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Abstract

Network Utility Maximization (NUM) is the problem of allocating the right amount of

resources to the nodes of a network, in order to maximize an overall utility function.

There are many optimization tools to solve this problem in a centralized manner.

In this thesis, we discuss distributed ways to solve various formulations of NUM

problems. We decompose the problems into subproblems using Primal Decomposition,

by applying direct resource allocation and then adjust the resources by small steps until

equilibrium, and Dual Decomposition by pricing the resource in such manner that each

node achieves the optimal utility. Many alternatives can be derived from these two

methods, in different NUM formulations, with the use of multilevel decompositions.

These decompositions may lead to better understanding of existing networks, reverse

engineering of network protocols like TCP, better management of existing networks,

and ways to design and operate new networks by layering as optimization. Finally,

we experiment with the message passing of these algorithms and try to minimize the

data transferred by quantizing the values.
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Chapter 1

Introduction

1.1 Motivation

The basic idea of decomposition methods is to solve a problem by solving smaller sub-

problems coordinated by a master problem. The distributed way to solve problems that

probably cannot be solved in a centralized way, for various reasons, such as privacy or

memory issues, has limitless applications. The study of these methods for various Network

Utility Maximization (NUM) problems leads to the most appropriate distributed algorithm

for a given network resource allocation problem, and it quantifies the comparison across

architectural alternatives of distributed, layered network control. The work of Daniel P.

Palomar and M.Chiang [1] and [2] was the main motivation for this thesis and a great

help for understanding these methods. The growing interest in these algorithms and their

extensions have made many of the world top Universities to add into their optimization

courses these techniques.

Our goal is to present the decomposition methods so that the reader will be able to

understand and apply these algorithms to a problem he is facing. This is achieved by

presenting the framework and many different examples in network problem formulations.

In engineering, the best way to understand a complex problem is to break it down

into simpler problems. Studying decomposition methods in networks is the best way to

understand the problems of resource allocation and functionality allocation and then to try

to obtain the most appropriate algorithm to solve a given problem. Perhaps, even more

importantly, it quantifies the comparison across architectural alternatives of modularized

network design. A paramount issue in the design of network architecture is where to

place functionalities and how to connect them, an issue that is often more critical than

the detailed design of how to carry out a certain functionality. Decomposition theory

naturally provides the mathematical language to build an analytic foundation for the design

of modularized and distributed control of networks.
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1.2 Related Work

Decomposition in optimization is an old idea, and appears in early work on large-scale

Linear Programing (LP) in the 1960s [3]. Ford and Fulkerson introduced some basic ideas

into networks in 1962 [4] and Leon Lasdon used dual decomposition in his book to solve

distributed problems in 1963 [5]. A good reference on decomposition methods is chapter 6

of Bertsekas [6].

The seminal publication on decomposition applied to networking problems was [7] by

Kelly, Maulloo, and Tan in 1998. This paper outlines two major classes of approaches to

solve the basic version of NUM: primal-based and dual-based. It is important to note that

both approaches in [7] adopt a differential equation technique, analyzed through penalty

functions and Lyapunov arguments, thus different from the language of primal and dual

decomposition analyzed in chapter 3. After this paper, there was an explosion in literature

about the NUM problem and its distributed algorithms.

Very good references are the work of Shakkottai and Srikant [8], the book of D.P.

Palomar and Y.C Edlar in 2010 [9] and especially chapter 9 “Cooperative distributed

multi-agent optimization” from authors Angelia Nedic and Asuman Ozdaglar, and most

recently the book of R. Srikant and L. Ying [10]. The framework of NUM has found many

applications in network resource allocation and Internet congestion control protocols. The

basic concepts on applying these algorithms into cross-layer optimization can be found in

[11].

The idea of decomposition comes up in the context of solving linear equations, but goes

by other names such as block elimination, Schur complement methods, or (for special cases)

matrix inversion lemma (see [13, App. C]). The core idea, i.e., using efficient methods to

solve subproblems, and combining the results in such a way as to solve the larger problem,

is the same, but the techniques are a bit different.

Additional related work of this thesis examples will be pointed out in each Section.
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1.3 Thesis Outline

The thesis is organized as follows :

� Chapter 2 is an introduction to basic concepts of convex optimization, and also an

introduction to the concept of subgradient and the subgradient methods. Finally, we

present the dual ascent method.

� Chapter 3 presents the Primal and Dual decomposition methods with examples.

� Chapter 4 combines the Primal and Dual decomposition methods into more complex

NUM applications.

� In Chapter 5, we test the convergence of Dual decomposition algorithm with message

passing by minimizing the size of data transferred with quantization.

� Finally, Chapter 6 has a conclusion, and some suggestions for future work.



Chapter 2

Convex Optimization: Basics

2.1 Convex Optimization

In order to recognize convex optimization problems in engineering applications, one must

first be familiar with the basic concepts of convexity and the commonly used convex op-

timization models. This section provides a concise review of these optimization concepts,

based on the work of Zhi-Quan Luo and Wei Yu in [12]. In addition, key concepts, as

the Karush-Kun-Tucker optimality conditions and Lagrangian Duality, are reviewed and

stated explicitly for each of the convex optimization models.

2.1.1 Basic Optimization Concepts

Convex Sets A set S ⊂ Rn is said to be convex if for any two points x, y ∈ S, the line

segment joining x and y also lies in S. Mathematically, this is expressed as:

θx+ (1− θ)y ∈ S, ∀θ ∈ [0, 1] and x, y ∈ S.

Many well-known sets are convex, for example, the unit ball S = {x | ‖x‖ ≤ 1}. However,

the unit sphere S = {x | ‖x‖ = 1} is not convex since the line segment joining any two

distinct points is no longer on the unit sphere. In general, a convex set must be a solid

body, containing no holes, and always curve outward. Other examples of convex sets

include ellipsoids, hypercubes, polyhedral sets, and so on. In the real line R, convex sets

correspond to intervals (open or closed). A very important property of convex sets is the

fact that the intersection of any number (possibly infinite) of convex set remains convex.

For example, the set S = {x | ‖x‖ ≤ 1, x ≥ 0} is the intersection of the unit ball with the

non-negative orthant (Rn+), both of which are convex. Thus, their intersection S is also

convex. The union of two convex sets is typically non-convex.
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Convex functions A function f : Rn → R is said to be convex if, for any two points

x, y ∈ Rn and ∀θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Geometrically, this means that, when restricted on the line segment joining x and y, the

line joining (x, f(x)) and (y, f(y)) is always above the graph of function f . There are many

examples of convex functions, including the commonly seen univariate functions |x|, ex, x2,
as well as multivariate functions aTx+ b, ‖Ax‖2, where A, a, and b are given matrix/vec-

tor/scalar. We say f is concave if −f is convex. The entropy function −∑i xi log xi is a

concave function over Rn. If f is differentiable, then the convexity of f is equivalent to

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Rn.

In other words, the first-order Taylor approximation serves as a global underestimator of

f . Furthermore, if f is twice differentiable, then the convexity of f is equivalent to the

positive semidefiniteness of its Hessian: ∇2f(x) � 0, ∀x ∈ Rn. Thus, a linear function is

always convex, while a quadratic function xTPx+ aTx+ b is convex if and only if P � 0.

Notice that the linear plus the constant term aTx + b does not have any bearing on the

convexity (or the lack of) of f . One can think of numerous examples of functions which

are neither convex nor concave. For instance, the function x3 is convex over [0,∞) and

concave over the region (−∞, 0], but is neither convex nor concave over R.

Important properties of convex functions are the facts that they are closed under sum-

mation, positive scaling, and pointwise maximum. In particular, if the {fi} are convex,

then so is maxi{fi(x)} (even though it is typically nondifferentiable). A notable connec-

tion between convex set and convex function is the fact that the level sets of any convex

function f are always convex, i.e., {x | f(x) ≤ c} is convex for any c ∈ R. The converse is

not true, however. For example, the function f(x) =
√
|x| is nonconvex, but its level sets

are convex.
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Convex Optimization Problems Consider a generic optimization problem (in the

minimization form)

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , r,

x ∈ S

(2.1)

where f0 is called the objective function (or cost function), {fi}mi=1 and {hj}rj=1 are called

the inequality and equality constraint functions, respectively, and S is called the constraint

set. In practice, S can be implicitly defined by an oracle such as a user-supplied software.

The optimization variable x ∈ Rn is said to be feasible if x ∈ S and it satisfies all the

inequality and equality constraints. A feasible solution x∗ is said to be globally optimal if

f0(x
∗) ≤ f0(x) for all feasible x. In contrast, a feasible point ~x is said to be locally optimal

if there exists some ε > 0 such that f0(~x) ≤ f0(x) for all feasible x satisfying ‖x− ~x‖ ≤ ε.

The optimization problem (2.1) is said to be convex if

1. The functions fi (i = 0, 1, 2, . . . ,m) are convex;

2. The functions hj (i = 0, 1, 2, . . . , r) are affine (i.e., hj is of the form aTj x+ bj for some

aj ∈ Rn and bj ∈ R); and

3. The set S is convex.

Violating any one of these three conditions results in a nonconvex problem. Notice that

if we change “minimize” to “maximize” and change direction of the inequalities from

“fi(x) ≤ 0” to “fi(x) ≥ 0” then (2.1) is convex if and only if all fi(x) (i = 0, 1, 2, . . . ,m)

are concave. For example, the following entropy maximization problem is convex:

maximize
x

n∑
i=1

xi log xi

subject to
n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n,

Ax = b,

where the linear equalities Ax = b represent the usual moment matching constraints.

Les us now put into perspective the role of convexity in optimization. It is well known

that, for the problem of solving a system of equations, linearity is the dividing line between
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the “easy” and “difficult” problems1. Once a problem is formulated as a solution to a

system of a linear equations, the problem is considered solved since we can simply compute

a solution analytically or using existing numerical software. In fact, there are many efficient

and reliable software packages available for solving systems of linear equations, but none

for nonlinear equations. The lack of high-quality software for solving nonlinear equations

is merely a reflection of the fact that they are intrinsically difficult to solve.

In contrast, the dividing line between the “easy” and “difficult” problems in optimiza-

tion is convexity. Convex optimization problems are the largest subclass of optimization

problems which are efficiently solvable, whereas nonconvex optimization problems are gen-

erally difficult. The theory, algorithms, and software tools for convex optimization problems

have advanced significantly over the last 50 years. There are now (freely downloadable)

high-quality software packages which can deliver accurate solutions efficiently and reli-

ably without the usual headaches of initialization, step-size selection or the risk of getting

trapped in a local minimum. Once an engineering problem is formulated as a convex

optimization problem, it is reasonable to consider it “solved.”

