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ABSTRACT 
 
   Cell signaling plays an important role in many functions of the cell, as the 

development or proliferation. Therefore the regulation of signaling is essential 

and its malfunction causes various diseases. For instance the cancer where 

cells proliferate despite the death signals, or Parkinson disease where too 

many neurons die. 

   A signal transduction pathway, or a network of biochemical reactions, is a 

convenient model of the observed reality. These pathways represent various 

signals which  are realized through changes of concentrations and help us to 

model the response of gene expression or protein concentrations to various 

stimulations. Scientists try to study the protein functions and interactions 

within cell. They are also interested in the regulation of protein interactions, 

which is prerequisite in order to achieve changes in a pathway. Many 

biological re-searches have been conducted in this field. 

     In this project our aim is the regulation of enzyme activity by changing the 

rate contants. We focus on the basic pathway of enzyme reactions, which is 

the Michaelis-Menten mechanism for basic one-substrate enzyme reactions. It 

consists of three elementary reactions steps and it is the basic scheme of an 

enzymatic reaction. The more complex signal transduction pathways can be 

represented as sequences of this basic reaction’s scheme. 

    We implement a Direct Adaptive method using Recurrent High-Order Neu-

ral Networks (RHONNs). We take also into consideration destabilizing factors 

as modeling errors. 

     The organization of this project is the following. In Chapter 1 there is a ge-

neral overview of Systems Biology, the scientific field which includes this type 

of applications. In Chapter 2 RHONNs are introduced. In the next Chapter Di-

rect Adaptive methods are discussed. In Chapter 4 we focus on enzyme ki-

netics reactions and especially on the regulation of enzyme activity. In the 



next Chapter a Direct Adaptive Method is implemented. Furthermore results 

are presented and analyzed. Finally, in Chapter 6 there are final conclusions 

and future work on the field is suggested. 
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CHAPTER 1 
A GENERAL OVERVIEW OF  
SYSTEMS BIOLOGY 
 
 
 

1.1 Definition of Systems Biology 
 

    Biology has made important steps in the last decades. Biologists have ob-

tained a clear image of the inner part of a living cell, which is the basic ele-

ment of living matter. 

    Sequencing of DNA was a very significant achievement of Biology and re-

vealed a huge number of genomes. The next step is the research about the 

interactions among genes, among proteins or between genes and proteins. 

Cell’s metabolism is composed of various functions as division or growth,  

where reactions among proteins occur. These interactions are regulated by 

complex mechanisms. This interest in the research of functional activity is rea-

sonable. The identification and analysis of intra- and inter-cellular  processes 

will help scientists to understand the function of the cell, explore other issues 

as the mechanisms of various diseases and finally find a treatment. 

    Since all these functions and interactions are dynamic processes there is 

high interest in applications of System Theory in Biology. This field of science 

is known as Systems Biology. 

Specifically: ”Systems Biology investigates the functioning and function of 

inter- and intra-cellular dynamic networks, using signal- and systems-oriented 

approaches” [3]. 
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1.2 Enzymes and Proteins 
 
     Most of proteins are enzymes. Enzymes are biological  catalysts and take 

part in DNA replication, protein synthesis and generally the cell’s metabolism. 

In cells and organisms most reactions are catalyzed by enzymes, which are 

regenerated during the course of a reaction. Enzymes are physiologically 

important because they speed up the rates of reactions that would otherwise 

be too slow to support life. Enzymes increase reaction rates, sometimes by as 

much as one millionfold, but more typically by about one thousand fold. 

    Although enzymes are responsible for the catalysis of almost all biochemi-

cal reactions, it is important to mention that rarely, if ever, do enzymatic rea-

ctions proceed in isolation. In almost all cases enzymes catalyze individual 

steps of multi-step pathways, as is the case with glycolysis, gluconeogenesis 

or the fatty acids. As a consequence enzymes are dependent on the activity 

of preceding reaction steps. Usually the step with the lowest rate-constant is 

the step which limits the rate of the overall pathway.  

     Generally catalysts speed up the forward and reverse reactions proportion-

nately so that, although the rate constants of the forward and reverse rea-

ctions increase, the ratio of the rate constants remains the same in the prese-

nce or absence of enzyme. Enzymes increase reaction rates by decreasing 

the activation energy of a reaction, as we can see in Figure 1.1.  

     Activation energy is the amount of energy required for a reaction to pro-

ceed. As we can see in Figure 1.1, some bonds need to be broken in order to 

form new bonds and finally energy is released. In this example the formation 

of new bonds releases more energy than the energy that was initially input to 

break some initial bonds. 
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                 Fig. 1.1: Activation Energy of Uncatalyzed/Catalyzed reaction. 

                The Catalyst increases reaction rate by decreasing  the activation energy  

                of the reaction. 

    

    Researchers in the 1960s proved that the most important processes of cell 

are dynamic. A significant indication about that was the process of protein 

syn-thesis and the control of its rate. 

 

 

1.3 Signal transduction pathways 
 
1.3.1 Definition of signal transduction  
  
    Cells take part in complex interactions which are influenced by various fa-

ctors, as environmental conditions. These interactions are based on transfer 

of information between and within cells.  

 

Definition: ”Cell signaling or signal transduction is the study of the me-

chanisms that enable the transfer and processing of biological infor-mation. 

”[1]  
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1.3.2 The states of a signal transduction pathway 
 
There are three possible states of a pathway: 

• equilibrium 

• steady-state 

•  transient state 

 

Equilibrium state 

   In this state all the reaction rates of biochemical network are zero and there 

is balance. According to Biochemistry, only isolated systems can come to this 

state. 

 

Steady state  

In this state the quantities are time-invariant and reaction rates are not zero. 

   Theoretically steady state is never achieved, only approached asymptoti-

cally. In practice, one can regard that a system is in steady state. When for a 

certain set of initial conditions a steady-state is unique, this state will be ap-

proached independently from the initial concentrations. Furthermore it is pos-

sible more than one steady states exist for a given set of parameters. In this 

case, the steady-state depends on the initial conditions(the history of the sys-

tem). 

   The stability of the pathway is connected with the steady state. Steady state 

cannot maintained or exist without the stability with respect to fluctuations or 

perturbations of parameters. Usually we consider that steady state is asym-

ptotically stable. This means that if we regard a set of steady state concen-

trations, then initial concentrations in the neighbourhood of these concen-

trations cause the same steady state. 

 

Transient state 

   A signal transduction pathway is in this state before the steady state for a 

set of initial conditions, or from one steady state to another after a fluctuation 

of a parameter. 
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1.3.3 Regulation of signal transduction pathways 

 
   Cell signaling plays an important role in many functions of the cell, as the 

development or proliferation. Therefore the regulation of signaling is essential 

and its malfunction causes various diseases. For instance the cancer where 

cells proliferate despite the death signals, or Parkinson disease where too 

many neurons die. 

   A signal transduction pathway is a network of biochemical reactions and  is 

a convenient model of the observed reality. In the case of cells the term 

signals refers to the processing or regulation of information. These pathways 

represent various signals which  are realized through changes of con-

centrations and help us to model the response of gene expression or protein 

concentrations to various stimulations.  

