A hybrid peer-to-peer system with a
schema based routing strategy

Erietta Liarou

A thesis submitted in partial fulfillment of the
requirements for the degree of

ELECTRONIC AND COMPUTER ENGINEERING

TECHNICAL UNIVERSITY OF CRETE
DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

INTELLIGENT SYSTEMS LABORATORY

Abstract

During the last years, the area of peer-to-peer systems has attracted much
interest in the research community. Peer-to-peer technology has become popular
mainly through file sharing applications such as Napster, Gnutella and KazaA.
At the same time, the amount of available information on the Web is growing,
so its organization in a semantic way becomes imperative. The combination of
Semantic Web and peer-to-peer technologies will probably provide accurate data
retrieval and efficient search. For peer-to-peer environments, metadata are abso-
lutely crucial in order to describe the resources managed by the peers. Schema-
based peer-to-peer networks have a number of important advantages over previous
simpler peer-to-peer networks.

This dissertation presents the design and development of a schema-based hy-
brid peer-to-peer file sharing application. Our system supports the existence of
different metadata vocabularies between peers and also enables semantic inter-
operability by providing translation between the different vocabularies. We also
modify the hybrid peer-to-peer model. In addition to the traditional distinc-
tion between peers, as server or client, we introduce a new distinction between
client-peers. It is known that the available bandwidth, the storage space and the
processing power vary between computer systems that participate in a distributed
system. Thus, in our approach the more powerful client-peers (volunteer peers)
remove load from the server, by sacrificing part of their system resources, while
the less powerful client-peers (normal peers) participate in the network having
the role of the traditional client-peer in a hybrid peer-to-peer system. Finally, the
system contains a fault-tolerance mechanism that guarantees connectivity, when
nodes of the network fail or leave silently.

Contents

1 Introduction

1.1 Overview e
1.2 Organization of the dissertation

Related work and Background

2.1 Related work
2.1.1 A Taxonomy of computer systems
2.1.2 A Taxonomy of Peer-to-Peer systems
2.1.3 Pure Peer-to-Peer networks
2.1.4 Hybrid Peer-to-Peer networks
2.1.5 Super-peer networks
2.1.6 RDF-based peer-to-peer network

2.2 Background
2.2.1 The Semantic web
2.2.2 The RDF datamodel
2.2.3 Metadata and the Dublin Core element set
224 ThelJena API
2.2.5 The MySQL database
2.2.6 The RDQL query language

2.3 SUMmMAary . . o.o.o. ..

System Architecture

3.1 Architecture
3.1.1 System functionalities
3.1.2 Normal and volunteer client-peers

3.2 The server-peer L
3.2.1 Data structures
3.2.2 Handling requests oL
3.2.3 Handling the connect and disconnect request
3.2.4 Handling the update schema request
3.2.5 Handling the update metadata item request
3.2.6 Fault-tolerance

3.3 The client-peer

-~ Ot

3.3.1 Functionalities of client-peers 33

3.3.2 Set client-peer information 35
34 Summary 35
Schema-based Routing 36
4.1 Schema 36
4.1.1 The schema supported by server-peers 37
4.1.2 The schema supported by client-peers 38
4.2 Network Functionalities 40
4.2.1 Publishing resources 41
4.2.2 Removing resources 46
4.2.3 Updating the metadata of resources 49
4.3 The process of answering queries 53
4.4 When client-peers define their own schema 57
4.5 SUMMATY o oo 60
Concluding Remarks 62

References, 64

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3

3.4

4.1
4.2

4.3
4.4

4.5

A taxonomy of computer systems architectures.
A taxonomy of P2P systems categories
The Gnutella network
The Napster network
The super-peer network L.
The HyperCuP super-peer topology
A layered approach of the Semantic Web
Graph representation of an RDF statement
Graph representation of a complex RDF statement
The Dublin Core element set
The architecture of the Jena2 APT

System architecture
The server-peer architecture
The active-clients data structure and the serverSchema data struc-
ture . ..o L e
The client-peer architecture

Schema translation L.
An example of a possible mapping between the schema of a client-
peer and the one of a server-peer
The temporary item attributes
The current schema and the temporary items, previous(r) and
metadata(r)
The data structures active-clients and serverSchema(x)

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12

RDF information stored in a MySQL table 21
XML representation of the metadata(r) 41
The modulation of currentSchema(c) after the publish of » . . . 42
XML representation of the metadata(r’) 44
The modulation of currentSchema(c) after the publish of »* . . . 45
The curentSchema(c) before the resource r is removed 47
The metadata file of the resource » 48
The curentSchema(c) after the remove of the resource r 49
The new metadata that ¢ sets while updating » 52
The modulation of the current schema of a client-peer after the

updating of a resourceo 54
XML representation of the metadata(r), in user-defined schema . 59
The modification of user-defined current schema after the publish

of o 99
The translated current schema 60

Chapter 1

Introduction

The term “peer-to-peer” refers to a class of systems and applications that func-
tion in a decentralized way as to achieve share of distributed resources. The
area of peer-to-peer systems attracts much interest in the network community,
and has become popular through some file sharing applications such as Napster
[30], Gnutella [17] and KazaA [22]. At the same time, the amount of available
information on the Web is huge and the requirement of its organization, in a
semantic way becomes masterful. The combination of Semantic Web and peer-
to-peer technologies will probably provide accurate data retrieval and efficient
search.

RDF-based peer-to-peer networks can advance the simple peer-to-peer net-
works like Napster and Gnutella and the more sophisticated ones, based on dis-
tributed indices such as CAN [35] and CHORD [21]. RDF-based peer-to-peer
networks allow complex description of resources and searching of resources is
based on meta-information. This dissertation presents the development of a
schema-based hybrid peer-to-peer system, that functions as a resource searing
application.

1.1 Overview

A taxonomy of computer systems classifies them into centralized and distributed
systems [28]. Distributed systems can be further classified into the client-server
model and the peer-to-peer model (P2P). The client-server model can be flat or
hierarchical. In the flat model all clients communicate with a single server, while
in the hierarchical model, the servers of one level are acting as clients to higher
level servers. The peer-to-peer model can be pure, hybrid or super-peer [49].
In pure peer-to-peer systems, there does not exist a centralized server, but all
peers have equal roles and responsibilities, while in a hybrid model a centralized
server and clients exist. The super-peer model is an intermediate solution, in
which super-peer nodes act like peers of pure peer-to-peer systems, but also they

are connected with clients in a centralized way. Of all these classes of computer
systems, the most popular are the peer-to-peer.

The subject of “peer-to-peer” attracts much interest in the network commu-
nity. Peer-to-peer systems have emerged as a popular way to share huge volumes
of data, for example the system Napster provides support for music sharing on
the Web. Napster, Gnutella and KazaA are popular examples of peer-to-peer
file sharing networks. Another category of peer-to-peer systems is based on dis-
tributed task execution. In these systems, a central server splits a large task
into small independent subtasks and forwards each part to individuals comput-
ers. Each computer sends the results back to the server, and then a new job is
allocated to the client. In this way, individuals nodes execute work in parallel,
so the total task is executed more efficiently and faster. An example of this class
of peer-to-peer networks is the system SETIQHOME [41]. Moreover, there are
collaborative peer-to-peer systems, in which users collaborate in real time. These
systems include applications such as games, chat, file sharing and APIs that al-
low software developers to build their own applications or extend the existing
ones. Groove [34] is a system of this category. Finally, there are peer-to-peer
systems that belong to the category platforms, as for example the JXTA [4] and
the .NET [5]. Under the term platform it is meant an infrastructure that enables
other applications or other systems to run in a P2P fashion.

Another taxonomy of peer-to-peer systems [28], classifies the P2P networks
to these that are simple such as Napster [30] and Gnutella [17], to these that are
more sophisticated, using distributed hash tables, like CAN [35] and CHORD |[21],
and finally to these systems that allow schema description of resources and pro-
vide complex queries using metadata, instead of simple keyword-based searches.
The Edutella project [44] belongs to the last category. The schema-based net-
works combines Semantic Web and peer-to-peer technologies in order to make
distributed learning repositories possible and useful. These networks rely on the
description of resources, using metadata vocabularies. In this way, the infor-
mation is no longer organized in hypertext like structures, but is organized and
stored in a semantic way. The schema-based peer-to-peer networks provide more
efficient and accurate search in the Web.

In this dissertation we design and implement an RDF-based, hybrid peer-to-
peer resource sharing application. Our system supports the existence of different
vocabularies between peers and also enables semantic interoperability between
them, since it provides translation between the different metadata vocabularies.
We also modify the hybrid peer-to-peer model. In addition to the traditional
distinction between peers, as server or client, we introduce a new distinction
between client-peers. It is known that the available bandwidth, the storage space
and the processing power vary between computer users that participate in a
file sharing application. Thus, in our approach the more powerful client peers
remove load from the server, sacrificing part of their system resources, while the
less powerful clients participate in the network having the role of the traditional

client in a hybrid peer-to-peer system. Moreover, the system contains a fault-
tolerance mechanism that guarantees connectivity, when nodes of the network
fail or leave silently.

The users of the resource sharing application are able to use a number of
functionalities. They can:

e Define their own metadata vocabulary.

Publish files of their computer, describing them by metadata, so other users
may see and request these.

Remove already published files.

Update the description of already published files.

Query the system in order to find matching resources owned by other users.

1.2 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2 we briefly discuss alter-
native peer-to-peer architectures and some well-known, representative networks
of these architectures. In the same chapter we also present the necessary back-
ground for our system. In Chapter 3 we study the architecture of our system
and how the desired functionalities can efficiently be supported using such an
architecture. In Chapter 4 we make a discussion about the schema that different
types of peers use, and then we analyze in more detail the network functionalities
of the system and how these functionalities are executed in a schema-based rout-
ing way. We describe the possible scenarios of our resource sharing application.
Finally, in Chapter 5 we present our conclusions and future work possibilities.

Chapter 2

Related work and Background

In this chapter we discuss some alternative peer-to-peer architectures and the
related systems that support these. We also provide the necessary background
for this thesis.

2.1 Related work

In the following subsections we present a taxonomy of computer systems from
the peer-to-peer perspective. We also classify the peer-to-peer systems in terms
of their application domain. We briefly discuss some alternative architectures for
peer-to-peer systems and the some well-known, representative networks of these
architectures.

2.1.1 A Taxonomy of computer systems

The computer systems can be classified into centralized and distributed. Central-
ized systems represent single-unit solutions, including single- and multi-processor
machines, as well as high-end machines, such as supercomputers and mainframes.
Distributed systems are those in which their components computers are dispread
and communicate in order to exchange information, by passing messages. Dis-
tributed systems can be classified into client-server model and the peer-to-peer
model (P2P). The client-server model can be flat or hierarchical. In the flat
model all clients communicates with a single server, while in the hierarchical
model, the servers of one level are acting as clients to higher level servers. The
peer-to-peer model can be pure, hybrid or super-peer. In the pure peer-to-peer
systems, there does not exist a centralized server, but all peers have equal roles
and responsibilities, while in a hybrid model a centralized server and clients exist.
The super-peer model is an intermediate solution, in which super-peer nodes act
like peers of pure peer-to-peer systems, but also they are connected with clients in
a centralized way. The taxonomy of computer systems discusses above is shown

Computer Systems

/\

Centralized Systems Distributed Systems

Client-Server Peer-to-Peer
Flat Hierarchical Pure Hybrid

Figure 2.1: A taxonomy of computer systems architectures

in Figure 2.1. More details on taxonomy of computer systems and mainly on
peer-to-peer systems are available in [28].

2.1.2 A Taxonomy of Peer-to-Peer systems

A peer-to-peer (P2P) computer network is a type of network in which each work-
station has equivalent capabilities and responsibilities, namely it does not have
fixed clients and servers, but a number of peers that function as both clients and
servers. This type of network differs from the client-server model, in which each
node has specific role, whether as client or as server.

In Figure 2.2 we present a taxonomy of P2P systems in terms of their ap-
plication domain. Popular examples of P2P systems are file sharing networks
such as Napster [30], Gnutella [17], Freenet [16] and Kazaa [22]. The peers of
these networks know just a reference to a file and then request it and retrieve it.
Another category of peer-to-peer systems is the distributed computing. A central
server splits a computational problem into small independent parts and forwards
each part to individuals computers, which are equipped with the client software.
The client software sends the results back to the server, and then a new job is
allocated to the client. The system SETIQHOME [41] belong to this category.
Also, there are collaborative peer-to-peer systems. Collaborative P2P applica-
tions allow people on the Internet to meet and work together. Groove is such a
system that includes applications such as chat, file sharing, and bulletin boards.
It also includes programming libraries and APIs that allow software developers
to build their own applications or extend the existing ones. Finally, there are
P2P systems that belong to the category platforms, for example the JXTA [4]
and the .NET [5]. Under the term platform it is meant an infrastructure that

P2P Systems

_— N T

Distributed File sharing Collaboration Platforms
computng

Figure 2.2: A taxonomy of P2P systems categories
enables other applications or other systems to run in a P2P fashion.

