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Abstract 

 
 Nowadays, one of the most important challenges in the field of Computer 

Vision and the target of all the engineers that are associated with this, is the design of 

embedded systems that will execute real-time algorithms with big accuracy and low 

cost [2]. This effort meets a lot of difficulties as the algorithms that have already been 

applied “suffer” by bottlenecks, especially as far as that concerns the memory 

accesses. 

  

  In this thesis, we deal with a novel embedded system, which implements the 

OpenTLD algorithm and can be applied at a broad-range of algorithms based on the 

generalized Viola and Jones framework. Viola and Jones framework, despite the fact 

that is hardware friendly in resource-limited devices (FPGAs), the way it access the 

memory causes certain problems and parallelism is not easy to be applied on it.  This 

is mainly due to the fact that it is a memory bound problem and its memory access 

pattern has certain characteristics that make it hard to take advantage of the 

conventional memory hierarchies. Our system accelerates the bottleneck of the 

algorithm with a high bandwidth distributed memory sub-system which is 

independent of the various software parameters [1]. 

  

 Thus, it was of high interest, the effort to try this embedded system on an 

algorithm out of Viola and Jones framework and study the result. That is the second 

part of the thesis. The first one is to optimize the first edition of the system in order to 

be more efficient and easier as concerns the communication with different algorithms. 
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Είναι μακριά απο μας τα άστέρια 

μακριά - μακριά, πολύ - πολύ μακριά. 

Ανάμεσα στ' αστέρια η γή μας είναι μια κουκκίδα 

μια τόση δα κουκκίδα, 

και η Ασία το ένα πέμπτο είναι της γής μας. 

Μια χώρα της Ασίας είναι οι Ινδίες, 

μες τις Ινδίες μια πόλη είναι η Καλκούτα. 

Ο Μπεναρτζή δεν είναι παρά μοναχά ενας άνθρωπος μες τη Καλκούτα. 

 

Και να τι θέλω τώρα να σας πώ: 

Μές τις Ινδίες, μέσα στη πόλη της Καλκούτας 

φράξαν το δρόμο ενός ανθρώπου, 

αλυσοδέσαν ενα άνθρωπο που βάδιζε. 

Νάτο λοιπόν γιατί δεν καταδέχομαι 

να υψώσω το κεφάλι στα αστροφώτιστα διαστήματα. 

Θα πείτε τα άστρα είναι μακριά 

κ' η γή μας τόσο δα μικρή. 

 

Ε το λοιπόν ότι κι αν είναι τ' άστρα 

εγώ τη γλώσσα μου τους βγάζω. 

Για μένα το λοιπόν, 

πιό εκπληκτικό και πιο επιβλητικό 

και πιο μυστηριακό και πιό μεγάλο 

είναι ένας άνθρωπος που τον εμποδίζουν να βαδίζει 

είναι ένας άνθρωπος που τον αλυσοδένουν 

 
       Nâzım Hikmet, “Μικρόκοσμος” 

Απόδοση: Γιάννης Ρίτσος 
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1 Chapter - Introduction 
 

This is a very important part, as it introduces as with the main concepts of this thesis 

and describe subjects like computer vision science, embedded systems, Viola and 

Jones framework and algorithms that the researcher or the common reader of this 

report should be informed. 

 

 

1.1 Computer Vision 

 
 Computer vision is a field that includes methods for acquiring, processing, 

analyzing and understanding images and that enables machines to solve particular 

tasks, like detecting, identifying and tracking objects or make decisions by extracting 

information from those images. The goal of computer vision is to design computer 

systems that are capable of performing these tasks both accurately and efficiently at 

real-time and with low consume of energy while using limited resources, especially 

in embedded environments[1][4]. 

 Sub-domains of computer vision include scene reconstruction, event detection, 

video tracking, object recognition, motion estimation and image restoration. Object 

recognition, the classical problem in computer vision and image processing is that of 

determining whether or not the image data contains some specific object, feature, or 

activity. At motion estimation, an image sequence is processed to produce an estimate 

of the velocity and the direction of a subject. As regard as scene reconstruction, it 

aims at computing a 3D model of the scene, given one or (typically) more images of a 

scene, or a video [4]. Those were only a small sample of what computer vision deal 

with. 

 Of course, algorithms that were developed have a wide application range.  

Examples of 

applications of computer 

vision include systems 

for: controlling 

processes (e.g. an 

industrial robot), 

navigation (e.g. an 

autonomous vehicle or a 

mobile robot), detecting 

events (e.g. for visual 

surveillance or people 

counting), modeling 

objects or environments 

(e.g. medical image 

analysis or 

topographical 

modeling), automatic 

inspection (e.g in 
Figure 1.1  Relation between computer vision and various other fields 
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manufacturing applications)[4]. 

 In this thesis we deal, generally, with object detection and in the second part, 

more specifically, with face detection. Although, it will not concern us the way (the 

algorithm) in which we detect objects that may appear in an image, but how exactly 

we will face the multiple and continuous accesses in memory that are necessary for 

the completion of the algorithm. 

 

1.2 Embedded Systems 

 
 It is true, that somebody could describe an embedded system in many different 

but also valid ways. “A system that is specialized” or “any system which does a fixed 

number of predefined set of tasks with the deadlines” or “A system designed to 

achieve certain application. Get some particular input and perform some particular 

active” could be some of them [5]. Thus, a specific and maybe strict definition of 

that term would be “unfair”. However, we can provide a general description to cover 

all the aspects of the theme. 

 An embedded system is a computer system with a dedicated function, which is 

included in a bigger mechanical or electrical system. Its main characteristics are the 

real – time implementation, the low – power consumption and the small size. 

Furthermore, they usually are computational, networked as they may use information 

from the net, reactive at the speed of the environment, heterogeneous as they may 

combine hardware and software and they interact with the external world (use of 

sensors or actuators) [5][6]. 

 Embedded systems have an enormous spread, nowadays, and are used in 

numerous systems and activities by million people even it is not always noticeable. 

At the factor 

of electronics 

we meet 

PDAs, mp3 

players, 

mobile 

phones, GPS 

receivers etc. 

Many 

households 

use 

microwave 

ovens, 

washing 

machines and dishwashers (Figure 1.3). Medical equipment uses embedded systems 

to appear vital signs in monitors, accomplish medical examinations and act non-

invasive internal inspections [6]. 

 

Figure 1.2   Modern cars rely on few embedded systems 
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Figure 1.2 Embedded systems are... 

everywhere 

 

 

 

 

 

 

 

 

 

 

 

Our embedded system is planned to speed up vision algorithms of the Viola – 

Jones family and not only, based on a smart use of memory parallelism. 

  
 

 

 

1.3 Viola – Jones object detection framework 

 
 The Viola–Jones object detection framework has been the first object 

detection framework which provided competitive object detection rates in real-time. It 

was proposed in 2001 by Paul Viola and Michael Jones.
 
 Although it can be trained to 

detect a variety of object classes, it was motivated primarily by the problem of face 

detection [3]. Being a popular approach that somebody may find in the literature, it is 

adopted in numerous embedded systems that concern face detection, eyes detection, 

pedestrian detection and many more applications under the open computer vision 

library (OpenCV)[1][3]. 

