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ABSTRACT 
 

Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two principal 

objectives in the scientific study of his environment: he wants to understand and to 

control. The two goals reinforce each other, since deeper understanding permits 

firmer control, and, on the other hand, systematic application of scientific theories 

inevitably generates new problems which require further investigation, and so on. 

 In this project, an Adaptive Backstepping Neural Network control approach is used 

for a class of affine nonlinear systems which describe the Mitogen Activated Protein 

Kinase (MAPK) cascade models in the strict feedback form, in interlaced and mixed 

interlaced forms.  We consider the forms of the MAPK cascade [4]. The close loop 

signals are semiglobally uniformly ultimately bounded and the output of the system is 

proven to follow a desired trajectory. Simulation results are presented to show the 

effectiveness of the approach proposed in order to control the MAPK output. 

Nowadays MAPK cascade models are being used to control the cell division 

processes and are based on the kinetic properties of three kinases and phosphatases in 

specific signalling pathways that transmit the information delivered to the cell by 

stimuli and acts like feedback controller able to adapt to it. Furthermore one possible 

function of the MAPK is to amplify the signal and to integrate many inputs. When the 

final kinase of the pathway is activated, MAPK is delivered to the nucleus to affect 

gene expression. Biologists work is supported by various remarks from recent Nobel 

Prize winners. Because of that, recently interest in modelling of biological systems 

has been increased. In the present work we focus on the control of signals, the kinases 

produce as partial outputs (virtual control inputs) via a well known adaptive 

backstepping technique [1] through an appropriate selection of the controller. The 

system exhibits unknown nonlinearities. We use adaptive control [13] in order to 
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track the desired output. Adaptive control approaches enjoy the property of on line 

control. We use specific adaptation laws in order to reduce uncertainty. This method 

can be used in drug discovery and sickness therapy, especially in personalized 

medicine (i.e., for a specific disease, for a specific person, the appropriate medicine). 

It is obvious that we do not need to know the interconnections between the signalling 

pathways. We do need to know the states of the system which are the protein 

concentrations. We also need an appropriate input (state feedback control input) to 

make the output to follow the desired behaviour.   

      The kinases and phosphatases of our model have the following properties: 

Each kinase can be found in an active and an inactive form. 

Activation of kinases takes place by phosphorylation. 

       When the kinases are in their active forms they may phosphorylate other kinases 

and inactivation of the kinases takes place by dephosphorylation catalyzed by 

phosphatases which are sequentially active. Effects of multiple phosphorylations are 

neglected and we do not consider the action of scaffolds and adaptors. 

 

Assumption: Initial activation of kinases occurs by their interaction with an external 

receptor . )(tu
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Chapter 1 

 

INTRODUCTION 
 

 

 

Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two principal 

objectives in the scientific study of his environment: he wants to understand and to 

control. The two goals reinforce each other, since deeper understanding permits 

firmer control, and, on the other hand, systematic application of scientific theories 

inevitably generates new problems which require further investigation, and so on. 

 In this project, an Adaptive Backstepping Neural Network control approach is 

used for a class of affine nonlinear systems which describe the Mitogen Activated 

Protein Kinase (MAPK) cascade models in the strict feedback form, in interlaced and 

mixed interlaced forms.  We consider the forms of the MAPK cascade [4]. The close 

loop signals are semiglobally uniformly ultimately bounded and the output of the 

system is proven to follow a desired trajectory. Simulation results are presented to 

show the effectiveness of the approach proposed in order to control the MAPK output. 

Nowadays MAPK cascade models are being used to control the cell division 

processes and are based on the kinetic properties of three kinases and phosphatases in 

specific signalling pathways that transmit the information delivered to the cell by 

stimuli and acts like feedback controller able to adapt to it. Furthermore one possible 

function of the MAPK is to amplify the signal and to integrate many inputs. When the 

final kinase of the pathway is activated, MAPK is delivered to the nucleus to affect 

gene expression. Biologists work is supported by various remarks from recent Nobel 

Prize winners. Because of that, recently interest in modelling of biological systems 

has been increased. In the present work we focus on the control of signals, the kinases 
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produce as partial outputs (virtual control inputs) via a well known adaptive 

backstepping technique [1] through an appropriate selection of the controller. The 

system exhibits unknown nonlinearities. We use adaptive control [13] in order to 

track the desired output. Adaptive control approaches enjoy the property of on line 

control. We use specific adaptation laws in order to reduce uncertainty. This method 

can be used in drug discovery and sickness therapy, especially in personalized 

medicine (i.e., for a specific disease, for a specific person, the appropriate medicine). 

It is obvious that we do not need to know the interconnections between the signalling 

pathways. We do need to know the states of the system which are the protein 

concentrations. We also need an appropriate input (state feedback control input) to 

make the output to follow the desired behaviour.   

 

 

 

The kinases and phosphatases of our model have the following properties: 

i) Each kinase can be found in an active and an inactive form. 

ii) Activation of kinases takes place by phosphorylation. 

 

       When the kinases are in their active forms they may phosphorylate other 

kinases and inactivation of the kinases takes place by dephosphorylation catalyzed by 

phosphatases which are sequentially active. Effects of multiple phosphorylations are 

neglected and we do not consider the action of scaffolds and adaptors. 

 

Assumption: Initial activation of kinases occurs by their interaction with an 

external receptor . )(tu
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Chapter 2 

 

A GENERAL OVERVIEW 

IN SYSTEMS BIOLOGY 

AND ADAPTIVE CONTROL 
 

Since this work deals with systems biology and adaptive control it is necessary 

to tell something about them. 