For any convex optimization problem, the set of global optimal solutions is always con-

vex. Moreover, every local optimal solution is also a global optimal solution, so there is no

danger of being stuck at a local solution. There are other benefits associated with a con-

vex optimization formulation. First, there exist highly efficient interior-point optimization

algorithms whose worst-case complexity (i.e., the total number of arithmetic operations

required to find an ε-optimal solution) grows gracefully as a polynomial function of the

problem dimension. In addition, there exists an extensive duality theory for convex opti-

mization problems, a consequence of which is the existence of a computable mathematical

certificate for infeasible convex optimization problems. As a result, well-designed software

for solving convex optimization problems typically return either an optimal solution or

a certificate (in the form of a dual vector) that establishes the infeasibility of the prob-

lem. The latter property is extremely valuable in engineering design since it enables us to

identify constraints which are too restrictive.

1This notions can be made precise using the computational complexity theory.
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2.1.2 Lagragian Duality and Karush-Kuhn-Tucker Conditions

Consider the following (not necessarily convex) optimization problem:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , r,

x ∈ S.

(2.2)

Let p∗ denote the global minimum value of (2.2). For symmetry reasons, we will call (2.2)

the primal optimization problem, and call x the primal vector. Introducing dual variables

λ ∈ Rm and ν ∈ Rr, we can form the Lagrangian function

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +
r∑
j=1

νjhj(x).

The so-called dual function g(λ, ν) associated with (2.2) is defined as

g(λ, ν) := min
x∈S

L(x, λ, ν).

Notice that, as a pointwise minimum of a family of linear functions (in (λ, ν)), the dual

function g(λ, ν) is always concave. We will say (λ, ν) is dual feasible if λ ≥ 0 and g(λ, ν)

is finite. The well-known weak duality result says the following.

Proposition 1 For any primal feasible vector x and any dual feasible vector (λ, ν), it

holds true that

f0(x) ≥ g(λ, ν).

In other words, for any dual feasible vector (λ, ν), the dual function value g(λ, ν) always

serves as a lower bound on the primal objective value f0(x). Notice that x and (λ, ν) are

chosen independent from each other (so long as they are both feasible). Thus, p∗ ≥ g(λ, ν)

for all dual feasible vector (λ, ν). The largest lower bound for p∗ can be found by solving

the following dual optimization problem:

maximize
λ,ν

g(λ, ν)

subject to λ ≥ 0, ν ∈ R.
(2.3)
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Notice that the dual problem (2.3) is always convex regardless of the convexity of the

primal problem (2.2), since g(λ, ν) is concave. Let us denote the maximum value of (2.3)

by d∗. Then, we have p∗ ≥ d∗. Interestingly, for most convex optimization problems

(satisfying some mild constraint qualification conditions, such as the existence of a strict

interior feasible point), we actually have p∗ = d∗. This is called strong duality.

In general, the dual function g(λ, ν) is difficult to compute. However, for special classes

of convex optimization problems, we can derive their duals explicitly.

Next, we present a local optimality condition for the optimization problem (2.2). For

ease of exposition, let us assume S = Rn. Then, a necessary condition for x∗ to be a local

optimal solution of (2.2) is that there exists some (λ∗, ν∗) such that

fi(x
∗) ≤ 0, i = 1, 2, . . . ,m (2.4)

hj(x
∗) = 0, j = 1, 2, . . . , r (2.5)

λ∗ ≥ 0, (2.6)

λ∗i fi(x
∗) = 0, i = 1, 2, . . . ,m (2.7)

and

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
r∑
j=1

ν∗j∇hj(x∗) = 0. (2.8)

Collectively, the conditions (2.4)-(2.8) are called the Karush-Kuhn-Tucker (KKT) opti-

mality conditions. Notice that conditions (2.4) and (2.5) guarantee primal feasibility of

x∗, condition (2.6) guarantees dual feasibility, condition (2.7) signifies the complementary

slackness for the primal and dual inequality constraint pairs, fi(x) ≤ 0 and λi ≥ 0, while

condition (2.8) is equivalent to ∇xL(x∗, λ∗, ν∗) = 0.

In general, the KKT conditions are necessary but not sufficient for optimality. However,

for convex optimization problems (and under mild constraint qualification conditions), the

KKT conditions are also sufficient. If the constraints in (2.2) are absent, the corresponding

KKT condition simply reduces to the well-known stationarity condition for unconstrained

optimization problems: ∇f0(x∗) = 0. That is, an unconstrained local minimum must be

attained at a stationary point (at which the gradient of f0 vanishes). However, in the

presence of constraints, local optimal solution of (2.2) is no longer attained at a stationary

point; instead, it is attained at a KKT point x∗, which, together with some dual feasible

vectors, satisfies the KKT conditions (2.4)−(2.8).
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Detecting infeasibility Efficient detection of infeasibility is essential in engineering

design applications. However, the problem of detecting and removing the incompatible

constraints is NP-hard in general, especially if the constraints are nonconvex. However,

for convex constraints, we can make use of duality theory to prove inconsistency. Let us

consider the following example.

Example 2.1. Determine if the following linear system is feasible:

x1 + x2 ≤ 1

x1 + x2 ≤ −1

−x1 ≤ −1.

Let us multiply the last inequality by 2 and add it to the first and the second inequalities.

The resulting inequality is 0 ≤ −1, which is a contradiction. This shows that the above

linear system is infeasible. �

Modern software packages (e.g., SeDuMi ) for solving convex optimization problems

either compute an optimal solution or provide a certificate showing infeasibility. In con-

trast, software for nonconvex optimization problems cannot detect infeasibility. It typically

fails to converge when the underlying problem is infeasible, either due to data overflow or

because the maximum number of iterations is exceeded.

2.1.3 Linear Programming (LP)

We now review a commonly used convex optimization model in engineering design appli-

cations. Consider a primal-dual pair of optimization problems

minimize cTx

subject to Ax = b, x ≥ 0.
(2.9)

Its dual is
minimize bTy

subject to A∗y + s = c, s ≥ 0.
(2.10)

The optimality conditions are given by

Ax = b, x ≥ 0, ATy = s+ c, s > 0, xT s = 0.
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2.2 Subgradient

In this section, based on Stephen P. Boyd’s notes [14], we review the concept of the sub-

gradient and present the subgradient method, one of the basic algorithms used for non-

differentiable problems, which makes the subgradient method popular on decomposition

methods.

2.2.1 Definition

We say a vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ domf if, for all z ∈ domf ,

f(z) ≥ f(x) + gT (z − x). (2.11)

If f is convex and differentiable, then its gradient at x is a subgradient. But a subgradient

can exist even when f is not differentiable at x, as illustrated in Figure 2.1. The same

example shows that there can be more than one subgradients of a function f at a point x.

There are several ways to interpret a subgradient. A vector g is a subgradient of f at x

if the affine function (of z) f(x)+gT (z−x) is a global underestimator of f . Geometrically,

g is a subgradient of f at x if (g,−1) supports epif at (x, f(x)).

A function f is called subdifferentiable at x if there exists at least one subgradient at

x. The set of subgradients of f at the point x is called the subdifferential of f at x, and is

denoted ∂f(x). A function f is called subdifferentiable if it is subdifferentiable at all x ∈
domf .

Example 2.2. Absolute value. Consider the function f(x) = |x|. For x < 0, the subgra-

dient is unique: ∂f(x) = {−1}. Similarly, for x > 0, we have ∂f(x) = {1}. At x = 0, the

subdifferential is defined by the inequality |x| ≥ gx for all x, which is satisfied if and only

if g ∈ [−1, 1]. Therefore we have ∂f(0) = [−1, 1]. This is illustrated in Figure 2.2. �

2.2.2 Basic properties

� The subdifferential ∂f(x) is always a closed convex set, even if f is not convex. This

follows from the fact that it is the intersection of an infinite set of halfspaces:

∂f(x) =
⋂

z∈domf

{g | f(z) ≥ f(x) + gT (z − x)}.
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x1 x2

f(z)f(x1) + gT1 (z − x1)

f(x1) + gT2 (z − x2)

f(x1) + gT3 (z − x2)

Figure 2.1: At x1, the convex function f is differentiable, and g1 (which is the derivative
of f at x1) is the unique subgradient at x1. At x2, f is not differentiable. At this point, f
has many subgradients: two subgradients, g2 and g3, are shown.

z

f(z) = |z| ∂f(x)

x

1

−1

Figure 2.2: The absolute value function (left) and its subdifferential ∂f(x) as a multivalued
function of x (right).

� If f is convex and differentiable, then ∇f(x) is a subgradient of f at x.

� If f(y) ≤ f(x) + gT (y − x) for all y, then g is a supergradient.

2.2.3 Calculus of subgradients

In this section, we describe rules for constructing subgradients of convex functions. We

will distinguish two levels of detail. In the “weak” calculus of subgradients, the goal is

to produce one subgradient, even if more subgradients exist. This is sufficient in practice,

since subgradient, localization, and cutting-plane methods require only one subgradient

at any point. A second and much more difficult task is to describe the complete set of

subgradients ∂f(x) as a function of x. We call this the “strong” calculus of subgradients. It

is useful in theoretical investigations, for example, when describing the precise optimality

conditions.
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Nonnegative scaling For α ≥ 0, ∂(αf)(x) = α∂f(x).

Sum and integral Suppose f = f1 + f2 + · · ·+ fm, where f1 + f2 + · · ·+ fm are convex

functions. Then, we have

∂f(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fm(x).

This property extends to infinite sums, integrals, and expectations (provided they exist).

Affine transformations of domain Suppose f is convex, and let h(x) = f(Ax + b).

Then ∂h(x) = AT∂f(Ax+ b).

2.3 Subgradient method

2.3.1 Introduction

The subgradient method is a very simple algorithm for the minimization of a nondifferen-

tiable convex function. The method looks very much like the ordinary gradient method

for differentiable functions, but with several notable exceptions:

� The subgradient method applies directly to nondifferentiable f .

� The step lengths are not chosen via line search, as in the ordinary gradient method.

In the most common cases, the step lengths are fixed ahead of time.