 The framework uses various feature types that have a common characteristic. 

They rely on more than one rectangular area that includes the sums of image pixels 

within. Figure 1.4 

shows the different 

types of feature that 

are used by Viola – 

Jones. The value of 

any given feature is 

always simply the 

sum of the pixels 

within clear 

rectangles subtracted 

from the sum of the 

pixels within shaded 

rectangles. Observing 

the figure, we can 

imagine that they are 

Figure  1.3  Feature types used by Viola and Jones 
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sensitive to horizontal and vertical features. 

 The key characteristic, although, is the use of an image representation called 

“integral image”. With its use rectangular features can be evaluated in constant time, 

something that gives speed advantage. At integral image, the value of a point (x, y) is 

the sum of all the pixels above and left of it [7]. The equation is in figure 1.5. 

 

 

 

 At time we have already computed the integral image, any rectangular can be 

accomplished, only with the use of four parameters, the square tops. Let’s call them 

A, B, C, D. The rectangular is the simple sum D – B – C + A. It is easily noticed how 

powerful the integral image is, as with the concerned image saved in a memory, we 

need only four accesses and three additions to get to the result. 

 
Figure 1.6  A description of computing a sum in the Integral Image 

 

  

 An example of such an algorithm is SURF. Speeded Up Robust Features is a 

robust local feature detector that can be used in object recognition or 3D 

reconstruction. It uses an integer approximation to the determinant of Hessian blob 

detector, which can be computed extremely quickly with an integral image (3 integer 

operations). For features, it uses the sum of the Haar wavelet response around the 

point of interest. Again, these can be computed with the aid of the integral image [8] . 

Except from SURF we can mention Open TLD algorithm that is based too, on the use 

of the integral image. These simple examples present the importance and the 

numerous facilities that the integral image offers to computer vision field. 

 

 

 

 

 

 
 

 

Figure 1.5 Integral image pixels' equation 
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1.4 Memory access and object detection algorithms  

 
 It is time to discuss the main problem that object detection suffers from and 

that was the motivation of the system we discuss. It is the delay of memory structures 

at the time of data fetching. Object detection algorithms treat an image in several 

ways to decide, at last, if it is includes the desired object.  

 Filtering an image is a very common and yet characteristic example of how 

often a memory access is necessary at such tasks. The number of filters used, differs 

among algorithms but that is of minor importance as even an only filter demands 

thousand even million of memory accesses to be applied at the whole image. This is 

what we call “bottleneck”. Think of a 640x480 image, whose corresponding integral 

image is stored at memory, and an algorithm that convolves 5x5 filters with it (figure 

1.7). A simple serial code will demand (640-5+1)*(480-5+1)*25 = 636*476*25 = 

7.568.400 memory accesses. The completion time depends on the memory speed, the 

use of cache and others, but, even so the delay is enormous.  

  

 

  

 The acceleration of the above accesses and the proper parallelism of memory 

is what our embedded system does. 

Figure 1.7  Image and filter convolution 



                                                             

 
12 

 

1.5 Related work 

In [15], the authors present a novel approach of the acceleration of the Haar-classifier 

based face detection algorithm with the use of a FPGA. They achieve real- time 

performance, very high detection rate and low false positives, using highly pipelined 

micro-architecture and utilizing abundant parallel arithmetic units in the FPGA. The 

design is also flexible toward the limited resources that a FPGA provides and gives a 

general view on implementing non-systolic based vision algorithm acceleration with 

FPGAs. The chip they use is a Xilinx XC5VLX110T FPGA, included in a HiTech 

Global PCIe card. 

 

In [16] the authors are deal with the edge detection field which is used my numerous 

vision algorithms during their process. They use it in order to locate changes in 

luminosity or intensity that caused by big changes that a picture may appear. 

Furthermore, they proposed an FPGA implementation of their algorithm tailored to 

mobile robotic systems. More specifically, their hardware implementation uses the 

Altera Cyclone EP1C60240C8 and can perform the algorithm on a grey-scale image 

360x280 in 2.5ms clocked at 27MHz. 

 

 

In [17] the authors deal with a People – Detection System designed on an FPGA. 

They capture images from a network camera by using JPEG – compressed frames and 

they process the detection on a Virtex-II 2V1000. A MicroBlaze processor running at 

75 MHz, controls the whole system behavior as well as the communication with 

dedicated hardware which is based on FSL links. The system detects people 

accurately at a rate of 2.5 frames per second. 

 

 

In [18] the authors present an object classification that is able to classify objects in 

real-time using an FPGA implementation based on memory invariants and Kohonen 

neural networks. The two faces were implemented separately; the classification phase 

in hardware, while the Kohonen network in software. The hardware part implemented 

along with a set of sixteen parallel Kohonen neurons for the classification of an 

unknown object, demonstrating a possible real-time solution for object classification. 
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2 Chapter – The embedded Sub – System 
 

 The first part of this thesis is, as reported above, the optimization of a High 

Throughput Run Time Adaptable Memory Sub-system  in order to be more efficient when 

faces algorithms of various species and various demands and, furthermore, to make it 

an autonomous unit which may easily be used in cooperation with other systems. 

 

2.1 A general approach 

 

The sub – system that will occupy us was, initially, designed by Nikitakis and 

Papaefstathiou, in order to solve some of the memory problems we described [1]. In 

general, it uses parallelism of memory and to serve, in a faster way, the accesses of 

memory that an object detection algorithm demands, during its implementation. 

Furthermore, it can handle situations, where parallelism could not be feasible, in the 

best possible way.  

The first algorithm that was tested on the system was openTLD [2][19]. It 

accelerated the bottleneck of the algorithm  and when implemented on a modern 

FPGA, the measurements showed that it is more than 23 times faster than a state-of-

the art Intel CPU and even faster that a highly parallel Graphical Processing Unit 

(GPU). In addition it is at least 40x more energy efficient than both the Intel CPU and 

the GPU [2]. 

 

2.1.1 The four modules 

Totally, it is composed by four different parts (figure 2.1), the loop decoding 

core, the collision detect core, the memories and the computation core which we 

analyze more below.  

 
Figure 2.1  The four parts of the memory sub – system [2] 
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2.1.2 Computation core 

 

Beginning upside down, for our better comprehension, we find the 

computation core. This is the part where, as its name reveal, our system do the math. 

The kind of the math may differs from algorithm to algorithm, as each of them 

processes images in its own way and, consequently,  demands different treatment for 

its completion. The project in its “home” edition, as it is easy to deduce, uses the 

computation core to accomplish the A – B – C + D. These data come direct from the 

memory and once they are available the core calculate the sum. There is no sense to 

talk about this part more for now as we describe it in detail below and because it is a 

part that changes for the needs of the algorithm this thesis discuss. 

 

 

 

2.1.3 The Memory module 

 

 Beside the computation core we find the memories that keep the data of the 

integral image and supply the core. Here is where the principle of parallelism is 

exploited. Imagine that we have a picture of dimensions 640x480. Each of these 

pixels needs to be stored in memory, so that they can be used by the algorithm 

whenever it is necessary. Having one big memory of 307200 (640x480) addresses, 

would gave us the data of only one pixel per clock cycle (10 ns). Instead, we divide 

our memory in 16 parts that contain equal number of pixels (307200 / 16 = 19200). 

