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ABSTRACT 

 

The aim of this work is the development of an optimization model in order to 

minimize the cost of Leaf Community microgrid. This cost is a sum of energy cost 

and the maintenance cost of the Energy storage system. The developed objective 

function is constrained and the problem here is solved by using the method of genetic 

algorithms at Matlab. The genetic algorithm decides about the transportation of the 

energy from or to the ESS and it calculates an optimum cost. The optimization time 

horizon is 24 h ahead, thus the prediction of energy production and consumption was 

necessary. This was achieved by using neural networks. In order to verify the 

performance of the developed optimization model, some scenarios were tested 

evaluated. This study concludes that a management of a microgrid can achieve energy 

and money savings.  
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NOMENCLATURE 

𝐸0
𝑝𝑢𝑟

: energy purchased from subsystem (0) – POD at time t, (kWh) 

𝐸1
𝑝𝑢𝑟

: energy purchased from subsystem (0) and has passed the transformer in order to 

be consumed at subsystem 1 and specifically at Leaf Working at time t, (kWh) 

𝐸2
𝑝𝑢𝑟

: energy purchased from subsystem (0) and has passed the transformer in order to 

be consumed at subsystem 2 and specifically at Leaf farm at time t, (kWh) 

𝐸0
𝑠𝑒𝑙𝑙 : energy sell to the subsystem (0) – POD at time t, (kWh) 

𝐸10
𝑠𝑒𝑙𝑙 : energy sell from subsystem (1) to subsystem (0) at time t, (kWh) 

𝐸30
𝑠𝑒𝑙𝑙 : energy sell from subsystem (3) to subsystem (0) at time t, (kWh) 

𝐸𝐷𝑒𝑚𝑎𝑛𝑑
1  𝑡 : Energy demanded at Leaf Working at time t, (kWh), predicted from the 

algorithm developed 

𝐸1
𝑝𝑢𝑟

(𝑡): energy purchased from subsystem (0) and has passed the transformer in 

order to be consumed at subsystem 1 and specifically at Leaf Working at time t, 

(kWh) 

𝐸11
𝑢𝑠𝑒 (𝑡): energy generated from PV plants (subsystem (1)) and can be used directly 

from Leaf Working (subsystem (1)) in order to cover its need at time (t), (kWh) 

𝐸31
𝑢𝑠𝑒 (𝑡): energy generated from hydroelectric station (subsystem (3)) and can be used 

directly from Leaf Working (subsystem (1)) in order to cover its need at time (t), 

(kWh) 

𝐸21
𝐸𝑆𝑆(𝑡): energy stored at ESS (subsystem (2)) and can be used from Leaf Working 

(subsystem (1)) after feeding the Leaf farm (subsystem (2)) at time (t), (kWh) 

𝐸2
𝐸𝑆𝑆 𝑡 − 1 : energy stored at the ESS (subsystem (2)) at time (t-1), (kWh) 

E𝐷𝑒𝑚𝑎𝑛𝑑
2  t : Energy demanded at Leaf farm at time t, (kWh), predicted from the 

algorithm developed 

E2
𝑝𝑢𝑟

(t): energy purchased from subsystem (0) and has passed the transformer in 

order to be consumed at subsystem 2 and specifically at Leaf farm at time t, (kWh) 

E12
𝑢𝑠𝑒 (t): energy generated from PV plants (subsystem (1)) and can be used directly 

from Leaf farm (subsystem (2)) in order to cover its need at time (t), (kWh) 

E32
𝑢𝑠𝑒 (t): energy generated from hydroelectric station (subsystem (3)) and can be used 

directly from Leaf farm (subsystem (2)) in order to cover its need at time (t), (kWh) 

E22
𝐸𝑆𝑆 t : energy stored at ESS (subsystem (2)) and can be used from Leaf farm 

(subsystem (2)), (kWh) 

𝐸2
𝐸𝑆𝑆 𝑡 − 1 : energy stored at ESS (subsystem (2)) at time (t-1), (kWh) 

E2
𝐸𝑆𝑆(t): energy stored at ESS at time t, (kWh) 

E0,𝐸𝑆𝑆
𝑝𝑢𝑟

(t − 1): energy purchased from POD at time (t-1) in order to charge the 

batteries, (kWh) 

E12
𝐸𝑆𝑆(t − 1): energy generated from PV plants (subsystem (1)) and goes for store at 

ESS (subsystem (2)) at time (t-1), (kWh) 

E32
𝐸𝑆𝑆(t − 1): energy generated from hydroelectric station (subsystem (3)) and goes for 

store at ESS (subsystem (2)) at time (t-1), (kWh) 

E𝐸𝑆𝑆 ,𝐿𝑒𝑎𝑓𝑓𝑎𝑟𝑚
2 (t − 1): energy taken from ESS in order to cover Leaf’s farm demands 

at time (t-1), (kWh) 
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E𝐸𝑆𝑆 ,𝑃𝑜𝑙𝑜 _2
1 (t − 1): energy taken from ESS after feeding Leaf farm, in order to cover 

demands at Leaf Working at time (t-1), (kWh) 

𝐸2
𝐸𝑆𝑆

𝑚𝑎𝑥
: maximum energy can be stored at ESS, (kWh) 

𝐸2
𝐸𝑆𝑆

𝑚𝑖𝑛
: minimum energy can be stored at ESS, (kWh) 

𝑆𝑂𝐶 𝑡 : the state of battery charge at time t 

𝑆𝑂𝐶𝑚𝑖𝑛 : the allowable minimum state of battery charge 

𝑆𝑂𝐷 𝑡 : the state of battery discharge at time t 

𝑆𝑂𝐷𝑚𝑎𝑥 : the allowable maximum state of battery discharge 

𝐸𝑃𝑉
𝑔𝑒𝑛  𝑡 : energy generated from PV plants at time t, (kWh), predicted from the 

algorithm developed 

𝐸10
𝑠𝑒𝑙𝑙 (𝑡): energy generated at subsystem (1) – PV plants and goes for sell to 

subsystem (0) – POD at time t, (kWh) 

𝐸12
𝐸𝑆𝑆(𝑡): energy generated at subsystem (1) – PV plants and goes for store at 

subsystem (2) – ESS at time t, (kWh) 

𝐸11
𝑢𝑠𝑒 (𝑡): energy generated at subsystem (1) – PV plants and goes directly for use at 

subsystem (1) – Leaf Working at time t, (kWh) 

𝐸12
𝑢𝑠𝑒 (𝑡): energy generated at subsystem (1) – PV plants and goes directly for use at 

subsystem (2) – Leaf farm at time t, (kWh) 

𝐸𝑦𝑑𝑟𝑜
𝑔𝑒𝑛

(𝑡): energy generated from hydroelectric at time t, (kWh), predicted from the 

algorithm developed 

𝐸30
𝑠𝑒𝑙𝑙 (𝑡): energy generated at subsystem (3) – hydroelectric station and goes for sell to 

subsystem (0) – POD at time t, (kWh) 

𝐸32
𝐸𝑆𝑆(𝑡): energy generated at subsystem (3) – hydroelectric station and goes for store 

at subsystem (2) – ESS at time t, (kWh) 

𝐸31
𝑢𝑠𝑒 (𝑡): energy generated at subsystem (3) – hydroelectric station and goes directly 

for use at subsystem (1) – Leaf Working at time t, (kWh) 

𝐸32
𝑢𝑠𝑒 (𝑡): energy generated at subsystem (3) – hydroelectric station and goes directly 

for use at subsystem (2) – Leaf farm at time t, (kWh) 

n1: the efficiency of the transformer connected at line POD – Leaf Working 

n2: the efficiency of the transformer connected at line POD – Leaf farm 

n3: the efficiency of the inverter connected after the ESS at subsystem (2) 
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1 INTRODUCTION 

Electricity is vital to the modern way of life, as it is used by industries, businesses, 

homes and transportation. This form of energy is produced by electrical power 

systems and has many advantages as it is clean, its transportation from the production 

to the consumption points is easily and its utility is really flexible. The electrical 

power systems should satisfy the needs of consumers by supplying the proper amount 

of electricity. The voltage and the frequency must be stable even though the demand 

is not.  

 

Furthermore, it is important the electricity’s cost being accessible to the majority of 

the population, while its production and use must pollute as less as possible the 

environment. Regarding these two topics, many researchers analyzed at their studies 

different ways that decrease the emissions to the environment by promoting the 

renewable energy sources, while economical models developed through intelligent 

applications such as neural networks and optimization methods, show the need of 

managing the energy in order to achieve a cost as minimum as possible.  

 

Thus, economic, technology and environmental incentives are changing the face of 

electricity generation and transmission and centralized generating facilities are giving 

way to smaller, more distributed energy resources (DER). [1] The technical 

advantages of distributed generation units include power quality and reliability as well 

as energy management and efficiency. It also offers economical advantages in terms 

of reducing capital investment for construction of power systems since distribution of 

generation units eliminates the need for having extensive transmission systems. [2]  

 

The growing deployment of DER units, mostly these on small scale which combine 

power and heat plants and renewable energy resources based on distributed generation 

units, has led to the development of microgrids, which are described below. [3] 

 

The microgrid approach promotes: [4] 

 

 a highly efficient energy delivery and supply system based on co-locating 

DER and loads  

 a secure and reliable power supply configuration with service differentiations 

based on customer technology preference and power quality desires, and  

 an energy delivery structure that has sufficient power generation and balancing 

sources to operate independent from the main grid in an autonomous manner 

during power outages or an energy crisis. 
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2 MICROGRIDS 

Microgrids are small scale supply networks designed to provide electrical and heat 

load for a small community, such as a housing estate, a suburban locality, an 

academic or a public community, an industrial site or a commercial area. 

The microgrid (MG) concept assumes a conjunction of power generation plants 

(distributed generators (DG) – renewable energy sources), energy storage units 

(distributed storage (DS) - batteries) and units of energy consumption (buildings), 

operating in low voltages, while it could be operating either on grid connected mode 

either on island mode interacting with the main grid. The electrical connection point 

of the microgrid to the utility system, at the low-voltage bus of the substation 

transformer, constitutes the microgrid point of common coupling (PCC). A typical 

microgrid structyre is presented at Figure 2.1. [5] 

 

 

Figure 2.1: Typical microgrid structure including loads and DER units [5] 

 

In grid-connected mode, the microgrid either draws or supplies power from or to the 

main grid, depending on the generation and load with suitable market policies. On the 

other hand, microgrid can operate independent when a power quality event in the 

main grid occurs. [6] 
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In the case that microgrid is connected to the main grid, it behaves as a controllable 

load or source, while operating under island mode it should face a number of issues 

that are described below. 

 

 

2.1 Issues operating under island mode 

In case of a fault on the main grid, the microgrid should disconnect and operating 

independently facing the followings. [7] 

 

 Voltage and frequency management  

 

Microgrid’s voltage and frequency are determined by the grid when they are 

connected. Under a situation of disconnections, the values of these parameters should 

be adjusted, otherwise if frequency’s value be too small, the load may be temporarily 

shaded.  

 

  Balance between supply and demand 

 

When there is a power flow from the grid to the microgrid or the opposite before 

disconnection, then secondary control actions must be followed in order to balance 

generation and consumption in island mode to ensure initial balance after a sudden 

fluctuation in load or generation.  

 

  Power quality 

 

Operating under island mode, microgrid should maintain a sufficient power quality, 

supplying an adequate reactive energy in order to decrease voltage sags. Additional, 

the storage system should be capable of reacting immediately and exchange large 

amounts of real or reactive power.  

 

  Microsources issues 

 

Most microsources like turbines or fuel cells delay to response to secondary voltage 

and frequency implements. For that reason, the intermediate storage units and 

microsources with built-in battery banks are going to offer the advantages like 

spinning reserves.  

 

 Communication among Microgrid Components 

 

The implementation of communication infrastructure linking the microgrid 

components is another aspect considered when selecting the control approach on an 

islanded microgrid. [7] 
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2.2 Technology requirements in a microgrid 

Island mode operation of a microgrid requires variety technology systems in order to 

isolate from the grid and operate itself. The technology needed either on island mode 

operation either on grid connected is: [8] 

 

  Distributed generation (GD) 

  Islanding and Bi-Directional inverters 

  Smart meters 

  Distribution automation 

  Substation automation 

  Microgrid control systems 

  Smart transfer switches 

  Advanced energy storage 

2.3 Distributed generation (DG) 

Distributed generation refers to power generation at the point of consumption by 

electric power generators in small scale (1kW – 50MW). Distributed generator 

technologies includes combined heat and power (CHP), fuel cells, mini wind turbines, 

PV systems, micro-turbines, single-phase and three-phase induction generators, 

synchronous generators driven by IC engines or small hydro. [9] Most of the 

emerging technologies mentioned before, require an inverter interface in order to 

convert the energy into grid – compatible ac power. In order to be ensured a smooth 

operation for the microgrid control systems must be installed on the electrical power 

line. [5], [9] 

At the following Table 2.1, the interfacing and power flow control options of the most 

common power generators are summarized. 