   The regulation of protein interactions is prerequisite in order to achieve 

changes in a pathway. Many biological researches have been conducted in 

this field. 

Figure 1.2 illustrates a basic signal transduction model. 
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                   Fig. 1.2: A Signal Transduction Model. 

      Gene expression can be affected by environmental conditions. Receptors,                                              

which are proteins, span the cell membrane. Then another protein, the 

                   response regulator, is activated by phosphorylation [1]. 

                   (Reproduced by permission from Mr O. Wolkenhauer) 

 

   As it is shown in Figure 1.2, gene expression can be affected by environ-

mental conditions. The cells have the appropriate mechanisms which regulate 

a specific target. Receptors, which are proteins, span the cell membrane. 

Then another protein, the response regulator, is activated by phosphorylation. 

Generally a pathway consists of many more intermediate steps until the signal 

transduction come to an end.    

 

1.4 Modeling  
 
1.4.1 Introduction to models 
 
    A model is a precise representation of a system’s dynamics. Models allow 

us to study systems and predict their behaviour. Real world has high comple- 
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xity. Consequently modeling and simulation of systems, as cell-biological, is 

necessary.  

    The creation of a model requires some assumptions or simplifications 

which do not affect the ability of prediction. The main difficulty is the know-

ledge about the prediction of a complex hypothesis with many processes. 

Mathematical modeling is a common technique for this[4]. Simulation can re-

veal us what a model predicts precisely for a given experimental situation. 

Alternatively, in the case of the model in Figure 1.2 it validates the signal 

transduction model for various initial conditions. Consequently modeling and 

simulation are basic steps of the validation of hypothesis.  

    A common class of mathematical models for dynamical systems, and con-

sequently for applications in cell biology, is ordinary differential equations 

(ODEs), like the following: 

 

),( uxfx =&  

),( uxgy =  

 

where u represents external influences or input. The input is the factor which 

help us to analyze the influence external disturbances have on the trajectories 

of a system. Or, in the case when the input is something that can be modula- 

ted in a controlled way, we can analyze whether it is possible to control the 

direction of the system from one point in the state space to another through 

proper choice of the input. Furthermore model uncertainty and disturbances 

are important aspects of control.  

       In addition to performing simulations, models can also be used to answer 

other types of questions.  For example, stability at an equilibrium point using 

Lyapunov stability analysis. 

    Schematically, the basic method which is used in Systems biology is shown 

in Figure 1.3 [3]. As we can  see modelling and simulation are very useful in 

biological study because help scientists validate and generate hypotheses. 

Moreover modeling supports the design of experiments because contributes 

to the choice of the proper variables to measure.    
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Hypothesis 

Design of experiments 

Data 

Modeling 

Simulation 

 
                    Fig. 1.3: The basic scheme of method of Systems Biology. Modeling  

                                 and Simulation  validate and generate hypotheses. 

                                 Modeling, also supports the design of experiments. [3]  

 
 
1.4.2 State-space models 
 
    State-space models are used in order to predict the evolution of the system 

state from a given initial condition. Alternatively one can also use state-space 

models to analyze the overall behavior of the system. 

    A common form of a model is differential equations. In this form the state is 

a collection of variables that summarize the past of a system for the purpose  

of prediction of the future. The state variables are gathered in a vector , 

called the state vector. The control variables are represented by another ve-

ctor and the measured signal by the vector . 

nRx∈

pRu∈ qRy∈

    A system can then be represented by the differential equation: 

 

),( uxfx =&  

),( uxgy =  
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The dimension of the state vector is called the order of the system. 

    The system is called time-invariant because the functions and f g  do not 

depend explicitly on time t. It is possible to have more general time-varying 

systems where the functions depend on time. The model thus consists of two 

functions. 

    State-space models can represent the signal transduction pathways. The 

concentrations of proteins are the states of the system. Each step of the path-

way has a protein as a member and a system of differential equations can 

give us the dependencies of these steps.  
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CHAPTER 2 
RECURRENT HIGH-ORDER NEURAL 
NETWORKS 
 
2.1 Introduction 

 

    Artificial neural networks have been extensively studied in the last decades, 

especially in the fields of speech and image processing. The aim is the 

approximation of human ability to solve problems in these fields. Furthermore 

new network topologies have attracted the interest of scientists mainly about 

control problems. 

    There are several types of neural networks used in control systems. The 

choice of the appropriate network and training method depends on the   appli- 

cation. For instance, feedforward multilayer neural network, where no informa- 

tion is feedback during operation. However, there is feedback information 

during training. Also, supervised learning methods, where the neural network 

is trained to learn input-output patterns presented to it, are used. This process 

is slow and time consuming, because the algorithm takes a long time to con- 

verge. Moreover other methods as Backpropagation (BP) algorithm, which 

adjusts the weights during training, or recurrent networks are used. 

    Theoretical studies have proved that multilayer neural networks with one 

hidden layer can approximate any continuous function uniformly over a com-

pact domain by adjusting synaptic weights in order to minimize the error 

between the network output and the output of the unknown map [27], [28],  

[29], [30]. 

    Forward modeling is the training of a neural network to model the forward 

dynamics of a plant. The neural network model is placed in parallel with the 

plant and the error between the plant and the network outputs is the training  
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signal. The training procedure may needs discrete samples of the plant inputs 

and outputs. 

   If we consider that the system output at time k+1 depends on the past n 

output values and the past m values of input u, we have: 

))1(),...,();1(),...,(()1( +−+−=+ mkukunkykyfky ppp  

Thus, the output of the neural network is: 

))1(),...,();1(),...,(()1( +−+−=+ mkukunkykyfky pp
apr

m  

aprf represents the nonlinear input-output map of the network, or the appro-

ximation of . It is clear that the network’s input  includes the past values of 

the real system’s output. In other words the system has not feedback. After 

the training, the network approximates the plant or . When this is true, 

the network’s output and the delay values can be fed back and be part of the 

network’s input. In this way, the network can be used independently of the 

plant and the model function can be written: 

f

pm yy ≈

))1(),...,();1(),...,(()1( +−+−=+ mkukunkykyfky mm
apr

m  

   The information about the plant can be in the form of an input-output table. 

In this case the training of the network necessitates current and previous 

inputs or outputs of the plant. Alternatively the states of the plant or their 

derivatives can be used. Consequently, for the case of feedforward multilayer 

neural network and BP training algorithm we consider discrete or discretized 

continuous plant, as is described in Figure 2.1. 
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Fig. 2.1: Plant identification with a multilayer neural network[5 (chapter 1)] 

 

    Another approach of training aims to identify the inverse dynamics of the 

plant. In this case the network’s input is the plant’s output and the plant’s input 

is the network’s output. The training signal is the error between the actual 

input of the plant and the network’s output. The current input of the plant is the 

de- sired output of the network. We have assumed that the inverse of the 

plant is unique. If the inverse is not unique, we must restrict the ranges of the 

input to the network.    

    The architecture of the network is chosen appropriately according to the  

case. The first step is the identification of the plant. Then, a controller can be 

designed. In Figure 2.2 the training of a neural network as open loop con-

troller is described. The error dyye −=   is used in order to train the  net-work. 

