

1

Technical University Of Crete

Department of Electronic and Computer Engineering

Microprocessor and Hardware Laboratory (MHL)

Diploma thesis : “Novel memory systems

tailored to vision algorithms”

Author : Farantos Georgios

Committee

Supervisor : Assistant Professor Yannis Papaefstathiou

Professor Apostolos Dollas

Professor Michalis Zervakis

2

Abstract

 Nowadays, one of the most important challenges in the field of Computer

Vision and the target of all the engineers that are associated with this, is the design of

embedded systems that will execute real-time algorithms with big accuracy and low

cost [2]. This effort meets a lot of difficulties as the algorithms that have already been

applied “suffer” by bottlenecks, especially as far as that concerns the memory

accesses.

 In this thesis, we deal with a novel embedded system, which implements the

OpenTLD algorithm and can be applied at a broad-range of algorithms based on the

generalized Viola and Jones framework. Viola and Jones framework, despite the fact

that is hardware friendly in resource-limited devices (FPGAs), the way it access the

memory causes certain problems and parallelism is not easy to be applied on it. This

is mainly due to the fact that it is a memory bound problem and its memory access

pattern has certain characteristics that make it hard to take advantage of the

conventional memory hierarchies. Our system accelerates the bottleneck of the

algorithm with a high bandwidth distributed memory sub-system which is

independent of the various software parameters [1].

 Thus, it was of high interest, the effort to try this embedded system on an

algorithm out of Viola and Jones framework and study the result. That is the second

part of the thesis. The first one is to optimize the first edition of the system in order to

be more efficient and easier as concerns the communication with different algorithms.

3

Είναι μακριά απο μας τα άστέρια

μακριά - μακριά, πολύ - πολύ μακριά.

Ανάμεσα στ' αστέρια η γή μας είναι μια κουκκίδα

μια τόση δα κουκκίδα,

και η Ασία το ένα πέμπτο είναι της γής μας.

Μια χώρα της Ασίας είναι οι Ινδίες,

μες τις Ινδίες μια πόλη είναι η Καλκούτα.

Ο Μπεναρτζή δεν είναι παρά μοναχά ενας άνθρωπος μες τη Καλκούτα.

Και να τι θέλω τώρα να σας πώ:

Μές τις Ινδίες, μέσα στη πόλη της Καλκούτας

φράξαν το δρόμο ενός ανθρώπου,

αλυσοδέσαν ενα άνθρωπο που βάδιζε.

Νάτο λοιπόν γιατί δεν καταδέχομαι

να υψώσω το κεφάλι στα αστροφώτιστα διαστήματα.

Θα πείτε τα άστρα είναι μακριά

κ' η γή μας τόσο δα μικρή.

Ε το λοιπόν ότι κι αν είναι τ' άστρα

εγώ τη γλώσσα μου τους βγάζω.

Για μένα το λοιπόν,

πιό εκπληκτικό και πιο επιβλητικό

και πιο μυστηριακό και πιό μεγάλο

είναι ένας άνθρωπος που τον εμποδίζουν να βαδίζει

είναι ένας άνθρωπος που τον αλυσοδένουν

 Nâzım Hikmet, “Μικρόκοσμος”

Απόδοση: Γιάννης Ρίτσος

4

Special thanks to

 Antonis Nikitakis for the cooperation, the support and his patience

 The professors : Ioannis Papaefstathiou, Apostolos Dollas, Michael
Zervakis, for their comprehension in deadline subjects and their ability
in make me thinking and be organized as an engineer.

 Marios for make me handling mechanical problems in a different way

 Postgraduate students Panos and Aggelos for their support in Parts
Based Detector Algorithm

 My family for total support during studies

5

Table of Contents

1 Chapter - Introduction ... 7

1.1 Computer Vision .. 7

1.2 Embedded Systems ... 8

1.3 Viola – Jones object detection framework .. 9

1.4 Memory access and object detection algorithms ... 11

1.5 Related work.. 12

2 Chapter – The embedded Sub – System ... 13

2.1 A general approach ... 13

2.1.1 The four modules .. 13

2.1.2 Computation core .. 14

2.1.3 The Memory module ... 14

2.1.4 Collision Detect module .. 15

2.1.5 Loop Decoding module .. 15

2.2 Structure and functionality of each part ... 16

2.2.1 Loop Decode Module .. 16

2.2.2 Collision Detect Core ... 17

2.2.3 Memory ... 19

2.2.4 Computation Core ... 20

2.2.5 Top Level .. 21

2.3 Conclusions .. 22

3 Chapter – Optimizations on the complete system .. 23

3.1 Use of 32 Collision Detect Cores ... 23

3.2 Handling sets of 32 addresses ... 25

3.3 The duplication of 32 cores and the ability of 64-address-queries 25

6

3.4 Optimization of Collision Detect Core’s FSM – The two configurations 26

3.5 Use of FIFOs – A permanent supply of addresses ... 31

3.6 Generating pseudo-random addresses ... 32

3.7 Use of delay registers .. 33

3.8 Total system control .. 33

3.9 Performance evaluation .. 35

4 Chapter – Crossing the border of Viola – Jones Framework ... 36

4.1 General Description of Parts Based Detector Algorithms – The “Face Detection,

Pose Estimation, and Landmark Localization in the Wild” Algorithm 36

4.2 The bottleneck and the parallelization .. 37

4.2.1 The bottleneck ... 37

4.2.2 Parallelization .. 38

4.3 Vivado - High Level Synthesis .. 39

4.3.1 The C code ... 39

4.3.2 The VHDL code .. 40

4.4 The Embedded System tailored to “Face Detection, Pose Estimation, and

Landmark Localization in the Wild” Algorithm.. 41

4.4.1 Implementation of filter .. 42

4.4.2 Multiplications and Additions in Computation Core 43

4.4.3 Top Level .. 44

4.5 Measurements – results .. 45

4.5.1 Vivado’s report .. 45

4.5.2 The simple specialized sub - system .. 46

4.5.3 The effect of scrambling function ... 47

4.5.4 Use of cache .. 48

4.6 Performance .. 49

4.7 Conclusion ... 49

5 References ... 50

7

1 Chapter - Introduction

This is a very important part, as it introduces as with the main concepts of this thesis

and describe subjects like computer vision science, embedded systems, Viola and

Jones framework and algorithms that the researcher or the common reader of this

report should be informed.

1.1 Computer Vision

 Computer vision is a field that includes methods for acquiring, processing,

analyzing and understanding images and that enables machines to solve particular

tasks, like detecting, identifying and tracking objects or make decisions by extracting

information from those images. The goal of computer vision is to design computer

systems that are capable of performing these tasks both accurately and efficiently at

real-time and with low consume of energy while using limited resources, especially

in embedded environments[1][4].

 Sub-domains of computer vision include scene reconstruction, event detection,

video tracking, object recognition, motion estimation and image restoration. Object

recognition, the classical problem in computer vision and image processing is that of

determining whether or not the image data contains some specific object, feature, or

activity. At motion estimation, an image sequence is processed to produce an estimate

of the velocity and the direction of a subject. As regard as scene reconstruction, it

aims at computing a 3D model of the scene, given one or (typically) more images of a

scene, or a video [4]. Those were only a small sample of what computer vision deal

with.

 Of course, algorithms that were developed have a wide application range.

Examples of

applications of computer

vision include systems

for: controlling

processes (e.g. an

industrial robot),

navigation (e.g. an

autonomous vehicle or a

mobile robot), detecting

events (e.g. for visual

surveillance or people

counting), modeling

objects or environments

(e.g. medical image

analysis or

topographical

modeling), automatic

inspection (e.g in
Figure 1.1 Relation between computer vision and various other fields

8

manufacturing applications)[4].