Table 2.1: Typical characteristics of common DG [5], [9] 

Characteristics Solar Wind Microhydro Diesel CHP 

Availability Geographical 

location 

dependent 

Geographical 

location 

dependent 

Geographical 

location 

dependent 

Any time Dependent on 

source 

Output power DC AC AC AC AC 

Gas emission None None None High Dependent on 
source 

Control Uncontrollable Uncontrollable Uncontrollable Controllable Dependent on 

source 

Typical interface Power electronic 

converter (DC-

DC-AC) 

Power electronic 

converter (AC-

DC-AC) 

Synchronous or 

induction 

generator 

None Synchronous 

generator 

Power flow control MPPT1 & DC 

link voltage 

control 

MPPT, pitch & 

torque control 

Controllable Controllable AVR2 & 

governor 

                                                
1 MPPT: Maximum power point tracking 
2 AVR: Automatic voltage regulation 
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In this study, the distributed power generators are PV systems and a micro hydro. 

Therefore, some characteristics of those technologies are presented below at the 

followings sections.  

 

2.3.1 Photovoltaic (PV) system 

Photovoltaic systems exploit solar radiation in order to generate electric power. It is 

one of the common distributed generators which are preferred in a microgrid due to 

the enormous improvement of inverters. [10] 

 

Some of the main advantages of a PV system are summarized below. 

 

 Exploits a sustainable energy 

 There are no environmental impacts 
 Has a long life time 
 Its operation is not noisy 

 

Expect from advantages, there is also a list of disadvantages for these systems; some 

of them include the followings. 

 

 Their installation is not economically advantageous 
 They present low efficiency 
 Their efficiency is depended on the weather  

 

2.3.2 Micro hydroelectric system 

Another distributed generator is the micro hydroelectric system, which is capable to 

produce electrical or mechanical energy by exploiting the energy of flowing water. 

Their efficiency is directly depended on the geographical location as well as the 

annual precipitation of the area. Moreover its generation is not stable due to uneven 

rainfalls. [10] 

 

2.4 Energy Storage System (DS) 

The energy storage devices like batteries, fly-wheels and super-capacitors, are one of 

the main technologies in a microgrid, through them the successful operation of the 

microgrid is ensured.  They have to balance the energy demand with the generation 

and they take this responsibility in three necessary scenarios. [10] 

 

1. They establish energy balance even thought the variation of loads, while 

distributed generators with low inertia are not able to be responded to these 

disturbances.  
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2. Provides ride-through capability when there are dynamic variations in 

intermittent energy sources and allows the DGs to operate as dispatchable 

units. 

3. They provide the initial requirement energy when connections or 

disconnections are taking place with the main grid. [10] 

 

2.5 Benefits of microgrid 

Microgrid’s development is very promising regarding the electric energy industry, 

because of the followings. [11] 

 

 Environmental issues  

 

 

The environmental impact of microsources is expected to be smaller than large 

conventional thermal power stations. Also, the main benefits of the microgrid in this 

topic are: 

 

a) Physical proximity between consumers and microsources may help increase 

consumer awareness towards a more rational use of energy. 

 

b) Reduction of gas emissions that may mitigate the alleged effects of climate 

change due to the creation of technical conditions to increase the connection of 

renewable energy resources at the low voltage level. This will be achieved by 

the use of these sources together with storage devices and their efficient 

coordinated control, both at a local level and at the microgrid level. In fact, 

RES are characterized by very low emissions and microturbines have also 

reduced impact due to close control of the combustion process. [11] 

 

 Operation and investment issues 

 

Reduction of both physical and electrical distance between generating units and loads 

may contribute to: 

 

a) Improvements of reactive support of the whole system, thus enhancing the 

voltage profile 

b) Reduction of transmission and distribution feeder overload 

c) Reduction of transmission and distribution losses 

d) Reduction/postponement of investments in the expansion of transmission and 

large-scale generation systems 

 

 Quality of service 

 

Improvement in power quality and reliability in particular is achieved due to: 
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a) Decentralization of supply 

b) Better match of supply and demand 

c) Reduction of the impact of large-scale transmission and generation outages. 

d) Minimization of downtimes if microsources are allowed to operate 

autonomously, namely when there is a disturbance in the upstream distribution 

system, and enhancement of the restoration process through the black start 

function of microsources. [11] 

 

 Cost saving  

 

The following cost savings can be achieved in microgrids: 

 

a) Utilization of waste heat in CHP
3
 applications. Also, no substantial 

infrastructure is required for heat transmission since CHP sources are located 

close to customer loads. 

b) Integration of several microsources combined into a microgrid allows sharing 

generated electricity among the customers, reducing the need to import/export 

power from/to the main grid through long feeders. 

 

 Market issues  

 

The following advantages can be attained: [11] 

 

a) Possible development of market driven operation procedures of microgrids 

will lead to a significant reduction of market power exercised by established 

generation companies. The microgrid can be regarded as an aggregator for 

individual loads and microgeneration units, enabling them to participate in 

electricity markets. 

 

b) Microgrids may be used to provide ancillary services. 

 

c) Widespread application of modular microsources may contribute to a 

reduction in energy price in the power market with appropriate economic 

balance between network investment and DG utilization. Further price 

reduction may be achieved by optimizing microgeneration operation (e.g. 

generating power locally at expensive peak loads and purchasing power from 

the main grid when economically more attractive). 

 

 

2.6 Disadvantages of microgrid 

Conversely, several challenges and potential drawbacks face the development of 

microgrids as follows: [11] 

 

                                                
3 CHP: Combined heat and power 
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 High costs of DER  

 

The high installation cost for microgrids is a big disadvantage that may be reduced if 

some form of subsidies from government bodies is obtained as a device to encourage 

investment, at least for a transitory period, given the current official environmental 

and carbon capture goals. 

 

 Technical difficulties  

These technical barriers are mostly related to the relative lack of experience and 

technical knowledge to operate and control a significant number of microsources. 

This aspect requires extensive real-time and off line research on issues such as 

management, protection and control of microgrids. Also, specific telecommunication 

in infrastructures and communication protocols need to be developed to help 

managing, operating and controlling the microgrids. In addition, economic 

implementation of seamless transition between operating modes is a major challenge 

since the currently available solutions are still quite expensive. [11] 

 

 Absence of standards  

 

Since this is a comparatively recent area, standards are not yet available for 

addressing power quality, operation and protection issues, for instance. 

 

 

 

 Administrative and legal barriers  

 

In some countries, there is a lack of legislation and regulations for the operation of 

microsources.  Naturally, legislation and regulation for microgrid operation is more 

complex and will have serious implications regarding coordination with the 

distribution company on issues such as dispatch voltage/var control strategies, real 

time management, ancillary services provision, etc. [11] 

 

 

2.7 Control and Management 

According to the financial benefits of microgrid, owners have to opportunity to make 

prudent investment decisions and optimize energy assets in long term. Thus, a sound 

operation of microgrid is needed, especially to this that operates in island-mode. 

Therefore, appropriate control and management systems are required.  

 

A principle of the energy management is presented schematically at Figure 2.2. [12] 
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Figure 2.2: Principle of energy management [12] 

The management of a microgrid requires an accurate model to describe the operation 

taking into account all the components of it. By developing detailed models, the 

achievements for the owners could be the followings: 

 

 Reduce energy costs 
 Optimize revenues 
 Achieve net zero energy  
 Minimize emissions 
 Maintaining occupant satisfaction and comfort 

 

Such these models are discrete and nonlinear in nature; hence optimization tools are 

needed, like dynamic programming, genetic algorithms, evolutionary computering, 

particle swarm optimization algorithms and simplex method.  On the other hand, basic 

architectures and regulation techniques of microgrids are presented by Llaria et al., in 

order to study the islanding behaviour and mainly the different detection techniques 

and the inverters’ control once islanded.  [13] 

 

 

2.8 Optimization of microgrids: State of the art 

Several strategies have been reported in the literature related to the operation costs as 

well as minimizing emissions of microgrid. Havez et al., focus on the optimal design 

of a renewable energy based microgrid with the goal of minimizing the lifecycle cost, 

http://www.sciencedirect.com/science/article/pii/S0960148111000176
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while taking into account environmental emissions. Four different cases were 

modeled at software HOMER, in order to compare and evaluate their economics, 

operational performance and environmental emissions. [14]  

 

A simulation of a fuzzy logic energy management system for an autonomous 

polygeneration microgrid is presented by Kyriakarakos et al. The devices being 

managed at this work are the fuel cell, desalination unit and electrolyser unit. They 

develop a design tool based on TRNSYS 16, Matlab, GenOpt 2.0 and TRNOPT, 

while they used Particle Swarm Optimization (PSO) method. The results show that 

the fuzzy logic system utilizes the available energy in the system better and the 

components’ sizes are, thus, considerably decreased. [15]   

 

According to [16], the optimization of a small power system has important differences 

from the case of a large system and its traditional economic dispatch problem. In this 

study the researchers developed an optimization model which aims at reducing the 

fuel consumption rate of the system while constraining it to cover the local energy 

demand (both electrical and thermal) and provide a certain minimum reserve power.  

 

Another work has been done by Faisal A. Mohamed et al., who present a non linear 

constrain multiobjective optimization problem in order to determine the optimal 

operating strategy and cost optimization scheme as well as the reduction of the 

emissions for a microgrid. [17] Furthermore, Faisal A. Mohamed et al., propose a cost 

function takes into account the costs of the emissions, NOx, SO2, and CO2, start up 

costs, as well as the operation and maintenance costs. The optimization is aimed at 

minimizing the cost function of the system while constraining it to meet the customer 

demand and safety of the system by using genetic algorithms. [18] 

 

H.Z. Liang et al., use an improved genetic algorithm based method in order to 

minimize the microgrid’s operational cost when it is isolated and maximize its 

revenue when it is connected to upstream network. [19]  

 

Stadler et al, present the development of a web-based software as service approach for 

optimizing the selection and the operation of distributed energy resources equipment 

and running the Distributed Energy Resources Customer Adoption Model (DER-

CAM). Given an individual microgrid’s hourly energy requirements, available 

technologies and the economic environment, DER-CAM finds the economically or 

environmentally optimal combination of equipment to install and an optimal schedule 

to operate it. [20] 

  

There are many optimization techniques that have been applied to many optimization 

problems. Some of them are mentioned before. This study focuses on the method of 

the genetic algorithms in order to modeling an existing microgrid in Italy and 

minimizes the energy cost for the owners.  
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3 OPTIMIZATION 

Because of the complexity of many systems and products in engineering in order to 

improve and optimize them, efficient and systematic decision-making approaches are 

needed. This, leads to the development of optimization strategies. 

 

Optimization as an idea is the procedure through mathematical equations that 

maximizes or minimizes a target of interest, by finding the best solution among a set 

of candidate solutions. This task requires the following elements: [21] 

 

 An objective function: a reflection of a single quantity that needs to minimized 

or maximized. System’s cost or efficiency could be the measure needed to 

optimize. 
 

 Decision variables: the identification of the design parameters is a necessary 

step for the procedure. They reflect aspect of the problem that the decision 

maker has control over. 
 

 Constrains: are actually the limitations of performance for the system. 
 

 

3.1 Optimization procedure 

The optimization procedure starts by finding the objective function in terms of the 

design variables and other problem parameters. The second step includes the 

identification of decision variables which are not stable during the process of 

optimization. Usually, a design problem involves many design parameters. The 

decision maker has to choose the sensitive ones during the formulation of the 

problem. The development procedure ends by setting the appropriate constrains. The 

constraints represent some functional relationships among the design variables and 

other design parameters satisfying certain physical phenomenon and certain resource 

limitations. [21] 

 

These three steps should followed in order to develop an optimization model are 

presented schematically at Figure 3.1. 
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Figure 3.1: Optimization procedure 

After all these were mentioned above, the formulation could be tested in order to be 

able to evaluate the optimization model.  

 

 

3.2 General mathematical form of an optimization problem 

 

A simple case of an optimization problem is to maximize or minimize a function (f) 

which is only dependent on design variables (x). This problem doesn’t include any 

constrains. [22] 

 

Furthermore, an advanced case is described by the following equations. 

 

The objective function, f(x), need to be minimized/maximized, might be subject to 

constrains:  

 

 in the form of equality: Gi(x) =0 , (i=1,…,me) 

 in the form of inequality: Gi(x)≤0, (i=me+1,…,m) 

 in the form of parameter bounds: xi
(L)

 ≤ xi ≤ xi
(U)

 

  

f(x): the objective function 

x: is the vector of length n design parameters 

G(x): returns a vector of length ―m‖ containing the values of the equality and 

inequality constraints evaluated at ―x‖ 

xi
(L)

 : lower bound 

xi
(U)

: upper bound 

Lower and upper bounds are the minimum and the maximum limit respectively that 

decision maker estimates in order to enclose the best solution for the problem. 

Find the 

objective 

function need 

to optimize 

Identify the 

decision 

variables 

Set the 

appropriate 

constrains 

Optimization 

model 
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3.3 Optimization methods 

Some numerical methods are used to optimization problems are: [23] 

 

 Linear programming: studies the case in which the objective function ―f‖ is 

linear and the design variables are specified using only linear equalities and 

inequalities.  

 

 Integer programming: studies linear programs in which some or all variables 

are constrained to take on integer values. 

 

 Quadratic programming: allows the objective function to have quadratic 

terms, while the set of design variables must be specified with linear equalities 

and inequalities 

 

 Nonlinear programming: studies the general case in which the objective 

function or the constraints or both contain nonlinear parts. 