As we can see the error  is backpropagated through the plant.  
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Fig. 2.2: A neural network controller [5 (chapter 1)] 

 

    We must add that the neural model of a controller can include mean squa-

red error between the reference output and model output or other terms as 

the error between the reference input and real output and the input u.  

    In most applications we meet dynamical systems which necessitate the use 

of feedback connections in order to approximate them. Such networks are 

known as recurrent. A static neural network can also be transformed to a dy- 

namic one, by simply connecting the past neural outputs as inputs to the neu-

ral network, thus making the neural network a very complicated and highly 

nonlinear dynamical system.  

    The main difficulty with the dynamic neural networks that are based on  

static multilayer networks is that  the  synaptic weights appear  nonlinearly in 

their mathematical representation. This creates a number of significant hur-

dles. Firstly, the learning laws that are used require a high computational time. 

Secondly, since the synaptic weights are adjusted to minimize a functional of 

the approximation error and the weights appear nonlinearly, the functional has 

many local minima so there is no way to ensure the convergence of the 

weights to the global minimum. Moreover, due to the highly nonlinearity of the 

neural network architecture, basic properties like stability, convergence and 

robustness are very difficult to verify. On the other hand for the recurrent 

neural networks that possess a linear-in-the weights property, is feasible to  

prove the stability and convergence properties. 
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    In this chapter Recurrent High-Order Neural Networks’ (RHONN) structure 

is introduced and their approximation capabilities are analyzed. This network  

scheme approximates nonlinear systems whose vector fields satisfy a local 

Lipschitz condition. 
 
 
2.2 Identification of dynamical systems using Recurrent High-
Order Neural Networks  
 
   Recently there is renewed interest in the usage of neural networks for mo-

deling and identification of dynamical systems in the form of feedback con-

nections, most known as recurrent neural networks (RNN). 

   Several training methods are used. For example, recurrent backpropagation 

[6], backpropagation-through-time algorithms[7], real-time recurrent learning 

algorithm[8] and the dynamic backpropagation[9] algorithm. The last method 

is based on the computation of sensitivity models for generalized neural 

networks. Generalized neural networks combine feedforward neural networks 

and dynamical components of stable rational transfer functions. All these 

training methods have been widely used in empirical studies and had many 

drawbacks. First of all they rely on the approximation of computing a partial 

derivative. Moreover these methods need much computational time. Also, it is 

very difficult to produce analytical results for the convergence and stability. 

   An interesting effort is the design of training methods based on the 

Lyapunov stability theory [10], [11], [12], [13], [14], [15], [16], [17], [18]. These 

me-thods have the advantage of stability, convergence and robustness proofs 

which promotes control theory.  

    RHONNs are appropriate for identification models. High-order networks are 

expansions of the first-order Hopfield [19] and Cohen-Grossberg [36] models  

which allow higher-order interaction between neurons. Their superior storage 

capacity has been demonstrated in [20], [21], and their stability properties for 

fixed-weight values have been studied in [37], [22]. Furthermore, several 

authors have demonstrated the feasibility of using these architectures in 

applications such as grammatical inference [23] and target detection [24]. 
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   In [18]  was introduced the idea of recurrent neural networks with dynami-

cal components distributed throughout the network in the form of  dynamical 

neurons and their application for identification of dynamical systems. In this 

chapter, we combine distributed recurrent networks with high-order conne-

ctions between neurons. The next section shows that recurrent high-order 

neural networks can model a large class of dynamical systems. Specifically, it 

is proven that if enough higher-order connections are allowed in the network 

then there exist weight values such that the input-output behavior of the 

RHONN model approximates that of an arbitrary dynamical system whose 

state trajectory remains in a compact set. 

 

 2.3 The RHONN Model 
 
   Recurrent neural network models have two way connectivity between units 

(or neurons). On the other hand, feedforward neural networks have the output 

of one unit connected only to units of the next layer. In the most simple case, 

the state history of each neuron is represented by the following form: 

                                       ∑+−=
j

jijiiii ywbxax&                                          (2.1)
                            

where xi, is the state of the i-th neuron, ai, bi are constants, wij  are synaptic 

weights connecting the j-th input to the i-th neuron and  yj  is either an exter-

nal input or the state of a neuron passed through a sigmoid function ( yj = 

s(xj)), where s(.) is the sigmoidal. 

    With respect to the order of a RNN (k) the input to the neuron contains the 

product: 

321
ktimes

ji yy ...  

For instance, in a second order RNN the input to the neuron is a linear 

combination of not only  but also of . jy kj yy

    Now we consider a RHONN consisting of n neurons and m inputs. The 

state of each neuron is represented by: 
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                                                                    (2.2) ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∏∑

∈= Ikj

kd
j

L

k
ikiiii

jywbxax )(

1

&

 

where I1, I2, …,IL is a collection of L not-ordered subsets of { }nm +,...,2,1 ,ai, bi 

 are real coefficients, wik are synaptic weights of the neural network and dj(k)  

are non-negative integers. The state of the i-th neuron is again represented by 

xi       and  y = [y1, y
2
, …,ym+n]T is the input vector to each neuron defined by: 

 

                                                                                    (2.3) 
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where u = [u1, u2,…, um]T is the external input vector to the network. The fun-

ction s(.) is monotone-increasing, differentiable usually represented by sig-

moidals of the form:  

                                              γβ −
+

= − xe
axs

1
)(                                           (2.4) 

where α, β are the bound and slope of sigmoid's curvature and γ  a bias con-

stant. When α = β = 1, γ =0, we obtain the logistic function and by setting α =  

=β = 2, γ = 1, we obtain the hyperbolic tangent function; these are the sigmoid 

activation functions most commonly used in neural network applications. 

    We now introduce the L-dimensional vector z, which is defined as 
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                                                                               (2.5) 
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Therefore, the RHONN model (2.2) becomes 

 

                                                                                (2.6) ∑
=

+−=
L

k
kikiiii zwbxax

1

&

 

Moreover, if we define the adjustable parameter vector as 

    then (2.6) becomes [ T
iLiiii wwwbw ,...,, 21= ]

}

}

                                                                                         (2.7) zwxax T
iiii +−=&

where vectors {  represent the adjustable weights of the network 

and the coefficients {  are fixed during training. 

niwi ,...,2,1: =

niai ,...,2,1: =

     In order to guarantee that each neuron xi is bounded-input bounded-out-  

 

 

put (BIBO) stable, we shall assume that ai > 0, ni ,...,2,1=∀ . In the special 

case of a continuous time Hopfield model [19], we have  ai = 1/(RiCi)   , whe- 

re Ri> 0 and  Ci> 0 are the resistance and capacitance connected at the i-th 

node of the network respectively. 

   In vector form the dynamic behavior of the overall network is described by: 

                                                                                            (2.8) zWAxx T
i +=&

where  x = [x1, x2,…, xn]T nR∈ , W = [w1, w2,…, wn]T LxnR∈  and  

 



CHAPTER 2: RECURRENT HIGH-ORDER NEURAL NETWORKS 
__________________________________________________________________ 

24

 

A = diag(-a1,-a2,…,-an)  a n x n diagonal matrix. Since ai > 0  ni ,...,2,1=∀  , A is 

a stability matrix. Vector  z is a function of the state x and the external input u. 

