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Chapter 1

Introduction

This thesis is concerned with the comparison and further development of cer-

tain detection algorithms which can be applied for multiuser detection in DS-

CDMA systems, and for low complexity quasi-optimal detection in Multiple-Input

Multiple-Output communication systems.

1.1 MIMO Observation Model

We consider an M -dimensional data vector s, consisting of real-valued ±1 el-

ements, transmitted through a linear time-invariant N × M channel H. The

received N × 1 vector is corrupted by a Gaussian noise vector with zero mean

and covariance matrix σ2I, where I denotes the N ×N identity matrix. Thus at
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an instant of time the received signal is given by

y = Hs + n

si ∈ {1,−1} , i = 1, ..., M

(1.1)

where H is the channel mixing matrix and n is the white Gaussian noise vector.

We assume that the mixing matrix is known to the receiver but not to the trans-

mitter. Model (1.1) appears in the context of various modern communication

systems, including muti-user spread spectrum systems like synchronous CDMA

[1] and multi-antenna systems like V-BLAST [2]. The case in which the symbols

of s are taken from a complex constellation and transmitted through a complex

channel with white Gaussian complex noise vector, can be easily reduced to a

real model, as in (1.1). Our purpose at the receiver is to accurately reproduce

the transmitted signal.

1.2 ML Detection

The Maximum Likelihood (ML) detector chooses the value of the vector s which

maximizes the conditional probability that y is received given that s has been

sent

max
s

py|s(y|s) (1.2)

The maximization in (1.2) is performed over the entire M-dimensional symbol

space, i.e., over all the combinations of the possible values for every si. In our

case, where the noise is modeled as additive white Gaussian, the conditional
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probability of observing y given that s has been transmitted, is

py|s =
1

2π
e−

||y−Hs||2
2σ2 (1.3)

Therefore the maximization of the conditional probability (1.2) is reduced to the

combinatorial optimization problem

min
s
||y −Hs||2 (1.4)

Where the components of s are −1 or 1. More formally, problem (1.4) can be

stated as

Given the vector y ∈ RN , and the matrix H ∈ RN×M , find the column vector

s ∈ {1,−1}M which minimizes

||y −Hs||2 (1.5)

The above problem is the binary case of the well known Integer Least Squares

(ILS) problem [3]. Problem (1.5) can be rewritten as

arg min
s
||y −Hs||2 = arg min

s
(y −Hs)T (y −Hs)

= arg min
s

(−sTHTy − (sTHTy)T + sTHTHs)

= arg min
s

(sTHTHs− 2sTHTy)

(1.6)

As we have said our purpose at the receiver is to detect as correctly as pos-

sible the components of s. The ML detector minimizes ||y −Hs||2 and exhibits

optimal performance (in terms of error probability) among all detectors, pro-

vided that all symbol vectors, s are equiprobable. Unfortunately, it is known

that its computational cost is exponential in M . Specifically, problem (1.5) has
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been proven to be NP-hard [1]. For this reason a number of alternative algo-

rithms have been developed in order to achieve near-optimal performance with

low computational cost. Those algorithms include the Sphere Decoder (SD),

Semidefinite Relaxation (SDR) and Probabilistic Data Association (PDA). We

will first review these three algorithms. Then, we will propose a combination of

SD and PDA, and show that it attains a better performance-complexity trade-off

than SD, PDA and SDR.

1.3 Measures of Performance

For binary symbols like in (1.1), a meaningfull statistical measure of the effective-

ness of a detector is the Bit Error Rate (BER), which expresses the probability

that a transmitted bit has been mistaken for its complement.

Moreover, a detector should be computationally efficient in order to be im-

plementable in practical communication systems. For this reason, as a measure

of the computational cost of the various detection algorithms, we use the number

of Floating Point Operations (FLOPS). This kind of arithmetical operations is

the most expensive (regarding the time which is needed to be completed) in the

hardware components which are used in modern communication systems.

Finally a detection algorithm must be quite simple in order to be easily im-

plementable in practical communication systems.
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1.4 Outline of the Thesis

In this thesis, we implement various detection algorithms for the model in (1.1),

and compare their performance in the context of several pertinent communication

systems.

In chapter 2 we explain in detail three near optimal decoding algorithms. In

the first section we study Semidefinite Relaxation. We start with a description

of Semidefinite relaxation for the solution of the Boolean Quadratic Program-

ming (QP) problem. After that we make the link between Boolean QP and ML

decoding problems. We close this section with a description of a randomization

procedure for converting the relaxed problem solution to a proper solution for

the original ML decoding problem. The second section of this chapter is devoted

to a survey of the Sphere Decoding (Fincke-Pohst) algorithm. We describe the

stages of this algorithm and we study in brief its computational complexity. In

the third section of this chapter we give a detailed description of the Probabilistic

Data Association (PDA) algorithm, and of certain modifications which improve

its computational complexity. We next derive a new algorithm which is a combi-

nation of the Sphere decoder and PDA algorithms. This algorithm consists of a

PDA first stage which decides the values of particular symbols (bits) which can

be reliably decoded, followed by a properly modified sphere decoder which uses

the decisions of the PDA stage to give the final decoded vector of symbols. We

finally make a coarse estimation of its computational complexity.

In chapter 3 we describe specific multiple input multiple output communica-
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tion system models and we give the simulation results for the above four near-

optimal algorithms on these scenarios. The first section is a study of the syn-

chronous CDMA system model and a presentation of the results of simulation

examples in which we compare the BER performance and computational com-

plexity of the first three algorithms. In the second section we describe the multi-

ple antenna model. The simulation examples which are presented in this section

compare the first three algorithms with the proposed algorithm and provide a

qualitative description of the pertinent algorithm parameters.

In the final chapter we give some conclusions regarding the comparison of the

algorithms in the scenarios considered. We also propose some ideas for future

work in the field of optimum detection.
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Chapter 2

Computationally Efficient

Decoding Algorithms for MIMO

systems

In this chapter we describe various algorithms which can be used for detection

in MIMO communication systems. Semidefinite Relaxation, Sphere Decoding

and Probabilistic Data Association are explained in detail. We also propose an

algorithm which combines Probabilistic Data Association and Sphere Decoding.