2.1 Systems Biology 
 

The discovery of DNA and its important attendance to all the cell functions has 

increased the interesting of the scientists to deal with new emerging parts of Biology. 

Systems biology is a new established research area that combines systems theory and 

cell biology and has led to important Biology developments that improve human 

health. A lot of universities make research on this field and create important 

ascertainments. Examples of Biological Systems are as old as classical biology. 

Systems biology focuses to the dynamic behaviour of biochemical networks that are 

called signalling pathways and characterize many of the components that make up a 

living cell and maintain its function. Signalling pathways are like the block diagrams 

control engineers use in order to analyze systems and represent interconnections 

between the blocks with mathematical models and modern simulation. Such pathways 

are collected in large biological databases and their purpose of existence is to simulate 

the biochemical reactions of cells. These biochemical reactions include cell growth, 

cell death and cell division. 
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Systems biology makes control engineers and biologists to share the same 

language in order to represent most of the cell functions. This cooperation is made in 

order to find the proper treatment of many diseases.  

Cell division is the basic function of the cell. It is a process in which cell 

duplicates and divides itself with cyclic changes in concentrations and periodic 

activation. Changes in concentrations can be measured with protein microarrays. 

Furthermore one also basic function is cell signalling (see figure 1). Cells transmit 

signals each other, to communicate, combine into networks and realize higher levels 

of organization, such as organs and tissue. The communication between the inside and 

outside of the cell happens with the receptors that transmit the information delivered 

to the cell by stimuli. Feedback loops play a very important role in signalling 

pathways and are related to the basic cell functions. If basic functions of the cell do 

not operate properly then disease, such as cancer may occurs. Pharmaceutical 

companies have included to their program, special issues and projects for drug 

discovery that are based on understanding and modelling the operation of signalling 

pathways.  

For the simulation and the depiction of the signalling pathways, it is widely 

used by the scientific community a lot of software tools with prevailing tool SBML 

(Systems Biology Markup Language). SBML can be applied extensively in many 

areas of systems biology such as cell signalling.  

With the technology progress, we will soon be able to provide new methods for 

data collecting, simulations and validations. The results from the previous will be the 

driver for a joint research effort and link the experimental results that are taken from 

the laboratories, with the system and module level results.  Control engineers must be 

the leaders to every research effort and must give their pledges to study important 

signalling networks properties such as robustness and stability. 
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Figure 2.1: Schematic representation of cell signaling. 

 

 

The dynamic point of the biochemical reactions has drawn engineers to engage 

with Systems Biology and has more to do with the application of control theory rather 

than with the application of physics theory to molecular biology in order to lead to a 

more complete understanding of cells function. Mathematical models in Systems 

Biology provide us an abstract representation of the principles we observe. The most 

interesting fact, this area works on, is the modelling of the operations of a signalling 

pathway with nonlinear ordinary differential equations and cellular automata. The 

data, scientists need in order to represent biochemical reactions in signalling 

pathways, is found into biological experiments in well organized laboratories with 

advanced equipment. This has to do with quantitative stimulus response time series.  
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2.2 Signal Transduction Networks 
 

Cells are the basic type of life and they act autonomously. Cells should be 

capable to react in each change of their environment, for this reason they are provided 

with systems of sensors which depending on the various activities of the cell, promote 

the suitable signals via suitable structures for the most optimal solution of such 

situations. 

In order to become more comprehensibly those who will be reported, it will be 

supposed to give a description of a cell. The cells are surrounded by a membrane that 

helps them to be autonomous and protects them from external and most times harmful 

situations. The cellular membrane is very important for the communication between 

cells for all the functions of an organism. Each time where a stimulus becomes 

perceptible in the cellular membrane then we have the transport of signal in the point 

of action which may be either the DNA or enzymes inside the cytoplasm. This 

process is named signal transduction and includes processing of signals.  

Enzymes are modified suitably, in order that their catalytic activities are 

changed proportionally with the extracellular signal and for DNA the above process 

detects proteins that are responsible for gene functioning and according to that, new 

proteins become with base elements from the chain of DNA. In prokaryotic cells, 

such as bacteria, DNA is found freely in cytoplasm. On the contrary in more complex 

cells that we call eukaryotic cells DNA is found into nucleus.  

The process of cell signalling modifies concentrations of proteins. The most 

useful process that changes the concentrations of proteins is phosphorylation. Proteins 

are constituted by amino-acids and for this reason phosphorylation occurs in concrete 

parts of them and catalyzed by the kinases which are specific enzymes. The reverse 

process is catalyzed by other enzymes that we call phosphatases and is the result of 

signal transduction processes. The previous acts like a control system that increases 

the reliability of signal transduction. 

In this project we deal only with eukaryotic cells that are more complex than 

prokaryotic because we have many interconnections between signalling pathways. 

Every signalling pathway is activated by another one. The previous process is well 

known as crosstalk. In eukaryotic cells there are some membrane proteins that have 

very important role in recognizing specific signals. These proteins are known as 
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receptors. There are many types of receptors that are known in biology. A very 

important category of receptors are the RTKs (receptor tyrosine kinases) that are 

shared a lot of recourses.  

Very important for cell signalling are the adaptor proteins that can be committed 

by other proteins and have enzymatic activities. These proteins have concrete 

structure that helps them to come together with different type of proteins and 

initializing signalling pathways in which signal can be amplified.   

