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Introduction  
The real-time transmission of video over the Internet is one of the most demanding 

applications in terms of bandwidth and processing power. Yet, it is becoming an 

important building block of numerous applications, such as Internet television, video 

conferencing, distance learning, digital libraries, tele-presence and video-on-demand. 

The main requirements are enough bandwidth, minimum delay and small loss packet 

rate. However the Internet does not propose any mechanism for Quality of Service 

(QoS) guarantee. In the case of multicast video transmission the heterogeneity 

inherited in the Internet creates more problems is terms of bandwidth efficiency and 

service flexibility.  

The challenging QoS criteria are as follow: 

• Bandwidth: In order to receive a good quality video, in terms of frame rate 

and Signal to Noise ratio, a minimum bandwidth needs to be set. 

Unfortunately the Internet does not provide any means of bandwidth 

reservation, at least at its current stare. Furthermore, typical routers do no 

provide any congestion control and excessive traffic can lead to a congestion 

collapse, further reducing the quality of the receive video. 

• Delay: In order to keep up with the real time requirement of the transmitted 

video, a maximum end-to-end delay must be set and secured throughout the 

transmission of the video. This means that any packet send through the 

Internet must be received, processed and displayed in time or else it becomes 

useless. In that cause the playout process will be paused, and valuable 

information will be lost. Although the real time transmission o video requires 

a small and constant delay, Internet does not provide any mechanism to 

preserve the delay. In particular, in the case of excessive traffic, the delay 

could become highly variable. 

• Loss: Packet loss can become a major reason for the degradation of the video 

quality. Fortunately, due to the temporal redundancy of the images that make 

the video, there are various algorithms to minimize the effect of a relatively 

small amount to packet loss. Although real time video has a maximum packet 

loss requirement, Internet cannot provide any packet loss threshold guarantee. 

There are many video compression algorithms such as MPEG-2, H263 and H264 

(MPEG-4), who can achieve very good results due to the utilization of both temporal 
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and spatial redundancy in the video. Nevertheless MJPEG compression algorithm is 

chosen for our application. MJPEG compression algorithm compresses each frame 

independently of any other by taking advantage of the spatial redundancy of the 

frame.  Frames are then displayed in an orderly fashion at a certain frame rate thus 

creating the illusion of continuous video playback. MJPEG does not achieve as good 

results as the MPEG-2, the H263 or the H264 (MPEG-4). Nevertheless its 

computation complexity makes it preferable for our application. This choice is made 

more apparent by considering the qualities of the transmitted video. 

 

Our application’s main purpose is the transmission of surveillance video. There are 

two main qualities that distinguish the surveillance video from any generic video 

In surveillance video, there is usually little or no movement and the video is useful as 

long as it is acquired, transmitted and displayed with minimum delay. 

 

Because of the little movement present is surveillance video, successive frames tend 

to be very similar. This temporal redundancy property is used in order to conceal the 

errors created by the loss of packets during the transmission of the video. On the other 

hand, minimising the delay of the transmission makes more complex algorithms ill 

suited for our applications. More complex, yet more efficient compression algorithms, 

introduce a significant delay due to their computational complexity 

In addition, the lack of any guaranty about the available bandwidth between the server 

and the client may result in the loss of packets and therefore the loss of a frame. A 

special care must be taken so that the loss of a packet will not result in the lost of the 

frame, and that the variations of the available bandwidth will not cause a significant 

degradation of the receiving video quality.  
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Application’s objectives 

The objective of our application is two fold. First, we implemented a protocol for 

transmitting MJPEG video over packet-switched network such as the Internet and 

second, we implemented an error concealment algorithm in order to increase the 

quality of the received video, even in the cases of major packet loss.  

 

The transmission system consists of one server transmitting the video and one or more 

clients receiving the video. Our MJPEG video transmission algorithm is build over 

the UDP transport protocol. The UDP transport protocol in responsible for 

transmitting packets (datagrams). The server is responsible for placing the MJPEG 

video bitstream into fixed size packets and transmit the over the network. The client 

on the other side is responsible of putting the packets in the correct order, recreating 

the frame and displaying the video. 

 

Unfortunately, UDP protocol does not guarantee the correct arrival of the packets 

neither the correct ordering of them. Therefore, our application is responsible for 

estimating the missing packets and correctly reordering the packets. The estimatation 

of the missing packets is performed based on the temporal redundancy of the video. If 

a packet is loss, the corresponding packet from the previous frame is used to fill in the 

gap. The packet reordering is achieved by examining the header of each received 

packet and placing it to its corresponding position into a temporary buffer, until the 

final packet is received. 

 

Organization of the thesis 

In chapter 1, we present the JPEG still image compression standard. 

In chapter 2, we make a brief introduction to the protocols used in the Internet 

In chapter 3, we present our implementation  

In chapter 4, we give the experimental results of our algorithm 

In chapter 5, we describe the implementation system and discuss the conclusions and 

further improvement.  
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CHAPTER 1 

JPEG Compression Algorithm 
 

JPEG is the most widely used standard in image compression today. JPEG stands for 

Joint Photographic Experts Group and was developed by ISO and CCITT. JPEG can 

compress both grayscale and colored images in a lossless or a lossy way. 

 

1.1. Modes of operation 
The JPEG standard defines four modes of operation: 

I. Sequential encoding, where the image, in the case of grayscale images, or a 

component of the image, in the case of color image, are encoding in a single 

left-to-right, top-to-bottom scan. 