 

2.3.1 Approximation properties 
 

   We consider a dynamical nonlinear system of the form: 

                                                  ),( uF χχ =&                                               (2.9) 

where x nR∈  is the system state, is the system input and F :  

is a smooth vector field defined on a compact set  

mRu∈ nmn RR →+

mnRY +⊂ . 

   Our aim is the approximation of this system. This means that we want to de-

termine weights W, such that the RHONN model  approximates the input-

output behavior of an arbitrary dynamical system of the form (2.9). For this 

purpose we need enough higher-order connections. 

    We assume that F is continuous and satisfies a local Lipschitz condition 

such that (2.9) has a unique solution- in the sense of Caratheodory [25]- and 

(x(t), u(t)) Y∈  for all t in some time interval J
T
 = { }Ttt ≤≤0: . The interval J

T
 

represents the time period over which the approximation is to be performed. 

The next theorem proves that if sufficiently large number of connections is al- 

lowed in the RHONN model, then any dynamical system can be approximated 

to any degree of accuracy. 

 

Theorem 2.1.1 

Suppose that the system (2.9) and the model (2.8) are initially at the same 

state x(0) = χ(0), then for any ε> 0 and any  finite T > 0, there exists an integer  

L and a matrix W* LxnR∈  such that the state x(t) of the RHONN model (2.8) 

with L high-order connections and weight values W = W* satisfies 

sup εχ ≤− )()( ttx  

 

Proof [5 (chapter 2)]  

   From (2.8), the dynamic behavior of the RHONN model is described by 

                                                                                    (2.10) ),( uxzWAxx T+=&
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Adding and subtracting Aχ, (2.9) is rewritten as 

                                             ),( uxGA += χχ&                                           (2.11) 

where G(x, u) = F(x, u)-Aχ. Since x(0) = χ(0), the state error e = x-χ 

satisfies the differential equation 

                               , e(0) = 0                          (2.12) ),(),( uxGuxzWAee T −+=&

By assumption, (x(t), u(t)) Y∈  for all t∈[0,T] where Y is a compact subset of 
mnR + . Let 

                { }Υ∈≤−∈= + ),(,),(),(:),( YYYY
mn

e uuuRuY χεχχχ                 (2.13) 

It is also clear that Ye is also a compact subset of  mnR +  and . In simple 

words   is ε  larger than Y, where ε is the required degree of approximation. 

Since z is a continuous function, it satisfies a Lipschitz condition in , i.e., 

there exists a constant l such that for all (x1, u); (x2, u) 

eYY ⊂

eY

eY

eY∈ : 

                                         2121 ),(),( xxluxzuxz −≤−                              (2.14) 

   We will show that the function WTz(x, u) satisfies the conditions of the Sto-

ne-Weierstrass Theorem and can approximate any continuous function over a 

compact domain, therefore. 

    We infer from (2.2), (2.3)  that z(x, u) is in the standard polynomial expan-

sion with the exception that each component of the vector x is pre-processed 

by a sigmoid function s(.). As shown in [26], preprocessing of input via a con- 

 

tinuous invertible function does not affect the ability of a network to approxi-

mate continuous functions: therefore, it can be shown readily that if L is suffi- 

ciently large, then there exist weight values W = W* such that  can 

approximate G(x, u) to any degree of accuracy, for all (x; u) in a compact do-

main. 

),(* uzW χΤ

    Hence, there exists W = W* such that 

                                      δχχ ≤− ),(),(*sup uGuzW                                (2.15) 

where δ  is a constant to be designed in the sequel. 
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   The solution of (2.12) is: 

[ ]

[ ]

[ ] τττχττχ

τττχττ

τττχττ

τ

τ

τ

duGuzWe

duzWuxzWe

duGuxzWete

T
t

tA

TT
t

tA

T
t

tA

))(),(())(),((*

))(),((*))(),((*

))(),(())(),((*)(

0

)(

0

)(

0

)(

−+

+−=

−=

∫

∫

∫

−

−

−

                                    (2.16) 

Since A is a diagonal stability matrix, there exists a positive constant α such 

that tAt ee α−≤  for all t  0. Also, let L = ≥ *Wl . Based on the aforementioned 

definitions of the constants α, L, ε let δ in (2.15) be chosen as 

                                                   αεαδ
L

e
−

=
2

 >0                                        (2.17) 

First consider the case where (x(t),u(t)) eY∈  for all [ ]Tt ,0∈ . Starting from 

(2.16), taking norms on both sides and using (2.14), (2.15), and (2.17), the 

following inequalities hold for all [ ]Tt ,0∈ : 

[ ]

[ ]

ττε

τδττ

τττχττχ

τττχττ

ταα

τατα

τ

τ

deeLe

dedeLe

duGuzWe

duzWuxzWete

t
t

t L

t
t

t
t

T
t

tA

TT
t

tA

)(
2

)(

))(),(())(),((*

))(),((*))(),((*)(

0

)(

0

0

)(

0

)(

0

)(

0

)(

∫∫

∫∫

∫

∫

−−
−

−−−−

−

−

+≤

+≤

−+

+−≤

 

 

From Bellman-Gronwall Lemma [25], we have: 

 

2

2
)(

0

)(

ε

τετ ταα

≤

+≤ ∫ −−
−

deeee
t

tL
L

                                                                       (2.18) 

Now suppose (for the sake of contradiction) that (x, u) does not belong 

to  for all t∈[0, T]; then, by continuity of x(t), there exist a T*, where  eY
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0 <T*< T, such that (x(T*), u(T*)) eY∂∈  where eY∂  denotes the boundary of . 

If we carry out the same analysis for t

eY

∈[0, T*] we obtain in this interval 

2
)()( εχ ≤− ttx , which is clearly a contradiction. Hence, (2.18) holds for all 

t∈[0, T].                                                                                                        ■ 

 

    This theorem proves the existence of solution, but it does not provide any 

constructive method for obtaining the optimal weights W*.  
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CHAPTER 3 
DIRECT ADAPTIVE CONTROL 
 
 
3.1 Introduction  
 
   This chapter introduces direct adaptive control for affine in the control non-

linear dynamical systems. In adaptive control there is estimation of unknown 

parameters at each instant and a control law is used. The objective is the ap-

proximation of the actual system by the model system. There are two basic 

approaches: direct and indirect. 

    In indirect adaptive method there is on-line estimation of the actual system 

parameters and then the controller parameters are calculated. In direct ada-

ptive method the model system’s parameters are estimated according to the 

controller parameters which are estimated directly without estimation of plant 

parameters.  

    In this chapter we use RHONNs. Also destabilizing factors as modeling 

errors are discussed. In this case the appropriate changes to update and 

control laws guarantee robustness and the uniform ultimate boundness 

property. We focus on regulation issues and consider the more general case 

where the number of states is different  from the number of control inputs.  

 
 

3.2 Modeling errors with unknown coefficients 
 
    We consider the more general case where the modeling error has polyno-

mial growth of first order with unknown growth magnitude. The update and  
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control laws are modified appropriately in order to guarantee the robustness 

property. 

