uk�1(�1) sin�1
d�1
2�

1A
�

0@1
2
(Yk�2(�(�)) + Yk(�(�)))� i

2�Z
0

Uk�1(�2) sin�2
d�2
2�

1A
�� 1

2�
Yk�2(�(�))

0@1
2
(Yk�2(�(�)) + Yk(�(�))) + i

2�Z
0

Uk�1(�1) sin�1
d�1
2�

1A
�� 1

2�
Yk�2(�(�))

0@1
2
(Yk�2(�(�)) + Yk(�(�)))� i

2�Z
0

Uk�1(�2) sin�2
d�2
2�

1A
�+ 1

2�
Yk�2(�(�))Yk�2(�(�)); (394)

75



then

p(k)(x
¯
j�) = 1

8�
fYk�2(�(�)) + Yk(�(�)g2 +

1

2�

8<:
2�Z
0

Uk�1(�) sin�
d�

2�

9=;
2

; (395)

or �nally

p(k)(x
¯
j�) = 1

8�
(Yk�2(cos �) + Yk(cos �))

2
; (396)

which by the realation l(k)n = log(p(k))n yields for the likelihood function

l(k)n (�jx
¯
) = 2n log

�
1p
8�
(Yk�2(cos �) + Yk(cos �))

�
: (397)

Having determined the distribution of probabilities in eq.(396) we procced to
determine parameter � from inequality of eq. (380), which now reads explicitlyh

(Yk�2 + Yk)
2
i00
(Yk�2 + Yk)

2
<
�
2 (Yk�2 + Yk)

�
Y 0k�2 + Y

0
k

��2
: (398)

From the explicit form of functions Yk(�(�)) we can determine interval of
values for the parameter �; that satisfy the above inequality that amounts to the
maximization of likelihood. We proceed with the simplifying case of k = 2; which
needs only the �rst two Chebyshev polynomials U0; U1 to derive the pertinent
functions Y0(�) = 1 and Y1(�) = 2 cos2 � � 1; that lead to the inequality to be
satis�ed

2 (sin �)
2
(cos �)

2
+ (cos �)

3 � 4 (cos �)2 (sin �)2 < 0: (399)

The sets that the optimum value (maximum likelihood estimator) of � are
displayed as shaded bars in the �gure below. The line is the graph of l0 (�) =
0. The intersections of this line with the parameter theta axis are the critical
points of l0: If an intersection is inside a shaded bar, then this point is a maximum
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parameter estimator.
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parameter theta

s. log derivative of likelihood

(400)
We next repeat the estimation for the cases of more QW steps, namely we deal
with the cases of k = 4; 6: The respective inequalites and their display are, �rst
for k = 4;

�
�c� 24c3s+ 12cs

�
+2
�
c+ 6c4 � 6c2 + 2�

� �
�c+ 72c2s2 � 24c4 � 12s3 + 12c2

�
< 0
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s. log derivative of likelihood

(401)

and for k = 6;

�
120sc5 � 96sc3 + 12sc

�2 � �20c6 � 24c4 + 6c2 + 2� � 1�3
�(120c6 � 600c4s2 � 96c4 + 288c2s2 + 12c2 + 12s3 � 24s2�)
�2
�
120sc5 � 96sc3 + 12sc

�2 �
20c6 � 24c4 + 6c2 + 2� � 1

�2
< 0
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(402)

5.3 Final remarks on the calculation method for the like-
lihood

i) The parameter estimation method put forward in this work uses the maximum
likelihood problem as a device to accomplish its aim, i.e. the estimation. The
likelihood function is constructed by using the return probability for a closed
orbit (or loop trip) on integers carried out by a QWer. The closed orbit choice is
made solely on the basis of computational simpli�cation it can provide. Within
the presumed formalism of QW our choices are possible (i.e. open orbits of
so short), for which however some technique of reducing the computation load
should be found. Those other type of orbits are expected to give more reliable
results for the parameter estimation.
ii) Parameter k denotes the number of steps in which a CRWer di¤uses in

a range of order O(
p
k); while a QWer is quadratically faster and di¤uses in a

range of order O(k): This quadratic speed up implies that a MLE of a parameter
via QW utilizes a more extended set of points, and in this way renders the
QW based estimation algorithm more e¤ective in comparison with its classical
counterpart.