2.1 Semidefinite Relaxation

Semidefinite Relaxation has been proposed for synchronous CDMA Multiuser

detection in [4]. The ML detection problem (1.4) is an instance of the general
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Boolean Quadratic Programming (QP) problem. In this section, following the

algorithm description in [4], we present the application of SD relaxation for the

QP problem and see how QP and ML detection problems are connected.

The form of the Boolean QP problem is:

max
x∈{−1,+1}n

xTQx (2.1)

Where Q is an n×n symmetric matrix. For the description of SD relaxation,

we must reformulate the Boolean QP problem. Since xTQx = Trace(xxTQ),

problem (2.1) can be equivalently written as

max Trace(XQ)

s.t. X = xxT ,x ∈ Rn

Xii = 1, i = 1, . . . , n

(2.2)

The constraint X = xxT is equivalent to saying that X is symmetric, positive

semidefinite and of rank 1. Problem (2.2) is a non-convex optimization problem,

because of the rank-1 constraint. In order to convert this to a convex optimization

problem we drop the rank-1 constraint from (2.2) and this yields the following

relaxed problem

max Trace(XQ)

s.t. X º 0

Xii = 1, i = 1, ..., n

(2.3)

Where X º 0 signifies that X is symmetric and Positive Semidefinite. Prob-

lem (2.3) is a Semidefinite Programming (SDP) problem [5] and so (2.3) is called
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a Semidefinite Relaxation of (2.2). It is important to notice that (2.3) does

not exhibit the disadvantage of local maxima because it is a convex optimization

problem [4]. For the SDP problem (2.3) an efficient optimization algorithm based

on interior-point methods has been developed [6], [7]. This algorithm solves the

problem (2.3) in at most O(n3.5) operations for a pre-specified accuracy.

Note that by dropping the rank-1 constraint of the original problem, and

employing only the symmetric positive semidefinite constraint, Semidefinite Re-

laxation causes an increase in problem dimensionality (from n to n2) . Generally,

it is possible that X∗ 6= x∗x∗T , where X∗ stands for the solution of the relaxed

problem and x∗ represents the solution of the original problem (2.1) (−x∗ is also

a solution of (2.1)). Hence, some special technique is required for converting the

solution of the relaxed problem to a proper solution of the original problem.

A randomization method has been proposed in [8], [9] and revised in [4],

for the conversion of the SD relaxation solution to an approximate Boolean QP

solution. Here, in the implementation of the SDR-ML detector, we use the above

method.

The Boolean QP problem can be rewritten as:

max
xi

2=1,i∈{1,..,n}

n∑
i=1

n∑
j=1

xixjQij (2.4)

.

For the SD relaxation problem (2.3), we consider the Cholesky decomposition

VTV = X, V = [v1, ...,vn]. By replacing X = VTV problem (2.3) can be
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equivalently written as

max
||vi||2=1,i∈{1,..,n}

n∑
i=1

n∑
j=1

vT
i vjQij. (2.5)

Let V∗ = [ v∗1, ...,v
∗
n ] be the Cholesky decomposition of X∗. Thus V∗ is the

solution of problem (2.5). Notice that since the problem’s dimensionality has

been increased, the scalar product xixj in (2.4) is relaxed to the inner product

vivj in (2.5). Hence, it is possible to approximate x∗i using v∗i . A randomization

method is used for this reason. A description of its steps follows.

1. Generate an n× 1 random vector u with elements uniformly distributed in

[−1, 1].

2. For i = 1, ..., n, if v∗Ti u ≥ 0 set xi = 1, otherwise set xi = −1.

In order to get a better approximation, the randomization is iterated for a

number of times Mrand [4], and the randomization result which attains the largest

objective value is chosen as the preferable approximate solution. In many cases,

obtaining a good approximation requires a relatively small number of iterations

(In synchronous CDMA multiuser detection Mrand = 10 to 20 [4]). The compu-

tational complexity of the above process is O(n2Mrand).

The final step for the application of SD relaxation algorithm to the the ML

detection problem is to reformulate the ML detection problem in (1.4) in order

to be in the same form as the Boolean QP problem (2.1). For this reason, let

c ∈ {−1, 1} be a scalar with value −1 or 1. Noticing that cs ∈ {−1, 1}M for any
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s ∈ {−1, 1}M , the ML detection problem can be reformulated as:

max
s∈{−1,1}M

J(s) ≡ max
s∈{−1,1}M ,c∈{−1,1}

J(cs) (2.6a)

= max
s∈{−1,1}M ,c∈{−1,1}

csTHT y + (csTHT y)T − sTHTHs (2.6b)

= max
s∈{−1,1}M ,c∈{−1,1}

[
sT c

]


−HTH HTy

(HTy)T 0







s

c


 (2.6c)

It is obvious that (2.6c) is an instance of the Boolean QP problem in (2.1), with

n = M + 1, x = [sT c]T , and

Q =



−HTH HTy

(HTy)T 0


 (2.7)

Denote the solution of (2.6c) as (s∗, c∗) and the ML estimate as ŝml . ŝml achieves

the same maximum objective value with (s∗, c∗) in (2.6a). Hence we can write

ŝml = c∗s∗. (2.8)

We see that for solving (2.6c) we can use the SD relaxation algorithm described

above, and then we can use (2.8) to find an approximate ML estimate. The

computational complexity of the SD relaxation algorithm for the ML detection

problem (1.4) is O((M +1)3.5) ' O(M3.5), assuming that the computational cost

of the randomization procedure is a negligible part of the overall cost.
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Table 2.1: The Semidefinite Relaxation Algorithm

1. Set n = M + 1 and

Q =



−HTH HTy

(HTy)T 0




2. Solve the semidefinite programming problem

X∗ = arg max
Xº0, Xii=1 ∀i

Trace(XQ)

