
TECHNICAL UNIVERSITY OF CRETE
Department of Electronic and Computer Engineering

DIPLOMA THESIS

REAL - TIME TRANSMISSION OF VIDEO WITH
ERROR CORRECTION ALGORITHM

TSAGKATAKIS GRIGORIS

Supervising committee: Zervakis Michalis(Supervisor)
 Petrakis Euripides
 Liavas Athanasios

Chania 2005

Acknowledgements

I would like to express my gratitude to all the people that helped me during my

studies.

First of all my parents for their support in every decision I make and action I take.

Their qualities as scientists and above all human have always been a guideline for me.

To my teachers, Michalis Zervakis and Euripides Petrakis for their time, their ideas

and their valuable advices.

To professor Athanasios Liavas for his support in my diploma thesis.

To all my friends, for being there when I needed them…

 2

“A wise man can see more from the bottom of a well than a fool can from a mountain
top”.

Anonym

 3

Table of Contents
Acknowledgements..2
Table of Contents...4
Introduction..6
Application’s objectives...8
CHAPTER 1 ..9
JPEG Compression Algorithm...9

1.1. Modes of operation ..9
1.2. Compression ..9

1.2.1. DCT..10
1.2.2. Quantization...10
1.2.3. Entropy Encoding ..12
1.2.4. Color Transformation...12
1.2.5. Downsampling color components..12
1.2.6. Encoding Order and Interleaving...13

1.3. Decompression...15
1.4. Baseline Encoding Example ..15
1.5. Image, frame, and scan ..16
1.6. The JFIF (JPEG File Interchange Format)...18

1.6.1. The JPEG Bitstream...18
1.6.2. Frame header..20
1.6.3. Scan header ..20
1.6.4. Table-specification and miscellaneous marker segment syntax21
1.6.5. Quantization table-specification syntax...23
1.6.6. Application Data ..24

CHAPTER 2 ..25
JPEG Compression Algorithm....................................Error! Bookmark not defined.

2.1. Protocols ..25
2.2. Application Programming Interface ..26

2.2.1. TCP ..28
2.2.2. UDP..28
2.2.3. TCP versus UDP for video transmission ...28

CHAPTER 3 ..30
The Implementation ...30

3.1. The Server..30
3.1.1. Initialize the Server ..30
3.1.2. The image acquisition ..30
3.1.3. Datagrams ..30
3.1.4. Creating the datagram..31
3.1.5. Packing the datagram...31
3.1.6. Creating the header ..32

3.2. The Client...33
3.2.1. Initialize the client..33
3.2.2. Receive the packet ...33
3.2.3. Check for errors ...34

3.3. The Error Concealment Techniques ..34
3.3.1. Spatial redundancy based concealment algorithms34
3.3.2. Temporal redundancy based concealment algorithms.........................35
3.3.3. Hybrid spatial-temporal based concealment algorithms......................35

 4

3.4. The Error Concealment Algorithm Implementation....................................36
3.4.1. The use of Restart Markers ..36
3.4.2. Locating the missing segments ..38
3.4.3. Creating the reconstructed image...39

CHAPTER 4 ..43
Experimental Results ...43

4.1. Theoretical Background...43
4.2. No Motion..45

4.2.1. Comments on first group’s results ...48
4.2.2. With motion ...51
4.2.3. Comments on second group’s results ..57

CHAPTER 5 ..58
System Overview...58
Conclusion and Further Work..58
References..59

Figure 1-1...10
Figure 1-2...11
Figure 1-3...11
Figure 1-4...15
Figure1-5..16
Figure 1-6: Interleaved Components ...17
Figure 1-7: Coding order ...17
Figure 1-8...18
Table 1 ...20
Figure 1-9: Table Specification or misc. Marker Segment..21
Figure 1-10: Quantization table Specification ...23
Figure 1-11: Application Data Segment ..24
Figure 2-1...25
Figure 2-2...26
Figure 3-7: Block Diagram of the Server ..41
Figure 3-8: Block Diagram of the Client ...42

 5

Introduction
The real-time transmission of video over the Internet is one of the most demanding

applications in terms of bandwidth and processing power. Yet, it is becoming an

important building block of numerous applications, such as Internet television, video

conferencing, distance learning, digital libraries, tele-presence and video-on-demand.

The main requirements are enough bandwidth, minimum delay and small loss packet

rate. However the Internet does not propose any mechanism for Quality of Service

(QoS) guarantee. In the case of multicast video transmission the heterogeneity

inherited in the Internet creates more problems is terms of bandwidth efficiency and

service flexibility.

The challenging QoS criteria are as follow:

• Bandwidth: In order to receive a good quality video, in terms of frame rate

and Signal to Noise ratio, a minimum bandwidth needs to be set.

Unfortunately the Internet does not provide any means of bandwidth

reservation, at least at its current stare. Furthermore, typical routers do no

provide any congestion control and excessive traffic can lead to a congestion

collapse, further reducing the quality of the receive video.

• Delay: In order to keep up with the real time requirement of the transmitted

video, a maximum end-to-end delay must be set and secured throughout the

transmission of the video. This means that any packet send through the

Internet must be received, processed and displayed in time or else it becomes

useless. In that cause the playout process will be paused, and valuable

information will be lost. Although the real time transmission o video requires

a small and constant delay, Internet does not provide any mechanism to

preserve the delay. In particular, in the case of excessive traffic, the delay

could become highly variable.

• Loss: Packet loss can become a major reason for the degradation of the video

quality. Fortunately, due to the temporal redundancy of the images that make

the video, there are various algorithms to minimize the effect of a relatively

small amount to packet loss. Although real time video has a maximum packet

loss requirement, Internet cannot provide any packet loss threshold guarantee.

There are many video compression algorithms such as MPEG-2, H263 and H264

(MPEG-4), who can achieve very good results due to the utilization of both temporal

 6

and spatial redundancy in the video. Nevertheless MJPEG compression algorithm is

chosen for our application. MJPEG compression algorithm compresses each frame

independently of any other by taking advantage of the spatial redundancy of the

frame. Frames are then displayed in an orderly fashion at a certain frame rate thus

creating the illusion of continuous video playback. MJPEG does not achieve as good

results as the MPEG-2, the H263 or the H264 (MPEG-4). Nevertheless its

computation complexity makes it preferable for our application. This choice is made

more apparent by considering the qualities of the transmitted video.

Our application’s main purpose is the transmission of surveillance video. There are

two main qualities that distinguish the surveillance video from any generic video

In surveillance video, there is usually little or no movement and the video is useful as

long as it is acquired, transmitted and displayed with minimum delay.