II. Progressive encoding, where the image is encoding in performed in multiple 

scans, intentioned  for applications where transmission in long, and the viewer 

prefers to watch the image build-up in multiple coarse-to-clear passes 

III. Lossless encoding, where the image encoded is guaranteed to be identical to 

the original image 

IV. Hierarchical encoding, where the image is encoding in different resolution, so 

that lower-resolution versions may be accessed without first having to 

decompress the image at its full resolution 

 

1.2. Compression 
The Sequential encoding, where the image is encoding from left to right and from top 

to bottom, the Progressive encoding where the image is encoding in multiple scans 

and the compressed image is build up, the lossless encoding where the encoded image 

is guaranteed to be the same as the original one and the Hierarchical encoding, where 

the image is encoding in multiple resolutions giving the option of decompressing it at 

a lower resolution. 

 The encoding procedure of a grayscale image is illustrate in figure 1.1 
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Figure 1-1 

     

1.2.1. DCT 

 The matrix representing the image is grouped into 8x8 blocks and shifted from 

unsigned integer with range [0, 2p – 1] to signed integers with range [-2p, 2p-1]. 

Those blocks are feed into the Forward Discrete Cosine Transform (FDCT).  

 The following equation describes the FDCT. 

 
7 7

0 0

1 (2 1)( , ) ( ) ( ) ( , )*cos cos
4 16x y

(2 1)
16

x u y vF u v C u C v f x y π π
= =

⎡ ⎤+ +
= ⎢ ⎥

⎣ ⎦
∑∑  

 

Where:  ( ), ( ) 1
2

C u C v =  for u,v=0 

 1  otherwise 

 

Each 8x8 block is transformed into a 64-point discrete signal as a function of the two 

spatial coordinates x and y. The DCT coefficient with zero frequency in both x and y 

is called the “DC coefficient” and the remaining 63 are called “AC coefficients”.  

 

1.2.2. Quantization 

The output of the DCT encoder is feed into a uniform quantizer in accordance with a 

64-element Quantization Table, which is defined by the application. In general 

Quantization is the process of dividing each DCT coefficient by its corresponding 

quantizer step and rounding it to the nearest integer, following the equation  

( , )( , )
( , )

Q F u vF u v IntegerRound
Q u v

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

After the quantization is the process of DC coefficient encoding and “zig-zag”.  In 

this step the DC coefficient, which is a measure of the average value of the 64 image 
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samples of the 8x8 block, is encoded as the deference from the previous DC 

coefficient, i.e.   

 

 

Figure 1-2 

 

This is done because of the high correlation of the DC coefficients between adjacent 

8x8 blocks and the fact that DC coefficients frequency usually contains a large 

portion of the image’s energy.  

The DCT coefficients are ordered in a “zig-zag” way as show in figure 1-3. This is 

done because it places the low-frequency coefficients (most likely to be non-zero) 

before high frequency coefficients, increasing the performance of the next step which 

is the entropy encoding 

 

 

Figure 1-3 
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1.2.3. Entropy Encoding 

The final step of the JPEG compression algorithm is the entropy encoding. There are 

two kinds of entropy encoding, the Huffman coding, and arithmetic coding.  In this 

process the “zig-zag” quantized DCT coefficients are converted into intermediate 

symbols, and those symbols are converted into a data stream and a way that the 

symbols no longer have externally identifiable boundaries. In the case of Huffman 

coding, our case, there is a need for one or more sets of Huffman code sets that are 

provided by the application.  Although arithmetic encoding produces 5-10 % better 

compression, its computational complexity makes it inappropriate for our case.  

 

1.2.4. Color Transformation 

The JPEG algorithm is capable of encoding images that use any type of color space. 

This is achieved because JPEG itself encodes each component in the color model 

separately, and is completely independent of any color-space model such as RGB, 

HIS or CMY. Yet the best results are obtained by input images in the 

luminance/chromance color space, such as YCbCr. The results are better because in 

the YCbCr color space most the visual information to which human eyes are most 

sensitive is found in the high-frequency gay-scale luminance component (Y) of the 

YCbCr color space. The other two components (Cb and Cr), contains color 

information to which the human eye is less sensitive and therefore they can be 

discarded.  

In the case of color images, our case, the image contains from 1 to 256 image 

components (bands), each one been a rectangular shaped array of samples, with each 

sample consisting of unsigned integers with 8 bit precision. 

In order to compress the color image, the color components must be downsampled are 

specific frequencies. 

 

 

1.2.5. Downsampling color components 

Although not specified in the JPEG standard, a downsampling of the color 

components must be address. When the uncompressed data is supplied in a 

conventional format, JPEG reduces the resolution of the chrominance channels by 

Downsampling or averaging together groups of pixels. The JPEG standard allows 

several different choices for the sampling frequencies of the downsampled channels. 
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Due to the large significance of the luminance component as discussed above, the 

luminance channel is left at full resolution i.e. 1:1 sampling. Generally, the two 

chrominance components are downsampled 2:1 horizontally and either 1:1 or 2:1 

vertically. As a result the chromance pixel covers the same area as either a 2x1 or a 

2x2 block of luminance pixels. JPEG refers to this process of downsampling as 2h1v 

and 2h2v, very often notated as 4:2:2 and 4:2:0 correspondingly.  In 4:2:2, sampling 

the two chrominance pictures (Cb and Cr) process half the resolution in the horizontal 

direction and the full resolution in the vertical direction, compared to the luminance 

(Y) channel. In 4:2:0, both chrominance channels process half their resolution in both 

directions. 
 

1.2.6. Encoding Order and Interleaving 

A practical image compression standard must address how systems will need to 

handle the data during the process of decompression. Many applications need to 

Pipeline the process of displaying or printing multiple-component images in parallel 

with the process of decompression. For many systems, this is only feasible if the 

components are interleaved together within the compressed data stream. To make the 

same interleaving machinery applicable to both DCT-based and predictive codecs, the 

JPEG proposal has defined the concept of “data unit.” A data unit is a sample in 

predictive codecs and an 8x8 block of samples in DCT-based codecs. The order in 

which compressed data units are placed in the compressed data stream is a 

generalization of raster-scan order. Generally, data units are ordered from left-to-right 

and top-to-bottom. (It is the responsibility of applications to define which edges of a 

source image are top, bottom, left and right.) If an image component is no-interleaved 

(i.e., compressed without being interleaved with other components), compressed data 

units are ordered in a pure raster scan. 