 

 Stochastic programming: studies the case in which some of the constraints 

depend on random variables. 

 

 Dynamic programming: studies the case in which the optimization strategy is 

based on splitting the problem into smaller sub-problems. 

 

 Combinatorial optimization: is concerned with problems where the set of 

feasible solutions is discrete or can be reduced to a discrete one. 

 

 Infinite-dimensional optimization: studies the case when the set of feasible 

solutions is a subset of an infinite-dimensional space, such as a space of 

functions. 

 

 Constraint satisfaction: studies the case in which the objective function f is 

constant (this is used in artificial intelligence, particularly in automated 

reasoning). 

 

As it was mentioned in the section of microgrids, there are many optimization 

methods that had been applied in this field, like dynamic programming, genetic 

algorithms etc. In this work, the optimization problem was developed based on 

genetic algorithms, which are described in the next chapter.  
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4 GENETIC ALGORITHMS 

Genetic Algorithms (GA) are described first from Charles Darwin. They constitute a 

direct, parallel and stochastic method for global search, while they are part of the 

group of Evolutionary Algorithms (EA).  They use techniques inspired of biology 

such as mutation, selection and recombination and they evaluate the target function to 

be optimized at some randomly selected points of the definition domain. [24] 

 

The genetic algorithms are typically characterized by the following aspects: 

 

1. The genetic code based on variable groups (artificial genetic strings) and not 

on variables themselves 

2. They work with a set of potential solutions (population) instead of trying to 

improve a single solution. 

3. They don’t use information obtained directly from the object function, of its 

derivatives, or of any other auxiliary knowledge of the same one. 

4. A global minimum can be found instead of a local minimum  

5. They apply probabilistic transition rules, not deterministic. [25] , [26] 

 

The method of genetic algorithm is a combination of the following concepts. [27] 

 

 Fitness function: is the objective function that genetic is asked to minimize 
 

 Individuals: sometimes is mentioned as genenome and the vector (number of 

design variables) entries of an individual as genes. An individual is any point 

that fitness function is applied. 

 

 Population: is an array of individuals. 

 
 Generation: is the new population produced arising at each iteration. 

 
 Diversity: is the average distance between individuals in a population. High 

diversity refers to large distance, otherwise the diversity is low. 
 

 Parents and children: next generation is produced by certain individuals of a 

current population called parents, while children refer to individuals of the 

new generation. 
 

 

4.1 New generations by genetic algorithms 

The evolution starts from a population of completely random individuals and occurs 

in generations. In each generation, the fitness of the whole population is evaluated, 

multiple individuals are stochastically selected from the current population and 
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modified (mutated or recombined) to form a new population. The new population is 

then used in the next iteration of the algorithm. [25], [28] 

The procedure stops when one of the stopping criteria that described below is met. 

 

 

Schematically, the method is described at Figure 4.1, while algorithmically the 

procedure includes the following steps: [29] 

 

 

4.1.1 Algorithmically procedure steps 

 

Step I: [Start]  

Generate random population of chromosomes, that is, suitable solutions for the 

problem. 

 

Step II: [Fitness] 

Evaluate the fitness of each chromosome in the population. 

 

Step III: [New population]  

Create a new population by repeating following steps until the new population is 

complete. The creation includes: 

 

a) Selection: Select two parent chromosomes from a population according to 

their fitness. Better the fitness, the bigger chance to be selected to be the 

parent. 

b) Crossover: With a crossover probability, cross over the parents to form new 

offspring, that is, children. If no crossover was performed, offspring is the 

exact copy of parents. 

c) Mutation: With a mutation probability, mutate new offspring at each locus. 

d) Accepting: Place new offspring in the new population. 

 

Step IV: [Replace]  

Use new population for a further run of the algorithm. 

 

Step V: [Test] 

If the end condition is satisfied, stop, and return the best solution in current 

population. 

 

Step VI [Loop]  

Go to step 2. 

 

 

These steps are shown at Figure 4.1, where a generation cycle is described. 
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Figure 4.1: Genetic algorithms flow chart 

 

4.2 Stopping criteria 

The procedure stops when one of the stopping criteria set by the user is satisfied. A 

list of these follows below: [27] 

 

1. Generations limit: specifies the maximum number of iterations the genetic 

algorithm will perform. The default is 100. 

2. Time limit: specifies the maximum time in seconds the genetic algorithm runs 

before stopping. 

3. Fitness limit: The algorithm stops if the best fitness value is less than or equal 

to the value of fitness limit. 

4. Stall generations: The algorithm stops if there is no improvement in the best 

fitness value for the number of generations specified by stall generations. 

5. Stall time: The algorithm stops if there is no improvement in the best fitness 

value for an interval of time in seconds specified by Stall time. 
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4.3 Selection Techniques in Genetic Algorithms (GAs) 

Selection concerns the process of choosing the best individuals for the next 

generation; therefore it is an important function in genetic algorithms. The most 

common used techniques for selection of chromosomes are: roulette wheel, rank 

selection and steady state selection. [27] 

 

4.3.1 Roulette wheel selection 

Adding a roulette wheel selection, the parents are selected according to their fitness. 

In that way, better chromosomes, have more possibilities to be selected as parents in a 

generation cycle. It is the most common method for implementing fitness 

proportionate selection. Each individual is assigned a slice of circular roulette wheel, 

and the size of slice is proportional to the individual fitness of chromosomes, that is, 

bigger the value, larger the size of slice is. Roulette wheel selection in not 

successfully applicable in genetic algorithms, when there is a large difference between 

the fitness value of chromosomes. [29], [30] 

 

 

4.3.2 Rank selection method 

Rank selection method is characterized a slow technique, through her the population 

is ranked according to certain criteria and then every chromosome receives fitness 

value determined by this ranking. This method prevents quick convergence because 

the value of each individual is based on its rank rather than its absolute fitness. [29], 

[30] 

 

4.3.3 Steady-state selection 

This method is not preferable to select parents. The basic idea is that the majority of 

chromosomes should survive to next generation. In this case, GA’s procedure is: [29] 

 

1. A few chromosomes with the best fitness values are selected for generate a 

new offspring 

2. Chromosomes with low fitness values are removed and replaced by the new 

offspring 

3. The rest of population survives to new generation 

 

4.4 Genetic Algorithms (GAs) Operators 

Genetic algorithms (GAs) can be applied to any process control application for 

optimization of different parameters. Genetic algorithms (GAs) use various operators 

such as crossover and mutation for the proper selection of optimized value.  
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The appropriate crossover or mutation technique selected depends on the performance 

coding and the requirements of the current problem. Both processes are essential to 

the genetic algorithm. Crossover allows genetic algorithm to extract the best genes 

from different individuals and recombine them into potentially superior children. On 

the other hand, mutation is responsible of the possibility increasing that algorithm will 

generate individuals with better fitness values. [27] 

 

4.5 Crossover 

Crossover is the procedure that a child is formed by combining genes from a pair of 

individuals in the current generation. Crossover can be performed with binary 

encoding, permutation encoding, value encoding and tree encoding. [29], [31] 

Binary encoding crossover 

In binary encoding, the chromosomes may crossover at single point, two points, 

uniformly or arithmetically. In single point crossover, a single crossover point is 

selected and copied at the begging of the new offspring, while the rest includes data 

from the second parent. Two parents in this method give two new offsprings.  

 

Uniform Crossover 

In uniform crossover, data of the first parent’s genes are copied to first offstring and 

second parent chromosome is assigned to the second offstring. 

 

Arithmetic Crossover 

In arithmetic crossover, crossover of chromosomes is performed by ―AND‖ and ―OR‖ 

operators to create new offsprings. 

 

Permutation encoding crossover 

Permutation crossover relates to one crossover point is selected, till this point the 

permutation is copied from the first parent, then the second parent is scanned and if 

the number is not yet in the offspring it is added. 

 

Value encoding crossover 

It can be performed at single point, two point, uniform and arithmetic representation 

as in binary encoding technique.  

 

Tree encoding crossover 

In this type of crossover, one point of crossover is selected in both parent tree 

chromosomes, which are divided at this point. The parts of tree below crossover point 

are exactly exchanged to produce new offstrings. 
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4.6 Mutation 

Crossover procedure followed by mutation which is playing the role of recovering 

genetic information while it produces new genetic structures in the population by 

modifying randomly some of its blocks. Mutation gives to genetic algorithm the 

opportunity to achieve a global minimum and escape from the trap of a local one.  

Like crossover, mutation can also be performed for all types of encoding techniques. 

[29], [32] 
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5 ARTIFICIAL NEURAL NETWORKS 

According to the optimization theory presented on chapter 4, important steps for the 

development are the identification of the proper design variables and the constrains 

that describe and limit the system wanted to be optimized. This actually refers to a 

predictive model that describes the behavior of the system under specific conditions.  

 

According to the literature, in the case of microgrids, an optimization model should 

take in concern the energy balance, (―energy generated‖ – ―energy consumed‖), of a 

time horizon in the future, in order to decide the energy flux in an optimum way.   

 

For that reason, the prediction of some parameters is necessary in order to develop an 

efficient decision maker model. One of the most common methods used to predict is 

the method of Artificial Neural Networks (ANN). 

 

 

5.1 Neural Networks - Theory 

 

Neural networks relate to computational models, inspired by biological nervous 

systems. They are composed by elements operating parallel, while they are capable of 

machine learning and pattern recognition. Generally, they are presented as systems of 

interconnected nodes called ―neurons‖. The connections between elements are these 

that determine the network function. [33] 

 

Neural networks are trained or adjusted in order to a particular input leads to a 

specific target (output). Network’s function as a machine learning is presented at Figure 

5.1. [33] 

 

 

Figure 5.1: Neural networks as machine learning 
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They classified as two basically categories, feed forward and current networks, which 

are divided to other categories according to the structure or the operation of the 

network. The classification is shown at Figure 5.2. [34] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Characteristics of neural networks 

A neural network is characterized by the following elements:  

 The architecture of the model 

 The training / learning method 

 The activation function 

 The generalization ability 

5.2.1 Architecture of neural networks 

The architecture describes the connections between the neurons. It consists of three 

groups, an input layer, an output layer and generally, one or more hidden layers in-

between. Through neurons at input layer, data are fed to neurons of hidden layer via 

synapses. Each neuron performs a weighted summation of the inputs, which then 

passes an activation function, also called the neuron function. The network output is 

formed by another weighted summation of the outputs of the neurons in the hidden 

layer. This summation on the output is called output layer. Between input and output 

layer may more than one hidden layer exist. [35] 
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Figure 5.2: A taxonomy of neural networks architectures [34] 



 

                                                                                                              
 
Technical University of Crete 
Department of Environmental Engineering 

 
 

   
 

 

33 
 

To create a neural network that performs some specific task, it must choose how the 

layers are connected to one another and set the appropriate weights on the 

connections. The connections determine whether it is possible for one unit to 

influence another. The weights specify the strength of the influence. 

Basically, networks are classified to several types depending to their structure. The 

two most applied are the ―Feed forward‖ networks and the ―Recurrent‖ network. [35], 

[36] 

 

Feed forward networks: 

These networks allow the information flow only in one way along the connections, 

starting from the input layer, passing though hidden layers and ending at output layer. 

A feed forward network is presented at Figure 5.3. [35] 

 

 

           

           

        

 

           

           

           

           

           

           

           

           

          

 Figure 5.3: Feed forward network structure 

 

Recurrent networks 

 

This form of architecture allows the information flows on both ways and not only in 

directs one, by introducing loops. A typical structure of a recurrent network is 

presented below. [35], [36] 
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Figure 5.4: Recurrent network structure 

5.2.2 Training / learning method 

In order to train successfully the network, learning methods have been developed, that 

they determine the behavior of the model. A good training / learning algorithm must 

to converge quickly with no significant errors and be capable to generalize under 

unknown situations that must be solved. [33] 

 

Three types of training methods are detected: 

1. The supervised method 

2. The unsupervised method 

3. The reinforced method 

5.2.2.1 Supervised learning 

Applying this method, couples of inputs and outputs are used in order to train the 

algorithm. During the training procedure a teacher is supposed to be present, when the 

outputs are comparing with the values calculated by the network. By this comparison 

the error is determined and it could be used to change network parameters in order to 

improve the performance. A common form of supervised learning is the 

backpropagation, which it is often used for train feed forward networks. [33], [35] 
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5.2.2.2 Unsupervised learning 

Output targets are not included in this method. Therefore the learning is unsupervised 

and the network is asked to discover and adapt to features in the inputs patterns by its 

own. 

 

5.2.2.3 Reinforced learning 

In this learning method, the error is not known as in supervised learning. Although, 

there is a teacher informs the network if the output is correct or incorrect. A reward is 

given for a correct answer and a penalty for a wrong one.  

 

 

 

5.3 Activation function 

The behavior of an ANN depends on both the weights and the input-output function 

(activation function) that is specified for the units. The activation function scales the 

output of the neural network into proper ranges. This function might be one of the 

followings: [37] 

 

 linear (Figure 5.6) 

 threshold  

 sigmoid (Figure 5.5) 

For linear units, the output activity is proportional to the total weighted output. 