Because of the little movement present is surveillance video, successive frames tend

to be very similar. This temporal redundancy property is used in order to conceal the

errors created by the loss of packets during the transmission of the video. On the other

hand, minimising the delay of the transmission makes more complex algorithms ill

suited for our applications. More complex, yet more efficient compression algorithms,

introduce a significant delay due to their computational complexity

In addition, the lack of any guaranty about the available bandwidth between the server

and the client may result in the loss of packets and therefore the loss of a frame. A

special care must be taken so that the loss of a packet will not result in the lost of the

frame, and that the variations of the available bandwidth will not cause a significant

degradation of the receiving video quality.

 7

Application’s objectives

The objective of our application is two fold. First, we implemented a protocol for

transmitting MJPEG video over packet-switched network such as the Internet and

second, we implemented an error concealment algorithm in order to increase the

quality of the received video, even in the cases of major packet loss.

The transmission system consists of one server transmitting the video and one or more

clients receiving the video. Our MJPEG video transmission algorithm is build over

the UDP transport protocol. The UDP transport protocol in responsible for

transmitting packets (datagrams). The server is responsible for placing the MJPEG

video bitstream into fixed size packets and transmit the over the network. The client

on the other side is responsible of putting the packets in the correct order, recreating

the frame and displaying the video.

Unfortunately, UDP protocol does not guarantee the correct arrival of the packets

neither the correct ordering of them. Therefore, our application is responsible for

estimating the missing packets and correctly reordering the packets. The estimatation

of the missing packets is performed based on the temporal redundancy of the video. If

a packet is loss, the corresponding packet from the previous frame is used to fill in the

gap. The packet reordering is achieved by examining the header of each received

packet and placing it to its corresponding position into a temporary buffer, until the

final packet is received.

Organization of the thesis

In chapter 1, we present the JPEG still image compression standard.

In chapter 2, we make a brief introduction to the protocols used in the Internet

In chapter 3, we present our implementation

In chapter 4, we give the experimental results of our algorithm

In chapter 5, we describe the implementation system and discuss the conclusions and

further improvement.

 8

CHAPTER 1

JPEG Compression Algorithm

JPEG is the most widely used standard in image compression today. JPEG stands for

Joint Photographic Experts Group and was developed by ISO and CCITT. JPEG can

compress both grayscale and colored images in a lossless or a lossy way.

1.1. Modes of operation
The JPEG standard defines four modes of operation:

I. Sequential encoding, where the image, in the case of grayscale images, or a

component of the image, in the case of color image, are encoding in a single

left-to-right, top-to-bottom scan.

II. Progressive encoding, where the image is encoding in performed in multiple

scans, intentioned for applications where transmission in long, and the viewer

prefers to watch the image build-up in multiple coarse-to-clear passes

III. Lossless encoding, where the image encoded is guaranteed to be identical to

the original image

IV. Hierarchical encoding, where the image is encoding in different resolution, so

that lower-resolution versions may be accessed without first having to

decompress the image at its full resolution

1.2. Compression
The Sequential encoding, where the image is encoding from left to right and from top

to bottom, the Progressive encoding where the image is encoding in multiple scans

and the compressed image is build up, the lossless encoding where the encoded image

is guaranteed to be the same as the original one and the Hierarchical encoding, where

the image is encoding in multiple resolutions giving the option of decompressing it at

a lower resolution.

 The encoding procedure of a grayscale image is illustrate in figure 1.1

 9

Figure 1-1

1.2.1. DCT

 The matrix representing the image is grouped into 8x8 blocks and shifted from

unsigned integer with range [0, 2p – 1] to signed integers with range [-2p, 2p-1].

Those blocks are feed into the Forward Discrete Cosine Transform (FDCT).

 The following equation describes the FDCT.

7 7

0 0

1 (2 1)(,) () () (,)*cos cos
4 16x y

(2 1)
16

x u y vF u v C u C v f x y π π
= =

⎡ ⎤+ +
= ⎢ ⎥

⎣ ⎦
∑∑

Where: (), () 1
2

C u C v = for u,v=0

 1 otherwise

Each 8x8 block is transformed into a 64-point discrete signal as a function of the two

spatial coordinates x and y. The DCT coefficient with zero frequency in both x and y

is called the “DC coefficient” and the remaining 63 are called “AC coefficients”.

1.2.2. Quantization

The output of the DCT encoder is feed into a uniform quantizer in accordance with a

64-element Quantization Table, which is defined by the application. In general

Quantization is the process of dividing each DCT coefficient by its corresponding

quantizer step and rounding it to the nearest integer, following the equation

(,)(,)
(,)

Q F u vF u v IntegerRound
Q u v

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

After the quantization is the process of DC coefficient encoding and “zig-zag”. In

this step the DC coefficient, which is a measure of the average value of the 64 image

 10

samples of the 8x8 block, is encoded as the deference from the previous DC

coefficient, i.e.

Figure 1-2

This is done because of the high correlation of the DC coefficients between adjacent

8x8 blocks and the fact that DC coefficients frequency usually contains a large

portion of the image’s energy.

The DCT coefficients are ordered in a “zig-zag” way as show in figure 1-3. This is

done because it places the low-frequency coefficients (most likely to be non-zero)

before high frequency coefficients, increasing the performance of the next step which

is the entropy encoding

Figure 1-3

 11

1.2.3. Entropy Encoding

The final step of the JPEG compression algorithm is the entropy encoding. There are

two kinds of entropy encoding, the Huffman coding, and arithmetic coding. In this

process the “zig-zag” quantized DCT coefficients are converted into intermediate

symbols, and those symbols are converted into a data stream and a way that the

symbols no longer have externally identifiable boundaries. In the case of Huffman

coding, our case, there is a need for one or more sets of Huffman code sets that are

provided by the application. Although arithmetic encoding produces 5-10 % better

compression, its computational complexity makes it inappropriate for our case.

1.2.4. Color Transformation

The JPEG algorithm is capable of encoding images that use any type of color space.

This is achieved because JPEG itself encodes each component in the color model

separately, and is completely independent of any color-space model such as RGB,

HIS or CMY. Yet the best results are obtained by input images in the

luminance/chromance color space, such as YCbCr. The results are better because in

the YCbCr color space most the visual information to which human eyes are most

sensitive is found in the high-frequency gay-scale luminance component (Y) of the

YCbCr color space. The other two components (Cb and Cr), contains color

information to which the human eye is less sensitive and therefore they can be

discarded.

In the case of color images, our case, the image contains from 1 to 256 image

components (bands), each one been a rectangular shaped array of samples, with each

sample consisting of unsigned integers with 8 bit precision.

In order to compress the color image, the color components must be downsampled are

specific frequencies.

1.2.5. Downsampling color components

Although not specified in the JPEG standard, a downsampling of the color

components must be address. When the uncompressed data is supplied in a

conventional format, JPEG reduces the resolution of the chrominance channels by

Downsampling or averaging together groups of pixels. The JPEG standard allows

several different choices for the sampling frequencies of the downsampled channels.