 In this thesis we deal, generally, with object detection and in the second part,

more specifically, with face detection. Although, it will not concern us the way (the

algorithm) in which we detect objects that may appear in an image, but how exactly

we will face the multiple and continuous accesses in memory that are necessary for

the completion of the algorithm.

1.2 Embedded Systems

 It is true, that somebody could describe an embedded system in many different

but also valid ways. “A system that is specialized” or “any system which does a fixed

number of predefined set of tasks with the deadlines” or “A system designed to

achieve certain application. Get some particular input and perform some particular

active” could be some of them [5]. Thus, a specific and maybe strict definition of

that term would be “unfair”. However, we can provide a general description to cover

all the aspects of the theme.

 An embedded system is a computer system with a dedicated function, which is

included in a bigger mechanical or electrical system. Its main characteristics are the

real – time implementation, the low – power consumption and the small size.

Furthermore, they usually are computational, networked as they may use information

from the net, reactive at the speed of the environment, heterogeneous as they may

combine hardware and software and they interact with the external world (use of

sensors or actuators) [5][6].

 Embedded systems have an enormous spread, nowadays, and are used in

numerous systems and activities by million people even it is not always noticeable.

At the factor

of electronics

we meet

PDAs, mp3

players,

mobile

phones, GPS

receivers etc.

Many

households

use

microwave

ovens,

washing

machines and dishwashers (Figure 1.3). Medical equipment uses embedded systems

to appear vital signs in monitors, accomplish medical examinations and act non-

invasive internal inspections [6].

Figure 1.2 Modern cars rely on few embedded systems

9

Figure 1.2 Embedded systems are...

everywhere

Our embedded system is planned to speed up vision algorithms of the Viola –

Jones family and not only, based on a smart use of memory parallelism.

1.3 Viola – Jones object detection framework

 The Viola–Jones object detection framework has been the first object

detection framework which provided competitive object detection rates in real-time. It

was proposed in 2001 by Paul Viola and Michael Jones.

 Although it can be trained to

detect a variety of object classes, it was motivated primarily by the problem of face

detection [3]. Being a popular approach that somebody may find in the literature, it is

adopted in numerous embedded systems that concern face detection, eyes detection,

pedestrian detection and many more applications under the open computer vision

library (OpenCV)[1][3].

 The framework uses various feature types that have a common characteristic.

They rely on more than one rectangular area that includes the sums of image pixels

within. Figure 1.4

shows the different

types of feature that

are used by Viola –

Jones. The value of

any given feature is

always simply the

sum of the pixels

within clear

rectangles subtracted

from the sum of the

pixels within shaded

rectangles. Observing

the figure, we can

imagine that they are

Figure 1.3 Feature types used by Viola and Jones

10

sensitive to horizontal and vertical features.

 The key characteristic, although, is the use of an image representation called

“integral image”. With its use rectangular features can be evaluated in constant time,

something that gives speed advantage. At integral image, the value of a point (x, y) is

the sum of all the pixels above and left of it [7]. The equation is in figure 1.5.

 At time we have already computed the integral image, any rectangular can be

accomplished, only with the use of four parameters, the square tops. Let’s call them

A, B, C, D. The rectangular is the simple sum D – B – C + A. It is easily noticed how

powerful the integral image is, as with the concerned image saved in a memory, we

need only four accesses and three additions to get to the result.

Figure 1.6 A description of computing a sum in the Integral Image

 An example of such an algorithm is SURF. Speeded Up Robust Features is a

robust local feature detector that can be used in object recognition or 3D

reconstruction. It uses an integer approximation to the determinant of Hessian blob

detector, which can be computed extremely quickly with an integral image (3 integer

operations). For features, it uses the sum of the Haar wavelet response around the

point of interest. Again, these can be computed with the aid of the integral image [8] .

Except from SURF we can mention Open TLD algorithm that is based too, on the use

of the integral image. These simple examples present the importance and the

numerous facilities that the integral image offers to computer vision field.

Figure 1.5 Integral image pixels' equation

11

1.4 Memory access and object detection algorithms

 It is time to discuss the main problem that object detection suffers from and

that was the motivation of the system we discuss. It is the delay of memory structures

at the time of data fetching. Object detection algorithms treat an image in several

ways to decide, at last, if it is includes the desired object.

 Filtering an image is a very common and yet characteristic example of how

often a memory access is necessary at such tasks. The number of filters used, differs

among algorithms but that is of minor importance as even an only filter demands

thousand even million of memory accesses to be applied at the whole image. This is

what we call “bottleneck”. Think of a 640x480 image, whose corresponding integral

image is stored at memory, and an algorithm that convolves 5x5 filters with it (figure

1.7). A simple serial code will demand (640-5+1)*(480-5+1)*25 = 636*476*25 =

7.568.400 memory accesses. The completion time depends on the memory speed, the

use of cache and others, but, even so the delay is enormous.

 The acceleration of the above accesses and the proper parallelism of memory

is what our embedded system does.

Figure 1.7 Image and filter convolution

12

1.5 Related work

In [15], the authors present a novel approach of the acceleration of the Haar-classifier

based face detection algorithm with the use of a FPGA. They achieve real- time

performance, very high detection rate and low false positives, using highly pipelined

micro-architecture and utilizing abundant parallel arithmetic units in the FPGA. The

design is also flexible toward the limited resources that a FPGA provides and gives a

general view on implementing non-systolic based vision algorithm acceleration with

FPGAs. The chip they use is a Xilinx XC5VLX110T FPGA, included in a HiTech

Global PCIe card.

In [16] the authors are deal with the edge detection field which is used my numerous

vision algorithms during their process. They use it in order to locate changes in

luminosity or intensity that caused by big changes that a picture may appear.

Furthermore, they proposed an FPGA implementation of their algorithm tailored to

mobile robotic systems. More specifically, their hardware implementation uses the

Altera Cyclone EP1C60240C8 and can perform the algorithm on a grey-scale image

360x280 in 2.5ms clocked at 27MHz.

In [17] the authors deal with a People – Detection System designed on an FPGA.

They capture images from a network camera by using JPEG – compressed frames and

they process the detection on a Virtex-II 2V1000. A MicroBlaze processor running at

75 MHz, controls the whole system behavior as well as the communication with

dedicated hardware which is based on FSL links. The system detects people

accurately at a rate of 2.5 frames per second.

In [18] the authors present an object classification that is able to classify objects in

real-time using an FPGA implementation based on memory invariants and Kohonen

neural networks. The two faces were implemented separately; the classification phase

in hardware, while the Kohonen network in software. The hardware part implemented

along with a set of sixteen parallel Kohonen neurons for the classification of an

unknown object, demonstrating a possible real-time solution for object classification.

13

2 Chapter – The embedded Sub – System

 The first part of this thesis is, as reported above, the optimization of a High

Throughput Run Time Adaptable Memory Sub-system in order to be more efficient when

faces algorithms of various species and various demands and, furthermore, to make it

an autonomous unit which may easily be used in cooperation with other systems.

2.1 A general approach

The sub – system that will occupy us was, initially, designed by Nikitakis and

Papaefstathiou, in order to solve some of the memory problems we described [1]. In

general, it uses parallelism of memory and to serve, in a faster way, the accesses of

memory that an object detection algorithm demands, during its implementation.

Furthermore, it can handle situations, where parallelism could not be feasible, in the

best possible way.