� Unlike the ordinary gradient method, the subgradient method is not a descent method;

the function value can (and often does) increase.

The subgradient method is readily extended to handle problems with constraints.

2.3.2 Basic subgradient method

The goal is to minimize a nondifferentiable convex function f : Rn → R. To do this, the

subgradient method uses the simple iteration

x(k+1) = x(k) − αkg(k),

where
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� x(k) is the kth iterate,

� g(k) is any subgradient of f at x(k),

� αk > 0 is the kth stepsize.

It may happen that −g(k) is not a descent direction for f at x(k). In such cases, we always

have f(x(k+1)) > f(x(k)). Even when −g(k) is a descent direction at x(k), the step size can

be such that f(x(k+1)) > f(x(k)). In other words, one iteration of the subgradient method

may increase the objective function. Since the subgradient method is not a descent method,

at each time instant, it is common to keep track of the best point until this time instant.

2.3.3 Step size rules

In the subgradient method, the step size selection is very different from the standard

gradient method. Many different types of step size rules are used. We will start with five

basic step size rules.

� Constant step size: αk = α is a positive constant, independent of k.

� Constant step length: αk = γ/‖g(k)‖, where γ > 0. This means that ‖x(k+1)−x(k)‖2 =

γ.

� Square summable but not summable: The step sizes satisfy

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞.

One typical example is αk = α/(b+ k), where a > 0 and b ≥ 0.

� Nonsummable diminishing: The step sizes satisfy

lim
x→∞

αk = 0,
∞∑
k=1

αk =∞.

Step sizes that satisfy this condition are called diminishing step size rules. A typical

example is αk = α/
√
k, where a > 0.
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� Nonsummable diminishing step lengths: The step sizes are chosen as α = γk/‖g(k)‖2,
where

γk ≥ 0, lim
k→∞

γk = 0,
∞∑
k=1

γk =∞.

There are still other choices, and many variations of these choices. For example, when f ∗

is known, we can use Polyak’s step size

αk =
f(x(k))− f ∗
‖g(k)‖22

.

The most interesting feature of these choices is that they are determined before the

algorithm is run; they do not depend on any data computed during the algorithm. This

is very different from the step size rules found in standard descent methods, which very

much depend on the current point and search direction.

2.3.4 Convergence

Under some technical conditions (boundedness of optimum value, boundedness of subgra-

dients by G), the limiting value of the subgradient method f̂ = limk→∞ f
(k)
best satisfies:

� constant stepsize: f̂ − f ∗ ≤ G2α/2 (suboptimal)

� constant step length: f̂ − f ∗ ≤ Gγ/2 (suboptimal)

� diminishing stepsize rule: f̂ = f ∗ (converges)

2.3.5 Projected subgradient method

One extension of the subgradient method is the projected subgradient method, which solves

the constrained convex optimization problem

minimize f(x)

subject to x ∈ C
(2.12)

where C is a convex set. The projected subgradient method is given by

x(k+1) = [x(k) − αkg(k)]C



2.4. Dual Ascent 26

where [.]C is the (Euclidean) projection on C, and g(k) is any subgradient of f at x(k). The

step size rules described before can be used in this case as well, with similar convergence

results. Note that x(k) ∈ C i.e., x(k) is feasible.

2.4 Dual Ascent

In this section, based on [15], we briefly review the dual ascent algorithm which is a

precursor of the Dual decomposition algorithm, which we will take a glimpse here, but will

get a better look in the next chapter.

Consider the equality-constrained convex optimization problem

minimize f(x)

subject to Ax = b,
(2.13)

with variable x ∈ Rn, where A ∈ Rm×n and f : Rn → R is convex. The Lagrangian for

problem (2.13) is

L(x, y) = f(x) + yT (Ax− b)

and the dual function is

g(y) = inf
x
L(x, y)

where y is the dual variable or Lagrange multiplier. The dual problem is

maximize g(y) (2.14)

with variable y ∈ Rm. Assuming that strong duality holds, the optimal values of the

primal and dual problems are equal. We can recover a primal optimal point x∗ from a dual

optimal point y∗ as

x∗ = arg min
x
L(x, y∗),

provided there is only one minimizer of L(x, y∗). (This is the case if, e.g., f is strictly

convex.)

The dual ascent method is an iterative technique for the solution of (2.13) that can be

described as follows. Assuming that (1) dual function g is differentiable and (2) at the k-th
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iteration, we have computed dual variable yk, the (k + 1)-st iteration is given by

xk+1 := arg min
x
L(x, yk) (2.15)

yk+1 := yk + αk∇g(yk), (2.16)

where αk > 0 is a step size. The first step (2.15) is an x-minimization step, and the second

step (2.16) is a dual variable update. In our case, g(yk) = f(xk+1) + (yk)T (Axk+1− b) and

∇g(yk) = Axk+1 − b.
The dual variable y can be interpreted as a vector of prices, and the y-update is then

called a price update or price adjustment step. This algorithm is called dual ascent since,

with appropriate choice of αk, the dual function increases in each step, i.e., g(yk+1) > g(yk).

The dual ascent method can be used even in some cases when g is not differentiable.

In these cases, the residual Axk+1− b is not the gradient but the negative of a subgradient

of −g(yk). These cases require a different choice of αk than when g is differentiable, and

convergence is not monotone; it is often the case that g(yk+1) ≯ g(yk). In these cases,

the algorithm is called the dual subgradient method (see previous section). If αk is chosen

appropriately and several other assumptions hold, then xk converges to an optimal point

and yk converges to an optimal dual point. However, these assumptions do not hold in

many applications, so dual ascent often cannot be used.

The major benefit of the dual ascent method is that it can lead to a decentralized

algorithm in some cases. Suppose, for example, that the objective f is separable (with

respect to a partition or splitting of the variable into subvectors), meaning that

f(x) =
N∑
i=1

fi(xi),

where x = (x1, . . . , xN) and the variables xi ∈ Rni are subvectors of x. Partitioning matrix

A conformably as

A = [A1, . . . , AN ],

so Ax =
∑N

i=1Aixi, the Lagrangian can be written as

L(x, y) =
N∑
i=1

Li(xi, y) =
N∑
i=1

(fi(xi) + yTAixi − (1/N)yT b)

which is also separable in x. This means that the x-minimization step (2.15) splits into N
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separate problems that can be solved in parallel. Explicitly, the algorithm is

xk+1
i := arg min

xi
Li(xi, y

k), i = 1, . . . , N (2.17)

yk+1 := yk + αk(Axk+1 − b), . (2.18)

The x-maximization step (2.17) is carried out independently, in parallel, for each i =

1, . . . , N . In this case, we refer to the dual ascent method as Dual Decomposition.



Chapter 3

Decomposition Methods

3.1 Introduction

The idea is to decompose the original large problem into subproblems (locally solved) and

a master problem (coordinating the subproblems) where there is communication between

the master problem and the subproblems (Figure 3.1).

The two main classes of decomposition techniques are the primal decomposition and

the dual decomposition.

In primal decomposition, we decompose the original problem by optimizing over one set

of variables and then over the remaining set, where the master problem directly allocates

the existing resources to subproblems.

In dual decomposition, we decompose the dual problem obtained after a Lagrange

relaxation of the coupling constrains, where the master problem sets prices for the resources

to the subproblems.

We use decomposition methods for various reasons:

� to allow the solution of a problem otherwise unsolvable for memory reasons (useful

in areas such as biology or image processing),

� to speed up the solution of the problem via parallel computation,

� to solve the problem in a distributed way (desirable for some wireless networks),

� to derive nice, insightful, and efficient numerical algorithms as alternatives to general-

purpose, e.g., interior-point, methods.

Problems for which decomposition works in one step are called (block) separable, or

trivially parallelizable. We can see this in the following example that decouples naturally.

Example 3.1. Consider the following problem:

minimize
x1,x2

f1(x1) + f2(x2)

subject to x1 ∈ X1, x2 ∈ X2.
(3.1)
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Original Problem
Decomposition

Master Problem

Subproblem 1 Subproblem N...

price/resources
...

Figure 3.1: Decomposition idea.

It is obvious that we can solve each problem separately (and in parallel), and then

re-assemble the solution x. �

Of course, this is a trivial, and not too interesting, case. A more interesting situation

occurs when there is some coupling or interaction between the subvectors, so the problems

cannot be solved independently. For these cases, there are techniques that solve the overall

problem by iteratively solving a sequence of smaller problems.

3.2 Primal Decomposition

A primal decomposition is appropriate when the problem has a coupling variable such

that, when fixed to some value, the rest of the optimization problem decouples into several

subproblems.

Consider the following problem

minimize
x1,x2,y

f1(x1, y) + f2(x2, y)

subject to x1 ∈ X1, x2 ∈ X2,

y ∈ Y ,

(3.2)

where y is the complicating or coupling variable, and x1 and x2 are local or private variables.

When y is fixed, the problem is separable in x1 and x2 and then decouples into two

subproblems that can be solved independently.
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Master Problem

subproblem 1 subproblem Nsubproblem 2 . . .

complicating variables1

s2

sN

Figure 3.2: The interaction between the Master Problem and the subproblems.

For a given y, we define the subproblems

subproblem 1 : minimize
x1∈X1

f1(x1, y)

subproblem 2 : minimize
x2∈X2

f2(x2, y)

with optimal values f ∗1 (y) and f ∗2 (y).

Since minx,y f ≡ miny minx f it follows that the original problem is equivalent to the

master primal problem:

minimize
y∈Y

f ∗1 (y) + f ∗2 (y)

If the original problem is convex, so is the master problem. In general, there are

many methods to solve the master problem such as bisection, subgradient, cutting-plane,

ellipsoid. The subgradient method is commonly used because it is very simple and allows

itself to distributed implementation; however, its convergence is slow in practice. For

constrained problems, we use the projected subgradient method (2.3.5). In Figure 3.2, we

can see the communication between the master problem and the subproblems.

Algorithm 3.1 Primal Decomposition Algorithm

1: Solve subproblems (possibly in parallel)
2: Calculate subgradients
3: Update the complicating variable that reduces the price of the primal master problem
4: Repeat until convergence
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3.2.1 Primal Decomposition Application

We consider the Linear Programming example from [16], with variables u and v,

minimize f(u, v) = cT1 u+ cT2 v

subject to A1u � b1

A2v � b2

F1u+ F2v � h.

(3.3)

We observe that F1u+F2v � h is the coupling constraint; removing it allows problem (3.3)

to be solved via two separate LPs.