2.1.3 Pure Peer-to-Peer networks

In pure peer-to-peer systems all peers are equivalent, namely they have the same
role and responsibilities. There does not exist a centralized server and clients.
On the contrary, each peer is both a server and a client, it is a servent. All the
nodes have the same responsibilities in terms of publish, download, query and
communicate with any other connected node.

The Gnutella [17] belongs to the category of the pure peer-to-peer systems.
The idea for this network was introduced in 2000 by tow employees of AOL’s
Nullsoft! division, Justin Frankel and Tom Pepper. Gnutella is a file sharing
protocol. Users, who run software that implements the Gnutella protocol [2], are
able to search for and retrieve files from other users connected to the Internet. A
user must know the IP address of other Gnutella nodes in the network, in order to
be connected to them. This is possible because there is a Web site where a number
of Gnutella users are posed. When a user wants to find a file, he sends a query
to his neighbor (the nodes that are directly connected to him). The neighbors
respond, if they have results and forward the query request to their neighbors
using the flooding protocol. The query request is forwarded for specific time, it is
called time-to-live (TTL). If a search request turns up a result, the node that have
the result contacts the searcher directly and then the latter is able to download
the file. The Gnutella protocol does not provide a fault tolerance mechanism. In
practice, searching in the Gnutella network is often slow and unreliable. Each
node is a regular computer user, as such they are constantly connecting and
disconnecting, so the network is never completely stable. However, various file
sharing applications have been implemented using the Gnutella protocol, as for
example the Limewire [23]. Other popular Gnutella clients are the gtk-gnutella

thttp://www.nullsoft.com/

10

servent peer

Q = query
R =response
D = file download

Figure 2.3: The Gnutella network

[19], the BearShare [7] and the Shareaza [42]. In Figure 2.3 is shown the Gnutella
network.

Freenet [16] is another pure peer-to-peer file sharing network that initially
designed by Ian Clarke [11, 12]. The main goal of Freenet is to provide an
anonymous method of storing and retrieving information. A user is able to make
requests for files without uncovering his identity. Also, the users store their files in
the system and it is impossible to be determined who place each file to the system.
The contents of each file are encrypted, and can also be broken into sections that
are distributed over many different computers. Even the participants do not
know what are storing.

2.1.4 Hybrid Peer-to-Peer networks

In hybrid peer-to-peer systems there is distinction between peers. The peers are
not equivalent, they have different roles and responsibilities. In a hybrid peer-to-
peer model there exist one or several index servers and clients that are directly
connected to a server. A server obtains meta-information, such as the identity
of the peers on which some information is stored. The client peers connect to a
server as to publish information about the contents they offer for sharing and to
search for files.

A popular hybrid peer-to-peer system is the Napster [30], it announced in
January 1999 by Shawn Fanning. The Napster protocol [29] is a file sharing
protocol that was aimed to share MP3 music files among Internet users. Each
client peer connects to a central server and publish information about the content
that it has available in its computer. The servers are organized in clusters. Each

11

server peer

cluster of servers

client peer

R = response
D = file download

Figure 2.4: The Napster network

client peer send queries to its server, when it wants to search for a file. The servers
then co-operate to process the query and return a list of matching files and their
locations to the client that queries. After receiving the results, the client selects
one or more files form the list and so initiates file exchanges directly from other
clients. The servers also monitor the state of each peer in the system, keeping
track of meta-information such as the clients’ reported connection bandwidth
and the duration that the client has remained connected to the network. This
information is available to the client that requests for a file, so it is able to choose
the best client to download a resource. The Napster network is shown in Figure
2.4.

2.1.5 Super-peer networks

As we discussed above the peer-to-peer model can either be pure or it can be
hybrid. There is also an intermediate solution with the super-peers peer-to-peer
model. A super-peer is a node of the network that acts as a server to a subset of
clients and also it is equivalent to other peers in a network that consists only of
super-peers. The query process is more efficient that the one in Gnutella, because
in Gnutella all peers of the network should handle queries, unlike in super-peer
networks only super-peers handle this process. Client-peers are connected to a
super-peer, in a client-server way and they send to it their requests. KazaA [22]
is a well-known super-peer system.

KazaA is another file shearing system that is used to exchange MP3 music
files. It uses the FastTrack protocol [15]. In KazaA, users with the fastest Internet
connections and the most powerful computers are automatically designated as
super-peers. Peers connect to their local super-peer to upload information about
the files they share and to search for files. A super-peer contains a list of some of

12

super-peer network super-peer

client peer

Q = query
R =response
D = file download

Figure 2.5: The super-peer network

the files made available by other peers and where they are located. When a peer
performs a search, first searches the nearest super-peer and then the super-peer
sends to the peer the results. This first super-peer refers the search to other super-
peers and so on. This process is designed to make searching as fast as possible.
In Figure 2.5 is shown the super-peer architecture. Another peer-to-peer resource
sharing system that is based on the super-peer model is the P2P-DIET [43]. This
system also provides the publish/subscribe scenarios.

2.1.6 RDF-based peer-to-peer network

Another taxonomy of peer-to-peer systems, classifies the P2P networks to these
that are simple such as Napster [30] and Gnutella [17], to these that are more
sophisticated, using distributed hash tables, like CAN [35] and CHORD [21], and
finally to these systems that allow schema description of resources and provide
complex queries using metadata, instead of simple keyword-based searches. The
Edutella project [44, 31] belongs to the last category.

The Edutella network is a schema-based peer-to-peer network that use the
super-peer approach. It relies on the W3C metadata RDF [48] and RDF Schema
(RDFS) [9] to describe resources and is builded on the JXTA framework [4].
The Edutella network standardizes query and retrieval of RDF data, provides
translation between different metadata vocabularies as to enable interoperability
between different peers, defines views that join data from different metadata
sources and reconciles conflicting and overlapping information. Super-peers in
the Edutella network are arranged in the HyperCuP topology [37], as it is shown
in Figure 2.6.

13

Figure 2.6: The HyperCuP super-peer topology

2.2 Background

In the following subsections we present the necessary background for this thesis.
We give a brief description of the RDF data model, the Dublin Core metadata
standard, the Jena API, the MySQL database and the RDQL query language.

2.2.1 The Semantic web

In our days, the amount of information that there is on the World Wide Web
is huge and it is continuously increased. Most of the information is designed by
humans and it is not understandable by machines, namely by the robots that
browse the Web. In parallel, millions of users participate in the Web in daily
basis. All these elements point to that it is difficult to efficiently search and
organize the information. The requirement for evolution of the existing Web
leads to the vision of the Semantic Web. The inspirator of the Semantic Web is
Tim Berners-Lee?, a software engineer at CERN?®, the European Particle Physics
Laboratory.

The current Web supports documents, pages of text and figures designed for
humans and understandable by humans. There exist services, i.e, search engines
that search in Web pages and make directories based on the text that those Web
pages contain. On the other hand, the Semantic Web vision is to make the Web
machine-readable. In this way, a computer will be able to participate when in-
quiring and organizing information. According to the Web pages are described
by metadata, namely meta-information that defines their content. Note, that the

http://www.w3.org/People/Berners-Lee/
3http://public.web.cern.ch /public/

14

Trust

Proof

Logic

Ontology vocabulary

Digital Signature

Figure 2.7: A layered approach of the Semantic Web

term metadata is not new since typical html Web pages contain metadata, for
example, by using the tag “meta”. The difference with the idea of the Semantic
Web vision is that metadata will describe not only information on how to read
and present a Web page but will describe and organize the content of the Web
pages in a structural way. The Semantic Web will have search engines too, but the
difference is that the user will be able to pose more sophisticated queries than to
search for a single term. For example, he will be able to ask the following question:

“Which papers include in their title the word ‘Semantic Web’ and are written by
Tim Berners-Lee?”.

On the contrary, in the current Web a user has to brown selected retrieved doc-
uments to extract the information that he is actually looking for.

The component layers of the Semantic Web are shown in Figure 2.7, as have
been defined by Tim Berners-Lee. At the bottom we find URIs, namely Uniform
Resource Identifiers [8]. URISs are text strings that identify resources, or concepts,
commonly referred to as URLs. At the next layer there is the Extensible Markup
Language (XML) [13], which is an appropriate language for writing structure
Web documents in a user-defined vocabulary. The XML syntax is a subset of
the international text processing standard SGML (Standard Generalized Markup
Language) [6] specifically intended for use on the Web. In XML there is no
intended meaning associated with the nested tags, each application interpret the
nesting by its way. At the next layer there is the Resource Description Framework
(RDF) [25]. RDF is a language that can represent metadata as well as semantics
of information in a machine understandable way. RDF builds blocks of triples
(object-attribute-value), which called statements. The RDF Schema (RDFS) [9]
is located at the same layer as the RDF and it provides modelling primitives for
organizing Web objects into hierarchies. Actually, it is a primitive language for
writing ontologies. At the higher layer the ontology languages are located, which

15

provide the representation of more complex relationships between Web objects,
than the RDF Schema can do. The logic layer enrich the ontology language. The
proof layer refers to the representation of proofs in Web languages and to proof
validation. At the top of the Sematic Web tower there is the trust layer. Actually,
this layer represent the trust of users in the Semantic Web, namely whether the
users entrust the way that the Semantic Web is organized and operates.

2.2.2 The RDF data model

The Resource Description Framework (RDF) [25] is a W3C* recommendation de-
signed to describe and represent information on the Web. It is an infrastructure
that enables the encoding, exchange and reuse of structured metadata, providing
a means for publishing both human-readable and machine-processable vocabular-
ies. RDF uses the XML [13] as a common syntax for the exchange and processing
of metadata. RDF can be used in a variety of application areas, for example:

e in resource discovery, providing accurate results.

e in cataloging, for efficient description of Web resources.

e by intelligent software agents, to improve knowledge sharing and exchange.
e in content rating

e for describing intellectual property rights of Web pages.

o for expressing the privacy preferences of a user as well as the privacy policies

of a Web site.

The RDF data model [48] is a way of representing RDF expressions. Two
RDF expressions are equivalent if and only if they have the same data model
representations. The data model consists of three object types:

e Resources: We consider as a resource everything that we want to describe.
A resource may be a Web page, a part of it, or a collection of Web pages.
In addition, a resource may be a book, an author, a paper or a computer
file. Every resource has a URI (Universal Resource Identifier) [8]. A URI
can be a URL (Universal Resource Locator) or a Web page. Note that an
identifier does not necessary enable access to a resource.

e Properties: A property is a special kind of resource that is used as the
object in an object-attribute-value triple. Actually, a property represents a
characteristic of the resource to which it refers to.

4http:/ /www.w3.org/

16

/ subject/ resource
Being and Nothingness

predicate/ property
subject/ resource object/ literal /
hor

aut

predicate/ property

object/ literal
.
<"Being and Nothingness", "author", "Jean Paul Sartre"> Jean Paul Sartre

Figure 2.8: Graph representation of an RDF statement

e Statements: An RDF statement is an object-attribute-value triple, namely
it consists of a specific resource, a named property and the relevant value of
the property for this resource. The three parts of a statement are named,
respectively, subject, predicate and object. The object of a statement can
be another resource or a literal, namely an atomic value (string).

Consider the expression:
“Jean Paul Sartre is the author of the book Being and Nothingness”

This sentence has the following parts:

Subject (Resource) Being and Nothingness
Predicate (Property) author
Object (Value) Jean Paul Sartre

Such expression can be represented in graph mode and as a triple, in the form
of subject|predicate — object] . In Figure 2.8 is shown the triple form and a
directed graph with label nodes and arc; the arc is directed from the resource
(the subject of the statement) to the value (the object of the statement).

Now consider the case that we want give some more characteristics to the
resource and its author, through the following statement:

“Jean Paul Sartre born in 1905 and died in 1980, his book Being and Noth-
ingness costs € 16 and belongs in the area of philosophy”.

17

philosophy
Jean Paul
| Being and Nothingness | | 1905 | | 1980 | Sartre
7 X f

topic

cost

\

C:/Download/Book/Philosophy/Jean Paul Sartre/
Being and Nothingness

title birthday ~death-date name

author »

C:/Biographies/Jean Paul Sartre

Figure 2.9: Graph representation of a complex RDF statement

The graphical representation of this statement is shown in Figure 2.9.

In order this information to be machine-processable, the RDF data model
provides another representation that is based on XML syntax. The RDF docu-
ment that represent the previous statement is the following one:

<?xml version="1.0" encoding="UTF-8" 7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<rdf:Description rdf:about="C:/Download/Book/Philosophy/Jean Paul

Sartre/ Being and Nothingness">

<cost>€ 16</cost>

<topic>philosophy</topic>

<title>Being and Nothingness</title>

<author>

<rdf:Description rdf:about="C:/Biographies/Jean Paul

Sartre">
<birthday>1905</birthday>
<death-date>1980</death-date>
<name>Jean Paul Sartre</name>
</rdf:Description>

</author>
</rdf:Description>
</rdf :RDF>

The RDF data model defines a simple model for describing interrelationships
among resources in terms of named properties and values, but does not provide
mechanisms for declaring these properties, nor does it provide any mechanisms
for defining the relationships between these properties and other resources. That
is the role of RDF Schema (RDFS) [9]. The RDF Schema is something like a
dictionary, it defines the terms that will be used in RDF statements and gives
specific meanings to them. RDFS defines not only the properties of the resource

18

(e.g., title, author, subject etc.) but may also define the kinds of resources being
described (paper, Web pages, books etc.). It defines resources and properties
such as rdfs:Class and rdfs:subClass0f and lets developers define a particu-
lar vocabulary for data. In other words, the RDF Schema mechanism provides a
basic type system for RDF models.