As you can see the first block of memory contains the pixels 1 to 19200, the second 

one the pixels 19201 to 38400 and continuing in the same manner, the last one the 

pixels 288000 to 307200.  

 The ideal scenario, in that way, is to take 32 different data (we have 16 dual 

port memories) per clock cycle and this happens when each pixel corresponds to 

different block from the others. However, this is very difficult to happen due to spatial 

locality. If a particular memory location is referenced at a particular time, then it is 

likely that nearby memory locations will be referenced in the near future [9]. And this 

is easy to understand if we think that we apply a filter at a part of the image. Even it is 

of dimensions 10x10, algorithm is going to demand a hundred pixels from memory 

that belongs to the same block! That means 100 clock cycles that is not very efficient. 

A way to solve this problem is to use a one-to-one scrambling function that will be 

implemented twice (see chapter 2.1.4). 
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2.1.4 Collision Detect module 

 

 It is the part which distributes the block of addresses, born at the loop decode 

core, to the memories. Its task is very important as it is built to send each address to 

the correct block of memory and, furthermore, to serialize those addresses that 

correspond to the same block (that is what we call collision detect).  

 Each memory is connected with its own core, so if we adopt the 16 memories 

that we talked above, we will need 16 identical collision detect cores with different 

ID. Each core receives all the addresses and according to the value creates a signal 

that in the end is compared to the ID. If it matches, the core sends the address to the 

memory block. Thus, we can meet three different cases; no address matches the block, 

one address matches the block and several addresses match the block. The second one 

is the ideal one, as if it happens for all of the blocks, the sixteen addresses will be 

served in only one clock cycle. The worst scenario is when all addresses are driven to 

the same core – block (16 collisions), so they need to be serialized. The last one will 

pass through memory after 16 clock cycles, while other cores are idle. 

 With purpose to decrease the number of the collisions and those idle cores, we 

need to use a clever addressing in the memory and that’s why we use the scrambling 

function we mentioned before. It effects to the addresses in such a way that the 

memory accesses are allocated to different sub–blocks. This function is implemented 

again to re-map the actual addresses to the scrambled ones, so to receive the correct 

data [1]. 

 This part was suitable for optimization that would make the whole system 

more efficient and would give us useful conclusions on the question whether the 

extended use of hardware causes enough acceleration or not. In other words, there is a 

trade off. The more we increase spatial complexity, the more we decrease time 

complexity. 

 

 

 

2.1.5 Loop Decoding module 

 

We reached the level where the blocks of addresses are created. Its form 

depends on the kind of the algorithm but, in general, it follows the movement of the 

sliding window on the image (e.g. while a filter is convolved), the scale change and 

how the feature sampling is performed [1]. Actually, it is designed to un-roll those 

loops in the algorithm that relate the above characteristics. 

At home implementation the loop decode core creates 2 blocks of 16 addresses 

per loop iteration, in order to fill the sixteen dual-port memories but this is going to 

change in the final version of the sub-system. 
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2.2  Structure and functionality of each part 

 

In this chapter, we are going to describe each of the parts we mentioned above, with 

more details. We grapple with the inputs of each unit, in what ways they are exactly 

processed (FSMs, control signals etc) and finally, what signals they lead to the rest 

system (outputs). 

 

 

 

2.2.1 Loop Decode Module 

 

 
 In the beginning, we 

describe the way in which the 

addresses are born. In general,  as 

we mentioned before it is built to 

unroll the loops of the target 

algorithm that causes big delay in 

memory.  

 In [2] the authors describe 

exactly its functionality. We are 

informed that after the decoding 

of the 5 inner loop of the 

algorithm the core produces 16 

memory accesses per cycle and 

this is achieved with the use of an 

8-state Finite State Machine 

combined with 4 lookup tables 

(which are connected with 4 

fixed-point multipliers. The core 

produces, then, sixteen outputs 

and a bit that validates them. 

  

 

These mentioned just for our better comprehension. We are not going to get 

deeper here as this part is going to be totally different in the final version and there 

was no reason to change it. 

 

 

Figure 2.2  Loop Decoding Block Diagram 
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2.2.2 Collision Detect Core 

 
 Here is the most 

important part of the sub – 

system. That is the core 

where the sixteen memory 

accesses, that the previous 

core produced, are driven. So 

we have sixteen inputs that 

refers to those addresses and 

one input for the core id that 

is unique for each copy of 

the core that is used in the 

top level and four outputs. 

These inputs are named from 

A to D and from 0 to 3 (A0, 

A1, ..A3, ..B2, ..C4…D3). 

  

 

 As we have divided the image into sixteen different parts, it is time to see 

where each input belongs. Thus, we create sixteen signals similar to core id   

declaring in which block each address should be sent. For example, if A0 address is 

11000 it belongs to the first memory block, as it is between 0 and 19200, and the 

A0_dest_sig takes the value “0000001”. It is easy to understand that the possible 

values for these signals are from “0000001” to “0010000”.  

After finishing the definition of these signals we have to specify which of the 

addresses are forced to get through the specific core. We need to drive out all the 

addresses that their signal is equal to the id (serialization).  For this reason, we use 

two FSMs of 8 states each. We split it in two parts, in order to avoid one huge FSM of 

16 states. In here, we compare each signal with the core id. 

At the first state S1 of first FSM we compare the A0_dest_sig. If it matches 

we drive out the 15 Least Significant Bits of the A0_address (see 2.2.3), its label and 

the valid bit. These are some of the outputs of the core. The label describes each 

address (A0-D3) in a unique way and the valid bit declares if the exported data are 

correct or wrong.  Afterwards, we check the next one (B0) and if it matches too, we 

transfer to case S2 where we follow the same procedure (put signals to output and 

check for the rest signals). If not we check C0 and do the same. If in S1, A0 does not 

match we check B0 and we act as before. Have in mind that each state corresponds to 

Figure 2.2 Collision Detect Block Diagram 

Diagram 
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the service of different address. When we visit a case X, means that its corresponding 

address Y is going to get to the output. 

 

As far as, FSM 1 is done we get to state S0 that activate the second one, which 

treats the signals from A2-D3 in the same way, by disabling the reset. This act 

transfers us in the first state of the second FSM and the procedure continues until all 

signals are checked. If so we enable the block done signal, which is the last output of 

the core. This alert the sub – system that the core has finished with the process of the 

present block and that is ready for the next one. Have in mind that, the existence of 

two FSMs forces us to use different copies of the same signals. For example, address 

valid signal exists as “address_valid_a” in the first FSM and as “address_valid_b” in 

the second one. We choose the appropriate signal according to which FSM is enabled. 

 

 

 

The way that FSMs are constructed satisfy all the possible scenarios and that 

make us sure that all the addresses will follow the right path to the memory blocks. In 

figure 2.4 appears a characteristic simulation of the module. Having 1 as core id, we 

expect to the output only those addresses between 0 and 19200. Indeed, we see that 

these addresses are serialized and we take one result per clock cycle. The red cycle 

show the point where we move from one FSM to another and. It is a lost cycle for 

which we are going to discuss in 3.4. 