For threshold unit, the output is set at one of two levels, depending on whether the 

total input is greater than or less than some threshold value. 

For sigmoid units, the output varies continuously but not linearly as the input 

changes. Sigmoid units bear a greater resemblance to real neurons than do linear or 

threshold units, but all three must be considered rough approximations. 

Figure 5.6: Linear transfer function Figure 5.5: Sigmoid transfer function 
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Neural networks in the last section use the sigmoid activation function. The sigmoid 

activation function is the default choice for the feed forward networks.  

5.3.1 Generalization ability 

Generalization ability refers to the capacity of a network to response successfully to 

unknown input vector in relation to the vectors were used for the training procedure. 

Generalization is might be the most important characteristic of a neural network, as at 

many problems where neural networks are applied, is difficult to identify all the 

conditions might happen. [33] 

 

 

5.4 Feed forward backpropagation neural networks 

 

Feed forward backpropagation networks are the neural structures that feed the 

information to one direct way, while they trained by a supervised learning method, the 

backpropagation algorithm. Backpropagation was created by generalizing the 

Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable 

transfer functions. [35], [38] 
 

The backpropagation algorithm is the most computationally straightforward algorithm 

for training the multilayer perceptron. This technique is employed as a mean of 

reducing error in the network’s classification, by initially calculating this error and 

then propagating it back for reduction. [38]   

 

Inputs are propagated to the first layer of hidden units, whose output is calculated and 

propagated to the next hidden later. This process is repeated until the output layer is 

reached. Each output layer unit calculates the activation, from the sum of weighted 

inputs from previous layers. The error on the initial output is computed and 

propagated back to the first hidden layer, where the weight matrix is updated. This 

process is repeated until the error is minimized as far as possible.  

 

 

5.5 Develop an artificial neural network model 

The procedure of development an artificial neural network model consists of the 

followings: 

 

1. Select the variables: the first step includes the selection of the variables. 

  

2. Training, testing and validation tests: data set is divided to three sets, one for 

training, one for testing and one for validation. The training test is the largest 

and is used to learn patterns present in the data. The testing set is used to 

evaluate the generalization ability, while the validation set is used in order to 

check the performance of the network. 
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3. Neural network architecture: this step concerns the definition of the network’s 

structure including the number of the hidden layers and the number of neurons 

at each layer. 

 

4. Evaluation criteria: different indicators can be calculated in order to estimate 

the error. The most common used is the root mean square error. 

 

5. Network’s training: the objective to training is to find a set of weights between 

neurons that determine the global minimum of error function. 

 

5.6 Applications of neural networks 

The applications of neural networks are not limited. They have been used for a wide 

variety of applications in many domains. Some of them are included below: [39] 

 

 Data validation 

 Energy management 

 Airline security control 

 Industrial process control 

 Medical models  

 Sales forecasting 

 Environmental pollution 

 Weather forecasting 

 Energy forecasting 

 Indoor quality conditions of building 

 

Based on their applications to weather and energy forecasting, they used in this work 

in order to predict the energy loads for the Leaf Community microgrid. 
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6 LEAF COMMUNITY 

The Leaf Community, the ―community of clean energy‖ was conceived by the 

Loccioni group in order to develop solutions in the fields of automation, quality 

measurement and assurance and network infrastructure. It is situated in Angeli di 

Rosora, Ancona, in Italy and it is shown at the following Figure 6.1.  

 

Figure 6.1: Leaf Community (Google earth) 

The Leaf Community is composed by buildings as domains of energy consumption, 

renewable energy sources as domains of energy production, an energy storage system 

and it is connected with the main electricity grid. According to theory, Leaf 

Community represents a microgrid which is shown at Figure 6.2. 

 

 

Figure 6.2: Leaf Community 
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The aim of the present work is to describe the optimization and control procedure for 

the operation of the microgrid with the objective to minimize the cost of energy for 

the microgrid users.  

The electrical microgrid will be developed in two consecutive steps, where the second 

will be an extension of the first one. The first step includes an industrial building 

named ―Leaf Working‖, where PV systems are installed on the roof, an office 

building named ―Leaf farm‖ and a hydroelectric station named ―Leaf Water 4‖. 

Furthermore, Leaf Community includes an energy storage system (ESS). All these are 

connected among each other and with the main grid - Energy National Network 

(ENEL). The microgrid at the first step is presented below at Figure 6.3. 
 

 

Figure 6.3: Microgrid at step 1 

The second step is actually an extension of the existing microgrid. The new 

components will be a building called ―Leaf lab‖ for industrial use and a residential 

building called ―Foresteria ex Paolucci‖. These will be the new domains of energy 

consumption at Leaf Community, while extra energy will be generated by installed 

photovoltaic systems and two extra microhydroelectric stations named ―Leaf Water 1‖ 

and ―Leaf Water 2‖. 
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6.1 Leaf Working 

Leaf working consists of two buildings, one that is used as an industrial space named 

―SUMMA‖ and one office named ―AEA‖. The total area covered by ―Leaf Working‖ 

is 5,600 m
2
, while the total volume is 26.5 m

3
. For heating, they use 5 gas boilers and 

for cooling air conditioning with one ground water electric heat pump and one cooling 

unit. Into office areas they have terminal fan coils, while into the industrial space, the 

laboratory and the conference room HVAC systems are operated.  

 

 

6.2 Leaf farm 

Leaf farm (Figure 6.4) includes an office building 

which covers an area of 280 m
2
 and an annex building 

which is used occasionally covering 115 m
2
. At this 

area, a electric heat pump is used for heating and 

cooling.  

 

 

 

6.3 PV plants 

Two different types of photovoltaic systems are installed on the roofs of ―AEA‖ and 

―SUMMA‖, the two buildings constitute the ―Leaf Working‖ area. This PV plant is 

called ―Leaf Roof Angeli‖ and its operation started from the 8
th

 of November 2010. 

The total power produced is 148.179 kWp and it is connected to ―Leaf Working‖ with 

autoconsumption.  

 

At AEA, the model of the PV system is SL-Solyndra 001-182. The inclination of 

them is 0
o
 and they have south orientation. The total power generated in this section is 

112 kW. 

SUMMA subfield includes two models of PV systems, which are SL-Solyndra 001-

182 and HS-115 Heliosphera. The first one, has the same inclination and orientation 

as this at AEA while the second one has an inclination of 5º and their orientation is 

Southwest (108º). The total power can be generated from these types of PV systems is 

10.2 kW and 25.8 kW respectively.  

All these are presented schematically at  

 

Figure 6.5, where the different characteristics of the PV system are shown at each 

section.  

 

Figure 6.4: Leaf farm 
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Figure 6.5: Leaf Roof Angeli and PV plants characteristics 
 
 
 

6.4 Hydroelectric Station 

Hydroelectric Station (Figure 6.6) is a cochlear hydroelectric flowing water plant 

called ―Leaf Water 4‖, along the river Esino. This plant operates from the 1
st
 of March 

2013. The total power that can be generated is 49.4kW and it was designed 

considering a hydraulic net jump 1580 mm, flow rate of 4,000 L/s and a rotation 

speed 21.5 rpm. 
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Figure 6.6: Hydroelectric station 

6.5 Energy storage system (ESS) 

The energy storage system of Leaf Community consists of Samsung SDI lithium-ion 

batteries (Figure 6.7) and has a roundtrip efficiency of 95.5%. The maximum power 

which can be stored is 224kW, while an inverter along the line connecting ESS with 

Leaf farm consumes 7kW, every time ESS is charged or discharged. In the case of 

discharging ESS, the energy charged is used firstly from Leaf farm and then is 

distributed to other buildings, while the energy stored can be sold to the main grid.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Lithium-ion batteries 



 

                                                                                                              
 
Technical University of Crete 
Department of Environmental Engineering 

 
 

   
 

 

43 
 

Depending on the state of charge, the life time of ESS and the cycle cost was given 

and they are presented at Table 6.1. 

Table 6.1: ESS’s swing range and cycle cost 

No 

Scenario 

Swing 

range 

Cycle life 

(EOL 80%) 

Cycle-Cost 

[€/kWh] 

1 0%-100% 6000 0.22 

2 25%-100% 8400 0.21 

3 0%-75% 12700 0.14 

4 50%-100% 11600 0.23 

5 0%-50% 36100 0.07 

6 75%-100% 49500 0.11 

7 50%-75% 30400 0.17 

8 25%-50% 76100 0.07 

9 0%-25% 139000 0.04 

 

In this section all the components of the Leaf Community microgrid were described. 

The scope of this work is to develop a genetic algorithm that will be capable of 

optimizing the operation cost of Leaf Community considering the costs of selling 

energy, producing energy and storing energy.  
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7 MODELING THE MICROGRID 

The optimization horizon time is set 24h ahead and for that reason, the first step of 

modeling the microgrid at Matlab was the prediction of the irradiance, the energy 

consumed and generated 24 hours ahead. This was achieved by using the method of 

neural networks and specifically by creating feed forward backpropagation networks 

at Matlab. The procedure followed is described below for the different components of 

the microgrid. 

 

7.1 ANN as a prediction method – State of the art 

Artificial neural networks are applicable as it was mentioned to the theory in many 

fields. Regarding, environmental issues, K. Gobakis, D. Kolokotsa et al., developed a 

model for urban heat island prediction using and testing different structures of neural 

network such as Elman, feed forward and cascade network. [40]  

 

Environmentally, another important topic is the capability of networks on predicting 

the external conditions. Solar irradiance constitutes important information in many 

fields. For this reason, to know how it varies in a certain period is really necessary in 

many applications, such as atmospheric energy-balance studies, analysis of the 

thermal load on buildings, planning of the operations of renewable energy power 

plants, meteorology, agricultural sciences and also for some environmental impact 

analysis. [41] 

 

Many researchers estimated the irradiance by using artificial neural networks. 

(Mohandes et al,) applied ANN techniques to predict GSR using weather data from 41 

stations in Saudi Arabia. Data from 31 stations was used to train the networks and the 

remaining data was used for testing. Wenkian et al. estimated the monthly mean 

values of tilted global solar irradiation in 133 meteorological stations in Yunnan 

Province, China, and studied the ratio between global radiation on tilted surfaces and 

those on horizontal surfaces based on data estimated at these stations. Robledo and 

Soler assessed the Perez model for hourly diffuse vertical solar irradiation for various 

orientations (N, E, S, W) in Madrid and adapted this model to their local conditions 

improving its performance. Li et al. presented an approach to estimate the vertical 

outdoor illuminance from sky luminance data and solar geometry in Hong Kong 

based on Kittler and Perez models. [42] 

 

The most common type of neural networks that was used to predict the solar 

irradiance is the Multilayer Preceptor. It consists of 3 types of layers, an input layer, 

an output layer and a hidden layer(s) and the adaption algorithm is the 

backpropagation. [41], [42], [43], [44] 

 

As mentioned previously, the prediction of solar irradiance and environmental 

conditions generally, can be used in many research fields. This work focuses on the 

energy load prediction from renewable energy sources such as photovoltaics and 

hydroelectric systems.  Adel Mellit et al., present an application of neural networks in 
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which they use climate parameters such as irradiance and air temperature in order to 

predict the power generated by a PV plant at Trieste in Italy. [45] Regarding their 

results, it is obvious that the irradiance, the air temperature and the module 

temperature seem to be various parameters for the network’s training.  Another 

application is this presented by S.I Sulaiman et al., who predict the output power of a 

grid connected PV system by using a backpropagation neural network with one 

hidden layer. Their model uses as inputs the irradiance, the wind speed and the 

ambient temperature, while the output is the PV’s power. [46]  

 

Furthermore, the type of the neural network that is going to used for the power 

generated prediction is important. This topic is presented by S. 

Premrudeepreechacharn and N. Patanapirom, who examine two types of neural 

networks and specifically a backpropagation neural network and a radial basis 

function neural network. Their results show that both of the neural networks work 

well but the backpropagation network needs less information for training. [47] 

 

The energy load prediction of the hydroelectric system aims to provide to the users 

information about the potentially available energy at a given time in the future. In the 

literature there are several studies which examine load forecasting of hydroelectric 

stations using neural networks.  