There are two possibilities for how the signal can be transmitted into the cell. 

The first possibility is the activation of a cascade of successive kinases, and the 

second possibility is the creation of second messengers. The second messengers can 

transfer the signal to different areas of the cell and can interact with different proteins. 

One of the most important examples of cascade kinases is the MAPK (Mitogen 

Activated Protein Kinase) which consists of three kinases that are activated 

sequentially (see figure 2). MAPK can be found in all eukaryotic cells and it 

participates in many functions of signal transductions, such as cell-cycle control, cell-

wall-construction, growth, differentiation and stress response. Moreover MAPK 

cascades implement feedback and feedforward loops that strengthen their variability 

and decrease the response time. With the feedback loops MAPK cascades become 

bistable and this gives the spark for an immutable binary response to stimulus. On the 

other hand feedforward loops can return the systems to track a desired output via 

appropriate adaptation.  
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Figure 2.2: Representation of MAPK cascade model. 

 

 

 

 

Signal transduction networks are depicted with ordinary differential equations. 

In order to study them, it is useful to decompose into smaller elements in order to 

handle the complexity of cell processes. These smaller elements can be studied and 

analyzed more easily. Finally we regroup the smaller elements and study the system 

as a whole. Moreover with systems theory we analyze systems without retrospection. 

In such biological systems we use network theory in order to approach them.  

The most important factor in analyzing signal transduction networks is their 

dynamic behaviour that is determined by the properties of the signal. Such properties 

are signal duration, signal amplitude, signalling time etc. In order to be calculated 

numerically Heinrich et al. [21] proposed three equations that are:  
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Which are τ for signalling time, θ for signal duration and S for signal amplitude. 

These values are useful and logical until the output returns to zero after a specific 

time. But in case this is not feasible τ, θ tend to infinity.  

 

Bacteria use a two-component signal transduction network in order to react to 

environmental changes. The above systems use, not only a sensor kinase but also and 

a response regulator. When a stimulus becomes perceptible by the cell then happens 

the so called autophosphorylation with the support of ATP (Adenosine Triphosphate).  
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2.3 MAPK signaling cascades 
 

MAPK signalling cascades [23] are the main routes with which the plasma 

membrane communicates with concrete parts in the interior of cell. A lot of operations 

of cell emanate from sequentially activation of protein kinase cascades. A lot of these 

cascades are clarified during the last years and are known as Mitogen Activated 

Protein Kinase (MAPK) signalling cascades. Every of the previous sequences is 

constituted by 5 levels from protein kinases that are activated sequentially by 

phosphorylation. Most known sequences of MAPK cascades are four and are named 

according to the subgroup of their MAPK elements (ERK, JNK, SPK, MBK). They 

initiate cell processes such as proliferation, differentiation, apoptosis.  

The previous signaling cascades have a receptor tyrosine kinase at their plasma 

membrane where the signal is passed first to adaptor proteins. These proteins are 

called G-proteins and they interact with the MAPKKK which is the first level in 

MAPK signaling cascades. 

ERK and MEK play important role in the transportation of many signals and the 

definition of uniqueness of each signal. A research area that many research groups are 

concentrated is the development of anti-phospho-MAPK antibodies. This become 

more serious when it is realized that ERK plays important role in differentiation and 

development. Experiments are made to create antibodies in vivo and in vitro. 
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Figure 2.3: MAPK signalling cascades. 
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2.4 Epidermal Growth Factor Receptor (EGFR) 
 

EGFR belongs to RTK family and has important role in the cell. EGF is a 

polypeptide consisting of 53 amino acids. When EGFR is activated, then cell 

functions such as cell migration and cell division may happen. EGFR is unbreakably 

connected to the creation of cancer tumours, that’s why many cancer medicines are 

straight directed to EGF signalling pathway. Furthermore, excessive activation of 

EGFR on the cancer cell surface is now known to be associated with advanced 

disease, the development of a metastatic phenotype and a poor prognosis in cancer 

patients. 

EGFR activates the MAPK cascade pathway after it committed various 

proteins.  This activation needs the commitment of the adapter molecules Grb2, Shc, 

Sos, Gap to the EGF receptor and especially by means of Shc-independent pathway 

and Shc-dependent pathway. MAPK takes the signal through the cytoplasm to the 

nucleus where it triggers specific functions, which drive cells into duplication. 

Moreover there are and some other kind of receptors that are called internalized 

receptors and their operation is not clear. When the receptor internalized, then EGFR 

can commit the same compounds as the surface receptors do.  
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2.5 Adaptive Control 
 

The history of adaptive control began from the early 1950’s. With the passing of 

the years a lot of papers and books have been published. These research activities 

have proposed solutions for basic problems and for broader classes of systems. 

Especially the interest for nonlinear adaptive control began from the mid-1980’s. A 

lot of great scientists, such as Kokotovic, Kanellakopoulos and Krstic [1] and Lewis, 

et al [2] have studied adaptive control and its applications extensively. 

Adaptive control [1], [2] is a powerful tool that deals with modelling 

uncertainties in nonlinear (and linear) systems by on line tuning of parameters. Very 

important research activities include on-line identification and pattern recognition 

inside the feedback control loop.  

Through time, adaptive control has existed big development in order to control 

plants with unknown dynamics that appear linearly. Adaptive control is based on 

Lyapunov design. 