3. Compute the Cholesky factorization X∗ = V∗TV∗.

4. Randomization procedure:

Let Mrand be the number of randomizations

for i = 1, ...Mrand

• Randomly generate a normally distributed vector ui. The i-th can-

didate solution is computed by x̃i = sign(V∗T ui

||ui|| )

end

Compute

j = arg max
i=1,...,Mrand

x̃T
i Qx̃i.

x̂ = x̃j is the approximate solution for x∗

5. Take ŝSDR = x̂M+1[x̂1, ..., x̂M ] as the approximate ML detection problem

solution
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2.2 Sphere Decoder

The Sphere Decoding (SD) Algorithm, first introduced in [10], has been applied

to lattice decoding [11], and multiple antenna systems [12], where it is used to

compute the quasi-Maximum Likelihood symbol-vector estimate with a moderate

computational complexity. It has also been proposed for the Multiuser Detection

problem in the Synchronous CDMA system [13]. In this section we give a detailed

description of the SD steps and we briefly summarize the results of particular

studies on its computational complexity.

2.2.1 ML Decoding Using the Sphere Decoder

The SD algorithm is useful for the detection of transmit vectors consisting of

integer symbols. In the case of system (1.1), in order to convert the transmit

vector (comprised of symbols with values -1 or +1) to a vector with 1 or 0

elements, we add to both sides the quantity He, where e is an M × 1 vector with

all its components 1, and we divide the result by 2. Hence we obtain a system

with 0 or 1 transmit elements and the SD can be straightly applied. The noise

variance of the new system is σ2

4
. For simplicity we keep the same symbols for

the vectors, matrices and the noise variance of the new system, as they are in the

original system. The maximum likelihood solution for the above problem as we

have seen is

ŝml = arg min
s∈LM

||y−Hs||2 (2.9)
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where L is the set {0, 1}. The ML solution sml can be approximated by examining

only the possible values of s for which ||y−Hs||2 is small, and rejecting the values

for which the above metric is large.

We observe that the distance ||y−Hs||2 can be rewritten as

||y−Hs||2 = (s− ŝ)THTH(s− ŝ) + yT (I−H(HTH)−1HT )y (2.10)

where ŝ = (HTH)−1HTy is the unconstrained least square solution of s (the

decorrelator’s output). Hence (2.9) becomes

ŝml = arg min
s∈LM

||y−Hs||2 = arg min
s∈LM

(s− ŝ)THTH(s− ŝ) (2.11)

We denote w = Hs, ρ = s − ŝ and Ω = {w = Hs, s ∈ LM}. Sphere Decoder

solves the equivalent problem

min
w∈Ω

||y−w||2 = min
w∈Ω

(y−w)T (y−w) = min
s∈LM

(s− ŝ)THTH(s− ŝ) (2.12)

with the search sphere centered at the received point in the coordinate system

defined by w. This sphere is transformed into an ellipsoid centered at the origin

of the axes if we consider the coordinate system defined by the translated vector

ρ. It is clear from (2.12) that the sphere decoder may be used to obtain the

ML estimate ŝml. We have seen in the first chapter that solving (2.12) requires

exhaustive search over all the possible values of s. The possible values of s can

be represented as points in an n-dimensional lattice. The Sphere Decoder avoids

the exhaustive search by including in the search only the points which lie inside

the search sphere, i.e. satisfy the inequality
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(s− ŝ)THTH(s− ŝ) ≤ C (2.13)

Consider the Gram matrix G = HTH and compute its Cholesky factorization

UTU = G. U is an upper triangular matrix with positive diagonal elements. Let,

also, uij denote the component of U located at its i-th row and j-th column. Then

(2.13) can be reformulated as

(s− ŝ)TUTU(s− ŝ)

=
M∑
i=1

u2
ii

[
si − ŝi +

M∑
j=i+1

uij

uii

(sj − ŝj)

]2

≤ C.

(2.14)

Every term of the above sum is greater than or equal to zero. The Sphere Decoder

computes bounds on each component of s, sn n = M, ..., 1.

The algorithm starts with i = M , and excluding from the sum in (2.14) the

terms i = 1, ..., M − 1, we have

u2
MM(sM − ŝM)2 ≤ C

and since every component of s belongs to an integer signal constellation, we

obtain

dŝM −
√

C

uMM

e ≤ sM ≤ bŝM +

√
C

uMM

c. (2.15)

Where the functiondxe is the ceiling function which finds the smallest integer

c ≥ x, and b.c is the floor function which finds the largest integer c ≤ x. Then,

the SD chooses a candidate value for sM which falls inside the bounds in (2.15).

Continuing, in order for the algorithm to compute the bounds for sM−1, it takes
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into account only the effect of the chosen value for sM and excludes from the sum

in (2.14) the terms i = 1, ...,M − 2, leading to the inequality

u2
M−1,M−1

[
sM−1 − ŝM−1 +

uM−1,M

UMM

(sM − ŝM)

]2

+u2
MM(sM − ŝM)2 ≤ C

(2.16)

Thus the corresponding range is

⌈
ŝM−1 −

√
C − u2

MM(sM − ŝM)2

uM−1,M−1

− uM−1,M

uMM

(sM − ŝM)

⌉

≤ sM−1 ≤
⌊
ŝM−1 +

√
C − u2

MM(sM − ŝM)2

uM−1,M−1

− uM−1,M

uMM

(sM − ŝM)

⌋
(2.17)

The SD selects a candidate value for sM−1 within the upper and lower bounds

in (2.17), and working backwards computes successively the bounds for sM−2, ..., s1.