 

Figure 2.2  Collision Detect Core Simulation - the lost clock cycle 
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2.2.3 Memory 

 

This is the place that are stored the data of the Integral image. We use a dual 

port RAM of depth 19200 (number of pixels in each block) and of width 26 (bits 

needed to describe a pixel). In order to express those 19200 addresses we need only 

15 bits from the 19-bit addresses that handles the collision detect core, so we use the 

LSBs. It is important to mention here why there is no loss after the removal of the 4 

MSB and even the 15 bits are enough for our purpose. 

Imagine that we separate the address into these two parts. With 4 bits we can 

refer to 16 different items while with 15 bits we may refer to 19200 items and to exact 

32767 of them. Having this in mind, we can deduce that the 4 MSBs show us the core,  

while the 15 LSBs show us the position in memory. 

 

 

Think of this; Similar LSBs, but different MSBs show the same address of 

memory but in different blocks, while different LSBs, but similar MSBs show the 

block but different addresses. By the time we reach to memory, we have already 

decided the correct block and so, the LSBs are what exactly we need to get the correct 

data. The figure 2.5 shows what we just described on a smaller scale, for our better 

understanding. It has sixteen addresses distributed in two blocks. In this example, 

Collision detect core that exists beside block 1, handling the address 0101, would sent 

only the 101 to the block 1 exporting the right data. On the other side, Collision detect 

core that exists beside block 2, would recognize that 0101 does not belong to block 2 

and sends nothing.  

Figure 2.5  Memory addresing 
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2.2.4 Computation Core 

 
All the signals that are until now “open” in our description are plugged in this 

part of our sub – system. They are none other than the data came out from the 

memory and the label and valid that are accompanying them and came out from the 

computation core. Therefore, we have 3x16 = 48 inputs and we use them to calculate 

4 sums; A0-B0-C0+D0, A1-B1-C1+D1, A2-B2-C2+D2, A3-B3-C3+D3. When all of 

them are complete the core enables the block done signal to inform the whole system. 

 

 

 

 

 

 

 

In order to begin its process, the core needs to store the elements that come 

from the memory to the correct signals. Thus, it is checking the label and the valid 

signal that come from the computation core. If valid of some block is equal to ‘1’ it 

puts the data from the corresponding memory to the signal that the label indicates, 

else it puts ones. Twenty seven bits of ‘1’ is very convenient, as a number that is not 

being used so can show us that we have no data. 

The main processing takes place in an FSM of three active states that handles 

the signals where the inputs will be stored and those control signals which declare if 

they are stored or not. In the reset state all these signals are initialized to zero. Next, 

we get to state 1, where we check those signals that have no value yet. We stay here 

until all values are caught. In parallel, we have 4 signals that hold the sums by adding 

those exact signals that the FSM processes. In the case where all signals are caught in 

the FSM, it is sent to state S3 where the block done signal is enabled. 

In the simulation that is appeared in figure 2.7 we try to show a representative 

example. For our easy understanding, we arrange all sums to be the same (8) and all 

signals to be caught in on the first cycle except two. The data of B0 while be caught 

on second clock cycle while data of A3 on third cycle. Thus, we stay in case s1 until 

all of them are caught and the computation of the corresponding sums is delayed. The 

red arrows show that when the last remaining signal is brought, the sum is calculated 

on the next cycle. 

Figure 2.2    Computation Core Block Diagram 
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2.2.5 Top Level 

 
We reached, so far, the level that includes and controls all the above units. A 

universal image is what we need to complete the puzzle. 

In the beginning we use one Loop Decoding Core. The sixteen addresses it 

products are driven to, also, sixteen Collision Detect Cores, each of which has its own 

id. Mention that, as you may have already understand, there is no relation between the 

two “sixteen”. We could have 32 addresses processed by 16 cores or something like 

that. After each Collision Detect Core we have a memory block and at the end two 

Computation cores. The first one is going to receive the signals by the A ports of the 

memories, while the second one those from ports B. Although, as we send the same 

addresses to both A and B (home edition), the two cores calculate the same result. 

 Of course, we need to control all these units in order to work synchronized and 

we use a FSM for that reason. Having received valid addresses from the first Core, the 

FSM disables the reset from the Collision Detect Core and “freezes” the address 

production. Then we get to state S2 where we stay until the Collision Detect process 

is done. If so, we are ready to receive the next block of addresses, so we activate the 

Loop Decode again.  

Figure 2.2 Computation Core Simulation 
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Figure 2.2   Top Level Block Diagram 

 

 

2.3 Conclusions 

 
The sub – system we just described was the base on which this thesis was 

developed. The authors in [2] had spotted some things that was need to be changed 

and that there were a lot of optimizations to be done within the border of our research 

of how much faster this sub – system could become and how much would expand the 

range of the concerned algorithms.  This is where our job begins and the theme of the 

next chapter. 
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3 Chapter – Optimizations on the complete system 

 

A deep study on the code and its description on the previous part of this report would 

bring an experienced scientist in front of critical problems that need to be fixed and 

various transforms that could be applied on our embedded sub – system. In this 

chapter we are going to describe all the optimizations we applied on it. At the end of 

this part, our system will be able to process 32 addresses each time, with the use of 32 

Collision Detect Cores and 32 memory blocks, while duplicating the team of those 

cores will be feasible the process of 64 addresses using both the ports of memories. 

Furthermore, especially the Collision Detect Core, will be able to use either the 

previous optimized FSM or a new FSM with 32 states. Finally, the generation of the 

address block will be continuous by a new module that produces random addresses 

and the use of FIFOs will make them available to the system at any time needed. Of 

course, it is necessary the creation of a new FSM that controls the whole system. 

 

 

 

3.1 Use of 32 Collision Detect Cores 

 
The first change we attempted was the increase of the number of Collision 

Detect Core and inevitably the number of memory blocks from 16 to 32. Its purpose 

was a further decrease of the collisions by a percentage. The size of memories 

halved, as we have to distribute the 307200 pixels of the image into double blocks 

(307200 / 32 = 9600). Thus, for the data mining we need 14 bits at the input of the 

memories. As concerns the Collision Detect Core, we changed the range whereby we 

were initializing the destination signals. As they represent the target block of each 

address, they should follow the halving done to the memory. At the computation core 

we add the corresponding inputs that come from the extra memories and cores, as 

they can, obviously, be data providers and have to include them at the computation of 

signals. At top level, we just increased the number of port maps for both components 

from 16 to 32, adding the proper signals too.  

 In this way, we managed to eliminate the collision of addresses that were 

belonging to the same block before. For example we shall refer to addresses 8000 and 

16000. In home edition, they should both be driven to block 1 as they are between 0 

and 19200. Their process would finish in two clock cycles by the same block. Now 

that the separate line is 9600, the first one will be served by block one, while the 

second one by block two and all these in only one clock cycle (figure 3.1). 

 We can easily reach to the conclusion that this optimization can accelerate our 

system by 50% at best case. The worst one is, if each address belongs already to 

different block so we do not have any acceleration. Of course there are intermediate 

cases too, such as the serving of ten addresses by one block that after the change will 

separate into 3 and 7. Reducing the clock cycles from ten to seven we have 30% 

acceleration.  