    We assume that the actual system can be modeled by a RHONN plus a 

modeling error term: 

                                                        (3.1) ),()(')( *
1

* uxuxSWxSWAxx ω+++−=&

Furthermore we assume that the modeling error sati

) 

where k1 >0 is unknown and k0 >0  known positive co

.3 Adaptive regulation  

ase 

ystems where n!=m  (n the states and m  

e inputs). We consider the case where the actual system can be modeled 

sfies: 

                                (3.2

nstants. 
)(),( 10 uxkkux ++≤ω

 
 

3
 

3.3.1 Modeling error at zero c
 

    Here we examine more general s

th

by  RHONN plus a modeling error: 

                             ),()(')( 0
*

1
* uxuxSWxSWAxx ω+++−=&                            (3.3) 

where x nR∈  is the state vector, u∈ mR  is the control input, A is n x n matrix of 

s which can be considered diagonal, 

 n x L

positive eigenvalue W*  is a n x L    

matrix of synaptic weights, W1* is 0 matrix of synaptic weights. 

S(x) is an    L-dia- mensional vector  with elements: 

[ ]∏
∈Iij

ji              = id jxsxs )() )((                      (3.4) 

 collection of L subsets of 

                                       

where Ii , i=1,2,…,L are a { }n,...,2,1 and dj    are non-

negative integers. 

0S’(x) is L xm  matrix with elements:  

[ ]∏                                     
∈ lk

j

Ij

kld
jxs ),()(

                              (3.5) 

 

=lk xs )('
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2,…,m  , Ilk  are collections of 

nd  dj  are non-negative integers. 

is a sigmoid function: 

where l=1,2,…, L0 , k=1, mL0 subsets of { }n,...,2,1  

a

)( jxs 

λμ
+

+
=

− ixle
xs

01
)(  

here μ  and slope of sigmoid's and λ  is a bias 

constant. 

We consider h as a function of class from  whose deriva-

j

w ,l0 represent the bound

2C  +toRxRxRR nxLmn

tive is: 

[ ] W
W
hu

u
huxuxSWxSWAx

TTT
&&

∂
∂

+
∂
∂

++++ ),()(')( 0
*

1
* ω . This equation 

x
hh& −
∂
∂

=

can also be written as: 

W
W∂

We define: 

hu
u

huxSW
x

hxSW
x

hux
x

hAx
x

h
TTTTT
&&& ∂

+
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

−
∂

+ )(')(),( *
1

*
0ω        (3.6) 

 

hT∂

{ WtrIW
W
hu

u
hAx

x
hhuxSW

x
hxWS

x
h T

n

TTTTT

Λ−
∂
∂

+
∂
∂

+
∂
∂

−−
∂
∂

+
∂
∂

= &&&)(')( *
1υ

 is unknown, thus we use the filtered version of υ: 

 

}, 

h&where 

,υξξ =+ k&

[ ] { }WtrIW
W
hu

u
huxSWxWSAx

x
hh T

n

TTT

Λ−
∂
∂

+
∂
∂

+++−
∂
∂

+−= &&& )(')( 1                 (3.7) 

Lemma 3.3.1 

Τhe control law is the following: 

 

                 

 

)('
2
1

1 xSWxkuu TTT −−=&                                                            (3.8) 

gether with the update law: 

 

 

to
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⎪
⎪
⎨

Λ+−−

=
1 T

W

⎩

⎪
⎪
⎧

<
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +=

≥
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +=∈−−

0)(
2
1,)(

2

0)(
2
1),(

2
1

TT
m

TT
m

T

WxxSkWandtrwWifxxSkW

WxxSkWandtrwWWorifWxxSkW
& (3.9) 

and 

 

,
2
1 AaIkI ==

 

guarantees that 

≥∀t)( ≤tζ 0,0  

 0)(lim =∞→ tt ζ exponentially fast provided that ζ(0) <0. 

Furthermore  provided that WW ∈)0(0, >∀≤ twW m and . 

Proof [5 (chapter 4)] 

quently: 

≥− tkt . 

k>0, if we take 

WW ∈*

 

For the first relation we have that: 0, ≥∀−= tkζζ& , conse

,)0()( ∀= et ζζ 0

, we have 0,0)( ≥∀≤ ttζ  and )(tζ0)0( <ζSince converges to 

 with rate k. 

e that

zero exponentially fast

 ( ) 0) 2 ≤  wheneve(tW
dt
d r For the second relation we will prov

mwtW =)(

of the ball 

, which means that the weights W are directed towards the inside 

{ }mwWW ≤: .  

It is true that: 

( ) { }( ) { }TT WWtrWWtr
dt
dd 2tW

dt
&==)(  

Using the adaptive law (3.9) we have: 

WW
w
W

WxexSkWetrxxSeWkWWeWW T

2
−=& T

m

TTTTT

2
1

)(
2
1)(1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

⎭
⎬
⎫

⎩
⎨
⎧

++−  

 

Consequently: 
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{ }WWtr
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Also it is true that: 
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1T kWetrWWtr ⎨
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mwW = . 

0)(
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⎨
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⎟⎟
⎠
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+ TT WxexSkWetr  and  we have: 1)1( 2 >+ mwFinally,  because 

( ) 0)( 2 ≤tW
dt
d . 

 

We consider the Lyapunov-like function: 

 

{ },~~W
2
1

2
1

11
2 WtrL T+= ξ  where *

111
~ WWW −= . 

aking the derivative of L we have: T

{ },~
11WWtrL &&& += ξξ  

or after using (3.7): 

[ ]
( ){ }[ ] { },~

)(')(xh& −−+ξ

11

1
2

WW

uuuxSWxWSxAxxkL TTTT

&

&& ++++−= ξ
 

 

 (3.6) is: 

trWIWtr n
T& +Λ−+ Τξ

which combined with
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or 

{ } { },~),()('~)(~
1101

2 WWtrWItruxxuxSWxxSWxkL n
TTT && +Λ−+−++−= Τξωξξξξ where 

. 

Moreover from the update law 

*
111

~ WWW −=

( )TuxSxW )('1 ξ−=& we have: 

{ }WItruxxxSWxkL n
TT ΤΛ−−+−= ξωξξξ ),()(~

0
2& . 

We need the following lemma: 

 

The update law (3.9) guarantee that: 

Lemma 3.3.2 

{ } .0≤ΛΤWItr n  

 

Proof[5 (chapter 4)] 
It is true that: 
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Lemma 3.3.3 
For the system under examination there are the following properties: 
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0,0)( ≥

0,)(4)(

0,)(4)(
2
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≥∀≤

≥∀≤

∀≤

tttu

tttx

ξ

ξ

ttξ

 

Proof  [5 (chapter 4)] 

We have that: 

 

ξζ −=h . 0,0 ≥∀≥ th  consequently: .0),()( ≥∀≥ ttt ξζ  

0,0)( ≥∀≤ ttζ , thus .0,0)( ≥∀≤ ttξMoreover from Lemma 3.3.1: Equivalently: 

.0,)()( ≥∀≤ ttt ξζ  

 { }( ) 2

2
1 xWx T ≥     22

2
1 Wtruh ++=                               (3.10) 

 

 

We have chosen

Furthermore:

,)()( tth ξζ +≤

)(2 th ξ≤                                                (3.11)                                                    

From (3.10) and (3.11) we have: 

,)(4)( 2 ≥∀≤ tttx ξ 0 . 