It is well known that global stability properties of model reference adaptive 

systems are guaranteed under the “matching assumption” that the model order in not 

lower than that of the unknown plant. This restrictive assumption is likely to be 

violated in applications. Hence, it is important to determine stability and robustness 

properties of adaptive schemes with respect to modeling errors.  

 

In order to make it clear, a short example will be reported. Let us consider the 

nonlinear plant: 
2xux θ+=&  

and we select the control law as: 

  
2x̂qxu θ−−=  

 

which, if the estimated θ ( ) is equal to real θ such that , then the result is a 

close loop system of the form: 

θ̂ θθ ≡ˆ

qxx −=&  
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The filtered version of the signals x is: 

2

1
1 x

s
x f +

=  

 

The prediction error e is: 

ff xxxxe θθθ ˆ)ˆ(ˆ =−=−=  

 

We use the commonly normalized update law: 

 

θγθ ~
1

ˆ 2
2 f

f

x
x+

−=&  

 

The previous update law is linear. It can be proved that θ~  does not converge to zero 

faster than exponentially and the easiest case is: 

 

)0(~~ θθ γte−=  

 

 Finally the close loop system has the following form: 

 
2~xxx θ+−=&  

 

where for simplicity q substituted with 1 and by substituting θ~  from the previous 

equation is obtained: 

 
2)0(~ xexx tθ−+−=&  

 

where for simplicity γ substituted with 1. 
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It is easy to see that the explicit solution of the previous is determined by the 

following equation: 

tt exex
xx

−− −+
=

)]0(~)0(2[)0(~)0(
)0(2

θθ
 

 

From the previous it is clear that if <2 then it is obvious that x converge to 

zero as t ∞. At the case that >2, at the time: 

)0(~)0( θx

)0(~)0( θx

 

2)0(~)0(
)0(~)0(ln

2
1

−
=

θ
θ

x
xtesc  

 

the difference of the two terms of the exponential in the denominator becomes zero, 

that is: 

 

∞→|)(| tx  as  esctt →

 

The previous model is unstable (x goes to infinity at tesc) and Lyapunov design models 

must be specified in order to achieve stabilization. 

Let choose the following Lyapunov function: 

 

22 )ˆ(
2
1

2
1 θθ −+= xV  

 

The derivative of the Lyapunov function for our nonlinear plant is: 

 

 

θθθθ && ˆ)ˆ()( 22 −++= xuxV  
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In order to find a control and an update law we must specify: 

 

2222 ˆ)ˆ()( xxuxxV −≤−++⇒−≤ θθθθ &&  

 

From the previous equation in order to remove the unknown θ we use the update law: 

 

3ˆ x=θ&  

 

And the control law is: 

2x̂xu θ−−=  

 

Both control law and update law yield  such that stability maintains in 

opposition to the previous approach without Lyapunov. 

2xV −≤&

 

Adaptive control in most cases has tracking error that converges to zero. 
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2.6 Adaptive Backstepping design 
 

Backstepping [1] is a recursive design for systems of the form: 

 

θφ

θφ

θφ

),,(

),,(

),(

32133

321232

21121

xxxux

xxxxx

xxxx

Τ

Τ

Τ

+=

+=

+=

&

&

&

 

 

with state x=[x1
T, x2

T, x3
T] and control input u. The value θ is a p x 1 vector which is 

constant and unknown. The function φ1 depends only to x1, x2 function φ2, φ3 depends 

only to x1, x2, x3. 

The purpose of backstepping is the recursive design of a controller for the 

previous system by selecting appropriate virtual controllers. The virtual controller for 

the first equation of the system is x2 and is used to stabilize the first equations, the 

virtual controller for the middle equation is x3 and is used to stabilize the first two 

equations, and finally the controller for the last is u. We use separate virtual 

controllers in order to stabilize every equation of the system. In every step we select 

appropriate update laws. 

In classical backstepping, the output is selected as the state x1 and the purpose of 

adaptive control is to make this state to follow a desired trajectory x1d. 

Adaptive backstepping design is a Lyapunov based design. The previous 

procedure can be applied only to systems that have (or transformed to) the previous 

form (strict feedback).    
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2.7 Adaptive Forwarding design 
 

 Forwarding is something like backstepping but for strict feedforward systems. 

Let us introduce forwarding technique with an example such as: 

 

ux
uxxx

uxxxx

=
−=

++=

3

2
332

2
2

321

&

&

&

 

 

 

 

In the previous example we do not have feedback paths.  

Firstly we stabilize the last equation ( ux =3& ). We take the following Lyapunov 

function: 2
33 2

1 xV =  and a feedback to stabilize the system is 3xu −= . With the 

previous we augment  by the middle equation, and write our system in the 

cascade form: 

33 xx −=&

 

33

322 )(
xx

xx
−=

=
&

& φ
 

 

where  is the interconnection term. 3
3332 )( xxx −=φ 02 =x&  is stable and  is 

GAS and LES. The next step is to construct Lyapunov function V

33 xx −=&

2 for the augmented 

system when V3 is given.  