The first algorithm that was tested on the system was openTLD [2][19]. It

accelerated the bottleneck of the algorithm and when implemented on a modern

FPGA, the measurements showed that it is more than 23 times faster than a state-of-

the art Intel CPU and even faster that a highly parallel Graphical Processing Unit

(GPU). In addition it is at least 40x more energy efficient than both the Intel CPU and

the GPU [2].

2.1.1 The four modules

Totally, it is composed by four different parts (figure 2.1), the loop decoding

core, the collision detect core, the memories and the computation core which we

analyze more below.

Figure 2.1 The four parts of the memory sub – system [2]

14

2.1.2 Computation core

Beginning upside down, for our better comprehension, we find the

computation core. This is the part where, as its name reveal, our system do the math.

The kind of the math may differs from algorithm to algorithm, as each of them

processes images in its own way and, consequently, demands different treatment for

its completion. The project in its “home” edition, as it is easy to deduce, uses the

computation core to accomplish the A – B – C + D. These data come direct from the

memory and once they are available the core calculate the sum. There is no sense to

talk about this part more for now as we describe it in detail below and because it is a

part that changes for the needs of the algorithm this thesis discuss.

2.1.3 The Memory module

 Beside the computation core we find the memories that keep the data of the

integral image and supply the core. Here is where the principle of parallelism is

exploited. Imagine that we have a picture of dimensions 640x480. Each of these

pixels needs to be stored in memory, so that they can be used by the algorithm

whenever it is necessary. Having one big memory of 307200 (640x480) addresses,

would gave us the data of only one pixel per clock cycle (10 ns). Instead, we divide

our memory in 16 parts that contain equal number of pixels (307200 / 16 = 19200).

As you can see the first block of memory contains the pixels 1 to 19200, the second

one the pixels 19201 to 38400 and continuing in the same manner, the last one the

pixels 288000 to 307200.

 The ideal scenario, in that way, is to take 32 different data (we have 16 dual

port memories) per clock cycle and this happens when each pixel corresponds to

different block from the others. However, this is very difficult to happen due to spatial

locality. If a particular memory location is referenced at a particular time, then it is

likely that nearby memory locations will be referenced in the near future [9]. And this

is easy to understand if we think that we apply a filter at a part of the image. Even it is

of dimensions 10x10, algorithm is going to demand a hundred pixels from memory

that belongs to the same block! That means 100 clock cycles that is not very efficient.

A way to solve this problem is to use a one-to-one scrambling function that will be

implemented twice (see chapter 2.1.4).

15

2.1.4 Collision Detect module

 It is the part which distributes the block of addresses, born at the loop decode

core, to the memories. Its task is very important as it is built to send each address to

the correct block of memory and, furthermore, to serialize those addresses that

correspond to the same block (that is what we call collision detect).

 Each memory is connected with its own core, so if we adopt the 16 memories

that we talked above, we will need 16 identical collision detect cores with different

ID. Each core receives all the addresses and according to the value creates a signal

that in the end is compared to the ID. If it matches, the core sends the address to the

memory block. Thus, we can meet three different cases; no address matches the block,

one address matches the block and several addresses match the block. The second one

is the ideal one, as if it happens for all of the blocks, the sixteen addresses will be

served in only one clock cycle. The worst scenario is when all addresses are driven to

the same core – block (16 collisions), so they need to be serialized. The last one will

pass through memory after 16 clock cycles, while other cores are idle.

 With purpose to decrease the number of the collisions and those idle cores, we

need to use a clever addressing in the memory and that’s why we use the scrambling

function we mentioned before. It effects to the addresses in such a way that the

memory accesses are allocated to different sub–blocks. This function is implemented

again to re-map the actual addresses to the scrambled ones, so to receive the correct

data [1].

 This part was suitable for optimization that would make the whole system

more efficient and would give us useful conclusions on the question whether the

extended use of hardware causes enough acceleration or not. In other words, there is a

trade off. The more we increase spatial complexity, the more we decrease time

complexity.

2.1.5 Loop Decoding module

We reached the level where the blocks of addresses are created. Its form

depends on the kind of the algorithm but, in general, it follows the movement of the

sliding window on the image (e.g. while a filter is convolved), the scale change and

how the feature sampling is performed [1]. Actually, it is designed to un-roll those

loops in the algorithm that relate the above characteristics.

At home implementation the loop decode core creates 2 blocks of 16 addresses

per loop iteration, in order to fill the sixteen dual-port memories but this is going to

change in the final version of the sub-system.

16

2.2 Structure and functionality of each part

In this chapter, we are going to describe each of the parts we mentioned above, with

more details. We grapple with the inputs of each unit, in what ways they are exactly

processed (FSMs, control signals etc) and finally, what signals they lead to the rest

system (outputs).

2.2.1 Loop Decode Module

 In the beginning, we

describe the way in which the

addresses are born. In general, as

we mentioned before it is built to

unroll the loops of the target

algorithm that causes big delay in

memory.

 In [2] the authors describe

exactly its functionality. We are

informed that after the decoding

of the 5 inner loop of the

algorithm the core produces 16

memory accesses per cycle and

this is achieved with the use of an

8-state Finite State Machine

combined with 4 lookup tables

(which are connected with 4

fixed-point multipliers. The core

produces, then, sixteen outputs

and a bit that validates them.

These mentioned just for our better comprehension. We are not going to get

deeper here as this part is going to be totally different in the final version and there

was no reason to change it.

Figure 2.2 Loop Decoding Block Diagram

17

2.2.2 Collision Detect Core

 Here is the most

important part of the sub –

system. That is the core

where the sixteen memory

accesses, that the previous

core produced, are driven. So

we have sixteen inputs that

refers to those addresses and

one input for the core id that

is unique for each copy of

the core that is used in the

top level and four outputs.

These inputs are named from

A to D and from 0 to 3 (A0,

A1, ..A3, ..B2, ..C4…D3).

 As we have divided the image into sixteen different parts, it is time to see

where each input belongs. Thus, we create sixteen signals similar to core id

declaring in which block each address should be sent. For example, if A0 address is

11000 it belongs to the first memory block, as it is between 0 and 19200, and the

A0_dest_sig takes the value “0000001”. It is easy to understand that the possible

values for these signals are from “0000001” to “0010000”.

After finishing the definition of these signals we have to specify which of the

addresses are forced to get through the specific core. We need to drive out all the

addresses that their signal is equal to the id (serialization). For this reason, we use

two FSMs of 8 states each. We split it in two parts, in order to avoid one huge FSM of

16 states. In here, we compare each signal with the core id.

At the first state S1 of first FSM we compare the A0_dest_sig. If it matches

we drive out the 15 Least Significant Bits of the A0_address (see 2.2.3), its label and

the valid bit. These are some of the outputs of the core. The label describes each

address (A0-D3) in a unique way and the valid bit declares if the exported data are

correct or wrong. Afterwards, we check the next one (B0) and if it matches too, we

transfer to case S2 where we follow the same procedure (put signals to output and

check for the rest signals). If not we check C0 and do the same. If in S1, A0 does not

match we check B0 and we act as before. Have in mind that each state corresponds to

Figure 2.2 Collision Detect Block Diagram

Diagram

18

the service of different address. When we visit a case X, means that its corresponding

address Y is going to get to the output.

As far as, FSM 1 is done we get to state S0 that activate the second one, which

treats the signals from A2-D3 in the same way, by disabling the reset. This act

transfers us in the first state of the second FSM and the procedure continues until all

signals are checked. If so we enable the block done signal, which is the last output of

the core. This alert the sub – system that the core has finished with the process of the

present block and that is ready for the next one. Have in mind that, the existence of

two FSMs forces us to use different copies of the same signals. For example, address

valid signal exists as “address_valid_a” in the first FSM and as “address_valid_b” in

the second one. We choose the appropriate signal according to which FSM is enabled.