For the ith component of s the range is



− 1

uii

√√√√C −
M∑

l=i+1

u2
ll

(
sl − ŝl +

M∑

j=l+1

ulj

ull

(sj − ŝj)

)2

+ ŝi −
M∑

j=i+1

uij

uii

(sj − ŝj)




≤ si ≤
 1

uii

√√√√C −
M∑

l=i+1

u2
ll

(
sl − ŝl +

M∑

j=l+1

ulj

ull

(sj − ŝj)

)2

+

ŝi −
M∑

j=i+1

uij

uii

(sj − ŝj)

⌋

(2.18)

The following auxiliary variables can be used for computing the bound recur-

sively
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Si = Si(si+1 − ŝi+1, . . . , sM − ŝM) = ŝi −
M∑

l=i+1

uil

uii

(sl − ŝl)

Ti−1 = Ti−1(si − ŝi, . . . , sM − ŝM) = C −
M∑

l=1

u2
ll

(
sl − ŝl +

M∑

j=l+1

ulj

ull

(sj − ŝj)

)2

= Ti − u2
ii(Si − si)

2.

(2.19)

During its execution, the SD may find that no possible value for some com-

ponent sm lies within its corresponding range. In this case the algorithm goes

back to the previous component sm+1 and changes its value, choosing another

constellation point between the upper and lower bounds for sm+1. If there is no

other possible value for sm+1, the SD changes the value of sm+2 and the algorithm

proceeds in the same way until a new candidate solution is found (or until it is

detected that no point lies inside the sphere).

If the algorithm reaches s1 and selects a candidate value for it within its

corresponding range, we have a new candidate solution for the vector s. In the

case that the square distance of this candidate solution from the center of the

sphere is smaller than the search radius, the algorithm updates its searching

radius by this distance which is given by

d̂2 = C − T1 + uii
2(S1 − s1)

2 (2.20)

Then the algorithm repeats the search but this time with this smaller radius in

order to find any closer candidate point. Therefore, the final solution of the SD

is the point inside the sphere having the smallest distance from the center.
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In the case, finally, that no candidate value is found inside the whole search

sphere an erasure on the detected vector is declared or the algorithm starts over

again with larger initial radius. A summary of the sphere decoder steps is given

in Table (2.2).
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Table 2.2: The Sphere Decoder algorithm

Input C, ŝ,G = HTH,U = chol(G), qi,i = u2
ii, qi, j =

uij

uii

1. Set d̂2 = C, TM = C, Sk = ŝk, k = 1, . . .M

2. Set i = M

3. Li = b
√

Ti/u2
ii + Sic, si = dSi −

√
Ti/u2

iie − 1

4. si = si + 1

if si > Li goto 5

else goto 6

5. if i = M Output x̂, d̂2

else i=i+1 goto 4

6. if i > 1

ξi = si − ŝi, Ti−1 = Ti − u2
ii(Si − si)

2

Si−1 = ŝi−1 −
∑M

j=i qi−1,jξj

i = i + 1 goto 3

else set d̂2 = TM − T1 + q1,1(S1 − s1) goto 7

7. if (d̂2 < d2)

set x̂k = sk, k = 1, . . . M , d2 = d̂2, TM = d̂2 goto 2

else goto 4
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2.2.2 Sphere Decoder’s Complexity

The performance of the algorithm depends on the value of the initial search radius

√
C. The initial search sphere should be large enough, to ensure that it contains

the solution. However, if the initial radius is too large, the search becomes time-

consuming. In [10] it is shown that the number of arithmetic operations is

O
(

M2 ×
(

1 +
M − 1

4dC

)4dC
)

(2.21)

where d−1 is a lower bound for the eigenvalues of the positive definite Gram

matrix G = UTU.

Moreover in [12], it is noted that, adjusting the initial radius to C = d−1, the

sphere decoder’s complexity can be approximated by O(M6), .

In [14] Hassibi and Vikalo propose a formula for choosing C

C = αMσ2 (2.22)

where α is such that the quantity

∫ aM/2

0

x(M/2−1)

Γ(M/2)
e−xdx (2.23)

which is the probability of finding at least one point inside the sphere, is close

enough to 1 (say 0.99). The same authors have also given a closed form for

the sphere decoder’s average computational complexity, which has been used to

compute the SD complexity over a wide range of SNR and of M. In [15] the

results of this study are summarized to the fact that, for relatively high SNRs,
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the sphere decoder’s complexity (as a function of M) approaches cubic when the

transmit signal constellation is such that the data rate is smaller than the capacity

of the relevant multi-antenna channel. It is also found that the complexity is a

decreasing function of SNR, and it is also roughly cubic when the data rate can

be supported by the channel.

2.3 Probabilistic Data Association Algorithm

The Probabilistic Data Association filter was originally proposed as a highly

successful approach to target tracking in the case that the measurements are

unlabeled and may be spurious. Recently, it has been re-introduced for multiuser

decoding in synchronous CDMA [16] and for multiple antenna systems [17]. It

is based on a repeated conversion of a multimodal Gaussian mixture probability

structure to a single Gaussian with matched mean and covariance. In this section

we present the basic steps of the PDA algorithm and describe certain modification

which improve its complexity. Our description of the algorithm is based on that

in [16].

To apply the PDA algorithm we must construct a system with a positive

definite (PD) and symmetric channel matrix. So in system (1.1) if the mixing

matrix is not symmetric and PD, but is of full rank, we multiply both sides of

(1.1) with the transpose of H and we obtain

z = Gs + v (2.24)
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with G = HTH, z = HTy and v = HTn. Passing z through a decorrelator (i.e.,

multiplying it from the left by G−1), system (2.24) becomes

z̃ = G−1z = siei +
∑

j 6=i

sjej + ṽ (2.25)

where ṽ = G−1v, and σ2G−1 is the covariance matrix of ṽ. The variable si

represents the i-th element of s, and ei is an M×1 vector with its i-th component

set to 1 and the rest of its entries set to 0.