 12

Due to the large significance of the luminance component as discussed above, the

luminance channel is left at full resolution i.e. 1:1 sampling. Generally, the two

chrominance components are downsampled 2:1 horizontally and either 1:1 or 2:1

vertically. As a result the chromance pixel covers the same area as either a 2x1 or a

2x2 block of luminance pixels. JPEG refers to this process of downsampling as 2h1v

and 2h2v, very often notated as 4:2:2 and 4:2:0 correspondingly. In 4:2:2, sampling

the two chrominance pictures (Cb and Cr) process half the resolution in the horizontal

direction and the full resolution in the vertical direction, compared to the luminance

(Y) channel. In 4:2:0, both chrominance channels process half their resolution in both

directions.

1.2.6. Encoding Order and Interleaving

A practical image compression standard must address how systems will need to

handle the data during the process of decompression. Many applications need to

Pipeline the process of displaying or printing multiple-component images in parallel

with the process of decompression. For many systems, this is only feasible if the

components are interleaved together within the compressed data stream. To make the

same interleaving machinery applicable to both DCT-based and predictive codecs, the

JPEG proposal has defined the concept of “data unit.” A data unit is a sample in

predictive codecs and an 8x8 block of samples in DCT-based codecs. The order in

which compressed data units are placed in the compressed data stream is a

generalization of raster-scan order. Generally, data units are ordered from left-to-right

and top-to-bottom. (It is the responsibility of applications to define which edges of a

source image are top, bottom, left and right.) If an image component is no-interleaved

(i.e., compressed without being interleaved with other components), compressed data

units are ordered in a pure raster scan.

When two or more components are interleaved, each component Ci is partitioned into

rectangular regions of Hi by Vi data units, as shown in the generalized example of

Figure 8. Regions are ordered within a component from left-to-right and top-to-

bottom, and within a region, data units are ordered from left-to-right and top-to-

bottom. The JPEG proposal defines the term Minimum Coded Unit (MCU) to be the

smallest group of interleaved data units. For the example shown, MCU1 consists of

data units taken first from the top-left-most region of C1, followed by data units from

the same region of C2, and likewise for C3 and C4. MCU2 continues the pattern as

 13

shown. Thus, interleaved data is an ordered sequence of MCUs, and the number of

data units contained in an MCU is determined by the number of components

interleaved and their relative sampling factors. The maximum number of components

which can be interleaved is 4 and the maximum number of data units in an MCU is

10. The latter restriction is expressed as shown in Equation 6, where the summation is

over the interleaved components:

10i iH V× ≤∑ in interleave i∀

Because of this restriction, not every combination of 4 components which can be

represented in noninterleaved order within a JPEG-compressed image is allowed to be

interleaved. Also, note that the JPEG proposal allows some components to be

interleaved and some to be noninterleaved within the same compressed image.

 14

1.3. Decompression
The decompression is the symmetric algorithm of the encoding. Figure 1-4 illustrates

the step to decompress a JPEG image

Figure 1-4

Where the IDCT in performed according to eq. 1

7 7

0 0

1 (2 1)(,) () () (,) cos cos
4 16u v

(2 1)
16

x u yf x y C u C v F u v vπ π
= =

+ +
= ∑∑ eq. 1

Where: (), () 1
2

C u C v = for u,v=0

 1 otherwise

1.4. Baseline Encoding Example
This section gives an example of Baseline compression and encoding of a single 8x8

sample block. Note that a good deal of the operation of a complete JPEG Baseline

encoder is omitted here, including creation of Interchange Format information

(parameters, headers, quantization and Huffman tables), byte-stuffing, padding to

byte-boundaries prior to a marker code, and other key operations. Nonetheless, this

example should help to make concrete much of the foregoing explanation.

Figure 1-5(a) is an 8x8 block of 8-bit samples.. The small variations from sample to

sample indicate the predominance of low spatial frequencies. After subtracting 128

from each sample for the required level-shift, the 8x8 block is input to the FDCT.

Figure 1-5(b) shows (to one decimal place) the resulting DCT coefficients. Except for

a few of the lowest frequency coefficients, the amplitudes are quite small.

 15

Figure1-5

1.5. Image, frame, and scan
Compressed image data consists of only one image. An image contains only one

frame in the cases of sequential and progressive coding processes; an image contains

multiple frames for the hierarchical mode. A frame contains one or more scans.

 16

Finally, a scan contains a complete encoding of one (non-interleaved) or more image

components (interleaved).

Related to the concepts of multiple-component interleave is the minimum coded unit

(MCU). If the compressed image data is non-interleaved, the MCU is defined to be

one data unit (8x8 block for DCT-based processes). If the compressed data is

interleaved, the MCU contains one or more data units from each component.

For example consider an image in Y, Cb, Cr format with 4:2:0 sampling as seen in

Fig. 1.5. This image has three components. If the compressed data is interleaved, there

would be only one scan, and the first and second MCU would be:

0101131203022

0000111001001

CrCbYYYYMCU

CrCbYYYYMCU

=

=

Figure 1-6: Interleaved Components

If the compressed data is non-interleaved, there would be three scans. The first scan

would contain the coded luminance (Y), the second the coded Cb component and the

last the Cr. For each scan the MCU is a data unit.

The MCU’s in either case (interleaved, non-interleaved) are encode in raster scan

order as seen in fig. 1-7.

Figure 1-7: Coding order

 17

1.6. The JFIF (JPEG File Interchange Format)

1.6.1. The JPEG Bitstream

The when the image is compressed it is transform into a bitstream.

Each compressed image can be divided into group. The informations are encoded as

shown in figure 1-8.

Figure 1-8

The markers shown in Figure 1.8 are defined as follows:

SOI: Start of image marker – Marks the start of a compressed image represented in

the interchange format or abbreviated format.

EOI: End of image marker – Marks the end of a compressed image represented in the

interchange format or abbreviated format.

RSTm: Restart marker – A conditional marker which is placed between entropy-

coded segments only if restart is enabled. There are 8 unique restart markers (m = 0 -

7) which repeat in sequence from 0 to 7, starting with zero for each scan, to provide a

modulo 8 restart interval count. The encoder outputs the restart markers, intermixed

with the entropy-coded data, at regular restart intervals of the source image data.

 18

Restart markers can be identified without having to decode the compressed data to

find them. Because they can be independently decoded, they have application-specific

uses, such as parallel encoding or decoding, isolation of data corruptions, and semi-

random access of entropy-coded segments.

The top level of figure 1.8 specifies that the non-hierarchical interchange format

shall begin with an SOI marker, shall contain one frame, and shall end with an EOI

marker.