When two or more components are interleaved, each component Ci is partitioned into 

rectangular regions of Hi by Vi data units, as shown in the generalized example of 

Figure 8. Regions are ordered within a component from left-to-right and top-to-

bottom, and within a region, data units are ordered from left-to-right and top-to-

bottom. The JPEG proposal defines the term Minimum Coded Unit (MCU) to be the 

smallest group of interleaved data units. For the example shown, MCU1 consists of 

data units taken first from the top-left-most region of C1, followed by data units from 

the same region of C2, and likewise for C3 and C4. MCU2 continues the pattern as 
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shown. Thus, interleaved data is an ordered sequence of MCUs, and the number of 

data units contained in an MCU is determined by the number of components 

interleaved and their relative sampling factors. The maximum number of components 

which can be interleaved is 4 and the maximum number of data units in an MCU is 

10. The latter restriction is expressed as shown in Equation 6, where the summation is 

over the interleaved components: 
 

10i iH V× ≤∑   in interleave i∀

 

Because of this restriction, not every combination of 4 components which can be 

represented in noninterleaved order within a JPEG-compressed image is allowed to be 

interleaved. Also, note that the JPEG proposal allows some components to be 

interleaved and some to be noninterleaved within the same compressed image. 
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1.3. Decompression 
The decompression is the symmetric algorithm of the encoding. Figure 1-4 illustrates 

the step to decompress a JPEG image 

 

 

Figure 1-4 

 
Where the IDCT in performed according to eq. 1 

7 7

0 0

1 (2 1)( , ) ( ) ( ) ( , ) cos cos
4 16u v

(2 1)
16

x u yf x y C u C v F u v vπ π
= =

+ +
= ∑∑   eq. 1 

 

Where:  ( ), ( ) 1
2

C u C v =  for u,v=0 

 1  otherwise 

 

1.4. Baseline Encoding Example 
This section gives an example of Baseline compression and encoding of a single 8x8 

sample block. Note that a good deal of the operation of a complete JPEG Baseline 

encoder is omitted here, including creation of Interchange Format information 

(parameters, headers, quantization and Huffman tables), byte-stuffing, padding to 

byte-boundaries prior to a marker code, and other key operations. Nonetheless, this 

example should help to make concrete much of the foregoing explanation. 

Figure 1-5(a) is an 8x8 block of 8-bit samples.. The small variations from sample to 

sample indicate the predominance of low spatial frequencies. After subtracting 128 

from each sample for the required level-shift, the 8x8 block is input to the FDCT. 

Figure 1-5(b) shows (to one decimal place) the resulting DCT coefficients. Except for 

a few of the lowest frequency coefficients, the amplitudes are quite small. 
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Figure1-5 

 

 

 

    

 

 

1.5. Image, frame, and scan 
Compressed image data consists of only one image. An image contains only one 

frame in the cases of sequential and progressive coding processes; an image contains 

multiple frames for the hierarchical mode. A frame contains one or more scans. 
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Finally, a scan contains a complete encoding of one (non-interleaved) or more image 

components (interleaved).  

Related to the concepts of multiple-component interleave is the minimum coded unit 

(MCU). If the compressed image data is non-interleaved, the MCU is defined to be 

one data unit (8x8 block for DCT-based processes). If the compressed data is 

interleaved, the MCU contains one or more data units from each component.  

For example consider an image in Y, Cb, Cr format with 4:2:0 sampling as seen in 

Fig. 1.5. This image has three components. If the compressed data is interleaved, there 

would be only one scan, and the first and second MCU would be:  

 

0101131203022

0000111001001

CrCbYYYYMCU

CrCbYYYYMCU

=

=
 

 

Figure 1-6: Interleaved Components 

 

If the compressed data is non-interleaved, there would be three scans. The first scan 

would contain the coded luminance (Y), the second the coded Cb component and the 

last the Cr. For each scan the MCU is a data unit. 

The MCU’s in either case (interleaved, non-interleaved) are encode in raster scan 

order as seen in fig. 1-7. 

 

 

Figure 1-7: Coding order 
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1.6. The JFIF (JPEG File Interchange Format) 
 

1.6.1. The JPEG Bitstream 

The when the image is compressed it is transform into a bitstream.  

Each compressed image can be divided into group. The informations are encoded as 

shown in figure 1-8.  

 

 

 

Figure 1-8 
 

The markers shown in Figure 1.8 are defined as follows: 

SOI: Start of image marker – Marks the start of a compressed image represented in 

the interchange format or abbreviated format. 

EOI: End of image marker – Marks the end of a compressed image represented in the 

interchange format or abbreviated format. 

RSTm: Restart marker – A conditional marker which is placed between entropy-

coded segments only if restart is enabled. There are 8 unique restart markers (m = 0 - 

7) which repeat in sequence from 0 to 7, starting with zero for each scan, to provide a 

modulo 8 restart interval count. The encoder outputs the restart markers, intermixed 

with the entropy-coded data, at regular restart intervals of the source image data. 
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Restart markers can be identified without having to decode the compressed data to 

find them. Because they can be independently decoded, they have application-specific 

uses, such as parallel encoding or decoding, isolation of data corruptions, and semi-

random access of entropy-coded segments. 

 

The top level of figure 1.8 specifies that the non-hierarchical interchange format 

shall begin with an SOI marker, shall contain one frame, and shall end with an EOI 

marker. 