Having to handle million of addresses during the execution of the algorithm, 

where time is critical, this acceleration may save as thousand clock cycles. A further 

increase of the blocks would achieve a higher acceleration but also requires more 



                                                             

 
24 

 

hardware. The question is where is the best balance, which gives us higher 

performance in low cost.  

 

 

 

 

 
 

    Figure 3.1   Advantage of using more Collision Detect Cores 
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3.2 Handling sets of 32 addresses 

 

 The sixteen addresses, as said before, are used for the computation of four 

values via the operation Α – B – C + D. We could easily prepare the system in order 

to process double number of them, again for speed reasons. The way we produce them 

will be analyzed below, in chapter 3. 

 Until now, we used variables A0 – D3, but it is time to add those from A4 – 

D7 that will be the new inputs of Collision Detect Core. In here, we treat them in the 

same way as the old ones as concerns the creation of the destination signals. 

Although, it is necessary the creation of two more FSMs, one per eight signals, that 

will be, obviously, a copy of the previous ones. The difference lies in the block done 

signal which is enabled by the end of the fourth FSM’s process. We can tell that the 

present fourth FSM is similar to the previous second one. Despite this, we move 

among the FSMs in the same way as before. 

 At the computation core, we add the appropriate signals with purpose to catch 

the values of the new variables and we make a copy of the existing FSM which 

handles them. The block done signal is activated as soon as both of the FSMs have 

finished and, then, the core will supply the system with eight sums. 

 The adding of these addresses allow us to compute four more rectangles of the 

Integral image in only one “repetition” of the sub – system. The worst scenario is the 

32-cycles delay in the Collision Detect Core, but it is less possible with the 

optimization in 3.1. Again, we face the question of what is the ideal number of 

addresses that should be provided to the system. 

  

 

 

3.3 The duplication of 32 cores and the ability of 64-address-

queries 

  

 By now, we have not take advantage of the second port of the memories that 

gives us the opportunity of exporting the data of two variables in only one clock cycle 

and that because we were sending the same address at both inputs. Therefore, as said 

in 2.2.5, the two units of the computation core calculate the same eight rectangles 

(after 3.2). It is time to change this situation by duplicate the team of the existing 32 

cores. In that way we create twin cores that differs only in the name 

(Collision_detect_core_1 - Collision_detect_core_1B). The twins have the same id as 

they refer to the same block of memory, but their outputs are driven to the two 

different ports. 
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Figure 3.2   Supply of 64 addresses - Use of the memory's second port 

  

We are allowed, now, to supply the system with 64 different queries that will 

be created in the loop decoding core. The first team of 32 is sent to A cores, while the 

second team to B cores (figure 3.2). At the end, we benefit of sixteen different sums, 

which means sixteen different rectangular areas that were asked by the algorithm.  

 

 

3.4 Optimization of Collision Detect Core’s FSM – The two 

configurations 

 
 In 2.2.2 we identified, with the help of figure 2.4, that the functionality of the 

two connected FSMs, is characterized by a weak point. If the requested addresses 

need to use both of them, an empty clock cycle is appeared which consists a useless 

delay. Now, we need to understand better the transitions made during their process. 

 When the external reset is enabled we are in reset case of the first FSM. In 

there we activate the reset of the second FSM and we hold it to ‘1’ while we handle 

addresses from A0 to D1. When we are done, we move to state S0 that is a pause state 

and no data are leaving. We check, also, if we have already gone to second FSM and 

if not, we activate it immediately. Thus, we are in case S1 and continue with the 

process of signals A2 to D3. The lost clock cycle is, obviously the pause state and 

there is need to be eliminated, as it could be lead to a huge universal delay. There are 

proposed two solutions with advantages and disadvantages. 

 The first one is the modification of the present FSMs in order to erase this idle 

state. So, when get there, we just activate the second FSM by setting the reset b to 

zero without touch the other relative signals. Having reset at the sensitivity list, the 

FSM will begin its process but with value reset = 1 as it is going to change to 0 on the 
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next clock cycle. We exploit exactly this specificity to start checking signals at this 

very clock cycle. And as you can see in figure 3.3 it works fine!  

 

 

 
Figure 3.3   Collision Detect Core Simulation - Corrected four-part FSM 

   

  

In this figure we present only 24 signals and the functionality of 3 FSMs for 

space reasons. As you can see when the first FSM finishes, it closes the Reset b and at 

on the next clock cycle the next one gives to the output the value of the first address it 

process (1816). Afterwards, it checks for the others and, as soon as, it is done it 

activates FSM number 3 in the same way. 

 The disadvantage of this implementation appears at the version of four linked 

FSMs (3.2) and when there is no use of the intermediate ones. There we need at least 

one clock cycle per FSM and if no address matches this cycle is lost. You can see an 

example in figure 3.4. We are in core 1 se we handle addresses form 0 to 9600. The 

second FSM is not used while the addresses it processes do not belong to it. Thus, it is 

stable to state s0 and then gives command to third FSM to begin. 
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Figure 3.4     Collision Detect Core Simulation - Idle intermediate FSMs 

  

 

  

 

 

 

 The second solution is the construction of one huge FSM of 16 or 32 states, 

depending on the version we use. While we get rid of the signals that were connecting 

the previous FSMs, each new state is composed by much more controls in order to 

cover all the inputs and furthermore no state is similar to one another as before. The 

advantage of this implementation is that there is no loss of clock cycle at any case and 

that any team of signals is going to use it as long as it is necessary. Figures 3.5, 3.6 

and 3.7 show three different possibilities that have interest to study. 
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The first one shows the serialization of all the signals as all of them belong to 

the certain core. Once again we present only 24 inputs as there was not enough space 

for the other 8. Although, it is clear enough the way in which the FSM works as 

signals like “valid” and “CS_a” that declares the movement, are visible. 

 

 

 

 

 
Figure 3.5         Collision Detect Core - 1 Huge FSM Simulation - Case 1 
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The second one is the presentation of the case we lose with the previous 

implementation. In figure 3.6 we choose to pass through the core, two signals; one 

from FSM 1 and one from FSM 4. As predicted, there is no loss of any clock cycle as 

there is no such reason. We display only few non – taken addresses with the taken 

ones. 

 
   Figure 3.6         Collision Detect Core - 1 Huge FSM Simulation - Case 2 

 

In third case, we simulate the behavior of the FSM when no address belongs to the 

certain block. We need only one clock cycle to find out that no address is going to get 

to the output and enable the block done signal. 

 
Figure 3.7   Collision Detect Core - 1 Huge FSM Simulation - Case 3 
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3.5 Use of FIFOs – A permanent supply of addresses 

 
 The control we described at 2.2.5 was activating the production of an address 

block as soon as the Collision Detect Core had finished its job. That would start and 

stop the Loop Decoding Core too many times during the execution of the algorithm 

and considering that a clock cycle is needed per activation that means too many lost 

clock cycles.  

 The best possible way to get rid of those cycles is to use FIFOs. FIFO (First In 

First Out) is a method for organizing and manipulating a data buffer, where the oldest 

(first) entry, or 'head' of the queue, is processed first [10]. We use, then, as much 

FIFOs as the number of the addresses in a produced set. Each of them has space for 

few addresses and all of them are synchronized by the same signals.  