More details on RDF and RDFS are available in [25].

2.2.3 Metadata and the Dublin Core element set

The term “meta” comes from a Greek word that denotes “alongside, with, after,
next”. More recent Latin and English usage employ, “meta” to denote something
transcendental, or beyond the nature. Metadata can be thought of, as data about
other data, descriptive information about Web resources. Within the context of
the World Wide Web metadata may be used for information discovery, but is also
important in the context of cataloguing resources.

The Dublin Core metadata standard is a simple attribute set for describing
a wide range of Web resources. The Dublin Core Metadata Element Set [3] has
been endorsed by the Dublin Core Metadata Initiative®. It has been kept as small
and simple as possible, in order to allow the simple description for information
resources, while providing effective retrieval of those resources in the Web. The
Dublin Core can help the “digital tourist” find the object of his research, by sup-
porting a common set of elements that are semantically intelligible by universe.
The Dublin Core standard includes two levels: the Simple and the Qualified. The
Simple Dublin Core consists of fifteen elements, while the Qualified Dublin Core
employs additional qualifiers to further refine the meaning of a resource.

In our system, we chose to use the Simple Dublin Core for the description
of our resources. The fifteen elements are: title, creator, subject, description,
publisher, contributor, date, type, format, identifier, source, language, relation,
coverage and rights. Detailed definitions of these elements are given on the Dublin
Core Web Site [1]. All Dublin Core elements are optional and repeatable.

A graphic representation of the Dublin Core element set is shown in Figure
2.10. The described resource is denoted as an ellipse, while the value that each
element of the Dublin Core has is denoted as a box.

2.2.4 The Jena API

Jena® is a research project that has been implemented by Hewlett Packard re-
search Labs”. Actually, Jena is a collection of RDF tools written in the Java
programming language® that includes:

Shttp://dublincore.org/
Shttp://www.hpl.hp.com /semweb /jena.htm
"http://hpl.hp.com

8http://java.sun.com

19

—

N
N

dc:creator dc:source

dc:title dc:language

dc:identifier/|:|
dc:descriptiﬂ‘EI

dc:type
dc:format

dc:subject

I:I‘ﬁzcontributor

dc:relation

dc:date
dc:coverage

Figure 2.10: The Dublin Core element set

A Java APL.

ARP: An RDF parser.

RDQL: A query language.

Support classes for DAML+OIL ontologies.
e Persistent storage based on various relational databases.

The goal is to speed up the design and implementation of Semantic Web appli-
cations. This Java toolkit can be used for the efficient creation and manipulation
of RDF graphs like the one shown in Figure 2.8.

In the Jena API [26, 40, 10, 47] an RDF graph is called model. An RDF
graph contains one or more RDF statements which in the Jena API are called
statements. The Jena API uses object classes to represent graphs, resources,
properties and literals. In addition, special methods have been implemented in
order to read and write RDF files. This toolkit uses a database engine in order
to store the statements that constitute a model.

The Jena2 API is the second generation RDF toolkit that follows the Jenal
API. It can manage more than one model in a single database by storing each
model in a separate table. Moreover, the Jena2 API uses a denormalized schema,
in which the resources, the URIs and the simple literal values are stored directly
in the statement table. In the case that there is need to store long literals or
URIs, namely the length of these is bigger than a threshold, then the Jena2 API

20

Statement table
Subject Predicate Object
Uv::C:/Biographies/Jean Paul Name Jean Paul Sartre
Sartre
Uv::C:/Biographies/Jean Paul Death-date 1980
Sartre
Uv::C:/Biographies/Jean Paul)
Sartre birthday 1905
101 Cost 16 euro
101 Topic Philosophy
101 Title Being and Nothingness
101 Author Uv::C:/Biographies/Jean Paul
Sartre
Resource table
ID Value
101 Uv::C:/Download/Book/ Philosophy/Jean Paul Sartre/ Being and
Nothingness

Table 2.1: RDF information stored in a MySQL table

creates separate tables for the resources and literals. Note, that this is the only
case that separate tables are created for resources and literals. In this way, the
Jena2 API avoids a big number of joins when retrieving statements which comes
with a cost in storage space due to the separate tables. The Jena2 toolkit stores
the RDF triples in a remote database accessed via JDBC.

Consider the case that the information of the RDF graph in Figure 2.9 is
stored in a database. Then, the RDF statements will be stored in the state-
ment table, while a separate resource table will be used, as the long URI “C' :
/Download] Book / Philosophy / Jean PaulSartre/ Beingand N othingness” to be
stored in it. The tables are presented in Table 2.1.

Moreover, the Jena2 API supports the RDQL [27, 10, 39] query language.
RDQL is a query language for RDF data. By writing an RDQL query, we can
retrieve answers from a database, in which RDF data are stored. The RDQL
query language is discussed in more detail in Section 2.2.6. The structure of the
Jena2 API implementation is shown in Figure 2.11.

The Jena API supports three different database engines: (a) MySQL?, (b)
Oracle!® and (c) PostgreSQL!M in two platforms, Linux and WindowsXP. We
have implemented our system using the Jena2 API and the MySQL database in
a WindowsXP System.

9

10
11

www.mysqgl.com
www.oracle.com
www.postgresql.org

21

Jena API
common classes model
memory i SQL : prolog
store i store ! store

Figure 2.11: The architecture of the Jena2 API

2.2.5 The MySQL database

The MySQL database [14] is an open-source SQL!? database system, which is
developed and supported by the commercial company MYSQL AB!3. It is a
relational database management system, which means that it is a structured
collection of data that are stored in separate tables and not in one big storeroom.

The Jena2 API has been tested with the MySQL Standard binary release.
The Jena tables are created using InnoDB tables which provide ACID transaction
support (atomicity, concurrency, isolation, durability). Any modifications to the
Jena database models are immediately written to the database. If the application
has an open transaction, the changes are committed when the application does
a commit. The Jena API communicates with the MySQL database through a
JDBC driver, in order to store and to manipulate RDF information.

2.2.6 The RDQL query language

RDQL[27, 39| stands for RDF Data Query Language. It is a query language for
RDF [25] data in Jena models. The idea is to provide a data-oriented query model
so that there is a more declarative approach to complement the fine-grained, pro-
cedural Jena API. It is “data-oriented”, in the sense that it only queries the
information help in the models, there is no inference being done. Of course, the
Jena model may be “smart” in that it provides the impression that certain triples
exists by creating them on-demand. However, the RDQL system does not do any-
thing other than take a description of what the application wants, in the form of a
query, and return that information, in the form of a set of bindings. RDQL is an
implementation of the SquishQL [27]. SquishQL is an SQL-like query language
that matches a graph pattern to a data source, derived from rdfDB [20]. This

2http:/ /www.microsoft.com/sql/
Bhttp: / /www.mysql.com/company/

22

class of query languages regards RDF as triple data. An example RDQL query
is the following:

SELECT 7x

WHERE (7x, <topic>, "philosophy"),
(?x, <author>, 7y)
(?y, <name>, "Jean Paul Sartre")

In this query, we want to find a node in an RDF graph, 7x, which has the
property topic with the value “philosophy” and the property author has as name
the value “Jean Paul Sartre”.

Considering the RDF graph of Figure 2.9, when we execute the above query
we will get the answer:

X

<http://book/Being and Nothingness>

2.3 Summary

In this chapter we presented the necessary background for the understanding of
this thesis. We presented the basic characteristics of the Semantic Web and we
discussed about the tools that we used for the implementation of our semantic
application. In the next chapter, we discuss about the architecture of our system
and its basic functionalities.

23

Chapter 3

System Architecture

In the previous chapter we discussed some alternative peer-to-peer architectures
and some well-known peer-to-peer systems. We also gave the necessary back-
ground for this thesis. In this chapter, we study the architecture of our system
and how the desired functionalities can efficiently be supported using such an
architecture. Our goal is to build a hybrid peer-to-peer resource-sharing sys-
tem, which provides semantic interoperability among data sources, so as to exe-
cute queries. Our current implementation is a file-sharing application and unless
stated otherwise we will consider such applications as our main example scenario.

3.1 Architecture

We have designed and implemented a hybrid peer-to-peer resource sharing system.
There are two kinds of nodes in our system; the server-peers and the client-peers.
A single network of the system consists of one server-peer and a large number of
client-peers. A high level view of the system is shown in Figure 3.1.

A server-peer can be seen as the coordinator for the rest of the peers in its
network. A server-peer handles all queries of the client-peers that are directly
connected to it and manages information on the schema or the metadata that each
one of those client-peers supports. Each client-peer is attached to the network
through a single server-peer. This server-peer is the access point of the client-
peer to the network. A client-peer sends all its requests to its access point,
but when it comes to request an actual resource, the client-peer requests the
resource in a pure peer-to-peer way from the client-peer which owns it and not
through a server-peer. We distinguish between two types of client-peers; the
normal ones and the wvolunteer ones. A normal client-peer uses the system in
such a way that it sacrifices the less possible amount of its system resource,
namely cpu cycles and bandwidth. On the contrary, a volunteer client-peer tries
to “take” load from the server-peer, for example, by answering a fraction of the
queries posed to the server-peer. In addition, an important system characteristic

24

volunteer client-peer

selfish client-peer

server-peer

TCRAP server-peer

TCP/IP

a = send/update/remove client schema
b = posit query

¢ = answer

d = get/request resource a = send/update/remove metadata items
b = posit query

¢ = answer

d = get/request resource

o

Figure 3.1: System architecture

is that we allow client-peers to use their own defined schema in order to describe
their resources. This functionality allows client-peers, which already have their
resources described in a schema different than the one of the server-peer, to
participate in the system in a transparent way. At last, periodic fault-tolerant
operations of the server-peers detect and handle any possible client-peer failures
or silent-disconnections. In the current implementation, resources are files that a
client-peer stores locally and wants to share with other client-peers of the system.
The data model used to describe resources is the RDF data model [25], while the
RDQL query language [39] is used to define queries. Finally, a MySQL database
is used locally at each peer to store RDF data.

3.1.1 System functionalities

Let us now give a brief description of the functionalities that our system supports.
A client-peer may publish a resource, so other client-peers may see it and request
it. A published resource is described by metadata that a client-peer defines. In
our file-sharing scenario, a resource can be a file of any type, for example, it can
be a music file, an image file or a document file. A resource can also be remowved or
updated (update the metadata that describe it) by the client-peer that originally
has published it. In addition, our system supports the query scenario, namely a

25

client can pose a query to the system in order to find matching resources owned by
other client-peers. The system will immediately reply with pointers to matching
resources owned by client-peers that are on-line at the moment.

3.1.2 Normal and volunteer client-peers

Client-peers usually have different characteristics with respect their capabilities;
particularly in terms of available bandwidth, storage space, precessing power and
memory. In order to build an efficient peer-to-peer system, once should take into
account the characteristics of participating peers, including their heterogeneity
24, 36].

We distinguish between two types of client-peers; the normal ones and the
volunteer ones. A normal client-peer uses the functionalities of the system by
sacrificing the less possible amount of its own system resources, namely cpu cycles
and bandwidth. On the other hand, a volunteer client-peer can offer a fraction
of its system resources in order to remove load from the server-peer. Automatic
recognition of client-peers, good enough (powerful or idle) to offer their resources
or policies of giving awards (certain privileges) in order to lure client-peers and
become volunteers are out of the scope of this thesis. Current work on these area
includes [45, 33]. The main goal in these articles is the identification of peers as
altruistic peers and selfish peers. In our system, we assume a cooperative envi-
ronment where a number of client-peers will be “nice” enough to be a volunteer
when it is possible (idle pc or powerful enough).

Let us now give a high level view of the differences between normal and
volunteer client-peers in our system. Both types of client-peers, use the same
functionalities of the system. The main difference is the way that each client-
peer and its access point execute these functionalities. A mnormal client-peer
does not only store locally the metadata items of its resources, instead it sends
those metadata items to its access point. Thus, it has to communicate with
its access point each time it publishes, removes or updates a resource leading to
higher communication cost for the network and computational cost for the server-
peers. More importantly, the access point has to answer queries matching these
resources (search for the matching resource and reply with an answer), instead
of just forwarding queries to client-peers with a matching schema. On the other
hand, a volunteer client-peer follows a schema based rooting strategy. A volunteer
client-peer does not send the metadata items of its resources to its access point. It
sends only the schema that it supports and when the access point receives queries
that match this schema, the volunteer client-peer will answer them. A volunteer
client-peer does not communicate with its access point every time it publishes,
removes or updates a resource, instead it communicates only when its schema
is updated. Another RDF-based P2P network that follows a similar strategy, is
the Edutella system [32, 46]. In addition, in our system a volunteer client-peer
that uses its own defined schema, makes the translations on its own, whether the

26

access point makes all necessary translations for a normal client-peer. All these
will become more clear when reading one by one the functionalities in Chapter
4.