In order to solve problem (3.3), we introduce variable z and express F1u+ F2v � h as

F1u � z, F2v � h− z.

Variable z sets the allocation of resources between the two subproblems and the original

problem is equivalent to the master problem

minimizez φ1(z) + φ2(z) (3.4)

where

φ1(z) = inf
u
{cT1 u|A1u � b1, F1u � z}

φ2(z) = inf
v
{cT2 v|A2v � b2, F2v � h− z}.

(3.5)

We solve problem (3.4) iteratively. We observe that, for a fixed z(t), the two LPs in

(3.5) are independent and thus can be solved separately. After their solution, we update

z(t) using a subgradient step as

z(t+1) = z(t) − α(t)g(t) (3.6)

where g(t) is a subgradient of φ1(z) + φ2(z). This subgradient can be computed as follows.

Consider the dual problem of φ1(z) by relaxing F1u � z,

minimize
u,λ�0

cT1 u+ λT1 (F1u− z)

subject to A1u � b1.
(3.7)
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Consider p∗(z) is the optimal value of problem (3.7), with optimal (u∗, λ∗1), us a function

of z. So, the function is p∗(z) = cT1 u
∗ + λ∗T1 (F1u

∗ − z). The gradient is given by ∇zp(z) =

−λ∗1. This gradient shows us in which direction to move z in order to minimize the dual

function. If we have strong duality (which we have in this case), the above gradient is

a descent direction for function φ1(z) as well. Likewise, we can prove that for φ2(z) the

subgradient is λ2 and since the subgradient of the summation of two functions is the

summation of their subgradients (from section 2.2.3), this concludes the proof that the

dual variables λ1 and λ2 of the constraints F1u � z and F2v � h − z can be used for a

subgradient given by

g = −λ1 + λ2 ∈ ∂(φ1(z) + φ2(z)). (3.8)

Summarizing, we solve problem (3.3) iteratively using Primal Decomposition. In the

t-th iteration we update

u(t+1) := arg min
u
{cT1 u|A1u � b1, F1u � z(t)} (3.9)

v(t+1) := arg min
v
{cT2 v|A2v � b1, F1v � z(t)} (3.10)

z((t+1)) := z(t) − α(t)g(t) (3.11)

3.2.2 Numerical Example

We solved problem (3.3) for nu = nv = 10 variables, mu = mv = 100 private inequalities,

and p = 5 complicating inequalities, by using the decomposition approach we described

above. In the subgradient method, we used (1) a diminishing step size at = 0.01/
√
t and

(2) a constant step size a = 0.001.

In the left plot of Figure 3.3, we show with red line the difference of the cost function at

iteration t, f (t) = φ1(z
(t)) +φ2(z

(t)), from its optimal value f ∗, versus the iteration number

t, for step size at = 0.01/
√
t, while with blue line we show the difference from f ∗ of the

best value of f (t) for time up to t. In the right plot of Figure 3.3, we show f (t) versus t. In

Figure 3.4, we show the corresponding quantities for a constant step size a = 0.001.

As we can see, the algorithm converges to the optimal price, and we can achieve error

less than 10−3 in less than 200 iterations.
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Figure 3.3: Left. With red line we plot quantity f (t) − f ∗, while with blue line we plot
mink<t f

(k) − f ∗, versus iteration number t, for αt = 0.01
√
t. Right: We plot the utility

function f (t) versus iteration number t.

3.3 Dual Decomposition

3.3.1 The Basic NUM

A dual decomposition is appropriate when the problem has a coupling constraint such that,

when relaxed, the optimization problem decouples into several subproblems. We illustrate

the full dual decomposition by applying the standard method to the basic Network Utility

Maximization (NUM) for a distributed end-to-end rate allocation.

The problem formulation is as follows. There exist S sources, with fixed routes, in a

network with L links. The l-th link, for l = 1, . . . , L, has a fixed capacity cl. Source s, for

s = 1, . . . , S, (see Figure 3.5)

1. transmits at a rate xs ≥ 0;

2. emits one flow using a fixed set of links in its path denoted as L(s);

3. has utility function Us(xs) which is twice-differentiable, increasing, and strictly con-

cave function.

We have to maximize the total utility f(x) =
∑

s Us(xs), subject to linear flow con-
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(k) − f ∗, versus iteration number t, for α = 0.001. Right: We plot the utility
function f (t) versus iteration number t.
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Figure 3.5: Network formulation. Each source is connected with all links in its path.

strains
∑

s:l∈L(s) xs ≤ cl, for all links l, that is

maximize
x�0

∑
s

Us(xs)

subject to
∑

s:l∈L(s)

xs ≤ cl, ∀l.
(3.12)

In order to simplify the formulation, we define a flow-link incidence matrix A ∈ Rl×s where

Ai,j =

1, if jth source flow passes through ith link

0, otherwise.
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Hence ∑
s:l∈L(s)

xs ≤ cl ≡ Ax � c.

So, we can express (3.12) as

maximize
x�0

∑
s

Us(xs)

subject to Ax � c.

(3.13)

We can solve (3.12) in a centralized manner with the Dual Ascent method of section 2.4.

We first form the Lagrangian

L(x, λ) =
∑
s

Us(xs) +
∑
l

λl

cl − ∑
s:l∈L(s)

xs

 (3.14)

The Dual Ascent algorithm 3.2 for solving this problem converges under strong duality.

Algorithm 3.2 Dual Ascent Algorithm

1: Choose a λ
2: Solve x = arg minL(x, λ)
3: Update the Lagrange multiplier λ = λ− α∇g(λ)
4: Repeat from 2 until convergence

It can be shown that the update of λ in step 3 is given by

λl(t+ 1) =
[
λl(t)− α

(
cl − aTl x

)]+
, l = 1, . . . , L. (3.15)

The proof is based on the following lemma.

Lemma 3.1. Let g(λ) be the dual function corresponding to the problem

minimize
x

f0(x)

subject to hi(x) ≤ 0, i = 0, . . . ,m.

A subgradient of g(λ) is h(x∗(λ)), where x∗(λ) is the optimal x for a fixed λ.

Proof. The Lagrangian is L(x, λ) = f0(x)+λTh(x) and the dual function g(λ) = infx L(x, λ).



3.3. Dual Decomposition 37

Then,

g(λ) = inf
x

(f0(x) + λTh(x))

≤ f0(x
∗(λ0)) + λTh(x∗(λ0))

= f0(x
∗(λ0)) + λT0 h(x∗(λ0)) + (λ− λ0)Th(x∗(λ0))

= g(λ0) + (λ− λ0)Th(x∗(λ0)).

Thus, h(x∗(λ0)) is a subgradient of g at λ0.

If we want to solve (3.12) in a distributive manner, we use Dual Decomposition. At

first, we express the Lagrangian (3.14) as

L(x, λ) =
∑
s

Us(xs) +
∑
l

λl

cl − ∑
s:l∈L(s)

xs


=
∑
s

Us(xs) +
∑
l

λl
(
cl − aTl x

)
=
∑
s

Us(xs)−
∑
l

λl(a
T
l x) +

∑
l

λlcl

=
∑
s

Us(xs)−
∑
s

xs
∑
l

λlal,s +
∑
l

λlcl

=
∑
s

(
Us(xs)− λ(s)xs

)
+
∑
l

λlcl

=
∑
s

Ls(xs, λ(s)) +
∑
l

clλl

(3.16)

where aTl is the lth row of matrix A, λl is the Lagrange multiplier (link price) associated

with the linear flow constraint on link l,

λ(s) =
∑
l∈L(s)

λl

is the aggregate path congestion price of those links used by source s, and

Ls(xs, λ(s)) = Us(xs)− λ(s)xs

is the sth Lagrangian to be maximized for the sth source. In (3.16) we observe that, for a

fixed λ, the Lagrangian L(x, λ) is separable with respect to xs.
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Thus, for source s, for s = 1, . . . , S, we solve the problem

maximize
xs

Ls(xs, λ(s)) = Us(xs)− λ(s)xs.

These problems can be solved in parallel. Then, using the optimal values of these problems,

we update λ via the subgradient step (see (3.15)).

Summarizing, we solve problem (3.12) iteratively using Dual Decomposition. In the

t-th iteration we update

x(t+1)
s := arg max

xs
{Us(xs)− λ(t)(s)xs}, s = 1, . . . , S. (3.17)

λ
(t+1)
l :=

[
λ
(t)
l − α

(
cl − aTl x(t+1)

)]+
, l = 1, . . . , L. (3.18)

3.3.2 Numerical Results

The utility function for our example is Us(xs) = costs
√
xs, with random costs ∈ R+. We

decompose the dual problem (3.13) to a master problem and S subproblems by using the

Lagrange multiplier as a link price between the problems. For each source, we solve the

corresponding subproblem for a fixed λ starting with λ = 1l
1

maximize
xs

costs
√
xs − λ(t)s xs, s = 1, . . . , S, (3.19)

where λ
(t)
s is the aggregate Lagrange multiplier for all links that xs passes through after t

iterations and it can be easily calculated by ((λ(t))TA)s.

We experimented with step sizes α according to step size rules from Chapter 2. We

used a fixed incidence matrix A with links = 10 and sources = 5.

In the left plot of Figure 3.6, we show with red line the difference of the utility function

at iteration t, f(t) =
∑

s Us(x
(t)
s ), from its optimal value f ∗, versus the iteration number

t, for step size at = 1/
√
t, while with blue line we show the difference from the optimal

resource allocation x∗ and the resource allocation x(t) for the iteration t. In the right plot

of Figure 3.6, we show f(t) versus iteration t. In Figure 3.7 , we show the corresponding

quantities for a constant step size a = 0.1.

We notice that, in most cases, we approach the optimal utility price from the non-

feasible side (f(t) > f ∗) because of the relaxation of the constrains. This means that the

1For simplicity, we can use one cvx call to solve all source problems at once since this is equivalent to
solving them separately.
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Figure 3.6: Dual Decomposition algorithm for the basic NUM problem using step α =
1/
√
t. Left: In logarithmic scale we plot the error versus the iteration t. The blue line is

the rate error ‖x(t)−x∗‖2 and the red line is the absolute utility error |f(x(t))−f ∗|. Right:
the convergence of the utility function f(x(t)) to the optimal price versus the iteration t in
linear scale.

network is trying to work over its limits by not having zero residual on the constraints.