The second level of figure 1.8 specifies that a frame shall begin with a frame header

and shall contain one or more scans. A frame header may be preceded by one or more

table-specification or miscellaneous marker segments as described in the next section.

In the table specification header are defined the quantization matrices. Up to 4

matrices may be specified, each used to quantize one component. For sequential

DCT-based and lossless processes each scan shall contain from one to four image

components. If two to four components are contained within a scan, they shall be

interleaved within the scan.

The third level of figure 1.8 specifies that a scan shall begin with a scan header and

shall contain one or more entropy coded data segments. Each scan header may be

preceded by one or more table-specification or miscellaneous marker segments. If

restart is not enabled, there shall be only one entropy-coded segment and no restart

markers shall be present. If restart is enabled, the number of entropy-coded segments

is defined by the size of the image and the defined restart interval. In this case, a

restart marker shall follow each entropy-coded segment except the last one.

The fourth level of Figure 1.8 specifies that each entropy-coded segment is

comprised of a sequence of entropy coded MCUs. If restart is enabled and the restart

interval is defined to be Ri, each entropy-coded segment except the last one shall

contain Ri MCUs. The last one shall contain whatever number of MCUs completes

the scan.

The required table-specification data must be present at one or more of the allowed

locations.

Table 1 contains all the markers present in the JPEG File Interchange Format

 19

Table 1

1.6.2. Frame header

The frame header which shall be present at the start of a frame specifies the source

image characteristics (sample precision, dimensions), the components in the frame,

and the sampling factors for each component, and specifies the destinations (see table

specification syntax) from which the quantized tables to be used with each component

are retrieved.

1.6.3. Scan header

The scan header which shall be present at the start of a scan specifies which

component(s) are contained in the scan, specifies the destinations from which the

entropy tables to be used with each component are retrieved.

 20

If there is only one image component present in a scan, that component is, by

definition, non-interleaved. If there is more than one image component present in a

scan, the components present are, by definition, interleaved.

1.6.4. Table-specification and miscellaneous marker segment syntax

At the places indicated in Figure 1.9, any of the table-specification segments or

miscellaneous marker segments specified may be present in any order and with no

limit on the number of segments.

If any table specification for a particular destination occurs in the compressed image

data, it shall replace any previous table specified for this destination, and shall be used

whenever this destination is specified in the remaining scans in the frame or

subsequent images represented in the abbreviated format for compressed image data.

If a table specification for a given destination occurs more than once in the

compressed image data, each specification shall replace the previous specification.

Figure 1-9: Table Specification or misc. Marker Segment

• The Huffman table-specification segment defines a Huffman table to be used

for entropy coding.

 21

• The Arithmetic conditioning table-specification replaces the default

arithmetic coding conditioning tables established by the SOI marker for

arithmetic coding processes.

• The Restart interval definition defines the restart interval.

• The Comment segment allows for user comments.

• The Application data are reserved for application use. Since these segments

may be defined differently for different applications, they should be

removed when the data are exchanged between application environments.

The quantization table-specification segment defines the quantization matrices and is

described analytically in the next section.

 22

1.6.5. Quantization table-specification syntax

Figure 1.10 specifies the marker segment which defines one or more quantization

tables.

Figure 1-10: Quantization table Specification

The marker and parameters shown in Figure 1.10 are defined below.

DQT: Define quantization table marker – Marks the beginning of quantization table-

specification parameters.

Lq: Quantization table definition length – Specifies the length of all quantization

table parameters shown in Figure 1.10.

Pq: Quantization table element precision – Specifies the precision of the Qk values.

Value 0 indicates 8-bit Qk values; value 1 indicates 16-bit Qk values. Pq shall be zero

for 8 bit sample precision P.

Tq: Quantization table destination identifier – Specifies one of four possible

destinations at the decoder into which the quantization table shall be installed.

Qk: Quantization table element – Specifies the kth element out of 64 elements, where

k is the index in the zigzag ordering of the DCT coefficients. The quantization

elements shall be specified in zig-zag scan order.

The value n in figure 1.10 is the number of quantization tables specified in the DQT

marker segment.

Once a quantization table has been defined for a particular destination, it replaces the

previous tables stored in that destination and shall be used, when referenced, in the

remaining scans of the current image and in subsequent images represented in the

abbreviated format for compressed image data. If a table has never been defined for a

particular destination, then when this destination is specified in a frame header, the

results are unpredictable.

An 8-bit DCT-based process shall not use a 16-bit precision quantization table.

 23

1.6.6. Application Data

Figure 1.11 specifies the marker segment structure for an application data segment

Figure 1-11: Application Data Segment

APPn: Application data marker – Marks the beginning of an application data

segment.

Lp: Application data segment length – Specifies the length of the application data

segment.

Api: Application data byte – The interpretation is left to the application.

The APPn (Application) segments are reserved for application use. Since these

segments may be defined differently for different applications, they should be

removed when the data are exchanged between application environments.

 24

CHAPTER 2

2. Network Protocol Overview

2.1. Protocols
Due to the huge amount of data that we need to transmit the network protocols must

be wisely selected. According to the Open Systems Interconnection (OSI) networking

suite the network protocols are grouped into the seven layer OSI model. Those are

the Application, Presentation, Session, Transport, Network, Data link and Physical

layer, grouped as shown in figure 2.1

Figure 2-1

Commonly, the top three layers of the OSI model (Application, Presentation and

Session) are considered as a single Application Layer in the TCP/UDP/IP suite.

Because the TCP/UDP/IP suite has no unified session layer on which higher layers

are built, these functions are typically carried out (or ignored) by individual

applications. The most notable difference between TCP/UDP/IP and OSI models is

the Application layer, as TCP/IP integrates a few steps of the OSI model into its

Application layer.

Therefore the simplified case, is shown in figure 2.2

 25

Figure 2-2
In the Application layer resides our application. In view of the application layer

demands, our application is responsible for placing a JPEG image into a number of

packets and transmitting them form the server side, and reconstruction the JPEG

image form the packet, in the client side. A more detailed explanation of the way the

JPEG image is cut into packets and how those packets are regrouped to create the

image is given latter.

In the Transport layer, there are two main protocol form which to choose. The User

Datagram Protocol (UDP) and the Transmission Control Protocol (TCP). Each one is

explained later and a comparison between them is performed. We final choose UDP

for the data channel and TCP for the control channel.

In the network layer, the IP is the only available protocol that suites are needs, that is

IP is used by source and destination to communicate packets, over a pocket-switched

network, like internet. The other protocols at the network layer are mainly for routing,

which is out of the scope of our case.

The Data Link layer and the Physical layer are mainly for describing the very low

level of the communication. The Data Link layer protocol is the Ethernet and the

Physical layer describes the physical media between the sender and the receiver.