iii) The MLE based algorithm uses a set of n QWs to built its likelihood
function. Therefore a data box of size k� n, representing the number of steps �
the numbers of QWs constitutes the data resources for the estimation problem
in hand. Given that bigger data box is expected to produce better estimations,
the standard dilemma: "larger number of steps or larger number of QW?",
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should be decided e¢ ciently so that the parameter � is nearly optimal. Both
in classical estimation theory and in present quantum like estimation approach,
k and n are considered as quantities of two rival resources in scarcity, i.e. the
data box dilemma transcripts in our context to: "fewer QWs running for longer
time, or many QWs running for shorter time?". Notice the signi�cance of the
quadratic speed up of QW (faster di¤usion rate of a QW), in connection with
data box dilemma. A QW produces O(k) � n data points, in comparison to a
CRW that could be used instead, which produces O(

p
k)� n data points, so it

is expected to provide a more e¢ cient parameter estimation.

A Appendix

A.1 Discrete Time Fourier Transform

The Discrete Time Fourier Transform is part of the family of Fourier transforms.
It transforms a function f (n) of a discrete time variable n 2 Z into a continuous,
periodic spectrum F

�
ei$
�
: Let f : Z �! C be a complex function over the

integers=)its discrete fourier transform F : [��; �] �! C is given by

F
�
ei$
�
=

1X
n=�1

f (n) e�in$ (403)

and its inverse is given by

f (n) =
1

2�

Z �

��
F
�
ei$
�
ein$d$: (404)

A.2 Fourier Transformation Techniques

The discrete Fourier transform of a function f(x) is

~f(x) =
+1X
l=�1

eixlf(l): (405)

The continuous Fourier transform of a function f(x) is

~f(x) =

Z +1

�1
eixtf(t)dt: (406)

The Fourier transforms are often called characteristic functions.

A.3 Fourier Convolution Theorem

Let f be a function. The Fourier transform of f is de�ned as

f
F�!

^

f = F [f ] (407)
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The inverse Fourier transform of f is de�ned as

^

f
F�1
�! f = F�1

�
^

f

�
: (408)

The linearity of the Fourier transform is de�ned as

f1 + �f2
F�! \af1 + �f2 = a

^

f1 + �
^

f2: (409)

The Fourier transform is non commutative because�
^

f1;
^

f2

�
6= 0 : (410)

Theorem 52 Convolution Theorem

df1f2 = ^

f1 �
^

f2; (411)

more explicitly�
^

f1 �
^

f2

�
m

=
X
m

�
^

f1

�
m

�
^

f2

�
n�m

;
^

f1;
^

f2 discrete functions (412)

and �
^

f1 �
^

f2

�
(s) =

Z
^

f1 (x� s)
^

f2 (x) dx;
^

f1;
^

f2continuous functions : (413)

A.4 Chebyshev Polynomials

Chebyshev polynomials [12] are a sequence of orthogonal polynomials which are
related to de Moivre�s formula and which can be recursively expressed. They
are divided into two categories, Chebyshev polynomials of �rst kind Tn and
second kind Un, and they are polynomials of degree n: Chebyshev polynomials
are solutions of the Chebyshev di¤erential equations

(1� x2)y00 � xy0 + n2y = 0; (414)

and

(1� x2)y00 � 3xy0 + n(n+ 2)y = 0: (415)

The above equations are special cases of the Sturm Liouville di¤erential equa-
tion.
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A.4.1 The �rst kind of Chebyshev Polynomial Tn (x)

The Chebyshev polynomials of the �rst kind are de�ned recursively as

T0(x) = 1; T1(x) = x; (416)

T(n+1)(x) = 2xTn(x)� T(n�1)(x): (417)

The conventional generating function for Tn is

+1X
n=0

tnTn(x) =
1� tx

1� 2tx+ t2 ; (418)

or by trigonometric de�nition

Tn(cos �) = cos(n�): (419)

A.4.2 The second kind of Chebyshev Polynomial Un (x)

The Chebyshev polynomials of the second kind are de�ned recursively as

U0(x) = 1; U1(x) = 2x; (420)

U(n+1)(x) = 2xUn(x)� U(n�1)(x); (421)

or by trigonometric de�nition

Un(cos �) =
sin((n+ 1)�)

sin �
: (422)

A.4.3 Di¤erentiation

Let n = odd and x = cos�

Un (x) = 2
X
j:odd

Tj (x) ; (423)

d

dx
fUn (x)g = 2

X
j:odd

�
d

dx
fTj (x)g

�
= 2

X
j:odd

jUj�1 (x) : (424)