So, we try to change the pricing faster when the constrains are violated. We propose to

modify (3.15) as follows:

λl(t+ 1) = [λl(t)− α (cl − Ax)]+ −min(cl − Ax, 0). (3.20)

We have observed that, using this update, we reach feasible values faster. The results are

shown in Figure 3.8, where we show the same quantities. The algorithm shown in Figure

3.7 is shown here for comparison with dotted line and we show the improved method with

solid line.

3.3.3 Conclusions

� The basic NUM is one of the best ways to illustrate dual decomposition because

the problem has a coupling constraint that decouples naturally (see (3.16)). A very

important observation is as follows. There is no need for explicit message passing

since λ(s) can be measured by each source s as the delay and
∑

s:l∈L(s) xs can be

measured by each link l as the total traffic load, as we can see in Figure 3.9.

� The Dual decomposition method needs many iterations to converge, that is why we
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Figure 3.7: Dual Decomposition algorithm for the basic NUM problem using step α = 0.1.
Left: In logarithmic scale we plot the error versus the iteration t. The blue line is the rate
error ‖x(t)− x∗‖2 and the red line is the utility error |f(x(t))− f ∗|. Right: the convergence
of the utility function f(x(t)) to the optimal price versus the iteration t in linear scale.

need to choose the step very carefully depending on the problem.

� The dual master problem is always convex regardless of the original problem. How-

ever, we still need convexity to have strong duality (under some constraint qualifica-

tions like Slater’s condition).

� To solve the master problem, we can use different methods such as

– bisection (if λ is scalar)

– gradient or Newton method (if dual function is differentiable)

– subgradient, cutting-plane, or ellipsoid method.

� The subproblems can be solved independently from master problem for a given λ.
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Figure 3.8: Dual Decomposition algorithm for the basic NUM problem using step α = 0.1
(doted line) and “improved” step α for faster convergence from non feasible points (solid
line). Left: In logarithmic scale we plot the error versus the iteration t. The blue line is
the rate error ‖x(t)−x∗‖2 and the red line is the absolute utility error |f(x(t))−f ∗|. Right:
the convergence of the utility function f(x(t)) to the optimal price versus the iteration t in
linear scale.
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Figure 3.9: A network example from the perspective of a source (left) and a link (right).



Chapter 4

Alternative Decompositions

In Chapter 3, we illustrated the two basic methods of decomposition, Primal and Dual.

We can combine these methods into multilevel decomposition to create many alternative

decompositions for more complicated NUM problems. Multilevel decomposition is an im-

portant technique that leads to alternative distributed decompositions (Figure 4.1).

This chapter is based on [2], [17] and [18] and the efforts towards a systematic under-

standing of “layering as optimization decomposition,” where the overall communication

network is modelled as a generalized network utility maximization problem, each layer cor-

responds to a decomposed subproblem, and the interfaces among layers are quantified as

functions of the optimization variables coordinating the subproblems. There can be many

alternative decompositions, leading to a choice of different layering architectures.

There are three stages of conceptual understanding of an optimization/decomposition

view of network architectures. First, layered and distributed network architectures can

be rigorously understood as decompositions of an underlying optimization problem. Sec-

ond, there are, in fact, many alternatives of decompositions and, therefore, alternatives of

network architectures. Furthermore, we can systematically explore and compare such al-

ternatives. Third, there may be a methodology to exhaustively enumerate all alternatives,

to quantify various comparison metrics, and even to determine a priori which alternative

is the best according to any given combination of comparison metrics. We will explore the

second stage of the above list in this chapter, focusing on the algorithms rather than the

network architecture.

We will start with a simple and popular extension of the basic NUM, which is the rate

allocation problem with power constraints.

4.1 Power-Constrained Rate Allocation

In some applications, such as wireless broadcasting or Digital Subscriber Line (DSL) broad-

band access, distributed rate allocation can be carried out over transmission “pipes” of dif-

ferent sizes, with the help of adaptive resource allocation in the physical layer. This is an
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Figure 4.1: Multilevel decomposition

example of balancing “supply” of resources and “demand” of link capacities “built” from

the limited resources. The algorithms in subsections 4.1.3 and 4.1.2 were first proposed in

[20] and [21], respectively.

4.1.1 Problem Formulation

Consider the basic NUM in (3.12) but with variable link capacities {cl(pl)}, each of which

depends on the allocated resource pl, such as transmit power, with a constraint on the

maximum total resource PT associated with downlink transmissions. For many models,

such as TDMA or FDMA, cl is a strictly concave function.

Consider the following NUM formulation:

maximize
x,p�0

U(x) =
∑
s

Us(xs)

subject to
∑

s:l∈L(s)

xs ≤ cl(pl), ∀l∑
l

pl ≤ PT .

(4.1)

Although it does not have many differences from the basic NUM, one can try different

decompositions. We will consider two decompositions: a primal decomposition with respect

to power allocation, and a dual decomposition with respect to the flow constraints.
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Note that our problem formulation is rather general and different types of networks can

be modelled in this way. For example, in wireless networks with Gaussian channels, the

classical Shannon capacity formula gives that

cl = Wl log

(
1 +

Pl
σlWl

)
(4.2)

where the adjustable parameters are Wl, the assigned bandwidth, and Pl, the power used

in the link. Another case corresponds to distributed time sharing in a system operating

under TDMA.

4.1.2 Primal-Dual Decomposition

Consider first a primal decomposition of (4.1) by fixing the power allocation. Clearly, the

link capacities become fixed numbers and problem (4.1) becomes a basic NUM like (3.12),

which can be solved via a dual decomposition as explained in Section 3.3. The master

primal problem is

maximize
p�0

U∗(p)

subject to
∑
l

pl ≤ PT
(4.3)

where

U∗(p) = max
x�0
{U(x)|Ax � c(p)}. (4.4)

Note that U∗(p) is the optimal objective value of (4.1) for a given p. Since a subgradient of

U∗(p) with respect to cl is given by the Lagrange multiplier λl associated with the constraint∑
s:l∈L(s) xs ≤ cl(pl) in (4.1), using the following lemma, it follows that a subgradient of

U∗(p) with respect to pl is given by λlc
′
l(pl).

Lemma 4.1. Under some mild assumptions, c(p) is concave and a subgradient, g(p), of

U∗(p) at p is given by

g(p) =
(
λ1c
′
1(p1) . . . λLc

′
L(pL)

)
where λl, for l = 1, . . . , L, are optimal Lagrange multipliers for the capacity constraints in

(4.1) and c′l(pl) is the derivative of function cl(·) at pl.
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Proof. By strong duality,

U∗(p) = min
λ�0

max
x

{
S∑
s=1

(Us(xs)− xsqs) +
L∑
l=1

λlcl(pl)

}

= min
λ�0

{
z(x(λ)) +

L∑
l=1

λlcl(pl)

}

where (1) qs =
∑L

l=1Al,sλl and (2) z is the appropriate function. Since U∗(p) is the

pointwise infimum of concave functions, it is concave. Let λ∗ be the optimal Lagrange

multiplier vector for the resource allocation vector p. This implies that

U∗(p) = max
x

{
S∑
s=1

(Us(xs)− xsq∗s)
}

+
L∑
l=1

λ∗l cl(pl),

where q∗s =
∑L

l=1Al,sλ
∗
l .

For any other resource allocation p̃, it holds that

U∗(p̃) ≤ max
x

{
S∑
s=1

(Us(xs)− xsq∗s) +
L∑
l=1

λ∗l cl(p̃l)

}

= U∗(p)−
L∑
l=1

λ∗l cl(pl)︸ ︷︷ ︸
f(p)

+
L∑
l=1

λ∗l cl(p̃l)︸ ︷︷ ︸
f(p̃)

≤ U∗(p) +
L∑
l=1

λ∗l c
′
l(pl)(p̃l − pl)︸ ︷︷ ︸

∇f(p̃)T (p̃−p)

.

The last inequality holds because functions cl(·), for l = 1, . . . , L are concave. By the

definition of the subgradient, this concludes the proof.

Therefore, the master primal problem (4.3) can be solved with a subgradient method

by updating the powers as

p(t+ 1) =

p(t) + α


λ∗1(p(t))c

′
1(p1(t))

...

λ∗L(p(t))c′L(pL(t))



P

, (4.5)
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where [.]P denotes the projection onto the feasible convex set P , {p : p � 0,
∑

l pl ≤ PT}.
Due to the projection, this subgradient update cannot be performed independently by

each link and requires a centralized approach. The projection of a point (the expression

inside the outer bracket in (4.5)) onto the simplex, can be easily obtained in the following

waterfilling form:

pl = (p0l − γ)+, ∀l, (4.6)

where the waterlevel γ is chosen as the minimum nonnegative value such that
∑

l pl ≤ PT .

Observe that only the computation of γ requires a central node since the update of each

power pl can be done at each link.

4.1.3 Dual-Dual Decomposition

Consider now a dual decomposition of (4.1) by relaxing the flow constraints
∑

s:l∈L(s) xs ≤
cl(pl). Using the Lagrange multipliers for the capacity constraints in (4.1) λl, for l =

1, . . . , L, we form the partial Lagrangian

L(x, p, λ) =

{∑
s

Us(xs)− λT (Ax− c(p))
∣∣∣∑

l

pl = PT

}
(4.7)

and the associated dual function

g(λ) = sup
x,p

L(x, p, λ) = sup
x

{∑
s

Us(xs)− λTAx
}

︸ ︷︷ ︸
Network

+ sup∑
l pl=PT

λT c(p))︸ ︷︷ ︸
Resource allocation

(4.8)

This problem decomposes into one maximization for each source like the basic NUM in

(3.12) (this is the network problem) plus the following maximization for the update of the

power allocation

maximize
p�0

∑
l

λlcl(pl)

subject to
∑
l

pl ≤ PT ,
(4.9)

which can be further decomposed, via a second-level dual decomposition, yielding the

subproblems

maximize
pl≥0

λlcl(pl)− γpl (4.10)
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whose solution is
∂

∂pl
{λlcl(pl)− γpl} = 0⇒

c′l(pl) =
γ

λl
⇒

pl = (c′l)
−1
(
γ

λl

)
.

(4.11)

We update the variable γ for the secondary master dual problem as

γ(t+ 1) =

[
γ(t)− α

(
PT −

∑
l

p∗l (γ(t))

)]+
. (4.12)

The master dual problem is solved as shown in Chapter 3 for the basic NUM.