 

C.C. Nwobi-Okoye and A.C. Igboanugo have develop articial neural network models 

for predicting water levels at Kainji Dam, which supplies water to Nigeria's largest 

hydropower generation station. It involves taking of a ten-year record of the daily 

water levels at the dam from 2001 to 2010. The daily water level data were used to 

develope neural network models and an Autoregressive Integrated Moving Average 

(ARIMA) model to fit the daily water levels obtained in the year 2010. [48] 

 

Abdulkadir, T. S. et al. have presented the modelling of reservoir variables of two 

hydropower dams along the River Niger (Kainji and Jebba dams) in Nigeria for 

energy generation using multilayer perceptron neural network. Total monthly 

historical data of Kainji and Jebba hydropower reservoirs’ variables and energy 

generated were collected from Power Holding Company of Nigeria respectively for a 

period of (1970-2011) and (1984-2011) for the network training. [49] 

 

Jorge O. et al. have analyzed in Buta Ranquil flow time series upstream reservoir and 

hydroelectric plant in order to model and predict daily fluctuations. They compare 

results obtained by using a three-layer artificial neural network (ANN), and an 

autoregressive (AR) model, using 18 years of data, of which the last 3 years are used 

for model validation by means of the root mean square error (RMSE), and measure of 

certainty. [50] 

 

Another topic of this work is the prediction of the energy consumption from 

buildings. An approach for short – term load prediction in buildings is presented by 

Pedro A. Gonzalez and Jesus M. Zamarreno who predict the consumption based on a 
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feedback neural network using as inputs the temperature, the measured load, the hour 

and the day in order to predict the load 24 hours ahead. It is understandable that the 

consumption in buildings and especially in office buildings is dependent from the 

outdoors conditions. [51] 

 

Melek Yalcintas and Sedat Akkurt present a work that predicts the consumption by 

using neural networks trained by outdoors and indoors climate parameters. [52] Same 

applications are presented by Essam E. Khalil and Samy M. Morkos. Their study 

includes models for predicting weather conditions like solar radiation, temperature 

and wind speed which can be applied in energy consumption prediction.  [53] 

 

According to the literature that was mentioned above, artificial neural networks were 

used in order to predict the irradiance, the power generated by PV systems and the 

energy consumption for the Leaf Community. At the next sections, the work and the 

results above these topics are presented.  

 

7.2 Predicting the power generated from PV systems 

The method of artificial neural networks was used in order to predict the power 

generated from PV systems at ―Leaf Working‖. It is common that PV systems use 

solar radiation in order to produce electrical energy. Therefore, couples of irradiance 

and power generated measurements were used in order to train a neural network at 

Matlab. Furthermore, it was asked to predict the irradiance separately, so in the future 

the forecast values will be used as inputs to the developed network in order to predict 

the power generated.   

 

The procedure followed in order to predict the power produced from the PV plants is: 

 

1. Collecting data of couples irradiance – power from earlier years  

2. Development of a neural network in Matlab 

3. Comparing the predicted with the measured power 

 

All data were collected over the past 3 years from approximately 1/1/2011 to 

24/05/2013. The time difference between the measurements is 15 minutes. After 

collecting the appropriate data, the first step for the development of the neural 

network, was their normalization. Normalization procedure before presenting the 

input data to the network is generally a good practice, since mixing variables with 

large magnitudes and small magnitudes will confuse the learning algorithm on the 

importance of each variable and may force it to finally reject the variable with the 

smaller magnitude.   

 

A feed forward backapropagation neural network was developed which uses as inputs 

the measured irradiance one day before and as output the power generated now. The 

network predicts 24 hours ahead based on older values of irradiance. So in real world 

forecast values of irradiance can be used in order to predict the power. The hidden 

layers at this network are 3 which consist of 2, 2, and 1 neuron respectively. A one 
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year long period data set was used to train the network while the rest of the data were 

used for validation by retraining the network every day. The prediction results are 

presented below: 

 

 

Figure 7.1: Comparison between the measured and the predicted generated power at Leaf Roof Angeli 

Furthermore, applying the goodness of fit, the relationship between the measurements 

and the predicted values is shown at the following figure. 
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Figure 7.2: Relationship between predicted and measured generated power at Leaf Roof Angeli 

According to the previous figures, it is obvious that a good relationship between 

measured and predicted power was achieved. Here, it must be mentioned that any 

negative values for power must be deleted.  

So as a conclusion, if the irradiance can be forecasted with precision, the model can 

use it in order to predict the output power from the PV plants.  

 

 

7.3 Predicting the irradiance by using ANN 

The procedure followed was the same as before. A feed forward backpropagation 

network (Figure 7.3) was designed using 3 hidden layers applying 5, 3 and 2 neurons 

at each layer.  

 

R
2
=0.7915 

RMSE=2.742 
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Figure 7.3: The feed forward network developed to predict irradiance 

The goal is to predict the irradiance 24 hours ahead every 15 minutes. In order to 

achieve that a one year long period data set was used to train the network while the 

rest of the data  were used for validation. As it was mentioned before the inputs 

consist of older data of irradiance (1,2,3 days before) and the output layer includes 

only the irradiance now. According to that the network can predict 24 hours ahead 

based on the measurements of the previous days. 

 

 

7.3.1 Results of irradiance prediction 

The developed model estimates the irradiance for the next 96 (96 quarters for one 

day) time steps. The network is retraining every day in order to achieve better 

prediction levels and the results are shown to the following figures.  
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Figure 7.4: Comparison between predicted and measured values 24 hours ahead 

At Matlab were also calculate the coefficient of determination and the root mean 

square error in order to show the relationship between the measurements and the 

predicted values by applying a linear model. The lower RMSE and the highest R
2
, the 

more accurate is the estimation. The results are shown below. 
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Figure 7.5: Relationship between predicted and measured irradiance 

It is obvious from Figure 7.4 and Figure 7.5 above that the prediction curve follows 

the measurements good enough. Some peaks (minimum and maximum limits) diverge 

which is logical because irradiance is a parameter that depends on the cloudy index, a 

parameter that isn’t measured at Leaf Community. For that reason, it was decided to 

calculate the irradiance at a clear and overcast sky using equations, in order to enclose 

the prediction results over a maximum (clear sky) and a minimum (overcast sky) 

limit. 

 

7.3.2 Predicting the irradiance by using equations 

7.3.2.1 Cloud Cover Index 

It is known that the cloud cover index is an important parameter which directly affects 

the solar irradiance.  

 

In order to generalize the prediction outputs, it was decided to calculate the solar 

irradiance through equations of both cases: 

 

 Clear Sky 

 Overcast Sky 

The next step is the combination of neural networks’ and equations’ results in order to 

achieve the optimal prediction level considering the cloud cover index. 

 

R
2
=0.8056 

RMSE= 105.8 
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7.3.2.1.1 Clear Sky equations 

To calculate the solar irradiance when the sky is clear, the following equations were 

used at Matlab.  

 

Solar time 

 

The first parameter that was calculated is the solar time which is based on the 

apparent motion of the sun as seen from a point on the surface of the earth, the 

deviation from local civil time being due to the nature of the orbit. Solar noon is the 

time when the sun reaches the highest point in the sky; it can differ from noon of local 

civil time by as much as one – quarter of an hour. [54] The difference between solar 

noon and noon of local civil time is called the equation of time E t. It is a function of 

the time of year and can be approximated by: 

 

Et = 9.87sin2B − 7.53cosB − 1.5sinB (min)               (7-1) 

 

with 

  

B = 360o ×
n−81

364
 for the nth day of year                (7-2) 

 

Solar time is defined by: 

tsol = tstd +
Lstd −Lloc

15/h
+  

Et

60 min /h
                 (7-3) 

Where: 

tstd : the standard time (h) 

Lstd and Lloc : the longitudes (in degrees) of the time zone and the location 

respectively 

 

Declination 

 

Considering the point of view of the earth, one can say that the sun traverses, each day 

and in solar time one circular orbit around the earth. In general, this orbit does not lie 

in the plane of the equator; rather the line from sun to earth makes an angle δ relative 

to the equatorial plane. This angle is called the declination, and it is given by: [54] 

 

sinδ = − sin 23.45ocos
360o ×(n+10)

365.25
                 (7-4) 

 

Where n = day of the year (with n=1 for January 1). 
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The declination is a crucial quantity for calculating incidence angles. The incidence 

angle of the sun on the earth’s surface at a point is the angle between the normal of 

the surface at the point and the line from the point to the sun. It is called the zenith 

angle θs of the sun and it is given by: 

cosθs = cosλ cosδ cosω +  sinλ sin δ                (7-5) 

 

Where 

λ: latitude 

ω: solar hour angle which is given by the following equation 

 

ω =  
(tsol −12h)×360 o

24h
                   (7-6) 

 

The relation between the angle hour ω, declination δ and the zenith angle θs is 

described by the following equation: 

 

sinφs =
cos δ sin ω

sinθs
                   (7-7) 

 

Where φs is the angle from due to south. 

Instead of the zenith angle many people employ the complement, called the solar 

altitude angle: 

 

Solar altitude angle =  90o − θs                  (7-8) 

 

Extraterrestrial Insolation 

The solar irradiance outside the earth’s atmosphere at normal incidence and at the 

mean sun – earth distance is called solar constant; its value is 1373 (W/m
2
). 

A good fit of extraterrestrial Io is: 

 

Io =  1 + 0.033 cos
360 o×n

365 .25
 × 1373 

W

m2                 (7-9) 

 

Clear Sky radiation 

Solar radiation under clear skies can be represented with fairly good accuracy by 

simple models because the transparency of clear atmospheres does not vary all that 

much with time or location.  
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According to Hottel, the direct irradiance Idir at normal incidence can be calculated 

from the extraterrestrial irradiance Io and the zenith angle θs by a correlation with 

three coefficients [54]: 

 

Idir = Io[ao + a1 exp  −
k

cos θs
                (7-10) 

 

The coefficients αο, α1 and k were calculated by the followed equations as a function 

of altitude A above sea level for 23 km visibility. 

 

ao = [0.4237 − 0.00821 ×  6.0 −  A2 ]              (7-11) 

a1 = [0.5055 − 0.00595 ×  6.5 −  A2 ]              (7-12) 

k = [0.2711 − 0.01858 ×  2.5 −  A2 ]              (7-13) 

 

For clear skies, the diffuse irradiance on a horizontal surface can be estimated from a 

relation due to Liu and Jordan (1960): 

 

Idif =  0.271Io −  0.2939Idir  (cosθs)              (7-14) 

 

The horizontal irradiance is given by the following equation 

Ihor = Idir cosθs + Idif                 (7-15) 

 

 

Clear sky irradiance results 

In order to estimate the direct, the diffuse and the horizontal irradiance for the Leaf 

Community, a Matlab code was created considering the equations above. It was given 

as inputs the date (year, month, day), the time (hours, timestep = 15 minutes), the 

latitude (Lat= 43.5
o
), the longitude of the time zone (Lstd = - 15

o
) and the longitude of 

the location (Lon = - 13
o
).  

The function that was created could calculate the solar irradiance for all the year. The 

results for the Global horizontal irradiance, the direct irradiance and the diffuse 

irradiance under a clear sky are presented below. 
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Figure 7.6: The horizontal irradiance under a clear sky for Leaf Community 

 

Figure 7.7: The direct irradiance under a clear sky for Leaf Community 
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Figure 7.8: The diffuse irradiance under a clear sky for Leaf Community 

These were the results considering a clear sky without any clouds. This irradiance 

represents the maximum irradiance limit. The next step is the calculation of the 

minimum irradiance limit considering an overcast sky. This work is presented at the 

next section. 

 

Overcast sky equations  

In order to calculate the irradiance under an overcast sky, different empirical models 

are used from many authors. In this study the Kasten and Czeplaks model  is used. 

The Kasten and Czeplak article itself analyzed radiation correlations with cloud 

coverage and type. They determined that global hemispherical irradiance on a 

horizontal surface (GHI) as a function of cloud amount N (in eighths) is [55]:  

 

𝐆 𝐍 = 𝐆 𝟎 (𝟏 − 𝟎.𝟕𝟓(𝐍/𝟖)
𝟑

𝟒)             (7-16) 

where G(0) is the clear sky solar GHI. The cloud amount N is mentioned 8 for an 

overcast sky and the results are presented below. 
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Figure 7.9: The horizontal irradiance under an overcast sky for the Leaf Community 

It is understandable that under an overcast sky there is no direct irradiance. So the 

global horizontal irradiance under overcast sky is equal to the diffuse irradiance. 

These results above represent the minimum irradiance limits. 

Hence, the predicted irradiance by using the neural network can now enclose to the 

maximum and the minimum limits in order to cut or ignored the values that are upper 

or lower respectively from that limits. 

 

7.4 Predicting the power generated from the Hydroelectric station 

In order to predict the power generated from the Hydroelectric Station 24 h ahead, 

another feedforward network was developed taking as inputs the time of the day in 

min, the river water level of the previous day, the machine water level of the previous 

day and the power generated during the previous day.  

 

Because of the lack of the available measurements (measurements of 3 months) and 

their low quality due to unexpected stops of the plant, as it is shown at Figure 7.10 

and Figure 7.11, it was necessary to correct them by using linear interpolation. The 

new data series are presented at Figure 7.12 and Figure 7.13. 

 

The new data were used as the training set of the network and the comparison 

between the predicted power 24 h ahead and the real measurements is shown at Figure 

7.14. 
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Figure 7.10: Available measurements of hydro power

 

Figure 7.11: Available measurements of machine level 
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Figure 7.12: Data of hydro power after linear interpolation 

Figure 7.13: Data of machine water level after linear interpolation 
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Figure 7.14: Comparison between the measured and the predicted generated power at Hydroelectric Station 

 

According to Figure 7.14, it is obvious that the predicted power can’t approach the 

real one. However, the hydroelectric station generates enough energy every quarter 

which means that Leaf Community could spent less money to ENE. For that reason it 

could not be deactivated from the optimization model. For that purpose, it was 

decided to use an average production of previous day for the next 24 hours. It is 

shown at Figure 7.12 that the difference comparing the next’s day production with the 

previous one is too small that it is acceptable.  

 

7.5 Predicting the energy consumed at Leaf Community with ANN 

 

The prediction of energy consumption was performed by artificial neural networks 

(ANN) in Matlab. Regarding the energy consumption, two are the sections of interest, 

the ―Leaf farm‖ and the ―Leaf Working‖.  