The distinction between normal and volunteer client-peers serves some ap-
plication scenarios. We decided to design our system in such a way, because in
reality the devices that participate in the network have alternative characteris-
tics that may determine their action. It is advisable that a client-peer becomes
a normal peer, in the case that it can’t afford a high powered computer; a client-
peer that choices to become a normal peer, it sacrifices the smallest amount of
system resources that are demanded. For example, a normal client-peer does not
receive queries from its access point, so does not search in the local database for
matching resources, neither translates incoming or outgoing messages. Thus, a
normal client-peer could be a low powered computer. Another case, in which a
client-peer selects to become normal peer, is when it runs a lot of applications
simultaneously, so it prefers to participate in the network as the light type of
client-peers. In the case that a client-peer is connected to the network through
a low-speed connection, it is better to become a normal client-peer than a vol-
unteer. A volunteer client-peer receives queries from its access point, searches in
its local database as to find matching resources and then, if it creates answers, it
connects to the requestor client-peer. So in the case that the system consists of
volunteer client-peers that have slow Internet connection speed, then a general
delay in the performance of the system, will take place. Therefore, it would be
better peers that have slow connections to become normal client-peers. In addi-
tion, a client-peer that does not have a large number of available resources and
it is just interested to find than to share resources, is better to become a normal
client-peer.

On the other hand, a volunteer client-peer should be a peer that participates
in the network using a powerful computer, because the role of a volunteer is
by comparison more demanding in cpu cycles and bandwidth than the role of
a normal client-peer. For example, an idle computer can be a volunteer client-
peer because it can offer all its system resources. Similarly, a client-peer that
has a large number of available resources, is better to become a volunteer than a
normal client-peer. If it becomes normal, it weights the server-peer down, because
it demands storage space of the database of the server-peer for the metadata of
its available resources, and also provokes the server-peer to search by itself in a
huge database, which means space and time cost for the server-peer. Another
case in which a client-peer is better to become a volunteer one, is if it is connected
to the network through a high-speed connection. Finally, it would be a good idea
if there were policies of given awards for the volunteer peers, as for example the
queries of these peers to be forwarded by the system faster, than the queries of
the normal client-peers.

To sum up, in an efficient application scenario, normal client-peers is better to
become peers that are low-powered, having small number of available resources

27

Server-peer

pool of worker
threads

outgoing
messages

incoming
messages

queue of requests

Publish, Update,
Remove resources
module (normal
client-peer)

answer generator
MySQL
Database

connect/disconnect
client module

4~<£veuclients Query parser
4’@‘7

update client schema
module

fault-tolerant module query module

metadata
RDF file

XML/ RDF
parser
RDQL }

Figure 3.2: The server-peer architecture

and slow Internet connection, that wants to search and obtain resources. These
can be small devices like mobile phones, personal home computers, laptops and
hand-held computers. On the contrary, volunteer client-peers is better to become
idle and powerful computers, that have a large number of available resources
and high speed Internet connection. These type of devices are computers that
are located for example in a library or in a university and work on information
exchange. In this thesis we have not implemented an automatic recognition of
which client-peers should be normal or volunteer.

3.2 The server-peer

In the previous section we gave a general description of the architecture of our
system, while in the following ones we discuss in more detail the separate com-
ponents of our design. In this section we discuss about the internal architecture
of server-peers and their reactions to requests from client-peers. A server-peer is
one of the two kinds of nodes, which constitute our system. A server-peer works
continuously and autonomously to serve the connected to it client-peers. The
internal architecture of a server-peer is discussed in the subsections below and it
is shown in Figure 3.2.

28

3.2.1 Data structures

The role of a server-peer is to handle and to serve efficiently every request that
receives from the client-peers that are connected to it. A server-peer can be
thought as a coordinator. In order to achieve the correct and efficient execution of
requests, each server-peer manages two data structures, one to store information
on online client-peers and one to store the schema that it supports, called active-
clients and serverSchema respectively. By the term schema we define the set of
attributes that are used for the description of resources'. A view of these data
structures is shown in Figure 3.3.

The data structure active-clients is a java hash table. Each record of this hash
table contains information on one of the online client-peers. The IP address of a
client-peer is used as input to the hash function in order to create the key of each
record. In addition, each record contains the string values of the IP address and
port of a client-peer. At last, each record contains a list of pointers to objects
(records) of the serverSchema data structure. The serverSchema data structure
is also a java hash table. Each record of this hash table contains information on
one of the attributes of the schema that the server-peer supports. This time, the
name of the attribute is the input of the hash function so as to create the key
of each record. The values that are contained in each record, are the name of
the attribute and a URL representation of it. At this point we can clarify the
purpose of the list of pointers in the records of the active-clients data structure.
Each record r in the active-clients data structure, represents a client-peer c. Each
pointer p of the list of pointers in r, points to a record 7’ in the serverSchema data
structure. The record r’ represents an attribute a. Thus, the pointer p “means”
that ¢ supports the attribute a.

3.2.2 Handling requests

A server-peer uses standard multithreading techniques in order to handle incom-
ing requests. More precisely, the thread-pool [38] model is used. Upon start-up
time, a server-peer creates a pool of worker threads. The number of worker
threads is a system parameter. When a request arrives, the server-peer assigns
the request to one of the threads in the pool. A worker thread returns in the
pool after successfully handling a request. There are four kinds of requests that
a server-peer handles:

1. the connection/disconnection request.
2. the update schema request.

3. the update metadata item request.

!Detailed discussion on the schema of peers in our system, can be found in Chapter 4

29

Hash table Hash table

active-clients serverSchema

~

- IP address
- Port

key List of pointers

W

- attribute name

key | URL

Figure 3.3: The active-clients data structure and the serverSchema data structure

4. the query request.

In the following subsections we describe the way that a server-peer handles
the above requests. Note, that for readability reasons we omit the discussion
about the query request, which we describe in detail in Chapter 4.

3.2.3 Handling the connect and disconnect request

A connection or disconnection request can be sent by any client-peer (volunteer
or normal) to any server-peer in the system. A client-peer sends a connection
request when it wants to connect (or reconnect) to the network. As it is obvious,
the connection request is the only type of request that a client-peer can send
without already being online. In the case that the client-peer is a volunteer one,
the connection request contains (a) the IP address and the port of the client-peer
and (b) the schema that the client-peer supports. In the case that the client-peer
is a normal one, the connection request contains (a) the IP address and the port
of the client-peer, (b) the metadata item of the resources that the client-peer
had published, during previous online sessions (if any) and (c) in the case that
the client-peer has defined its own schema, the relations between this schema
and the schema that is supported by the server-peer. The latter stands only in
the case that the client-peer was previously connected to the same supper-peer
(reconnection), which means that it has already created the relations.

30

When a server-peer x receives a connection request from a client-peer ¢, it
has to update the local active-clients data structure. Thus, it creates a record r
to contain the IP address and the port of the new on-line client-peer ¢. Then,
in the case that ¢ is a volunteer client-peer, x initializes the list of pointers in r
by creating one pointer for each attribute in the schema of ¢ that points to the
appropriate attribute record in the serverSchema data structure (easily found by
hashing the attribute name). In the case that ¢ is a normal client-peer, x puts
all the metadata items of ¢ in the local MySQL database and stores the relations
between the schema that ¢ supports and its schema.

In reverse, a client-peer can send a disconnection request in order to disconnect
from the network. Of course, both volunteers and normal client-peers can send
disconnection requests. A disconnection request just contains the IP address of
the client-peer. When a server-peer = receives a disconnection request from a
client-peer ¢, it has to update the active-clients data structure. Thus, x removes
the record that represents ¢ from the active-clients data structure. In the case
that ¢ is a normal client-peer, all the metadata items of the resources that c
owns, are removed from the local MySQL database and the relations between its
schema and the schema of the server-peer, are removed too.

3.2.4 Handling the update schema request

The second kind of request that a server-peer may receive is an update schema
request. Only volunteer client-peers may send this type of request. An update
schema request contains (a) the IP address and the port of the client-peer and
(b) the schema that the client-peer supports. Assume, an on-line client-peer ¢
sends to its access point x an update schema request. The server-peer z, has to
update the local active-clients data structure. It tracks down the record r that
represents client-peer ¢ (by hashing the IP address of ¢) and updates the pointer
list in r, so as to point only to attributes that are contained in the schema of
c. Note, that a client-peer ¢ sends an update schema request, only if ¢ has just
removed /updated a previous published resource or if it has just published a new
one. In both cases, the schema that ¢ supports may change and if it does, then
¢ informs its access point on that.

3.2.5 Handling the update metadata item request

The third kind of request that a server-peer may receive is an update metadata
item request. The client-peers that are able to send this request are the normal
client-peers. An update metadata item request contains (a) the IP address and
the port of the client-peer and (b) in the case that the client-peer wants to publish
a new resource or to update an already published resource, the request contains
the metadata item of this resource, in the case that the client-peer wants to
remove a published one, the request contains just the name of the resource. For

31

example, an on-line normal client-peer ¢ sends to its access point x an update
metadata item request, when publishing a new resource. The server-peer x inserts
the metadata item of the resource in the local MySQL database. In the case that
c wants to update the metadata item of a published resource, the server-peer x
deletes from the database the previous metadata item that described the specific
resource and then inserts the new metadata item. Finally, if ¢ wants to remove
a published resource, then x deletes the metadata item of the resource.

3.2.6 Fault-tolerance

A client-peer may fail and become unreachable. For example a crash on the
system of a client-peer or a silent disconnection (the user turns off the application
without pushing the disconnection button) may be the reason for a client-peer
to fail and bring a number of problems to the system. Consider the case that
a server-peer wants to forward a query to a client-peer that is supposed to be
on-line, but the client-peer is off-line. If this happens for a large number of client-
peers, then a large number of resources of the server-peer are waisted trying to
communicate with those client-peers. Thus, in order to avoid such problems
each server-peer manages the data structure active-clients, where it stores all
client-peers which are online and connected to it. A server-peer updates this
structure each time a new client-peer requests to be connected to or an already
connected client-peer requests to be disconnected from the system. We have also
implemented a mechanism which is responsible to periodically check all the on-
line client-peers that are connected to a server-peer and update the data structure
active-clients if needed. This happens with period 7', which is a system parameter.
For our example we used T" = 5 minutes. A server-peer = checks all client-peers
with a record in the local active-clients data structure in the following way:

1. z sends a ping message to all the client-peers in the active-clients data
structure.

2. Then x waits for time 77 and stores all replies.

3. Each client-peer that receives a ping message, replies with a pong message
to z (the sender of ping message).

4. After time T3, z checks if all client-peers have replied. For all the client-
peers that have not replied, z removes them from its active-clients data
structure and deletes all information about their schema.

Time 77 is a system parameter. For our examples we used 7} = 3 minutes.

32

3.3 The client-peer

A client-peer is the second kind of node that constitute our system. As we
have already discussed, a client-peer is a computer of a real user that can share
resources or pose queries to the system in order to locate and acquire interesting
resources. A high level view of the internal architecture of a client-peer is shown
in Figure 3.4.

3.3.1 Functionalities of client-peers

The client-peer application offers a number functionalities to its user. The GUI
mediates between the user and the client-peer, so as to forward the demands
of the former to the latter and messages from the client-peer to the user. The
functionalities that a client-peer offers are:

1. connection/disconnection from a server-peer
2. publish a resource
3. remove a resource
4. update a resource

5. query for a resource

The first functionality, connection/disconnection from a server-peer, refers to
the opportunity that a client-peer has, to select the access point to which it wants
to be connected. While a client-peer is connected to a server-peer, can participate
in the system and is able to use the rest of the functionalities. When it decides
to terminates the connection to its access point, it selects the functionality of
disconnection. Latter the client-peer can reconnect to the same server-peer or
connect to a different one.

The second functionality that a client-peer has, is the functionality of publish-
ing a resource. Using this functionality, a client-peer can share its resources with
the other client-peers of the network. A client-peer ¢ that publishes a resource r,
creates a metadata item for r, namely data that describes r. This metadata item,
denoted by metadata(r), is a set of attribute value pairs. The metadata item
of a published resource is stored locally or forwarded to its access point. This
depends on weather the client-peer is normal or volunteer. The actual resource
is stored, at both cases, locally at the client-peer that published it.