2.2. Application Programming Interface
In order to control UDP or TCP, we use a programming interface (API) called

Berkley Socket, or just socket. Sockets are a C programming language library for

UNIX, but nowadays it is available at any operating system, e.g. Linux, Windows etc.

There are two main functions for control the UDP, through a socket, send and receive.

 26

In the Windows environment both send and receive functions get the following

attributes:

S [in] Descriptor identifying a connected socket.

Buf [in] Buffer containing the data to be transmitted.

Len [in] Length of the data in buf, in bytes.

Flags [in] Indicator specifying the way in which the call is made.

 27

2.2.1. TCP

The Transmission Control Protocol (TCP) is the most widely use Transport protocol.

The protocol guarantees that the data to be send are going to be received intact, in the

same order as they were send and that they will be directed to the correct application

(Multiplexing – Demultiplexing). The protocol is documented in the IETF RFC 793.

The TCP has an 224 bytes header, containing information such as Source Port

Destination Port, Sequence Number, Acknowledgement Number, Checksum and

others. Applications send streams of 8-bit bytes to TCP for delivery through the

network, and TCP divides the byte stream into segments, of size defined into to the

maximum transmission unit (MTU) and passess them to the data link layer of the

network the computer is attached to . TCP then passes the resulting packets to the

Internet Protocol, for delivery through an internet to the TCP module of other host .

TCP checks to make sure that no packets are lost by giving each byte a sequence

number, which is also used to make sure that the data are delivered to the other host in

the correct order. The TCP module at the other host sends back an acknowledgement

for packets which have been successfully received; a timer at the sending TCP will

cause a timeout if an acknowledgement is not received within a reasonable round-trip

time (or RTT), and the (presumably lost) data will then be re-transmitted. The TCP

checks that no bytes are damaged by using a checksum; one is computed at the sender

for each block of data before it is sent, and checked at the receiver.

2.2.2. UDP

The User Datagram Protocol (UDP) on the other hand does no guarantees the delivery

of the packets the sender has send, nor does is guarantees that the will be received at

the correct order that they are send. It does though guarantee that packets will be

directed to the correct application (Multiplexing – Demultiplexing). The UDP header

is only 64 bytes long, containing the Source Port, Destination Port, Length and

Checksum.

2.2.3. TCP versus UDP for video transmission

Comparing TCP and UDP, TCP offers a reliable delivery and good congestion

management. Nevertheless, the need of acknowledgements and the inability of

process out-of-order packets make it ill-suited for our case. That is the reason why we

choose UDP as a transport layer protocol. UDP takes a packet of data, adds an

 28

http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/Request_for_Comments
http://www.ietf.org/rfc/rfc793.txt
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/MTU_%28networking%29
http://en.wikipedia.org/wiki/Data_link_layer
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Round-trip_time
http://en.wikipedia.org/wiki/Round-trip_time
http://en.wikipedia.org/wiki/Checksum

appropriate header mainly specifying the source and the destination and sends it to the

network layer. Because it does not care whether the packet has reached its destination

of not, any congestion management it left to the application. Therefore our

application must be designed so as to overcome the lack of congestion management

and must be able to process out-of-order packets.

Although the UDP has clear advantages over the TCP as far as the transmission of the

video is concerned. Nevertheless TCP protocol is used in the control connection

established between the server and the client. The reason is that information passing

through the control channel is critical and therefore must reach their destination and

because the bandwidth needed for this communication is very small comparing to

bandwidth needed for transmitting the video.

The use of two distinct channels, one for control and the other for data, between the

server and each client, makes the protocol out-of-bound.

 29

CHAPTER 3

The Implementation

3. Implementation Sub-Systems

3.1. The Server

3.1.1. Initialize the Server

Initially the server binds to a local port in order to receive requests from the clients.

The binding is performed by creating a TCP socket in this port. The server creates a

thread that is listening for incoming requests. A soon as the server receives a request,

it create a UDP socket which is bind to one of his local ports and starts transmitting

the video through this socket to the client. The information needed in order to locate

and send the video to the client, is the client’s IP address and local port. This

information is received in the initial message send to the server by the client. While

transmitting the video to the client, the server keeps listening for incoming

connection. At a given time, the server can communicate with up to 10 clients,

although that figure is easy modified to support up to around 60000 different clients.

3.1.2. The image acquisition

The server is responsible from sending the video just captured. At a given point a new

image is grabbed. Using an image processing library the image is processed and

compressed. The image is compressed using the JPEG lossy compression algorithm

with the restart markers option enabled and set to a specific value.

3.1.3. Datagrams

The communication of the video is performed using UDP sockets. A UDP socket can

transmit only datagrams, it does not directly transmit image. Therefore it is necessary

to place the image into datagrams. The maximum size of a UDP datagram is about

8Kbytes which is far small to contain a full image, especial in our case, where image

are typically about 150 Kbytes. This implies that the image must be partitioned to a

number of datagram. Its datagram is placed into a packet at the network layer. So, in

fact we must partition the image in a certain way, in order to be able to reconstruct the

 30

image from the various packets. Moreover, the packets may arrive out of order, which

implies that care must be taken to support the re-ordering of the packets as they arrive.

In order to facilitate these requirements, the image is partitioned according to the

restart markers located in it.

3.1.4. Creating the datagram

The restart markers are part of a number of markers, as discussed above. The location

of the markers is performed in a serial way. For every marker located a number of

informations are stored into a data structure. Those information are the absolute

position in the image (in bytes), the number of bytes until the next marker, indicating

the size of the segment and the type of the marker i.e. the first restart marker, the fifth

restart marker, the start of frame marker etc.

3.1.5. Packing the datagram

Using this data structure, we start placing image segment until the packet is filled,

or until the END-OF-IMAGE marker is found, indicating the end of the image. In

latter, case the header of that packet is modified to specify the end of the image. Each

packet can contain an integer number of segments, therefore, each packet must start

with a Restart Marker. For every packet, we start from a point in the image, indicated

by a variable, and stop as soon as one of the two constraints discussed above is meet.

At that time, we store the relative position inside the image and the corresponding

Restart Marker. The next packet is filled from the next segment until one of the

constraints set above is satisfied. The packaging process is illustrated in figure 3.1

 31

10 11 12 13 14
15 16 17

10 11 12 13

14 15 16 17

Packet N

Packet N+1

Frame X

segments

Figure 3-1

3.1.6. Creating the header

In order to support out-of-order delivery, a header with information about the packet

received must be attached to the packet. The header is created after filling the packet

with image data. The header carries information in order for the client to understand

the relation of the packet to the full image and support the reconstruction of the image

in case of a packet loss. Those informations are:

I. The frame number, necessary for the client in order to avoid placing the packet

in another frame. Since the UDP protocol cannot guarantee the correct order

of delivery, the application must be able to distinguish the frames.