 

 

After some specific steps we reach the following control law: 

 

)1)(
3

( 2
3

3
3

323 xxxxxu +++−−=  
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Chapter 3 

 

PROBLEM ANALYSIS 

 

 

3.1. System Description 

 

 

     The MAPK cascade model is described by the following set of differential 

equations [4]-[6]: 

 

iiji

n

ij
ijii

i XXXaXtu
dt

dX βδ −+= ∑
≠

~~)(                                                                             (1) 

 

where iX~  and  are the concentrations of the inactive and active forms respectively, 

of the ith kinase. They can be related with each other with the following 

equation

iX

.~ constCXX ii ==+ , where  and ija iβ are the rate constants of kinases and 

phosphatases, and  is the time dependent concentration of the receptor. The 

receptor converts the inactive input kinases into active. The rate constant 

)(tu

iδ  is chosen 

such that: 1=iδ  for input kinases and 0=iδ  otherwise. The above hypothesis is 

made because the receptor affects only the input kinases.  
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Feedback Forms 

 

• Special cases of (1) can be expressed in (or transformed to) the following 

nonlinear state space form: 

 

 

1

1

2,)()(
11,)()(

xy

nuxgxfx
nixxgxfx

nniii

iiiiii

=

≥+=
−≤≤+= +

                                                                             (2) 

 

where RyRuniRxxxx iT
ii ∈∈=∈= ,,,...1,],...,[ 21    are state variables, input and 

output respectively. Our purpose is to construct a specific adaptive Neural Network 

controller such that: 

 

i) all the signals in the close loop remain semiglobally ultimately bounded 

      ii)      the output signal y follows a desired trajectory signal yd, with bounded 

derivatives up to  order. thm )1( +

In order to approximate some unknown nonlinearities we use Neural Networks 

[12], [14]. This approximation is guaranteed within some compact sets Ω. 

Since , (.)ig ni ,...1=  are smooth functions, they are therefore bounded within 

some compact set. According to the previous we can make two assumptions. 

Assumption 1: The signs of  are bounded for example there exist constants 

 such that,

(.)ig

0(.)(.) 01 >≥ ii gg (.)(.)(.) 011 iii ggg ≥≥ , n
n Rx ∈Ω∈∀ . The  functions 

in the MAPK cascade are strictly positive because concentrations of kinases and 

phosphatases are positive numbers.  

(.)ig

Assumption 2: There exist constants  such that 0(.) >idg

(.)(.) idi gg ≤ n
n Rx ∈Ω∈∀ . 
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Interlaced Forms 

 

•   Other cases of equation (1) are part of a larger class of systems that are called 

interlaced systems as described by Kokotovic et al [19], and Kristic [20]. In these 

systems we combine backstepping and forwarding techniques together in order to 

recursively design feedback control laws. Interlaced systems are not in feedback form, 

nor in feedforward form.  These systems have a specific methodology that differs 

from backstepping and forwarding. We don’t start from the top equation, neither from 

the bottom. We start from the middle equation and treat x3 as virtual control.  

 

 

Mixed Interlaced Forms 

 

• Other special cases of equation (1) are part of other forms that we call mixed 

interlaced. The methodology is based on classical interlaced systems and is developed 

by the authors. We want to make the systems solvable by one of the well known 

backstepping and forwarding methods. This can be reached after some specific steps 

that convert the system into a known form. We start from the middle equation and we 

continue with the top. 
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3.2. RBF Neural Networks 
 

Artificial Neural Networks have been studied for many years with the hope of 

achieving human-like performance in solving certain problems in speech and image 

processing. There has been a recent resurgence in the filed of neural networks owing 

to the introduction of new network topologies, training algorithms and VLSI 

implementation techniques. The potential benefits of neural networks such as parallel 

distributed processing, high computation rates, fault tolerance and adaptive capability, 

have lured researchers from other fields such as controls, robotics etc. to seek solution 

to their complicated problems. 

      Dynamical Neural Networks are well established tools used in the control of 

nonlinear and complex systems. We use RBF Neural Networks [9] in order to 

approximate the nonlinear functions of our systems [15]. The idea behind this is 

described fully at [2], [3], [8], [10], [11]. The RBF NN we use are of the general 

form , where is a vector of regulated weights and (.)(.) ξθ Τ=F pR∈θ (.)ξ  a vector of 

RBF’s. It has been shown that given a smooth function R→Ω :F , where Ω  is a 

compact subset of mR  ( m  is an appropriate integer) and 0>ε , there exists an RBF 

vector  and a weight vector  such that pR→mR :ξ pR∈*θ εξ(x)θ-F(x) Τ* ≤ .Ω∈∀x   

Here ε is called the network reconstruction error. The optimal weight vector is chosen 

as an appropriate value that minimizes the reconstruction error over Ω . 

 

 
Figure 3.1: Schematic representation of RBF Neural Networks. 
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3.3. MAPK cascade models 
 

  In this project we apply the backstepping technique to the following pathways 

consisting of three kinases and three phosphatases: 

 

Feedback Forms 
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The previous pathway is described by the following equations: 
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The previous pathway is described by the following equations: 
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Interlaced Forms 
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The previous pathway is described by the following equations: 
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vii)   u(t) 
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The previous pathway is described by the following equations: 
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The previous pathway is described by the following equations: 
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Mixed Interlaced Forms 
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The previous pathway is described by the following equations: 
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Uncontrollable Form 

 
xiii)  
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3.4. Controller Design 
 

The procedure presented is described by the following figure: 

 
x1d

+

- 

Intelligent controller 
with the use of 
Neural Networks 

u
Unknown plant 
dynamics 

e1 0 

y=x1

Plant output 

Reference 
signal 

 
Figure 3.2: Adaptive Controller. 