―Leaf farm‖ represents office buildings, while ―Leaf Working‖ is an industrial space. 

The energy fluxes are shown at the following figure for both of them. 
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Figure 7.15: Energy fluxes at ―Leaf farm‖ and ―Leaf Working‖ 

The goal here is to predict the consumed energy, which is a sum of the energy taken 

from the energy national network (ENEL) and the self consumed which represents the 

energy produced by the PVs minus the energy entered into ENEL.  

The consumed energy is going to be predicted for the ―Leaf farm‖ and the ―Leaf 

Working‖ separately and the procedure followed for both of these sections includes 

the following steps: 

 

1. Collecting data from earlier years 

2. Preliminary data analysis 

3. Determination of the inputs and the outputs 

4. Development of a neural network in Matlab 

5. Comparing the predicted with the measured energy consumption 

 

 

Data collection 

The first step before the development of the neural network was the collection of the 

data from earlier years. For this work, three years long period data approximately 

were collected for ―Leaf farm‖ and ―Leaf Working‖ respectively. Some of these data 

were used to train the algorithms developed while the rest of them were used for 

validation and testing.  

 

 

 

Preliminary data analysis 

Before the development of the prediction algorithms, a preliminary data analysis was 

necessary in order to understand the behavior of the energy consumption daily or 
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weekly.  That’s why, the diagrams of the real measurements of energy consumption 

related to the time were designed. The weekly variation of ―Leaf’s farm‖ consumption 

is represented at Figure 7.16 and for ―Leaf Working‖ at Figure 7.17. 

 

 

Figure 7.16: The weekly energy consumption for ―Leaf farm‖ (7 weeks) 

Observing the previous weekly diagram, it is understandable that in the mornings 

when the office buildings of ―Leaf farm‖ are operated the consumption is greater than 

the nights when the lights are on. On the other hand, during the weekends it is obvious 

that the consumption is decreased, while during the night the consumed energy is 

lower than during the morning for weekend’s days. This behavior was observed for 7 

weeks. So it was assumed that the consumption behaves the same during the same 

days of the week.  
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Figure 7.17: The weekly energy consumption for ―Leaf Working‖ (3 weeks) 

At ―Leaf Working‖, which represents an industrial space, the energy’s consumption 

variation follows the same behavior as it was analyzed before for ―Leaf farm‖.  For 3 

continuous weeks as shown at Figure 7.17, during the days when the industrial is fully 

operated the consumption is greater than during the nights, while it is decreased early 

afternoon (blue circle). Also, during weekends it is observed that the consumed 

energy is lower, having higher consumption in the mornings.  

In this case too, it was assumed that the consumption behaves the same during the 

same days of the week.  

 

Determination of inputs and outputs 

In order to predict the consumption at ―Leaf farm‖ and ―Leaf Working‖, it was 

decided that the appropriate parameters for the network’s training are, the 

consumption of previous weeks because of the relationship was described previously, 

the day of the week for the same reason and the outdoors conditions of previous 

weeks. The irradiance was set as a parameter of outdoors conditions. The output 

parameter was set to be only the consumption for now. 

 

7.5.1 Predicting the energy consumption at “Leaf farm” 

A feed forward backpropagation network was developed to predict the consumption 

at Leaf farm consists of an input layer, 3 hidden layers with 4, 8 and 2 neurons in each 

layer and an output layer. As inputs were set the following parameters:  
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a) the time of the day,  

b) the day of the week,  

c) the irradiance now (in real world the forecast irradiance will be used)  

d) the energy consumption 1 week before, 

e) the energy consumption 2 weeks before,  

f) the energy consumption 3 weeks before,  

g) the energy consumption 4 weeks before and  

h) the average energy consumption of the four previous weeks.  

 

As output, was set the energy consumption at ―Leaf farm‖ at the present time. Hence, 

the prediction horizon is 24 hours ahead. A year long period data set was used to train 

the network, while the rest of them were used for testing and validation by retraining 

the network every day. 

 

The figure below shows the comparison between the predicted and the measured 

consumption at ―Leaf farm‖. It is important to mention that the holidays were ignored 

from the model in order to achieve better performance since the consumption now is 

based on older consumption measurements. 

 

 

 

Figure 7.18: Comparison between the measured and the predicted energy consumption at ―Leaf farm‖ 
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Figure 7.19: Relationship between predicted and measured energy consumption at ―Leaf farm‖ 

 

According to the figures above, the network can predict the energy consumption at 

―Leaf farm‖ satisfactorily. Because of the large consumption’s variation, some peaks 

cannot be predictable because the model is based on the energy consumption of 

previous weeks. Also, at this point it should be mentioned that any negative predicted 

values must be deleted.  

 

7.5.2 Predicting the energy consumption at “Leaf Working” 

The same network structure was developed also for the ―Leaf Working‖ by setting the 

same parameters as inputs and output. In this case too, the algorithm predicts 24 hours 

ahead based on older weekly data. The training data were for duration of one year and 

the rest were used for testing and validation by retraining the network every day.  

 

Likewise ―Leaf farm‖, the holidays were deleted from the model in order to not cause 

any confusion during the training. The results for ―Leaf Working‖ are presented at the 

following figures. 

R
2
: 0.7112 

RMSE: 0.5514 
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Figure 7.20: Comparison between the measured and the predicted energy consumption at ―Leaf Working‖ 

Figure 7.21: Relationship between predicted and measured energy consumption at ―Leaf Working‖ 

R
2
= 0.8485 

RMSE= 5.767 
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In this case, it is obvious from the figures that better results were achieved than those 

of ―Leaf farm‖. Looking the preliminary data analysis it is shown that the 

consumption at ―Leaf Working‖ is more stable than the one at ―Leaf farm‖ so the 

model can predict more accurately here. 

 

At this stage, the first step of microgrid’s modeling has finished as it was achieved to 

predict the energy produced and generated 24h ahead by the method of artificial 

neural networks. In the case of hydroelectric station where the neural network is not 

capable to provide accurate forecast values because of the lack and the quality of the 

existing data, an average value of the production of the previous day will be used at 

the optimization algorithm which is presented below. 
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8 DEVELOPING THE OPTIMIZATION MODEL 

The final object in this work is the development of an optimization model by using 

genetic algorithms in order to minimize the total cost for the microgrid of Leaf 

Community. In order to achieve that, the first necessary step was the study of energy 

routes inside the microcrid, including the National grid.   

 

The microgrid of Leaf Community is shown at Figure 8.1. This figure shows the 

connections between buildings, energy producing plants and energy storage system, 

as well as the connection of all these with National energy grid (POD), including 

some inverters and transformers along the energy lines.   

 

 

 

Figure 8.1: Leaf Community microgrid 

As it was mentioned before, the goal of this work is to minimize the total cost of 

Leaf’s community microgrid. This total cost must contain the cost of buying energy 

from ENEL in order to cover extra demands, the cost of selling energy produced to 

ENEL and of course the cost of using the energy storage system either for charging 

either for discharging. In order to develop the appropriate cost function which will be 

the objective function of the optimization, the microgrid was divided to 4 subsystems 

as it is shown at Figure 8.1.  

Specifically the 4 subsystems are: 

 

 Subsystem (0): Includes the POD’s section 

 Subsystem (1): Includes the Leaf’s Working section with the PV plants  

 Subsystem (2): Includes the Leaf’s farm section with the ESS 

 Subsystem (3): Includes the hydroelectric station 
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The main grid is connected with the microgrid by an electrical line with medium 

voltage (MV). Downstream the point of delivery (POD) there are two electrical lines 

where two transformers are placed, one for each line. The tension at the line on the 

left, as it is shown at Figure 8.1, is 1250kVA, while 630kVA are measured at the line 

on the right. These transformers convert the electrical power from medium to low 

voltage. The first one connects the POD with the ―Leaf Working‖ building, the PV 

systems installed and the hydroelectric station, while the second one connects the 

POD with the Leaf farm and the ESS. Their efficiencies are 99% and 98% 

respectively. 

 

 

8.1 Mathematical model 

8.1.1 Developed cost function 

The objective function must include the case of buying energy from main grid when it 

is necessary, the case of selling energy to National Network when it surpluses and the 

case of using the energy storage system in order to cover consumption demands or to 

store energy for future use. All these are included at the following equation (8-1). 

 

 
C =   E0

pur  t ∗ C0
pur  t −  E0

sell  t ∗ C0
sell  t  +   E2

ESS (t)Cycle costj

9

j=1

24

t=1

24

t=1

 
(8-1) 

 

 

Where: 

 

𝐸0
𝑝𝑢𝑟  𝑡 : energy purchased to the grid at the time t , (kWh) 

𝐶0
𝑝𝑢𝑟  𝑡 : purchased price of the energy at the time t, (€ /kWh) 

𝐸0
𝑠𝑒𝑙𝑙  𝑡 : energy sold to the grid at the time t , (kWh) 

𝐶0
𝑠𝑒𝑙𝑙  𝑡 : selling price of the energy at the time t, (€ /kWh) 

𝐸2
𝐸𝑆𝑆(𝑡): energy charged/discharged from ESS at time t, (kWh) 

𝐶𝑦𝑐𝑙𝑒𝑐𝑜𝑠𝑡𝑗 : cost of each cycle dependent of the swing range of ESS ( 

 

 

 

 

Depending on the state of charge, the life time of ESS and the cycle cost was given 

and they are presented at Table 6.1. 

Table 6.1), (€ /kWh) 
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Taking into account the description of the subsystems mentioned above, it is obvious 

that the appropriate constraints must be set in order to guide the genetic algorithm into 

deciding a true best solution. 

 

 

8.1.2 Constraints  

The constraints of the present optimization problem were set by looking the energy 

flows between the subsystems, which were presented above. 
 

8.1.2.1 Subsystem (0), POD: 

At this subsystem, the energy can be bought for immediate consumption at ―Leaf 

farm‖ and/or at ―Leaf Working‖ or can be sold from the subsystems 1 and 3. For 

subsystems 1 and 3, the energy that can be sold is the energy generated from the PV 

plants and the hydroelectric station respectively. When the microgrid needs to buy 

energy from Energy National Network the following constraint (8-2) must be 

respected: 

 
 E0

pur
(t) = n1E1

pur
(t) + n2E2

pur
(t) (8-2) 

While the demands of buildings are less than the energy generated, then Leaf 

Community can sell this extra energy to the main grid, considering the following 

energy balance (8-3). 

 E0
sell = n1E10

sell + n1E30
sell  (8-3) 

8.1.2.2 Subsystem (1), Leaf Working: 

At this point of subsystem (2) the energy only is consumed in order to cover the needs 

of the buildings. Thus, the energy demanded will be covered from: i) subsystem (0) 

by buying energy, ii) by using energy generated from the PV plants, iii) by using 

energy generated from the hydroelectric station and iv) by using energy from the ESS. 

The equation for ―Leaf's Working‖ energy balance is equation ((8-4):  
 

 EDemand
1  t = n1E1

pur
(t) + E11

use (t) + E31
use (t) + n1n2n3E21

ESS (t) 

 

(8-4) 

 E21
ESS  t = E2

ESS  t − 1 − EDemand
2  t − 7/4 (8-5) 
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8.1.2.3 Subsystem (2), “Leaf farm”: 

The building of ―Leaf farm‖ which is included at subsystem (2) can cover its needs 

by: i) buying energy from POD, ii) using energy generated by PV plants, iii) using 

energy generated by hydroelectric station and iv) using energy stored at ESS. Hence 

the energy demand at this point of the subsystem (2) is described by equation (8-6). 
 

 E𝐷𝑒𝑚𝑎𝑛𝑑
2  t = n2E2

𝑝𝑢𝑟  t + n1n2E12
𝑢𝑠𝑒  t n1n2E32

𝑢𝑠𝑒 (t) + n3E22
𝐸𝑆𝑆 t  (8-6) 

  

E22
ESS  t = E2

ESS  t − 1 − 7/4 

 

(8-7) 

8.1.2.4 Subsystem (2), ESS: 

At ESS point of subsystem (2), the energy ending up there to be stored, can origin 

from: i) PV plants and ii) hydroelectric station. Except from the case that the batteries 

are being charged, there are also cases when the batteries are being discharged. These 

are the following: a) cover the demands of ―Leaf farm‖ and b) cover further demands 

if it is possible at Leaf Working. So, the energy at the ESS at time (t) is described by 

the equation (8-8) and equation  (8-11) depending the charge or the discharge of the 

ESS: 
 

Charge the batteries: 

 

 E2
𝐸𝑆𝑆  t = E2

ESS  t − 1 + E12
𝐸𝑆𝑆 (t − 1) + E32

𝐸𝑆𝑆 (t − 1) − 7/4 
(8-8) 

 E2
ESS  t = (E2

ESS )max ∗ SOC t  (8-9) 

 

 E2
ESS

min
= SOCmin  E2

ESS
max

 (8-10) 

Discharge the batteries: 

 

 E2
𝐸𝑆𝑆  t = E2

ESS  t − 1 − n3E𝐸𝑆𝑆 ,𝐿𝑒𝑎𝑓𝑓𝑎𝑟𝑚
2  t − 1 − n1n2n3E𝐸𝑆𝑆 ,𝑃𝑜𝑙 𝑜2

1 (t − 1) − 7/4 
 (8-11) 

 E2
ESS  t = (E2

ESS )max ∗ (1 − SOD t )  (8-12) 

 E2
ESS

min
= (1 − SODmax )E2

ESS
max

 (8-13) 
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For both cases (charge and discharge ESS): 

 E2
ESS

max
≤ E2

ESS
t
≤ E2

ESS
min

    (8-14) 

8.1.2.5 Subsystem (1), PV plant:  

The energy generated from PV plants at subsystem (1) can be: i) sold directly to POD, 

ii) stored at ESS, iii) used directly from ―Leaf Working‖ and iv) used directly from 

―Leaf farm‖. So, the energy generated from PV plants has to be equation (8-15). 