The second level of figure 1.8 specifies that a frame shall begin with a frame header 

and shall contain one or more scans. A frame header may be preceded by one or more 

table-specification or miscellaneous marker segments as described in the next section. 

In the table specification header are defined the quantization matrices. Up to 4 

matrices may be specified, each used to quantize one component. For sequential 

DCT-based and lossless processes each scan shall contain from one to four image 

components. If two to four components are contained within a scan, they shall be 

interleaved within the scan. 

The third level of figure 1.8 specifies that a scan shall begin with a scan header and 

shall contain one or more entropy coded data segments. Each scan header may be 

preceded by one or more table-specification or miscellaneous marker segments. If 

restart is not enabled, there shall be only one entropy-coded segment and no restart 

markers shall be present. If restart is enabled, the number of entropy-coded segments 

is defined by the size of the image and the defined restart interval. In this case, a 

restart marker shall follow each entropy-coded segment except the last one. 

The fourth level of Figure 1.8 specifies that each entropy-coded segment is 

comprised of a sequence of entropy coded MCUs. If restart is enabled and the restart 

interval is defined to be Ri, each entropy-coded segment except the last one shall 

contain Ri MCUs. The last one shall contain whatever number of MCUs completes 

the scan.  

The required table-specification data must be present at one or more of the allowed 

locations. 

Table 1 contains all the markers present in the JPEG File Interchange Format 
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Table 1 

1.6.2. Frame header 

The frame header which shall be present at the start of a frame specifies the source 

image characteristics (sample precision, dimensions), the components in the frame, 

and the sampling factors for each component, and specifies the destinations (see table 

specification syntax) from which the quantized tables to be used with each component 

are retrieved. 

 

1.6.3. Scan header 

The scan header which shall be present at the start of a scan specifies which 

component(s) are contained in the scan, specifies the destinations from which the 

entropy tables to be used with each component are retrieved. 
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If there is only one image component present in a scan, that component is, by 

definition, non-interleaved. If there is more than one image component present in a 

scan, the components present are, by definition, interleaved. 

 

1.6.4. Table-specification and miscellaneous marker segment syntax 

At the places indicated in Figure 1.9, any of the table-specification segments or 

miscellaneous marker segments specified may be present in any order and with no 

limit on the number of segments. 

If any table specification for a particular destination occurs in the compressed image 

data, it shall replace any previous table specified for this destination, and shall be used 

whenever this destination is specified in the remaining scans in the frame or 

subsequent images represented in the abbreviated format for compressed image data. 

If a table specification for a given destination occurs more than once in the 

compressed image data, each specification shall replace the previous specification. 

 

 

 

Figure 1-9: Table Specification or misc. Marker Segment 

 

• The Huffman table-specification segment defines a Huffman table to be used 

for entropy coding. 
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• The Arithmetic conditioning table-specification replaces the default 

arithmetic coding conditioning tables established by the SOI marker for 

arithmetic coding processes.  

• The Restart interval definition defines the restart interval. 

• The Comment segment allows for user comments. 

• The Application data are reserved for application use. Since these segments 

may be defined differently for different applications, they should be 

removed when the data are exchanged between application environments. 

The quantization table-specification segment defines the quantization matrices and is 

described analytically in the next section. 
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1.6.5. Quantization table-specification syntax 

Figure 1.10 specifies the marker segment which defines one or more quantization 

tables. 

 

Figure 1-10: Quantization table Specification 

 

The marker and parameters shown in Figure 1.10 are defined below.  

DQT: Define quantization table marker – Marks the beginning of quantization table-

specification parameters. 

Lq: Quantization table definition length – Specifies the length of all quantization 

table parameters shown in Figure 1.10. 

Pq: Quantization table element precision – Specifies the precision of the Qk values. 

Value 0 indicates 8-bit Qk values; value 1 indicates 16-bit Qk values. Pq shall be zero 

for 8 bit sample precision P. 

Tq: Quantization table destination identifier – Specifies one of four possible 

destinations at the decoder into which the quantization table shall be installed. 

Qk: Quantization table element – Specifies the kth element out of 64 elements, where 

k is the index in the zigzag ordering of the DCT coefficients. The quantization 

elements shall be specified in zig-zag scan order. 

The value n in figure 1.10 is the number of quantization tables specified in the DQT 

marker segment. 

Once a quantization table has been defined for a particular destination, it replaces the 

previous tables stored in that destination and shall be used, when referenced, in the 

remaining scans of the current image and in subsequent images represented in the 

abbreviated format for compressed image data. If a table has never been defined for a 

particular destination, then when this destination is specified in a frame header, the 

results are unpredictable. 

An 8-bit DCT-based process shall not use a 16-bit precision quantization table. 
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1.6.6. Application Data 

Figure 1.11 specifies the marker segment structure for an application data segment 

 

 

Figure 1-11: Application Data Segment 

 

APPn: Application data marker – Marks the beginning of an application data 

segment. 

Lp: Application data segment length – Specifies the length of the application data 

segment. 

Api: Application data byte – The interpretation is left to the application. 

 

The APPn (Application) segments are reserved for application use. Since these 

segments may be defined differently for different applications, they should be 

removed when the data are exchanged between application environments. 
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CHAPTER 2 

 
2. Network Protocol Overview 
 

 

2.1. Protocols 
Due to the huge amount of data that we need to transmit the network protocols must 

be wisely selected. According to the Open Systems Interconnection (OSI) networking 

suite the network protocols are grouped into the seven layer OSI model.  Those are 

the Application, Presentation, Session, Transport, Network, Data link and Physical 

layer, grouped as shown in figure 2.1 

 

Figure 2-1 

Commonly, the top three layers of the OSI model (Application, Presentation and 

Session) are considered as a single Application Layer in the TCP/UDP/IP suite. 