 Thus, in general, we store all the produced sets of addresses into FIFOs and 

when the Collision Detect Core demands a new one it is ready for use. The first unit is 

activated to produce new sets when there is free space in FIFOs but this will not cost a 

clock cycle anymore as it is taking place while Collision Detect Core is busy. In 

figure 3.8 you can see a typical simulation on a FIFO. 

 

 

 

 
Figure 3.8     FIFO Simulation 

   

 

We put seven values to the input, while we enable them to be written, as soon 

as we are informed that the FIFO is empty. Then we start read these values and when 

we have done the “empty” signal is enabled again. 
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3.6 Generating pseudo-random addresses 

 

 The insertion of these units has made our system more autonomous and its 

units more “discrete”, as we separated the unit of production with the unit of 

consumption. It is now easier to change the first one, depending on which algorithm 

we implement. For now, we are going to use a unit that produces 32 addresses that 

have no relation with the reality. It was created just for reasons of measuring and 

recording the behavior of the complete sub – system. As it has not some special 

functionality, it could be totally omitted but for the report reasons here it is. 

 When the unit is reset we create 32 addresses of some value that have one bit 

less than expected. When the unit is enabled we add 32 in each address at every cycle 

and put the result to the output including the missing bit (MSB). The reason of this 

bizarreness is to hold the values of the addresses into the limits (307200). For typical 

reasons we simulate the functionality of this unit in figure 3.9. 

 

 

 
Figure 3.9  Random address generator Simulation 

 

 

When enabled the system starts the production of the addresses in every clock 

cycle. Then we disable it, and see that it stays stable. Afterwards, it resumes from the 

appropriate address. This is very important because in future Loop Decoding Cores it 

is necessary to get all the addresses in the correct order. 
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3.7 Use of delay registers 

 
 The three signals that the Computation Core receives for each address was, 

until now, not synchronized. While the “address label” and “address valid” signals 

were driven direct to it, the “address out” is sent to the memory which has one clock 

cycle delay. For this reason we use a register to delay the other two in order to get to 

the unit together (figure 3.10). 

 

 

 
Figure 3.10 The use of delay register 

 

 

 

 

 

 

3.8 Total system control 

 
 This renewed sub – system needs a different control system from the previous 

to work correct and have all its units synchronized. In this paragraph we are going to 

describe how we handle the “vital” signals of each unit using a control FSM in the 

Top Level and not only. You can see the below description represented in figure 3.11. 

 In the beginning we put the system’s reset to the address generator and FIFOs. 

The inverted “full” signal from FIFOs is connected to address generator’s “enable”  

signal and to FIFOs’ “write enable”. In this way, we ensure that as soon as the FIFOs 

have free space the address generator will supply them with sets of addresses. These 

signals have no need of the FSM but it is not the same for the next ones. 
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         Figure 3.11       Top Level Block Control 

 

In order to read data from FIFOs we need two things. The first is that the 

FIFOs are not empty, so we use the inverted “empty” output. The second is the 

Collision Detect Core reset that is handled by the FSM, like the Computation Core 

Reset. When the System’s reset is enabled we activate them all and we are ready to 

transfer at state S0. We stay here until the FIFO “read enable” signal is ‘1’ and, 

having reset already ready, this is going to happen when the FIFOs gets data. At this 

very moment we put the two main units to work and we get to state S1. We check, 

now, if the Computation Cores have finished their job. If so, we activate again the 

reset signals and we are ready to receive the next set of addresses from FIFO while 

moving to state S0. Otherwise, we stay here until this happens. 

 Being sure of the right functionality of the control unit and the whole sub 

system, we can use it to face anyone algorithm belongs to Viola – Jones framework 

and we are ready to test on it different kind of algorithms and see the results. 
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3.9 Performance evaluation 
 

 

Using an FPGA of Zynq family, the XC7Z045, we synthesize and implement our 

design in order to see its requirements an if we can download it correctly. By using 

the version with the four linked FSMs we achieve a minimum period of 4.932 ns and 

a maximum frequency of 202.751 MHz, while using the version with the one huge 

FSM we have 4.947 ns as minimum period and a maximum frequency of 202.136 

MHz. 

 It is encouraging that we achieved and overcame the threshold of 200 MHz in 

which the initial sub – system was working. That means that, in general, our 

optimizations did not affect the clock period and thus can be characterized as 

successful. 
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4 Chapter – Crossing the border of Viola – Jones 

Framework 

 

The second part of this thesis begins when the requirement of testing our sub – system 

on algorithms that do not belong in Viola – Jones framework, becomes imperative. It 

is of high interest to find out how flexible it can be proved as for the changes to be 

made and to what extent will it accelerate some tested algorithm. For that reason, we 

are studying the “Face Detection, Pose Estimation, and Landmark Localization in the 

Wild” algorithm which is specialized to face detection while processing an image. 

The results are utterly interesting. 

 

 

4.1 General Description of Parts Based Detector Algorithms – The 

“Face Detection, Pose Estimation, and Landmark Localization 

in the Wild” Algorithm 

 
Part-based models refer to a broad class of detection algorithms, in which 

various parts of the image are used separately in order to determine if and where an 

object of interest exists [13]. In this thesis we examine “Face Detection, Pose 

Estimation, and Landmark Localization in the Wild” algorithm that was created by 

Xiangxin Zhu and Deva Ramanan [14]. The general idea is that the algorithm tries to 

detect certain parts of an object, in our case of a face, using special filters. When it is 

done it uses a mixture of trees in order to check the locality of the detected parts and if 

it responds to the real object. For example, for face detection, it will search for eyes, 

mouth, nose or ears and as soon as it finds them it will check if they are on the right 

position too and not randomly scattered in the image. 

  

The concept is to find the portion of the code in which we spend the most of the time 

for data processing (bottleneck). Then, we are going to try its parallelization by 

implementing it in VHDL and combine it with our sub – system. If the results are 

encouraging, our sub - system can be easily connected to the remaining algorithm, as 

a production engine that consumes and produces data in real – time and at low cost, 

behaving as what exactly it is; an embedded system. 
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4.2 The bottleneck and the parallelization 
  

 Searching the algorithm from edge to edge in order to find out the part we 

described above, we meet the numerous access memories and computations that 

happen when we apply the special filters on the image. No doubt, it is a point we need 

to study thoroughly in order to understand its functionality and use it properly to 

achieve our purpose. Let’s begin with a general description and come, finally, to what 

exactly we are going to try to parallelize. 

 

4.2.1  The bottleneck 

 

 The certain algorithm takes as input an image and creates a pyramid of not-

constant height, composed by different resized versions of the same image; the most 

we move up to the pyramid the smaller the image is. Afterwards, it calculates the 

Histogram of Oriented Gradients (HOG) for all of them. HOG is a technique that 

counts occurrences of gradient orientation in localized portions of an image. The 

thought behind it, is that local object appearance and shape within an image can be 

described by the distribution of intensity gradients or edge directions [11]. The 

specific HOGs we describe are 3D and more specifically XxYx32, where XxY is the 

size of each image.  