 
 

 EPV
gen  t = n1E10

sell (t) + n1n2n3E12
ESS (t) − 7/4 + E11

use (t) + n1n2E12
use (t) (8-15) 

   

 

8.1.2.6 Subsystem (3) - Hydro Station: 

Likewise PV plants, the energy generated from hydroelectric station can be: i) sold 

directly to POD, ii) stored at ESS, iii) used directly from ―Leaf Working‖ and iv) used 

directly from ―Leaf farm‖. The equation that describes all these is the equation (8-16): 

 
 Ehydro

gen  t = n1E30
sell  t + n1n2n3E32

ESS  t − 7/4 + E31
use (t) + n1n2E32

use (t) 
(8-16) 
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9 OPTIMIZATION MODEL AT MATLAB 

The idea was to create a Matlab code that will prepare all the appropriate inputs and 

constrains for the genetic algorithm in order to optimize the cost function for the Leaf 

Community. The flow chart that describes the function of the developed algorithm is 

presented on Appendix A. So the developed code is really friendly to the user and 

flexible to any changes. The only thing that the user must do is to set a date, an initial 

state of energy storage system and the maximum energy purchased of the previous 

day.  

 

The date must be set as year, month, day, hour, minutes and seconds, setting minutes 

as a function of ¼ of the hour. This is because all the date used in the model is 

measured every 15 minutes.  

 

Two Matlab codes were developed, one named Prepare_all_inputs and one named 

Loccioni_cost_function_v2 for this work. More specifically, the work done at 

Matlab’s environment is described below in detail.  

 

9.1 Matlab code named “Prepare all inputs” 

This Matlab script could be divided into five different sections. Firstly the appropriate 

data were saved in order to predict the consumption and the production of energy 24 

hours ahead counting from the date set by the user and after some calculations and 

considering the constrains to the code ending with the optimization model using the 

genetic algorithms.  

 

Section 1: This part of the script contains a code which finds and saves all the 

appropriate data in order to predict 24 hours ahead from the set date. More 

specifically, after loading the measurements of all domains of the microgrid (Leaf 

Working, Leaf farm, PV systems and Hydroelectric station) and the developed neural 

networks from the prediction work, it saves at new files only 96 values which are the 

predicted energy.  

 

Section 2: At this point a variable named ―Needs‖ is calculated. This variable 

constitutes of the difference between the energy consumed by Leaf farm and Polo_2 

from the energy produced by the PV plants and the Hydroelectric station. The 

equation is: 

 

 Needs = (PV_production) + (Hydro_production) – 

(Leaf_farm_consumption) – (Leaf Working_consumption) 

              (9-1) 

 
 

The calculated ―Needs‖ are 96 values and show every quarter the demands if there are 

any, of the microgrid for energy. If the result of the equation above is positive then 

means that there is extra energy at the microgrid can be sold or stored. When the 
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result is negative, the buildings need more energy to cover their demands that can be 

bought from ENEL or given by discharging the ESS. 

 

Section 3: This section substantially contains the constrains of using the ESS either 

for charging it either for discharging it. First of all, it should be mentioned here that 

positive energy from ESS means its discharging, while negative energy means 

charging it.  

 

ESS_energy>0  Energy discharged from ESS               (9-2)

    

ESS_energy<0  Energy charged to ESS                (9-3) 

    

The first constrain was set is the maximum energy storage value which is 224kWh. 

This constrain allows to charge the ESS until this value and not more. The second 

constrain regards the minimum energy of ESS that is the value of 0 kWh. The next 

two constrains concern the maximum and the minimum energy that can be charged or 

discharged from ESS every quarter which are respectively -56kWh (charge) and 

56kWh (discharge). The last constrain requires, the energy discharged in order to be 

consumed from buildings to be less by 1.75 kWh which is the inverters consumption. 

The same requirement must be ensured when an amount of energy is going to be 

stored.  

 

Section 4: At this point, the optimization model using genetic algorithm is developed 

using as an objective function, the function named Loccioni_cost_function_v2. This 

function will be described below.  

 

The genetic algorithm calls the objective function that should be minimized and 

considering 96 variables (96 quarters per day) and the ESS’s constrains finds the 

optimum cost for the microgrid. The operation of this method was described at the 

beginning of this report.  

 

The options that can be changed by the user are the following parameters. 

 

 Population type: The option ―doubleVector‖ was chosen in order to solve the 

problem considering the constrains were set while the other options ignore 

them. 

 Initial population range: As an initial population range, the range [-56, 56] was 

set which represents also the lower and the upper bound of ESS every quarter. 

 Population size: It was set to the value of 200. It was shown by doing different 

tests that this size is enough to achieve an optimum result. 
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 Elite count: This parameter specifies how many individuals in the current 

generation are guaranteed to survive to the next generation. According to the 

tutorial this parameter can be calculated as 0.05*Population size and for that 

reason was set as 10. 

 Generations: The number of iterations was chosen for this problem is 300. 

 Stall generations: It was set to the value of 300. 

 Plots: A variety of plots can be exported using genetic algorithms. For this 

problem it was chosen to plot the ―best fitness‖ which is the optimum total 

cost, the ―best individual‖ which represents the amount of energy charged or 

discharged from ESS for each variable and the distance between individuals at 

each generation. 

 Display: In order to be informed at each iteration the option ―iterative‖ was 

chosen. 

 Evaluate fitness & constrain function: The option ―In paraller‖ was chosen. 

 

Section 5: This part includes the outputs of the genetic algorithm which are the 

variables named ―x‖ and ―fval‖. Variable x is actually the energy charged or 

discharged from ESS (considering the 1.75 kWh inverter’s consumption) and as fval 

the total cost for Leaf.  

 

 

9.2 Matlab code named “Loccioni_cost_function_v2” 

It was mentioned before that the genetic algorithm uses as an objective function, the 

function named ―Loccioni_cost_function_v2‖. Here, the structure of this function is 

described. First of all, the cycle cost (Table 1) considering all the swing ranges of ESS 

is loaded in order to calculate the cost of using the ESS. This cost is depending on the 

decision of the genetic algorithm which has as an output the transportation of the 

energy from or to the ESS. According to the swing range that includes at every time 

step this energy, the cost of battery is calculated by multiplying the energy 

charged/discharged with the respective cycle cost (€/kWh). 

 

Other data that are loaded here are the purchase and the selling energy price. As 

selling energy price was set the constant value of 0.075 €/kWh, while the purchased 

price every quarter is presented at the following Table 9.1. 
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Table 9.1: The purchased price of energy at September 

Date Hour PUN 

[€/MWh] 

PUN + 4% loses  

[€/MWh] 

taxes  

[€/MWh] 

final purchase 

price  [€/MWh] 

final purchase 

price [€/kWh] 

30/9/2013 1 57.94 60.26 85.28 145.54 0.15 

30/9/2013 2 56.00 58.24 85.28 143.52 0.14 

30/9/2013 3 50.36 52.38 85.28 137.66 0.14 

30/9/2013 4 47.33 49.22 85.28 134.50 0.13 

30/9/2013 5 50.35 52.37 85.28 137.65 0.14 

30/9/2013 6 57.55 59.85 85.28 145.13 0.15 

30/9/2013 7 62.83 65.34 85.28 150.62 0.15 

30/9/2013 8 69.22 71.99 85.28 157.27 0.16 

30/9/2013 9 81.41 84.66 85.28 169.94 0.17 

30/9/2013 10 77.67 80.77 85.28 166.05 0.17 

30/9/2013 11 77.66 80.77 85.28 166.05 0.17 

30/9/2013 12 72.95 75.86 85.28 161.14 0.16 

30/9/2013 13 62.85 65.36 85.28 150.64 0.15 

30/9/2013 14 58.42 60.75 85.28 146.03 0.15 

30/9/2013 15 63.85 66.40 85.28 151.68 0.15 

30/9/2013 16 70.40 73.22 85.28 158.50 0.16 

30/9/2013 17 70.33 73.14 85.28 158.42 0.16 

30/9/2013 18 72.00 74.88 85.28 160.16 0.16 

30/9/2013 19 73.72 76.67 85.28 161.95 0.16 

30/9/2013 20 91.49 95.15 85.28 180.43 0.18 

30/9/2013 21 84.10 87.46 85.28 172.74 0.17 

30/9/2013 22 74.06 77.02 85.28 162.30 0.16 

30/9/2013 23 67.56 70.26 85.28 155.54 0.16 

30/9/2013 24 61.57 64.04 85.28 149.32 0.15 

 

Graphically, the purchase price during the day is shown at the following figure. 
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 Figure 9.1: Purchase price of energy 

An extra cost, required by the Italian law, is a payment of 10.76 €/kWh per month for 

the maximum energy purchased from ENEL. The user will provide the maximum 

energy purchased of the previous day (variable named max_energy) and by solving 

the last equation the algorithm will know if this cost must be included at the total cost 

of a specific day. 

 

Except from these data mentioned above, this function receives as input the variable 

named ―Battery‖ which is actually the variable x, the genetics’ algorithm output. 

Considering the Battery for the next 96 quarters and the variable ―Needs‖ 

(Production-Consumption), a new variable named ―Grid power‖ is calculated.  

 

The equation was written at Loccioni_cost_function_v2 is the following. 

 

Grid power=Battery+Needs                 (9-4) 

 

If Grid power>0: The energy can be sold to ENEL and the cost which in this case is a 

profit for Leaf Community is calculated by: 

 

Cost of Grid_power=-Grid_power*sale price*0.99               (9-5) 

The value 0.99 at the previous equation represents the efficiency of transformer of 

1250 kVA. 
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If Grid power<0: More energy is needed in order to cover the demands of microgrid, 

so energy must be bought from ENEL.  

The cost of grid is calculated by: 

 

Cost of Grid_power=-Grid_power*purchased price/(0.99*0.98)                       (9-6) 

The value 0.99 at the previous equation represents the efficiency of transformer of 

1250 kVA, while the value 0.98 represents the efficiency of transformer of 630kVA. 

After calculating the Cost of grid which will be either profit either payment to ENEL 

the total cost is calculated which includes this cost as well as the cost of Battery. 

The final equation in this function is the following: 

 

 If ―-max_energy‖> min (Grid_power)   

Total_cost=Cost of Grid_power + Cost of ESS - min(Grid_power) * 10.76     (9-7) 

 

  If ―-max_energy‖< min (Grid_power)   

Total_cost=Cost of Grid_power + Cost of ESS               (9-8) 

 

Finally, a sum of these 96 values of total cost is calculated, which is actually the 

output ―fval‖ of genetic algorithm. 

 

 

At this point some results are presented below by setting different dates randomly and 

considering two cases, one that the hydroelectric station operates and one that it 

doesn’t. 
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10 RESULTS 

In this section some results are presented for different scenarios were chosen in order 

to test the developed genetic algorithm. The first four scenarios assume that the 

Hydroelectric station is not operated and at the last ones it entries into operation 

(using the available data of hydro). 

 

10.1 Scenarios without Hydroelectric station 

10.1.1 Scenario 1 

The first scenario considers as date the 15
th

 of January 2013, when the Hydro station 

wasn’t operate. As an initial battery state (BPS) was set the value 30 kWh, while the 

maximum energy purchased (max_energy) of the previous day was 40 kWh. The 

chosen plots are presented at Figure 10.1.  

 

 

Figure 10.1: Plots of Best fitness, Current Best Individual and Average Distance (15/1/2013, BPS=30 kWh, 
max_energy=40kWh) 
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The optimum cost is 329 €, meaning that Leaf Community must pay mostly to Energy 

National Network in order to cover its needs. The figure of best individual shows the 

using of ESS during the day. Here, it must be mentioned that positive values of 

individuals mean discharging of ESS. The figure at the bottom shows the average 

distance between individuals which actually represents the diversity of the initial 

population that affects at the performance of the genetic algorithm. Generally, if the 

diversity is too high or too low the genetic might not perform well. Here, it is obvious 

that the distance does not reach extreme values, so it is considered that the 

performance is good. 

Furthermore, some other results include the energy taken or sold from/to ENEL, the 

energy charged/discharged ESS after the consumption of inverter and their costs 

respectively during the chosen by the user day are presented at the figures below. 