The way that FSMs are constructed satisfy all the possible scenarios and that

make us sure that all the addresses will follow the right path to the memory blocks. In

figure 2.4 appears a characteristic simulation of the module. Having 1 as core id, we

expect to the output only those addresses between 0 and 19200. Indeed, we see that

these addresses are serialized and we take one result per clock cycle. The red cycle

show the point where we move from one FSM to another and. It is a lost cycle for

which we are going to discuss in 3.4.

Figure 2.2 Collision Detect Core Simulation - the lost clock cycle

19

2.2.3 Memory

This is the place that are stored the data of the Integral image. We use a dual

port RAM of depth 19200 (number of pixels in each block) and of width 26 (bits

needed to describe a pixel). In order to express those 19200 addresses we need only

15 bits from the 19-bit addresses that handles the collision detect core, so we use the

LSBs. It is important to mention here why there is no loss after the removal of the 4

MSB and even the 15 bits are enough for our purpose.

Imagine that we separate the address into these two parts. With 4 bits we can

refer to 16 different items while with 15 bits we may refer to 19200 items and to exact

32767 of them. Having this in mind, we can deduce that the 4 MSBs show us the core,

while the 15 LSBs show us the position in memory.

Think of this; Similar LSBs, but different MSBs show the same address of

memory but in different blocks, while different LSBs, but similar MSBs show the

block but different addresses. By the time we reach to memory, we have already

decided the correct block and so, the LSBs are what exactly we need to get the correct

data. The figure 2.5 shows what we just described on a smaller scale, for our better

understanding. It has sixteen addresses distributed in two blocks. In this example,

Collision detect core that exists beside block 1, handling the address 0101, would sent

only the 101 to the block 1 exporting the right data. On the other side, Collision detect

core that exists beside block 2, would recognize that 0101 does not belong to block 2

and sends nothing.

Figure 2.5 Memory addresing

20

2.2.4 Computation Core

All the signals that are until now “open” in our description are plugged in this

part of our sub – system. They are none other than the data came out from the

memory and the label and valid that are accompanying them and came out from the

computation core. Therefore, we have 3x16 = 48 inputs and we use them to calculate

4 sums; A0-B0-C0+D0, A1-B1-C1+D1, A2-B2-C2+D2, A3-B3-C3+D3. When all of

them are complete the core enables the block done signal to inform the whole system.

In order to begin its process, the core needs to store the elements that come

from the memory to the correct signals. Thus, it is checking the label and the valid

signal that come from the computation core. If valid of some block is equal to ‘1’ it

puts the data from the corresponding memory to the signal that the label indicates,

else it puts ones. Twenty seven bits of ‘1’ is very convenient, as a number that is not

being used so can show us that we have no data.

The main processing takes place in an FSM of three active states that handles

the signals where the inputs will be stored and those control signals which declare if

they are stored or not. In the reset state all these signals are initialized to zero. Next,

we get to state 1, where we check those signals that have no value yet. We stay here

until all values are caught. In parallel, we have 4 signals that hold the sums by adding

those exact signals that the FSM processes. In the case where all signals are caught in

the FSM, it is sent to state S3 where the block done signal is enabled.

In the simulation that is appeared in figure 2.7 we try to show a representative

example. For our easy understanding, we arrange all sums to be the same (8) and all

signals to be caught in on the first cycle except two. The data of B0 while be caught

on second clock cycle while data of A3 on third cycle. Thus, we stay in case s1 until

all of them are caught and the computation of the corresponding sums is delayed. The

red arrows show that when the last remaining signal is brought, the sum is calculated

on the next cycle.

Figure 2.2 Computation Core Block Diagram

21

2.2.5 Top Level

We reached, so far, the level that includes and controls all the above units. A

universal image is what we need to complete the puzzle.

In the beginning we use one Loop Decoding Core. The sixteen addresses it

products are driven to, also, sixteen Collision Detect Cores, each of which has its own

id. Mention that, as you may have already understand, there is no relation between the

two “sixteen”. We could have 32 addresses processed by 16 cores or something like

that. After each Collision Detect Core we have a memory block and at the end two

Computation cores. The first one is going to receive the signals by the A ports of the

memories, while the second one those from ports B. Although, as we send the same

addresses to both A and B (home edition), the two cores calculate the same result.

 Of course, we need to control all these units in order to work synchronized and

we use a FSM for that reason. Having received valid addresses from the first Core, the

FSM disables the reset from the Collision Detect Core and “freezes” the address

production. Then we get to state S2 where we stay until the Collision Detect process

is done. If so, we are ready to receive the next block of addresses, so we activate the

Loop Decode again.

Figure 2.2 Computation Core Simulation

22

Figure 2.2 Top Level Block Diagram

2.3 Conclusions

The sub – system we just described was the base on which this thesis was

developed. The authors in [2] had spotted some things that was need to be changed

and that there were a lot of optimizations to be done within the border of our research

of how much faster this sub – system could become and how much would expand the

range of the concerned algorithms. This is where our job begins and the theme of the

next chapter.

23

3 Chapter – Optimizations on the complete system

A deep study on the code and its description on the previous part of this report would

bring an experienced scientist in front of critical problems that need to be fixed and

various transforms that could be applied on our embedded sub – system. In this

chapter we are going to describe all the optimizations we applied on it. At the end of

this part, our system will be able to process 32 addresses each time, with the use of 32

Collision Detect Cores and 32 memory blocks, while duplicating the team of those

cores will be feasible the process of 64 addresses using both the ports of memories.

Furthermore, especially the Collision Detect Core, will be able to use either the

previous optimized FSM or a new FSM with 32 states. Finally, the generation of the

address block will be continuous by a new module that produces random addresses

and the use of FIFOs will make them available to the system at any time needed. Of

course, it is necessary the creation of a new FSM that controls the whole system.

3.1 Use of 32 Collision Detect Cores

The first change we attempted was the increase of the number of Collision

Detect Core and inevitably the number of memory blocks from 16 to 32. Its purpose

was a further decrease of the collisions by a percentage. The size of memories

halved, as we have to distribute the 307200 pixels of the image into double blocks

(307200 / 32 = 9600). Thus, for the data mining we need 14 bits at the input of the

memories. As concerns the Collision Detect Core, we changed the range whereby we

were initializing the destination signals. As they represent the target block of each

address, they should follow the halving done to the memory. At the computation core

we add the corresponding inputs that come from the extra memories and cores, as

they can, obviously, be data providers and have to include them at the computation of

signals. At top level, we just increased the number of port maps for both components

from 16 to 32, adding the proper signals too.

 In this way, we managed to eliminate the collision of addresses that were

belonging to the same block before. For example we shall refer to addresses 8000 and

16000. In home edition, they should both be driven to block 1 as they are between 0

and 19200. Their process would finish in two clock cycles by the same block. Now

that the separate line is 9600, the first one will be served by block one, while the

second one by block two and all these in only one clock cycle (figure 3.1).

 We can easily reach to the conclusion that this optimization can accelerate our

system by 50% at best case. The worst one is, if each address belongs already to

different block so we do not have any acceleration. Of course there are intermediate

cases too, such as the serving of ten addresses by one block that after the change will

separate into 3 and 7. Reducing the clock cycles from ten to seven we have 30%

acceleration.

Having to handle million of addresses during the execution of the algorithm,

where time is critical, this acceleration may save as thousand clock cycles. A further

increase of the blocks would achieve a higher acceleration but also requires more

24

hardware. The question is where is the best balance, which gives us higher

performance in low cost.