A client-peer can also remove a resource that it has already published. This
functionality is useful in the case that a user of a client-peer application no longer
wants to share a resource. In addition, a client-peer can update the metadata
item of a resource that was previously published by it. The user is able to change
the values of the attributes in the metadata item of a resource. He is also able to

33

normal cli

Client-peer

ent-query

volunteer client-query

update schema-cllient

incoming
messages

pool of server

queue of requests threads

anwer query
module

Y
XML/ RDF

writer/ parser

volunteer client

schema-supported-
by-client-related-to-
Serverschema

schema-client

publish/
update
resource

metadata
RDF file

normal client/
incoming-query

JDBC

volunteer client
remove-resource

JENA

fault-tolerant module

outcoming
messages

answer generator

connect/ disconnect

remove-resource Q

publish resource
module

resources

update
resource_metadata
module

remove resource
module

query for resource
module

RDQL

module

set
client_information

module
ry

client
Information

Figure 3.4: The client-peer architecture

34

add new attribute value pairs, in order the description of the resource to become
more explicit, or he can delete attribute value pairs that considers that are untrue
or do not respond to the resource any more.

Finally, the client-peer has the capability to pose queries to the system in
order to find interesting resources. A query describes the “features” that the
matching resources should have. A query is written in the RDQL query language
[39], which means that the users of the client-peer application should be able to
understand and write in the RDQL query language (expert users). The system
will immediately reply with “pointers” to matching resources. This means that
an answer does not contain an actual matching resource but a pointer to the
location (IP address, port and name) of the resource. Then, the client-peer that
posed the query, can connect directly to the client-peer that is the owner of a
matching resource and request the resource.

3.3.2 Set client-peer information

When a user starts the client-peer application program for the first time, he
defines a set of information. He specifies the port in which the application is
going to listen for messages. He, also, defines the server-peer, to which he wants
to be connected, and the database, in which the metadata items of his published
resources are going to be stored. Moreover, the user defines the schema that
intends to use for the description of the selected to be published resources. The
client-peer application program uses XML files to store the program parameters.
Thus, all information is stored even if the user terminates the application or turns
off his computer. All the above information can be updated at any time.

3.4 Summary

In this chapter we presented the architecture of our system and the basic modules
of the server-peers and client-peers. Moreover, we included a high level descrip-
tion of the functionalities that our system supports. In the following chapter, we
discuss in detail the functionalities of the system with emphasis on the schema-
based routing strategy.

35

Chapter 4

Schema-based Routing

In the previous chapter we presented the architecture of our system. We discussed
about the internal architecture of the partial components that constitute the
system, namely the server-peers and the client-peers. In this chapter, we discuss
various issues regarding schemas that different types of peers use and then we
analyze in more detail the network functionalities of the system and how these
functionalities are executed in a schema-based routing way.

4.1 Schema

As “schema” is defined the mechanism that declares the properties of a resource
and the constraints on relationships between these properties and other resources.
A schema defines not only the properties of a resource (e.g., title, author, subject,
size, color, etc.) but may also define the kinds of resources being described (books,
Web pages, people, companies, etc.). It defines the data type of resources and
properties. We consider that our application scenarios, intend to be used as a
simple file sharing application, in which users share simple described resources.
Thus, by the term schema we just mean the metadata vocabulary, namely the
attribute set that can be used for the description of a resource.

Each peer in our system has a metadata vocabulary. In the case that it is
a server-peer, it uses the metadata vocabulary in order to communicate with its
client-peers. A client-peer has the capability to accept the vocabulary of a server-
peer or to define its own vocabulary. A client-peer uses its vocabulary in order
to describe its available resources and to query the system for desirable files. We
say that a peer supports a schema, when this peer understands the semantically
meaning of the attributes that constitute this schema. Then, this peer is able
to communicate with other peers using this attribute set. In the following two
subsections we describe the schema and its usage in both server-peers and client-
peers.

36

- A to B translation
- B to A translation

- A: the schema of the access point
- B: the schema of a client-peer, A !I=B

Figure 4.1: Schema translation

4.1.1 The schema supported by server-peers

Each server-peer in the network supports a schema. The schema that a server-
peer z supports, is the return value of the function serverSchema(zx). The usage
of the schema of a server-peer can be better understood along with the role of
the server-peer as a coordinator. The schema that a server-peer supports can be
seen as a global or middleware language for the network. The client-peers use
this language (the schema of their access point) to describe their resources and
to pose queries. The client-peers that use their own defined schema (or simply a
standard schema but different than the one that their access point supports) use
this global (or middleware) language in order to be able to communicate with
the rest of the client-peers by “translating” their metadata items and queries into
the schema of their access point as shown in Figure 4.1.

An important characteristic is that there is no global schema predefined both
for client-peers and server-peers. The schema of a server-peer is defined by the
administrator of the network, when the server-peer bootstraps and remains the
same, while the server-peer is connected to the network. Only the administrator
has the authority to update the schema of a server-peer, for example, in order
to support the schema of new client-peers. Thus, we can create clusters where
client-peers connect to a server-peer that its schema supports a specific topic.
The schema of a server-peer is stored locally in the serverSchema data structure
as described in Section 3.2.1.

37

serverSchema

dc:title
http://purl.org/dc/elements/1.1/title

clientSchema K
dc:creator

http://purl.org/dc/elements/1.1/creator

dc:subject

generator http://purl.org/dc/elements/1.1/subject

http://myschema/generator

dc:description

fitle http://purl.org/dc/elements/1.1/description

http://myschemaltitle

dc:publisher

date http://purl.org/dc/elements/1.1/publisher

http://myschema/date

dc:contributor

topic . http://purl.org/dc/elements/1.1/contributor
http://myschema’/topic

dc:date
http://purl.org/dc/elements/1.1/date

dc:type
http://purl.org/dc/elements/1.1/type

dc:format
http://purl.org/dc/elements/1.1/format

dc:identifier
http://purl.org/dc/elements/1.1/identifier

Figure 4.2: An example of a possible mapping between the schema of a client-peer
and the one of a server-peer

4.1.2 The schema supported by client-peers

Each client-peer in the network supports a schema. The schema that a client-peer
¢ supports is the return value of the function clientSchema(c). The schema of
a client-peer is a set of attributes and its usage is that the client-peer uses these
attributes in order to describe its resources (create metadata items) and to pose
queries. A client-peer ¢ that is connected to a server-peer x, adopts by default the
schema that z supports. This means, that the schema clientSchema(c) becomes
equal to the schema serverSchema(x). For example, in the case that the schema
serverSchema(x) is the whole Dublin Core element set, then ¢ is going to support
the DC schema too. This happens when a client-peer connects to a server-peer.
The server-peer sends its serverSchema data structure and the client-peer clones
it and stores it as the local accesspointSchema data structure, which is identical
to the serverSchema data structure as described in Section 3.2.1.

Until now we have described how a client-peer adopts the schema of its access
point. Our system goes a step further and provides to client-peers a further
opportunity in terms of the selection of the schema that they are going to support.
Client-peer is not obligated to accept and support the schema that is supported
by its access point. On the contrary, a client-peer can use any schema different
than the one its access point supports. This is a useful extension. Consider, for
example, the case that a library connects in order to make available its books

38

and journals. If the library has already metadata for its resources, described in a
schema different than the schema of the server-peer, then it can use this feature of
the system and make its resources available to other client-peers in a transparent
way without having to create new metadata items. A client-peer ¢ attached to an
access point x that uses a schema different that the schema serverSchema(z):

1. designates the component attributes that represent the schema clientSchema(c),
namely it denotes a name and a URI expression for each attribute.

2. Maps the schema clientSchema(c) to the schema serverSchema(z).

Note, that the mapping between these two schemas, actually refers to the
semantic connection of each attribute, which belongs to clientSchema(c), to one
attribute of the schema serverSchema(x).

The schema of a client-peer (that uses a schema different than the one of its
access point) is stored locally in the clientSchema data structure. This data
structure is a java hash table and uses the name of the attribute as input to the
hash function. Each record contains the name and the URI expression of the
attribute along with a pointer. The pointed record belongs to the serverSchema
data structure.

The basic rule that a client-peer must follow, so as the process of the mapping
to be efficient, is that it must map all attributes of its schema to one attribute
of the schema that is supported by its access point. If it does not map all
the attributes of its schema, then the research for matching resources will be
thorniness.

A possible example of mapping between the schema of a client-peer and the
one of a server-peer is shown in Figure 4.2. Consider a client-peer ¢ and its access
point x. Assume that x supports the whole Dublin Core metadata element set,
and that ¢ configures its schema using the following four attributes:

name URL

generator http://myschema/generator
title http://myschema/title

date http://myschema/date
topic http://myschema/topic

As it is shown in Figure 4.2, the mapping seem to be successful, namely the
meaning of the elements that are mapped is similar. In particular, the meaning
of the word “generator” matches better with the attribute “dc:creator” than any
other attribute of the serverSchema(x), seeing that the words “generator” and
“creator” imply the entity that is responsible for the making of a resource (for

39

our application, this entity could be a person, a services or an organization). In
addition, the meaning of the word “topic” matches to the attribute “dc:subject”,
because these two attributes refer to the centric idea that describes a resource.
Also, the attribute “date” and “title” match to the attributes “dc:date” and
“dc:title” respectively.

Whether the mapping, among the attribute of the schemata, responds to the
objective reality, namely to the common way of perception or not, it depends on
the discernment of the user, who uses the client-peer application program. We do
not use an automatic mechanism for checking the mapping; instead we assume
that each client-peer understands the lexical meaning of the elements in the same
or a similar way that the other client-peers of the system do. This means, that
the client-peer, of the above example, can map the attribute “generator” to any
attribute of the serverSchema(x), as for example to the attribute “dc:subject”.
However, this mapping is not compatible with the global knowledge, namely
the “generator” is someone that is responsible for a creation, while the word
“subject” denotes the topic of the content of something (in our system, the topic
of a resource), so these two attribute do not match semantically. In the case
that the client-peers create unseasonable mapping, the resources that are going
to retrieved by searching, will be irrelevant to the requests.

At this point let us give the definition of the current schema of a client-
peer. The current schema of a client-peer c¢ is the return value of the function
currentSchema(c). The usage of the current schema comes out from the fact
that a client-peer may support a schema but only use a subset of it to describe
its resources. The system will work more efficiently if the server-peer knows at all
times the schema that the client-peers actually use and not the schema that they
support. Each attribute of the current schema of a client-peer is associated with
an integer. This integer denotes the number of resources for which the attribute
has been used in order to create metadata items. For an attribute a we call this
number the frequency of a, denoted by frequency(a). For a client-peer ¢, stands
currentSchema(c) C clientSchemal(c).

4.2 Network Functionalities

In the previous sections we presented a general discussion about the schema that
different types of peers understand and support. In this section we analyze the
functionalities of the system and how the schema of client-peers is modulated
during the execution of these basic operations. We will describe in detail what
happens when a client-peer:

e publishes a resource.

e updates the metadata of a resource.

40

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="The Lake.wav">
<dc:creator>Philip Glass</dc:creator>
<dc:title>The Lake</dc:title>
<dc:date>1993</dc:date>
</rdf:Description>
</rdf:RDF>

Table 4.1: XML representation of the metadata(r)

® TeInoves a resource.

We describe how these functionalities are executed using a schema-based rout-
ing way and how impress the schema that is supported by other peers of the
system.

4.2.1 Publishing resources

As we have already mentioned, a client-peer is able to share resources. In order
to share a resource r a client-peer has to publish r. In our current implementation
(file sharing application) a resource can be a file of any type located locally in
the client-peer. A client-peer and its access point, follow a schema-based routing
way, in order to publish a resource.

In order for the user of the client-peer ¢ application to publish a resource, the
above procedure is followed:

1. The user of client-peer ¢ application chooses to publish a resource 7.

2. The user fills in the metadata that describe the resource r. Thus, a metadata
item, denoted by metadata(r), is created. This metadata item (attribute
value set) consists of attributes contained in the schema clientSchema(c).

3. The metadata item of r is stored as triples (one for each attribute), in the
local MySQL database of c.

4. If client-peer ¢ is a normal one, it forwards the metadata item to its access
point and the procedure stops.

5. If client-peer c¢ is a volunteer, it checks which attributes of metadata(r),
are included in the schema currentSchemal(c).

41

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml">
<dc:creator>1</dc:creator>
<dc:title>1</dc:title>
<dc:date>1</dc:date>
</rdf:Description>
</rdf:RDF>

Table 4.2: The modulation of currentSchema(c) after the publish of r

6. For each attribute a such as that a € metadata(r) and a € currentSchema(c),

c updates currentSchema(c), by increasing by one the number that denotes
the frequency of the attribute a.

7. For each attribute a such as that a € metadata(r) and a ¢ currentSchema(c),
¢ updates currentSchema(c), by adding attribute a in currentSchemal(c)
and setting, the frequency of the attribute a to one.

In the case, that ¢ adds new attributes to the schema currentSchema(c), in-
forms its access point z on this change, by forwarding the updated currentSchema(c)
to z. This happens because the access point z is interested in which attributes
are used by ¢ and not in how many times ¢ has used each attribute. This infor-
mation is important for the process of answering queries!. The algorithm for the
procedure of publishing a resource is shown below.

IThis process is described in Section 4.3.

42

Algorithm. Publishing a resource

Suppose that c is the client-peer, = is the server-peer and r is the
resource for publish.