4.1.4 Numerical Examples

We now demonstrate Primal-Dual and Dual-Dual Decomposition algorithms on a fixed

network. The network has 8 nodes, and 12 direct links between nodes. The link capacities

are given by

cl(pl) = log(1 + pl),

and the resource limit for the power is PT = 10. The utility functions are Us(xs) =

costs log(xs), with random costs ∈ R+, which is very similar to proportional fairness. The

example problem was solved with both algorithms explained in Subsections 4.1.2 and 4.1.3.

The step lengths were tuned to approximately optimize the convergence rate for the two

algorithms. In Figure 4.2, on the left, we plot in logarithmic scale the error |U(x(t))− U∗|
for both methods versus the iteration t. On the right, we can see how the utility function

U(x(t)) converges to the optimal price U∗.

4.1.5 Summary

We examined two ways for the distributed solution of power-constrained rate allocation

problem in (4.1).

First, we examined the Primal Dual Decomposition method. We formed the master
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Figure 4.2: Primal-Dual Decomposition (blue line) and Dual-Dual Decomposition (red
line) algorithms for NUM problem (4.1). Left: The error |U(x(t)−U∗| in logarithmic scale
of the methods versus the iteration t. Right: The convergence of the utility function to
the optimal price versus the iteration t in linear scale.

problem (4.3). In the t-th iteration we update

p
(t+1)
l :=

[
p(t) + α(t)λ∗l (p

(t))c′l(p
(t)
l )
]
P
, l = 1, . . . , L. (4.13)

x(t+1)
s := arg max

xs
{Us(xs)− λ(t)(s)xs}, s = 1, . . . , S. (4.14)

λ
(t+1)
l :=

[
λ
(t)
l − α

(
cl(p

(t+1)
l )− aTl x(t+1)

)]+
, l = 1, . . . , L. (4.15)

Second, we examined the Dual-Dual Decomposition method. In the t-th iteration we

update

x(t+1)
s := arg max

xs
{Us(xs)− λ(t)(s)xs}, s = 1, . . . , S. (4.16)

λ
(t+1)
l :=

[
λ
(t)
l − α

(t)
λ

(
cl(p

(t+1)
l )− aTl x(t+1)

)]+
, l = 1, . . . , L. (4.17)

p
(t+1)
l := (c′l)

−1

(
γ(t)

λ
(t)
l

)
, l = 1, . . . , L. (4.18)

γ(t+1) :=

[
γ(t) − α(t)

γ

(
PT −

∑
l

p
(t+1)
l

)]+
. (4.19)

(4.20)
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4.2 QoS Rate Allocation

4.2.1 Problem Formulation

Consider the basic NUM but with different classes of users that will be treated differently.

We constrain the rates to be within a range for each class. In our example, we assume

only two classes of users. Denoting by y
(1)
l and y

(2)
l the aggregate rates of classes 1 and 2,

respectively, along the lth link the problem formulation is

maximize
x,y(1),y(2)�0

U(x) =
∑
s

Us(xs)

subject to
∑

s∈Si:l∈L(s)

xs ≤ y
(i)
l , ∀l, i = 1, 2

y(1) + y(2) � c

c
(i)
min � y(i) � c(i)max, ∀l, i = 1, 2.

(4.21)

The numbers c
(i)
min and c

(i)
max are the limits of the aggregate rate for each class applied in

every link of the network. The constraints c
(i)
min ≤ y(i) ≤ c

(i)
max are the Quality of Service

(QoS) requirements of the network. Observe that in the absence of these constraints,

problem (4.21) becomes the basic NUM. Also note that, without loss of generality, the

equality flow constraints can be rewritten as inequality flow constraints.

We will consider two decompositions: a primal decomposition with respect to the ag-

gregate rate of each class, and a dual decomposition with respect to the total aggregate

rate constraints from both classes.

4.2.2 Primal-Dual Decomposition

Consider first a primal decomposition of (4.21) by fixing the aggregate rates y(1) and y(2).

Then, problem (4.21) is decomposed into two independent basic NUMs, for i = 1, 2,

maximize
x�0

∑
s∈Si

Us(xs)

subject to
∑

s∈Si:l∈L(s)

xs ≤ y
(i)
l , ∀l,

(4.22)

where the fixed aggregate rates y
(i)
l play the role of the fixed link capacities in the basic

NUM. Each of these two subproblems can be solved like a basic NUM. The master problem
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is
maximize
y(1),y(2)�0

U∗1 (y(1)) + U∗2 (y(2))

subject to y(1) + y(2) � c

c
(i)
min � y(i) � c(i)max, i = 1, 2,

(4.23)

where U∗i (y(i)) is the optimal objective value of the problem (4.22) for the ith class for a

given y(i). Each link updates locally the aggregates rates y(i) and the set of different prices

λ(i) for each QoS class using the subgradient algorithm. The master primal problem can

now be solved by updating the aggregate rates as[
y(1)(t+ 1)

y(2)(t+ 1)

]
=

[[
y(1)(t)

y(2)(t)

]
+ α

[
λ∗(1)(y(1)(t))

λ∗(2)(y(2)(t))

]]
y

(4.24)

where [.]y denotes the projection onto feasible convex set.

4.2.3 Partial Dual Decomposition

Consider now a Dual Decomposition of problem (4.21) by relaxing only the flow constraints∑
s∈Si:l∈L(s) xs ≤ y

(i)
l , l, i = 1, 2. This problem decomposes into

- one maximization per source as the maximization of basic NUM,

- one additional maximization to update the aggregate rates:

maximize
y(1),y(2)�0

λ(1)Ty(1) + λ(2)Ty(2)

subject to y(1) + y(2) � c

c
(i)
min � y(i) � c(i)max, i = 1, 2,

(4.25)

which can be solved independently by each link with knowledge of the corresponding

Lagrange multipliers λ
(1)
l and λ

(2)
l , which in turn are also updated independently by

each link.
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The master dual problem corresponding to this dual decomposition is updated with the

following subgradient method:

λ
(i)
l (t+ 1) =

λ(i)l (t)− α

y(i)l (t)−
∑

s∈Si:l∈L(s)

x∗s
(
λ(i)s(t)

)+

, i = 1, 2. (4.26)

4.2.4 Numerical Examples

We implemented both algorithms in Matlab for many sources and link sizes and also many

sparse or dense matrices A. For our experiments, we used the concave source utility

functions Us(xs) = costs log xs, with random costs ∈ R+, for s = 1, . . . , S. We randomize

our QoS limits so there is a feasible point and we partition sources into classes. We

randomize our incidence matrix A in a way that we can control the sparsity. We solve the

dual problems with cvx for each source. We could solve them iteratively for each source

like the basic NUM in Section 3.3.

In the following Figures, we show Primal-Dual and Partial Dual Decomposition algo-

rithms. Left, we plot the error |U(x(t))−U∗| in logarithmic scale, and in the right we plot

the convergence of the utility function U(x(t)) to the optimal value U∗ for both algorithms.

Note that the optimal value is computed by cvx. We present the following cases.

� In Figure 4.3, we show both methods for Links = 15, Sources = 5 and 50% average

link use per source. We use constant step size α = 0.1 for both methods.

� In Figure 4.4, we show both methods for Links = 15, Sources = 5 and 10% average

link use per source α = 0.4 for primal-dual and α = 0.01 for partial-dual1.

� In Figure 4.5, we show both methods for Links = 150, Sources = 50 and 5% average

link use per source α = 0.1 for primal-dual and α = 0.01 for partial-dual. In Figure

4.6, we use double step size for partial-dual algorithm when subgradient is negative

so it converges faster from non-feasible area.

4.2.5 Conclusions

Summarizing, we examined two different methods for distributed solutions for rate alloca-

tion among QoS classes in (4.21).

1This algorithm is very sensitive to big changes and it doesn’t always converge with big size steps.
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Figure 4.3: Primal-Dual (blue line) and Partial Dual (red line) Decomposition methods for
constant step size and 50% link use per source. Left: The error |U(x(t))−U∗| in logarithmic
scale versus t. Right: the convergence of the utility function to the optimal price in linear
scale.
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Figure 4.4: Primal-Dual (blue line) and Partial Dual (red line) Decomposition methods for
constant step size and 10% link use per source. Left: The error |U(x(t))−U∗| in logarithmic
scale versus t. Right: the convergence of the utility function to the optimal price in linear
scale.

First, we examined the Primal-Dual Decomposition method. We formed the master
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Figure 4.5: Primal-Dual (red line) and Partial Dual (green line) Decomposition methods
for constant step size, 50 sources, 150 links, and 5% link use per source. Left: The squared
error in logarithmic scale versus the iterations. Right: the convergence of the utility
function to the optimal price in linear scale.

problem (4.23). In the t-th iteration we update

x(t+1)
s := arg max

xs
{Us(xs)− λ(i)(t)(s) xs}, s = 1, . . . , S, i = 1, 2. (4.27)

λ
(i)(t+1)
l :=

[
λ
(i)(t)
l − α(t)

λ

(
y(i)(t+1))− aTl x(t+1)

)]+
, l = 1, . . . , L, i = 1, 2. (4.28)

y(i)(t+1) :=
[
y(i)(t) − α(t)

y λ
(i)(t+1)
l

]
y
, i = 1, 2. (4.29)

Second, we examined the Partial Dual Decomposition method. In the t-th iteration we

update

x(t+1)
s := arg max

xs
{Us(xs)− λ(t)(s)xs}, s = 1, . . . , S. (4.30)

y
(1,2)(t+1)
l := arg max

y
(1)
l ,y

(2)
l ≥0


λ
(1)(t)
l y

(1)
l + λ

(2)(t)
l y

(2)
l

s.t. y(1) + y(2) � c,

c
(i)
min � y(i) � c

(i)
max

 , l = 1, . . . , L. (4.31)

λ
(i)(t+1)
l :=

λ(i)(t)l − α(t)
λ

y(i)(t+1)
l −

∑
s∈Si:l∈L(s)

x(t+1)
s

+

, l = 1, . . . , L, i = 1, 2. (4.32)

Observations:

� Partial-Dual algorithm has one level of decomposition, Primal-Dual algorithm has
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Figure 4.6: Primal-Dual (red line) and Partial Dual (green line) Decomposition methods
for constant step size, 50 sources, 150 links, and 5% link use per source. We use an
“improved” Partial Dual algorithm with double step size when we are in non feasible
point. Left: The squared error in logarithmic scale of the method versus the iterations.
Right: the convergence of the utility function to the optimal price in linear scale.

two levels of decomposition. Both algorithms do not need signalling between nodes

to work.