In (2.25), the transmit components si, i = 1, ..., M are considered as binary

random variables. For each element of s, Pb(i) denotes the probability of si to

be 1 and 1− Pb(i) the probability for the same symbol to be -1. The PDA algo-

rithm decides for the values of each data component , based on the corresponding

probability. This probability is given by Pb(i) = p(si = 1|ỹ, {Pb(j)}j 6= i). The

computational cost of computing directly the a posteriori probability is exponen-

tial. To circumvent this, the PDA considers as effective noise, for each component

of the data vector, the noise plus the interference random variable :

Ni =
∑

j 6=i

sjej + ṽ, (2.26)

on which the ”Gaussian Forcing” idea is applied: that is, it is assumed that Ni is

an approximately Gaussian random variable (each component of which depends

on the values of the probabilities Pb(j), i 6= j) with mean

E[Ni] =
∑

j 6=i

ej(2Pb(j)− 1), (2.27)
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and covariance

Cov[Ni] =
∑

j 6=i

[4Pb(j)(1− Pb(j))eje
T
j ] + σ2G−1 (2.28)

Letting

θi =
∑

j 6=i

ej(2Pb(j)− 1)− z̃

Ωi =
∑

j 6=i

[4Pb(j)(1− Pb(j))eje
T
j ] + σ2G−1

(2.29)

The likelihood ratio for the i-th component of s is computed by

Pb(i)

1− Pb(i)
= exp

{−2θT
i Ω−1

i ei

}
(2.30)

The PDA algorithm consists of the following steps:

1. Sort the system (2.24) according to the user ordering criterion proposed in

the decision feedback detector in [18, Theorem 1].

2. ∀ i, initialize the probabilities as Pb(i) = 0.5. Set the stage counter k = 1.

3. initialize the symbol counter i = 1

4. For symbol i, based on the current values of Pb(j)(j 6= i) calculate θi,Ω
−1
i

and compute the likelihood ratio via

Pb(i)

1− Pb(i)
= exp

{−2θT
i Ω−1

i ei

}
(2.31)

5. If i < M , increase i by 1 and go to step 4

6. if ∀i, Pb(i) has converged, go to step 7. Otherwise increase k by 1 and

return to step 3.
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7. ∀i, make a decision on the si via

si =

{
1, Pb(i) ≥ 0.5

−1, Pb(i) < 0.5

(2.32)

For further improving the complexity of the PDA algorithm, some modifi-

cations have been proposed in [16]. Firstly, the computation of the probability

Pb(i) requires the calculation of the inverse Ω−1
i . This leads to a computational

complexity of O(M4) for each PDA stage. To reduce the computational cost of

calculating the inverse the following variables are used :

θ =
∑

j

ej(2Pb(j)− 1)− z̃ = θi + ei((2Pb(i)− 1)

Ω =
∑

j

[4Pb(j)(1− Pb(j))eje
T
j ] + σ2G−1

= Ωi + 4Pb(i)(1− Pb(i))eie
T
i

(2.33)

Then, by the Shermann-Morrison-Woodbury formula [16],[19] we have

θi = θ − ei(2Pb(i)− 1)

Ω−1
i = Ω−1 +

4Pb(i)(1− Pb(i))Ω
−1eie

T
i Ω−1

1− 4Pb(i)(1− Pb(i))eiΩ
−1
i ei

(2.34)

θ = θi + ei(2Pb(i)− 1)

Ω−1 = Ω−1
i − 4Pb(i)(1− Pb(i))Ω

−1
i eie

T
i Ω−1

i

1 + 4Pb(i)(1− Pb(i))eT
i Ω−1

i ei

(2.35)

So, step 4 of the PDA algorithm is executed in three substeps as follows:

4.a. Calculate θi and Ω−1
i using (2.34).
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4.b. Obtain Pb(i) using (2.41).

4.c. update θ and Ω−1 according to (2.35) by using the new Pb(i).

As a consequence, the computational cost of step 4 is reduced to O(M2) and

the overall complexity of each PDA stage to O(M3).

In addition, the computational cost of PDA algorithm can be further reduced

using successive cancelation [16]. After each stage of the PDA algorithm, a

significant number of symbols may have converged and there is no reason to

continue the execution of the PDA procedure for them. So at the end of the k-th

stage, the following set is defined

Pb(i) =∈ [0, ε] ∪ [1− ε] ∀i ∈ D. (2.36)

For every i ∈ D the algorithm decides for the corresponding transmit components

as follows:

si = sign(Pb(i)− 0.5) ∀i ∈ D (2.37)

with ε to be a small positive number. D is the complement of D. Canceling the

influence of the converged symbols yields the following decorrelated system for

the non-converged symbols

G−1

DD
zD −G−1

DD
GDDsD = sD + ṽD (2.38)

Where GDD stands for the matrix which consists of only the columns and rows

of G which correspond to symbols in D. Similarly, the rest of the vectors and

matrices of (2.38) have the respective meanings. So, for the k + 1 PDA stage
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we update the system for which PDA algorithm is performed, by the reduced

dimensionality system (2.38).

2.4 Hybrid PDA-SD Algorithm

As we have seen so far, the PDA is an algorithm for obtaining a solution with low

computational complexity (cubic for every level of SNR). Moreover, the sphere

decoder reduces significantly the computational cost of solving ILS relative to

exhaustive search, while achieving a probability of error very close to the opti-

mal solution, with a good choice of the initial radius. Despite the very significant

complexity improvement that it affords over exhaustive search, SD complexity re-

mains relatively high for large values of M and at low and moderate SNRs. In this

section we propose a hybrid algorithm which runs a one-stage PDA procedure,

proceeds with the interference cancelation idea introduced in [16] (to improve the

computational complexity of the PDA algorithm), and then applies the sphere

decoder in the reduced dimensionality system which appears after the cancelation

procedure. Computer simulations which are presented in Chapter 3, show that

this algorithm has BER performance close to that of the sphere decoder for a

wide range of SNRs, and significantly reduced computational cost for relatively

high values of M.
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2.4.1 The Algorithm

The basic idea of this algorithm is to make decisions for some of the symbols of s

using a stage of the PDA detector, which is a low-complexity method, and after

this to apply the Sphere Decoder only for the symbols for which the first stage

has not already decided.Assuming the case that the mixing matrix in (1.1) is of

full rank , we multiply (1.1) from the left with HT to obtain a system model for

the PDA detector

z = Gs + v. (2.39)