Moreover since: 2

2
1 uh ≥ , it is true that: 0,)(4)( 2 ≥∀≤ tttu ξ .                         ■ 

 

{ } 0,0 ≥∀≥ΛΤ tWtrI nξ . Lemmas 3.3.2 and 3.3.3 prove that  

Thus: ),()(~
0

2 uxxxkL Tωξξ −+−≤&                      (3.12) SWxTξ                               

Assumption 3.3.1 

                                (3.13) 

n positive constants. 

   The relation  (3.13) means that the modelling error term satisfies the Lip-

schitz condition which guarantees the ex n

ted take large values because the 

rror in Theorem 2.1.1 can be considered relatively small. 

 

The modeling error at zero case term satisfies: 

 
xkkux 210 ),( +≤ω

where k1,k2 are know

 

d uniqueness of solutions istence a

of (3.3). Furthermore k1,k2 it is not sugges

e
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   Generally the uncertainties are considered to be bounded by known fun-

ctions. The design of robust methods which can model systems of unknown 

uncertainties is not examined here. 

It is true that: 

                                              ,~
mwW ≤                                                      (3.14) 

by using the projection algorithm (3.9) and also 

                                              ,)(xS ≤ 0k                                                     (3.15) 

by definition of S(x), where  0,kwm are known positive constants. From (3.14), 

),(00
2 uxxkwxkL T

mξξ +−≤ ωξ−& . (3.15) and (3.12) we have: 

According to Assumption 3.3.1 and Lemma 3.3.3 we have that: 
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   The aforementioned analysis combined with Lemma 3.3.3 proves that the 

signals ξ(t) and x(t) are uniformly ultimately bounded with respect to the sets: 

04 2 >> kk . 
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hese sets can be confined because k can be chosen large. If ξ(t) is inside Ξ 

then it is bounded by
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Theorem 3.3.1  
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guarantee the uniform ultimate boundness of the trajectories of ξ(t) and x(t) 
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   The afore-mentioned theorem guarantees the boundness of weights W. 

W1, it can cause instability, thus we can use the following  projection 

algorithm in order to guarantee its boundness: 

About 
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W1  is in the interior of W1 or tends to move inward from the bound, then  is 

unchanged. Else there is modification of  

   As we have already discussed, there are various modification algorithms 

an be used. These algorithms ensure the boundness of the weights e- 

stimates  and guarantee the stability in the presence of modeling errors or 

the des

in the construction of ζ. Therefore there is a compromise and an appropriate 

aph we consider the case of no modeling error at zero case, in 

rm satisfies the relation: 
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disturbances.  

   Another important matter is the appropriate choice of ign constant k. 

A high design constant causes high model inaccuracy. In addition, k is a gain 

value of k  is chosen. 

 

3.3.2 No modeling error at zero case 
 
   In this paragr

order to prove the convergence of the state to zero. 
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l system have the same origin, as 

Assumption 3.3.2 requires. The aforementioned Theorem 3.3.2 proves that in 

the particular case the control scheme maintains its stability properties.    
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3.3.3 No modeling error case 
 
   In this paragraph we examine the case of no modeling error. 
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Proof[5 (chapter 4)] 

With respect to the previous analysis about L and Assumption 3.3.3 we have: 
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   In conclusion, the direct adaptive regulation method under modeling errors 

(n!=m) is described at Figure 3.1. 
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                   Fig. 3.1: Direct Adaptive Regulation under modeling errors(n!=m) 
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CHAPTER 4 
ENZYME KINETICS REACTIONS 
 
4.1 Michaelis-Menten mechanism 
 
   The Michaelis-Menten mechanism for basic one-substrate enzyme rea-

ctions consists of three elementary reactions steps, as we can see in the 

scheme (4.1). This is the basic scheme of an enzymatic reaction. 

Subsequently, signal transduction pathways can be represented as se-

quences of this basic reaction’s scheme. These enzyme kinetics reactions 

turn  a substrate S into a product P via an intermediate complex ES and are 

regulated by an enzyme E.  

 
                                                                           

k1 

                                                 PEESES +→⇔+                                            (4.1) 

                                                                                   
k2  

        
k3 

 

k1 is the rate  by which the enzyme-substrate complex ES is formed. The 

complex ES  can be dissociated into E and S with a rate k2 or it can proceed 

to form a product P with a rate k3.  

   Generally the velocity of reaction is the following: 

 

                                                     ][3 ESkV =                                               (4.2)   

 

   Under steady-state conditions, where concentration of intermediate complex 

is constant, we have: 

 

 

 



CHAPTER 4: ENZYME KINETICS REACTIONS 45

______________________________________________________________ 

 

( ) ( )
( )
( )[ ]

( )

1

32

0

321

01

32101

32101

3201

321

321

][

]][[
][

[ ,
][

]][[
]

,][][]][[
],[]][[]][[

],[][][][
],[][]][[

,0][][]][[][

k
kk

S

ES
ES

kkSk
ESk

ES

kkSkESESk
ESkkESSkESk

ESkkESESk
ESkESkESk

ESkESkESk
dt
ESd

+
+

=

++
=

++=
++=

+=−
+=

=−−=

 

                                                                                                                                 (4.3) 

where according to the mass balance: 
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Substitute equation (4.3) in (4.2) gives: 
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where V is the velocity of reaction, Vmax is the velocity of reaction when the 

enzyme is completely saturated with substrate and Km is the Michaelis-Men-

ten constant [2]. 

   A steady state situation develops with regard to [ES] and remains until 

almost all of the substrate is consumed, as we can  see in Figure 4.1. Fur-

thermore, the algebraic condition (4.4)  is true for the total enzyme concen-

tration.                           
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                       Fig. 4.1: Graphs of concentrations of Substrate (S), Enzyme (E), 

                       Enzyme-Substrate (ES)and Product (P) of enzymatic reaction               

                       (Michaelis-Menten) 

    

    In this project our aim is the regulation of enzyme activity by changing the 

rate constants. We concentrate on the basic pathway of enzyme reactions 

(4.1). 

 

 

4.2 Regulating enzyme activity 

   There are various methods of regulation of enzyme activity. The most 

known methods are: 

• Change of temperature  

• Change of pH 

• Allosteric regulation 

• Enzyme availability (synthesis, degradation, localization) 

• Substrate availability (synthesis, degradation, localization) 

• Inhibition: 

– By specific metabolites within the cell 

– By drugs, toxins, etc. 
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                 –    By specific analogues in study of reaction mechanism 

 

4.3 Mathematical description of enzyme kinetics reactions 
 

   The enzyme kinetics reactions are based on the scheme (4.1). According to 

this scheme we have the signal transduction pathway of Figure 4.2, where 

][],[],[],[ 4321 PmESmEmSm ==== . This pathway can be mathematically 

described by the following set of nonlinear ordinary differential equations: 
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               Fig. 4.2: Signal transduction pathway of basic enzyme kinetics  reaction[1] 

                               (Reproduced by permission from Mr O. Wolkenhauer) 

 

   The system of these equations describes transient time courses for the 

concentrations of  substrate [S], Enzyme [E] , substrate-enzyme complex [ES] 

and product [P]. These time courses are initiated by a set of initial 

concentrations. 