� To solve the master problem, both algorithms use subgradient method.

� Primal-Dual is not that fast as the figures show because there are the NUM sub-

problems that must be solved iteratively if we want to solve them in a distributed

manner.

� The sparsity of matrix A affects algorithm convergence. As long as the average

amount of links each source uses stays the same, the independent NUMs will converge

in the same way regardless how many other sources are in the network, and it will not

affect the maximum number of iterations needed for the algorithm to converge. This

means that if we have a big number of sources that only use in average k numbers

of links each, then the algorithm will converge.

� In the primal-dual decomposition approach, each link updates the aggregate rates

on a slower timescale and the prices on a faster timescale whereas, in partial dual

decomposition approach, each link updates the price on a slower timescale and the

aggregate rates on a faster timescale. Therefore, the speed of convergence of the

partial dual approach should be faster, in general. In both cases, the users are
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ignorant of the existence of classes and only the links have to take this into account

by having one price for each class. In other words, this is a way to give each class

of users a different price than the one based on the standard dual-based algorithm

so that they can be differentiated into different QoS classes. The next application

hinges on this observation.

4.3 Hybrid Rate-Based and Price-Based Rate

Allocation

One extreme way to control the rate allocation process is to directly give each source the

rate they can use, at the expense of a centralized computation. At the other extremum,

we can optimize the system in a fully distributed way via pricing feedback, as in the basic

NUM, at the expense of trusting the sources even though they can be noncooperative and

try to obtain more bandwidth by using a more aggressive utility function. Neither of these

two extreme approaches is completely satisfactory in all applications, and hybrid solutions

between rate-based and window-based rate allocation are desirable for both robustness of

fair allocation against aggressive users and speed of converging to the correct rate allocation

equilibrium.

New congestion control protocols using direct rate allocation have recently been pro-

posed, such as eXplicit Control Protocol (XCP) in [22] and Rate Control Protocol (RCP)

in [23], which are based on a heuristic computation of the processor-sharing type of rate

allocation by each router that a flow traverses. We now describe a systematic method

using primal decomposition to perform distributed and direct rate allocation to each user.

It turns out that direct rate control is a special case of alternative NUM decompositions.
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4.3.1 Problem Formulation

The key idea is to use the approach of Section 4.2 but with one class for each user. The

NUM formulation becomes

maximize
x,y(s)�0

∑
s

Us(xs)

subject to xs ≤ y
(s)
l , ∀s, l ∈ L(s)∑

s

y
(s)
l ≤ cl

c
(s)
min ≤ y

(s)
l ≤ c(s)max, ∀s, l ∈ L(s).

(4.33)

Note that if a source s does not use a path l, then y
(s)
l is taken as zero in the constraint∑

s y
(s)
l ≤ cl.

4.3.2 Primal Decomposition

If we take a primal decomposition approach, then the master primal problem will be in

charge of the update of y
(s)
l and each user will simply choose xs equal to the minimum of

the y
(s)
l along its path in order to satisfy xs ≤ y

(s)
l , ∀s, l ∈ L(s). This approach constitutes

one of the extreme methods in which each user is directly given the amount of bandwidth

it can use.

4.3.3 Partial Dual Decomposition

We may also take a dual decomposition approach by relaxing the flow constraints

maximize
x,y(s)�0

∑
s

Us(xs)−
∑
l∈L(s)

λ
(s)
l

xs

+
∑
s

∑
l∈L(s)

λ
(s)
l y

(s)
l

subject to
∑
s

y
(s)
l ≤ cl, ∀l

c
(s)
min ≤ y

(s)
l ≤ c(s)max, ∀s, l ∈ L(s).

(4.34)

This problem decomposes into one maximization for each source, with λs =
∑

l∈L(s) λ
(s)
l be-

ing the aggregate path price specific for user s, plus the following additional rate-bounding
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maximization to obtain the y
(s)
l , for each link l,

maximize
y(s)�0

∑
s:l∈L(s)

λ
(s)
l y

(s)
l

subject to
∑
s

y
(s)
l ≤ cl, ∀l

c
(s)
min ≤ y

(s)
l ≤ c(s)max, ∀s, l ∈ L(s).

(4.35)

This problem can be solved independently by each link as a way to distribute its capacity

cl among the sources using the link according to the weights given by the prices λ
(s)
l , which

are different for each source.

λ
(s)
l (t+ 1) = [λ

(s)
l (t)− α(y

(s)
l (t)− x∗s(λsl (t))]+ ∀l, s : l ∈ L(s), (4.36)

where x∗s(λ
s
l (t)) is the optimal rate xs for source s for the maximization derived form (4.34)

for a given λsl at a time t.

4.3.4 Numerical Example

We tested the above algorithms in a network with sources = 5 and links = 10. The utility

function was U(xs) = costs log(xs) for each source. We used an average of 30% link use

per source.

In Figure 4.7, we show with red line the Primal-Dual Decomposition algorithm and with

the blue line the Primal Decomposition algorithm. In the left plot we show, in logarithmic

scale, the error of the algorithm by showing the quantity |U(x(t))−U∗| versus the iteration

t. In the right plot of Figure 4.7, we show, in linear scale, the utility function U(x(t))

versus iteration t, plus the optimal value we have from the software cvx. In Figure 4.8,

we show the corresponding quantities for different step sizes. In General, the Partial-Dual

decomposition is faster than primal decomposition. But we observe Primal decomposition

is more stable. In Figure 4.8, we can see a similar convergence between the two algorithms,

achieved with the proper parameters like step sizes.

4.3.5 Summary

Summarizing, we examined two different methods for the solution of Hybrid Rate-Based

and Price-Based Rate Allocation problem of (4.33)
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Figure 4.7: Primal and Primal-Dual Decomposition methods for Hybrid rate-based and
price based rate allocation for step sizes a1 = a2 = 0.1. Left: The error |U(x(t)) − U∗|
versus t. Right: the utility function U(x(t)) versus t.

Primal Decomposition leads to a direct rate allocation and is based on one level de-

composition. In the t-th iteration we update

x(t+1)
s := min

s:l∈L(s)
{y(s)l }, s = 1, . . . , S, (4.37)

λ
(s)(t+1)
l :=

λ(s)(t)l − α(t)
λ

y(s)(t+1)
l −

∑
s∈S:l∈L(s)

x(t+1)
s

+

, l = 1, . . . , L. (4.38)

y(s)(t+1) :=
[
y(s)(t) − α(t)

y λ
(s)(t+1)
l

]
y
, i = 1, 2. (4.39)

This approach requires the signalling to inform each user what rate to transmit at.

Partial Dual Decomposition method only shows one level of decomposition and does

not require any explicit signalling. It is a hybrid rate-bounding and pricing feed-back
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Figure 4.8: Primal and Primal-Dual Decomposition methods for Hybrid rate-based and
price based rate allocation for step sizes a1 = 0.5 and a2 = 0.01 respectively. Left: The
error |U(x(t))− U∗| versus t. Right: the utility function U(x(t)) versus t.

mechanism. In the t-th iteration we update

x(t+1)
s := arg max

xs
{Us(xs)− λ(t)(s)xs}, s = 1, . . . , S. (4.40)

y
(s)(t+1)
l := arg max

y
(s)
l ≥0


∑

s:l∈L(s) λ
(s)(t)
l y

(s)
l

s.t.
∑

s y
(s)
l ≤ cl,

c
(s)
min � y

(s)
l � c

(s)
max

 , l = 1, . . . , L. (4.41)

λ
(s)(t+1)
l :=

λ(s)(t)l − α(t)
λ

y(s)(t+1)
l −

∑
s∈Si:l∈L(s)

x(t+1)
s

+

, l = 1, . . . , L. (4.42)
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4.4 Multipath-Routing Rate Allocation

We now consider a more general setup of the basic NUM illustrated in Chapter 3 where each

source can choose among several possible paths and possibly use a weighted combination

of them.

A similar formulation of multipath routing utility maximization is considered in [24],

where a proximal optimization method followed by full dual decomposition is taken. This

type of multi-path utility maximization problems appear naturally in several resource allo-

cation problems in communication networks, such as the multi-path flow control problem,

the optimal QoS routing problem, and the optimal network pricing problem.

4.4.1 Problem Formulation

The structure of a network with S sources, L links, and J paths can be summarized by

the L× S path availability 0− 1 matrix H defined at

Hl,j :=

1, if the jth path uses the lth link,

0, otherwise,

together with the J × S path choice nonnegative matrix W

Wj,s =

wjs, if the sth source uses the jth path,

0, otherwise,

where wjs indicates the percentage of the rate of the sth user allocated to the jth path and

has to satisfy wjs > 0 and
∑

j wjs = 1. These two matrices can be combined into the

routing matrix

R = HW (4.43)

that tells how much each source is using each link. Note that this notation of matrices

H and W follows that in [25]. However, the problem being considered here is to design a

rate allocation algorithm with fixed H and W , whereas the problem considered in [25] is

to analyze the effect of joint routing and rate allocation with W being a variable.

The problem can be formulated with the routing matrix R like the basic NUM in (3.13)
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maximize
x�0

∑
s

Us(xs)

subject to Rx � c

(4.44)

and then the standard dual-based decomposition algorithm can be used. In this section,

we will formulate the problem alternatively in terms of H and W as follows:

maximize
x�0

∑
s

Us(xs)

subject to Wx � y (path constraint)

Hy � c (link constraint)

(4.45)

where yl contains the aggregate rate along the lth path.

4.4.2 Primal-Dual Decomposition

For a fixed y, problem (4.45) becomes the basic NUM problem, that can be solved with

a dual decomposition approach and we can update the path rates y with a subgradient

method. So, the master primal problem is

maximize
y�0

U∗(y)

subject to Hy � c,
(4.46)

where U∗(y) is the optimal objective value of (4.45) for a given y. The subgradient is given

by the Lagrange multiplier λ associated to the constrains Wx ≤ y in (4.45). So we update

the path rates as follows

y(t+ 1) = [y(t) + αλ∗(y(t))]Y , (4.47)

where [.]Y denotes the projection onto the feasible convex set Y , {y : y ≥ 0, Hy ≤ c}.
Note that this subgradient update cannot be performed independently by each path due

to the projection onto Y , which makes it impractical.
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4.4.3 Partial Dual Decomposition

We will also present a method similar to [26]. We take a partial dual decomposition of

(4.45) by relaxing only the constraint Wx � y,

maximize
x,y�0

∑
s

Us(xs) + γT (y −Wx)

subject to Hy � c.