 

Figure 10.2: Energy from/to ENEL on 15th January 2013, considering BPS=30 kWh and max_energy=40 kWh 
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Figure 10.3: Energy charged/discharged at ESS on 15th January 2013, considering BPS=30 kWh and 
max_energy=40 kWh 

 

Figure 10.4: Cost of charging/discharging ESS on 15th January 2013, considering BPS=30 kWh and 

max_energy=40 kWh 
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Figure 10.5: Total cost for Leaf Community on 15th January 2013, considering BPS= 30kWh and max_energy 

=40kWh 

 

It is obvious at Figure 10.2 that during the 15
th

 of January 2013, Leaf Community 

must buy energy all day in order to cover its demands, while a small amount of them 

are covered by using ESS (Figure 10.3). This management was decided by the genetic 

algorithm for this specific day, in order to achieve the optimum minimum total cost 

(Figure 10.5). 

  



 

                                                                                                              
 
Technical University of Crete 
Department of Environmental Engineering 

 
 

   
 

 

83 
 

10.1.2 Scenario 2 

The second scenario considers as date the 15
th
 of January 2013, BPS=30kWh and 

max_energy= 10kWh. The optimum cost as it was calculated by genetic algorithm is 

705 €. The results are shown at Figure 10.6.  

 

Figure 10.6: Plots of Best fitness, Current Best Individual and Average Distance (15/1/2013, BPS=30 kWh, 
max_energy=10kWh) 

In this case, Leaf Community must pay much more money in relation to the first case 

because the maximum energy purchased of the previous day is lower than the present. 

So it pays the extra cost per month which is required by Italian law. However, the 

discharging of ESS (positive values – best individual) is more prominent now 

comparing the results of Figure 10.7 with those at Figure 10.2 and Leaf Community 

must  
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Figure 10.7: Energy from/to ENEL on 15th January 2013, considering BPS=30 kWh and max_energy=10 kWh 

 

Figure 10.8: Energy charged/discharged at ESS on 15th January 2013, considering BPS=30 kWh and 

max_energy=10 kWh 
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Figure 10.9: Cost of charging/discharging ESS on 15th January 2013, considering BPS=30 kWh and 

max_energy=10 kWh 

 

Figure 10.10: Total cost for Leaf Community on 15th January 2013, considering BPS= 30kWh and max_energy 

=10kWh 
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Comparing the energy taken from ENEL for those two scenarios described above 

(Figure 10.2, Figure 10.7) small differences are obvious during the 24 h of that day, 

but the maximum energy during that day is more than 10kWh that was set for the day 

before. Therefore, Leaf Community must pay 10.76 €/kWh for the maximum energy 

will be bought from ENEL. The algorithm decides to optimize the cost by using more 

the ESS and increasing its cost (Figure 10.9)  in the second scenario because it takes 

into account the extra cost must be paid.  

 

At these two scenarios were presented above, it was examined the behavior of genetic 

algorithm considering that the ESS contains an initial energy, while the parameter of 

interest, the maximum energy purchased of the previous day, was changed.  

 

The next two following scenarios (scenario 3 and 4) consider that ESS is empty at the 

beginning of the day, while the maximum energy purchased of the previous day takes 

the same values as before (10kWh and 40kWh). 
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10.1.3 Scenario 3 

A third scenario includes as date the 15
th

 of January 2013, BPS=0 kWh and 

max_energy=40kWh. The optimum cost for Leaf Community is the amount of 334 €, 

which is also shown at Figure 10.11. 

 

 

 

Figure 10.11: Plots of Best fitness, Current Best Individual and Average Distance (15/1/2013, BPS=0 kWh, 
max_energy=40kWh) 

As it was mentioned before the total cost for Leaf Community in this case is 334 €. 

Comparing this result with scenario 1 (Total cost= 329€) the difference is not 

remarkable but it is obvious comparing the energy charged/discharged (Figure 10.3, 

Figure 10.13) the algorithm here decides charge more the ESS than previously at 

scenario 1.  
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Figure 10.12: Energy from/to ENEL on 15th January 2013, considering BPS=0 kWh and max_energy=40 kWh 

 

Figure 10.13: Energy charged/discharged at ESS on 15th January 2013, considering BPS=0 kWh and 

max_energy=40 kWh 
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Figure 10.14: Cost of charging/discharging ESS on 15th January 2013, considering BPS=0 kWh and 

max_energy=40 kWh 

 

Figure 10.15: Total cost for Leaf Community on 15th January 2013, considering BPS=0kWh and max_energy 

=40kWh 



 

                                                                                                              
 
Technical University of Crete 
Department of Environmental Engineering 

 
 

   
 

 

90 
 

10.1.4 Scenario 4 

 

Considering an empty ESS for 15
th
 of January 2013 and as maximum energy 

purchased of the previous day the value 10kWh, Leaf Community must pay 713 € 

(Figure 10.16). 

 

 

Figure 10.16: Plots of Best fitness, Current Best Individual and Average Distance (15/1/2013, BPS=0 kWh, 
max_energy=10kWh) 

At scenario 2 where BPS= 30 kWh and the maximum energy purchased of the day 

before was the same as here, the total cost for the Leaf Community was 705 €, while 

here is 713 €. Here, the algorithm takes into account that ESS can’t be use to cover 

some demands of Leaf Community like before at the start of the day and decides to 

charge it with small amounts of energy that can be used when the purchased price of 

energy from ENEL is not advantageous. 
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Figure 10.17: Energy from/to ENEL on 15th January 2013, considering BPS=0 kWh and max_energy=10 kWh 

 

Figure 10.18: Energy charged/discharged at ESS on 15th January 2013, considering BPS=0 kWh and 

max_energy=10 kWh 
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Figure 10.19: Cost of charging/discharging ESS on 15th January 2013, considering BPS=0 kWh and 

max_energy=10 kWh 

 

Figure 10.20: Total cost for Leaf Community on 15th January 2013, considering BPS=0kWh and max_energy 

=10kWh 
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10.2 Scenarios with Hydroelectric Station 

Observing the available consumptions of ―Leaf farm‖ and ―Leaf Working‖, it was 

noticed that demands could be covered from Hydroelectric’s production which 

produces more energy than needed during all the hours of the days. The remaining 

energy can be stored to ESS or sold to ENEL. For that reason, at scenario 5 and 6 the 

extra cost per month is not taking into account. 

 

10.2.1 Scenario 5 

The next two scenarios consider the operation of Hydroelectric station. Figure 10.21 

shows the result by setting as date the 3
rd

 of May 2013, BPS=30kWh and 

max_energy=10kWh. 

 

 

Figure 10.21: Plots of Best fitness, Current Best Individual and Average Distance (3/5/2013, BPS=30 kWh, 
max_energy=10kWh) 
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In this case, Leaf Community earns money and specifically 66 € by selling energy to 

the main grid (negative cost means profits). Except from selling energy, in this case 

the stored energy also used for covering the needs of Leaf Community (Figure 10.23), 

because the profits from selling are more than the cost of using the ESS. 

 

Figure 10.22: Energy from/to ENEL on 3th May 2013, considering BPS=30 kWh and max_energy=10 kWh 
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Figure 10.23: Energy charged/discharged at ESS on 3th May 2013, considering BPS=30 kWh and 

max_energy=10 kWh 

 

Figure 10.24: Cost of charging/discharging ESS on 3th May 2013, considering BPS=30 kWh and max_energy=10 

kWh 
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Figure 10.25: Total cost for Leaf Community on 3th May 2013, considering BPS=30kWh and max_energy 

=10kWh 
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10.2.2 Scenario 6 

Considering that BPS is 0 kWh while the other inputs are the same, the profits are 58€ 

approximately, as Figure 10.26 shows below. 

 

 

Figure 10.26: Plots of Best fitness, Current Best Individual and Average Distance (3/5/2013, BPS=0kWh, 
max_energy=10kWh) 
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Figure 10.27: Energy from/to ENEL on 3th May 2013, considering BPS=0 kWh and max_energy=10 kWh 

 

Figure 10.28: Energy charged/discharged at ESS on 3th May 2013, considering BPS=0 kWh and max_energy=10 

kWh 
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Figure 10.29: Cost of charging/discharging ESS on 3th May 2013, considering BPS=0 kWh and max_energy=10 

kWh 

 

Figure 10.30: Total cost for Leaf Community on 3th May 2013, considering BPS=0kWh and max_energy 

=10kWh 
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The results from the last two scenarios where the Hydroelectric station is assumed 

that operates, show that Leaf Community earns money by selling energy either the 

initial battery state is zero either not. Also, it is obvious that the algorithm decides to 

sell the energy than charging a lot ESS in order to increase the profits.  

 

The results from all scenarios examined, are gathered at Table 10.1 below and they 

are comparing with the costs given by genetic algorithm assuming that at Leaf 

Community microgrid hasn’t an ESS.  

 

Table 10.1: Totals results of the current optimization problem 

  

Hydro doesn’t operate 

 

Hydro operates 

 ESS No ESS Difference ESS No ESS Difference 

BPS=0 kWh 

&extra cost 

 

713€ 750€ 37€ - - - 

BPS=30kWh 

& extra cost 

 

705€ 750€ 45€ - - - 

BPS=0 kWh 

& no extra 

cost 

 

334€ 333.09€ -1€ -58€ -40€ 18€ 

BPS=30kWh 

& no extra 

cost 

 

329€ 333.09€ 4€ -66€ -40€ 26€ 

 

According to Table 10.1, when hydroelectric station operates and Leaf Community 

has no ESS, the profits by selling energy are 40€. On the other hand, when the 

algorithm takes into account that energy could be charged or discharged from ESS, 

the profits are 58€ (BPS=0kWh) and 66€ (30kWh). Therefore, even though the use of 

ESS means cost for Leaf Community, decisions though the optimization model 

developed, could offer more money.  
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Same results are observed also in the case that hydroelectric station is not operated. 

The optimization model was developed in order to decide about the using of the 

energy of ESS in a way that minimizes the total cost. This was achieved looking and 

comparing the results above, while the difference is more obvious when Leaf must 

pay this extra cost required by the law for the maximum energy purchased. 
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11 CONCLUSIONS 

This study focuses on the development of an optimization model for Leaf community 

microgrid that targets on the minimization of its total energy cost 24h ahead. The 

model was designed and solved by the method of genetic algorithms.  

 

In order to optimize 24 hours ahead, it was needed to predict the energy produced by 

the generated units (PV systems and micro hydro) and the energy consumed by the 

buildings situated at Leaf Community (―Leaf farm‖ and ―Leaf Working) setting as a 

time horizon 24 hours ahead. That was achieved by using artificial neural networks. 

The developed feed forward backpropagation algorithms are able to estimate the 

energy is going to be produced or consumed the next day.  

 

Here, it must be mentioned that the networks were trained by using measurements of 

previous years and according to the results, it is presumed that larger sets of training 

data lead to the improvement of the algorithm’s performance. Because of this, the 

energy generated from the hydroelectric plant wasn’t predictable by applying this 

method. The available hydro data series was restricted and the network couldn’t be 

trained successfully. On the other hand, the available data shows that hydro 

constitutes a domain of producing large amounts of energy and this could offer 

financial benefits to Leaf Community.  For that reason, this plant couldn’t be 

excluded from the optimization model and it was decided to use as predicted energy, 

an average energy of the previous day because the average difference is not 

remarkable.  

 

The future values of energy for the generating and consumption points of the 

microgrid are known. However, the energy fluxes are affected also from the present in 

the microgrid of an ESS. The energy flows from or to ESS, are determined in this 

study by a genetic algorithm, which estimates the amounts of energy must be stored 

or discharged in order to minimize the total energy cost. So, the total energy cost 

constitutes the objective function that genetic algorithm is called to optimize.  

 

The first job done was the definition of a mathematical formula that includes all the 

costs of energy in the microgrid. More specifically, the cost is required to optimize, 

contains the cost of energy must be bought in order to cover the demands if there are 

some, the profits of selling energy to the main grid and the cost of using the energy 

storage system either for charging either for discharging. The model was limited by 

setting the appropriate constrains that mainly are related to the energy storage system 

in order to avoid having an empty ESS or an unlimited energy flow to it.  

 

In order to evaluate the developed model some scenarios were ran at Matlab that 

shows the influence of some parameters to the results. More specifically, the 

parameters were changed, were the amount of the initial battery state and the amount 

of the maximum energy purchased for the previous day considering that the 

hydroelectric station is not operated, while it is operated only BPS was changed 

taking the values 0kWh and 30kWh.  
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Assuming that the hydro plant doesn’t operate, the results shows that Leaf 

Community can optimize the cost by adding the developed optimization model as it 

was found, it must pay more money in the case that there is no management plant for 

the energy storage system. The difference is more significant at the cases when Leaf 

Community must pay an extra cost per month required by the Italian law.  

 

Except from these, the model obviously decides to use or store small amounts of 

energy to ESS and prefers to sell the energy generated to the main grid or use it at the 

consumption points of the microgrid. According to these scenarios, no profits are 

calculated for the Community, although it was achieved the minimization of the cost 

must be paid. 

 

The last two scenarios consider that the hydroelectric plant is in operation. The results 

show that Leaf Community earns money by selling energy to ENEL, while the energy 

fluxes from or to ESS are not significant.  

 

Finally, it could be mentioned that the hydroelectric station is an important source of 

earning money for the Leaf Community and its stability could offer except from 

money, energy that can be stored for future used. 
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Appendix A: Flow chart of genetics’ algorithm function  
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