 

4.4 Regulation of enzyme activity by temperature  

4.4.1 Temperature effects on the activity of enzymes 

   In section 4.2 we referred to various factors which regulate enzyme activity. 

Temperature affects the activity of enzymes because it changes the three-

dimensional structure of the enzyme.  In an uncatalyzed reaction the rate 

increases in direct proportion to the temperature. But, in catalyzed reactions  
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the effect of temperature is quite different.  Starting at a low temperature, and 

increasing the temperature initially causes increase of the rate.  However, 

once the peak temperature has been reached the rate of the reaction begins 

to decrease. Generally, enzymes become inactive in high temperatures  ( 

>40- 50 oC). Above those temperatures there is a critical point where the 

enzyme becomes inactive and undergo denaturation. In the Figure 4.3 we can 

see  the reactivity of an enzyme reaction against temperature. 

 

Fig. 4.3: Reactivity of an enzyme(Human Amylase Starch Glucose)                                              

against temperature. There is a critical point(almost 40 oC) where the               

enzyme becomes denaturated. 

 

4.4.2 Arrhenius equation 

   The thermal variation of rate constants follows the following equation,  

known as Arrhenius equation: 

                                                     K=Ae
-E/RT                                                                   (4.5)  
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where A is the frequency factor(or Arrhenius constant), E the activation 

energy, R the gas constant and T the absolute temperature. Arrhenius equa-

tion shows the effect of a change of temperature on the rate constant  and 

therefore on the rate of the reaction. Generally, rates of reactions increase 

with the temperature. 

   In the case of our signal transduction pathway (Michaelis-Menten mecha-

nism) each of the three rate constants is described by an Arrhenius equation: 

                                            K1=A1e
-E1/RT                                                                    (4.6)                                

                                            K2=A2e
-E2/RT                                                                     (4.7) 

                                            K3=A3e
-E3/RT                                                                      (4.8) 
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CHAPTER 5 
IMPLEMENTATION OF DIRECT ADAPTIVE 
METHOD 
 
5.1 Introduction of the method 
 
    In this project we implement direct adaptive regulation using RHONN (Re-

current High-Order Neural Networks). RHONNs are used as models of the 

unknown plant, transforming the original system into a RHONN model which 

is of known structure, but contains a number of unknown constant-value 

parameters, known as synaptic weights. RHONNs were introduced in the 

previous Chapters. As we have already discussed the particular method 

refers to affine in the control nonlinear dynamical systems possessing 

unknown non-linearities. 

    A system affine in the control has the form: 

 

uxGxftx )()()( +=&  

 

    The control input, which is the absolute temperature in our case, has ex-

ponential dependence. As a result, a linear in control system is adopted to 

approximate the nonlinear system. Based on this equivalent linear in control 

system, a controller for the original nonlinear system can be constructed. 

    Taylor series expansion method is appropriate and is employed  to transfer 

our system into the standard affine form in a region of input T. 
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5.2 Taylor series expansion 
 
   For a function , we can write the Taylor series about a point a  as f
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This series is exact if we use an infinite number of terms.  If we use only the 

first 3 terms we get a Taylor series of order 2 which is  accurate near the point 

ax = . 

   The order of Taylor series depends on the magnitude of the area (x-α) and 

the accuracy required. 

   Generally the error is small when the area of expansion (x-α) is small and 

only a few terms are needed for good accuracy. The area of interest is 

defined by the requirements. 

    In our case we need a linear approximation so we use the first two terms 

and  omit the remaining higher order terms. This is a linearization around a 

particular point. We choose that point to be in the middle of the area of inte-

rest. 

 

 

5.3 Description of the System 

   Our system is a nonlinear dynamical system and has 4 states according to 

the state equations. Input is the absolute temperature (T). This system is of 

the general form: 

),( uxfx =&  

Furthermore there is the following algebraic condition about enzyme concen-

tration according to (4.4): 
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                                                   132 cmm =+                                              (5.2) 

 
Consequently the third state equation can be omitted and the system has 3 

states and 1 input: 
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  If we apply Arrhenius equation for k1,k2,k3  (K=Ae
-E/RT)   we have the depen-

dence of the rate constants on the control input T . 

    Our system is, as we know, nonaffine in control. The linear approximation is 

implemented by the use of Taylor series expansion as was introduced in the 

previous subsection. 

    The range of input is chosen to be 8K and the area of interest is 296-304K. 

This range is adequate for our purpose and the mean error of this ap-

proximation is  about 1-2% which is considered tolerable. 

    The expansion point, as we said, is in the middle of the space: Te=300. 
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Finally, the system in affine form for an area of input T is the following: 
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   The state equations can be written in the form uxGxftx )()()( +=& , where the 

states are the concentrations of the substrate m1, enzyme m2 and product m4 

, therefore the state vector: x=[ m1 m2  m4]T  . 

As control input we have the absolute temperature u=T .  

Thus, the matrices and  are: )(xf )(xG
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5.4 Direct Adaptive Regulation under modeling error  method 
 
     Direct adaptive regulation under modeling error at zero case is described 

in Figure 3.1 and has been introduced in section 3.3. This method has control 

and update laws which guarantee uniform ultimate boundedness property of 

signals x(t) and ξ(t). Therefore the true plant can be modelled by the recurrent 

neural network plus a modelling error term ω0(x,u): 

 

                                                      (5.3) ),(0W)(')(W *
1
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where u is the control input. 

   The control law is the following: 
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1 xSWxkuu TTT −−=&                                    (5.4) 

 

   There are appropriate update laws of matrices of the weights W, W1, which 

ensure the boundness of the weights estimates  and guarantee the stability in 

the presence of modeling errors or disturbances. Specifically, we use proje- 
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ction algorithms which confine the weights and the following relations are 

valid: 
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The update laws are the following: 
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The modelling error term satisfies: 

 

                                             xkkux 210 ),( +≤ω                                       (5.5) 

   

where k1 and k2 are known positive constants.  
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5.5 Results 
 
We apply the method with the next dimensions of vectors and matrices: 
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We choose a relatively small value of the design constant: 

 

    k=1.5 

 

We use the control law (5.4) of the method, which gives the dynamic feed-

back. 

Moreover we choose: 

 

)(')( ii xSxS =  

 

This choice gives a simpler model with simpler adaptive laws. 

    The initial values of the states, control input and the values of parameters 

of our system (Frequency factors and Activation energy) are in the following 

tables: 
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 Variable Initial value 

m1 2 (Mole) 

m2 1 (Mole) 

m4 0 

T 296 (K) 

    

 

 

 

 
 

Parameter Value 

A1 
3*10

7     
(s

-1
) 

A2 
5.8*10

8  
(s

-1
) 

A3 
1.2*10

9  
(s

-1
) 

E1 40*10
3  

(Joule/Mole) 

E2 50*10
3  

(Joule/Mole) 

E3 50*10
3  

(Joule/Mole) 

 

 

The parameters of the sigmoid functions were set to:  

μ=1 

l0=1 

λ=-0.5 

 

The input is: y=296+270*sin(0.0035*t). 