Because the TCP/UDP/IP suite has no unified session layer on which higher layers 

are built, these functions are typically carried out (or ignored) by individual 

applications. The most notable difference between TCP/UDP/IP and OSI models is 

the Application layer, as TCP/IP integrates a few steps of the OSI model into its 

Application layer. 

Therefore the simplified case, is shown in figure 2.2 
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Figure 2-2 
In the Application layer resides our application. In view of the application layer 

demands, our application is responsible for placing a JPEG image into a number of 

packets and transmitting them form the server side, and reconstruction the JPEG 

image form the packet, in the client side. A more detailed explanation of the way the 

JPEG image is cut into packets and how those packets are regrouped to create the 

image is given latter.  

 

In the Transport layer, there are two main protocol form which to choose. The User 

Datagram Protocol (UDP) and the Transmission Control Protocol (TCP).  Each one is 

explained later and a comparison between them is performed. We final choose UDP 

for the data channel and TCP for the control channel. 

 

In the network layer, the IP is the only available protocol that suites are needs, that is 

IP is used by source and destination to communicate packets, over a pocket-switched 

network, like internet. The other protocols at the network layer are mainly for routing, 

which is out of the scope of our case.  

 

The Data Link layer and the Physical layer are mainly for describing the very low 

level of the communication. The Data Link layer protocol is the Ethernet and the 

Physical layer describes the physical media between the sender and the receiver.   

 

2.2. Application Programming Interface 
In order to control UDP or TCP, we use a programming interface (API) called 

Berkley Socket, or just socket. Sockets are a C programming language library for 

UNIX, but nowadays it is available at any operating system, e.g. Linux, Windows etc.  

There are two main functions for control the UDP, through a socket, send and receive.  
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In the Windows environment both send and receive functions get the following 

attributes:  

S [in] Descriptor identifying a connected socket. 

Buf [in] Buffer containing the data to be transmitted. 

Len [in] Length of the data in buf, in bytes. 

Flags [in] Indicator specifying the way in which the call is made. 
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2.2.1. TCP 

The Transmission Control Protocol (TCP) is the most widely use Transport protocol. 

The protocol guarantees that the data to be send are going to be received intact, in the 

same order as they were send and that they will be directed to the correct application 

(Multiplexing – Demultiplexing).  The protocol is documented in the IETF RFC 793. 

The TCP has an 224 bytes header, containing information such as Source Port 

Destination Port, Sequence Number, Acknowledgement Number, Checksum and 

others. Applications send streams of 8-bit bytes to TCP for delivery through the 

network, and TCP divides the byte stream into segments, of size defined into to the  

maximum transmission unit (MTU) and passess them to the data link layer of the 

network the computer is attached to . TCP then passes the resulting packets to the 

Internet Protocol, for delivery through an internet to the TCP module of other host . 

TCP checks to make sure that no packets are lost by giving each byte a sequence 

number, which is also used to make sure that the data are delivered to the other host in 

the correct order. The TCP module at the other host sends back an acknowledgement 

for packets which have been successfully received; a timer at the sending TCP will 

cause a timeout if an acknowledgement is not received within a reasonable round-trip 

time (or RTT), and the (presumably lost) data will then be re-transmitted. The TCP 

checks that no bytes are damaged by using a checksum; one is computed at the sender 

for each block of data before it is sent, and checked at the receiver. 

 

2.2.2. UDP 

The User Datagram Protocol (UDP) on the other hand does no guarantees the delivery 

of the packets the sender has send, nor does is guarantees that the will be received at 

the correct order that they are send. It does though guarantee that packets will be 

directed to the correct application (Multiplexing – Demultiplexing).  The UDP header 

is only 64 bytes long, containing the Source Port, Destination Port, Length and 

Checksum.  

 

2.2.3. TCP versus UDP for video transmission 

Comparing TCP and UDP, TCP offers a reliable delivery and good congestion 

management. Nevertheless, the need of acknowledgements and the inability of 

process out-of-order packets make it ill-suited for our case. That is the reason why we 

choose UDP as a transport layer protocol. UDP takes a packet of data, adds an 
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appropriate header mainly specifying the source and the destination and sends it to the 

network layer. Because it does not care whether the packet has reached its destination 

of not, any congestion management it left to the application.  Therefore our 

application must be designed so as to overcome the lack of congestion management 

and must be able to process out-of-order packets. 

 

Although the UDP has clear advantages over the TCP as far as the transmission of the 

video is concerned. Nevertheless TCP protocol is used in the control connection 

established between the server and the client. The reason is that information passing 

through the control channel is critical and therefore must reach their destination and 

because the bandwidth needed for this communication is very small comparing to 

bandwidth needed for transmitting the video. 

 

The use of two distinct channels, one for control and the other for data, between the 

server and each client, makes the protocol out-of-bound. 
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CHAPTER 3 

The Implementation 
 
 

3. Implementation Sub-Systems 
 
3.1. The Server 
 

3.1.1. Initialize the Server 

Initially the server binds to a local port in order to receive requests from the clients. 

The binding is performed by creating a TCP socket in this port. The server creates a 

thread that is listening for incoming requests. A soon as the server receives a request, 

it create a UDP socket which is bind to one of his local ports and starts transmitting 

the video through this socket to the client. The information needed in order to locate 

and send the video to the client, is the client’s IP address and local port. This 

information is received in the initial message send to the server by the client. While 

transmitting the video to the client, the server keeps listening for incoming 

connection. At a given time, the server can communicate with up to 10 clients, 

although that figure is easy modified to support up to around 60000 different clients. 

 

3.1.2. The image acquisition 

The server is responsible from sending the video just captured. At a given point a new 

image is grabbed. Using an image processing library the image is processed and 

compressed. The image is compressed using the JPEG lossy compression algorithm 

with the restart markers option enabled and set to a specific value.  