 On this HOGs we are going to apply some filters of dimensions 5x5x32. As 

you see the depth of the filters is the same to this of pictures. The number of filters to 

be applied is 99 and corresponds to all the parts we need to locate in Face Detection. 

So, each filter is going to be convolved with each HOG in this way; the first level of 

the picture is convolved with the first level of a filter, the second level of picture with 

the second of the filter and so on. The procedure of convolution is shown, in details, 

at figure 4.1. As soon as we have finished with all levels we add all of them pixel by 

pixel and we produce a 2D data structure. This happens with all filters.  

 

 
Figure 4.1 Detailed convolution between image and filter [20] 
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 But, let’s see the code that performs the above acts. Firstly, there is the 

function; 

 

 _Vector< _Array<T>* > *featureResponce(_Vector< _Array<T>* > *response,  
_Array<T> *feat, _Vector< _filter<T> > *filters), 
 
which has, as arguments, the HOG (feat) and all the filters. It calls the function 

“convolve” for each filter separately, as the second one takes a HOG and a filter and 

returns a 2D response; 

 
 _Array<T> * convolve(_Array<T> *response, _Array<T> *feat, _Array<T> 
*filter) 
 

The convolve function with its turn, uses a nested for of depth 5 in order to produce 

the response. This could be translated as follow; 

 

For each one of the 32 levels (the depth of the HOG and filter)  
 For each row of the pixels  
  For each column of the pixels  
   For each row of the 5x5 sub image and sub filter  
    For each column of the 5x5 sub image and sub filter 
     Do the mul and add 

 

 

This part demands from memory the values of HOGs and filters in order to 

accomplish two mathematical operations per iteration. This behavior causes million of 

memory accesses that delay the total process and there is need of being parallelized. 

 

 

 

 

4.2.2 Parallelization 

 

 In this try we faced a lot of problems as it was not clear, in the beginning, how 

exactly this could be done. Having in mind the structure of our system we see that we 

cannot store a bigger image than of 640x480 dimensions as our memory has space for 

exactly 307200 pixels. Consequently, we cannot store more than one pictures in 

memory and this, automatically allow us to process only one level of the total 32 (we 

left outside the outer loop for now). 

 Watching carefully the two inner loops that concern the sub filter and the sub 

image that are convolved, we notice that, when unrolling them, they create blocks of 

25 addresses. Automatically, we remember the 32 addresses that our system receives 

and think that with the suitable changes it could handle the 25 too. Although, this is 

not enough, as we need to take care of the movement that the two remaining for-loops 

causes to the filter. In other words, to make the sets of the 25 addresses which are 

going to be sent to the Collision Detect Core more specific. 

 Now, we can propose a total idea of how our system is going to cope with this 

algorithm. The most important is the design of the Loop Decoding Core. In here, we 
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have to create all the sets of 25 queries that are needed to complete the convolution 

between a 640x480 image and a 5x5 filter that is going to give us a 636x476 table. 

Then we store the image to memory and we use one more to store the corresponding 

filter. For every set we receive from Loop Decoding, we calculate its convolution 

with the filter in the Computation Core. When its process finishes it demands the next 

set of 25. When the total process is finished our embedded system informs the 

software to load on memories the next level of the image and filter and we start again. 

 The next step is to transfer the address generation to VHDL, in other words, to 

create the new Loop Decoding Core. For this purpose we are going to take advantage 

of Xilinx’s tool “Vivado High Level Synthesis” for which we discuss in the next 

paragraph. 

  

 

4.3 Vivado - High Level Synthesis 

 
 High-level synthesis is an automated design process that interprets an 

algorithmic description of a desired behavior and creates digital hardware that 

implements that behavior.  The goal of HLS is to let hardware designers efficiently 

build and verify hardware, by giving them better control over optimization of their 

design architecture, and through the nature of allowing the designer to describe the 

design at a higher level of tools while the tool does the RTL implementation [12]. 

Vivado is Xilinx’s High Level Synthesis tool which we are going to use. 

 

  

 

4.3.1 The C code 

  
 As designers, in this case, we need to create a C code that unrolls the two inner 

loops, follows the movement of the filter and generates 25 addresses or 50 ones if we 

want to use both the ports of the memories. This on its own was quite easy, but we 

have to follow a specific plan of organization to cover Vivado’s requirements. 

 In order to give a solution at our implementation, Vivado needs the source file 

.c or .cpp and a testbench file in which we run the main function that calls the 

function we designed. So, in the first one, we did the main functionality using a struct 

and some if statements, while, in the second one we have just the call. After several 

experimentations we reached the conclusion that we need to take care of the enable 

signal, which is vital for the module that is going to be created, exactly here and so we 

act. 
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4.3.2 The VHDL code 

 

 After debugging, running C code and choosing a device for the solution, we 

are ready to synthesize it. Vivado completes its process in a few seconds, giving the 

.vhd files and a report that includes information about what exactly it used to design 

the solution. The produced .vhd files correspond to the functions we had in C design. 

We are going to check the gen.vhd to make sure that it produces the addresses as we 

wish. Indeed, as we can see in figure 4.2 the results are correct. 

 

 

 

 

 

 
Figure 4.2  Simulation of Loop Decoding Core 

  

 

 
In the red rectangle we show part of the first set of addresses. The smaller 

yellow ones declare the change of the row in the sub-image. As we have a 640x480 

picture, to the change the line we need to add 480. Below it, we see that the next set 

begins with address 1 as the filter moves one position to the right to be re-convolved. 

The blue rectangle is to confirm the correct functionality of the enable. When it is 

disabled the address generation freezes and continues when it is enabled again. 
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4.4 The Embedded System tailored  to “Face Detection, Pose 

Estimation, and Landmark Localization in the Wild” 

Algorithm 

 
 By now, we have completed the first part of the transformation we attempt on 

the sub-system in order to cope with the algorithm requirements and it is time to 

consummate it. The memory accesses, that the convolve function is demanding, have 

been calculated and sent to the system. What remains is the way in which we are 

going to use them. The main part that will concern us is the Computation Core, but 

minor changes were done almost everywhere. 

 The number of FIFOs is now fifty as many as the addresses we produce. The 

first team of 25 sends the outputs to the Collision Detect A Cores whose number 

remains as before (32), while the second team to Collision Detect B Cores (32) (see 

figure 3.2 for help).  

 To resolve the collisions we use the previous huge FSM, but with 25 states, 

while the inputs reduced too. Figure 4.3 presents its simulation for 25 collisions, but 

there is not anything new to mention here. Have in mind that the names of the inputs 

have changed to A0 to E4; the letter declares the row, the number declares the 

column. 

 
Figure 4.3  Part of simulation of 25 collisions in Collision Detect Core 
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4.4.1 Implementation of filter 

 
 The new part is the insertion of a memory block that holds the filter. It is 

similar to the blocks of the image with one difference. We have 32 such units with 

exact the same data; the 25 values of the filter stored in order (A0 – E4). Each of them 

has two ports and receives data from the same Core as the corresponding Memory 

Block (figure 4.4).  

 
Figure 4.4   Block Diagram - The insertion of filter 

Thus, when we demand a 

number from memory (e.g. 

data of D3) we use its label to 

find, simultaneously, the data 

of this exact place of the filter 

with which it is going to be 

multiplied. The label can be 

used as a pointer while we 

have predicted to put the data 

in right order (figure 4.5). As 

a result, after a clock cycle 

we drive to memory both the 

numbers of the image and the 

filter in order to be 

multiplied. 