 

 In order to apply the backstepping technique to interlaced forms (MAPK cascade 

with graphs (vi)-(ix)) we must start from the middle equation and treat x3 as virtual 

control and we want  for stability. There exists a Lyapunov function of the 

form 

22 xx −=&

2
21 2

1 xV =  and a stabilizing feedback is 
)(

)1(

2221

22
3 xca

xx
−

−
=

β  which is x3=a(x2). With 

this technique we eliminate x3 from the top equation and we apply the backstepping 

technique that is documented fully in the next paragraphs, to control the MAPK 

cascade models that are in interlaced forms. 

 

 Also in order to apply the backstepping technique to mixed interlaced forms 

(MAPK cascade with graphs (x)-(xii)) we must start from the middle equation and 

treat x3 as virtual control and we want  for stability. There exists a Lyapunov 

function of the form 

22 xx −=&

2
21 2

1 xV =  and a stabilizing feedback is 
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221221

21223122322
3 caxa

xxxaxcaxx
−

+−+−
=

β  which is x3=a(x1,x2). With this technique we 

eliminate x3 from the top equation and we apply the backstepping technique that is 

documented fully in the next paragraphs, to control the MAPK cascade models that 

are in mixed interlaced forms. 

 

 The models with graphs (i)-(v) are in feedback forms so the following 

backstepping adaptive control is applied directly without any other actions. 

 

 The last (MAPK cascade with graph (xiii)) model representation cannot be 

controlled. Because the top and the middle state equations are input uncontrollable. 

 

 

At this point, we should mention that for the construction of the neural model of 

the controller there exist further possibilities beside the mean squared error between 

the real output and the reference input , dyx −1 , as well as the input u to the plant. The 

inclusion of u in the cost function is desirable, in order to preserve control energy. In 

the same way, the rate of u can also be included, so that the transition from one 

extreme value u to another can be avoided. On the other, each one of the terms that 

participate in the cost function can be assigned a weight. 

 

In [16], a desired feedback control law was initially proposed for system (2) and 

Neural Networks are used to parameterize the desired feedback control law. Finally 

adaptation laws are used to tune the weights of neural networks for closed loop 

stability. In our project we use the controller designed by Kaynak et al. [7]. The 

design procedure is described in 3 steps because in the MAPK cascade models above 

we have 3 states. Each backstepping stage results in a new virtual control design 

obtained from the preceding design stages. When the procedure ends, the feedback 

design for the control input is obtained, which achieves the original design objective. 
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Step1: In this step we want to make the error between x1 and x1d (=yd) as small as 

possible. 

The previous is described by the following equation: 

 

dxxe 111 −=            (3) 

 

We take the derivative of e1. After that we have: 

 

dd xxxgxfexxe 1211111111 )()( &&&&& −+=⇒−=                  (4) 

 

by using x2 as the virtual control input. The previous equation can be changed by 

multiplication and division with  to the following form: )1(1 xg

 

                            (5)    ])()()()[( 11
1

12111
1

1111 dxxgxxfxgxge && −− −+=

 

We choose the virtual controller as: 

 

1111
1

1111
1

122 )()()( ekxxgxfxgxx dd −+−== −− &             (6) 

 

where k1 is a positive constant. In order to approximate the unknown nonlinearities 

(functions f1(x1) and g1(x1)) we use RBF Neural Networks. A Neural Network based 

virtual controller is used as follows: 

 

1111111112 )()( ekxxnxx dd −+−= ΤΤ &δξθ                            (7) 

 

where we have substituted the unknown nonlinearities  g1(x1)-1f1(x1) and g1(x1)-1 with 

the RBF Neural Networks  and  respectively based on Lyapunov 

stability [16], [17]. 

)( 111 xξθ Τ )( 111 xnΤδ

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

])([ 11111111 θσξθ −Γ= xe&  
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])([ 111111121 δγδ −−Γ= dxxne &&                                     (8) 

 

with σ1, γ1 small and positive constants and Γ11=Γ11
Τ>0, Γ12=Γ12

Τ>0 are the adaptive 

gain matrices. 

 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

dxxe 222 −=                                                                    (9) 

 

We take the derivative of e2. After that we have:  
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By taking the x3d as a virtual control input and by substituting the unknown 

nonlinearities )()( 22
1

22 xfxg −  and 1
22 )( −xg  with the RBF Neural Networks )( 222 xξθ Τ  

and )( 222 xnΤδ  respectively based on Lyapunov stability [16], [17], we have: 

 

22222222213 )()( ekxxnxex dd −+−−= ΤΤ &δξθ                        (11) 

 

 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

])([ 22222212 θσξθ −Γ= xe&  

])([ 222222222 δγδ −−Γ= dxxne &&                                           (12) 

 

with σ2, γ2 small and positive constants and Γ21=Γ21
Τ>0, Γ22=Γ22

Τ>0 are the adaptive 

gain matrices. 

 

 46 



Step 3(Final): In this step we make the error between x3 and x3d as small as possible. 

The previous is described by the following equation: 

 

dxxe 333 −=                                                                               (13) 

 

 We take the derivative of e3. After that we have:  
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Where u is the control input and by substituting the unknown nonlinearities 

)()( 33
1

33 xfxg −  and 1
33 )( −xg  with the RBF Neural Networks )( 333 xξθ Τ  and )( 333 xnΤδ  

respectively, we have: 

 

3333333332 )()( ekxxnxeu d −+−−= ΤΤ &δξθ                                                                     (15) 

 

              

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

])([ 33333313 θσξθ −Γ= xe&  

])([ 333333323 δγδ −−Γ= dxxne &&                                                                                      (16) 

 

 

with σ3, γ3 small and positive constants and Γ31=Γ31
Τ>0, Γ32=Γ32

Τ>0 are the adaptive 

gain matrices. 
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3.5. Simulation 
 

     In order to show the effectiveness and apply the above approach a simulation is 

presented for the (i) form of the MAPK cascade model (as described before): 
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where x1, x2, x3 and y are states (concentrations) and output of the system respectively. 