 

3.1.3. Datagrams 

The communication of the video is performed using UDP sockets. A UDP socket can 

transmit only datagrams, it does not directly transmit image. Therefore it is necessary 

to place the image into datagrams. The maximum size of a UDP datagram is about 

8Kbytes which is far small to contain a full image, especial in our case, where image 

are typically about 150 Kbytes. This implies that the image must be partitioned to a 

number of datagram. Its datagram is placed into a packet at the network layer. So, in 

fact we must partition the image in a certain way, in order to be able to reconstruct the 
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image from the various packets. Moreover, the packets may arrive out of order, which 

implies that care must be taken to support the re-ordering of the packets as they arrive. 

In order to facilitate these requirements, the image is partitioned according to the 

restart markers located in it. 

 

3.1.4. Creating the datagram 

The restart markers are part of a number of markers, as discussed above. The location 

of the markers is performed in a serial way. For every marker located a number of 

informations are stored into a data structure. Those information are the absolute 

position in the image (in bytes), the number of bytes until the next marker, indicating 

the size of the segment and the type of the marker i.e. the first restart marker, the fifth 

restart marker, the start of frame marker etc. 

 

3.1.5. Packing the datagram 

Using this data structure, we start placing image segment until the packet is filled, 

or until the END-OF-IMAGE marker is found, indicating the end of the image. In 

latter, case the header of that packet is modified to specify the end of the image. Each 

packet can contain an integer number of segments, therefore, each packet must start 

with a Restart Marker. For every packet, we start from a point in the image, indicated 

by a variable, and stop as soon as one of the two constraints discussed above is meet. 

At that time, we store the relative position inside the image and the corresponding 

Restart Marker. The next packet is filled from the next segment until one of the 

constraints set above is satisfied. The packaging process is illustrated in figure 3.1 
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3.1.6. Creating the header 

In order to support out-of-order delivery, a header with information about the packet 

received must be attached to the packet. The header is created after filling the packet 

with image data. The header carries information in order for the client to understand 

the relation of the packet to the full image and support the reconstruction of the image 

in case of a packet loss. Those informations are: 

I. The frame number, necessary for the client in order to avoid placing the packet 

in another frame. Since the UDP protocol cannot guarantee the correct order 

of delivery, the application must be able to distinguish the frames. 

II. The accumulative number of the first segment the packet contains and the 

number of segments the packet contains. A packet can contain many 

segments. Therefore, when a packet is lost, a number of segments are lost. In 

order to reconstruct the frame, we need to know what segments are missing. 

Although we cannot directly access the segments, we bypass this problem by 

using the Restart Markers. Each Restart Marker signifies the begging of a 

number of segments. Knowing the first Restart Marker and the number of 

Restart Markers, we can tell what the missing segments are. 

III. The offset from the start of the image, where we start copying the segments to 

the packet. This information is used by the client in order to copy the received 
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packet at exactly the same location in the buffer as it was copied from the 

frame. 

When the end of the image is reached, the header contains the End-of-Image marker 

and the number of packets the server has send for this frame. The client can uses the 

number of packets to verify the number of missing packets. 

 

3.2. The Client 
 

3.2.1. Initialize the client 

Initially the client creates a UDP socket that is bound to a local port. The client 

initiates the connection by sending a packet to the server stating his IP address and the 

local port to which he is waiting to receive the video. If  the server cannot be reached 

by the client, the clients keeps trying to connect, in case there is excessive traffic to 

the network or the server is temporary unavailable. As soon as the server is reached, it 

starts transmitting the video to the client, at the IP address and the port specified in the 

request message.  

 

3.2.2. Receive the packet 

The client receives packet through the socket he specified. The packet are received 

out-of-order, therefore a re-ordering is performed. The packet is placed in the image 

buffer, according to the informations in the packet’s header. Along with other 

information, the header indicates the absolute position (in bytes) of the first block that 

was placed in the packet. Since the rest of the blocks in the packet are placed 

sequentially, we start placing the image data in the packet at the same absolute 

position in the client’s image buffer.  
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3.2.3. Check for errors 

After receiving a packet, it is necessary to check if the packet is the expected one or 

not. This is check, by comparing the last packet’s number with the packet number of 

the newly received packet. If the packet’s number is the subsequent number of the 

previously received packet, then no error has occurred. We assume that the packet 

receive in error-free, since the error detecting code is define in the network lay (IP 

layer). Ideally, by the end of the transmission of the image, the image buffer in the 

server must be identical with the image buffer in the client. If, on the other hand, the 

newly received packet’ number incorrect, we identify the packets missing and store 

this information into a data structure. There are two types of error in the received 

packet, either the packet’s number is bigger than expected or it is smaller. In the 

former case we assume that the packets between the last packet received and the 

newly received have been lost. In the other case, we assume that the rest of the last 

image packet has been lost, and so have the first packet of the image represented by 

this packet. In either case, a special error code is returned indicating the type of error 

detected. 

 

3.3. The Error Concealment Techniques 
When a newly received image raises such an error code, the reconstruction function 

takes over. When a packet is lost during the transport from the client to the server, a 

portion of the image is lost. Due to the entropy encoding of the image, a missing part 

of the bitstream can result in total destruction of the image. There are three kinds of 

concealment algorithm; the spatial, the temporal and the hybrid.   