II. The accumulative number of the first segment the packet contains and the

number of segments the packet contains. A packet can contain many

segments. Therefore, when a packet is lost, a number of segments are lost. In

order to reconstruct the frame, we need to know what segments are missing.

Although we cannot directly access the segments, we bypass this problem by

using the Restart Markers. Each Restart Marker signifies the begging of a

number of segments. Knowing the first Restart Marker and the number of

Restart Markers, we can tell what the missing segments are.

III. The offset from the start of the image, where we start copying the segments to

the packet. This information is used by the client in order to copy the received

 32

packet at exactly the same location in the buffer as it was copied from the

frame.

When the end of the image is reached, the header contains the End-of-Image marker

and the number of packets the server has send for this frame. The client can uses the

number of packets to verify the number of missing packets.

3.2. The Client

3.2.1. Initialize the client

Initially the client creates a UDP socket that is bound to a local port. The client

initiates the connection by sending a packet to the server stating his IP address and the

local port to which he is waiting to receive the video. If the server cannot be reached

by the client, the clients keeps trying to connect, in case there is excessive traffic to

the network or the server is temporary unavailable. As soon as the server is reached, it

starts transmitting the video to the client, at the IP address and the port specified in the

request message.

3.2.2. Receive the packet

The client receives packet through the socket he specified. The packet are received

out-of-order, therefore a re-ordering is performed. The packet is placed in the image

buffer, according to the informations in the packet’s header. Along with other

information, the header indicates the absolute position (in bytes) of the first block that

was placed in the packet. Since the rest of the blocks in the packet are placed

sequentially, we start placing the image data in the packet at the same absolute

position in the client’s image buffer.

 33
receiver buffer

packet N-1

packet N

Packet N+1

Segment
10

Segment
11

Segment
12

Segment
13

Segment
14

Segment
15

Segment
16

Segment
17

Segment
18

Segment 10 – 12 Segment 13 - 15 Segment 16 - 18

Figure 3-2

3.2.3. Check for errors

After receiving a packet, it is necessary to check if the packet is the expected one or

not. This is check, by comparing the last packet’s number with the packet number of

the newly received packet. If the packet’s number is the subsequent number of the

previously received packet, then no error has occurred. We assume that the packet

receive in error-free, since the error detecting code is define in the network lay (IP

layer). Ideally, by the end of the transmission of the image, the image buffer in the

server must be identical with the image buffer in the client. If, on the other hand, the

newly received packet’ number incorrect, we identify the packets missing and store

this information into a data structure. There are two types of error in the received

packet, either the packet’s number is bigger than expected or it is smaller. In the

former case we assume that the packets between the last packet received and the

newly received have been lost. In the other case, we assume that the rest of the last

image packet has been lost, and so have the first packet of the image represented by

this packet. In either case, a special error code is returned indicating the type of error

detected.

3.3. The Error Concealment Techniques
When a newly received image raises such an error code, the reconstruction function

takes over. When a packet is lost during the transport from the client to the server, a

portion of the image is lost. Due to the entropy encoding of the image, a missing part

of the bitstream can result in total destruction of the image. There are three kinds of

concealment algorithm; the spatial, the temporal and the hybrid.

3.3.1. Spatial redundancy based concealment algorithms

The spatial error concealment algorithms rely on the inherited spatial smoothness

found the any image. The main idea is to conceal the error using neighbouring

available pixel coefficients. Although this technique is very simple, is does not has

good results. This is due to the blurring of the edges in the image, and the general

inability to reconstruct complex patterns. With some extra effort, much better results

may be presented by integrating an edge-based directional interpolation. A very

 34

simple scheme has been also proposed in [8], where using the pixel-wise difference

between two sets of projection data available on the block boundary, a better

estimation of the edge direction is performed. Projection onto convex sets (POCS) has

been proposed, which iteratively use the spatial redundancy and the pixel value

constraint. The performance of such a scheme is depended on the accuracy of the

estimation about spatial redundancy and pixel values.

3.3.2. Temporal redundancy based concealment algorithms

Temporal error concealment, exploit the temporal redundancy inherited in a video.

They use temporally adjacent frames to evaluate the missing information. The idea is

based on the fact that video content is smooth and continuous in the time domain. One

scheme is to just copy the missing blocks from the previous frame. This assumes that

the motion vector (MV) is near zero. A near-zero motion vector implies a little or no

motion in the scene. This is the typical case for surveillance systems. A different

approach is to use the motion vectors from the previous image. In scenes with regular

motion, this approach has good result. Unfortunately, due to the real-time nature of

our algorithm, the extra processing power used in evaluating the motion vector, may

result is a drop of the frame rate. Thus, this approach is inefficient is our technique.

3.3.3. Hybrid spatial-temporal based concealment algorithms

Some effort has been made in order to combine both spatial and temporal

concealment algorithms, in order to improve there performance. An example is the

use of smoothing constraint applied to both spatial and temporal, in order to produce a

more smooth concealed block. The problem with this approach is the possible loss of

high frequency components. Although more recent techniques have been developed,

in general there has been little success in joint effort. This is because there is lack in

efficient ways of merging the results in both spatial and temporal error concealment.

The extra complexity involved in such a process is also of significant effect, again due

to the limited time and processing power available in such types of applications.

 35

3.4. The Error Concealment Algorithm Implementation
In our implementation, we have used only the temporal based error concealment

technique. The choice was made upon examining the video in question and the real-

time constraint set on our model. Only one technique was chosen to be implemented,

due to the relatively low increase in image quality of the hybrid spatial-temporal

techniques and the increase of the computational complexity of implementing both

spatial and temporal concealment technique. Furthermore, our implementation’s main

use in surveillance, where we usually have little movement and therefore little

difference in successive frames. The key feature used in implementing our

concealment technique was the use of Restart Markers. Restart Markers are spatial

code words that are used in the encoding of the JPEG frames, that make up the M-

JPEG video.

3.4.1. The use of Restart Markers

Each packet can contain a number of segments. These segments are distinguished

using Restart Markers. Each segment encodes a predefined number of 8 x 8 blocks.

Since the images have fixed dimensions, both width and length, the number of blocks

that make the image is also fixed. Therefore, the number of Restart Markers is also

fixed. For Example,

an 800 x 800 image has 100*100 =10 000 blocks and 10 000 – 1 Restart Markers.

Although the number of blocks, segments and Restart Markers are fixed, none of

them have a constant size in terms of bytes. This variation is a consequence of the

entropy encoding stage in the JPEG compression algorithm. Since most of the AC

coefficients produced by the DCT encoding are zero or near-zero, an 8 x 8 block can

vary form 1 (only the DC coefficient) up to 64 coefficients (the DC and all the AC

coefficients). As a result a segment, which is made up form a fixed number of

blocks, can have variable size. Since a packet is made up form segments, the

variation of the segment’s size implies a variation in the number of segments that a

fixed size packet can carry. For example, a 4Kbyte packet can contain from 10 large

size segments to 200 small size segments.