1: if normal == True then

2: send(“publish”,x, metadata(r));

3 return,;

4: updated = False;

5: for all a in metadata(r) do

6: if a in currentSchema(c) then

7 frequency(a) = frequency(a) + 1;

8: else if a not in currentSchema(c) then

9: currentSchema(c).add(a);
10: frequency(a) = 1;
11: updated = True;

12: if updated == True then
13: send(“update schema”,x, currentSchemal(c));

Let us make clear the process of publishing a resource, by describing an ex-
ample. Assume that a server-peer z supports the Dublin Core element set (DC),
namely serverSchema(x) = DC. Then, a volunteer client-peer ¢, connects to
z. The client-peer ¢ requests from z the schema serverSchema(x) and sets
clientSchema(c) = serverSchema(zx). This means that ¢ becomes able to un-
derstand and communicate with other peers using the DC schema. In addition,
assume that the user of the client-peer ¢ application uses the application for first
time, thus he has not published any resources yet. When the user chooses to
publish a resource r, he describes it by setting values to the attributes of the
schema clientSchema(c). He is not fain to use all the attributes that constitutes
the schema clientSchema(c). Actually, he can use whichever subset of it. As-
sume that the user of our example selects to publish a resource r, named “The
Lake.wav” and describes it in the following way:

attribute value
dc:creator Philip Glass
dc:title The Lake
dc:date 1993

Then, the metadata item of r is created and contains the attribute value pairs

43

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="Symphony No.1">
<dc:creator>Gustav Mahler</dc:creator>
<dc:title>Symphony No.1 - Songs of a wayfarer</dc:title>
<dc:subject>classic music</dc:subject>
</rdf:Description>
</rdf:RDF>

Table 4.3: XML representation of the metadata(r’)

that were used for the description of . An XML representation of the metadata
item of r is shown in Table 4.1.

Each attribute value pair in the metadata item of r is stored as a triple, in
the local MySQL database of ¢, in the form of subject[predicate — object]. In
our example the following three triples are inserted in the MySQL database.

< “http://The Lake.wav”, “http://purl/org/dc/elements/1.1/creator”, “Philip Glass” >
< “http://The Lake.wav”, “http://purl/org/dc/elements/1.1/title”, “The Lake” >
<“http://The Lake.wav”, “http://purl/org/dc/elements/1.1/date”, “1993” >

In our example, the schema currentSchema(c) is initially empty, because
the user of the client-peer ¢ application participates in the system for the first
time, so he has not published any resources yet. After the resource r has been
published, the schema currentSchema(c) is going to become as it is shown in
Table 4.2. Since the current schema has been updated, ¢ forwards to z the
schema currentSchema(c).

Let us now consider another example, so as to make more clear the pro-
cess that a client-peer follows, when publishing a resource. In this example we
assume that the same client-peer ¢ publishes a resource 7’ that is named “Sym-
phony No.1” and describes it, by setting the following values to the attributes:

attribute value

dc:creator Gustav Mahler
dc:title Songs of a wayfarer
dc:subject classic music

Then, the metadata item of r is created by ¢. An XML representation of this

44

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml">
<dc:creator>2</dc:creator>
<dc:title>2</dc:title>
<dc:date>1</dc:date>
<dc:subject>1</dc:subject>
</rdf:Description>
</rdf:RDF>

Table 4.4: The modulation of currentSchema(c) after the publish of r’

metadata item is shown in Table 4.3. Then, c¢ inserts the metadata item of r/
in the local MySQL database, which then is going to include the total information:

< “http://The Lake.wav”, “http://purl/org/dc/elements/1.1/creator”, “Philip Glass” >
< “http://The Lake.wav”, “http://purl/org/dc/elements/1.1/title”, “The Lake” >

< ‘“http://The Lake.wav”, “http://purl/org/dc/elements/1.1/date”, “1993” >
<“http://Symphony No.1”, “http://purl/org/dc/elements/1.1/creator”, “Gus-

tav Mahler” >

< “http://Symphony No.1”, “http://purl/org/dc/elements/1.1/title”, “Symphony
No.1 - Songs of a wayfarer” >

< “http://Symphony No.1”, “http://purl /org/dc/elements/1.1/subject”, “classic
music” >

The next step that the client-peer ¢ must take, is to modulate the schema
currentSchema(c). Client-peer ¢ checks which attributes of metadata(r’) are
included in the currentSchema(c) and which do not. The attributes “dc:creator”
and “dc:title” are already in the currentSchema(c) as we can see in the Table
4.2, so ¢ increases the frequency of these two attributes, by one. The attribute
“dc:subject” is used, for the first time for the description of a resource, so ¢ adds
it to the currentSchema(c) and sets its frequency to one. Therefore, the schema
currentSchema(c) is updated and becomes as it is shown in Table 4.4. Because of
the addition of one new attribute (of the “dc:subject”) to the currentSchemal(c),
¢ informs the server-peer x on this change, namely ¢ forwards to z its updated
schema currentSchema(c).

45

4.2.2 Removing resources

A client-peer can remove a resource that has already published. This is useful in
case that a resource is no longer valid. As we will see this procedure affects the
schema of the client-peer.

When a client-peer ¢ that is connected to a server-peer z, selects to remove a
resource 7, the following process takes place:

1.

The GUI of the client-peer ¢ application presents to the user, all the re-
sources that he has published.

The user selects a resource r to remove.
Then, client-peer ¢ connects to the local MySQL database and:

(a) retrieves the attributes that were used for the description of r. The
returned attributes are stored on a temporary item, denoted by at-
tributes(r). The RDQL query that ¢ queries its local MySQL database
is:

SELECT 7attribute
WHERE (r, ?7attribute, ?value)

(b) deletes the metadata item of r from the database.

If client-peer c is normal, it informs its access point that it removed r and
the function returns.

If client-peer c is a volunteer one, it modulates the schema currentSchema(c),
according to the attributes that the item attributes(r) is consisted of. In
particular, for each attribute a, such as a € attributes(r), the frequency of
a is decreased by one, namely frequency(a) = frequency(a) — 1. In the
case that the frequency of an attribute becomes equal to zero, then this
attribute is removed from the schema currentSchema(c).

In the case that n attributes are removed from the schema currentSchema(c),
where n > 1, then the client-peer ¢ sends to its access point z the updated
currentSchema(c). On the contrary, if n = 0 (no attribute is removed from
the schema currentSchema(c)), then ¢ does not inform z on the fact that
the schema currentSchema(c) is updated.

46

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml|">
<dc:creator>2</dc:creator>
<dc:title>2</dc:title>
<dc:subject>3</dc:subject>
<dc:format>1</dc:format>
<dc:date>1</dc:date>
<dc:language>2</dc:language>
</rdf:Description>
</rdf:RDF>

Table 4.5: The curentSchema(c) before the resource r is removed

Algorithm. Removing a resource

Suppose that c is the client-peer, = is the server-peer, r is the resource
for remove.

if ¢ == normal then
send(“remove” x,r);
return;

updated = False;
: for all a in attribute(r) do
if a in currentSchema(c) then
frequency(a) = frequency(a) — 1;
if frequency(a) == 0 then
currentSchema(c).remove(a);
10: updated = True;
11: if updated == True then
12: send(“update schema”, x,currentSchema(c));

Let us now give an example to make the process of removing a resource more
clear. Assume that a client-peer c is connected to a server-peer z and that both of
them support the Dublin Core element set schema, namely serverSchema(z) =
DC and clientSchema(c) = DC. Assume that ¢ has already published resources
and that its schema currentSchema(c) is as it is shown in Table 4.5.

Assume, that the client-peer ¢ has published a resource r using the metadata
item of Table 4.6. Now, client-peer ¢ wants to remove r. Client-peer ¢ connects

47

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="The Chatty Web">
<dc:creator>Karl Aberer</dc:creator>
<dc:title>The Chatty Web: Emergent Semantics Through Gossiping</dc:title>
<dc:subject>Semantic Web</dc:subject>
<dc:date>2003</dc:date>
<dc:language>En</dc:language>
</rdf:Description>
</rdf:RDF>

Table 4.6: The metadata file of the resource r

/ attributes-for-remove

dc:creator
dc:title
dc:subject
dc:date
dc:language

Figure 4.3: The temporary item attributes

to the local MySQL database and queries, with an RDQL query, to find out
the attributes of the schema clientSchema(c) that were used for the description
of r when publishing it. The returned attributes are stored on the attributes
temporary item, denoted by attributes(r). A view of attribute(r) is shown in
Figure 4.3. Then, ¢ deletes the metadata item of 7, from the local database.
The next step that the client-peer ¢ takes, is to modulate the schema currentSchema(c).

For this purpose, ¢ uses the item attributes(r) and the schema currentSchema(c).
For each attribute a such as a € attribute(r), ¢ decreases per one the frequency
of a, frequency(a) = frequency(a) — 1. For example, because the attribute
“dc:creator” exists in attributes(r), ¢ sets its frequency to “17. For the attributes
“de: title”, “dc:subject” and “de:language”, also included in attribute(r), their
frequency is set to “17, “2” and “1”, respectively. For the attribute “dc:date”,
included in attributes(r), its frequency is reduced to zero. Thus, ¢ removes the
attribute “dc:date” from the schema currentSchema(c), which becomes as it is
shown in Table 4.7. Because of the deletion of the attribute “dc:date”, ¢ sends to

48

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml">
<dc:creator>1</dc:creator>
<dc:title>1</dc:title>
<dc:subject>2</dc:subject>
<dc:format>1</dc:format>
<dc:language>1</dc:language>
</rdf:Description>
</rdf:RDF>

Table 4.7: The curentSchema(c) after the remove of the resource r

its access point z, the updated schema currentSchema(c). This is necessary to
happen because the server-peer x should know momentarily, which schema is used
by its client-peers, so as to forward queries to the appropriate client-peers. In the
case that ¢ deletes the attribute “dc:date” from the schema currentSchema(c),
but does not send the updated schema to its access point z, then z will continue
to send queries to ¢, which demand the attribute“dc:date”, but ¢ will not have
related resources.

4.2.3 Updating the metadata of resources

A client-peer can update the metadata item of a resource that it has previously
published. This scenario has been designed in order for the search and the match
of resources, to become more efficient. More precisely, for a resource r that a
client-peer has published, the client-peer can:

e change the value of one or more of the attribute value pairs that have been
used for the description of 7.

e add one or more new attribute value pairs in metadata(r), in order to
describe the resource r more analytically.

e delete one or more attribute value pairs that are not valid for r any more.

Similarly to what happens when publishing or removing a resource, the pro-
cess of updating a resource is executed in a schema based way too. This means,
that the process of updating a resource affects the schema information of the
owner client-peer and its access point.

Actually, the functionality of updating a resource, can be seen as the merge
of the two basic functionalities of publishing and removing resources. When, a

49

client-peer ¢, attached to an access point x, selects to update the metadata item
of a resource r, the following process takes place:

1. The client-peer ¢ connects to the local MySQL database and requests the
metadata of resource r.

2. Client-peer c stores all the attributes that were used for the description of
r in a temporary item, denoted by previous(r).

3. Then, the metadata item of r is deleted from the database.

4. The client-peer ¢ application, through the GUI, presents to the user the
metadata item of r.

5. The user fill in the form, by adding, removing or updating one or more
attribute value pairs.

6. A new metadata item is created for r and stored as triples (one for each
attribute) in the database.

7. Then, ¢ modulates the schema currentSchema(c) in the following way:

(a) For each attribute a such as a € previous(r) and a ¢ metadata(r), the
frequency of attribute a is decreased by one, namely frequency(a) =
frequency(a) — 1. If the frequency of an attribute becomes zero, then
this attribute is removed from the current schema of client-peer c.

(b) For each attribute a such as a € metadata(r) and a ¢ previous(r),
if a € currentSchema(c), then the frequency of a is increased by one
or else attribute a is added to the current schema and its frequency is
initialized to one. The first case is when an attribute has already been
used for another resource so we just increase its frequency, while the
second one is when an attribute is used for the first time.

8. In the case that one or more attributes are added or removed from the cur-
rent schema of client-peer ¢, ¢ forwards the updated schema currentSchema(c)
to its access point.