 Figure 3.1 Advantage of using more Collision Detect Cores

25

3.2 Handling sets of 32 addresses

 The sixteen addresses, as said before, are used for the computation of four

values via the operation Α – B – C + D. We could easily prepare the system in order

to process double number of them, again for speed reasons. The way we produce them

will be analyzed below, in chapter 3.

 Until now, we used variables A0 – D3, but it is time to add those from A4 –

D7 that will be the new inputs of Collision Detect Core. In here, we treat them in the

same way as the old ones as concerns the creation of the destination signals.

Although, it is necessary the creation of two more FSMs, one per eight signals, that

will be, obviously, a copy of the previous ones. The difference lies in the block done

signal which is enabled by the end of the fourth FSM’s process. We can tell that the

present fourth FSM is similar to the previous second one. Despite this, we move

among the FSMs in the same way as before.

 At the computation core, we add the appropriate signals with purpose to catch

the values of the new variables and we make a copy of the existing FSM which

handles them. The block done signal is activated as soon as both of the FSMs have

finished and, then, the core will supply the system with eight sums.

 The adding of these addresses allow us to compute four more rectangles of the

Integral image in only one “repetition” of the sub – system. The worst scenario is the

32-cycles delay in the Collision Detect Core, but it is less possible with the

optimization in 3.1. Again, we face the question of what is the ideal number of

addresses that should be provided to the system.

3.3 The duplication of 32 cores and the ability of 64-address-

queries

 By now, we have not take advantage of the second port of the memories that

gives us the opportunity of exporting the data of two variables in only one clock cycle

and that because we were sending the same address at both inputs. Therefore, as said

in 2.2.5, the two units of the computation core calculate the same eight rectangles

(after 3.2). It is time to change this situation by duplicate the team of the existing 32

cores. In that way we create twin cores that differs only in the name

(Collision_detect_core_1 - Collision_detect_core_1B). The twins have the same id as

they refer to the same block of memory, but their outputs are driven to the two

different ports.

26

Figure 3.2 Supply of 64 addresses - Use of the memory's second port

We are allowed, now, to supply the system with 64 different queries that will

be created in the loop decoding core. The first team of 32 is sent to A cores, while the

second team to B cores (figure 3.2). At the end, we benefit of sixteen different sums,

which means sixteen different rectangular areas that were asked by the algorithm.

3.4 Optimization of Collision Detect Core’s FSM – The two

configurations

 In 2.2.2 we identified, with the help of figure 2.4, that the functionality of the

two connected FSMs, is characterized by a weak point. If the requested addresses

need to use both of them, an empty clock cycle is appeared which consists a useless

delay. Now, we need to understand better the transitions made during their process.

 When the external reset is enabled we are in reset case of the first FSM. In

there we activate the reset of the second FSM and we hold it to ‘1’ while we handle

addresses from A0 to D1. When we are done, we move to state S0 that is a pause state

and no data are leaving. We check, also, if we have already gone to second FSM and

if not, we activate it immediately. Thus, we are in case S1 and continue with the

process of signals A2 to D3. The lost clock cycle is, obviously the pause state and

there is need to be eliminated, as it could be lead to a huge universal delay. There are

proposed two solutions with advantages and disadvantages.

 The first one is the modification of the present FSMs in order to erase this idle

state. So, when get there, we just activate the second FSM by setting the reset b to

zero without touch the other relative signals. Having reset at the sensitivity list, the

FSM will begin its process but with value reset = 1 as it is going to change to 0 on the

27

next clock cycle. We exploit exactly this specificity to start checking signals at this

very clock cycle. And as you can see in figure 3.3 it works fine!

Figure 3.3 Collision Detect Core Simulation - Corrected four-part FSM

In this figure we present only 24 signals and the functionality of 3 FSMs for

space reasons. As you can see when the first FSM finishes, it closes the Reset b and at

on the next clock cycle the next one gives to the output the value of the first address it

process (1816). Afterwards, it checks for the others and, as soon as, it is done it

activates FSM number 3 in the same way.

 The disadvantage of this implementation appears at the version of four linked

FSMs (3.2) and when there is no use of the intermediate ones. There we need at least

one clock cycle per FSM and if no address matches this cycle is lost. You can see an

example in figure 3.4. We are in core 1 se we handle addresses form 0 to 9600. The

second FSM is not used while the addresses it processes do not belong to it. Thus, it is

stable to state s0 and then gives command to third FSM to begin.

28

Figure 3.4 Collision Detect Core Simulation - Idle intermediate FSMs

 The second solution is the construction of one huge FSM of 16 or 32 states,

depending on the version we use. While we get rid of the signals that were connecting

the previous FSMs, each new state is composed by much more controls in order to

cover all the inputs and furthermore no state is similar to one another as before. The

advantage of this implementation is that there is no loss of clock cycle at any case and

that any team of signals is going to use it as long as it is necessary. Figures 3.5, 3.6

and 3.7 show three different possibilities that have interest to study.

29

The first one shows the serialization of all the signals as all of them belong to

the certain core. Once again we present only 24 inputs as there was not enough space

for the other 8. Although, it is clear enough the way in which the FSM works as

signals like “valid” and “CS_a” that declares the movement, are visible.

Figure 3.5 Collision Detect Core - 1 Huge FSM Simulation - Case 1

30

The second one is the presentation of the case we lose with the previous

implementation. In figure 3.6 we choose to pass through the core, two signals; one

from FSM 1 and one from FSM 4. As predicted, there is no loss of any clock cycle as

there is no such reason. We display only few non – taken addresses with the taken

ones.

 Figure 3.6 Collision Detect Core - 1 Huge FSM Simulation - Case 2

In third case, we simulate the behavior of the FSM when no address belongs to the

certain block. We need only one clock cycle to find out that no address is going to get

to the output and enable the block done signal.

Figure 3.7 Collision Detect Core - 1 Huge FSM Simulation - Case 3

31

3.5 Use of FIFOs – A permanent supply of addresses

 The control we described at 2.2.5 was activating the production of an address

block as soon as the Collision Detect Core had finished its job. That would start and

stop the Loop Decoding Core too many times during the execution of the algorithm

and considering that a clock cycle is needed per activation that means too many lost

clock cycles.

 The best possible way to get rid of those cycles is to use FIFOs. FIFO (First In

First Out) is a method for organizing and manipulating a data buffer, where the oldest

(first) entry, or 'head' of the queue, is processed first [10]. We use, then, as much

FIFOs as the number of the addresses in a produced set. Each of them has space for

few addresses and all of them are synchronized by the same signals.

 Thus, in general, we store all the produced sets of addresses into FIFOs and

when the Collision Detect Core demands a new one it is ready for use. The first unit is

activated to produce new sets when there is free space in FIFOs but this will not cost a

clock cycle anymore as it is taking place while Collision Detect Core is busy. In

figure 3.8 you can see a typical simulation on a FIFO.

Figure 3.8 FIFO Simulation

We put seven values to the input, while we enable them to be written, as soon

as we are informed that the FIFO is empty. Then we start read these values and when

we have done the “empty” signal is enabled again.

32

3.6 Generating pseudo-random addresses

 The insertion of these units has made our system more autonomous and its

units more “discrete”, as we separated the unit of production with the unit of

consumption. It is now easier to change the first one, depending on which algorithm

we implement. For now, we are going to use a unit that produces 32 addresses that

have no relation with the reality. It was created just for reasons of measuring and

recording the behavior of the complete sub – system. As it has not some special

functionality, it could be totally omitted but for the report reasons here it is.