 36

In terms of error concealment, the variation of segments contained in a packet, makes

a direct copy from the corresponding packet received in the previous image to the

place normally occupied from the missed packet, ineffective. This inefficiency is due

to the variable number of segments contained in the previously received packet and

the variation of the missing packet’s number of segments. The above are illustrated in

figure 3.3.

15 16 23 Segments

Packet X of Frame N-1

10 11 26 Segments

Packet X of Frame N-1

Figure 3-3

 37

In order to overcome the problem, we use the Restart Markers is an accumulative

way. Each packet’s header carries the information of the first accumulative Restart

Marker and the number of Restart Markers contained in the packet. The number of the

Restart Markers contained in the packet is the same as the number of the segments

contained in the image. Since the segments are evaluated in the spatial domain, the

nth segment is corresponding to the blocks located at specific position in the image

and they are the same for every image transmitted, as shown in figure 3.4

X

X

3.4.2. Locating the missing segments

In order to reconstruct the image all the Restart Markers of the frame must be located.

First, we must find the missing segment. This is done by examining the packet that

was received just before a packet was missed. From the header of that packet we can

find the first segment that was encoding in the missing packet, by adding the number

of segments in the previous packet with the first segment located in that packet.

Then, we must find the number of segment that this packet was carrying. This can

also be found by examining the header of the packet that just arrived. From this

packet’s header we can evaluate the number of missing segment by subtracting the

first segment in the missing packet from the first segment encoded in the packet just

arrived.

Segment X
Y

Frame N-1

Y
Segment X

Frame N

Figure 3-4

 38

Segment11 Segment 12 Segment 51

Number of Segments: 50

Packet N-1 at T-1

3.4.3. Creating the reconstructed image

Having located the first missing segment and the number of missing segment, we can

reconstruct the frame based on previously received packets. When a packet is missing

we search the packets received from the previous frame and we locate the missing

segment in the previous frame. By knowing the first missing segment and the

segments missing, we just copy the corresponding segment form the previous packets.

For example, if the missed packet had segments form A to B, we copy the segments A

to be from the previous frame. This process is illustrated in figure 3.6.

 39

Segment52 Segment 53 Segment 92

Number of Segments: 40
Missing Packet N

Estimate missing segments

A B

Frame N Segment X

A B

Frame N-1Segment X

Copy missing segments

Locate missing segments

Figure 3-6

 40

Figure 3-7: Block Diagram of the Server

 41

 42

Figure 3-8: Block Diagram of the Client

CHAPTER 4

Experimental Results

4.
4.1. Theoretical Background

The experimental results are separated into two groups. In the first group we

measured the quality of the received video when there is no motion in the transmitted

video. In the second group we measured the quality of the received video when there

is some motion. The motion is measured in terms of frame-to-frame pixel-wise

difference. Although, the frame-to-frame pixel-wise difference is not a good metric of

the motion inside the video, it give a good hind as to weather two successive frames

are similar enough to produce good results in terms of our error-concealment

algorithm. The relation of the error-concealment algorithm and the motion of the

video in very close, because of the temporal redundancy of the video. The more

motion there is in the video stream, the smaller the temporal redundancy, and the

poorer the missing packet estimation is.

In order to measure the quality of the received video, we calculate the Mean Square

Error (MSE) and the Peak Signal to Noise Ration (PSNR) in decibels (db),

 using eq 4.1

For a N by N pixels Image

[]
2

0 0
2

(,) (,)
N N

X y

f x y F x y
MSE

N
= =

−
=
∑ ∑

10
25520*logPSNR

RMSE
⎛ ⎞= ⎜ ⎟
⎝ ⎠ Where R M SE M SE=

 eq .4.1

 43

For each of the two group we measure the quality of the received image when 3,6 and

10 % of the packets consisting the image are lost

In the experiments we consider the case of 3, 6 and 10 % packet loss, while we do not

consider the available bandwidth. The idea is that in order to transmit the necessary

information with no error, a minimum bandwidth for the channel must be set

according to Shannon’s theorem [10]. Assuming that the minimum bandwidth

necessary is available in a mean value manner, we consider the cases where the

deviations on the available bandwidth caused by the packet-switched network

functions led to a specific bit error rate. For those bit error rate, we examine the effect

on the received images and the quality of the error-concealment algorithm.

 44

4.2. No Motion

3% Packet loss

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 104

M
S

E

frames

0 5 10 15 20 25 30
0

5

10

15

20

25

P
S

N
R

frames

 45

6% Packet loss

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

M
S

E

frames

0 5 10 15 20 25 30
5

10

15

20

25

P
S

N
R

frames

 46

10% Packet loss

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

M
S

E

frames

0 5 10 15 20 25 30
5

10

15

20

25

P
S

N
R

frames

 47

4.2.1. Comments on first group’s results

The first group of results refers to the Mean Square Error (MSE) and the Peak Signal

to Noise Ratio (PSNR) of video with no motion. The error concealment algorithm

performs very well in all three cases, namely 3%, 6% and 10 % packet loss. The

PSNR is about 24 db and the RMSE is almost zero. On the other hand the values of

the originally received video display a high deviation. Although it may appear

strange, it is consistent with what is expected.

When a Restart Marker is lost from a frame, the frame is useless from that point on.

Due to the decompression algorithm of the JPEG, when a Restart Markers is missing

the decompression is stopped even if the rest of the image is valid. Therefore the

degradation of the frame is irrelevant to the number of lost packets.

This explains the deviation of the values of the originally received video. The first

missed Restart Marker is the only parameter controlling the quality of the received

video.

The frames in case 1, display how a packet loss can affect the quality of the received

video. The originally received frame from the client contains structural information

but little color information (only the red band). This is effect is cause by the way the

JPEG image is compressed. The color components are encoded sequentially. When

packet is lost, the rest of the frame is useless even if it is correct. Therefore only part

of the color information is decompressed and displayed by the client.

The frames in case 2 display the results when the red and part of the green band

components have been decompressed.

 48

Frame from Server

Frame before Error Concealment

Frame after Error Concealment

 Case 1

 49

Frame from server

Frame before reconstruction

Frame after reconstruction

Case 2.