(4.48)

This problem decomposes into one maximization for the sources, like the one in Section

3.3 for the basic NUM,

maximize
x�0

∑
s

[Us(xs)− γsxs] , (4.49)

where γs = γTW:,s =
∑

j∈J(s) γjwjs is the aggregate price for the s-th source, plus one

maximization for the path rates

maximize
y�0

γTy

subject to Hy � c.
(4.50)

which has to be solved in a centralized way.

The master dual problem updates the prices as

γ(t+ 1) = [γ(t)− α(y −Wx(γ(t)))]+ . (4.51)

4.4.4 Full Dual Decomposition

Another way to solve problem (4.45) is with full dual decomposition by relaxing both

constraints Wx � y and Hy � c

maximize
x�0,y

∑
s

Us(xs) + γT (y −Wx) + λT (c−Hy) (4.52)

which can be rewritten as

maximize
x�0,y

∑
s

[Us(xs)− xsγ(s)] +
∑
j

yj(γj − λ(j)) + λT c (4.53)
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where λ(j) = λTH:,j =
∑

l∈J(j) λl is the aggregate price of the jth path and γ(s) = γTW:,s =∑
j∈J(s) γjwjs is the aggregate price for the sth source. This problem decouples into maxi-

mization over x, like the basic NUM, and maximization over y, which is unbounded unless

γj = λ(j). Therefore the optimal choice for the master dual problem is γj = λ(j) and

then γ(s) =
∑

j∈J(s) λ
(j)wjs =

∑
j∈J(s)wjs

∑
l∈J(j) λl. Hence, this approach reduces to the

standard dual-based algorithm applied to problem (4.44)

4.4.5 Numerical Example

We now consider a NUM with different groupings of the path and link constraints as

described in this Section. In particular, we generate a random network topology with

S = 4 sources, J = 12 paths, and L = 36 links, such that each user uses three paths on

average and each path uses five links on average.

In Figure 4.9, we show the Primal-Dual Decomposition algorithm. In the right plot we

show, in logarithmic scale, the error of the algorithm by showing the quantity |U(x(t))−U∗|
versus the iteration t. In the left plot, we show in linear scale, the utility function U(x(t))

versus iteration t, plus the optimal value we have from the software cvx. In Figure 4.10,

we show the corresponding quantities for Partial-Dual Decomposition algorithm.
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Figure 4.9: Primal-Dual Decomposition for multipath-routing rate allocation problem with
step αt = 0.01. Left: The error |U(x(t)) − U∗| in logarithmic scale. Right: the utility
function in linear scale.
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Figure 4.10: Partial-Dual Decomposition for multipath-routing rate allocation problem
with Polyak’s step (Section2.3.3). Left: The error |U(x(t)) − U∗| in logarithmic scale.
Right: the utility function in linear scale.

4.4.6 Summary

Summarizing, we examined several different methods for the solution of Multipath-Routing

Rate Allocation problem of (4.45)

Primal-Dual Decomposition. In the t-th iteration we update

x(t+1)
s := min

xs
{Us(xs)|(Wx) ≤ y(t)}, s = 1, . . . , S, (4.54)

λ(s)(t+1) :=
[
λ(s)(t) − α(t)

λ (y(s)(t+1) −Wx(t))
]+
, l = 1, . . . , L. (4.55)

y(t+1) =
[
y(t) + αλ(t)

]
Y , (4.56)

Unfortunately, due to the projection in (4.56) a centralized computation is required, which

makes this approach impractical.

Partial Dual Decomposition. In the t-th iteration we update

x(t+1)
s := min

xs
{Us(xs)− (γ(t)TWs)xs}, s = 1, . . . , S, (4.57)

γ(t+1) :=
[
γ(t) − α(y −Wx(t+1))

]+
. (4.58)

y(t+1) = arg max
y≥0
{γ(t)Ty|Hy � c} (4.59)

Subproblem (4.58) is solved in a centralized way, making this approach also inconvenient.



Chapter 5

Performance for the Quantized

Method

In the previous chapters, we saw many algorithms that need message passing between the

nodes and the links. In this chapter, we examine the scenario where the nodes of the

network communicate with each other, passing useful information iteratively. Thus, in our

case, the numbers they exchange are not continuous-valued information (real numbers),

but instead quantized information. The problem of communication between agents of

a network, to solve an optimization problem, has gained much attention in networking

literature [27],[28],[29],[30]. Even though the communication in networks is not perfect, but

affected by some kind of noise, which can be either a random additive noise or produced by

a quantization, node failures and delays, we will focus on the convergence of the algorithm

ignoring all the other problems that may occur. More specifically, we discuss a “quantized”

extension of the subgradient method in the basic NUM.

5.1 Quantized basic NUM

In the basic NUM (3.12) it is possible not to use any explicit message passing since we

can measure λ(s) by each source s as the queuing delay and each link can measure the

aggregate rate by the total traffic load. But if we want to set up the network before

it goes into usage, then we have to apply the algorithm with message passing. So, we

quantize only the variables that must be communicated between the master problem and

the subproblems.

So, we solve for each Source this subproblem for a fixed λQ starting by positive λQ = 1l.

maximize
xs≥0

costs
√
xs − λQ(t)

s xs, ∀s (5.1)

where λ
Q(t)
s is the quantized aggregate Lagrange multiplier λs for all links that xs passes

throw after t iterations. Note that on the calculation of the utility function at each source,
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we do not have to use quantized x because it is information that the source has. Now on

the Master problem update λQ following the subgradient method we have

λQl (t+ 1) =
[
λQl (t)− α

(
cl − (AxQ)s

)]+
. (5.2)

5.2 Numerical Example

We run the algorithm with L = 7 links and s = 5 sources with random capacity of links

and with utility function Us(xs) = costs
√
xs. We used the command “fi” on Matlab with

word size 16, 12, 10 and 8 bits. We used best-precision fraction length because the size

of the message is the one we want to test. If the values of the quantized variables where

bigger then we would lose precision on decimals. We can see some interesting results in

Figures 5.2 and 5.3. The algorithm behaves normally at the start but it loses precision

while it approaches the optimal value. If we are pleased with an error |U(x(t)) − U∗| at

10−2 and we do not want to use more than 10 bits for message passing then we can choose

the trade off. If we need better precision, then we need to use more bits.

Figure 5.1: The performance of the quantized dual decomposition algorithm.
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Figure 5.2: The utility function convergence for the different word size of the transmitted
message.
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Figure 5.3: One closer look at Figure 5.2, which we can see the difference of the quantiza-
tion.



Chapter 6

Discussion and Future Work

In this thesis, we have considered two basic and nine composite optimization algorithms

that only rely on peer-to-peer communication and are suitable for use in networked sys-

tems. Furthermore, we have presented the solutions of six problems involving center-free

resource allocation. We have also discussed the basic convex concepts and the use of the

subgradient and subgradient methods. Finally, we have implemented and evaluated the

Dual decomposition algorithm for the basic NUM problem with quantized message pass-

ing. In this chapter, we summarize and discuss the work of the thesis. In addition, we also

outline some future work.

We start with an important question.

6.1 How Should NUM Problems be Posed,

Decomposed, and Solved?

The answer to that question will of course very much depend on the specifics of the problem.

However, looking at the literature, it is possible to see some patterns. In [31] we can see

the effort to categorize some of the existing approaches to solving NUM problems in the

following three blocks:

Problem Formulation The problem formulation is of paramount importance. The

model has to capture all relevant phenomena while still being sufficiently simple; this

is the classic fidelity versus tractability tradeoff. In addition, the difference between a

good problem formulation and a bad one can be the difference that makes it solvable

or not. Specifically, convex and decomposable optimization problems are desired. We

can transform the problem formulation in order to make it simpler. We can change the

variables or add new ones like the auxiliary variable at LP example at Chapter 3. In some

cases, we may have to combine variable and constraint transformations to simplify our

problem.
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Decomposition In order to engineer a decentralized algorithm, the optimization prob-

lem has to be split into several subproblems that can be solved in a distributed way using

some coordination scheme. Most often, either a dual or primal decomposition technique is

chosen; see Chapter 3. The details are shown in Figure (6.1).

Coupled

Coupled

Objectives
Coupled

Constraints
Coupled

Variables

Introduce

Auxiliary

Variables

Dual

Decomposition

Primal

Decomposition

Decoupled?

Yes

Yes
Yes

Yes
Yes Yes

No
No No

No

Figure 6.1: A decision chart for the use of decomposition methods.

To capture all decomposition approaches previously pursued in the literature, the

flowchart would have to be huge, with the effect that it would be practically useless.

Therefore, we are forced to compromise, and the flowchart we present captures, in our

opinion, the most crucial steps and algorithmic approaches in solving NUM problems. The

aim is to find patterns in the existing literature, to make it easier to get an overview what

has been done, and to visualize the inherent steps in the NUM framework.

Optimization Techniques The resulting subproblems have to be solved in some way;

numerous methods can of course be used, some of the most common methods are (sub)gradient,

newton, cutting plane, interior point, other heuristics methods or other ascent method.
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6.2 Synchronous vs. Asynchronous algorithms?

The subproblems can either be solved in a synchronous or an asynchronous fashion. The

synchronous case is much simpler to analyse, whereas the asynchronous case is more gen-

eral. Maintaining synchronous operations in a large network is demanding, and most real

protocols will run asynchronously. Therefore, it is comforting if the analysis also guarantees

proper operation of the algorithm under asynchronous operation as well. We believe that

the algorithms presented in this thesis work well in both cases, the performance difference

depends on the problem and must be investigated further.

6.3 Future work

We have tested many NUM algorithms for a fixed network and a fixed incidence matrix.

What if we try to test the stability of these methods on a network that dynamically changes.

Would the methods be stable or not?

In our networks, we knew or we could calculate the link capacities. What if we had

to estimate them in order to solve the problem. Would that be a problem to work with

estimates of the capacities?

We used the subgradient method for all our algorithms. What if we try to test other

algorithms, maybe suboptimal, for the calculation of our variables?

We tried to quantize the message passing information in order the algorithm works

properly. Many networks have message failures and noisy transmission that may affect the

algorithm with a wrong value. How can be protected by something like that?
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