We substitute x with �x

Un (�x) = 2
X
j:odd

Tj (�x) : (425)

We di¤erentiate for �x

d

d (�x)
[Un (�x)] = 2

X
j:odd

�
d

d (�x)
fTj (�x)g

�
= 2

X
j:odd

jUj�1 (�x) : (426)
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A.4.4 A Lemma about Chebyshev Polynomials

Lemma 53 Let the Chebyshev polynomials of the second kind Uk(cos�) with re-
spect to cos�; then for polynomials with scaled argument Uk(�) := Uk(�(�) cos�);
where �(�) = cos � is a function of parameter �; the relations issued in eqs.
427,428, and 429-432, are valid

@

@�
[U2r+1(�)] = � tan �

2r+1X
m:odd

m[cos�Um�2(�) + Um(�)]; (427)

@

@�
[U2r(�)] = � tan �

2rX
m:even

m[Um�2(�) + Um(�)]; (428)

regarding derivatives and

2�Z
0

fU2r+1(�(�) cos�)g
d�

2�
= 0; (429)

2�Z
0

fU2r(�(�) cos�)g
d�

2�
= Y2r(�(�)); (430)

regarding integrals, and the following integrals involving polynomials and trigono-
metric functions

2

2�Z
0

fcos�U2r(�(�) cos�)g
d�

2�
=

2�Z
0

fU2r�1(�(�) cos�)g
d�

2�
(431)

+

2�Z
0

fU2r+1(�(�) cos�)g
d�

2�
= 0;

and similarly

2

2�Z
0

fcos�U2r+1(�(�) cos�)g
d�

2�
= (432)

=

2�Z
0

fU2r(�(�) cos�)g
d�

2�
+

2�Z
0

fU2r+2(�(�) cos�)g
d�

2�

= : Y2r(�(�)) + Y2r+2(�(�));

where the polynomials Y2r(�(�)) and Y2r+2(�(�)) wrt parameter � has been
introduced in 430.
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Proof
For k odd

2�Z
0

�
@

@�
[Uk�2(cos � cos�1)]

�
d�1
2�

= � tan �
k�2X
m:odd

m

0@ 2�Z
0

fUm�2(cos � cos�1) + Um(cos � cos�1)g
d�1
2�

1A :

(433)

Recall the de�nition

Un(x) =

bn=2cX
l=0

(�1)l
�
n� l
l

�
(2x)n�2l; n > 0; (434)

where x = cos�: Substituting x! �x;with � = cos �; we get

Un(�x) =

bn=2cX
l=0

(�1)k
�
n� l
l

�
(2�x)n�2l; n > 0; (435)

then e.g. with m odd

2�Z
0

fUm�2(cos � cos�1)g
d�1
2�

=

2�Z
0

fUm�2(� cos�1)g
d�1
2�

=

b(m�2)=2cX
l=0

(�1)k
�
m� 2� l

l

�
(2�)

m�2�2l

�

0@ 2�Z
0

�
(cos�1)

m�2�2l	 d�1
2�

1A
= 0: (436)

Next we calculate the derivative wrt �;

@

@�
Uk�2(cos � cos�1) = �(sin � cos�1)2

k�2X
m:odd

mUm�1(cos � cos�1)

= � tan �
k�2X
m:odd

m[Um�2(�1) + Um(�1)]; (437)

therefore for k odd

@

@�
Uk�2(�1) = � tan �

k�2X
m:odd

m[Um�2(�1) + Um(�1)]: (438)
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We conclude that
Ym=odd(�(�)) = 0; (439)

and therefore via eq 392, that p(odd) (xj�) = 0 and l
(odd)
n (�jx) = 0 for odd

number of steps.
For k even

2�Z
0

�
@

@�
[Uk�2(cos � cos�1)]

�
d�1
2�

= � tan �
k�2X

m:even

m

0@ 2�Z
0

fUm�2(cos � cos�1) + Um(cos � cos�1)g
d�1
2�

1A ;

(440)

then by using the explicit expression for Chebyshev polynomials as before we
obtain,

2�Z
0

fUm�2(cos � cos�1)g
d�1
2�

=

2�Z
0

fUm�2(� cos�1)g
d�1
2�

=

b(m�2)=2cX
l=0

(�1)l
�
m� 2� l

l

�
(2�)

m�2�2l

�

0@ 2�Z
0

�
(cos�1)

m�2�2l	 d�1
2�

1A
=

b(m�2)=2cX
l=0

(�1)l
�
m� 2� l

l

�
(2�)

m�2�2l

�
�
2
(m� 2l � 3)!!
(m� 2l � 2)!!