The initial conditions (concentrations) are x0=[x10, x20, x30]T=[0.7, 0.8, 1.0]T and the 

desired output signal of the system is yd=sin(t).  

We make the assumption that c1>>x1, c2>>x2, c3>>x3 in order g(.) functions to be 

strictly positive  and a21=a32=β1=β2=β3=1, c1=9.99, c2=6.66, c3=3.33. 

All the basis function of the NNs have the form ])()(exp[)( 2
i

ii
T

ii
i v

uxuxxG −−
−=  

(as described in [8]) where ui=[ui1, ui2, …, uij]T are the centers of the receptive field 

and vi are the widths of the Gaussian function. 

The Neural Networks θ1
Τξ1(x1) and δ1

Τη1(x1) have 5 nodes with centres uj evenly 

spaced in [-6, 6] and widths vj=1, θ2
Τξ2( 2x ) and δ2

Τη2( 2x ) have 25 nodes with centres 

uj evenly spaced in [-6, 6] x [-6, 6] and widths vj=1 and θ3
Τξ3( 3x ), δ3

Τη3( 3x ) have 125 

nodes with centers uj evenly spaced in [-6, 6] x [-6, 6] x [-6, 6] and widths vj=1. We 

select the  design parameters of the above controller as k1=k2=3.5, Γ1=Γ2=diag{2}, 

σ1=σ2=γ1=γ2=0.2. The initial weights θ1, θ2, θ3 are arbitrarily taken in [-1.2, 1.2] and 

δ1, δ2, δ3 in [0, 1.2].  

Figs. 3.3-3.8 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 3.3 we can see that good tracking performance is 

obtained. Figure 3.4 shows the trajectory of the controller. Figure 3.5 shows the phase 

plane of the system. Figure 3.6 shows the error , Figure 3.7 shows the error  and 

finally Figure 3.8 shows the error . 

1e 2e

3e
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Figure 3.3: The output of the system under adaptive controller. 

 

 
Figure 3.4: The trajectory of the adaptive controller. 

 

Figure 3.5: The phase plane plot of the system. 
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Figure 3.6: Error e1. 

 

Figure 3.7: Error e2. 

 

Figure 3.8: Error e3. 
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In order to test the above controller in more abrupt changes that are more usual in 

Systems Biology, we changed the desired output to yd=(atan(10*(t-10))/π)+0.5 and 

holding the other constant values unchanged, we have the following figures: from 

figure 3.9 we can see that good tracking performance is obtained. Figure 3.10 shows 

the trajectory of the controller. Figure 3.11 shows the phase plane of the system. 

Figure 3.12 shows the error , Figure 3.13 shows the error  and finally Figure 3.14 

shows the error : 

1e 2e

3e

 
Figure 3.9: The output of the system under adaptive controller. 

 
Figure 3.10: The trajectory of the adaptive controller. 
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Figure 3.11: The phase plane plot of the system. 

 

Figure 3.12: Error e1. 

 

Figure 3.13: Error e2. 
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Figure 3.14: Error e3. 
 

Finally we test the above controller with desired output yd=(atan(10*(t-10))/π)+0.5 

and holding the other constant values unchanged, we have the following figures: from 

figure 3.15 we can see that good tracking performance is obtained. Figure 3.16 shows 

the trajectory of the controller. Figure 3.17 shows the phase plane of the system. 

Figure 3.18 shows the error , Figure 3.19 shows the error  and finally Figure 3.20 

shows the error : 

1e 2e

3e

 
Figure 3.15: The output of the system under adaptive controller. 
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Figure 3.16: The trajectory of the adaptive controller. 

 

 
Figure 3.17: The phase plane plot of the system. 

 

 

 
Figure 3.18: Error e1. 
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Figure 3.19: Error e2. 

 
Figure 3.20: Error e3. 
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Chapter 4 

 

CONCLUSION AND 

FUTURE 

DEVELOPMENTS 

 

 

 
 

 

 

 

In this project, we apply the controller scheme [7] to control the output of the 

MAPK cascade models that are in either feedback, interlaced forms, or mixed 

interlaced forms to reach a specific behaviour without knowing the interconnections 

of them. The tracking error is bounded and is established on the basis of the Lyapunov 

approach. It is an adaptive control application that can be applied extensively into 

medicine, drug discovery and can find costumers to university research teams, 

hospital clinicians, patients, agrobiotechnology etc. Also one of our goals has been to 

show how engineering tools can be applied to the control of metabolic systems. 

A simulation of this work is provided and is very useful for the biologists in order to 

understand the function of cells if we provide a suitable input. The experiments in cell 

are very difficult. Control theory provides us powerful mathematical tools to control 

and identify a lot of cell functions. Finally, only the states of the unknown plant which 

are related to the reduced order model, are assumed to be available for measurement. 
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All the signals of the close loop system are guaranteed to be semiglobally uniformly 

bounded, and the output of the system is proven to converge to a small neighbourhood 

of the desired trajectory. 