Matrix G is then symmetric positive definite by construction. We then apply

one stage of the PDA detector for the system (2.39) and we obtain a vector of

probabilities Pb for all symbols. We denote D to be the symbols that satisfy

Pb(i) ∈ [0, ε] ∪ [1− ε] ∀i ∈ D (2.40)

with ε to be a small non-negative number properly selected. We also denote D

to be the complementary set of D. We make decisions for the symbols of D

si = sign(Pb(i)− 0.5) ∀i ∈ D (2.41)

We define GDD to be the matrix that only contains the rows and the columns of

G corresponding to the symbols of D and yD, vD to be the received and noise

vectors respectively which contain only the entries corresponding to the above

symbols. We then compute the effect of the symbols in D to the elements of yD.

c = GDDsD (2.42)
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We define yc = y D − c as the received vector which corresponds to the symbols

of D without the effect of the rest of the symbols. The resulting subsystem can

be written as

yc = GDDsD + vD (2.43)

Assuming perfect decisions (and subsequent cancelation of the effects of the sym-

bols in D) the noise vector in (2.43) is colored Gaussian with zero mean and

covariance matrix σ2GDD. We compute the Cholesky factor of GDD. Let

GDD = LT
DD

LDD. (2.44)

We define

ΨDD = (LT
DD

)−1. (2.45)

We multiply system (1.53) from the left with ΨDD and we obtain the system

r = ΨDDyc = ΛsD + w (2.46)

The noise vector w is white Gaussian with covariance matrix σ2I. Now, we apply

the Sphere Decoder to the subsystem (2.46). Define K as the number of the

elements for which the PDA stage has not decided. The initial radius for the

Sphere Decoder Stage of the Algorithm is set to

C = aKσ2 (2.47)

with a such that
∫ aK/2

0

x(K/2−1)

Γ(K/2)
e−xdx = 0.99 (2.48)

The steps of the proposed combination algorithm are summarized in Table (2.3)
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2.4.2 Threshold Parameter-Computational Complexity

The Threshold ε is an important parameter for the hybrid algorithm. If ε is

large, the algorithm may take a wrong decision for an element in the PDA stage.

This has destructive results, because the Sphere Decoder cannot then estimate

correctly the elements of D (successive cancelation is based on wrongly detected

elements of D). On the other hand ε should not be very small, so that only a

moderate number of elements will be passed to the computationally expensive

Sphere Decoder. As we will see in the next chapter the parameter ε should be

increased with σ2 (decreased with the SNR). We will also provide means of a

suitable ε in the case of a Multiple Antenna System.

As indicated by simulations for the V-BLAST architecture, the computational

cost of the PDA stage of the above algorithm dominates the computational com-

plexity of the overall hybrid algorithm for M up to 50. In fact the cost of the

Sphere Decoder part is very small compared to the cost of the PDA part. Hence,

the overall complexity of the algorithm for these values of M is roughly cubic.
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Table 2.3: Sphere decoder with PDA first stage

Input H,y,σ2, ε

1. Multiply H,y from the left with HT, denote G = HTH

2. Order system according to [18, theorem 1]. Run one stage of the PDA

procedure (steps 2-5 of the PDA procedure described in [16])

3. Denote by D the set of elements for which we have made a decision via

si =

{ 1 if Pb(i) ≥ 1− ε

−1 if Pb(i) ≤ ε

and D̄ as its complement

4. Create vectors yD̄, sD, sD̄ and matrices GDD, GD̄D, as in (2.42),(2.43)

5. Compute yc = yD̄ −GD̄DsD

6. Compute L = chol(GDD)

7. Compute r = (LT )−1yc, Λ = (LT )−1GDD

8. Run the Sphere decoder with inputs r,Λ and initial radius chosen so

that the probability of finding at least one point inside the sphere is 0.99

(cf (2.48))
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Chapter 3

MIMO models - Simulation

results

In the present chapter we describe certain MIMO communication models and

study the performance of SDR, SD, PDA and hybrid PDA-SD applied to them,

using computer simulation examples. The models which we study are the Syn-

chronous CDMA system model and the multiple Antenna V-BLAST system

model .

3.1 Synchronous CDMA

3.1.1 System Model

In the synchronous Code Division Multiple Access (CDMA) system, symbols

directed to several users are transmitted simultaneously from a base station to
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the users using proper signature sequences. Consider the synchronous CDMA

system depicted in figure (3.1). The amplitude (the square-root of the received

signal energy) for the k−th user is denoted by akk, sk(t) stands for the k−th

user’s signature waveform and w(t) is a white Gaussian stochastic process. T

denotes the symbol duration.

In the receiver, the baseband signal y(t) of the i−th symbol period is given

by

y(t) =
K∑

k=1

bk(i)akksk(t− iT ) + w(t) t ∈ [iT, iT + T ] (3.1)

where bk(i) is the bit which corresponds to the k-th user. We also assume that

each signature waveform has unit (normalized) energy.

∫ T

0

s2
k(τ)dτ = 1 (3.2)

The output of the k−th user matched filter can be represented by

yk =

∫ T

0

y(τ)sk(τ)dτ (3.3)

So, using vector notation, the output of the symbol matched filter bank, for

the i−th symbol period can be written as

y = RAb + n. (3.4)

where A is the diagonal matrix whose k-th diagonal element is equal to akk, R is
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the K ×K cross-correlation matrix each entry of which is given by

rkj =

∫ T

0

sk(τ)sj(τ)dτ, k = 1, ..., K, ; j = 1, ..., K, (3.5)

and n denotes a noise Gaussian vector with zero mean and covariance σ2R. The

vector of bits transmitted by the K users is denoted by b.

In Direct Sequence (DS) CDMA systems, the user signature waveforms are

constructed by delayed versions of particular signature waveform, called chip, and

a corresponding binary signature sequence. So the signature waveform is given

by

sk(t) =
N∑

k=1

ckiψ(t− (i− 1)Tc) (3.6)

where N is called the spreading factor [1] of the system, ψ(t) represents the

chip waveform, and cki denotes the i−th element of the signature sequence. We

also assume that the binary signature sequence and the chip waveform are both

normalized, so

N∑
i=1

c2
ki = 1

∫ Tc

0

ψ(t)2dt = 1

(3.7)

In fig. (3.2) we illustrate the DS-CDMA receiver with the chip matched filter.