 

The following Figures give the state errors e1,e2,e3 of Substrate, Enzyme and 

Product respectively: 
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                                      Fig. 5.1: Evolution of Substrate error (e1) 
 

 

 
                                         Fig. 5.2: Evolution of Enzyme error (e2) 
 

 
                                  Fig. 5.3: Evolution of Product error (e3) 
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The error of Enzyme-Substrate: 213 mcm −= is the following: 

 

 
   Fig. 5.4: Evolution of Enzyme-Substrate error 

 

 

The following diagram gives the total state error: 

 

 
                                       Fig. 5.5: Evolution of total State error 
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The evolution of Substrate, Enzyme and Product is the following, where the 

red line represents the actual system’s state: 

 

 
    Fig. 5.6: Convergence of Substrate to actual state 

 

 

 

 
    Fig. 5.7: Convergence of Enzyme to actual state 

 

 
     Fig. 5.8: Convergence of Product to actual state 
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Respectively, the Enzyme-Substrate is the following: 

 

 
            Fig. 5.9: Convergence of Enzyme-Substrate to actual state 

 

 

The control action is the following: 
 

 
                         Fig. 5.10: Evolution of control action u for design constant k=1.5 

 
     

   Now, we take as input a white noise signal and apply the method using the 

same initial values of states and parameters as previously. The following Fi-
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gures give the state errors e1,e2,e3 of Substrate, Enzyme and Product 

respectively: 

 
                                        Fig. 5.11: Evolution of Substrate error e1 

 

 
       Fig. 5.12: Evolution of Enzyme error e2 

 

 
  Fig. 5.13: Evolution of Product error e3 
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Respectively, the error of Enzyme-Substrate: 213 mcm −= is the following: 

 

 
      Fig. 5.14: Evolution of Enzyme-Substrate error 

 
The following diagram gives the total state error: 

 

 
    Fig. 5.15: Evolution of total State error 

 

The evolution of Substrate, Enzyme and Product is the following, where the 

red line represents the actual system’s state: 
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    Fig. 5.16: Convergence of Substrate to actual state 

 

 

 

 
       Fig. 5.17: Convergence of Enzyme to actual state 

 

 
                                 Fig. 5.18: Convergence of Product to actual state 
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The Enzyme-Substrate is the following: 

 

 
   Fig. 5.19: Convergence of Enzyme-Substrate to actual state 

 
 

The control action u is the following: 

 
      Fig. 5.20: Evolution of control action u for design constant k=1.5 
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5.6 Analysis of results 
 

   As we see at Figures (5.6), (5.7), (5.8) of states’ evolution, all the three sta-

tes of the system converge fast. Furthermore the convergence is achieved be-

fore the end of enzyme reaction. From Figures (5.1),  (5.2) and (5.3) of state 

errors e1,e2 and e3, we infer that especially the states of substrate and 

enzyme converge more fast. The Figure (5.5) shows that the state error 

decreases dramatically before the first 2 sec, which proves the successful 

performance of the method.  

   In the second case with white noise as input we have similar results. All the 

states converge and again the state error decreases fast. 

   The control action to achieve the convergence is shown at Figures (5.10) 

and (5.20). We can see that the control action is smooth, because of the small 

value of design constant.  

   The design constant k is chosen appropriately in order to guarantee the uni-

form ultimate boundness of the state x. A large value of k creates large mo-

deling errors. Moreover k  is gain in ζ(t) and u(t), consequently there is a com-

promise between k and the modelling error terms. In our case k has a rela-

tively small value and from the results we infer that it is appropriate.  

   Another aspect  is the appropriate choice of the initial weights W,W1 and the 

matrix A which is a significant factor of good performance of the method.
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CHAPTER 6 
FINAL CONCLUSIONS & FUTURE WORK 
 
 
6.1 Final Conclusions  
 
    The regulation of enzyme activity is crucial to the regulation of protein inte-

ractions within signal transdunction pathways. The aim of this project was the 

the implementation of Direct Adaptive method for regulating enzyme kinetics 

reactions and specifically the Michaelis-Menten mechanism for basic one-

substrate enzyme reactions which consists of three elementary reactions 

steps. This is the basic scheme of an enzyme reaction. For this purpose 

Direct Adaptive Control method using RHONNs for affine in the control non-

linear dynamical systems with n!=m (n – the number of states, m – the 

number of control inputs) was implemented. We have also considered the 

more general case of modeling error at zero case, which is a usual instability 

mechanism.   

    In the non-linear system there were the rate equations of enzyme kinetics 

reactions and we used the absolute temperature T as control input. This sys-

tem is non-affine in control and its linear approximation was implemented by 

the use of Taylor series expansion. The range of input was chosen to be 8K 

and specifically the area of interest was 296-304K. This area was adequate 

for the purpose of this project. 

    The Direct Adaptive Control method which was implemented produced sa-

tisfactory results, as presented in the previous Chapter. From these results we 

infer that the state error converged to zero and all signals in the closed loop 

were uniform ultimate bounded, as it was desirable. The appropriate values of 
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parameters, and especially  the design constant k, played an important role in 

the performance of the closed loop system. 

    It is also remarkable the fact that the method showed stable behaviour for 

both of the inputs which were used. 

 
 
 
6.2 Future Work 
 
      The design of adaptive controllers with certain robustness properties  with 

respect to modeling errors or external disturbances can be further improved. 

In this project  we have assumed that the modeling error term ),(0 uxω   

satisfies    a   Lipschitz   condition.   This condition guarantees the existence 

and uniqueness of solutions of  , which 

is necessary according to Theorem 2.1.1 for the actual system. Furthermore, 

larger values of k1,k2 cause larger modeling error, but we can take small k1,k2 

because the approximation error ε can be considered arbitrarily small, 

according to Theorem 2.1.1 

),(0W)(')(W *
1

* uxuxSxSAxx ω+++−=&

     Recently, results about a special class of single-input- single-output sy-

stems, transformable via a global state-space diffeomorfism into a non-linear 

system the non-linearities of which depend only on the output, have been pro-

duced [31]. The design of controllers for uncertain systems started almost a 

decade ago, from [32] with the strict condition that only input-matched uncer-

tainties were present. Moreover Barmish and Leitmann[33] allowed small 

mismatched uncertainties. Chen’s work  [34] was in an adaptive environ-ment. 

In [35] the conditions were less strict and n-dimensional single-input systems 

in the form of a perturbed chain of integrators were considered [5]. Generally, 

the design of robust controllers for more general classes of mo-deling errors 

and uncertainties is a field of further research.   

     RHONNs can perform simulations of the effects caused to signal trans-

dunction pathways by factors, as  temperature. Since cellular processes are 

very complex, RHONNs can be used in order to approximate dynamical 
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systems of the form: . Furthermore these methods can help bio-

logists to handle the huge number of experimental data.               

),( uxfx =&

   Another significant matter is the use of Recurrent High Order Neural Net-

works in order to find the appropriate control input for pathways which do not 

have a desirable behaviour. RHONNs is an effective method and can cal-

culate the control input in order the system obtain the desirable state. This 

can bring about benefits as the treatment of a disease. 

    In conclusion, biologists recognize system approaches as necessary to un-

derstand the complex mechanisms or interactions among cells. There are va-

rious tools and methods from system engineering  which can help them 

handle the experimental data or make simulations. Consequently, the 

application of Control Theory to biological research is necessary and can lead 

to important innovations in Biology and Medicine. 
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