As long as future developments, the most significant is to control more complicated 

cascade models that are not only MAPK cascade. More complicated models are 

models with more than 3 states and more than 2 feedback or feedforward loops. 

In order to study more complicated pathways [22] it is necessary to develop new 

high throughput experimental tools such as software tools that gather and configure 

experimental data. Such software is Bio Spice and SBML that have professional 

standards. Furthermore it is required improved and facile plant cell imaging to track 

interacting proteins and count their concentrations. 

 Also new mathematical concepts and tools have been provided from new 

publications of control theory that are necessary for modelling and simulating the 

functioning of cells.  
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“Not every end is a goal. The end of a melody is not its goal; 

but nonetheless, if the melody had not reached its end it 

would not have reached its goal either. A parable.” 

Nietzsche, The Wanderer and His Shadow, 1880 
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Appendix 

 

Mixed Interlaced Forms 
 

A. Introduction 
 

Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two principal 

objectives in the scientific study of his environment: he wants to understand and to 

control. The two goals reinforce each other, since deeper understanding permits 

firmer control, and, on the other hand, systematic application of scientific theories 

inevitably generates new problems which require further investigation, and so on. 

Nonlinear control includes two basic forms of systems, the feedforward systems and 

the feedback systems.  

The strict feedback systems can be controlled using the well known backstepping 

technique. The purpose of backstepping is the recursive design of a controller for the 

system by selecting appropriate virtual controllers. We use separate virtual controllers 

in order to stabilize every equation of the system. In every step we select appropriate 

update laws. The strict feedforward systems can be controlled using the forwarding 

technique that is something like backstepping but in reverse order.  

Other cases of systems that can be converted to the previous forms are part of a 

larger class of systems that are called interlaced systems as described by Kokotovic et 

al, and Krstic. In these systems we combine backstepping and forwarding techniques 

together in order to recursively design feedback control laws. Interlaced systems are 

not in feedback form, nor in feedforward form.  These systems have a specific 
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methodology that differs from backstepping and forwarding. We don’t start from the 

top equation, neither from the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced. The methodology is based on classical interlaced systems and is developed 

by the authors. We want to make the systems solvable by one of the well known 

backstepping and forwarding methods. This can be reached after some specific steps 

that convert the system into a known form. We start from the middle equation and we 

continue with the top. 

A lot of researchers developed a series of results that generalized and explained 

the basic idea of nonlinear control. Teel in his dissertation introduced the idea of 

nested saturations with careful selection of their parameters to achieve robustness to 

nonlinear controllers. After Teel, Jankovic et al. proposed a new solution to the 

problem of forwarding that is based on a different Lyapunov solution.  
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B. Problem Analysis 
 

To begin with we consider the following third order mixed interlaced system: 
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The previous system is not in feedback nor is it in feedforward form because of 

specific terms such as x1x2, x1x3, x2x3. The Jacobi linearization of the previous system 

is a chain of integrators.  

Instead from starting from the top, we start from the middle equation and treat x3 

as virtual control and we want  for stability. There exists a Lyapunov 

function of the form 
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β  which is x3=a(x1,x2). We employ one step of 

backstepping to stabilize the middle equation augmented by the top equation of our 

system:  
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where the control x3  has been augmented to x3=a(x1,x2)+v. With v=0, the equilibrium 

(x1,x2)=(0, 0) is globally stable and forwarding yields the following Lyapunov 

function: 
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The feedback law: maintains the system globally stable and the 

augmented control is 
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In order to stabilize our system we apply the backstepping technique.  

 

 

 

Mixed Interlaced Forms, Adaptive Control and Simulations 
 

Adaptive Control of dynamical systems has been an active area of research since 

the 1960’s.  

 

In order to prove the stabilization of mixed interlaced systems we apply the 

kaynak et al. controller as mentioned before  and we take the following simulations: 

We make the assumption that c1>>x1, c2>>x2, c3>>x3 and a21=a32=β1=β2=β3=1, 

c1=9.99, c2=6.66, c3=3.33. Also we want our desired output to be yd=sint. 

Figs. 1-6 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 1 we can see that good tracking performance is 

obtained. Figure 2 shows the trajectory of the controller. Figure 3 shows the phase 

plane of the system. Figure 4 shows the error , Figure 5 shows the error  and 

finally Figure 6 shows the error . 

1e 2e

3e
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Fig. 1: The output of the system under adaptive controller. 

 

 
Fig. 2: The trajectory of the adaptive controller. 

 

Fig. 3: The phase plane plot of the system. 

 

 

 63 



 

 

 

 

 

 
 

 

Fig. 4: Error e1. 

 

 

 

 

 

Fig. 5: Error e2. 
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Fig. 6: Error e3. 
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C. Conclusion 

 
 

In the appendix, we recognize a new form of systems that we call mixed 

interlaced form. We apply the well known backstepping and forwarding techniques 

via specific steps. Also Lyapunov functions can be selected to approve convergence 

and stability. A lot of systems have the mixed interlaced form. For example we can 

think systems in biological models that have many terms from different states. After 

the appropriate selection of the controller we can apply adaptive control to make the 

systems follow a desired trajectory. 

The tracking error is bounded and is established on the basis of the Lyapunov 

approach. Finally, only the states of the unknown plant which are related to the 

reduced order model are assumed to be available for measurement. 

The authors hope that the proposed approach would serve as a promising tool to 

analyze more complex systems. 
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