The n−th sample of the chip matched filter output for the i−th symbol period

is given by

x(iT + nTc) =
K∑

k=1

cknakkbk(i) + wn(i) (3.8)

where wn(i) is a white Gaussian noise variable. Letting ck = [ck1ck2....ckN ] and
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x = [x1x2...xN ], the output of the k−th user matched filter can be written as

yk = ckx
T , (3.9)

and using vector notation the outputs of the K matched filters can be represented

by

y(i) = RAb + n (3.10)

where n is Gaussian noise vector with zero mean and covariance matrix σ2R.

Now, multiplying equation (3.10) from the left by the inverse of the cholesky

factor LTL = R, we obtain the system

ỹ = (LT )−1y = (LT )−1RAb + (LT )−1n = (LT )−1RAb + w (3.11)

where w is a white Gaussian noise vector with zero mean. So, we can easily

observe that system (3.11) is a case of the model (1.1) with M = N = K.
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3.1.2 DS-CDMA Simulation Results

In this subsection we run computer simulations in order to compare the perfor-

mance of Semidefinite Relaxation, Sphere Decoder and Probabilistic Data Asso-

ciation Algorithms. For solving the semidefinite program in the SDR algorithm

we use the package SDPPACK [20]. Our implementation of PDA does not incor-

porate the bit-flip stage [16].

Example 1: In the first example, we show the probability of error perfor-

mance versus SNR, for algorithms SDR, PDA and SD. We use 31-length Gold

codes as signature sequences. The matrix A changes for every group of 100 trans-

missions. The user signal amplitudes are randomly and independently generated

by aii ∼ N(4.5, 4),∀i and are limited within the range [2, 7]. The number of ran-

domizations for SDR is set to 20. The initial radius of SD is chosen so that the

probability of finding at least one point inside the sphere is 0.99. For the PDA

algorithm, ε = 10−2/4SNR. Figure (3.3) shows the results of this example in

which we use dynamic Monte-Carlo simulation, that is the simulation is running

for each value of SNR until the number of errors which occur reaches 100, and a

minimum number of 15000 runs.

Example 2: In the second example we compare the computational efficiency

of Sphere Decoder and PDA algorithm. We use random signature sequences with

spreading factor Q = 1.2K. We also set the SNR to 12 dB. The number of users

varies from 2 to 50. Figure (3.4) shows the results of the simulation. We ob-

serve that the PDA algorithm is significantly faster than the sphere decoder for
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Figure 3.3: Example 1. Probability of error versus SNR for DS-CDMA with 29

users, 31- length Gold signatures sequences

relatively large number of users. The number of Monte-Carlo runs is 1000. (Re-

mark: We have not measured the computational cost of SDR becaused

we used SDPPACK for its implementation).



3.1 Synchronous CDMA 40

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of users

F
lo

at
in

g 
P

oi
nt

 O
pe

ra
tio

ns

SD
PDA

Figure 3.4: Example 2. Average computational cost versus K, random signature

sequences, spreading factor=1.2K, SNR = 12db
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3.2 V-Blast Multiple Antenna Architecture

V-BLAST [2] is a multiple antenna architecture which does not use spatial cod-

ing (e.g., as in space-time codes) but relies instead on temporal coding of the

individual symbol streams. This way, high spectral efficiencies are attainable via

spatial multiplexing; hence the interest in V-BLAST .

3.2.1 System Model

The V-BLAST architecture is a symbol synchronized multiple antenna system

with nT transmit and nR receive antennas, where nT ≤ nR. The input stream of

bits is mapped to a particular constellation and the resulting symbol stream is

demultiplexed into nT substreams. The transmissions are organized into bursts of

L symbols. It is assumed that the channel is quasi-stationary, which means that

its variation is negligible over the L symbol periods comprising a burst, but it

varies randomly from one burst to the next. The channel is accurately estimated

for every burst at the receiver, through the use of training bits but it is uknown

to the transmitter. From the discrete-time baseband-equivalent viewpoint the

system can be represented as:

r =

√
ρ

nT

Hs + v = As + v (3.12)

where r = [r1, r2, . . . , rnR
]T , s = [s1, s2, . . . , snT

]T are the receive and the transmit

vector, respectively, H is a generally complex nR×nT channel matrix with entries

hij and v is a Gaussian nR×1 noise vector with zero mean and covariance matrix
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2σ2I. The normalized amplitude
√

ρ
nT

ensures that the SNR is constant for a

given noise variance, independently of nT . Assuming rich scattering, the elements

of H are considered i.i.d. complex Gaussian variables with zero mean and with

unit variance of the real and imaginary parts. We assume that the transmit

symbols are taken from a complex constellation with binary real and imaginary

parts (4-QAM). In order to transform the above model to the analogous real

model we denote

s̃ = [<(sT ) =(sT )]T (3.13)

r̃ = [<{rT} ={rT}]T (3.14)

H̃ =



<{H} − ={H}

={H} <{H}


 (3.15)

ṽ = [<{vT} ={vT}]T (3.16)

Using the above vectors and matrices we obtain the real-valued vector equation

r̃ =

√
ρ

nT

H̃s̃ + ṽ (3.17)

We can easily observe that system (3.17) is a case of (1.1) with N = 2nR and

M = 2nT .

3.2.2 Simulation Results

In the present section we run several simulation examples to compare the decoding

algorithms presented in the previous chapter over the described multiple antenna

model. For the computer simulations presented below, the burst length is set
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to 100 symbol durations, the power ρ is set to 8 (the transmitted symbols have

unit average energy). The initial sphere radius of the Sphere Decoder is adjusted

so that the probability of finding at least one point inside the sphere is 0.99.

If SD fails to find a point inside the sphere the initial radius is increased by 1.