 When the unit is reset we create 32 addresses of some value that have one bit

less than expected. When the unit is enabled we add 32 in each address at every cycle

and put the result to the output including the missing bit (MSB). The reason of this

bizarreness is to hold the values of the addresses into the limits (307200). For typical

reasons we simulate the functionality of this unit in figure 3.9.

Figure 3.9 Random address generator Simulation

When enabled the system starts the production of the addresses in every clock

cycle. Then we disable it, and see that it stays stable. Afterwards, it resumes from the

appropriate address. This is very important because in future Loop Decoding Cores it

is necessary to get all the addresses in the correct order.

33

3.7 Use of delay registers

 The three signals that the Computation Core receives for each address was,

until now, not synchronized. While the “address label” and “address valid” signals

were driven direct to it, the “address out” is sent to the memory which has one clock

cycle delay. For this reason we use a register to delay the other two in order to get to

the unit together (figure 3.10).

Figure 3.10 The use of delay register

3.8 Total system control

 This renewed sub – system needs a different control system from the previous

to work correct and have all its units synchronized. In this paragraph we are going to

describe how we handle the “vital” signals of each unit using a control FSM in the

Top Level and not only. You can see the below description represented in figure 3.11.

 In the beginning we put the system’s reset to the address generator and FIFOs.

The inverted “full” signal from FIFOs is connected to address generator’s “enable”

signal and to FIFOs’ “write enable”. In this way, we ensure that as soon as the FIFOs

have free space the address generator will supply them with sets of addresses. These

signals have no need of the FSM but it is not the same for the next ones.

34

 Figure 3.11 Top Level Block Control

In order to read data from FIFOs we need two things. The first is that the

FIFOs are not empty, so we use the inverted “empty” output. The second is the

Collision Detect Core reset that is handled by the FSM, like the Computation Core

Reset. When the System’s reset is enabled we activate them all and we are ready to

transfer at state S0. We stay here until the FIFO “read enable” signal is ‘1’ and,

having reset already ready, this is going to happen when the FIFOs gets data. At this

very moment we put the two main units to work and we get to state S1. We check,

now, if the Computation Cores have finished their job. If so, we activate again the

reset signals and we are ready to receive the next set of addresses from FIFO while

moving to state S0. Otherwise, we stay here until this happens.

 Being sure of the right functionality of the control unit and the whole sub

system, we can use it to face anyone algorithm belongs to Viola – Jones framework

and we are ready to test on it different kind of algorithms and see the results.

35

3.9 Performance evaluation

Using an FPGA of Zynq family, the XC7Z045, we synthesize and implement our

design in order to see its requirements an if we can download it correctly. By using

the version with the four linked FSMs we achieve a minimum period of 4.932 ns and

a maximum frequency of 202.751 MHz, while using the version with the one huge

FSM we have 4.947 ns as minimum period and a maximum frequency of 202.136

MHz.

 It is encouraging that we achieved and overcame the threshold of 200 MHz in

which the initial sub – system was working. That means that, in general, our

optimizations did not affect the clock period and thus can be characterized as

successful.

36

4 Chapter – Crossing the border of Viola – Jones

Framework

The second part of this thesis begins when the requirement of testing our sub – system

on algorithms that do not belong in Viola – Jones framework, becomes imperative. It

is of high interest to find out how flexible it can be proved as for the changes to be

made and to what extent will it accelerate some tested algorithm. For that reason, we

are studying the “Face Detection, Pose Estimation, and Landmark Localization in the

Wild” algorithm which is specialized to face detection while processing an image.

The results are utterly interesting.

4.1 General Description of Parts Based Detector Algorithms – The

“Face Detection, Pose Estimation, and Landmark Localization

in the Wild” Algorithm

Part-based models refer to a broad class of detection algorithms, in which

various parts of the image are used separately in order to determine if and where an

object of interest exists [13]. In this thesis we examine “Face Detection, Pose

Estimation, and Landmark Localization in the Wild” algorithm that was created by

Xiangxin Zhu and Deva Ramanan [14]. The general idea is that the algorithm tries to

detect certain parts of an object, in our case of a face, using special filters. When it is

done it uses a mixture of trees in order to check the locality of the detected parts and if

it responds to the real object. For example, for face detection, it will search for eyes,

mouth, nose or ears and as soon as it finds them it will check if they are on the right

position too and not randomly scattered in the image.

The concept is to find the portion of the code in which we spend the most of the time

for data processing (bottleneck). Then, we are going to try its parallelization by

implementing it in VHDL and combine it with our sub – system. If the results are

encouraging, our sub - system can be easily connected to the remaining algorithm, as

a production engine that consumes and produces data in real – time and at low cost,

behaving as what exactly it is; an embedded system.

37

4.2 The bottleneck and the parallelization

 Searching the algorithm from edge to edge in order to find out the part we

described above, we meet the numerous access memories and computations that

happen when we apply the special filters on the image. No doubt, it is a point we need

to study thoroughly in order to understand its functionality and use it properly to

achieve our purpose. Let’s begin with a general description and come, finally, to what

exactly we are going to try to parallelize.

4.2.1 The bottleneck

 The certain algorithm takes as input an image and creates a pyramid of not-

constant height, composed by different resized versions of the same image; the most

we move up to the pyramid the smaller the image is. Afterwards, it calculates the

Histogram of Oriented Gradients (HOG) for all of them. HOG is a technique that

counts occurrences of gradient orientation in localized portions of an image. The

thought behind it, is that local object appearance and shape within an image can be

described by the distribution of intensity gradients or edge directions [11]. The

specific HOGs we describe are 3D and more specifically XxYx32, where XxY is the

size of each image.

 On this HOGs we are going to apply some filters of dimensions 5x5x32. As

you see the depth of the filters is the same to this of pictures. The number of filters to

be applied is 99 and corresponds to all the parts we need to locate in Face Detection.

So, each filter is going to be convolved with each HOG in this way; the first level of

the picture is convolved with the first level of a filter, the second level of picture with

the second of the filter and so on. The procedure of convolution is shown, in details,

at figure 4.1. As soon as we have finished with all levels we add all of them pixel by

pixel and we produce a 2D data structure. This happens with all filters.

Figure 4.1 Detailed convolution between image and filter [20]

38

 But, let’s see the code that performs the above acts. Firstly, there is the

function;

 _Vector< _Array<T>* > *featureResponce(_Vector< _Array<T>* > *response,
_Array<T> *feat, _Vector< _filter<T> > *filters),

which has, as arguments, the HOG (feat) and all the filters. It calls the function

“convolve” for each filter separately, as the second one takes a HOG and a filter and

returns a 2D response;

 _Array<T> * convolve(_Array<T> *response, _Array<T> *feat, _Array<T>
*filter)

The convolve function with its turn, uses a nested for of depth 5 in order to produce

the response. This could be translated as follow;

For each one of the 32 levels (the depth of the HOG and filter)
 For each row of the pixels
 For each column of the pixels
 For each row of the 5x5 sub image and sub filter
 For each column of the 5x5 sub image and sub filter
 Do the mul and add

This part demands from memory the values of HOGs and filters in order to

accomplish two mathematical operations per iteration. This behavior causes million of

memory accesses that delay the total process and there is need of being parallelized.

4.2.2 Parallelization

 In this try we faced a lot of problems as it was not clear, in the beginning, how

exactly this could be done. Having in mind the structure of our system we see that we

cannot store a bigger image than of 640x480 dimensions as our memory has space for

exactly 307200 pixels. Consequently, we cannot store more than one pictures in

memory and this, automatically allow us to process only one level of the total 32 (we

left outside the outer loop for now).