�

= 2

b(m�2)=2cX
l=0

(�1)l
�
m� 2� l

l

�
�(m� 2l � 2)!(2 cos �)

m�2�2l

= : Ym�2(cos �): (441)

Then, similarly
2�Z
0

fUm(cos � cos�1)g
d�1
2�

= Ym(cos �); (442)
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therefore cf. eq. 440, we get

2�Z
0

�
@

@�
[Uk�2(cos � cos�1)]

�
d�1
2�

= � tan �
k�2X

m:even

m [Ym�2(cos �) + Ym(cos �)] ;

(443)
by means of identities

Z 2�

0

fcoss xg dx =

�
= 0; s odd
6= 0; s even ;Z 2�

0

fcoss xg dx = 2

�Z �

0

fcoss x g dx
�
= 2

(s� 1)!!
s!!

�s;even: (444)

Next we calculate the derivative wrt �;

@

@�
[Uk�2(cos � cos�1)] = �(sin � cos�1)2

�
k�2X

m:even

mUm�1(cos � cos�1)

= � sin �
cos �

2

�
k�2X

m:even

m(cos � cos�1)

�Um�1(cos � cos�1)
= � tan �

�
k�2X

m:even

m[Um�2(cos � cos�1)

+Um(cos � cos�1)]

= � tan �
k�2X

m:even

m[Um�2(�1) + Um(�1)]; (445)

therefore for k even

@

@�
[Uk�2(�1)] = � tan �

k�2X
m:even

m[Um�2(�1) + Um(�1)]:� (446)

Finally, we explicitly compute the integrals determining the Ym functions,

Ym(�(�)) =

2�Z
0

Um(�(�) cos�)
d�

2�
; (447)
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which yields

Ym=even(�(�)) =
1

�

bm=2cX
l=0

cl(�)
(m� 2l � 1)!!
(m� 2l)!! ; (448)

where

cl(�) = (�1)l
�
m� l
l

�
(2 cos �)m�2l: (449)

A.5 Tutorial on Maximum Likelihood Estimation

There are two general methods of parameter estimation, least squares estima-
tion and maximum likelihood estimation. Maximum likelihood estimation is
a preferred method of parameter estimation in statistics and a basic tool for
many statistical modeling techniques. The purpose of the master thesis is to
provide a good conceptual understanding of the maximum likelihood method
with some concrete examples. The principle of maximum likelihood estimation,
originally devoloped by R.A. Fisher in the 1920s, states that the desired proba-
bility distribution is the one that makes the observed data "most likely", which
means that one must seek the value of the parameter vector that maximizes
the likelihood function L. The resulting parameter vector, which is sought by
searching the multi dimensional parameter space, is called the maximum like-
lihood estimate. Maximum likelihood estimates need not exist nor be unique.
The maximum likelihood estimates is obtained by maximizing the log likelihood
function, lnL. This is because the two functions lnL and L are monotically re-
lated to each other so the same maximum likelihood estimate is obtained by
maximizing either one. Assuming that the log of the likelihood function, lnL
is di¤erentiable if the maximum likelihood estimate exists, the following partial
di¤erential equation known as the likelihood estimation

#L (��)

#��
= 0: (450)

This is because the de�nition of maximum or minimum of a continuous
di¤erentiable function implies that its �rst derivatives vanish at such points.
The likelihood equation represents a necessary condition for the existence of a
maximum likelihood estimate. An additional condition must also be satis�ed
to ensure that lnL is maximum and not a minimum, since the �rst derivative
cannot reveal this. To be a maximum the shape of the log likelihood function
should be convex (it must represent a peak, not a valley) in the neighborhood
of ��: This can be checked by calculating the second derivatives of the log of
the likelihoods and showing whether they are all negative at ��; i.e.

#L (��=xi)

#�2
< 0: (451)

In practice, however it is usually not possible to obtain an analytic form solution
for the maximum likelihood estimate, especially when the model involves many
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parameters and its probability density function is highly non linear. In such
situations, the maximum likelihood estimate must be sought numerically using
non linear optimization algorithms. The basic idea of non linear optimization
is to quickly �nd optimal parameters that maximize the log likelihood. This
is done by searching much smaller sub sets of the multi dimensional parame-
ter space rather than exhaustively searching the whole parameter space which
becomes intractable as the number of parameters increases.
This section is a small tutorial about maximum likelihood estimation method.