 

3.3.1. Spatial redundancy based concealment algorithms 

The spatial error concealment algorithms rely on the inherited spatial smoothness 

found the any image. The main idea is to conceal the error using neighbouring 

available pixel coefficients.  Although this technique is very simple, is does not has 

good results. This is due to the blurring of the edges in the image, and the general 

inability to reconstruct complex patterns. With some extra effort, much better results 

may be presented by integrating an edge-based directional interpolation. A very 
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simple scheme has been also proposed in [8], where using the pixel-wise difference 

between two sets of projection data available on the block boundary, a better 

estimation of the edge direction is performed. Projection onto convex sets (POCS) has 

been proposed, which iteratively use the spatial redundancy and the pixel value 

constraint. The performance of such a scheme is depended on the accuracy of the 

estimation about spatial redundancy and pixel values. 

 

 

3.3.2. Temporal redundancy based concealment algorithms 

Temporal error concealment, exploit the temporal redundancy inherited in a video.  

They use temporally adjacent frames to evaluate the missing information. The idea is 

based on the fact that video content is smooth and continuous in the time domain. One 

scheme is to just copy the missing blocks from the previous frame. This assumes that 

the motion vector (MV) is near zero. A near-zero motion vector implies a little or no 

motion in the scene. This is the typical case for surveillance systems. A different 

approach is to use the motion vectors from the previous image. In scenes with regular 

motion, this approach has good result. Unfortunately, due to the real-time nature of 

our algorithm, the extra processing power used in evaluating the motion vector, may 

result is a drop of the frame rate. Thus, this approach is inefficient is our technique. 

 

 

3.3.3. Hybrid spatial-temporal based concealment algorithms 

Some effort has been made in order to combine both spatial and temporal 

concealment algorithms, in order to improve there performance. An example is the 

use of smoothing constraint applied to both spatial and temporal, in order to produce a 

more smooth concealed block. The problem with this approach is the possible loss of 

high frequency components. Although more recent techniques have been developed, 

in general there has been little success in joint effort.  This is because there is lack in 

efficient ways of merging the results in both spatial and temporal error concealment. 

The extra complexity involved in such a process is also of significant effect, again due 

to the limited time and processing power available in such types of applications. 
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3.4. The Error Concealment Algorithm Implementation  
In our implementation, we have used only the temporal based error concealment 

technique. The choice was made upon examining the video in question and the real-

time constraint set on our model.  Only one technique was chosen to be implemented, 

due to the relatively low increase in image quality of the hybrid spatial-temporal 

techniques and the increase of the computational complexity of implementing both 

spatial and temporal concealment technique. Furthermore, our implementation’s main 

use in surveillance, where we usually have little movement and therefore little 

difference in successive frames. The key feature used in implementing our 

concealment technique was the use of Restart Markers. Restart Markers are spatial 

code words that are used in the encoding of the JPEG frames, that make up the  M-

JPEG video. 

 

3.4.1. The use of Restart Markers 

Each packet can contain a number of segments. These segments are distinguished 

using Restart Markers. Each segment encodes a predefined number of 8 x 8 blocks. 

Since the images have fixed dimensions, both width and length, the number of blocks 

that make the image is also fixed. Therefore, the number of Restart Markers is also 

fixed. For Example,  

an 800 x 800 image has 100*100 =10 000  blocks and  10 000 – 1 Restart Markers.  

Although the number of blocks, segments and Restart Markers are fixed, none of 

them have a constant size in terms of bytes. This variation is a consequence of the 

entropy encoding stage in the JPEG compression algorithm. Since most of the AC 

coefficients produced by the DCT encoding are zero or near-zero, an 8 x 8 block can 

vary form 1 (only the DC coefficient) up to 64 coefficients (the DC and all the AC 

coefficients).   As a result a segment, which is made up form a fixed number of 

blocks, can have variable size.  Since a packet is made up form segments, the 

variation of the segment’s size implies a variation in the number of segments that a 

fixed size packet can carry. For example, a 4Kbyte packet can contain from 10 large 

size segments to 200 small size segments. 
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In terms of error concealment, the variation of segments contained in a packet, makes 

a direct copy from the corresponding packet received in the previous image to the 

place normally occupied from the missed packet, ineffective. This inefficiency is due 

to the variable number of segments contained in the previously received packet and 

the variation of the missing packet’s number of segments. The above are illustrated in 

figure 3.3. 
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Figure 3-3 
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In order to overcome the problem, we use the Restart Markers is an accumulative 

way. Each packet’s header carries the information of the first accumulative Restart 

Marker and the number of Restart Markers contained in the packet. The number of the 

Restart Markers contained in the packet is the same as the number of the segments 

contained in the image. Since the segments are evaluated in the spatial domain, the 

nth segment is corresponding to the blocks located at specific position in the image 

and they are the same for every image transmitted, as shown in figure 3.4 
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3.4.2. Locating the missing segments 

In order to reconstruct the image all the Restart Markers of the frame must be located.  

First, we must find the missing segment. This is done by examining the packet that 

was received just before a packet was missed. From the header of that packet we can 

find the first segment that was encoding in the missing packet, by adding the number 

of segments in the previous packet with the first segment located in that packet. 

Then, we must find the number of segment that this packet was carrying. This can 

also be found by examining the header of the packet that just arrived.  From this 

packet’s header we can evaluate the number of missing segment by subtracting the 

first segment in the missing packet from the first segment encoded in the packet just 

arrived.

Segment X 
Y 

Frame N-1

Y 
Segment X 

Frame N

Figure 3-4 
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Number of Segments: 50

Packet N-1 at T-1 

3.4.3. Creating the reconstructed image 

Having located the first missing segment and the number of missing segment, we can 

reconstruct the frame based on previously received packets. When a packet is missing 

we search the packets received from the previous frame and we locate the missing 

segment in the previous frame. By knowing the first missing segment and the 

segments missing, we just copy the corresponding segment form the previous packets. 