 Watching carefully the two inner loops that concern the sub filter and the sub

image that are convolved, we notice that, when unrolling them, they create blocks of

25 addresses. Automatically, we remember the 32 addresses that our system receives

and think that with the suitable changes it could handle the 25 too. Although, this is

not enough, as we need to take care of the movement that the two remaining for-loops

causes to the filter. In other words, to make the sets of the 25 addresses which are

going to be sent to the Collision Detect Core more specific.

 Now, we can propose a total idea of how our system is going to cope with this

algorithm. The most important is the design of the Loop Decoding Core. In here, we

39

have to create all the sets of 25 queries that are needed to complete the convolution

between a 640x480 image and a 5x5 filter that is going to give us a 636x476 table.

Then we store the image to memory and we use one more to store the corresponding

filter. For every set we receive from Loop Decoding, we calculate its convolution

with the filter in the Computation Core. When its process finishes it demands the next

set of 25. When the total process is finished our embedded system informs the

software to load on memories the next level of the image and filter and we start again.

 The next step is to transfer the address generation to VHDL, in other words, to

create the new Loop Decoding Core. For this purpose we are going to take advantage

of Xilinx’s tool “Vivado High Level Synthesis” for which we discuss in the next

paragraph.

4.3 Vivado - High Level Synthesis

 High-level synthesis is an automated design process that interprets an

algorithmic description of a desired behavior and creates digital hardware that

implements that behavior. The goal of HLS is to let hardware designers efficiently

build and verify hardware, by giving them better control over optimization of their

design architecture, and through the nature of allowing the designer to describe the

design at a higher level of tools while the tool does the RTL implementation [12].

Vivado is Xilinx’s High Level Synthesis tool which we are going to use.

4.3.1 The C code

 As designers, in this case, we need to create a C code that unrolls the two inner

loops, follows the movement of the filter and generates 25 addresses or 50 ones if we

want to use both the ports of the memories. This on its own was quite easy, but we

have to follow a specific plan of organization to cover Vivado’s requirements.

 In order to give a solution at our implementation, Vivado needs the source file

.c or .cpp and a testbench file in which we run the main function that calls the

function we designed. So, in the first one, we did the main functionality using a struct

and some if statements, while, in the second one we have just the call. After several

experimentations we reached the conclusion that we need to take care of the enable

signal, which is vital for the module that is going to be created, exactly here and so we

act.

40

4.3.2 The VHDL code

 After debugging, running C code and choosing a device for the solution, we

are ready to synthesize it. Vivado completes its process in a few seconds, giving the

.vhd files and a report that includes information about what exactly it used to design

the solution. The produced .vhd files correspond to the functions we had in C design.

We are going to check the gen.vhd to make sure that it produces the addresses as we

wish. Indeed, as we can see in figure 4.2 the results are correct.

Figure 4.2 Simulation of Loop Decoding Core

In the red rectangle we show part of the first set of addresses. The smaller

yellow ones declare the change of the row in the sub-image. As we have a 640x480

picture, to the change the line we need to add 480. Below it, we see that the next set

begins with address 1 as the filter moves one position to the right to be re-convolved.

The blue rectangle is to confirm the correct functionality of the enable. When it is

disabled the address generation freezes and continues when it is enabled again.

41

4.4 The Embedded System tailored to “Face Detection, Pose

Estimation, and Landmark Localization in the Wild”

Algorithm

 By now, we have completed the first part of the transformation we attempt on

the sub-system in order to cope with the algorithm requirements and it is time to

consummate it. The memory accesses, that the convolve function is demanding, have

been calculated and sent to the system. What remains is the way in which we are

going to use them. The main part that will concern us is the Computation Core, but

minor changes were done almost everywhere.

 The number of FIFOs is now fifty as many as the addresses we produce. The

first team of 25 sends the outputs to the Collision Detect A Cores whose number

remains as before (32), while the second team to Collision Detect B Cores (32) (see

figure 3.2 for help).

 To resolve the collisions we use the previous huge FSM, but with 25 states,

while the inputs reduced too. Figure 4.3 presents its simulation for 25 collisions, but

there is not anything new to mention here. Have in mind that the names of the inputs

have changed to A0 to E4; the letter declares the row, the number declares the

column.

Figure 4.3 Part of simulation of 25 collisions in Collision Detect Core

42

4.4.1 Implementation of filter

 The new part is the insertion of a memory block that holds the filter. It is

similar to the blocks of the image with one difference. We have 32 such units with

exact the same data; the 25 values of the filter stored in order (A0 – E4). Each of them

has two ports and receives data from the same Core as the corresponding Memory

Block (figure 4.4).

Figure 4.4 Block Diagram - The insertion of filter

Thus, when we demand a

number from memory (e.g.

data of D3) we use its label to

find, simultaneously, the data

of this exact place of the filter

with which it is going to be

multiplied. The label can be

used as a pointer while we

have predicted to put the data

in right order (figure 4.5). As

a result, after a clock cycle

we drive to memory both the

numbers of the image and the

filter in order to be

multiplied.

Figure 4.5 Storing filter data to filter memory

43

4.4.2 Multiplications and Additions in Computation Core

 Despite the previous inputs of this unit, we include the data that come from the

32 copies of the filter. It is very important to calculate all the multiplications in any

order and store them somehow in order to make the final addition. For this reason we

work with the same logic as before. We classify the data that come from the filters

depending on the label and the valid signal, just as we did with image data. When

having “0000011” as label from a block, it means that we receive the A2 image data

from memory and A2 filter data from filter, simultaneously. Using the previous FSM

we store in signals the filter data, too. As soon as, a couple of numbers arrive we keep

their multiplication in other signals (named as “A0_mul” etc). The new element is the

use of a second FSM that handles the sum. It waits until all the signals have been

caught and then it adds the 25 signals that hold the multiplications. In the same clock

cycle, it validates the output and informs the system to begin the process of the next

set. In the next figure (4.6) we simulate an example of the correct functionality of the

new Computation Core.

Figure 4.6 Simulation of Computation core

We choose to take all the data from only two blocks, just to prove that the result will

be correct whenever we take the data to the input. In the blue rectangles are the

numbers that are going to be multiplied in pairs per clock cycle. When all are

calculated we export the sum (red rectangle).

44

4.4.3 Top Level

 The new datapath of the system’s top level is shown in figure 4.7 and in

general it was described above. What about the control unit? It is exactly the same

with the previous one (figure 3.7) as it was designed to satisfy different units, no

matter their functionality.

Figure 4.7 New Top Level's Block Diagram

45

4.5 Measurements – results

 When done with the new specialized sub – system, it is time to test its

functionality and its performance. Using a simple program in C we take useful

measurements, as concerns the average collisions, the memory accesses per cycle and

the total memory accesses, we wait during an implementation.

4.5.1 Vivado’s report

After synthesis, the Vivado HLS created the following report that estimate the

clock period of the hardware it produced and includes the exact elements it used.

Figure 4. 8 Vivado's Report

 The clock period matches our standards (max 5 ns), thus the synthesis can be

called successful.

46

4.5.2 The simple specialized sub - system

 In this part, we are going to test our system without the use of any scrambling

function in order to have a first aspect of its behavior. As we can see in figure 4.9, we

have 25 addresses corresponding to the same block, and so 25 collisions in the 66% of

cases, while 20 collisions in 16.72% and 15 collisions in 16.85%. This is reasonable

as the 5x5 filter demands neighboring addresses.