Figure 4.5  Storing filter data to filter memory 
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4.4.2 Multiplications and Additions  in Computation Core 

 
 Despite the previous inputs of this unit, we include the data that come from the 

32 copies of the filter. It is very important to calculate all the multiplications in any 

order and store them somehow in order to make the final addition. For this reason we 

work with the same logic as before. We classify the data that come from the filters 

depending on the label and the valid signal, just as we did with image data. When 

having “0000011” as label from a block, it means that we receive the A2 image data 

from memory and A2 filter data from filter, simultaneously. Using the previous FSM 

we store in signals the filter data, too. As soon as, a couple of numbers arrive we keep 

their multiplication in other signals (named as “A0_mul” etc). The new element is the 

use of a second FSM that handles the sum. It waits until all the signals have been 

caught and then it adds the 25 signals that hold the multiplications. In the same clock 

cycle, it validates the output and informs the system to begin the process of the next 

set. In the next figure (4.6) we simulate an example of the correct functionality of the 

new Computation Core. 

 

 
Figure 4.6  Simulation of Computation core 

 
We choose to take all the data from only two blocks, just to prove that the result will 

be correct whenever we take the data to the input. In the blue rectangles are the 

numbers that are going to be multiplied in pairs per clock cycle. When all are 

calculated we export the sum (red rectangle).  
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4.4.3 Top Level 

 
 The new datapath of the system’s top level is shown in figure 4.7 and in 

general it was described above. What about the control unit? It is exactly the same 

with the previous one (figure 3.7) as it was designed to satisfy different units, no 

matter their functionality. 

 

 

 
Figure 4.7  New Top Level's Block Diagram 
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4.5 Measurements – results 

 
  
 When done with the new specialized sub – system, it is time to test its 

functionality and its performance. Using a simple program in C we take useful 

measurements, as concerns the average collisions, the memory accesses per cycle and 

the total memory accesses, we wait during an implementation.  

 

 

 

 

 

4.5.1 Vivado’s report 
 

After synthesis, the Vivado HLS created the following report that estimate the 

clock period of the hardware it produced and includes the exact elements it used. 

 

Figure 4. 8  Vivado's Report 

  

 The clock period matches our standards (max 5 ns), thus the synthesis can be 

called successful. 
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4.5.2 The simple specialized sub - system 

  

 In this part, we are going to test our system without the use of any scrambling 

function in order to have a first aspect of its behavior. As we can see in figure 4.9, we 

have 25 addresses corresponding to the same block, and so 25 collisions in the 66% of 

cases, while 20 collisions in 16.72% and 15 collisions in 16.85%. This is reasonable 

as the 5x5 filter demands neighboring addresses. 
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Figure 4.9  No scrambling - no cache 

The above statistics have been exported after 302736 total loops, where we have; 

total memory accesses (million)  :  7.57 

average collisions per address query :  22.5 

served memory accesses per cycle using dual port :  2.226 

average Pixel throughput at 200 Mhz : 445.274 Mega Pixels per sec 

average throughput at 200 Mhz  : 1.739 GBytes per sec 

 

It seems that too many collisions do not accelerate our system and we need to improve 

these percentages. 
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4.5.3 The effect of scrambling function 

 
 It is very important to remind here the necessity of the scrambling function. In 

[1] the authors describe two functions that were tested, the XOR and bit – reordering, 

giving, also, statistics about how each of them reduces the collisions in each tested 

algorithm. We are going to use the bit reordering scrambling that works as follows. 

When producing an address we choose an optimal bit which will be the 

reference point, where the LSBs become MSBs and the opposite. In this way we 

separate the neighboring pixels and send them away into different blocks. While 

storing the pixels into memory we apply again this function to get the correct data (1-

1). In this chapter we are going to search the optimal bit in order to achieve the best 

result. 

In figure 4.10 we choose to reorder at bit 14 and then at bit 4. In first case, we 

receive 5.94 average collisions per address query and we serve 8.424 memory 

accesses per cycle using dual port. Furthermore, processing at 200 MHz serves 

1684.85 Mega Pixels per sec that means 6.581 GBytes per sec. In second case, we 

receive 4.75 average collisions per address query and we serve 10.53 memory 

accesses per cycle using dual port. Furthermore, processing at 200 MHz serves 

2106.86 Mega Pixels per sec that means 8.23 GBytes per sec. 
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Figure 4. 10  Scrambling function on 

 

 

As you can see, the biggest percentage of collisions decreases from 25 to 5 

that improve the average collisions per address query. When this function is disabled 

we get an average of 22 collisions, as mentioned before, and this proves that not 

having collisions is not a product of luck but the result of this function. 
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4.5.4 Use of cache 

 
 Having a second, more careful look at the way the addresses are born for the 

simple operation of convolution, we notice that the filter moves by a pixel per 

iteration and as a result, from the total 25 queries almost 20 are the same. Thus, it 

would be very efficient the use of a simple cache in order to keep these data stored 

and easily accessed. For the below measurements we use a simple LRU cache that 

remembers only the previous set of addresses and we test again 4 and 12 as optimal 

bits for the partial reordering.  
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4.11  Scrambling function on - Cache on 

In case of optimal bit 4, we have the following results: 

 average collisions per 32/25/16 address query : 4.58 

 served memory accesses per cycle using dual port : 10.92 

 average Pixel throughput at 200 Mhz   : 2184.55 MPixels per sec  

 average throughput at 200 Mhz   : 8.533 GBytes per sec  
 

In case of optimal bit 12, we have: 

 average collisions per 32/25/16 address query : 1.6 

 served memory accesses per cycle using dual port : 31.21 

 average Pixel throughput at 200 Mhz   : 6242.57 MPixels per sec  

 average throughput at 200 Mhz   : 24.39 GBytes per sec 

 

It seems that the cache needs a different optimal bit to work properly but when it 

happens the results are impressive as in the most of cases we do not have any 

collisions. This does not means that our system is invalidated by the use of cache but 

that this is optimal in the specific algorithm that uses convolution. 
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4.6 Performance 

 

Using the same device as before (Family: Zynq, Device: XC7Z045), the Xilinx report 

after Synthesis and Implementation gave as the following results: 

 Minimum period : 4.867ns (Maximum Frequency: 205.468MHz) 

 Minimum input arrival time before clock : 1.304ns 

 Maximum output required time after clock : 1.109ns 

 Maximum combinational path delay  : 0.640ns 

 

Once again, we achieved our purpose of not fall below 200 MHz. 
 
 
 
 
 

 

 

4.7 Conclusion 

 
The creation of the Loop Decoding Core was converted to a piece of cake with 

the use of Vivado. Building it, directly, in VHDL would, probably, take us a great 

amount of time to complete and would bring us in front of, too many difficulties. 

Now, we just designed in few lines of C code the memory pattern and the work was 

done. That helps us to achieve the general purpose of the system. In other words, we 

have, only, to find out where each algorithm needs acceleration, due to memory 

delays, while the memory sub-system is responsible to parallelize the data. 
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