The algorithm is shown as pseudocode below:

20

Algorithm. Updating a resource

Suppose that c is the client-peer, = is the server-peer, r is the resource
for update.

if ¢ == normal then
send(“update” , z,r, metadata(r));
return;
updated = False;
: for all a in previous(r) do
if a not in metadata(r) then
frequency(a) = frequency(a) — 1;
if frequency(a) == 0 then
currentSchema(c).remove(a);
updated = True;
11: for all a in metadata(r) do
12: if a not in previous(r) then

— O

13: if a in currentSchema(c) then

14: frequency(a) = frequency(a) + 1;

15: else if a not in currentSchema(c) then
16: currentSchema(c).add(a);

17: frequency(a) = 1,

18: updated = True;

19: if updated == True then
20: send(“update schema”, z,currentSchema(c));

Let us now give an example to make the process of updating a resource more
clear. Assume that a client-peer c¢ is connected to a server-peer x. The current
schema of client-peer ¢ is shown in Table 4.5. We assume that the user of client-
peer c application, selects to update a resource r that is named “The Chatty
Web”. The client-peer ¢ connects to the local database and selects from the
mass of information all the triples that refer to r, namely:

<“http://The Chatty Web”, “http://purl/org/dc/elements/1.1/creator”, “Karl
Aberer” >

<“http://The Chatty Web”, “http://purl/org/dc/elements/1.1/title”, “The Chatty
Web: Emergent Semantics Through Gossiping” >

<‘“http://The Chatty Web”, “http://purl/org/dc/elements/1.1/subject”, “Se-
mantic Web” >

<“http://The Chatty Web”, “http://purl/org/dc/elements/1.1/date”, “2003” >

< “http://The Chatty Web”, “http://purl/org/dc/elements/1.1/language”, “En” >

o1

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="The Chatty Web">
<dc:creator>Karl Aberer, Philippe Cudre-Mauroux</dc:creator>
<dc:title>The Chatty Web: Emergent Semantics Through Gossiping</dc:title>
<dc:subject>Semantic Web</dc:subject>
<dc:publisher>WWW2003</dc:publisher>
<dc:language>En</dc:language>
</rdf:Description>
</rdf:RDF>

Table 4.8: The new metadata that ¢ sets while updating r

Client-peer ¢ stores in the temporary item previous(r), all the attributes that
were used for the description of r, namely previous(r) contains the attributes:
“dc:creator”, “dc:title”, “dc:subject”, “dc:date” and “dc:language”. Client-peer
¢ deletes the above triples from the local database. The user of client-peer ¢
through the GUI defines the new metadata item of r. Assume that the new
metadata item of r is as is shown in Table 4.8.

The next step that ¢ takes, is to modulate the schema currentSchema(c). For
this purpose, ¢ access the schema currentschema(c) and the items metadata(r)
and previous(r). For each attribute a € previous(r) and a ¢ metadata(r), c
decreases per one the frequency of a. In this case goes the attribute “dc:date”
that was used for the description r but while updating the user did not set a
value to it. The frequency of the attribute “dc:date” was “1”, so the client-peer
¢ deletes it from the schema currentSchema(c). Client-peer ¢ checks another
case, if there are attributes that are included in the item metadata(r) but are
not included in the item previous(r), namely if, while updating of r, the user
uses attributes that had not used before. The attribute “dc:publisher” belongs
to this case. Client-peer ¢ adds this attribute in the schema currentSchema(c)
and set its frequency to one. The rest of the attributes of item metadata(r), are
included in the term previous(r), so do not affect the current schema of ¢. In
this example, the update of the resource r, affects the schema currentSchema(c),
because of the deletion of an attribute (“dc:date”) and the addition of another
(“de:publisher”), which is shown in Table 4.9. Because of that, the client-peer ¢
forwards its updated current schema to x.

92

current schema
\ previous(r) metadata(r)
dc:creator
2

dc:title dc:title dc:title
2 "Karl Aberer, Philippe Cudre-Mauroux"
dc:subject de:creator dc:creator) B
3 de:subject The Chatty Web: Emergent Semantics Through Gossiping

- frequency

dc:format dc:subject
1 dc:date "Semantic Web"
dc:date dc:language dc:publisher
1 "WWW2003"
dc:language dc:language
> "Ep
- element name - element name

- value

Figure 4.4: The current schema and the temporary items, previous(r) and meta-
data(r)

4.3 The process of answering queries

In the previous sections we analyze the way that a client-peer publishes, updates
and removes resources. The next logical step is to define the way a query is posed
and answered, which is what we study in this section.

A client-peer searches for resources with specific features. A client-peer de-
scribes the resources to be retrieved with an RDQL query. In the query, the
client-peer determines which attribute value pairs or combination of attribute
value pairs should outline the requested resources. Note, that the expressivity of
the query is limited only by the RDQL query language. We assume that the user
of the application are expert users that are able to build RDQL queries.

A client-peer poses a query to the system by forwarding it to its access point.
The latter, using the schema-information that has stored and metadata items,
takes the appropriate actions in order to produce answers. At this point, recall
that a server-peer manages metadata items of normal client-peers and schema
information (current schema) of volunteer client-peers. Thus, for a complete set of
answers both metadata items in the server-peer and metadata items of volunteer
client-peers must be accessed. The former is satisfied by posing the query to the
local databases of the server-peer, while the latter is satisfied by forwarding the
query to those client-peers that may have matching resources, namely to those

23

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml|">
<dc:creator>2</dc:creator>
<dc:title>2</dc:title>
<dc:subject>3</dc:subject>
<dc:format>1</dc:format>
<dc:publisher>1</dc:publisher>
<dc:language>2</dc:language>
</rdf:Description>
</rdf:RDF>

Table 4.9: The modulation of the current schema of a client-peer after the up-
dating of a resource

client-peers that the attributes in their current schema match the attributes that
were used for building the query. The steps that are followed when a client-peer
¢, attached to an access point x, poses a query ¢ are the following:

1.

2.

The user of the client-peer ¢ application writes an RDQL query.

The client-peer ¢ forwards the query ¢ to z. A query message contains the
actual query and the IP address and the port of the owner of the query.

The server-peer z parses the query ¢, in order to finds which attributes are
used. It does not care about the values that the client-peer has set to the
attributes, but just for the actual attributes. A temporary item is created,
denoted by attributes(r).

For each record k in the local active-clients data structure, the current
schema of the client-peer k.client that record k represents is checked against
attributes(r) and if there is a match (all attributes of attributes(r) are
included in the current schema of k.client) then the query is forwarded to
k.client.

The server-peer poses the query to its local database and generates zero
or more answers. The answers are forwarded directly to client-peer c¢. An
answer contains the metadata item of the matching resource and the IP
address and the port of the resource owner client-peer.

Each client-peer that receives a query from its access point poses the query
to its local database. If it finds one or more matching resources, it generates

o4

the appropriate answers (using the same format as the server-peer) and
sends them directly to the client-peer ¢ (the IP address and the port of ¢
were included in the query).

7. Then, the client-peer ¢ can go ahead and request a matching resource.

The example that it is described below, illuminates the functionality of an-
swering query. Assume that a client-peer ¢, which has IP address: 220.17.173.258
and Port : 2000, is connected to a server-peer x. The schema that it is supported
by c is the same schema that is supported by z, and it is the Dublin Core schema.
The client-peer ¢ poses the following RDQL query to x:

SELECT 7x
WHERE (7x, <http://purl.org/dc/elements/1.1/title>, "RDF"),
(?x, <http://purl.org/dc/elements/1.1/creator>, "Bill")

In this query, ¢ searches for a resource that in its title includes the term “RDF”
and has as creator someone who is named “Bill”.

The server-peer x that receives this query, parses it so as to find which schema-
attributes are used. The attributes are the “dc:title” and the “dc:creator”. Then,
the server-peer access the data structures active-clients and serverSchema so as
to designate which client-peers include these attributes to their current schema.
The two data structures are shown in Figure 4.5. The first client-peer that there
is in the data structure active-clients (with IP address: 213.16.184.224 and Port:
4838) uses for the description of its published resources, the attributes “dc:title”
and “dc:creator”. Thus, the server-peer forwards to this client the above RDQL
query. The second client-peer (IP address: 215.17.179.521, Port : 4256), includes
in its current schema the attributes “dc:title” and “dc:description”, but it does
not include the “dc:creator”, so this client-peer does not have resources that
match the query, therefore the server-peer does not forwards the query to this
one. The third client-peer (IP address: 220.17.173.258, Port : 2000) is the one
that poses the query, so the server-peer does not check if it satisfies the conditions
so as to answer the query. The next client-peer (IP address: 222.18.183.253, Port :
4832) uses for the description of its published resources the attributes “de:creator”
and “dc:description”, but does not use the “dc:title” so the server-peer does not
forward the query to it.

After the analytical check, the server-peer z forwards the query to the client-
peers c1 (IP address: 213.16.184.224, Port: 4838) and ¢2 (IP address: 223.20.203.538,
Port : 4428). Then, each client-peer queries its local MySQL database. In the
case that the client-peer cI has published a resource that satisfies the query, c1
connects to the requester client-peer ¢ as to inform it for the answer. It sends to ¢
the metadata item of the resource that matches the query. Then, the client-peer
¢ decides if it wants to request it or not. In the case that ¢ wants the resource,

95

Hash table

Hash table

serverSchema(x)

active-clients

IP address: 213.16.184.224 <http://purl.org/dc/elements/1.1/title>
Port: 4838 dc:title

IP address: 215.17.179.521 <http://purl.org/dc/elements/1.1/creator>
Port : 4256 dc:creator

<http://purl.org/dc/elements/1.1/subject>

IP address: 220.17.173.258 !

Port : 2000 dc:subject

IP address: 222.18.183.253 <http://purl.org/dc/elements/1.1/description>

Port : 4832 dc:description

IP address: 223.20.203.538 <http://purl.org/dc/elements/1.1/publisher>

Port : 4428 dc:publisher

IP address: 211.16.204.231 <http://purl.org/dc/elements/1.1/contributor>

Port : 4231 dc:contributor
<http://purl.org/dc/elements/1.1/date>

dc:date

<http://purl.org/dc/elements/1.1/type>
dc:type

<http://purl.org/dc/elements/1.1/format>
dc:format

<http://purl.org/dc/elements/1.1/identifier>
dc:identifier

<http://purl.org/dc/elements/1.1/source>
dc:source

<http://purl.org/dc/elements/1.1/language>
dc:language

<http://purl.org/dc/elements/1.1/realtion>
dc:realtion

<http://purl.org/dc/elements/1.1/coverage>
dc:coverage

<http://purl.org/dc/elements/1.1/rights>
dc:rights

Figure 4.5: The data structures active-clients and serverSchema(x)

o6

it sends a request message to the client-peer ¢/ and client-peer cI sends the
resource.

4.4 When client-peers define their own schema

In the previous sections we studied the processes of publishing, removing and
updating resources. We also discussed about the way queries are handled. We
analyzed the distinct steps of these processes and the way they modulate the
schema information of client-peers and server-peers. In the previous section we
focused on the scenario where the client-peers support the schema of their ac-
cess point. In this section we analyze how the functionalities of our system are
executed, if a client-peer supports a schema different than the one of its access
point.

In the case that a client-peer ¢ is connected to a server-peer z and selects to
define its own schema, it follows the process that we describe in Section 4.1.2,
namely it defines the component attributes of its schema clientSchema(c) and
maps each attribute to one of the attributes of the schema serverSchema(x).
When the client-peer selects to use one of the functionalities of the system (pub-
lish, remove, update, query), it follows the procedures that we describe in Sections
4.2.1,4.2.2, 4.2.3 and 4.3. The additional step is the execution of the extensional
process of translation. By the term translation we mean the mapping between the
schema of a client-peer and the schema that is supported by its access point, so
as to change each attribute that belongs to one schema by its relevant attribute
of the other schema. The process of translation has to be executed each time a
client-peer:

e sends to access point an updated version of its current schema (stands for
volunteer client-peers only).

e publishes or updates a resource and sends to its access point the metadata
item of the resource (stands for normal client-peers only).

e poses an RDQL query.
e receives from its access point an RDQL query, so as to answer it.

e receives (either from its access point or from another client-peer) a metadata
item as an answer to a query that it posed.

The process of translation is critical and necessary, otherwise the commu-
nication between the peers of the system will be inefficient, because each peer
understands just the schema that it supports and does not understand the schema
of other peers. At this point, recall that a volunteer client-peer does all the trans-
lations on its own while a normal client-peer does not do any translation at all.

57

The access point of a normal client-peer does this job. This means, that a volun-
teer client-peer translates all messages before sending them to its access point (for
example, a query message or an update schema message) or to other client-peers
(for example, an answer message). A normal client-peer sends its metadata items
(publish, remove or update resource messages) and queries untranslated. The ac-
cess point translates those messages as long as it receives them. In addition, the
access point translate an answer before sending it to a normal client-peer. Note,
that the only case that a normal client-peer does a translation on its own, is when
receiving an answer from another client-peer, namely a volunteer one.

Let us now give an example in order to explain how the process of publish-
ing a resource is executed, in the case that a client-peer has defined its own
schema. The scenarios where a client-peer removes or updates a resource are
of similar logic, and we will omit them. Assume that a client-peer ¢ partici-
pates in the system using a different schema than the one that its access point
z supports. The server-peer z supports the Dublin Core element set. The map-
ping between the schema clientSchemac and the schema serverSchema(z) is
shown in Figure 4.2. The client-peer ¢ participates in the system for the first
time, so currentSchema(c) = @. It selects to publish a resource r, named “The
Lake.wav” and describes it by setting values to the following attributes:

attribute value
generator Philip Glass
title The Lake
date 1993

Then, the metadata item of r is created, and contains the attribute value pairs
that are used for the description of . An XML representation of the metadata
item of r is shown in Table 4.10.

Each attribute value pair in the metadata item of r is stored as a triple, in
the local MySQL database of ¢, in the form of subject[predicate — object].