This is repeated 5 times at most. The transmitted symbols are taken from the

4-QAM constellation. The SNR is calculated by SNR = 10log10
ρ
σ2 . For the PDA

algorithm we set the threshold number ε = 10−2/4SNR as in [16]. For the hybrid

PDA-SD algorithm we set ε = 10−p, p = 3.5(σ2)−1.55, limited by 0.45 ≥ ε ≥ 0.

The implementation of PDA does not incorporate the bit-flip stage [16]. For

the semidefinite programming part of the SDR algorithm we use the package

SDPPACK [20], and the number of randomizations is Mrand = 2 · 10nT

Example 1: In the first example we compare the probability of error (BER)

which is exhibited by the four algorithms under study, versus SNR. The number

of the receive and transmit antennas is considered to be 16 (nT = nR = 16). We

keep the value of ρ constant, changing the value of the noise variance σ2 from

3.6 to 0.25. For the present example we use dynamic Monte-Carlo simulation to

avoid useless Monte-Carlo iterations. For every value of SNR that it is used, the

simulation stops when both the number of errors has reached 150 and the number

of the simulated bursts has reached 5. The results of example 1 are presented in

figure (3.5).

We observe that the BER performance of SD and the hybrid PDA-SD al-

gorithm are very close for values of SNR up to 13.5 dB. Also observe that the
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Figure 3.5: Example 1. Probability of error comparison for 4-QAM with nT =

nR = 16.

performance of PDA is relatively poor for SNRs larger than 8.5 db.

Figure (3.6) presents the average number of elements of s̃ whose value is

decided from the PDA part of the combination algorithm, versus SNR. We see

that this number decreases with SNR in order to preserve the BER performance

of the algorithm close to the performance of SD algorithm. For SNRs larger than

13.5 db this number starts to increase but this has negative results for the BER

performance of the combination algorithm (the algorithm yields BER larger than

that of the SD).

Example 2: In the second example we present the average computational

cost (number of floating point operations) of the SD, PDA and the proposed

algorithm for decoding one transmit vector, versus the SNR. The system param-
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Figure 3.6: Example 1. Average number of transmit vector elements the value

of which is decided from the PDA stage of the proposed combination algorithm,

nT = 16

eters are the same as in the previous example. The results are shown in figure

(3.7). The number of monte-carlo iterations is 103. We observe that, for rela-

tively low SNRs, SD requires a much larger number of flops than the PDA, and

the proposed hybrid PDA-SD algorithm.

Example 3: In the third example we simulate the multiple-antenna model

using nT = nR = 8. The noise variance σ2 varies from 3.6 to 0.2. The rest of the

parameters of the model are set as in the first example. The results of example 3

are shown in figures (3.8) and (3.9). Again we have used dynamic Monte-Carlo

simulation.

Example 4: Here the average computational cost is presented for the SD,PDA
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Figure 3.7: Example 2. Average computational cost versus SNR, nT = nR = 16,

4-QAM

2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

SD
SD with PDA first stage
PDA
SDR

Figure 3.8: Example 3. Probability of error comparison for 4-QAM with nT =

nR = 8.
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Figure 3.9: Example 3. Average number of transmit vector elements the value

of which is decided from the PDA stage of the proposed combination algorithm,

nT = 8
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Figure 3.10: Example 4. Average computational cost versus SNR, nT = nR = 8,

4-QAM

and the proposed hybrid PDA-SD algorithm versus SNR, for the model simulated

in the previous example. Figure (3.10) shows the results of this computational

cost comparison. The number of Monte-Carlo runs is 103

Example 5: In this example the average computational costs of SD, PDA

and the hybrid PDA-SD are assessed versus the number of transmit antennas nT .

We adjust the SNR to 10 dB and nT = nR. As we see for nT = 25 the average

computational cost of the SD is about 30 times greater than that of the proposed

hybrid algorithm. The computational cost of the proposed algorithm is close to

that of the PDA algorithm which, is O(n3
T ). The number of Monte-Carlo runs is

103. The results are shown in figure (3.11).

Example 6: We repeat the above example setting the SNR equal to 11 dB.
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Figure 3.11: Example 5. Average computational cost versus nT , nT = nR, 4-

QAM, SNR = 10db

We also set nT = nR. The results are shown in figure (3.12). The combination

algorithm is, in this case, about 6.5 times faster than the Sphere Decoder for

nT = 25. Here the average computational cost of the SD is significantly reduced

in relation with its cost in the previous example. This occurs because the initial

starting radius is smaller for SNR = 11db than this for SNR = 10db.
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Figure 3.12: Example 6. Average computational cost versus nT , nT = nR, 4-

QAM, SNR = 11db
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Chapter 4

Conclusions

In this Thesis we compared four near-optimal decoding algorithms applied in

systems which employ the MIMO model (1.1). Using computer simulations, we

showed that in the synchronous CDMA case the Probabilistic Data Association

Algorithm is the most efficient algorithm between these studied, from the view

of computational efficiency. For multiple Antenna system, the Sphere Decoder is

the algorithm which exhibits the smallest bit error rate for most values of SNR.

The proposed hybrid PDA-SD algorithm has performance very close to that of SD

for a wide range of SNRs. For the other two algorithms (SDR, PDA), there are

scenarios wherein they exhibit relatively poor probability of error performance.

In addition, the proposed algorithm is significantly faster than SD at low and

moderate SNRs in the multiple antenna system we studied. For these values

of SNR, SD requires a large number of operations because the initial radius of

the search sphere is increased with the noise variance σ2. In fact the proposed
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algorithm has computational cost close to that of the PDA detector and exhibits

better BER performance than the PDA.

The comparison of the described algorithms could extend to more cases where

the MIMO model appears. These may be channels with memory, Linear Disper-

sion code systems [21], as well as cases that the transmit signals are taken from

a larger complex constellation like 16 or 64-QAM.

Moreover the idea of combining Probabilistic Data Association and the Sphere

Decoder can be extended to various size q-QAM constellations using one stage

of the PDA procedure [17] before running the real or , alternatively, the complex

version of SD [22].
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