For example, if the missed packet had segments form A to B, we copy the segments A 

to be from the previous frame. This process is illustrated in figure 3.6. 
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Figure 3-7: Block Diagram of the Server 
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Figure 3-8: Block Diagram of the Client 



CHAPTER 4 

Experimental Results 
 
4.  
4.1.  Theoretical Background 

The experimental results are separated into two groups. In the first group we 

measured the quality of the received video when there is no motion in the transmitted 

video. In the second group we measured the quality of the received video when there 

is some motion. The motion is measured in terms of frame-to-frame pixel-wise 

difference. Although, the frame-to-frame pixel-wise difference is not a good metric of 

the motion inside the video, it give a good hind as to weather two successive frames 

are similar enough to produce good results in terms of  our error-concealment 

algorithm. The relation of the error-concealment algorithm and the motion of the 

video in very close, because of the temporal redundancy of the video. The more 

motion there is in the video stream, the smaller the temporal redundancy, and the 

poorer the missing packet estimation is. 

 

In order to measure the quality of the received video, we calculate the Mean Square 

Error (MSE) and the Peak Signal to Noise Ration (PSNR) in decibels (db), 

 using eq 4.1  
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For each of the two group we measure the quality of the received image when 3,6 and 

10 % of the packets consisting the image are lost 

 

In the experiments we consider the case of 3, 6 and 10 % packet loss, while we do not 

consider the available bandwidth. The idea is that in order to transmit the necessary 

information with no error, a minimum bandwidth for the channel must be set 

according to Shannon’s theorem [10].  Assuming that the minimum bandwidth 

necessary is available in a mean value manner, we consider the cases where the 

deviations on the available bandwidth caused by the packet-switched network 

functions led to a specific bit error rate. For those bit error rate, we examine the effect 

on the received images and the quality of the error-concealment algorithm. 
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4.2. No Motion 
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6% Packet loss     
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10% Packet loss     
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4.2.1. Comments on first group’s results 

The first group of results refers to the Mean Square Error (MSE) and the Peak Signal 

to Noise Ratio (PSNR) of video with no motion. The error concealment algorithm 

performs very well in all three cases, namely 3%, 6% and 10 % packet loss. The 

PSNR is about 24 db and the RMSE is almost zero.  On the other hand the values of 

the originally received video display a high deviation. Although it may appear 

strange, it is consistent with what is expected. 

When a Restart Marker is lost from a frame, the frame is useless from that point on. 

Due to the decompression algorithm of the JPEG, when a Restart Markers is missing 

the decompression is stopped even if the rest of the image is valid. Therefore the 

degradation of the frame is irrelevant to the number of lost packets.  

This explains the deviation of the values of the originally received video. The first 

missed Restart Marker is the only parameter controlling the quality of the received 

video.  

The frames in case 1, display how a packet loss can affect the quality of the received 

video. The originally received frame from the client contains structural information 

but little color information (only the red band). This is effect is cause by the way the 

JPEG image is compressed. The color components are encoded sequentially. When 

packet is lost, the rest of the frame is useless even if it is correct. Therefore only part 

of the color information is decompressed and displayed by the client.  

The frames in case 2 display the results when the red and part of the green band 

components have been decompressed. 
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Frame from Server 

 
 

Frame before Error Concealment 

 
 
 

Frame after Error Concealment 

 
 

    Case 1 
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Frame from server 

 
 

Frame before reconstruction 

 
 

Frame after reconstruction 

 

Case 2. 
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4.2.2. With motion 
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6% packet loss 
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10% packet loss 
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4.2.3. Comments on second group’s results 
 
The second group of results examines the quality of the received video when there is 

some motion. The amount of motion is measured in terms of frame-to-frame 

difference (per cent). This metrics gives us a hint as to how much one frame has 

changed since the previous one. The error-concealment algorithm performs well, even 

in the case of motion. The motion of the video is not heavily reflected on the quality 

of the reconstructed image is terms of the PSNR. The PSNR values tend to “follow” 

the motion, but no in the same extend. The reason of this effect is that when the error 

concealment algorithm tries to estimate a missed packet, it uses as a reference the 

previously received corresponding frame. Since the current frame is not the same as 

the previous one, the quality of the reconstructed frame is lower. 

The originally received video displays high deviation in its quality, deviation 

irrelevant to the number of packets lost, but consistent only to the first missed packet.  

For example, from the graphs when notice a high RMSE at frame 26. This value is so 

high because of the combination of high the motion in the previous frames and that 

one of the first packet of the image was lost. Missing one of the first packets implies 

that the received image became useless 
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CHAPTER 5 

System Overview 
 
Our system consists of a server and one or more clients. The server is a 5 frames per 

second colour camera connected with a Matrox ® DSP on a Pentium Xeon® 

computer with a one gigabit network card. The test clients are a Pentium Xeon 

computer a one gigabit network card and a Pentium 4 computer with a one gigabit 

network card.  The client and the server are connected on a gigabit switch.  

The grabbing and the display of the images are performed using the Matrox Mil® 

library. 

 

Conclusion and Further Work 
 

The error-concealment algorithm performs well when there is little or no motion in 

the video. In videos with more motion, the temporal redundancy quality of the video 

makes temporal based error-concealment perform badly. In order to achieve better 

quality of the received video, spatial based error concealment techniques must also be 

introduced.  

Furthermore, a higher compression ration must be achieved due to the limitation of 

the available bandwidth. In any case, the computational complexity constrain must 

also be accounted for.  

Surveillance oriented application must also take advantage of the growing area of the 

wireless networks. 

Another standard close to the JPEG is the JPEG2000 [11].   JPEG2000 compression 

algorithm is based on wavelet transform, can achieve very good results, while it is 

keeping the computational complexity in low levels. 

Another network protocol, the Real-time Transmission Protocol (RTP) [3] can also be 

used in transferring the MJPEG video bitstream. RTP is a general purpose video 

transport protocol, where the MJPEG video stream is registered as MJPEG load. 
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