We will explain what is a parameter estimation and we will focus on the method
of maximum likelihood parameter estimation. Furthermore, we present some
examples of the maximum likelihood estimation method, such that the reader
understands how the method is applied.

A.6 Euclidean Group ISO(2)

The symmetry group of an 2�dimensional Euclidean space is the Euclidean
group E (2) or ISO (2) [21]. It consists of two types of transformations, uniform

translations
�
along a certain direction b̂ by a distance b

�
T (b) and uniform ro-

tations (around a unit vector n̂ by some angle �) Rn̂ (�). We must notice that

[T (b) ; Rn̂ (�)] 6= 0: (452)

De�nition 54 The Euclidean group E (2) consists of all continuous linear trans-
formations on the 2 dimensional Euclidean space R (2) which leave the legnth of
all vectors invariant.

The points in R (2) are characterized by their coordinates fx1; x2g. A two
dimensional linear transformation x

¯
�!x

¯
0 takes the form

x01 = R11x1 +R12x2 + b1
x02 = R21x1 +R22x2 + b2

: (453)

The Euclidean group in the two dimensional space E (2) contains rotations and
translations. Rotations are characterized by one angle � and translations are
speci�ed by two parameters (b1; b2) : The following two equations describe the
transformation x

¯
�!x

¯
0

x01 = R11x1 +R12x2 + b1
x02 = R21x1 +R22x2 + b2

: (454)

A group element that belongs to E (2) is denoted as g (b
¯
; �) : We derive the

group multiplication rule of E (2) as follows

g (b
¯ 1
; �1) g (b¯ 2

; �2) = g (b
¯ 3
; �3) ; (455)

where
�1 + �2 = �3; [R (�2) b¯ 1

] + b
¯ 2
= b
¯ 3
: (456)
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The inverse element of g (b
¯
; �) is g (�R (��) b

¯
,� �) : The matrix representation

of the g (b
¯
,�) is the following 3x3 matrix

g (b
¯
,�) =

0@cos � � sin � b1
sin � cos � b2
0 0 1

1A : (457)

The Euclidean group E (2) has two subgroups. The group of rotations and the
group of translations.
The group of rotations is the subset of elements fg (0; �) = R (�)g : The gen-

erator of this � parameter subgroup is the matrix

J =

0@0 �i 0
i 0 0
0 0 0

1A : (458)

A general element of the rotation subgroup is

R (�) = e�i�J : (459)

The second subset of the Euclidean group E (2) is the subgroup of translations T2
and it is formed from the subset of elements fg (b

¯
; 0) = T (b

¯
)g : The subgroup of

translations has also two independent one parameter subgroups with generators

P1 =

0@0 0 i
0 0 0
0 0 0

1A and P2 =

0@0 0 0
0 0 i
0 0 0

1A ; (460)

where
[P1; P2] = 0: (461)

A general translation can be expressed as

T (b
¯
) = e�ib¯ �P¯ = e�ib1P1e�ib2P2 ; (462)

where P
¯
is the momentum operator. Regarding all the above, the decomposition

of an E (2) element is

g (b
¯
,�) = T (b

¯
)R (�) : (463)

The generators of the E (2) group are J; P1 and P2. The interactions between
them are described by the Lie Algebra of the group. The commutation relations
are

[P1; P2] = 0

[J; Pk] = i"kmPm; k = 1; 2
; (464)

where "km is the 2 dimensional unit anti symmetric tensor.
The Euclidean group E (2) sometimes called ISO (2) is the symmetry group

of the two dimensional Euclidean space. The elements of the group are the
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isometries associated with the Euclidean metric and are called Euclidean moves.
The dimension of the E (2) group is

n (n+ 1)

2

n=2
= 3: (465)

Thus, E (2) contains three Euclidean moves.

A.7 Adjoint Operator

The adjoint operator of a matrix A is de�ned as

AdA (X) = AXAy: (466)

The adjoint operator of the product AB of two matrices A and B equals
Ad (AB) (X) = (AdA) (AdB) (X) ; also the power k of adjoint operator of
A equals Adk (A) (X) = AdAk (X) :
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