<‘“http://The Lake.wav”, “http://myschema/generator”, “Philip Glass” >
<“http://The Lake.wav”, “http://myschema/title”, “The Lake” >
<“http://The Lake.wav”, “http://myschema/date”, “1993" >

The publication of the resource r causes the change of the schema currentSchema(c).
Before the publish, the schema currentSchema(c) was empty, so now the client-
peer adds to it the three attributes (generator, title and date) that are used for
the description of the resource and sets the frequency of each attribute’s usage
to one. The schema currentSchema(c) becomes as is shown in Table 4.11.
Because of the addition of these three attributes to the schema currentSchema(s),

o8

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="The Lake.wav">
<generator>Philip Glass</generator>
<title>The Lake</title>
<date>1993</date>
</rdf:Description>
</rdf:RDF>

Table 4.10: XML representation of the metadata(r), in user-defined schema

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml">
<generator>1</generator>
<title>1</title>
<date>1</date>
</rdf:Description>
</rdf:RDF>

Table 4.11: The modification of user-defined current schema after the publish of
-

the client-peer should send to its access point the updated schema currentSchema(s).
The next step that ¢ takes is to translate the currentSchema(s). It transforms
each attribute of the schema clientSchema(c) to the relevant attribute of the
schema serverSchema(z). In particular, ¢ changes the attribute “generator” to
the attribute “dc:creator”, the “title” to “dc:title” and the “date” to “dc:date”.
The XML representation of the changed schema currentSchema(c) is shown in
Table 4.12. After that, the client-peer sends its schema currentSchema(c) to its
access point z. The server-peer z, understands and stores to its data structures
active-clients and serverSchema(x) that the specific client-peer ¢ supports the
attributes “dc:creator”, “dc:title” and “dc:date”; it does not care if ¢ supports
the actual attributes or others that it has related to these.

Let us now give an example of what happens when a client-peers that sup-
ports a schema different than the one of its access point, poses a query. Consider
that the server-peer x supports the Dublin core element set and the mapping
between the two schemas is the same as above (shown in Figure 4.2). Client-peer

29

<?xml version="1.0" encoding="UTF-8" ?>
- <rdf:RDF xmlIns:dc="http://purl.org/dc/elements/1.1/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
- <rdf:Description rdf:about="E:/IntelliJ-IDEA-3.0.1/src/client/2000/Schema.xml">
<dc:creator>1</dc:creator>
<dc:title>1</dc:title>
<dc:date>1</dc:date>
</rdf:Description>
</rdf:RDF>

Table 4.12: The translated current schema

¢ wants to find resources that have been created by a person named “Mahler”,
the user of ¢ writes the RDQL query using the schema that he has defined:

SELECT 7r
WHERE (r, 7?generator, "Mahler")

In the case that client-peer ¢ is volunteer, translates the query before it poses
it to its access point. Thus it becomes:

SELECT 7r
WHERE (?x, <http://purl.org/dc/elements/1.1/creator>, "Mahler")

The server-peer = receives an RDQL query written using its schema, so it
follows the process of answering queries as we described in Section 4.3.

In the case that the client-peer is normal, it sends the query untranslated to
its access point.

The server-peer x stores the mapping between its schema and the schemas of
all its normal client-peers, so when x receives the untranslated query, it uses the
mapping between the schema serverSchema(x) and the schema clientSchema(c)
and translates the query. Then, it follows exactly the same process as to forward
it to the appropriate client-peers.

4.5 Summary

In this chapter we presented the schemas that are supported by different types
of system peers. We analyzed the system functionalities and how these are ex-
ecuted in a schema-based routing way. We presented the four distinct scenarios
of the system, which are modulated based on the type of client-peer (normal or
volunteer) and the client schema (if it is a user-defined or not). In the following

60

chapter, we present some well-known peer-to-peer systems and their architecture.

61

Chapter 5

Concluding Remarks

The combination of Semantic Web and peer-to-peer technologies provides fast
and reliable data retrieval and efficient search. For peer-to-peer environments
metadata are absolutely crucial, in order to describe the resources managed by
the peers. The RDF-based peer-to-peer networks have a number of important
advantages over previous more simple peer-to-peer networks. In this dissertation
we have described the design and implementation of an RDF-based, hybrid peer-
to-peer network, in which peers provide and use explicit schema description of
their content. We also introduce a new distinction of client peers in traditional
hybrid peer-to-peer networks. We distinguished the client peers to more and less
powerful and defined the role of each type of client peers. The main goal was
to build a system to work in the real word, the Internet. So we implement a
file sharing application that allow users to define their own metadata vocabulary
and then to publish available resources to the network, or to query the system
for desirable resources.

In this dissertation, we initially surveyed the area of distributed systems. We
presented a taxonomy of computer systems from the peer-to-peer perspective, and
then we classify the peer-to-peer systems in terms of their application domain.
We briefly discussed some alternative architectures for peer-to-peer systems and
the some well-known, representative networks of these architectures. Then, we
presented the necessary knowledgeable background for this thesis. We gave a
brief description of the RDF data model, the Dublin Core metadata standard,
the Jena API, the MySQL database and the RDQL query language.

After, we presented the architecture of our system. We described the func-
tionalities that efficiently are supported using such an architecture. We analyzed
the conditions that specify if a client-peer is normal or volunteer, and then we
defined exactly the role that each type of client-peers, has in our network applica-
tion. Then, we discussed the role of the server-peer and its reactions to requests
from client-peers. We mentioned the information that it stores in case that it
handles requests of normal or volunteer client-peers, and how it executes each
request. Because of we consider that our application intend to work in the real

62

world, we have focused on a fault-tolerance mechanism. In this way, we avoid a
number of problems that are brought to the system in the case that a client-peer
is silent disconnected or fails.

Then, we discussed what kind of schema information each type of peer (server,
normal, volunteer) stores and how this information can be used for routing in our
peer-to-peer network. We analyzed the functionalities of the system from the
schema information perspective, namely we described the way that each system
functionality is executed and how the schema of client-peers is modulated during
the execution. We described in detail the algorithms for the basic procedure of
our system:

1. The algorithm of publishing a resource, which is used by client-peers even
if they are normal or volunteer, in order to publish available resources.

2. The algorithm of removing a resource, which is used by client-peers in order
to remove resources that they have already published.

3. The algorithm of updating a resource, which is used by client-peers in order
to update the metadata of already published resources.

Finally we described the process of answering queries. We studied the case
that a client-peer, which has defined its own schema, sends queries to the system;
we analyzed the process of translation that is demanded in order to be forwarded
and to be answered such a query.

63

Bibliography

1]
2]

[10]

[11]

Dublin core metadata web site. http://purl.org/dc/.

The Gnutella Protocol Specification v0.4. Clip2 report,
http://www9.limewire.com/developer /gnutella_protocol _0.4.pdf.

Dublin core metadata element set: Reference description.
http://dublincore.org/documents/dces/, 2003.

JXTA 2001. The JXTA Home Page www.jxta.org.

Microsoft 2001. Microsoft NET Passport Techni-
cal Overview September 2001. www.sec.informatik.tu-
darmstadt.de/de/lehre/SS03/itsec2 /uebungen/wp_engl net_passport.pdf.

ISO 8879. Information processing — Text and Office Systems — Standard
Generalized Markup Language (SGML). International Organization for Stan-
dardization, Geneva, Switzerland, first edition, 1986.

BearShare Home page. http://www.bearshare.com/.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC2396: Uniform Resource
Identifiers (URI): Generic syntax. http://www.ietf.org/rfc/rfc2396.txt. This
document updates RFC1738 and RFC1808.

D. Brickley and R. V. Guha (Eds). “Resource Description Framework
(RDF) Schema Specification 1.07. W3C Recommendation, March 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

Jeremy J. Carroll, Tan Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the semantic web
recommendations. Technical Report HPL-2003-146, Hewlett Packard Labo-
ratories, December 24 2003.

lan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval system.
Lecture Notes in Computer Science, 2009, 2001.

64

[12]

[19]
[20]
[21]

[an Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hongang.
Freenet: A distributed anonymous information storage and retrieval system
in designing privacy enhancing technologie. In Hannes Federrath, editor,
Designing Privacy Enhancing Technologies, volume 2009 of Lecture Notes in
Computer Science, Berkeley, CA, USA, July 2000. Springer-Verlag, Berlin
Germany.

World Wide Web Consortium. Extensible Markup Language (XML). Avail-
able at http://www.w3.org/TR/PR-xml.html, 1997.

MySQL® Database Server. http://www.mysql.com/products/mysql/.
FastTrack. 2001. The FastTrack Protocol. http://www.fasttrack.nu/.
Freenet website. http://freenet.sourceforge.net.

Gnutella website. http://gnutella.wego.com.

IEEE P1484.12 Learning Object Metadata Working Group. Draft
standard for learning object metadata. Technical report, IEEE
learning Technology — Standards Commitee (LTSC), July 2002.
http://ltsc.iece.org/wgl2/files/LOM_1484_12_1_v1_Final Draft.pdf.

gtk-gnutella Home page. http://gtk-gnutella.sourceforge.net/.
R.V. Guha. rdfDB : An RDF Database. Web page: http://guha.com/rdfdb/.

I. Stoica and R. Morris and D. Karger and M.F. Kaashoek and H. Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM 01 Conference, San Diego, Califor-
nia, August 2001.

KazaA Home Page. http://www.kazaa.com.
Limewire Home page. http://www.limewire.com.

Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can Heterogeneity Make
Gnutella Scalable?

Frank Manola and Eric Miller. Primer: Getting into RDF & Semantic Web
using N3. http://www.w3.org/TR/REC-rdf-syntax/.

Brian McBride. Jena: Implementing the RDF Model and Syntax Specifica-
tion. Technical Report 20001221, Hewlett Packard Laboratories, 2000.

Libby Miller, Andy Seaborne, and Alberto Reggiori. Three implementations
of SquishQL, a simple RDF query language. Lecture Notes in Computer
Science, 2342:423, 2002.

65

28]

[39]

[40]

Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim
Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer com-
puting. Technical Report HPL-2002-57R1, Hewlett Packard Laboratories,
July 14 2003.

“Napster messages”. http://opennap.sourceforge.net /napster.txt.
Napster website. http://www.napster.com.

W. Nejdl, B. Wolf, Changtao Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. Edutella: A P2P Networking Infrastructure Based
on RDF. In Proc. of WWW-2002. ACM Press, 2002.

Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz, Mario
Schlosser, Ingo Brunkhorst, and Alexander Lser. Super-peer-based routing

and clustering strategies for RDF-based peer-to-peer networks. January 01
2003.

N. Ntarmos and P. Triantafillou. SeAl: Managing Accesses and Data in
Peer-to-Peer Data Sharing Networks. In Jth IEEFE International Conference
in Peer-to-Peer Computing, August 2004.

P. Suthar and J. Ozzie. The Groove Platform Architec-
ture. Available at Groove Networks Presentation. dev-
zone.groove.net /library /Presentations/GrooveApplication Architecture.ppt.

S. Ratnasamy and P. Francis and M. Handley and R. Karp and S. Shenker. A
scalable content-addressable network. In Proceedings of the ACM SIGCOMM
‘01 Conference, San Diego, California, August 2001.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN °02), San Jose, CA, USA, January
2002.

Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. Hy-
percup - hypercubes, ontologies and efficient search on p2p networks.

Douglas C. Schmidt and Steve Vinoski. Object interconnections: Compar-
ing alternative programming techniques for multi-threaded CORBA servers
(column 6). January 05 1997.

Andy Seaborne. RDQL -~ RDF Data Query Language.
http://hpl.hp.com/semweb /rdql.html, 2001.

Andy Seaborne. An RDF NetAPI. Technical Report HPL-2002-109, Hewlett
Packard Laboratories, April 22 2002.

66

[41]
[42]
[43]

SETI@home Home Page. http://setiathome.ssl.berkley.edu.
Shareaza Home page. http://www.shareaza.com/.

Stratos Idreos, Manolis Koubarakis and Christos Tryfonopoulos. P2P-DIET:
Ad-hoc and Continuous Queries in Super-peer Networks. Proceedings of the
IX International Conference on Extending Database Technology (EDBT04),
Heraklion, Crete, Greece, March 14-18, 2004.

The EdutellaProject. http://edutella.jxta.org/.

Peter Triantafillou. Self Organization and Volunteering: Engineering in Very
Large Scale Sharing Networks. In SELF-STAR: International Workshop on
Self-* Properties in Complex Information Systems, May 2004.

M. Wolpers W. Nejdl, W. Siberski and C. Schmnitz. Routing and Clustering
in Schema-Based Super Peer Networks. In Proc. of IPTPS 03, October 30,
2002.

Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Effi-
cient RDF storage and retrieval in jena2. Technical Report HPL-2003-266,
Hewlett Packard Laboratories, January 14 2004.

World Wide Web Consortium. Resource Description Framework (RDF)
Model and Syntax Specification. Technical report, World Wide Web Con-
sortium, February 1999.

Beverly Yang and Hector Garcia-Molina. Designing a super-peer network.
Technical Report 2002-13, Stanford University, 2002.

67