 50

4.2.2. With motion

3% packet loss

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

M
S

E

frames

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
S

N
R

frames

 51

0 5 10 15 20 25 30
0

10

20

30

40

50

60

P
er

 C
en

t f
ra

m
e

di
ffe

re
nc

e

frames

 52

6% packet loss

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 104

M
S

E

frames

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
S

N
R

frames

 53

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

P
er

 C
en

t f
ra

m
e

di
ffe

re
nc

e

frames

 54

10% packet loss

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

4

M
S

E

frames

0 5 10 15 20 25 30
0

5

10

15

20

25

30

P
S

N
R

frames

 55

0 5 10 15 20 25 30
0

10

20

30

40

50

60

P
er

 C
en

t f
ra

m
e

di
ffe

re
nc

e

frames

 56

4.2.3. Comments on second group’s results

The second group of results examines the quality of the received video when there is

some motion. The amount of motion is measured in terms of frame-to-frame

difference (per cent). This metrics gives us a hint as to how much one frame has

changed since the previous one. The error-concealment algorithm performs well, even

in the case of motion. The motion of the video is not heavily reflected on the quality

of the reconstructed image is terms of the PSNR. The PSNR values tend to “follow”

the motion, but no in the same extend. The reason of this effect is that when the error

concealment algorithm tries to estimate a missed packet, it uses as a reference the

previously received corresponding frame. Since the current frame is not the same as

the previous one, the quality of the reconstructed frame is lower.

The originally received video displays high deviation in its quality, deviation

irrelevant to the number of packets lost, but consistent only to the first missed packet.

For example, from the graphs when notice a high RMSE at frame 26. This value is so

high because of the combination of high the motion in the previous frames and that

one of the first packet of the image was lost. Missing one of the first packets implies

that the received image became useless

 57

CHAPTER 5

System Overview

Our system consists of a server and one or more clients. The server is a 5 frames per

second colour camera connected with a Matrox ® DSP on a Pentium Xeon®

computer with a one gigabit network card. The test clients are a Pentium Xeon

computer a one gigabit network card and a Pentium 4 computer with a one gigabit

network card. The client and the server are connected on a gigabit switch.

The grabbing and the display of the images are performed using the Matrox Mil®

library.

Conclusion and Further Work

The error-concealment algorithm performs well when there is little or no motion in

the video. In videos with more motion, the temporal redundancy quality of the video

makes temporal based error-concealment perform badly. In order to achieve better

quality of the received video, spatial based error concealment techniques must also be

introduced.

Furthermore, a higher compression ration must be achieved due to the limitation of

the available bandwidth. In any case, the computational complexity constrain must

also be accounted for.

Surveillance oriented application must also take advantage of the growing area of the

wireless networks.

Another standard close to the JPEG is the JPEG2000 [11]. JPEG2000 compression

algorithm is based on wavelet transform, can achieve very good results, while it is

keeping the computational complexity in low levels.

Another network protocol, the Real-time Transmission Protocol (RTP) [3] can also be

used in transferring the MJPEG video bitstream. RTP is a general purpose video

transport protocol, where the MJPEG video stream is registered as MJPEG load.

 58

References

[1] The JPEG Still Picture Standard, Gregory K. Wallance, IEEE Transactions on

Consumer Electronics.

[2] Detection and Correction of Transmission Errors in JPEG Images, Yh Han, JJ

Leou - IEEE TRANS. CIRCUITS SYST. VIDEO TECHNOL. , 1998

[3] Computer Networking. A Top-Down Approach Featuring the Internet, James

F. Kurose, Keith W. Ross, Pearson Education Inc

[4] Transporting Real-Time Video over the Internet: Challenges and Approaches.

Dapen Wu, Yiwei Thomas and Ya-Qin Zhang, Proceedings of the IEEE, Vol. 88, No

12, December 2000

[5] JPEG File Interchange Format, Version 1.02, Eric Hamilton, September 1,

1992, C-Cube Microsystems

[6] A real-time algorithm for error recovery in remote video-based surveillance

application, C Sacchi, F Granelli, CS Regazzoni, F Oberti - Signal Processing: Image

Communication, 2002

[7] Multidescription Video Streaming with Optimized Reconstruction-Based DCT

and Neural-Network Compensations, X Su, BW Wah - IEEE Transactions on

Multimedia, 2001

[8] Information Technology – Digital Compression and Coding of continuous-

time still image – Requirements and Guidelines, The International Telegraph and

Telephone Consultative Committee, T.81, 09/92

[9] Joint Photographic Experts Group (JPEG) Image Compression for the

National Imagery Transmission Format Standard, Department of Defence, Interface

Standard MIL-STD-188-198A 15 December 1993,

 59

SUPERSEDING MIL-STD-188-198, 18 June 1993

 [10] Communication in the Presence of Noise, Claude E. Shannon, the Proceedings

of the IRE, vol. 37, no.1, pp. 10–21, Jan. 1949.

[11] http://www.jpeg.org/jpeg2000, site of the JPEG Committee

 60

http://www.jpeg.org/jpeg2000
http://www.jpeg.org/committee.html

	
	
	 Acknowledgements
	
	
	 Table of Contents
	
	 Introduction
	 Application’s objectives
	 CHAPTER 1
	JPEG Compression Algorithm
	1.1. Modes of operation
	1.2. Compression
	1.2.1. DCT
	1.2.2. Quantization
	1.2.3. Entropy Encoding
	1.2.4. Color Transformation
	1.2.5. Downsampling color components
	1.2.6. Encoding Order and Interleaving

	1.3. Decompression
	1.4. Baseline Encoding Example
	1.5. Image, frame, and scan
	1.6. The JFIF (JPEG File Interchange Format)
	
	1.6.1. The JPEG Bitstream
	1.6.2. Frame header
	1.6.3. Scan header
	

	1.6.4. Table-specification and miscellaneous marker segment syntax
	1.6.5. Quantization table-specification syntax
	1.6.6. Application Data

	 CHAPTER 2
	2.1. Protocols
	2.2. Application Programming Interface
	2.2.1. TCP
	2.2.2. UDP
	2.2.3. TCP versus UDP for video transmission
	

	 CHAPTER 3
	The Implementation
	3.1. The Server
	3.1.1. Initialize the Server
	3.1.2. The image acquisition
	3.1.3. Datagrams
	3.1.4. Creating the datagram
	3.1.5. Packing the datagram
	3.1.6. Creating the header

	3.2. The Client
	3.2.1. Initialize the client
	3.2.2. Receive the packet
	3.2.3. Check for errors

	3.3. The Error Concealment Techniques
	3.3.1. Spatial redundancy based concealment algorithms
	3.3.2. Temporal redundancy based concealment algorithms
	3.3.3. Hybrid spatial-temporal based concealment algorithms

	3.4. The Error Concealment Algorithm Implementation
	3.4.1. The use of Restart Markers
	3.4.2. Locating the missing segments
	3.4.3. Creating the reconstructed image
	

	 CHAPTER 4
	Experimental Results
	4.1. Theoretical Background
	4.2. No Motion
	4.2.1. Comments on first group’s results
	4.2.2. With motion
	
	4.2.3. Comments on second group’s results

	 CHAPTER 5
	System Overview