0

10

20

30

40

50

60

70

frequencies

12 14 16 18 20 22 24

number of collisions

No scrambling - no cache

Figure 4.9 No scrambling - no cache

The above statistics have been exported after 302736 total loops, where we have;

total memory accesses (million) : 7.57

average collisions per address query : 22.5

served memory accesses per cycle using dual port : 2.226

average Pixel throughput at 200 Mhz : 445.274 Mega Pixels per sec

average throughput at 200 Mhz : 1.739 GBytes per sec

It seems that too many collisions do not accelerate our system and we need to improve

these percentages.

47

4.5.3 The effect of scrambling function

 It is very important to remind here the necessity of the scrambling function. In

[1] the authors describe two functions that were tested, the XOR and bit – reordering,

giving, also, statistics about how each of them reduces the collisions in each tested

algorithm. We are going to use the bit reordering scrambling that works as follows.

When producing an address we choose an optimal bit which will be the

reference point, where the LSBs become MSBs and the opposite. In this way we

separate the neighboring pixels and send them away into different blocks. While

storing the pixels into memory we apply again this function to get the correct data (1-

1). In this chapter we are going to search the optimal bit in order to achieve the best

result.

In figure 4.10 we choose to reorder at bit 14 and then at bit 4. In first case, we

receive 5.94 average collisions per address query and we serve 8.424 memory

accesses per cycle using dual port. Furthermore, processing at 200 MHz serves

1684.85 Mega Pixels per sec that means 6.581 GBytes per sec. In second case, we

receive 4.75 average collisions per address query and we serve 10.53 memory

accesses per cycle using dual port. Furthermore, processing at 200 MHz serves

2106.86 Mega Pixels per sec that means 8.23 GBytes per sec.

0
10
20
30
40
50
60
70
80

frequencies

0 1 2 3 4 5 6 7 8 9 10

number of collisions

Scrambling function on

Optimal Bit 14

Optimal Bit 4

Figure 4. 10 Scrambling function on

As you can see, the biggest percentage of collisions decreases from 25 to 5

that improve the average collisions per address query. When this function is disabled

we get an average of 22 collisions, as mentioned before, and this proves that not

having collisions is not a product of luck but the result of this function.

48

4.5.4 Use of cache

 Having a second, more careful look at the way the addresses are born for the

simple operation of convolution, we notice that the filter moves by a pixel per

iteration and as a result, from the total 25 queries almost 20 are the same. Thus, it

would be very efficient the use of a simple cache in order to keep these data stored

and easily accessed. For the below measurements we use a simple LRU cache that

remembers only the previous set of addresses and we test again 4 and 12 as optimal

bits for the partial reordering.

0

20

40

60

80

100

frequencies

0 1 2 3 4 5

number of collisions

Scrambling function on - Cache on

Optimal Bit 12

Optimal Bit 4

4.11 Scrambling function on - Cache on

In case of optimal bit 4, we have the following results:

 average collisions per 32/25/16 address query : 4.58

 served memory accesses per cycle using dual port : 10.92

 average Pixel throughput at 200 Mhz : 2184.55 MPixels per sec

 average throughput at 200 Mhz : 8.533 GBytes per sec

In case of optimal bit 12, we have:

 average collisions per 32/25/16 address query : 1.6

 served memory accesses per cycle using dual port : 31.21

 average Pixel throughput at 200 Mhz : 6242.57 MPixels per sec

 average throughput at 200 Mhz : 24.39 GBytes per sec

It seems that the cache needs a different optimal bit to work properly but when it

happens the results are impressive as in the most of cases we do not have any

collisions. This does not means that our system is invalidated by the use of cache but

that this is optimal in the specific algorithm that uses convolution.

49

4.6 Performance

Using the same device as before (Family: Zynq, Device: XC7Z045), the Xilinx report

after Synthesis and Implementation gave as the following results:

 Minimum period : 4.867ns (Maximum Frequency: 205.468MHz)

 Minimum input arrival time before clock : 1.304ns

 Maximum output required time after clock : 1.109ns

 Maximum combinational path delay : 0.640ns

Once again, we achieved our purpose of not fall below 200 MHz.

4.7 Conclusion

The creation of the Loop Decoding Core was converted to a piece of cake with

the use of Vivado. Building it, directly, in VHDL would, probably, take us a great

amount of time to complete and would bring us in front of, too many difficulties.

Now, we just designed in few lines of C code the memory pattern and the work was

done. That helps us to achieve the general purpose of the system. In other words, we

have, only, to find out where each algorithm needs acceleration, due to memory

delays, while the memory sub-system is responsible to parallelize the data.

50

5 References

[1] ANTONIS NIKITAKIS, IOANNIS PAPAEFTSATHIOU “Bijective Addressing

in the Viola-Jones Framework : A High Throughput Run Time Adaptable Memory

Sub-system”

[2] NIKITAKIS A., PAGANOS T. AND PAPAEFSTATHIOU I.2014. "A novel

Embedded System for Vision Tracking ", Accepted to appear in IEEE International

Conference on Design, Automation & Test in Europe Conference & Exhibition

(DATE’ 2014)

[3] http://en.wikipedia.org/wiki/Viola-Jones_object_detection_framework

[4] http://en.wikipedia.org/wiki/Computer_vision#Applications_for_computer_vision

[5] YANNIS PAPAEFSTATHIOU “Overview of Embedded Computing Systems”

[6] http://en.wikipedia.org/wiki/Embedded_system

[7] http://en.wikipedia.org/wiki/Summed_area_table

[8] http://en.wikipedia.org/wiki/SURF

[9] http://en.wikipedia.org/wiki/Locality_of_reference

[10] http://en.wikipedia.org/wiki/FIFO

[11] http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

[12] http://en.wikipedia.org/wiki/High-level_synthesis

[13] http://en.wikipedia.org/wiki/Part-based_models

[14] Xiangxin Zhu Deva Ramanan “Face Detection, Pose Estimation, and

Landmark Localization in the Wild”

[15] Changjian Gao, Shih-Lien Lu “Novel FPGA based Haar classifier face

detection algorithm acceleration”, International Conference on Field Programmable

Logic and Applications, 2008. FPL 2008.

[16] Wenhao He and Kui Yuan, \An Improved Canny Edge Detector and its

Realization on

FPGA", in Proceedings of the 7th World Congress on Intelligent Control and

Automation

June 25 - 27, 2008, Chongqing, China.

http://en.wikipedia.org/wiki/Viola-Jones_object_detection_framework
http://en.wikipedia.org/wiki/Computer_vision#Applications_for_computer_vision
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Summed_area_table
http://en.wikipedia.org/wiki/SURF
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
http://en.wikipedia.org/wiki/High-level_synthesis
http://en.wikipedia.org/wiki/Part-based_models

51

[17] Vinod Nair and Pierre-Olivier Laprise and James J. Clark, \An FPGA-Based

People Detection System", in EURASIP Journal on Applied Signal Processing

2005:7, 1-15.

[18] Deepayan Bhowmik, Balasundram P. Amavasai and Timothy J. Mulroy, “Real-

time object classification on FPGA using moment invariants and Kohonen neural

networks", Proc. IEEE SMC UK-RI 5th Chapt. Conf. Advances in Cybernetic

Systems (AICS 2006), pp. 43-48, 2006.

[19] BECKER T., LIU Q., LUK W., NEBEHAY G., AND PFLUGFELDER R..

2011. Hardware-accelerated object tracking. In Proc. Int. Conf. on Field

Programmable Logic and Applications (FPL), Sept. 2011.

[20]

https://developer.apple.com/Library/ios/documentation/Performance/Conceptual/vIma

ge/ConvolutionOperations/ConvolutionOperations.html

